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Convolutional neural networks 
for mode on‑demand high finesse 
optical resonator design
Denis V. Karpov , Sergei Kurdiumov * & Peter Horak 

We demonstrate the use of machine learning through convolutional neural networks to solve inverse 
design problems of optical resonator engineering. The neural network finds a harmonic modulation of 
a spherical mirror to generate a resonator mode with a given target topology (“mode on‑demand”). 
The procedure allows us to optimize the shape of mirrors to achieve a significantly enhanced coupling 
strength and cooperativity between a resonator photon and a quantum emitter located at the center 
of the resonator. In a second example, a double‑peak mode is designed which would enhance the 
interaction between two quantum emitters, e.g., for quantum information processing.

Machine learning methods are widely used for various applications of modern optics, especially for inverse 
design  problems1–7. Methods of forward design, where based on a given optical device geometry and boundary 
conditions researchers can find the optical field and its properties, are highly developed and various numerical, 
semi-analytical, and analytical methods are well known. On the other hand, not often is it possible to devise 
geometries to generate a given target optical field using forward design methods. In this case deep machine 
learning methods and in particular neural networks can play the role of universal predictors and ultra-precise 
interpolators for various types of engineering. For example, optical power beam splitters and multiport devices 
for arbitrary transmission matrices have been designed with these  methods8,9. Such problems are particularly well 
suited for supervised learning methods, such as neural networks, but alternative methods based on reinforcement 
learning have also been used in some cases to design  experiments10,11.

Similar approaches can be applied to the design of optical resonators for cavity quantum electrodynamics and 
quantum technology. For example, for various applications in these areas strong coupling of a quantum emitter 
to photons in a resonator is required and simultaneously a long photon lifetime in this resonator is critically 
important to reach the so-called good cavity  limit12 where the coherent cavity coupling exceeds the decay rates. 
At the same time there often are geometrical restrictions, e.g., to allow for access from the side for loading, state 
initialisation, optical  cooling13, or trapping  fields14. Other applications require strong photon coupling to two 
quantum emitters for 2-qubit quantum  gates15,16, such as for a controlled-not (CNOT) operation between two 
qubits stored in trapped  ions17. In this case the performance could be significantly improved with an optimized 
cavity mode that exhibits two peaks at the positions of the two ions.

There is thus a need for a universal method to design and engineer cavities used in quantum information 
 applications18 which should combine strong photon-particle coupling and low cavity losses by achieving a target 
field topology (e.g., one or several field maxima in the center and low mode divergence) while also taking into 
account constraints on geometry, materials, and fabrication. Traditionally, only cavities with spherical mirrors 
supporting Laguerre–Gaussian modes have been considered for these applications, but they provide only a lim-
ited design space that may not fulfill the requirements of specific applications. Allowing for non-spherical cavity 
mirrors provides a much wider range of design options and can generate cavity eigenmodes that have superior 
properties compared to standard Laguerre-Gaussian  modes19,20. However, the large design space then makes 
inverse design problems very difficult to solve. In our previous  work20 we exploited a gradient descent method 
for this task. Because of the frequent occurrence of local minima in the design optimization, we had to combine 
the gradient descent method with an evolutionary algorithm, which required a large number of forward-design 
calculations. Moreover, this optimization was performed for maximum cavity cooperativity in a single point in 
space and has to be repeated for any change in target parameters. Instead, in this paper we overcome the inverse 
design problem by using a convolutional neural network (CNN) approach.

For most optical device inverse designs, e.g., for beam splitters, the relevant quantity to be optimized is the 
electromagnetic  field8,9. Optimizing an optical resonator is more complicated since a resonator supports many 
modes, each one of which could be a potential solution. Furthermore, it is generally not only the electric field of 
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the mode that is of interest but also the mode decay rate must be taken into account; for example, a mode with 
high field intensity can have very high losses and thus be useless for real applications. In this paper we demon-
strate an approach based on a coordinate-dependent cooperativity C, a measure that includes the ratio of the 
coherent coupling strength of the quantum emitter to the cavity photon (i.e., the single-photon field strength) 
over the incoherent cavity loss rate. Our CNN finds cavity geometries that optimize the cooperativity C and that 
can be achieved realistically by various modern fabrication methods such as a fiber-optic  microcavities17,21–23, 
ion beam etched dielectric  resonators24, and micro-assembled  structures25.

