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The aim of this thesis is to demonstrate the effectiveness of worldsheet string theory in
the context of black hole physics, going beyond the supergravity approximation. For
a certain class of microstates, which in a particular limit admit an α′-exact description
in terms of gauged Wess-Zumino-Witten (gWZW) models, we will derive consistency
conditions, spectrum of massless excitations, and compute an extensive set of correla-
tion functions. In particular, we will show how the consistency of the worldsheet con-
formal field theory (CFT) is in one-to-one correspondence with the absence of closed
timelike curves, singularities, and horizon of the background. These conditions give
rise to a set of quantisation constraints on the gauging parameters that will allow us
to prove that the family of microstates we consider is the most general solution of our
gWZW model. In addition, we will construct the physical states in the full gauged
model and in its three-dimensional anti-de Sitter (AdS3) limit. We will also derive a
formula that expresses heavy-light correlators involving an arbitrary number of mass-
less fields in the AdS3 limit of the coset model in terms of AdS3 × S3 vacuum correlator.
Finally, we prove a conjecture on three-point functions in the SL(2, R) WZW model
involving spectrally flowed vertex operators. These results constitute an important
contribution for the understanding of black hole microstates beyond the usual super-
gravity approximation, and for AdS3/CFT2 holography at finite ’t Hooft coupling.
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1

Chapter 1

Introduction

The hypothesis of the existence of a ‘theory of everything’ is undoubtedly one of the
most fascinating concepts in science: a unique and coherent theoretical framework ca-
pable of explaining all the measurable phenomena in our universe. Despite its status
of hypothesis, expectations of its existence based on past experimental and theoretical
achievements are supported by Maxwell’s discovery of the electromagnetic theory and
that of the electroweak model made possible by the combined efforts of many theo-
retical physicists, including the 1979 Nobel prize winners S. Glashow, A. Salam and S.
Weinberg.

Once the strong nuclear force is taken into account, our best model for the description
of non-gravitational interactions is nowadays the Standard Model of Particle Physics.
Despite its incredible successes, it is well known and accepted in the scientific commu-
nity that a better model should be formulated: in addition to not considering gravity,
the Standard Model does not explain neutrino masses, does not take into account the
matter-antimatter asymmetry, and does not provide any information about the nature
of dark matter and dark energy.

On the other hand, gravitational phenomena are incredibly well described by Einstein’s
theory of general relativity. Indeed, LIGO’s first direct observation of gravitational
waves [5] followed a few years later by the publication of the first image of a black
hole by the Event Horizon Telescope Collaboration (EHT) [6] represent incredible mile-
stones for the validation of Einstein’s theory of gravity. Thanks to LIGO and the EHT
collaborations, we have experimental evidence of the theoretical prediction of general
relativity, within its regime of validity. However, also in this case, there are reasons
to believe that this theory should not be the ultimate description of gravitational in-
teractions when short distance physics or quantum mechanics is taken into account.
Notorious problems in such instances include the puzzling description of cosmological
and black holes’ curvature singularities, and the paradoxes associated to black holes.
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The current understanding of our universe is unsatisfactory and humbling. It would
thus be desirable to formulate a framework in which all the known fundamental forces
can be unified in a consistent fashion, while resolving the aforementioned problems.
String theory is so far the only candidate for such a remarkable endeavor. String theory
is a consistent theoretical framework in which gravity and (non-)abelian gauge theo-
ries naturally emerge from the quantisation of the theory on the worldsheet of closed
and open strings, respectively. In addition to fundamental strings, D-branes and NS5-
branes are essential constituents: black holes in string theory are low-energy descrip-
tions of bound states of (possibly excited) strings and branes at strong coupling. It is
precisely because of this large set of degrees of freedom, together with the extended
nature of strings, that the paradoxes and puzzles arising in quantum descriptions of
black holes can be tackled and, possibly, solved.

1.1 Black holes and paradoxes

Classically, the ‘No Hair Theorem’1 holds [8]: every four-dimensional, asymptotically
flat, black hole is described uniquely in terms of three parameters, namely the mass M,
the angular momentum J and the charge2 Q. Once we specify these three numbers, the
black hole is completely determined in a unique way. Using this fact we can immedi-
ately note that the entropy associated to such a system is S = kB ln(1) = 0, because for
an observer at asymptotic infinity the number of accessible microstates Ω possessing
those numbers is exactly 1. In addition, classical black holes have no entropy S = 0
and their temperature is zero3 T = 0. In 1973, J. Bekenstein noticed [9] that the laws of
thermodynamics are completely analogous to the laws that govern black holes: as an
example, the area of the horizon is never decreasing precisely as the entropy of a ther-
modynamical system. This means that we can formally associate, even in the classical
case, an entropy and a temperature to a black hole. Quoting Bekenstein:

“It is then natural to introduce the concept of black-hole entropy as the measure
of the inaccessibility of information (to an exterior observer) as to which particular
internal configuration of the black hole is actually realized [...].”

Unfortunately, classically we can not have a non-trivial entropy and temperature for
a black hole, hence it seemed that this analogy was simply formal. However, taking
into account quantum effects one can solve this puzzle: in 1974 Hawking [10, 11] was
able to show that a black hole can emit a thermal radiation4, thus implying that we

1More precisely, the “hairs” are fields associated to a stationary black hole and, today, we should speak
about the “No Scalar-Hair Conjecture” [7].

2More generally, multiple electric and magnetic charges are allowed.
3This is often stated as “classical black holes are really black”, they do not emit radiation.
4The radiation is thermal but not Planckian since it is modified by the absorption cross section.
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can associate a temperature to a black hole. In addition, the entropy is proportional to
the area of the black hole horizon, in Planck units. Hawking’s original calculation [11]
showed that the average number of outgoing particles, in a fixed frequency mode ω, is
distributed in accordance with a thermal spectrum

⟨N⟩ ∼ 1

e
h̄ ω

kB T − 1
. (1.1)

In addition, later it was shown [12, 13] that the full probability distribution (and not
just the average number) is that of a thermal radiation.

The particle emission from the black hole is in agreement with the ‘Generalised Second
Law’ of thermodynamics, which states that:

d
dt

(SBH + Srad) ≥ 0 , (1.2)

where Srad is the entropy of the emitted radiation and SBH is the Bekenstein-Hawking
entropy of a Black Hole

SBH =
kBc3

h̄GN

AH
4

=
AH
4

, (1.3)

where AH is the surface area of the horizon, kB is the Boltzmann constant, c is the speed
of light, h̄ is the reduced Planck constant and GN is the Newton constant. In the second
equality we have set h̄ = c = kB = GN = 1, a convention we will adopt for the rest
of the thesis unless otherwise stated. The fact that the entropy is proportional to the
area of the black hole, and not proportional to its volume, is remarkable. This led to the
idea of the Holographic Principle [14, 15], and one explicit realization of holography
is the celebrated AdS/CFT duality [16, 17, 18]. Note that the above discussion implies
that the dimension of the Hilbert space associated to the microstates of the black hole
(within the full Quantum Gravity theory) is

dim(Hmicro) ∼ eS , (1.4)

with possible subleading corrections omitted. This is the expected number of mi-
crostates for a black hole with entropy S. As an example, the Bekenstein-Hawking
entropy of a Schwarzschild black hole of mass M is

SSchw ∼ 1076
(

M
Msun

)
, (1.5)

which is very large. The discrepancy between the classical and the quantum prediction
is enormous. The Hawking temperature of a Schwarzschild black hole is

TH =
h̄c3

kB

1
8πGN M

∼ 6 × 10−8
(

Msun

M

)
K . (1.6)
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The bigger the black hole, the lower its temperature. More generally the temperature
is given in terms of the surface gravity κ as

TH =
h̄c3

GNkB

κ

2π
=

κ

2π
, (1.7)

where the surface gravity κ is defined by

κ kµ = kν∇νkµ

∣∣∣∣∣
H

, (1.8)

where kµ is the Killing vector associated with the Killing horizon. As an example, the
surface gravity for a four-dimensional Kerr-Newmann black hole is

κ =
r+ − r−

2(r2
+ + a2)

=

√
M2 − Q2 − J2

M2

2M2 − Q2 + 2M
√

M2 − Q2 − J2

M2

, (1.9)

where
r± = M ±

√
M2 − Q2 − a2 , a =

J
M

. (1.10)

1.1.1 Black hole thermodynamics

Black hole mechanics is governed by the following four laws, similar to those of ther-
modynamics:

0. The ‘Zeroth Law’ states that the surface gravity κ is constant over the horizon.
This is analogous to thermal equilibrium.

1. The ‘First Law’ states energy conservation: the change in mass M of the black
hole is related to the change of its horizon area AH, angular momentum J and
charge Q by

δM =
κ

8π
δAH + ΩδJ + ΦδQ , (1.11)

where Ω is the angular velocity and Φ is the electrostatic potential.

2. The ‘Second Law’ states that the total entropy of a system consisting of a black
hole and matter never decreases

dSTot = dSBH + dSmatter ≥ 0 . (1.12)

3. The ‘Third Law’ states that it is impossible to reduce the surface gravity κ to zero
by a finite sequence of operations. It is analogous to Nernst’s Law.
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1.1.2 The Entropy Puzzle

Imagine the following Gedankenexperiment: consider a box with some gas (thus with a
non-trivial entropy) and throw it into an asymptotically flat black hole. After a suf-
ficiently long time, an asymptotic observer is not able to resolve the presence of the
highly red-shifted matter next to the black hole horizon. Since the gas, and hence his
entropy, is not accessible anymore we have decreased the entropy of the observable
universe, naı̈vely violating the second law of thermodynamics. The solution of this
problem is to associate an entropy to a black hole (1.3), following the intuition of Beken-
stein and Hawking. In turn, this give rise to another profound question: what are the
microstates of the black hole? This is the so-called Entropy Puzzle.

In a seminal paper, Strominger and Vafa [19] provided, within the string theory frame-
work, the first microphysical calculation of a black hole entropy in terms of strings.
They gave the first microscopical explanation for the Bekenstein-Hawking formula,
and they showed that the entropy of a black hole is precisely a quarter of the area of the
event horizon (in Planck units), as expected. This computation is perceived as one of
the major successes of string theory. For an introductory review and for a conceptual
analysis of the Strominger-Vafa results see also [20].

1.1.3 The Information Paradox

We have learned that black holes have an entropy, a temperature, and they radiate fol-
lowing a thermal distribution, but what is the physical origin of the Hawking radiation?
An explanation, often given to respond to the above answer in a more intuitive fash-
ion, is the following: quantum fluctuations of the vacuum create particle-antiparticle
pairs and, in the presence of the gravitational field sourced by the black hole, one of
the two particles (just inside the horizon) falls towards the singularity, while the other
particle (just outside the horizon) can escape towards a far away observer. The infalling
particle has negative energy5 and subtracts mass to the black hole, which thus evapo-
rates. These escaping particles constitutes the Hawking radiation. The radiation which
emerges is not in a pure quantum state: indeed, the emitted quanta are in a mixed state.
Before discussing the information paradox, let us recall some basic definitions.

Definition 1.1. A state ρ of a quantum system is a self-adjoint operator that is

1. Trace-class6

Tr(ρ) = ∑
en

⟨en, ρ en⟩ < ∞ , (1.13)

where {en}n are elements of any orthonormal basis for a Hilbert space H.

5With respect to the observer, i.e. with respect to the timelike Killing vector defined at infinity.
6Here we are remarking the fact that not every self-adjoint operator on an infinite-dimensional vector

space has a trace defined. If this happens, it is called trace class.
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2. Unit trace
Tr(ρ) = 1 , (1.14)

3. Non-negative
⟨φ, ρ φ⟩ ≥ 0 , ∀φ ∈ H . (1.15)

Remark 1.2. The second and the first points in the above definition above can be com-
bined by noting that, when well defined, the trace is independent of the orthonormal
basis chosen.

Definition 1.3. Often, the above ρ is referred to as density matrix. We can thus equiva-
lently say that a density matrix is a non-negative unit-trace self-adjoint operator.

Definition 1.4. Given a Hilbert space H, given two states ρ1, ρ2 ∈ H and c1, c2 ≥ 0 such
that c1 + c2 = 1, a state Ψ ∈ H is called convex combination of ρ1, ρ2 if it is written as

Ψ = c1ρ1 + c2ρ2 = c1ρ1 + (1 − c1)ρ2 . (1.16)

Definition 1.5. A state Ψ is called pure if it can not be written as a convex combination
of ρ1, ρ2 ̸= Ψ, unless trivially c1 = 1, c2 = 0 or c1 = 0, c2 = 1.

Remark 1.6. Pictorially, pure states are the extreme points of a convex set of states.

Definition 1.7. An equivalent formulation of a pure state can be given in terms of the
density matrix ρ, by looking at its properties. Given7 |ψ⟩ ∈ H a state is called a pure
state if the density matrix can be written as

ρ =
⟨ψ, · ⟩ψ

⟨ψ, ψ⟩ =
|ψ⟩ ⊗ ⟨ψ|
||ψ||2 , (1.17)

Equivalently, Tr(ρ2) = Tr(ρ) = 1.

