Coexistence analysis of classical channels with DV-QKD over hollow core nested antiresonant nodeless fibre (HC-NANF)

O. Alia^{1*}, R. S. Tessinari¹, S. Bahrani¹, J. Sagar¹, T. D. Bradley², H. Sakr², K. Harrington², J. Hayes², Y. Chen², P. Petropoulos², D. Richardson², F. Poletti², G. T. Kanellos¹, R. Nejabati¹, D. Simeonidou¹

¹High Performance Networks Group, University of Bristol, Woodland Road, Bristol, UK ²Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK *Corresponding author : obada.alia@bristol.ac.uk

INTRODUCTION	Tab. 1 PARAMETERS FOR HC-NANF COEXISTENCE TESTBED.			RESULTS		
	 For the classical 	Parameters	Value			
The vision behind this work is to provide seamless coexistence of	channels, two optical	Number of Channels	8 193.50 THz, 193.45 THz,	Launch Power (per channel) -18 dBm -15 dBm -12 dBm -9 dBm	Launch Power (per channel) -42 dBm -39 dBm -36 dBm -33 dBm	

quantum and classical channels without limiting the power of the classical channels.

SPIE.

- Single mode fiber (SMF) limits coexistence due to Nonlinear effects i.e., Raman Scattering and four wave mixing (4WM) and due to the loss of 0.20 dB/km.
- Hollow Core Fibre is considered the ultimate medium for coexistence because it provides ultra low nonlinear effects and the potential of lower loss (10x lower than SMF).

naakat DN//DN/ platforma	Classical Channel	193.40 THz, 193.35 THz,			
packet DVDIVI plationns	Frequencies scenario 1	193.30 THz, 193.25 THz, 193.20 THz, 193.15 THz			
are used with handwidth.		193.20 THZ, 193.15 THZ			
are used with pandwidth-		192.70 THz, 192.65 THz,			
	Classical Channel	192.60 THz, 192.55 THz,			
variable transponders.	Frequencies scenario 2	192.50 THz, 192.45 THz,			
		192.40 THz, 192.35 THz			
Cartha guantum channal	Grid Spacing	50 GHz			
For the quantum channel,	Modulation Format	16-QAM			
	Optical Signal-to-Noise	20 dB			
IDQuantique DV-QKD	Ration (OSNR)				
id Quantique d' Qite	Capacity per Channel	200 Gbps			
	Total Capacity	1.6 Tbps			
systems are used	Pre-FEC Level	15%			
	Detector sensitivity*	-26 dBm			
(Clavic 2 OKD Platform)					
(Claviss QND Flationn).	Quantum Channel				
	DV-QKD Wavelength	1547.72 nm			
These systems are	DV-QKD Frequency	193.70 THz			
	QKD Protocol	COW			
	Maximum Distance	80 km @ 16 dB loss			
Implemented to run with					
	Optical Band Pass/Rejection Filter (OBRF)				
the COW (Coherent One-	Insertion loss band pass port	0.5 dB			
	Center wavelength	1547.72 nm			
	band pass port	100 CH			
VVay) protocol.	Bandwidth band pass port	100 GHz			
	*Corresponding to 16-QAM Me	odulation @200 Gbps and back-to-back.			
	0				
	-5 Classical Channels	•••••••			
e consider two scenarios	-10 - Classical Filter profile				
	Quantum Filter Profile				
Sc1 host case scenario with					
SUL DESI CASE SCENATIO WILL	-20				
	~ 20 Sc1	Sc2			
200 GHz (1.6 nm) spacing					
hotwoon quantum and		ΔΔΔΔΔΔΔΔ			

University of BRISTOL

Smart Internet Lab

Fig. 5 a) Average SKR versus launch optical power using HC-NANF. b) Average SKR versus launch optical power using SMF. c) Average QBER versus launch optical power using HC-NANF. d) Average QBER versus launch optical power using SMF; 200 GHz spacing between quantum and classical channels.

Fig. 1 The loss of NANF fibers over time. For reference we include the loss of solid fiber and the lowest loss HCPBGF 2004.

Hollow Core Nested Antiresonant Nodeless Fibre (HC- NANF) losses went down from over 100 dB/km in 2015 to 0.22 dB/km in 2021 (10% higher than SMF)

Testbed

between quantum and classical channels.

Sc2 worst case scenario with 1 THz (8 nm) spacing between quantum and classical channels.

Channel Spacing/Position for Quantum/Classical Coexistence

Fig. 6 a) Average SKR versus launch optical power using HC-NANF. b) Average SKR versus launch optical power using SMF. c) Average QBER versus launch optical power using HC-NANF. d) Average QBER versus launch optical power using SMF; 1 THz spacing between quantum and classical channels.

CONCLUSIONS

The coexistence of a DV-QKD channel and 8 × 200 Gb/s classical

channels was successfully demonstrated over a 2-km long

HC-NANF. In the best-case scenario (200~GHz spacing between the

Fig. 2 Experimental Testbed for the Coexistence of 1.6 Tbps classical channels and DV-QKD channel over 2km HC-NANF and SMF. Inset: scanning electron micrograph (SEM) of the HC-NANF cross section.

quantum and classical channel) at -24 dBm coexistence power in

SMF, the SKR dropped 73%, whereas, at 0 dBm coexistence power

in HC-NANF (250 times higher than the power used in SMF), the

SKR was preserved.

B R I S T 🔶

erc

opean Research Counci

blished by the European Commissio