This paper is organized as follows. First, in “Optical resonator coupling to a quantum emitter”, we describe 
our optical resonator model and introduce the parameters for optimization. In “Algorithm” we present a general 
overview of the optimization algorithm which consists of data generation, CNN training and verification. In 
“Convolutional neural network”, more details of the neural network topology and computational resources are 
discussed. The CNN predictions of optimized cavity mirror geometries and their verification is presented in 
“Results and discussion”. Finally we summarize our results and conclude in “Conclusions”.

Optical resonator coupling to a quantum emitter
We consider a Fabry-Perot optical cavity consisting of two mirrors whose geometry we wish to optimize for 
applications in quantum science and technology. A schematic of this is shown in Fig. 1.

For a given cavity geometry, the cavity modes can be calculated using standard methods, such as Gaussian 
beam resonator  theory26, ray transfer matrix  approaches27,28, or finite element methods. The electric field of a cho-
sen mode is then normalized to a single photon field E(r) , i.e., the total energy contained in the electromagnetic 
field inside the cavity is normalized to a single photon energy �ω , where ω is the angular frequency. The interac-
tion energy between a dipole emitter at position r and a cavity photon is given by �g(r) = µE(r) where g is called 
the coupling constant and µ is the electric dipole of the emitter. Exploiting the relationship between the dipole 
moment and the spontaneous decay rate of the emitter, Ŵ = ω3µ2

3πε0�c3
 , we can write the coupling constant  as29

where � is the wavelength corresponding to angular frequency ω , c is the vacuum speed of light, � is the dimen-
sionless cavity field normalized to its maximum at position rm and the mode volume is defined by

where the integral is over the geometric volume of the cavity.
The other important quantity of optical cavities for quantum applications is the cavity decay rate κ , i.e., the 

rate at which a photon is lost from the cavity mode. We distinguish two contributions to the cavity loss rate: the 
loss per photon round trip by transmission through the mirrors or by absorption within the mirror Dmir (these 
are typically of the order of 10−5–10−3 ), and the loss per round trip through so-called clipping losses Dclip where 
the mode on the mirror is larger than the mirror diameter, i.e., a fraction of the photon field misses the mirror 
completely on reflection. The cavity decay rate is then

where L is the length of the cavity. An alternative way to express the loss rate is via the cavity finesse F defined as

To achieve strong particle-cavity coupling, the coherent coupling rate g(r) between the particle at position r and 
the cavity must be larger than the strengths of any incoherent processes, i.e., energy exchange between the particle 

(1)g(r) =

√

3�2cŴ

4πV�

�(r), �(r) =
E(r)

|E(rm)|

(2)V� =
∫

Vcavity

|�(r)|2dV

(3)κ = (Dclip + Dmir)
c

2L

(4)F =
2π

Dclip + Dmir
=

cπ

L

1

κ

Figure 1.  Schematic cavity representation. The shape of the mirrors should be optimized to generate a target 
cavity field mode � while keeping the losses κ small.
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and the cavity must occur on time scales before the photon leaks out of the cavity or is incoherently scattered by 
the atom. Therefore, the cooperativity parameter defined as

must be larger than one. The cooperativity therefore not only depends on the single-photon electric field strength 
at the position of the atom, but it also includes the round trip losses Dclip and Dmir.

Our approach is to modify the shape of the cavity mirrors based on a spherical “reference” shape. It is therefore 
useful to compare the cooperitivity achieved with our designs to the maximum cooperativity obtained at the 
center of this reference cavity. For two identical spherical mirrors with radius of curvature R30 the fundamental 
cavity mode is given by a Gaussian beam and the maximum cooperativity becomes

where we assumed no clipping losses for this reference cavity mode.
For quantum optics and quantum technology applications, the cooperativity C is the quantity that we wish to 

optimize by a convolutional neural network approach in the following sections. Our CNN will thus be trained 
on a set of functions C(r) or equivalently, once a reference spherical mirror shape is chosen, on the relative 
enhancement C(r)/C0 . As already discussed above, the cooperativity is a measure that depends on the ratio of 
the coherent coupling strength of the electric field to a particle and the resonator mode decay rate. The CNN is 
therefore trained to find resonator modes that have a given topology and also exhibit low round trip losses. This 
is in contrast to previous CNN-based optimization of optical devices which only take into account the electric 
field itself, e.g., in the case of integrated optical  beamsplitters8,9.