Definition 1.8. All the other states, for which such |ψ⟩ ∈ H does not exist, are called
mixed states. The density matrix is written, as opposed to the one above, as

ρ = ∑
ℓ≥1

cℓ |ψℓ⟩ ⊗ ⟨ψℓ| , cℓ ≥ 0 , ∑
ℓ≥1

cℓ = 1 . (1.18)

Remark 1.9. Note that for a pure state we have c1 = 1, cℓ = 0, ℓ > 1 and the above
decomposition is trivial. Equivalently, a state is mixed if Tr(ρ2) < 1.

Remark 1.10. Let us denote the density matrix associated to ψℓ as ρψℓ
. One should note

that, given c ∈ (0, 1) ,
cρψℓ

+ (1 − c)ρψk ̸= ρcψℓ+(1−c)ψk
, (1.19)

since the left hand side describes a mixed state (convex combination of density matri-
ces) while the right hand side is a pure state. Indeed, using (1.17), one can easily check
that the right hand side satisfies Tr(ρ2) = Tr(ρ) = 1.

7Note that we are considering also the case when |ψ⟩ is not normalized.
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Definition 1.11. Consider two systems A, B with associated Hilbert spaces HA,HB and
basis {|ψi⟩A}i, {|ψj⟩B}j respectively. The most general state Ψ on H = HA ⊗ HB is
given by

|Ψ⟩ = ∑
i,j

cij |ψi⟩A ⊗ |ψj⟩B . (1.20)

The state |Ψ⟩ is called separable if cij = cA
i cB

j , so that

|Ψ⟩ = |ψA⟩ ⊗ |ψB⟩ , |ψA,B⟩ = ∑
k

cA,B
k |ψk⟩A,B . (1.21)

Otherwise, the state is called entangled (or inseparable).

Mixed states inevitably arise from pure states when, for a composite quantum system
defined on H1 ⊗H2 with an entangled state constructed with states living in their own
Hilbert space, the part H2 is inaccessible to an observer. The state is thus expressed
with a partial trace over H2. It is important to note that, if we have a pure state and
then we perform a partial trace, we lose information about the system we are tracing
over. This does not imply that the original system was not in a pure state, but rather
that we have an effective description of the system, and we are left with a mixed state.
Nevertheless, in principle, we should be able to recover the fine-grained description
and hence have access to the properties of the original state.

The information paradox does not solely rely on the thermal nature of the emitted radi-
ation. It is a consequence of the combined properties of the radiation and entanglement.
Let’s explain this carefully, following [21]. According to Hawking’s arguments, one can
show that the state of the emitted radiation is of the form

|ψ⟩emit = C
(
|0⟩b ⊗ |0⟩c + γ b̂† |0⟩b ⊗ ĉ† |0⟩c +

1
2

γ2 b̂†b̂† |0⟩b ⊗ ĉ† ĉ† |0⟩c + . . .
)

= C
(
|0⟩b ⊗ |0⟩c + γ |1⟩b ⊗ |1⟩c + γ2 |2⟩b ⊗ |2⟩c + . . .

)
, (1.22)

where |0⟩b , |0⟩c are two different vacua of two different locations in the curved space-
time, a crucial feature of quantum field theory on a curved background. Without en-
tering in details about the origin of this state, we can immediately note that the above
state is not factorised. This implies that the subsystems are entangled. Suppose now
that the quanta created by the operator ĉ† fall towards the singularity while the quanta
created by the operator b̂† propagate to infinity. The two are entangled. If the black hole
evaporates, the outgoing radiation is entangled with nothing. We know that the emit-
ted quanta cannot be described by a pure state, but now we cannot write a mixed state
either since we have nothing to mix the radiation with! The only way to describe the
system B is by using a reduced density matrix ρB. This description is statistical rather
than quantum-mechanical. It is thus impossible to reconstruct the whole system (i.e.
obtain a pure state) and the information about the original pure system is lost, violating
unitarity.
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Proposition 1.12 (Information Paradox). The information paradox states the inability to
reconstruct the original pure state from the thermal radiation collected by an observer at infinity
due to the disappearance of entangled quanta during the black hole evaporation process. Hence,
for an observer at infinity, the original pure state has undergone a non-unitary transformation,
in contrast to quantum mechanics’ unitarity postulate.

For this reason, a modification in the formulation of quantum mechanics was originally
deemed necessary by Hawking. However, as we will discuss below, using string the-
ory’s description of black holes (instead of quantum field theory on curved spacetime)
it is possible to preserve the postulates of quantum mechanics and potentially solve the
information paradox.

How can we solve this paradox? One possibility would be to consider small, local and
subtle correlations between the emitted quanta. In other words, one could imagine that
perturbative corrections to Hawking’s computation could lead to a successful unitary
picture of black hole evaporation. Under certain physically-reasonable assumptions,
one can show however that this is not possible. Mathur [22] proved the following
”Small correction” no-go theorem that we recall without proof:

Theorem 1.13 (Mathur’s small correction no-go theorem). Consider a black hole solution
of mass M and Schwarzschild radius RS. Define ℓP, mP to be the Planck length and mass
respectively. Consider the following hypothesis (not all independent):

1. Small curvatures: the quantum state is defined on a spacelike slice whose intrinsic and
extrinsic (when embedded in a 4D spacetime) curvatures are small: (3)R ≪ 1

ℓP
, K ≪ 1

ℓP
.

Furthermore, the spacetime curvature in a neighbourhood of the spacelike slice is small as
well: (4)R ≪ 1

ℓP
. We assume this to be true at sufficiently large times, as long as the

mass of the evaporating black hole is M ≫ mP.

2. Energy conditions: we assume that the matter fields obey the usual energy conditions
(say, the dominant energy condition).

3. Local Hamiltonian Evolution. The quantum state of the matter evolves according to a
local Hamiltonian.

4. Information-free horizon (traditional black hole): we assume that at any point in the
neighbourhood of the event horizon, the evolution of field modes with wavelength ℓP ≪
λ ≲ RS is given by the semi-classical evolution of quantum fields on empty curved space-
time, up to terms suppressed as mP/M. In other words, the No-Hair theorem holds.

Under the above assumptions, the formation and evaporation of the black hole will lead to mixed
states or remnants.
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Roughly put, the theorem is telling us that, under physically-reasonable assumptions,
small and local corrections are not enough to restore unitarity: we would be left with a
mixed state or remnants. To evade this no-go theorem, at least one of the assumptions
must be violated.

Recall that remnants [23] are long-lived objects with bounded mass and size but un-
bounded entanglement with a distant external system. Their formation is conjectured
to have place when quantum gravity stabilising effects take over during the final stages
of the evaporation process of a black hole, whose size approaches the Planck scale. The
system comprised of a remnant and Hawking radiation would be in a pure state. How-
ever, their existence is nowadays deemed unlikely due to their conflict with Beken-
stein’s entropy bound and the generalised second law of thermodynamics [24, 25]. For
other arguments against their existence see also [26, 27]. From now on we assume that
the unique final stage of the evaporation process under the assumptions of Mathur’s
theorem is a thermal radiation.

A possible way to evade the above claim is to consider some sort of non-local interac-
tions between the interior of the black hole and the asymptotic observer, thus relaxing
the assumption (3) of the theorem. This idea is part of the so-called ‘island paradigm’
[28, 29, 30, 31], for a review see [32]. In this approach, most successfully applied to 2D
gravity, the formula for the entanglement entropy of the radiation is computed via a
gravitational path integral. The authors assume the validity in flat space-time of the
so-called Quantum Extremal Surface proposal [33], which states that the fine-grained
(i.e. Von Neumann) entropy of the radiation is given by an extremisation problem over
appropriate spacetime regions. The solution to this extremisation problem is called
(quantum) extremal surface. Their work suggests that, in order to account for the en-
tanglement entropy of the Hawking radiation, there must exist a disconnected space-
time region called “islands” located in the interior of the black hole. By considering
Hawking modes in this interior region together with the outgoing radiation one is able
to recover the Page curve, nowadays considered a necessary condition for solving the
information paradox. However, the description of the final state of the evaporation pro-
cess is still problematic: the radiation at infinity collected by an observer is still mixed
and is unclear how to recover the full pure state from it, especially in the context of
four-dimensional gravity. Furthermore, one assumes some non-local relation between
the interior of the black hole spacetime and the collected modes that seem not justified
a priori.

More criticisms have been moved towards this set of semi-classical ideas. In particular,
the authors of [34] highlight the contrasts with the so-called ’Fuzzball proposal’ [22],
which instead is based on the knowledge of the microscopic constituents of black hole
and utilises fundamental ingredients from string theory. For an enlightening review
see [35]. The main claim of this proposal can be summarised as follows:
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Proposition 1.14 (The Fuzzball Proposal). Consider a low-energy effective theory of string
theory, with a black hole solution. The Fuzzball proposal claims that quantum gravity effects
are non-negligible on the scale of the would-be horizon.

The point of the above claim is that quantum gravity effects cease to be negligible al-
ready at scales of the order of the would-be black hole horizon [36], violating the as-
sumption (4) of Mathur’s small correction theorem. The fuzzballs in string theory are
the microstates of the black hole, the latter being a low-curvature solution of the low-
energy effective theory of string theory. Hence, the black hole represents a coarse-grained
description of the underlying stringy system. In other words, such effective description
of the stringy bound state has the characteristic features of the black hole like, for in-
stance, its highly absorptive nature. It is widely expected that only a subset of all the
possible Fuzzballs will be well-described by solutions of the low-energy theory (for in-
stance, supergravity) and thus we expect the existence of some “stringy” fuzzballs, not
well-described in the supergravity approximation. Out of these stringy solutions, one
can recognize coherent-like states that well approximate classical behaviors: for black
hole microstates, we expect them to be described by smooth and horizonless solutions
of the supergravity equations of motion.

1.2 Outline of the thesis

The aim of this thesis is to present research results published in [1, 2, 3, 4], which consti-
tute a set of original contributions for the understanding of the role of string theory in
the resolution of black hole paradoxes and their internal structure. Most of the thesis is
devoted to the study of a family of non-supersymmetric microstates called JMaRT (after
the authors of [37]) that, in a special regime, admit an α′-exact worldsheet description
in terms of gauged Wess-Zumino-Witten (gWZW) models. The thesis is organised as
follows.

In Chapter 2 we provide the necessary technical ingredients for the understanding of
the subsequent chapters. In particular, we consider compactifications of Type IIB su-
pergravity and the D1-D5-P black hole. After reviewing the essential properties of this
well-studied system, we show how its weak coupling description provides a natural
and elegant explanation for the existence of the dual D1-D5 conformal field theory
(CFT). We review the marvelous relation between the attracted moduli space of the
D1-D5-P system, the dual CFT moduli space and the instanton moduli space. We then
proceed in setting up the notation for the D1-D5 CFT system at the orbifold point. From
there, and for the rest of the thesis, we focus on worldsheet techniques. We review the
Ramond-Neveu-Schwarz (R-NS) formalism for superstrings in AdS3 × S3 × T4 with
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pure NS-NS fluxes and, finally, we present the null-gauged Wess-Zumino-Witten mod-
els that encode the dynamics of a closed string in the NS5-decoupling limit of the
JMaRT background.

In Chapter 3 we present the results contained in [1]. We show that the consistency of
the spectrum of the worldsheet CFT implies a set of quantisation conditions and parity
restrictions on the gauging parameters. We also derive these constraints from an inde-
pendent geometrical analysis of smoothness, absence of horizons and absence of closed
timelike curves. This allows us to prove that the complete set of consistent backgrounds
in this class of models is precisely the general family of (NS5-decoupled) JMaRT solu-
tions, together with their various (BPS and non-BPS) limits. We clarify several aspects
of these backgrounds by expressing their six-dimensional solutions explicitly in terms
of five non-negative integers and a single length-scale. Finally we study non-trivial
two-charge limits, and exhibit a novel set of non-BPS supergravity solutions describing
bound states of NS5 branes carrying momentum charge.

Chapter 4 is an exposition of the PRL publication [2] and its extension [3]. Here we
compute a large collection of string worldsheet correlators describing light probes in-
teracting with heavy black hole microstates. We construct physical vertex operators
in these cosets, including all massless fluctuations. We compute a large class of novel
heavy-light-light-heavy correlators in the AdS3 limit, where the light operators include
those dual to chiral primaries of the holographically dual CFT. We compare a subset
of these correlators to the holographic CFT at the symmetric product orbifold point,
and find precise agreement in all cases, including for light operators in twisted sec-
tors of the orbifold CFT. The agreement is highly non-trivial, and includes amplitudes
that describe the analogue of Hawking radiation for these microstates. We further de-
rive a formula for worldsheet correlators consisting of n light insertions on these back-
grounds, and discuss which subset of these correlators are likely to be protected. As a
test, we compute a heavy-light five-point function, obtaining precisely the same result
both from the worldsheet and the symmetric orbifold CFT.

In Chapter 5 we present the results contained in [4]. AdS3 correlators are essential
building blocks for the correlators in the JMaRT microstate backgrounds. However,
correlation functions of the SL(2,R)-WZW model involving spectrally flowed vertex
operators are notoriously difficult to compute. An explicit integral expression for the
corresponding three-point functions was recently conjectured in [38]. In this chapter,
we provide a proof for this conjecture. For this, we extend the methods of [39] based
on the so-called SL(2,R) series identifications, which relate vertex operators belonging
to different spectral flow sectors. We also highlight the role of holomorphic covering
maps in this context. These results constitute an important milestone for proving this
instance of the AdS3/CFT2 holographic duality at finite ’t Hooft coupling.
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Chapter 2

Supergravity, D1-D5 CFT, and
worldsheet string theory

In this chapter we provide the technical tools necessary to understand the original re-
sults published in [1, 2, 3, 4] and presented in the remaining chapters of the thesis. We
start by reviewing the relevant supergravity compactifications and some important so-
lutions in six-dimensions. We then focus on the D1-D5(-P) system and recall the deriva-
tion of the D1-D5 CFT in both the strong coupling and weak coupling regimes, and
review the description of the dual CFT at the orbifold point. In doing so, we review the
incredibly fascinating, albeit subtle, relation between the attracted supergravity mod-
uli space, the dual CFT moduli space and the instanton moduli space in the context of
the D1-D5-P system. We follow with an extensive review of the R-NS formulation of
superstring theory in AdS3 × S3 × T4 with pure NS-NS fluxes and in a particular fam-
ily of coset models which play a crucial role for the understanding of string theory in a
specific family of black hole microstates.

2.1 Supergravity and compactifications

Here we recall basic facts about Type IIB supergravity and some compactifications that
will play a prominent role for the rest of the thesis.

2.1.1 Type IIB Supergravity

We start by considering Type IIB Supergravity, the massless truncation of Type IIB Su-
perstring theory. The fields are given by the following representations of so(8):

• NS-NS: Dilaton, B-field, Graviton 1 ⊕ 28 ⊕ 35v = {Φ, B(2), G}
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• NS-R: Dilatino, Gravitino 8c ⊕ 56c = {λ
(1)
α , χ

(1),µ
α }

• R-NS: Dilatino, Gravitino 8c ⊕ 56c = {λ
(2)
α , χ

(2),µ
α }

• R-R: 0-form (Axion), 2-form, 4-form 1 ⊕ 28 ⊕ 35(+)
s = {C(0), C(2), C(4),SD}

where v, s, c label the three different representations of so(8) related by triality, and the
(SD) in the RR 4-form the denotes the self duality of its field-strength. The two gravitini
have the same chirality. The theory has 128B bosonic and 128F fermionic (on-shell)
degrees of freedom, as supersymmetry requires. Indeed, the IIB supergravity theory is
a chiral N = (2, 0) theory in 10 dimensions with 32 supercharges8. The IIB theory is
also obtained from superstring theory, by choosing the Ramond vacua to have the same
eigenvalue under the worldsheet fermion number (−1)F = (−1)F̄ when performing
the GSO projection.

The string-frame action for the bosonic fields of Type IIB Supergravity is given by

S(Str)
I IB =

1
2κ2

{ ∫
d10x

√
−G e−2Φ R − 1

2

∫ [
e−2Φ

(
−8 dΦ ∧ ⋆dΦ + H(3) ∧ ⋆H(3)

)
+ F(1) ∧ ⋆F(1) + F̃(3) ∧ ⋆F̃(3) +

1
2

F̃(5) ∧ ⋆F̃(5) + C(4) ∧ H(3) ∧ F(3)
]}

, (2.1)

where 2κ2 = 16πG10D
N = (2π)7g2

s ℓ
8
s and

Gd
N =

G10D
N

(2π)10−dV10−d
, G10D

N = 8π6g2
s ℓ

8
s . (2.2)

We have used H(3) = dB(2) and

F̃(3) = F(3) − C(0) ∧ H(3) , F̃(5) = F(5) − 1
2

C(2) ∧ H(3) +
1
2

B(2) ∧ F(3) , (2.3)

with F(n) = dC(n−1), and the self-duality of F̃(5) must be imposed on-shell. In Einstein
frame9 the same action becomes

S(Ein)
I IB =

1
2κ2

{ ∫
d10x

√
−G R − 1

2

∫ [
dΦ ∧ ⋆dΦ + e−ΦH(3) ∧ ⋆H(3) (2.4)

+ e2ΦF(1) ∧ ⋆F(1) + eΦ F̃(3) ∧ ⋆F̃(3) +
1
2

F̃(5) ∧ ⋆F̃(5) − C(4) ∧ H(3) ∧ F(3)
]}

.

The action in Einstein frame can be rewritten in a manifestly SL(2, R)-invariant fashion,
hence the symmetry group is classically SL(2, R). However, in the full string theory it
is broken to a discrete SL(2, Z) subgroup which includes T- and S-duality transforma-
tions.

8The spacetime supercharges are the integrals of the worldsheet gravitini’s vertex operators.
9The string and Einstein frame metric are related by GMN,Ein = e−Φ/2 GMN,Str, where Φ is the Dilaton.
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The RR-forms C(p+1) couple to Dp-branes. The string frame action of a stack of N co-
incident Dp-brane is the sum of the Dirac-Born-Infeld (DBI) and a Wess-Zumino (WZ)
term, namely

S(Str)
Dp =− TDp

∫
Mp+1

dp+1x e−Φ Tr
(√

−det
(
Gαβ + 2πα′ Fαβ

))

+ µp

∫
Mp+1

∑
q

C(q) ∧ ch (F ) ∧

√√√√ Â(RTMp+1)

Â(RNMp+1)
, (2.5)

where the brane tension is given by

TDp =
1

gs(2π)p (α′)
p+1

2

=
1

gsℓs(2πℓs)p , (2.6)

and µp = ±TDp is the RR charge for the (anti-)branes. In the DBI term, the pull-back
on the brane worldvolume Mp+1 of the metric tensor and of the gauge invariant field
strength is denoted by Gαβ and 2πα′ Fαβ = 2πα′ F(2)

αβ + B(2)
αβ 11, α, β = 0, . . . , p respec-

tively. Here F(2) (not to be confused with the above RR field strengths) is the curva-
ture of the connection A(1) of the U(N) bundle over Mp+1, while the Kalb-Ramond
field B(2) is a singlet under the U(N) group (and only couples to Tr(F)). In the WZ
term, the formal sum is over the pull-back RR-forms C(q) and is understood that in the
wedge products one has to consider only (p + 1)-forms. The Chern class is ch (F ) =

Tr
(

e2πα′F
)

and Â(R) is the Dirac (A-roof) polynomial of the tangent or normal bundle,

which can be written in terms of Pontryagin classes as Â(R) = p0 − 1
24 p1 +

1
5670 (7p2

1 −
4p2) + . . . , where p0 = 1, p1 = − 1

2
1

(2π)2 Tr(R2), p2 = 1
8

1
(2π)4

[
(Tr R2)2 − 2 Tr R4] where

R is the curvature 2-form of the bundle and Rn = ∧nR. The CS term does not require
a metric and is independent on the choice of the connection of the bundle. For future
reference, note that

SCS = µp

∫
Mp+1

{
N C(p+1) + 2πα′ C(p−1) ∧ Tr F(2) (2.7)

+
(2πα′)2

2
C(p−3) ∧

[
Tr(F(2) ∧ F(2)) +

N
48

(
Tr(R(2)

T ∧ R(2)
T )− Tr(R(2)

N ∧ R(2)
N )
)] }

,

with N the number of branes, showing the appearance of lower-dimensional branes
inside the worldvolume of the Dp-brane [40].

2.1.2 Type IIB on T5: maximal 5D N = 8 Supergravity

Consider Type IIB Supergravity compactified on T5. Toroidal compactifications pre-
serve the original amount of supersymmetries, hence the number of supercharges in
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five dimensions is still 32. The resulting theory is the maximally supersymmetric five-
dimensional N = 8 supergravity. By compactifying Type IIB supergravity to five di-
mensions on circles, the U-duality group10 is given by E6,(6). In the full string theory,
the duality group is broken by quantum effects to a discrete subgroup E6,(6)(Z). This
group contains both the T-duality group O(5, 5; Z) and the S-duality group SL(2, Z)

[43]. When compactifying on the T5, the massless fields of Type IIB Supergravity give
rise to 27 U(1) gauge fields and 42 scalars. The 27 vectors, transforming in the funda-
mental representation 27 of E6,(6), are given by:

{(5) Gµi, (5) Bµi, (5)Cµi, (10)Cµijk, (1) A1
µ, (1) A2

µ} , µ = 0, . . . 4, i = 5, . . . 9.
(2.8)

The two (magnetic) vectors A1,2
µ are obtained as follows. Consider the NS B-field B(2)

µν

and the RR 2-form C(2)
µν . Their exterior derivate give rise to two field strength 3-forms,

namely Hµνρ and Fµνρ. Using Hodge duality in five dimensions, these can be dualized
into two (magnetic) field strengths F1

µν and F2
µν respectively. We have F1,2 = dA1,2. The

above vectors define 27 abelian charges, namely 5 KK momenta, 5 F1 winding modes,
5 D1 winding modes, 10 D3 winding modes, 1 NS5 winding mode for wrapping the
T5, 1 D5 winding mode for wrapping the T5. Note that the spectrum of charges is
compatible with S-duality.

The 42 scalars parametrise the moduli space of the supergravity theory E6,(6)/Sp(4),
where Sp(4) = USp(8), which is 9 × 8/2 = 36 dimensional, is the maximally compact
subgroup of E6,(6) [43, 44]. The scalars are given by

{(15) Gij, (10) Bij, (10)Cij, (5)Cijkl , (1)Φ, (1)C0} , i = 5, . . . 9 . (2.9)

Taking into account discrete identifications, the moduli space is given by

E6(6)(Z)\E6(6)/USp(8) . (2.10)

2.1.3 Type IIB on T4: maximal 6D N = (2, 2) Supergravity

In this subsection we briefly review the structure of the moduli space of vacua for the
Type IIB Supergravity theory on T4.

Consider the ten-dimensional spacetime to be of the form R1,5 × T4, and compactify
the T4. One obtains the maximal N = (2, 2) Supergravity in six dimensions. This

10The maximally non-compact (split) real form of a Lie group of rank n has precisely n more non-
compact generators than compact ones, see for example [41]. For instance, the number of non-compact
generators of e8,(8),e7,(7) and e6,(6) are respectively 128, 70, 42. Recall that the maximally non-compact
exceptional (classical) global symmetry groups En,(n) arise after Tn compactifications of M-theory or Tn−1

compactifications of Type II string theory. Note that one can continue the exceptional sequence as e5,(5) ≡
so(5, 5), e4,(4) ≡ sl(5, R), e3,(3) ≡ sl(3, R)⊕ sl(2, R), e2,(2) ≡ sl(2, R)⊕ sl(2, R), e1,(1) ≡ sl(2, R), see page
314 in [42].
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is equivalent to the T5 reduction of 11D Supergravity, yielding an E5,(5) = SO(5, 5)
global symmetry in 6-dimensions, which can be seen as the unbroken maximally non-
compact subgroup of the exceptional group E6,(6), after one considers an S1 ⊂ T5 to
be much bigger than the other compact one-cycles. Similarly, the U-duality group of
the full string theory E6(6)(Z) gets broken to the subgroup E5(5)(Z) = SO(5, 5; Z).
Consequently, the 27 of E6,(6) gets broken to the 10 (vector), 16 (spinor), 1 (singlet)
representation of SO(5, 5).

The bosonic content is given by 1 graviton, 5 tensor gauge fields, 16 vectors, 25 scalars.
The five 2-forms should be thought in terms of their self-dual and anti-self-dual parts

five 2-forms =
(

B+ I
µν , B− I

µν

)
, I = 1, . . . , 5 , (2.11)

which transform in the 10 of SO(5, 5). The vectors, on the other hand, transform in the
spinor 16 of SO(5, 5). The R-Symmetry group11 is USp(4)×USp(4) ≃ SO(5)× SO(5).
The 25 scalar parametrize the Teichmuller space12

K =
SO(5, 5)

SO(5)× SO(5)
. (2.12)

To obtain the fermionic content of the 6D theory we need to reduce the two dilatini
and the two gravitini from 10 to 6 dimensions. We also recall that in 10 dimension
the minimal spinor representation is that of a Majorana-Weyl spinor of dimension 16,
while in 6 dimensions the minimal spinor representation is that of a symplectic-Weyl
(or symplectic-Majorana) spinor and has dimension 8. Making use results present in
App. B of [45] Eq. (B.1.43) and (B.1.44), the fermionic content of the maximal N = (2, 2)
Supergravity theory in 6D is given by (4+ 4) gravitini and (20+ 20) spin 1/2 fermions.
To summarise, the matter content of the maximal N = (2, 2) Supergravity theory in 6D
is given by 1 graviton, 5 tensor gauge fields, 16 vectors, 25 scalars (4+4) gravitini, and
(20+20) spin 1/2 fermions.