Algorithm
We consider cavities with cylindrical rotational symmetry consisting of two identical mirrors with a spherical 
profile perturbed by a harmonic modulation given by

By limiting the ranges of the period P and the amplitude of the perturbation A, we can choose parameters which 
are achievable by modern fabrication tools, see “Fabrication considerations”. While choosing such a 2-parameter 
family of mirror shapes may look restrictive, we have shown in previous  work19,20,31 that already very simple mir-
ror deviation shapes from spherical can significantly enhance the cooperativity by generating eigenmodes that are 
superpositions of several Laguerre-Gaussian modes. We will show below that we can also achieve fairly complex 
mode shapes within the parameter family of Eq. (7), such as highly localised and double-peaked structures. We 
also note that our approach would work for any parameterization of the mirror surface. Equation (7) is valid 
within the paraxial approximation, i.e., we approximated the spherical profile by a parabolic one.

To generate our data training set we need a method to find the cavity eigenmodes for a given mirror profile 
Z(r). This mode solver will be treated as a black box function below. Any numerical or semi-analytical method 
can be used as mode solver; for the numerical calculations in this paper we employ a mode mixing method 
(MMM)31,32. The advantages of the MMM, compared to, e.g., finite elements or finite differences methods, are 
high computation speed, low RAM and CPU consumption and the absence of sharp corner  singularities33,34. 
Depending on the complexity of the geometry one simulation on a single CPU core takes no more than 20 
seconds, which allowed us to generate our CNN training data of 85000 samples on 240 CPU cores on an HPC 
cluster (2.0 GHz Intel Skylake processors) in about 2 hours of computation time. Choosing a computationally 
effective method for the mode solver is critical for our approach.

Once the mode solver has calculated the modes �i and their finesse Fi for a given Z(r) we proceed by selecting 
one mode based on the target topology, e.g., a mode with a single peak, two peaks, etc. The spatially dependent 
cooperativity C(r) , Eq. (5), of this selected mode is then added to the training database. We emphasize that this 
selection process is very important to generate a well balanced training set; different training sets are required 
for different target mode topologies.

An overview of our algorithm is presented in Fig. 2. The first step is the selection of a perturbation pattern 
imposed on the spherical mirror within some range of parameters, Fig. 2a. In our case we choose harmonic 
perturbations with a flat distribution of periods P in the range 5–30 µ m and amplitudes A in the range 0.1–0.6 
µ m. The second step is to use these geometries as arguments for the mode solver, calculate the modes, and select 
the most appropriate mode for the training data set as outlined above, Fig. 2b. The third step, Fig. 2c, is to train 
the CNN on the generated data set. This is described in more detail below in “Convolutional neural network”. 
The fourth step is testing the trained CNN on data which were not used in the training (more details below) and 
usage of the trained CNN as a predictor for inverse mirror design: a target cooperativity distribution is given 
to the CNN and it predicts the required mirror modulation parameters P and A, Fig. 2d. At the final, fifth step 
we put this predicted mirror geometry into the mode solver and verify the result of the mode field, Fig. 2e, as 
discussed in more detail in “Results and discussion”.
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Convolutional neural network
Introduction to neural network approach. Deep learning methods have recently been demonstrated 
as a powerful tool for solving physical and in particular optical problems, for example, for deeply subwave-
length optical  imaging35–37, analysis of scatterometry  data38,39, enhanced resolution of SEM  images40, MRI image 
 analysis41,42, inverse design of optical  components8,9 and many other image processing applications, revolutionis-
ing their future development. Deep learning methods are machine learning methods employing multilayer (3 
and more layers) neural networks where subsequent layers extract finer level features from the raw input data. 
Deep neural networks automatically find the correct mathematical transformations to convert the input data to 
outputs results without requiring prior knowledge of the linear or nonlinear correlations. Convolutional neural 
networks (CNN)43, long short-term memory (LSTM)44, variational autoencoders (VAE)45, and generative adver-
sarial networks (GAN) are examples of deep learning algorithms used for physical  tasks46. GAN architectures 
have recently been used for complex inverse design problems in micro- and nano-photonics47–49. Such architec-
tures are generally selected in situations where the Ground Truth cannot be parametrized, so the Ground Truth 
is a 2D object (image-to-image tasks). In our case the mirror profile (Ground Truth) is fully determined by two 
numbers and a (comparatively straightforward) CNN implementation is sufficient and computationally more 
efficient.

Specific network topology. In our paper we present the application of a deep convolutional neural net-
work for predicting the required parameters of the cavity (period and amplitude of the sinusoidal mirror profile 
modulation) from a target cooperativity profile C(r) . The forward design mode solver outputs a set of modes for 
each mirror profile, of which a single mode is chosen (see “Technical details” below) to be included in the train-
ing set. The training set therefore comprises only one mode per input mirror shape. Each mode is represented 
as a field map in a longitudinal and radial cross-section of the cavity of 500 µ m length in z-direction and 400 
µ m in diameter. Each field map consists of 300× 200 points. Exploiting the fact that all modes are radially and 
center-symmetric, we feed the neural network with only a quarter of the field maps ( 150× 100 ) in order to save 
computer memory.

The neural network we use in our studies consists of four convolutional layers with 3x3 kernels with max-pool 
layers inserted between the first three convolutional  layers50. The topology of the neural network is shown in 
Fig. 2c. All convolutional layers are activated by rectified linear unit (ReLU) functions. The final convolutional 
layer is connected to three fully connected layers with 512, 32 and two neurons, respectively. The hidden fully 
connected layers have ReLU activation functions, and the output layer is activated by sigmoid  functions51. These 
fully-connected layers are needed for linking the feature representations from the convolutional layers with the 
output labels. This is a typical structure of a convolutional neural network which allows for automatic feature 
extraction for solving the inverse problem of finding the design of a device from the generated field map. The 
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Figure 2.  Overview of the optimization algorithm including data generation (a,b), machine learning (c), 
inverse design prediction (d) and verification (e). (b) shows modes with various topologies which exist within 
the design space. (d) represents a sample target cooperativity distribution (i.e., a peak of high intensity and low 
loss) as input argument for the trained CNN. (e) compares the target mode from (d) with the mode calculated 
explicitly from the CNN-generated mirror geometry.
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network was trained with the Adam stochastic optimization method with a learning rate of 0.001. The mean 
square error (MSE) was used as the loss function.

The neural network takes the field map as an input, outputting the period and amplitude both normalized to 
their maximum values in the whole dataset (i.e., between 0 and 1). 80% of the whole dataset was used for train-
ing, 10% for validation and the last 10% for testing.

Technical details. We use a self-made mode solver based on the  MMM31,32 to generate the training data. 
The data contains 85,000 numerical simulations, where each simulation produces a set of cavity eigenmodes, 
their spatial field distribution, their corresponding round trip loss, finesse, and cooperativity for a different 
spatial mirror profile. The exact number of eigenmodes in each set depends on the desired precision and in our 
numerical simulations was set to 30 modes. For a given target mode topology (e.g. one strong peak of coop-
erativity at the cavity center), the most appropriate of these 30 modes in each set is then selected and added to 
the training data. We thus arrive at a training set of 85,000 unique modes. To train the network for a different 
mode topology (e.g. two peaks), different modes have to be selected out of the 30 modes calculated for each 
mirror profile, thus resulting in a different training set, and the CNN needs to be re-trained. We use the python 
programming language with libraries numpy for computation and mpi4py for distribution of simulations over 
an HPC cluster.

The CNN training software was also written in the python language. The open source machine learning 
framework Tensorflow was used for the deep neural networks and training took place on an Nvidia GPU sup-
plied with CUDA.

Results and discussion
Mode prediction and verification. For the examples discussed here we choose a reference spherical cav-
ity of length L = 500 µ m, mirror radius of curvature R = 400 µ m, and mirror diameter 200 µ m. Harmonic 
modulations of the mirror profiles are chosen with random period P and amplitude A as discussed in “Algorithm”.

The results of the neural network training are shown in Fig. 3. This plot compares true parameters (red line) 
with CNN predictions (blue dots). This curve is based on a 10% subset of the forward design data set of 85000 
samples which were separated from the training set and have not been used in training or validation (made after 
every epoch by CNN). From the figure we see that the correlation coefficient between the true and retrieved 
values of both amplitude and period are over 99%, which demonstrates a high quality of the retrieval process.

Figure 4 presents the training convergence curves (learning curves) where training MSE and validation MSE 
versus training epoch show smooth  convergence50,52. We can see that at the earlier epochs (first 30) both training 
MSE and validation MSE are rapidly decreasing, while for the later epochs the speed of training is reduced. A 
peculiar behaviour of the network is observed at epochs around 110 where both training and validation errors 
increase. However, at later epochs they decrease faster again, showing better training. At the end of the training 
process we observe MSE at a level of 10−4 , and validation MSE of ∼ 3× 10−4 . Training of the neural network 
was terminated by an ‘EarlyStopping’ callback with patience of 40, meaning that if the validation loss does not 
decrease within 40 epochs, the training is stopped, and the model giving the best validation loss is used for 
final predictions. This mechanism saves the model from overfitting. The strong convergence also shows that 
the extraction of mirror modulation parameters from mode images is a well posed problem and does not suffer 
from non-uniqueness  issues53.