Following the presentation in [46], we organise the charges and the gauge fields ac-
cording to their transformation properties and masses:

11Sometimes one finds the notation Sp(nL)× Sp(nR), where the total number of chiral (anti-chiral) Weyl
spinors in 6D is denoted by 2nL (2nR).

12We refer to the Teichmuller space as the covering space of the moduli space. The latter is obtained
from the former by discrete (global) identifications. Note that K is also a Grassmannian.
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The 27 U(1) charges in IIB Sugra on T4

SO(1, 5) rep SO(5, 5) rep charges gauge field mass

tensor vector 10 {n5, d5, f1, d1, D5ij} {B(m)
µ5 , C(m)

µ5 , Bµ5, Cµ5, Cµ5ij} ℓ−2
s

vector spinor 16 {wi
F1, wi

D1, Dijk, pi} {Bµi, Cµi, Cµijk, Gµi} ℓ−1
s

scalar scalar 1 np Gµ5 ℓ0
s

TABLE 2.1: The re-arrangement of the 27 U(1) charges in Type IIB Sugra on T4 is
shown. In the first column, we report the transformation properties of the fields under
Lorentz transformations for an observer in the non-compact directions. In the fourth
column, the letter m in B(m)

µ5 , C(m)
µ5 stands for ”magnetic”. In the last column, the mass

scaling with ℓs is shown (in the decoupling limit). The non-compact and circle indices
run over µ = 0, . . . , 5. The fifth direction is that of the distinguished S1

y. The torus
directions are denoted by i = 6, . . . , 9.

By looking at the first row of the above Table 2.1, one can see that the masses of the
NS5, D5, F1, the D1 and the 6 D3 branes (all winding the S1

y circle) scale as ℓ−2
s . In the

decoupling limit R4
y ≫ VT4 , they are infinitely massive and will constitute the back-

ground for the other fields [44]. The 16 branes that do not wrap the circle have masses
scaling as ℓ−1

s .

For applications present in this thesis, we will not turn on all the fields listed above.
This will have important consequences for the properties of the moduli space, as we
will see in due course. Preliminarily, note that the coset in Eq. (2.12) is a particular
case of that obtained in the pure supergravity multiplet coupled to nt tensor multiplets
[47, 48]. The more general coset is the Grassmannian

SO(5, nt)

SO(5)× SO(nt)
. (2.13)

One finds five self-dual tensor gauge fields and nt anti-self-dual tensor gauge fields
transforming in the vector of SO(5, nt). The moduli space of vacua is the given by a
further quotient with the discrete duality group SO(5, nt; Z). For compactifications on
K3, anomaly cancellation is readily achieved since in this case nt = 21, which follows
from the Hodge diamond structure of K3.

A technical detour on the D1-D5 system

Consider now the D1-D5 system, where the D5 wraps T4 or K3. Following [49] and the
presentation in [50], one can describe the brane bound state by a primitive13 (Mukai)
charge vector v ∈ Γ5,nt , where Γ5,nt is an even unimodular lattice. For the D1-D5 system,

13We consider the charge vector to be not a multiple of another vector. If v is not primitive the brane
system is singular: the system breaks into sub-systems with no cost in energy for all values of the moduli.
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the lattice decomposes as Γ5,nt = Γ1,1 ⊕ Γ4,nt−1, where the additional Γ1,1 parametrizes
F1 and NS5 charges, while Γ4,nt−1 parametrizes the RR charges. The two Γ1,1 lattices
in Γ1,1 ⊕ Γ4,nt−1 are exchanged by S-duality that acts as a Z2 group. In one of them,
the D1 and D5 branes are parametrized by multiples of the vectors (1, 0) and (0, 1)
respectively. Hence, for the ‘pure’ D1-D5 system we consider a Mukai charge vector
(d1, d5), where d1 and d5 are taken to be coprime in order to ensure that the vector is
primitive. In the pure D1-D5 system, the charge vector can be shown to have norm
v2 = 2N = 2d1d5 and to saturate the BPS bound. Because of this, the system has no
binding energy and the branes can separate with no cost in energy. This is reflected on
the structure of the moduli space of the theory, as discussed below.

For our black hole applications, we will focus on the D1-D5-P system or, most of the
time, on the S-dual F1-NS5-P system. In the latter frame, a specific class of microstates
of the NS5-F1-P black hole can be described with an exact null-gauged WZW model
[51, 52, 53, 54, 1] since only NSNS fluxes are turned on. With this worldsheet model,
one can probe the physics of these microstates (perturbatively) to all orders in α′ and is
the main focus of this thesis.

2.1.4 Attracted supergravity moduli space

We have seen above that the 25 scalars parametrise a 25-dimensional moduli space.
However, only a 20-dimensional subspace survives the near horizon limit [49]. In other
words, 5 scalars get fixed near the horizon and perturbations around their VEV are
massive. This is a consequence of the attractor mechanism [55]. As an example, con-
sider n1 D1-branes wrapping the distinguished S1

y circle of radius Ry and n5 D5-branes
wrapping the circle and the four-torus VT4 . This defines a five-dimensional black hole,
when a reduction on the S1

y is performed. In six-dimensions, the system is a black
string with AdS3 × S3 near horizon geometry. In this case, the fixed scalars are the
torus volume (proportional to Gii), a linear combination of C(0) and C(4)

6789, and three
anti-self-dual components of the B-field are set to zero (forcing the B-field to be self-
dual on the torus) [44]. Thus, in the D1-D5 frame, the remaining 20 moduli are given
as follows: 9 from the traceless Gij, 6 from Cij, 1 from C(0), 3 from BSD

ij and 1 from the
dilaton Φ. It is important to note that for the NS5-F1 system (the S-dual of the D1-D5)
the 20 moduli are given by: 9 from traceless Gij, 6 from Bij, 1 from C(0), 3 from CSD

ij and
1 from the dilaton Φ. Clearly, the role of B(2) and C(2) has been exchanged.

These near-horizon moduli parametrize the ‘attracted’ coset (Grassmannian) [49]

K∗ =
SO(4, 5)

SO(4)× SO(5)
⊂ K =

SO(5, 5)
SO(5)× SO(5)

. (2.14)
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Global identifications are implemented by those elements in Hv ⊆ SO(5, 5; Z) that
preserve the background charge vector (d1, d5), namely its stabiliser. The elements con-
tained in the U-duality group SO(5, 5; Z) but not in Hv, do not preserve the conditions
that fix the moduli at the horizon [44]. One has to quotient the above coset by Hv to
obtain the fundamental domain F , made out of copies of the form14

M∗
Sugra = Hv\SO(4, 5)/SO(4)× SO(5) . (2.15)

The charge vector is nevertheless covariant under the action of Hv, and a pair of charge
(d1, d5) can be mapped to the so-called canonical vector (1, d1d5). As an example, this
is achieved by an SO(2, 2; Z) = SL(2, Z)L × SL(2, Z)R subgroup, which contains the
SL(2, Z) symmetry of Type IIB string theory in ten dimensions which acts via S- and T-
duality on the moduli. In particular, SL(2, Z)R acts on the axio-dilaton τ = C(0) + i/gs

while SL(2, Z)L acts on the complexified modulus τ̃ = C(4)
6789 + iv/gs, with v the (fixed)

volume of T4.

It is useful to consider a basis for this 20-dimensional moduli space. The obvious choice
is given by the field component that remain massless, up to a minor modification: in-
stead of C(0) alone, we consider a linear combination of Ξ = C(0) + aC(4)

6789, for an ap-
propriate value of a that we do not specify here. Note that the latter is not the same
combination that gets attracted at the horizon and is indeed still massless. These fields
have specific transformation properties under the SO(4)E ≃ SU(2)L × SU(2)R isom-
etry group of S3 and the SO(4) = SU(2)1 × SU(2)2 symmetry group of the tangent
space of T4. In particular, the moduli are all singlets under the former and some of
them transform non-trivially under the latter, as reported in the following table for the
case of the D1-D5 system [46]:

The 20 near-horizon moduli

Field SO(4)E ≃ SU(2)L × SU(2)R SO(4) = SU(2)1 × SU(2)2 DOF

Gij − 1
4 δijGkk (1, 1) (3, 3) 9

BSD
ij (1, 1) (3, 1) 3

C(2)
ij (1, 1) (3, 1)⊕ (1, 3) 6

Ξ = C(0) + a C(4)
6789 (1, 1) (1, 1) 1

Φ (1, 1) (1, 1) 1

TABLE 2.2: The 20 moduli parametrising the attracted moduli space of T4 compactifi-
cations of IIB supergravity. Note that all the moduli fields are singlet under SU(2)L,R.

14For an arbitrary number of tensor multiplets, the attracted moduli space is made of copies of the form
M∗

Sugra = Hv\SO(4, nt)/SO(4)× SO(nt) .
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A co-dimension 4 subspace of the 20-dimensional moduli space is actually singular
[56, 57, 50]. In the D1-D5 frame, this subspace is defined by Ξ = BSD

ij = 0. Note that,

as a consequence, the full B-field on the torus B(2)
ij is set to zero. In this region, the

D1-D5 system becomes unstable under fragmentation and the brane can nucleate at no
cost in energy and is exactly the point where the charge vector v has norm v2 = 2d1d5,
as discussed above. Indeed, one can show that when BSD

ij ̸= 0, the branes have a
non-zero binding energy, see also [58]. In the NS5-F1 frame all works analogously,
with the B-field dualised to the RR two-form and the singular subspace is defined by
Ξ = C(2),SD

ij = 0. Note that a pure NS worldsheet description necessarily lies in the
singular locus of the moduli space.

2.1.5 Half-maximal and quarter-maximal 6D Sugra

There are two half-maximal Supergravity theories in six dimensions: the non-chiral
N = (1, 1) theory and the chiral N = (2, 0) theory. The latter is of interest for us, since
we will focus on the near-horizon geometry of D1-D5 (or F1-NS5) branes present in the
Type IIB theory. There are two ways of obtaining this theory: the first is to compactify
IIB Supergravity on K3, being a half-BPS Calabi-Yau space. This implies the holonomy
constraint on the IIB Killing spinors which, upon the condition Γ0...9ϵ = ϵ, now must
satisfy

Γ6789ϵ = ϵ ⇒ Γ012345ϵ = ϵ . (2.16)

The second way is to take the chiral compactification of IIB Supergravity which consists
in imposing the same condition above on the N = (2, 2) theory. We thus remain with 16
supersymmetries and the R-symmetry reduces to USp(4) only. Note that the near hori-
zon of the D1-D5 system is AdS3 × S3 × T4 and this space preserves 16 supercharges,
exhibiting an enhancement of supersymmetries.

Finally, we conclude this section by briefly recalling the field content of the quarter-
maximal 6D N = (1, 0) Supergravity theory, which will be useful for later applications.
We now list the (1, 0) multiplets:

• (1, 0) Graviton multiplet ”G”: 1 graviton, 1 self-dual tensor gauge field, two left-
handed gravitini

• (1, 0) Gravitino (L) multiplet ”g1”: 4 self-dual tensor gauge field, two left-handed
gravitini

• (1, 0) Gravitino (R) multiplet ”g2”: 4 vector fields, two right-handed gravitini, 2
left-handed spinors

• (1, 0) Tensor multiplet ”T”: 1 anti-self-dual tensor gauge field, 2 right-handed
spinors (tensorini), 1 scalar
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• (1, 0) Vector multiplet ”V”: 1 vector field, 2 left-handed spinors

• (1, 0) Hypermultiplet ”H”: 4 scalars, 2 right-handed spinors

Remark 2.1. We can reconstruct the (2, 2) and (2, 0) multiplets as follows: (2, 2) Graviton
multiplet = G + g1 + 5× (T+H) + 2× (g2 + 4× V); (2, 0) Graviton multiplet = G + g1;
(2, 0) Tensor multiplet = T + H.

In most of the present thesis, we will study the properties a non-supersymmetric soli-
tonic solution of the 6D N = (1, 0) Sugra theory with nt = 1 tensor multiplets, using
worldsheet techniques. Thus, the multiplets of our interests will be the (1, 0) Gravi-
ton multiplet and one (1, 0) tensor multiplet. The particular Supergravity fields we are
interested in define what is known as JMaRT solution [37]. The latter is found as a
particular case of the Cvetic-Youm family [59, 60], which we now discuss.