Next we use the trained CNN to predict the mirror modulation parameters for target mode profiles and 
compare the mode fields generated by the predicted mirror profiles with the targets. Two examples, taken from 
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Figure 3.  Correlation coefficient between the true parameters of the harmonic mirror modulations (red 
dots) and the values predicted by the trained network (blue dots) for (a) period P and (b) amplitude A. The 
correlation coefficients are 0.998826 and 0.996890 for period and amplitude, respectively, after training with 
90% (10% of that was used for validation) and for a test set of 10% out of N = 85,000 data sets.
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our test data set, are shown in Fig. 5. Target 1 is a typical example where the predicted cooperativity enhancement 
at the center of the cavity deviates by ∼ 1% from the target value. Out of our test data set this deviation is at the 
median deviation, i.e., 50% of the predicted cases in our test data set are a better fit of the central cooperativity 
enhancement to the target and 50% are worse. For this example, the deviations of the predicted mirror modula-
tion periodicity P and amplitude A from the true target values are 0.3% and 1.3%, respectively. It can be seen 
that the cooperativity enhancement in the cavity radial direction at z = 0 , Fig. 5a and on axis, Fig. 5b, are very 
accurately reproduced. Target 2 in the figure is chosen from the 10% least accurately fitted cases by the CNN: 
the deviation of the cooperativity at the cavity center is 17.6% in this case, with deviations in P and A of 1.3% 
and 0.7%, respectively. We see that in this case the profile along r and z still has the correct shape overall, but the 
predicted mode exhibits a slightly larger cooperativity enhancement throughout.

Inverse design method. The results of the previous section confirm the validity of the CNN predictions 
for estimating mirror parameters based on a given actual mode field solution. However, to use the CNN as a 
design tool one would like to get at least approximate mirror parameters for idealized target fields that are drawn 
without actually solving the full electromagnetic cavity eigenmode problem, as it was required for the target 
fields above.

Such an example is shown in Fig. 6. Here the target mode is chosen to provide a desired cooperativity 
enhancement at the cavity center, but the mode shape is simply set as a Gaussian shape that decays to zero 
both in the radial and the longitudinal direction. Such a mode is clearly unphysical as the light must always be 
bouncing between the cavity mirrors and thus cannot decay to zero in the longitudinal direction, and therefore 

Figure 4.  Learning curves for CNN training: mean square error of the training set (red dots) and of the 
validation set (blue dots) during the learning procedure within 200 epochs.
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no mirror shape will be able to produce this mode exactly. Nevertheless, as evidenced in Fig. 6, the CNN finds 
mirror parameters that produce a mode approximating the general shape of the target mode. Note that the CNN 
predicts values of period P and amplitude A of the harmonic perturbation of the spherical mirror profile. These 
are then used in the MMM to calculate the cavity eigenmodes, of which the best fitting mode is then selected. 
The mode number n and its finesse F are indicated in the figure legends. Figure 6a compares the Gaussian target 
mode (red dashed curve) and the predicted mode (black solid) in the radial cross section at z = 0 . The blue 
curve corresponds to the fundamental Gaussian mode of the spherical cavity of the same size, confirming that we 
achieved an enhancement of cooperativity by a factor of three. The predicted mode profile is a close approxima-
tion to the target Gaussian at the center, but it exhibits additional intensity lobes at around r = 5µ m. Figure 6b 
shows the predicted mode profile in cylindrical coordinates, demonstrating the predicted mode’s similarity to 
a Gaussian at the cavity center. For a quantum technology application where strong coupling of light to a single 
trapped particle at the cavity center is required, this predicted mode would be a perfectly acceptable solution 
and it was found by the CNN without the need for the designer to calculate cavity eigenmodes using a numerical 
method such as the MMM.

In a second example, Fig. 7, we target a mode comprising two maxima. We define the target as the sum of 
two Gaussian profiles shifted apart along the z-axis. Thus, as in the previous example of Fig. 6, the target is not 
a realistic cavity mode but a simple “mock up” exhibiting the desired property of a two-peak structure and it is 
left to the CNN to find a mirror shape that produces an eigenmode which (approximately) matches this target. 
The cross section of the target and the predicted modes along the z-axis are shown in Fig. 7a. The shape of the 
predicted mode differs from the target mode, which respects the fact that not every mode topology can be sup-
ported by our family of mirror shapes, i.e., a double-peak Gaussian mode is not necessarily an eigenmode of a 
spherical mirror with any single harmonic modulation. However, in this case the CNN finds the closest mode 
to the target mode and Fig. 7b shows that the main feature of the target mode of two peaks on the z-axis is well 
reproduced. As in the previous example, the cavity designed by the CNN would work perfectly fine for a quantum 
technology application where two particles trapped at the peaks of the target mode are strongly coupled to each 
other via the cavity mode to exchange quantum information.

The capability of the CNN to predict modes with a desired topology depends on the training set composition, 
especially on the balance between desired modes and other modes contained in the set. As already outlined in 
“Technical details”, this requires that the training sets for the one-peak mode (Fig. 6) and the two-peak mode 
(Fig. 7) are very different. The definition and computational implementation of the rule to select the single mode 
per mirror profile that is included in the training set is therefore an essential part of our method.

Fabrication considerations. The mirror geometries investigated here require the fabrication of a har-
monic modulation with scales of tens of micrometers in the radial direction and hundreds of nanometers in the 
axial direction on a spherical mirror profile. These scales are defined by the ranges of parameters which were 
used for the generation of the training data. Since a CNN is an interpolator but not an extrapolator, any predic-
tions of mirror geometries beyond the training range of parameters will be inaccurate. Mirror profiles with our 
specifications can be created by a number of fabrication techniques, such as mirror shaping by laser machining 
in silica  glass54–56 or by focused ion beam  milling24. Pulsed CO2 lasers can be used for thermal evaporation of 

Figure 6.  Demonstration of CNN inverse design. (a) The radial cross section of the target mode (red dashed 
curve), the numerically verified predicted mode (black solid), and the fundamental Gaussian mode of the 
spherical cavity of the same size (blue curve). n is the mode number. (b) The predicted mode in cylindrical 
coordinates.
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surface  material30 generating surfaces with extremely low roughness. Also modern micro-machining tools can 
provide sufficient  precision25,57–59.

Conclusions
We have demonstrated an approach based on convolutional neural networks for the design of high-finesse opti-
cal resonators which support a desired electrical mode field and, crucially, simultaneously limit the mode decay 
rate. This allows us to design target fields with, for example, one or two field maxima on the cavity longitudinal 
axis where significant enhancement of the cooperativity between quantum emitters coupled to cavity photons is 
achieved. Such cavity designs are crucial for various quantum optics and quantum technology applications. The 
proposed “mode on-demand technique” can be extended to many types of mode topologies by implementing 
appropriate mode selection rules for the training set generation.

Numerically the most demanding part of our approach is the generation of the training data set. We used an 
efficient mode mixing method that works in the paraxial limit of cavity optics. However, other methods can be 
chosen for improved accuracy or implementation of the algorithm for other inverse optical design problems. 
This flexibility of our CNN formalism will make it useful for many practical applications in the future.

Data availability
The data that support the findings of this study will be openly available at the University of Southampton reposi-
tory, https://doi.org/10.5258/SOTON/D2774.

Received: 3 November 2022; Accepted: 6 September 2023

References
 1. Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. Commun. ACM 60, 

84–90 (2017).
 2. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 512, 436–444 (2015).
 3. Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D. & Ozcan, A. Phase recovery and holographic image reconstruction using deep 

learning in neural networks. Light Sci. Appl. 7, 17141–17141 (2018).
 4. Lin, R., Zhai, Y., Xiong, C. & Li, X. Inverse design of plasmonic metasurfaces by convolutional neural network. Opt. Lett. 45, 1362 

(2020).
 5. He, J., He, C., Zheng, C., Wang, Q. & Ye, J. Plasmonic nanoparticle simulations and inverse design using machine learning. 

Nanoscale 11, 17444 (2019).
 6. Genty, G. et al. Machine learning and applications in ultrafast photonics. Nat. Photonics 15, 91 (2021).
 7. Ma, W. et al. Plasmonic nanoparticle simulations and inverse design using machine learning. Nat. Photonics 15, 77 (2021).
 8. Tahersima, M. H. et al. Deep neural network inverse design of integrated photonic power splitters. Sci. Rep. 9, 1368 (2019).
 9. Dinsdale, N. J. et al. Deep learning enabled design of complex transmission matrices for universal optical components. ACS 

Photonics 8, 283–295 (2021).
 10. Melnikov, A. A. et al. Active learning machine learns to create new quantum experiments. PNAS 115, 1221–1226 (2018).
 11. Melnikov, A. A., Sekatski, P. & Sangouard, N. Setting up experimental bell tests with reinforcement learning. Phys. Rev. Lett. 125, 

160401 (2020).
 12. Kuhn, A. Cavity induced interfacing of atoms and light. In Predojevic, A. & Mitchell, M. W. (eds.) Engineering the Atom-Photon 

Interaction: Controlling Fundamental Processes With Photons, Atoms and Solids (Springer, Berlin, 2015).
 13. Phillips, W. D. Nobel lecture: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70, 721–741 (1998).