2.2 Cvetic-Youm solution and its limits

We consider the most general rotating three-charge D1-D5-P solutions of maximal 6D
supergravity presented in [59, 60]. We will focus on the interpretation of the five-
dimensional black hole solution in terms of the rotating six-dimensional black string.
The reasons for this are two: the solution (although still involved) is more simple if
written as a six-dimensional black string and, furthermore, it will be useful when dis-
cussing the 6D JMaRT family in the rest of this thesis. We partly follow the notation
and discussion of [61].

The string frame metric and dilaton of the so-called Cvetic-Youm solution [60] are

ds2
6D,S =

1√
H1H5

[
−
(

1 − 2m fD

r2

)
dt̃2 + dỹ2 + H1H5 f−1

D
r4

(r2 + l2
1)(r2 + l2

2)− 2mr2
dr2

− 4m fD

r2 cosh α1 cosh α5(l2 cos2 θdψ + l1 sin2 θdϕ)dt̃

− 4m fD

r2 sinh α1 sinh α5(l1 cos2 θdψ + l2 sin2 θdϕ)dỹ

+

((
1 +

l2
2

r2

)
H1H5r2 + (l2

1 − l2
2) cos2 θ

(
2m fD

r2

)2

sinh2 α1 sinh2 α5

)
cos2 θdψ2

+

((
1 +

l2
1

r2

)
H1H5r2 + (l2

2 − l2
1) sin2 θ

(
2m fD

r2

)2

sinh2 α1 sinh2 α5

)
sin2 θdϕ2

+
2m fD

r2

(
l2 cos2 θdψ + l1 sin2 θdϕ

)2
+ H1H5 f−1

D r2dθ2

]
, (2.17)

e2Φ = g2
s

H1

H5
, (2.18)
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where

dt̃ = cosh αpdt − sinh αpdy , dỹ = − sinh αpdt + cosh αpdy , (2.19)

H1,5 = 1 +
2m fD

r2 sinh α1,5 , f−1
D = 1 +

l2
1 cos2 θ + l2

2 sin2 θ

r2 , (2.20)

and y ∼ y + 2πRy. The parameters m, l1, l2, α1,5,p are related to mass, charges angular
momenta as

M = m ∑
i=1,5,p

cosh 2αi , Qi = m sinh 2αi , i = 1, 5, p , (2.21a)

JL/R =
1
2
(Jϕ ∓ Jψ) =

π

4G5D
N

m(l1 ∓ l2)

(
∏

i=1,5,p
cosh αi ± ∏

i=1,5,p
sinh αi

)
, (2.21b)

and the 5D Newton constant is related to the six and ten dimensional one as (2π)4V(2πRy)G5D
N =

(2π)4VG6D
N = G10D

N = 8π6g2
s α′4. The brane charges are quantised and are given by

Q1 = c1n1 , c1 =
gsα′3

V
, n1 =

mV
gsα′3 sinh 2α1 , (2.22a)

Q5 = c5n5 , c5 = gsα
′ , n5 =

m
gsα′ sinh 2α5 , (2.22b)

Qp = cpnp , cp =
gs2α′4

R2
yV

, np =
mR2

yV
g2

s α′4 sinh 2αp , (2.22c)

where n1,5,p ∈ Z. The angular momenta are quantised as well:

Jϕ = JL + JR =
nϕ

2
, Jϕ = −JL + JR =

nψ

2
, (2.23)

with nϕ,ψ ∈ Z. It is very important to note that the parameter space of the above
solution contains black holes, smooth solitons, conical defects or naked singularities.
We now temporarily focus on the black hole region in this parameter space.

2.2.1 Cvetic-Youm black hole

The Cvetic-Youm black hole is defined as the dimensional reduction on S1
y of super-

gravity fields in Eq. (2.17) with the additional important constraint

m ≥ (|l1|+ |l2|)2

2
. (2.24)

The Cvetic-Youm black hole is also known as the non-extremal five-dimensional rotat-
ing D1-D5-P black hole. As particular cases, it includes the BMPV black hole and the
celebrated non-rotating extremal Strominger-Vafa black hole, as we will discuss below.
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The horizons of the five-dimensional Cvetic-Youm black hole are located at

r2
± = m − l2

1 + l2
2

2
±

√(
m −

l2
1 + l2

2
2

)2

− l2
1 l2

2 , (2.25)

and the Bekenstein-Hawking entropy is given by

SBH =
π2 m
2G5

[(
∏

i=1,5,p
cosh 2αi + ∏

i=1,5,p
sinh 2αi

)√
2m − (l1 − l2)2

+

(
∏

i=1,5,p
cosh 2αi − ∏

i=1,5,p
sinh 2αi

)√
2m − (l1 + l2)2

]
. (2.26)

Understanding the microscopic origin of the above entropy from a bulk perspective is
a major fundamental and open question. We can consider this to be one of the most
important (and difficult) aims of string theorists working in the field of black hole mi-
crostates.

2.2.2 The extremal rotating D1-D5-P black hole

We have seen that Eq. (2.24) is the necessary and sufficient condition for having a black
hole. In the particular case when15

m =
(l1 + l2)2

2
, (2.27)

then the outer and inner horizon coincide, and we recover the three-charge extremal
rotating D1-D5-P black hole solution. The horizon is at rH =

√
l1l2. The Bekenstein-

Hawking entropy reduces to

SBH = 2π

√(
π

4G5D
N

)2

Q1Q5Qp − J2
L + J2

R = 2π

√
n1n5np +

nϕnψ

4
. (2.28)

In this formula, the black hole attractor mechanism is manifest in a simple manner.

2.2.3 The BMPV black hole

Note that the above solution is extremal but not supersymmetric. If we further require
that the black hole is BPS saturated, we obtain the three-charge BMPV black hole [62].
The BPS bound reads

M ≥ Q1 + Q5 + Qp . (2.29)

15We are assuming l1,2 positive for simplicity.



2.3. The D1-D5(-P) black hole 25

The BPS limit must be taken carefully, by appropriately rescaling certain quantities.
Let’s define

eαi =
ηi√
m

, l1,2 =
√

m j1,2 , (2.30)

then the BPS limit is defined by sending m → 0, αi → ∞ while keeping ηi, j1,2, G10D
N , V, Ry

fixed. In this way, we saturate the BPS bound Eq. (2.29) and the line element becomes
simpler:

ds2
6D,S =

1√
H1H5

[
− dt2 + dy2 + Hp(dt − dy)2 + H1H5(dr2 + r2dΩ2

S3)

− 8G5D
N JL

πr2 (sin2 θdϕ − cos2 θdψ)(dt − dy)

]
, (2.31)

where this time the ”1” has been dropped from Hp, namely Hp = Qp/r2, while Hi =

1 + Qi/r2 for i = 1, 5. Note that the right angular momentum is zero JR = 0 due to the
minus sign in the last parenthesis in the definition of JR in Eq. (2.21b).

2.3 The D1-D5(-P) black hole

By further setting l1 = l2 (namely j1 = j2) in the BMPV black hole we have JL = 0
as well. In this case we obtain the non-rotating three-charge D1-D5-P black hole, also
known as16 the Strominger-Vafa black hole. The latter has proven to be crucial for the
first microscopic counting of microstates in string theory [19], and the first instance of
what would have become the AdS/CFT correspondence [16, 17, 18]. Because of its
importance, we review its brane construction and features.

Before diving into the details of the three-charge black hole, we first explain the con-
struction and properties for the two-charge D1-D5 black hole. The reason for this are
two-fold. First, its simplicity allows us to emphasize the important details shared also
by the D1-D5-P black hole. Second, the bulk microstates reproducing the entropy of
the D1-D5 black hole have been found in [64, 65, 66, 67]. These microstates admit a
supergravity description, and an appropriate quantisation of the moduli space shows
that they account for the entropy of the two-charge D1-D5 black hole [68].

In the following, we will denote by d1, d5 the number of D1 and D5-branes, while we
will use n1, n5 to the denote the number of fundamental strings and NS5-branes. This
echoes the conventions of [44].

16Actually, Strominger and Vafa used more general configurations in Type II and Heterotic string theory.
The D1-D5-P solution was explicitly considered in [63].
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2.3.1 The naive D1-D5 small black hole

Let’s consider Type IIB String Theory compactified on S1
y × T4, namely on a distin-

guished circle S1
y of radius Ry and a 4-torus T4. The D-brane setup that leads to the

(naive) two-charge extremal D1-D5 black hole is the following:

IIB 0 1 2 3 4 5 6 7 8 9

d1 D1 × × ∼ ∼ ∼ ∼

d5 D5 × × × × × ×

where ∼ means that the D1-branes have been smeared along the given direction. The
coordinates x1, . . . , x4 parametrise the non-compact R4 directions not wrapped by the
brane system. The S1

y circle, parametrised by y, is the fifth coordinate and is shared
by both types of branes. The last four coordinates parametrise the torus. The ten-
dimensional Lorentz group is broken to SO(1, 1)× SO(4)E × SO(4)I , where ”E” stands
for external and ”I” for internal17. The Killing spinor equations lead to

Γ056789ϵL = ϵR , Γ05ϵL = ϵR , (2.32)

which shows that the brane configuration is 1/4-BPS18, hence the total number of su-
percharges for the asymptotically flat solution is 8. The supergravity fields sourced by
this brane configuration are given by

ds̃2 =
1

(H1H5)
1
2
(−dt2 + dy2) + (H1H5)

1
2
(
dr2 + r2dΩ2

S3

)
+

(
H1

H5

) 1
2

ds2
T4 ,

F(3) = − 1
g̃s

dH−1
1 ∧ dt ∧ dy + 2α′d5 ΩS3 ,

e2Φ̃ = g̃2
s

H1

H5
, H1,5 = 1 +

Q1,5

r2 , (2.33)

where we have denoted by a tilde the quantities in the D1-D5 frame, to distinguish
them from the NS5-F1 one that we will use throughout this thesis. The metric is given
in string frame, and g̃s is the coupling constant at infinity19. Note that the r dependence
of the harmonic function H1 takes into account the smearing of the D1 branes. The
coordinate r is the transverse radial distance from the brane sources in the non-compact
directions. The charges Q1, Q5 are quantised and, when parametrising the volume of
the (square) T4 in terms of its asymptotic volume v as measured from infinity, VT4 =

17Properly the SO(4)I group is broken to the T4 to U(1)4. We still consider the SO(4)I acting on the
tangent bundle of the torus, which will be useful for organising the matter fields.

18Recall that each spinor ϵL,R has 16 real independent components.
19It can be seen as a boundary condition, since the dilaton has a profile that changes with r.
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(2πℓs)4ṽ, their expressions are given by

Q1 =
g̃sd1α′

ṽ
, Q5 = g̃sd5α′ . (2.34)

In what follows, we will sometimes consider the T4 to be very small. In practice, this
means we consider ṽ ∼ O(1), so that VT4 ∼ (2πℓs)4. As a consequence, the charges
are now very similar Qi = g̃sdiℓ

2
s , clearly exhibiting a symmetry under the exchange

d1 ↔ d5. Note that the S1
y circle is macroscopically large compared to the torus, since

R4
y ≫ VT4 . This means that the solution in Eq. (2.33) describes a black string in six

dimensions. To obtain a black hole solution, one must dimensionally reduce on the
circle.

We can consider the near horizon limit of (2.33) for the metric and dilaton. Roughly,
this means neglecting the “1” in the harmonic functions20. We obtain

ds̃2
S =

(
Q1

Q5

) 1
4

ds̃2
E =

r2
√

Q1Q5
(−dt2 + dy2) +

√
Q1Q5

dr2

r2 +
√

Q1Q5dΩ2
S3 +

√
Q1

Q5
ds2

T4 ,

e2Φ̃hor = g̃2
s,hor = g̃2

s
Q1

Q5
=

g̃2
s

ṽ
d1

d5
. (2.35)

where ”S” and ”E” stands for string and Einstein frame respectively. The near-horizon
ten-dimensional string and gravitational coupling constants are

g̃2
s,hor =

g̃2
s

ṽ
d1

d5
, 2κ2

hor = (2π)7α′4 g̃2
s,hor . (2.36)

Notably, the near horizon geometry is AdS3 ×S3 ×T4, as can be clearly seen by defining
z = 2

√
Q1Q5/r. The isometries are thus (SL(2, R)× SU(2))L × (SL(2, R)× SU(2))R ×

U(1)4. More precisely, in presence of supersymmetry we should consider the isometry
supergroup PSU(1, 1|2)L×PSU(1, 1|2)R. The AdS3 and S3 part have the same size fixed
in terms of the charges of the brane system as LAdS = RS3 = 4

√
Q1Q5. In the near-

horizon region, the number of supersymmetries gets enhanced from 8 to 16.

The scalar curvatures in this regime are given by

R = 0 , RµνρσRµνρσ = RµνRµν =
24

Q1Q5
=

ṽ
g̃2

s d1d5

24
α′2 . (2.37)

In order to have a reliable Supergravity description, we require the above quantities
to be small or, more precisely, LAdS ≫ ℓs and RµνρσRµνρσ = RµνRµν = 24

Q1Q5
≪ 1

ℓ4
s
.