Figure 7.  Demonstration of CNN inverse design for a cavity mode with two maxima on the z axis. (a) The axial 
cross section of the target mode (red dashed curve) and the numerically verified predicted mode (black solid). 
(b) The predicted mode in cylindrical coordinates confirming the two-peak structure.



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15567  | https://doi.org/10.1038/s41598-023-42223-w

www.nature.com/scientificreports/

 14. Deutsch, I. H. & Jessen, P. S. Quantum state preparation in optical lattices. In Bokor, J., Slusher, R., Bucksbaum, P. & Falcone, R. 
(eds.) Quantum electronics and laser science conference, vol. 12 (Optical Society of America, 1997). Paper QTuJ3.

 15. Barenco, A. et al. Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995).
 16. Nielsen, M. A. & Chuang, I. Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).
 17. Pellizzari, T., Gardiner, S. A., Cirac, J. I. & Zoller, P. Decoherence, continuous observation, and quantum computing: A cavity qed 

model. Phys. Rev. Lett. 75, 3788 (1995).
 18. Lucas, D. M. et al. Oxford ion-trap quantum computing project. Phil. Trans. R. Soc. Lond. A 361, 1401–1408 (2003).
 19. Karpov, D. V. & Horak, P. Cavities with nonspherical mirrors for enhanced interaction between a quantum emitter and cavity 

photons. Phys. Rev. A 105, 023515 (2022).
 20. Karpov, D. V. & Horak, P. Evolutionary algorithm to design high-cooperativity optical cavities. New J. Phys. 24, 073028 (2022).
 21. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in 

a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).
 22. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).
 23. Monroe, C. & Kim, J. Scaling the ion trap quantum processor. Science 339, 1164–1169 (2013).
 24. Romagnoli, P., Maeda, M., Ward, J. M., Truong, V. G. & Chormaic, S. N. Fabrication of optical nanofibre-based cavities using 

focussed ion-beam milling: A review. Appl. Phys. B 126, 111 (2020).
 25. Bitarafan, M. H. & DeCorby, R. G. On-chip high-finesse fabry-perot microcavities for optical sensing and quantum information. 

Sensors 17, 1748 (2017).
 26. Yariv, A. Quantum Electronics 3rd edn. (Wiley, New York, 1991).
 27. Gerrard, A. & Burch, J. M. Introduction to matrix methods in optics (Dover, Courier, 1994).
 28. Nazarathy, M. & Shamir, J. First-order optics-a canonical operator representation: Lossless systems. J. Opt. Soc. Am. 72, 356 (1982).
 29. Vuckovic, J. Quantum optics and cavity qed with quantum dots in photonic crystals. In Fabre, C., Sandoghdar, V., Treps, N. & 

Cugliandolo, L. F. (eds.) Quantum Optics and Nanophotonics (Oxford University Press, Oxford, 2017).
 30. Hunger, D. et al. A fiber fabry-perot cavity with high finesse. New J. Phys. 12, 065038 (2010).
 31. Podoliak, N., Takahashi, H., Keller, M. & Horak, P. Harnessing the mode mixing in optical fiber-tip cavities. J. Phys. B 50, 085503 

(2017).
 32. Kleckner, D., Irvine, W. T. M., Oemrawsingh, S. S. R. & Bouwmeester, D. Diffraction-limited high-finesse optical cavities. Phys. 

Rev. A 81, 043814 (2010).
 33. Comsol blog. https:// www. comsol. com/ blogs/ singu larit ies- in- finite- eleme nt- models- deali ng- with- red- spots/.
 34. Karpov, D. V., Sherbak, S. A., Svirko, Y. & Lipovskii, A. A. Second harmonic generation from hemispherical metal nanoparticle 

covered by dielectric layer. J. Nonlinear Opt. Phys. Mater. 25, 1650001 (2016).
 35. Pu, T. et al. Unlabelled far-field deeply subwavelength topological microscopy (dstm). Adv. Sci. 8, 2002886 (2021).
 36. Pu, T., Ou, J. Y., Papasimakis, N. & Zheludev, N. I. Label-free deeply subwavelength optical microscopy. Appl. Phys. Lett. 116, 

131105 (2020).
 37. Rendon-Barraza, C. et al. Deeply sub-wavelength non-contact optical metrology of sub-wavelength objects. APL Photon. 6, 066107 