This means that stringy α′ corrections are negligible and that the background is gently
curved. In addition, in order to suppress string loops, we require the near-horizon
string coupling to be small e2Φ̃hor = g̃2

s
Q1
Q5

≪ 1. Keeping ṽ generic for this analysis, we

20The Maldacena decoupling limit is properly performing by considering α′ → 0 while keeping U =
r/α′ and ṽ fixed. Note that ṽ is a fixed scalar in the D1-D5 frame.
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need to assume
L4

AdS = Q1Q5 ≫ α′2 , g̃2
s

Q1

Q5
≪ 1 . (2.38)

From (2.34) we learn that

Q1Q5 =
g̃2

s α′2

ṽ
d1d5 ,

Q1

Q5
=

d1

d5 ṽ
, (2.39)

hence the above requirements become

g̃2
s

ṽ
≫ 1

d1d5
,

g̃2
s

ṽ
≪ d5

d1
, (2.40)

where the first condition is to suppress stringy corrections while the second is to sup-
press loops. We thus need

1
d1d5

≪ g̃2
s

ṽ
≪ d5

d1
. (2.41)

Note that the first inequality is consistent with what is expected for the supergravity
regime to hold. At this point, it is natural and convenient to define the six-dimensional
coupling constant

g̃2
6 =

g̃2
s

ṽ
, (2.42)

which will appear in later discussions. Note that, g̃6 is a modulus in the D1-D5 frame
since it explicitly depends on the asymptotic value g̃s of the dilaton. On the other
hand, the attractor mechanism [55] fixes ṽ via the “fixed volume condition” in [44] to
ṽ = d1/d5. This can be seen by requiring that the volume of the torus in the near
horizon regime is unit normalised

√
Q1
Q5

= 1. Note that the above inequalities can also
be recast as

d1

d5
≪ g̃−2

6 ≪ d1d5 , (2.43)

where the first inequality suppresses loops and the second suppresses stringy correc-
tions.

The horizon of the black string solution is topologically S1
y × S3. We now want to cal-

culate its horizon area and the macroscopic entropy. To achieve this, we must write the
metric in the Einstein frame, which reads

ds2
6D,E = H− 3

4
1 H− 1

4
5

(
−dt2 + dy2)+ H

1
4
1 H

3
4
5

(
dr2 + r2dΩ2

S3

)
. (2.44)

The near horizon geometry is

ds2, r→0
6D,E =

r2

Q3/4
1 Q1/4

5

(
−dt2 + dy2)+ Q1/4

1 Q3/4
5

r2 dr2 + Q1/4
1 Q3/4

5 dΩS3 . (2.45)
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The area of the horizon is thus (naively)

AH =
∫

S1×S3

√
gH

∣∣∣∣∣
r=0

= 2π2(2π)

√
r2 Q−3/4

1 Q−1/4
5

(
Q1/4

1 Q3/4
5

)3
∣∣∣∣∣
r=0

= 0 . (2.46)

Since the horizon area vanishes, the entropy is trivial. We thus conclude that the naive
two-charge black hole solution has vanishing entropy. In addition, the Ricci scalar be-
haves near r = 0 as R ∼ r−2/3, and we find a naked singularity. Some observations are
in order:

Remark 2.2. The reason why the horizon of six-dimensional black string solution has
zero area is associated to the fact that the S1

y shrinks to zero size. This is due to the
tension of the branes wrapping the circle.

Remark 2.3. The fact that, naively, the two-charge six-dimensional black string solution
has zero entropy implies that the two-charge five-dimensional black hole has zero en-
tropy as well. This can be seen after performing a dimensional reduction along the S1

y,
that leads to the following five-dimensional metric in Einstein frame:

ds2
5D,Ein = −(H1H5)

−2/3dt2 + (H1H5)
1/3(dr2 + r2dΩ2

S3) . (2.47)

Repeating the above steps for the computation of the horizon area, we obtain

AH =
∫
H=S3

√
gH = 2π2

[
6

√
Q1

r2
Q5

r2 r

]3 ∣∣∣∣∣
r=0

= 2π2
√

Q1Q5 r

∣∣∣∣∣
r=0

= 0 , (2.48)

as claimed.

There is an important subtlety about the entropy of the two-charge naive solution. By
looking at the above results, we would be tempted to conclude that the small black hole
has zero macroscopic entropy. However, by a sequence of T and S dualities, one can
map the D1-D5 system to a fundamental string with momentum, whose microscopic
entropy is given by

SF1−P = 2π
√

2n1np , (2.49)

which clearly differs from our macroscopic expectation. Sen [69] argued that in the
D1-D5 frame, the entropy should be obtained by counting solutions with no horizons,
while in the U-dual NS1-P frame the entropy should be obtained in a different manner,
using Wald’s entropy formula for geometries with horizons. This could lead to the idea
that the computation of the entropy somehow frame (gauge) dependent. However, in
[70] it is argued that this is not the case: the microstate are smooth and horizonless (or,
more generally, fuzzballs) in any frame.
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2.3.2 The NS5-F1 system

The D1-D5 system can be mapped, via S-duality, to the NS5-F1 system. The advantage
of the latter is the presence of only NS-NS fluxes. Indeed, a closed string propagating in
those backgrounds can be described via a class of α′-exact cosets involving SL(2, R)×
SU(2) Wess-Zumino-Witten models. For this reason, it is important to study the NS5-F1
system in great detail and understand its differences with respect to its D1-D5 cousin.

The Supergravity fields sourced by the NS5-F1 system are

ds2 =
1

H1
(−dt2 + dy2) + H5

(
dr2 + r2dΩ2

S3

)
+ ds2

T4 ,

H(3) = − 1
gs

dH−1
1 ∧ dt ∧ dy + 2α′n5 ΩS3 ,

e2Φ = g2
s

H5

H1
, H1,5 = 1 +

Q1,5

r2 , (2.50)

with

Q1 =
g2

s n1α′

v
, Q5 = n5α′ , (2.51)

where v enters the torus volume as VT4 = (2πℓs)4v. Note that when gs → 0, the above
solution coincides with the CHS background [71] since the NS5-branes become much
heavier than the background fundamental strings.

The near-horizon fields are

ds2 =
r2

Q1
(−dt2 + dy2) + Q5

dr2

r2 + Q5dΩ2
S3 + ds2

T4 ,

H(3) = 2α′n5 (volAdS3 + volS3) ,

e2Φhor = g2
s,hor = g2

s
Q5

Q1
= v

n5

n1
. (2.52)

The near-horizon geometry is again AdS3 × S3 × T4 as one can see with the same
change of coordinates z = 2

√
Q1Q5/r. However, this time the curvature scale is set

by Q5 only. Indeed, in this regime, the curvature invariants read

R = 0 , RµνρσRµνρσ = RµνRµν =
24
Q2

5
=

24
n2

5α′2 . (2.53)

To suppress curvature and loop effects respectively, one demands

1 ≪ n5 ≪ n1

v
, (2.54)

and can equivalently recast the above bounds as

v
n5

≪ v ≪ n1

n5
, (2.55)



2.3. The D1-D5(-P) black hole 31

where v is a modulus for the NS5-F1 system. Indeed, in the NS5-F1 frame the string
coupling constant at the horizon is a fixed scalar independent of the asymptotic value
gs of the dilaton. As a consequence, the six-dimensional coupling constant is attracted
to the value [44]

g2
6 =

g2
s,hor

v
=

n5

n1
, (2.56)

and is important to note that is independent of the modulus v. Note that T-duality
transformations can exchange v 7→ 1

v , hence we can restrict ourselves to v ≥ 1. When
considering the α′-exact WZW models, the condition ensuring absence of stringy cor-
rections can be relaxed. In other words, when dealing with worldsheet string theory,
it is not necessary to consider n5 ≫ 1, which is only required for the validity of the
supergravity solution. However, we will continue to suppress string loops and thus
we will always work in a regime where n1 ≫ n5.

2.3.3 Comparing the D1-D5 and the NS5-F1 system and their moduli

We now remark similarities and differences of the two S-dual systems. Recall that the
tilde quantities refer to the D1-D5 system.

Remark 2.4. In the D1-D5 system, the six-dimensional coupling constant g̃2
6 is a modulus

while the torus volume parametrised by ṽ is a fixed scalar. In the NS5-F1 system, v is a
modulus while the six-dimensional coupling constant g2

6 is a fixed scalar.

We now show how S-duality relates the two modulus and the two fixed scalars. We
start with the moduli. Recall that

g̃2
s,hor =

g̃2
s

ṽ
d1

d5
, g2

s,hor = v
n5

n1
. (2.57)

However, because of S-duality g̃2
s,hor = g−2

s,hor, hence we get

g̃2
s

ṽ
d1

d5
=

n1

vn5
, (2.58)

and since under S-duality the number of branes do not change di = ni, we finally get

g̃2
s

ṽ
= g̃2

6 =
1
v

. (2.59)

This shows that in the NS5-F1 frame v behaves like the six-dimensional coupling con-
stant. It is very easy to show how to relate the fixed moduli. Recall their fixed value:

g−2
6 =

n1

n5
, ṽ =

d1

d5
, (2.60)
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but since under S-duality ni = di, it immediately follows that

g−2
6 = ṽ . (2.61)

Remark 2.5. Recall that the unit normalisation of the torus volume in the D1-D5 system
required ṽ = d1

d5
, which gives the fixed scalar condition for ṽ. At the same time, from

the previous remark we have

g̃2
s,hor =

ṽ
v
=

n1

v n5
. (2.62)

where we have used the fact that di = ni.

Remark 2.6. The two pictures are related via the non-perturbative S-duality and hence
we do not expect both tree-level supergravity to be valid at the same time. Allowing
general stringy corrections, let’s consider the various strong coupling regimes. Recall
that

g̃2
s,hor =

g̃2
s

ṽ
d1

d5
=

n1

vn5
= g−2

s,hor . (2.63)

Requiring that the D-brane picture is weakly coupled demands

g̃2
s

ṽ
d1

d5
=

n1

vn5
≪ 1 (2.64)

which is clearly a strong coupling requirement for the NS5-F1 picture. We thus conclude
that both pictures cannot be valid at the same time if we demand the coupling to be
small.

2.3.4 Bulk microstates of the 2-charge system

We now recall, in two different U-dual frames, the supergravity solutions correspond-
ing to microstates of the two-charge black hole. As explained in [67], in order to prop-
erly account for the full entropy of the two-charge system [68], one needs to consider
microstates with both bosonic and fermionic [67] excitations. In [65], the bosonic exci-
tations were purely external along the transverse R4, while in [64, 72] excitations along
the internal manifold were considered. For simplicity, we focus on those with external
bosonic excitations, thus a subset of microstates collectively known as Lunin-Mathur
solutions [64, 65].

F1-P frame

Consider the same compactification manifolds discussed above for the two-charge black
hole. Let’s parametrise the distinguished circle with 0 ≤ y < L. Let’s consider a fun-
damental string (F1) with nw units of winding and np units of momentum, both on the
circle S1

y. The strings wounds nw times the physical circle, but in the covering space of
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the S1
y it looks single wounded with length LT = nwL. Let’s parametrise this covering

space with the coordinate 0 ≤ ŷ < LT, and let’s define v̂ = t − ŷ. In the classical super-
gravity limit of large nwnp, coherent (micro-)states are well described by a continuous21

periodic vibration profile function F(v̂) = F(v̂ + LT) which we take to be a function in
R4, ignoring the four torus for simplicity.

The F1-P supergravity solutions are given by

ds2 =
1
H

(
−dudv + K dv2 + 2Aidxidv

)
+ ds2

R4 + ds2
T4 (2.65a)

Buv = −1
2
(H−1 − 1) , Bvi = H−1 Ai (2.65b)

e2Φ = H−1 , (2.65c)

where

H = 1 +
Q1

LT

∫ LT

0

dv̂
|x − F(v̂)|2 , Ai = −Q1

LT

∫ LT

0

Ḟ(v̂)dv̂
|x − F(v̂)|2 ,

K =
Q1

LT

∫ LT

0

|Ḟ(v̂)|2dv̂
|x − F(v̂)|2 . (2.66)

These solutions are horizonless, as microstates are expected to be. They are also smooth,
up to a physical (thus allowed) singularity associated to the presence of the string
source. The same properties continue to hold for solutions with fermionic and internal
excitations.

D1-D5 frame

After a sequence of T and S dualities, we can map Eq. (2.65) to the D1-D5 frame. The
sequence of dualities that leads to the D1-D5 system is given by S TT4 S TS1

y
S.