(2021).
 38. Kolenov, D., Davidse, D., Cam, J. L. & Pereira, S. F. Convolutional neural network applied for nanoparticle classificationusing 

coherent scatterometry data. Appl. Opt. 59, 8426–8433 (2020).
 39. Kolenov, D. & Pereira, S. Machine learning techniques applied for the detection of nanoparticles on surfaces using coherent fourier 

scatterometry. Opt. Express 28, 19163–19186 (2020).
 40. Modarres, M. H. et al. Neural network for nanoscience scanning electron microscope image recognition. Sci. Rep. 7, 13282 (2017).
 41. Zhou, S., Greenspan, H. & Shen, D. Deep learning for medical image analysis (Elsevier, London, 2017).
 42. Brui, E. et al. Deep learning-based fully automatic segmentation of wrist cartilage in mr images. NMR Biomed. 33, e4320 (2020).
 43. LeCun, Y. et al. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989).
 44. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).
 45. Kingma, D. P. & Welling, M. Auto-encoding variational bayes. arXiv: 1312. 6114v 10 (2014).
 46. Goodfellow, I. J. et al. Generative adversarial networks. arXiv: 1406: 2661v1 (2014).
 47. Jiang, J. et al. Free-form diffractive metagrating design based on generative adversarial networks. ACS Nano 13, 8872–8878 (2019).
 48. Liu, Z., Zhu, D., Rodrigues, S. P., Lee, K.-T. & Cai, W. Generative model for the inverse design of metasurfaces. Nano Lett. 18, 

6570–6576 (2018).
 49. Tang, Y. et al. Generative deep learning model for inverse design of integrated nanophotonic devices. Laser Photonics Rev. 14, 

2000287 (2020).
 50. Goodfellow, I., Bengio, Y. & Courville, A. Deep learning (MIT Press, Cambridge, 2016).
 51. Xu, B., Wang, N., Chen, T. & Li, M. Empirical evaluation of rectified activations in convolutional network. arXiv: 1505. 00853 v2 

(2015).
 52. Zhang, H., Feng, L., Zhang, X., Yang, Y. & Li, J. Necessary conditions for convergence of cnns and initialization of convolution 

kernels. Digital Signal Process. 123, 103397 (2022).
 53. Liu, D., Tan, Y., Khoram, E. & Yu, Z. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photon. 

5, 1365–1369 (2018).
 54. Hunger, D., Deutsch, C., Warburton, R. & Reichel, J. Laser micro-fabrication of concave, low-roughness features in silica. AIP Adv. 

2, 012119 (2012).
 55. Vernooy, D. W., Furusawa, A., Georgiades, N. P., Ilchenko, V. S. & Kimble, H. J. Cavity qed with high-q whispering gallery modes. 

Phys. Rev. A 57, R2293 (1998).
 56. Armani, D. K., Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Ultra-high-q toroid microcavity on a chip. Nature 421, 925 (2003).
 57. Brinksmeier, E. & Preuss, W. Micro-machining. Phil. Trans. R. Soc. A 370, 3973–3992 (2012).
 58. Gao, S. & Huang, H. Recent advances in micro- and nano-machining technologies. Front. Mech. Eng. 12, 18–32 (2017).
 59. Schneider, F., Das, J., Kirsch, B., Linke, B. & Aurich, J. C. Sustainability in ultra precision and micro machining: A review. Int. J. 

Precis. Eng. Manuf.-Green Tech. 6, 601–610 (2019).

Acknowledgements
We acknowledge financial support by the UK Quantum Technology Program under the EPSRC Hub in Quantum 
Computing and Simulation (EP/T001062/1). The University of Southampton supercomputer Iridis 5 was used 
for numerical simulations.

Author contributions
D.V.K. performed most of the research. S.K. and D.V.K. implemented and optimised the algorithms. P.H. insti-
gated and oversaw the research. D.V.K., S.K., and P.H. wrote the paper.

https://www.comsol.com/blogs/singularities-in-finite-element-models-dealing-with-red-spots/
http://arxiv.org/abs/1312.6114v10
http://arxiv.org/abs/1406:2661v1
http://arxiv.org/abs/1505.00853v2


10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:15567  | https://doi.org/10.1038/s41598-023-42223-w

www.nature.com/scientificreports/

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Convolutional neural networks for mode on-demand high finesse optical resonator design
	Optical resonator coupling to a quantum emitter
	Algorithm
	Convolutional neural network
	Introduction to neural network approach. 
	Specific network topology. 
	Technical details. 

	Results and discussion
	Mode prediction and verification. 
	Inverse design method. 
	Fabrication considerations. 

	Conclusions
	References
	Acknowledgements