The D1-D5 supergravity solutions, in the more compact notation of [68], are then given
by

ds2
S =

1
f1 f5

[
−
(

dt + Aidxi
)2

+
(

dy + Bidxi
)2
]
+
√

f1 f5 ds2
R4 +

√
f1

f5
ds2

T4 ,

C(2) =
1
f1
(dt + A) ∧ (dy + B) + C ,

e2Φ =
f1

f5
, (2.67)

21In other words, we are smearing over the strands of the string in the base space, assuming a continu-
ous distribution.
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where the harmonic functions and forms are

f1 = 1 +
Q5

L

∫ L

0

|F′(s)|2
|x − F(s)|2 ds , f5 = 1 +

Q5

L

∫ L

0

1
|x − F(s)|2 ds

A(1) =
Q5

L

∫ L

0

Fi(s)
|x − F(s)|2 ds dxi , dB(1) = ⋆R4 dA(1) , dC(2) = − ⋆R4 d f5 .

(2.68)

The charges are related as [73]

Q1 =
Q5

LT

∫ L

0
|F′(s)|2ds . (2.69)

Again, these solutions are parametrized by the closed curve

xi = Fi(s) , s ∈ (0, L) , ∀i = 1, . . . , 4 , (2.70)

and in order to ensure regularity of the fields, it is important that the curve is smooth
and non-selfintersecting. These solutions are horizonless and, as opposed to the previ-
ous case, completely smooth.

One can immediately notice that if we take

f1,5 → 1 +
Q1,5

|x|2 = H1,5 , Ai, Bi → 0 , (2.71)

one recovers the naive D1-D5 metric Eq. (2.33). This shows how at large distances the
above microstates resemble the naive black hole, even though they start to differ at
small distances from r = 0.

It has been shown in [68] that an appropriate quantisation of the moduli space of the
Lunin-Mathur solution, together with the more general solutions of [67], gives the cor-
rect counting of the entropy for the D1-D5 black hole. This has a remarkable conceptual
consequence: for the small black hole, all the microstates are described within super-
gravity and the metric field describes smooth and horizonless geometries that asymp-
totically look like the naive solution. This is a striking confirmation, although so far
limited to the two charge case, of the Fuzzball Proposal. It should be noted, however,
that in the case of three charge black holes it is expected that stringy physics may actu-
ally be important in recovering the full entropy of a macroscopic black hole.

2.3.5 The D1-D5-P large black hole

We now turn to the extremal non-rotating D1-D5-P black hole [63]. The setup is the
same as that of the D1-D5 solution, but now np units of momentum wave are added
along the S1

y circle, and smeared along the T4. We add this wave holomorphically, in
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order to preserve some supersymmetries. In this case, the asymptotically flat solution
preserves 1/8 of the original 32 supercharges.

The line element in Einstein frame of the five-dimensional black hole reads

ds2
5D,E = −λ−2/3dt2 + λ1/3 (dr2 + r2dΩ2

S3

)
, (2.72a)

λ = ∏
i=1,5,p

(
1 +

Qi

r2

)
, (2.72b)

Q1 =
gsn1ℓ

6
s

V
, Q5 = gsn5ℓ

2
s , QP =

g2
s npα′2

R2
yV

. (2.72c)

This time the area of the horizon is finite, giving

AH = 2π2
√

Q1Q5QP = 2π2 g2
s α′4

RyV
√

n1n5np , (2.73)

and thus the Bekenstein-Hawking entropy is given by

SBH =
AH

4GN
= 2π

√
n1n5np , (2.74)

where the expression of the five-dimensional Newton constant has been used.

As expected, the moduli do not appear in the expression of the entropy and the U-
duality symmetry is manifest. More generally, the five-dimensional expression for the
entropy is given in terms of the Surd cubic invariant △ as S = 2π

√
△. This is a conse-

quence of the non-compact E6,(6) exceptional symmetry that characterises M or string
theory toroidal compactifications.

The microscopic counting of the above entropy was performed for the first time in [19]
by Strominger and Vafa. This was achieved by counting the degeneracy of massless
open string states stretched between the D1 and the D5 branes. The result, obtained at
weak coupling, was then successfully extrapolated at strong coupling, being the elliptic
genus protected by supersymmetry. Strominger and Vafa showed how String Theory
was able to account for the microscopic degrees of freedom of the D1-D5-P black hole.
Their work was then generalised, in various dimensions, to different non-extremal and
rotating black holes. See for instance the non-exhaustive list [74, 75, 62, 76]

2.4 From the brane system to the D1-D5 CFT

In this section we review the definition of the D1-D5 CFT starting from the brane setup
in string theory. We will see that the D1-D5 CFT naturally arises from the low-energy
dynamics of the sigma model on the moduli space of n1 instantons of a U(n5) gauge
theory on T4.
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2.4.1 The instanton description

Consider the pure D1-D5 system, where both branes are wrapped on the circle and the
n5 D5-branes also wrap the torus. The theory on the D5-branes is a 5 + 1-dimensional
theory, whose support is Rt × S1

y × T4. The n1 D-strings are extended along Rt × S1
y

and are thus localised with respect to the torus directions. From the DBI action, one
notices that the low-energy theory living on the worldvolume of the D5-branes is the
six-dimensional SYM theory. Considering the normal and tangent bundles to be flat
and B(2) = 0, expanding the Wess-Zumino part of the D5-brane action as in Eq. (2.7)
one obtaines a term of the form∫

M6

C(2) ∧ Tr
(

F(2) ∧ F(2)
)

∝
∫
M6

C(2) ∧ ch2(F) . (2.75)

We note that Yang-Mills instantons (contributing to the second Chern class) carry a RR
two-form charge. In particular, the D1-branes are instantons for the Euclidean four-
dimensional theory on T4 inside the D5-branes. To see this, one has to consider gauge
field configurations which are independent of Rt × S1

y and whose field strength is self-
dual with respect to the T4. Noting that, when integrating the (t, y)-independent con-
nections on T4, we find ch2(F) = n1. This is the instanton number of the gauge group,
and hence we learn that in the n1 instanton sector of the gauge theory we have n1 D1-
brane charge units22 [77]. Note that for the pure D1-D5 system, the first Chern-class
vanishes as indicated by the absence of a coupling of the form C(4) ∧ Tr(F).

As explained in [49], in the limit where the T4 is small, the theory on Rt × S1
y × T4

effectively reduces to a 2D sigma model with base space Rt × S1
y with target space

the moduli space of U(n5) instantons on T4. The moduli space of n1 instantons of a
U(n5) gauge theory on T4 is the the smooth manifold MInst which is a resolution of the
symmetric product orbifold Symn1n5

(T̃4) = (T̃4)⊗n1n5 /Sn1n5 , namely

MInst
π−−−−→ Symn1n5

(T̃4) , (2.76)

where SN is the permutation group of N elements, T̃4 is in general different from the
compactification torus T4 [78] and π is a suitable projection map. The space MInst is a
simply-connected Hyperkähler space23 and has the same cohomology as Symn1n5

(T̃4).
If the charge vector v is taken to be primitive, then this space is also smooth [49].

22The case of K3 has a correction due to the non-vanishing first Pontryagin class [77].
23A manifold (M, I, J, K, g) is Hyperkähler if I, J, K ∈ End(TM) satisfy Hamilton’s quaternionic rela-

tions, are integrable complex structures (the Nijenhuis tensor vanishes by Newlander–Nirenberg theorem)
and the Riemannian metric g is Kähler with respect to I, J, K. Assuming a Levi-Civita connection ∇, one
can show that I, J, K are parallel ∇I = ∇J = ∇K = 0 and hence the holonomy is contained in the group
Sp(n). The three Kähler forms are ωI(·, ·) = g(·, I ·) and similarly for J, K.
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As discussed in previous sections, our ‘pure’ brane system is marginally unstable and
suffers from fragmentation at no cost in energy. How can we see this feature in the in-
stanton description? The intuitive explanation is that singularities of the moduli space
are associated to a D1-brane instanton that can become small and thus separate from
the D1-D5 system. These are the so-called ‘long strings’ [50], whose signature will be
present also in the pure NS worldsheet description in terms of the so-called ‘missing
chiral primaries’. To dive into the details of this process, we first turn to the gauge
theory description of the D1-D5 system.

2.4.2 The gauge theory description

Given that the number of supercharges preserved by the system is 8, from the discus-
sion above we conclude that the low-energy dynamics of the pure D1-D5 brane system
is described by a 2D small24 N = (4, 4) sigma model from Rt × S1

y to MInst. Performing
an S-duality, one gets analogous conclusions for the NS5-F1 system. As we will discuss
below, this sigma model flows in the IR to a 2D N = (4, 4) Superconformal field theory
known as the D1-D5 CFT. However, in this case the number of fermionic symmetries is
enhanced from 8 to 16, where the new 8 symmetries are given by fermionic generators
of the superconformal algebra (usually denoted by S). This is a similar phenomenon
that is found in the case of the 4d N = 4 Super Yang-Mills theory, where the fermionic
symmetries are 32: 16 supercharges and 16 fermionic generators of the superconformal
algebra.

As we will discuss in due course, the above sigma model has a moduli space which
coincides with Eq. (2.15) [78, 49]. One thus concludes that the D1-D5 system is on the
moduli space of this sigma model [50], which legitimates the study of the dynamics of
low-energy open string excitations.

The gauge theory description, less general then the instanton description, is used when
1 ≪ n1, n5 ≪ 1/gs, since the backreaction of the branes is negligible and thus grav-
ity effects can be ignored. The branes are boundary conditions for the open strings
stretched between them. Let’s denote the Rt and S1

y directions as x0, x5 respectively.
The non-compact direction are x1, . . . , x4 while the T4 is parametrised by x6, . . . , x9.
The various massless strings are (1, 1), (1, 5), (5, 1), (5, 5) strings. They give rise to the
following matter content:

• (1,1) Strings
These strings have NN boundary conditions along x0, x5 and DD along the others.
Along the first two directions, the massless excitations give two components of

24There are two different N = 4 superconformal algebras in two dimensions. The case of the D1-D5 CFT
is referred as the small N = 4 superalgebra, where only one SO(4)R is realised as R-symmetry instead of
the usual SO(N+)× SO(N−) R-symmetry.
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a vector, Ax0 , Ax5 . The vector transforms in the adjoint of U(n1) and is a n1 × n1

matrix. Excitations transverse to the D1-branes are scalars. We have 8 trans-
verse directions and thus 8 adjoint scalars. Fermions are obtained imposing su-
persymmetry. Arranging the fields in multiplets of N = 2 in 4D, we can note
that the fields give rise to one Hypermultiplet (it consists of 4 real scalars + 2
Weyl fermions) and a Vector multiplet (one vector and two reals scalars + 2 Weyl
fermions).

How can we decide whether four of the eight scalars should be part of the Hyper
or part of the Vector multiplet? The answer is R-Symmetry! We know that inside
the25 SO(4)Int ≃ SO(3)× SO(3) ≃ SU(2)× SU(2) one of the SU(2)R acts as an
R-Symmetry group, rotating the Hypers. The Hypermultiplet is thus formed by
those scalars that are charged under R-Symmetry and hence they correspond to
the internal coordinates x6, . . . , x9. In conclusion, we have (at fixed n1, n5)

– One Hypermultiplet whose four scalars are denoted by

Y(1,1)
x6 Y(1,1)

x7 Y(1,1)
x8 Y(1,1)

x9 (2.77)

These real scalars can be recast in a complex doublet transforming in the 2
of SU(2)R. The total number of scalars in the hypermultiplets is 4n2

1.

– One Vector multiplet with one vector and two scalars:

A(1,1)
x0 A(1,1)

x5 Y(1,1)
x1 Y(1,1)

x2 Y(1,1)
x3 Y(1,1)

x4 (2.78)

All these fields transforms in the adjoint of U(n1) since the strings have endpoints
on the same stack of D1-branes.

• (5,5) Strings
Since the torus is of the order of the string scale, the winding and the momentum
modes of the string goes like ∼ 1/ℓs. This means that if we study the system at
energies E ≪ 1/ℓs, we are allowed to neglect these modes. The x5 coordinate is
taken to be compactified on a circle of radius R which is much bigger than the
string length. In this respect, we can treat the x5 coordinate to be non-compact
x5 ∈ R instead of x5 ∈ S1

y. The theory on the D5-branes is seen at low energies as
(1+ 1)-dimensional. The field content is thus analogous to that of the (1,1) strings
(at fixed n1, n5):

– One Hypermultiplet

Y(5,5)
x6 Y(5,5)

x7 Y(5,5)
x8 Y(5,5)

x9 (2.79)

25There is a subtlety: since we are wrapping the D5 branes on a T4 it is not completely correct to claim
that the symmetry group for the internal coordinates is SO(4). This is locally correct and the SO(4) is a
useful approximate symmetry.
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These real scalars can also be recast in a complex doublet transforming in
the 2 of SU(2)R. The total number of scalars in the hypermultiplets is 4n2

5.

– One Vector multiplet:

A(5,5)
x0 A(5,5)

x5 Y(5,5)
x1 Y(5,5)

x2 Y(5,5)
x3 Y(5,5)

x4 (2.80)

All the fields are in the adjoint of U(n5).

• (1,5) and (5,1) Strings
The quantisation of these strings is slightly more subtle and requires some care
and is not often spelled out in great detail in the literature [79]. First of all, recall
that worldsheet boson for the open string are integer moded when the boundary
conditions are NN or DD. When the latter are of the type DN or ND, the bosons
are half-integer moded. The same is true the fermions in the Ramond sector.
However, fermions in the NS sector are integer moded for DN and ND boundary
conditions and are half-integer moded for NN and DD boundary condition26.
The moding affects the zero point energies “E” as follows:

EX,Z = −Eψ,Z = − 1
24

, EX, Z
2
= −Eψ, Z

2
=

1
48

, (2.81)

where “X, ψ” stand for boson and fermion while Z and Z
2 stands for integer and

half-integer moding. Let’s denote by ν the number of DN or ND directions. Tak-
ing into account all the possible boundary conditions in d space-time dimensions,
the total vacuum energy for a boson is

Etot
X = (d − 2 − ν)EX,Z + ν EX, Z

2
. (2.82)

Note that the vacuum energy for the Ramond sector is exactly the opposite Etot
X =

−Etot
ψR

and the vacuum energies exactly cancel. On the other hand, the total vac-
uum energy for the fermions in the NS sector is

Etot
ψNS

= (d − 2 − ν)EψNS, Z
2
+ ν EψNS,Z . (2.83)

Note that for the critical superstring, we get

Etot
X + Etot

ψNS
= −1

2
+

ν

8
. (2.84)

For the D1-D5 system, ν = 4 and thus the bosonic and fermionic vacuum energies
cancel also in the NS sector. Let’s discuss now the (1, 5) or (5, 1) strings. There
are four periodic ψi

NS fermions in the torus directions i = 6, 7, 8, 9 and they give
24/2 = 4 degenerate ground states. Labelling their spins in the (i, j) plane with
sij = ± 1

2 , we get four states |s67, s89⟩ and they behave as two SU(2) doublets 2 ⊕
26A reference for this can be [80], Eq. (7.70).
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2′ under the internal SO(4)I , while being singlets under the external SO(1, 1)×
SO(4)E group. We now need to impose the GSO projection27 with the operator
exp (iπF) , F = ∑a sa. Taking into account the extra sign coming from the ghosts,
the GSO projection demands that exp (iπF) = −1, which implies s67 = s89 = 1

2 .
Only the state with same spins survives, and transforms as a doublet 2. This
immediately implies that there are only two bosonic degrees of freedom, and not
four.

One can ask what happens for the Ramond sector, which we expect would give
2 fermionic degress of freedom by supersymmetry. In the R sector, there are four
transverse periodic fermions ψm

R , m = 1, . . . , 4, along the non-compact directions
external to both type of branes which thus cannot give fermionic contributions.
In addition we have four internal anti-periodic fermions ψi

R: the R fermions along
the ND and DN directions are half-integer moded and give fermionic states. The
R vacuum give rise to 24/2 = 4 SO(4)I-singlet ground states |s12, s34⟩, out of which
only two survive the GSO projection (which has no extra sign in the R sector of
the ghosts) which requires s1 = −s2. These space-time fermions transform as
a doublet 2′ under the little group SO(4)E. We have thus concluded that the
number of bosons coming from the (p, p′) strings is only 2 and come from the NS
sector. The additional 2 bosonic degrees of freedom come from the (p′, p) strings
in the NS sector. By supersymmetry, the R sector gives 2 fermionic degrees of
freedom for each orientation.

It is straightforward to apply these results to our D1-D5 system. From the (1, 5)
and (5, 1) strings we obtain 2n1n5 + 2n1n5 = 4n1n5 scalars from the NS sector,
which constitute another type of Hypermultiplet, different from those considered
for the (1,1) and (5,5) strings. The scalars can be recast in a complex doublet χ =

(A, B†), A, B ∈ C and χ is a chiral spinor satisfying Γ6789χ = χ. These strings are
bifundamental fields: for instance, the (1,5) strings transform in the fundamental
of U(n1) and in the anti-fundamental of U(n5). Note that is the presence of these
strings that breaks the supersymmetry from 16 to 8, in agreement with the fact
that the D1-D5 system is 1/4 BPS. From a 6D viewpoint, the theory on the D5-
branes is a N = 1 theory with R-symmetry SU(2)R. Note that the fermionic
superpartners of the bifundamental scalars are singlets of SO(4)I but are charged
under the SU(2)1,2 in SO(4)E ≃ SU(2)1 × SU(2)2.

From the above discussions, and from Section 2.4.1, we conclude that the gauge theory
of the D1D5 system is a (1+1)-dimensional N = (4, 4) sigma model with gauge group
U(n1)× U(n5) and target space Eq. (2.76).

27A reference for this is [45], Eq. (10.2.24) and Eq. (13.5.19).
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2.4.3 The D1-D5 superconformal field theory

The classical moduli space of vacua of the 2D sigma model is found by imposing the
D-flatness equations, modulo the U(n1) × U(n5) gauge group. Details can be found
in [58]. Depending on the VEV of the scalars in the various multiplets, these can
parametrise the Coulomb or the Higgs branch28 of the theory. The Coulomb branch
is spanned by the VEVs of the scalars in the vector multiplets, while the scalars in the
hypermultiplets are set to zero. In this case, the branes can separate from each other
and generically the gauge group is completely broken to U(1)n. The Higgs branch is
defined by the VEVs of the scalars in the hypermultiplets, having set to zero the scalars
in the vector multiplet. The two branches meet at the origin (where all the scalars are
zero) and it has been shown in [56] that the two remain distinct also quantum mechan-
ically. To see this, one can consider the conformal field theory limit of the 2D sigma
model. In fact, the latter flows to two distinct CFTs in the IR, one corresponding to
the Coulomb branch and one corresponding to the Higgs branch of the theory [81].
Indeed, the two conformal field theories have different R-symmetry and usually differ-
ent central charges [56]: the Coulomb branch has c = 6n5 while the Higgs branch has
c = 6n1n5 (or 6(n1n5 + 1) for the K3 compactification). As a consequence, the mod-
uli space of instantons has dimension dim(MInst) = 4n1n5 (or 4(n1n5 + 1) for the K3
compactification). Note that, for black hole applications, the Higgs branch is the most
entropic sector of the theory29 and the CFT limit corresponds to the near-horizon limit
of the D1-D5 supergravity solution. The theory on the worldvolume of the effective
6d D-strings sees the attractor mechanism as its RG-flow. It is thus expected that the
SCFT will be sensible to the 20-dimensional attracted moduli space M∗

Sugra, so that the
moduli space of the SCFT is MSCFT = M∗

Sugra [49]. Indeed, this is know from the
works of [82, 83] that locally the moduli space of any N = (4, 4) SCFT is of the form
SO(4, n)/SO(4)× SO(n), where n = 5, 21 for T4 and K3 respectively. This holds to be
true also at first order in conformal perturbation theory [84]. Note that this is consistent
with the idea found in usual AdS/CFT dualities where the radial space-time coordinate
corresponds to the energy of the dual CFT theory.

We conclude that the low energy description of the D1-D5 system is a 2D N = (4, 4)
SCFT with moduli space MSCFT = M∗

Sugra and with target space

R4 ×
(

T4 ×MInst

)
, (2.85)

where the first factor describes the Coulomb branch and the last two the Higgs branch.
The T4 is a free theory describing the center of mass motion of the branes inside the
torus.

28There can be mixed branches, which we ignore for simplicity of discussion.
29This can be seen by using the Cardy formula for the entropy, where the central charge contributes to

the entropy.
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The origin of the two branches is related to the small instanton singularity of the gauge
theory, corresponding to the emission of long strings. Quantum mechanically, the
Coulomb branch metric ds2

R4 = dr2 + r2dΩ2
S3 gets deformed to a tube-like metric of

the form r−2 (dr2 + r2dΩ2
S3

)
. This shows that now the origin r = 0 is at infinite dis-

tance. The Higgs branch, being Hyperkähler, is protected from quantum corrections.
However, using the correct variables near the singularities of the space, one can show
that the physics near the origin is described in terms of a dynamical Liouville field
which induces a strong coupling singularity [50]. Again, there is a tube-like behaviour
at the quantum level. This means that, starting from the Higgs branch of the D1-D5
system, an instanton can travel through the infinitely long tube and ‘come out’ of the
Coulomb branch. This emission of long strings has been shown to be a peculiarity only
of the co-dimension four singular space [85]. By turning on the fields parametrising the
additional four directions (for instance, BSD

ij ̸= 0), the singularity gets resolved and the
long string emission stops.

2.4.4 Attracted moduli space and moduli space of instantons

It remains to understand what is the relation between the (attracted) moduli space
MSCFT = M∗

Sugra and the (non-trivial, Higgs branch) target space MInst. To under-
stand this, we follow [49]. The instanton moduli space has a natural hyperkähler met-
ric induced30 by the compactification manifold X = T4, K3, in terms of the L2-metric
on (adjoint-valued) one-forms on X. Additionally, one can turn on a (self-dual) B-field
on X, which modifies the hyperkähler moment map used in the definition of MInst.
In particular, the B-field enters in the definition of the Kähler form while the complex
structure of MInst is determined by the complex structure of MSCFT = M∗

Sugra. We
thus conclude [49] that the 20-dimensional moduli space of the 2D N = (4, 4) SCFT
MSCFT = M∗

Sugra should be matched with the hyperkähler structure of the instanton
moduli space MInst, which constitute the (non-trivial) part of the Higgs branch of the
theory. Importantly, in the D1-D5 frame, when the B-field is set to zero, the hyperkähler
metric is of the symmetric product form and the inverse string coupling is identified
with the volume of the sigma model.

We now summarise the relation between the moduli spaces with the following dia-
gram:

30In general, not unique.
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M∗
Sugra MSCFT

MSugra MGauge Rt × S1
y

≡loc MInst Symmn1n5
(T̃4)

Attractor RG Flow SCFT, Higgs branch

HK structure π

FIGURE 2.1: Summary of the relation between the various moduli spaces. The mod-
uli space MSugra and MGauge flow to the same ‘attracted’ moduli space M∗

Sugra ≡loc

MSCFT, where the identification is understood to be local. The latter is related to the
Hyperkähler structure of the (non-trivial part of the) Higgs branch MInst, which is

seen as a compact smooth Hyperkähler resolution of the orbifold Symmn1n5
(T̃4).

Below we compare the bulk physics (be it supergravity or the more general string theory
description) to the boundary physics at various points of the moduli space.

M∗
Sugra

Bulk

psu(1, 1|2)1 WZW, stringy

L2
α′ = 1

(Pure NS) Sugra

L2
α′ ≫ 1

D1D5 Sugra
S-dual

Protected

quantities

MSCFT

Boundary

SymN (T̃4)

Def
(

SymN (R × T̃4)
)

Protected

quantities

AdS/CFT

AdS/CFT

FIGURE 2.2: A very qualitative cartoon of the relation between various points in mod-
uli space, according to the AdS/CFT duality. The figure emphasizes that, despite hav-
ing M∗

Sugra ≡loc MSCFT, quantities computed in regime of low spacetime curvature
can be compared to those obtained at orbifold point only if protected, and viceversa.
Note that, in a more accurate representation, the marked points may actually reside at

cusps or at the boundary of the moduli space.

A more precise representation and discussion about the moduli space of the D1-D5 sys-
tem can be found in [44]. In particular, parametrizing a two-dimensional subspace of
the moduli space with τ = C(0) + ig−1

s at fixed N = n1n5, the free symmetric orbifold
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point is found at i∞. Deformations along the C(0) direction (and C(3),SD
ij ) would generi-

cally break the orbifold structure, and stop the long string emission [85]. On the other
hand, changes along the imaginary axis would still lead to the presence of long strings
in the spectrum. Notably, the bulk dual of the symmetric product orbifold theory at
i∞ does not have a continuous spectrum given to the shortening of the representations
[86].

One may thus wonder what is the relation between the D1D5 CFT at the orbifold point
and the supergravity description of the D1-D5 system. These two points are different
and only protected quantities can be compared between the two points. In addition, the
supergravity solution admits a continuum of states that are not present in the discrete
spectrum of the dual D1D5 CFT at the orbifold point, as mentioned above. For the NS5-
F1 system with one unit of NS flux n5 = 1, at a point of the moduli space M∗

Sugra ≃
MSCFT one finds that the Hyperkähler structure of the Higgs branch MInst degenerates
to that of an orbifold space and the holographic CFT becomes a particularly simple
theory in terms of free bosons and fermions. Indeed, it has been recently shown [87, 88]
that the bulk dual is the so-called tensionless string, described by a PSU(1, 1|2) WZW
model whose affine algebra p̂su(1, 1|2)1 has level n5 = 1. The level, coinciding with the
number of five-branes, is identified with the size of AdS3 in string units (which is the
same as that of S3 for critical strings) and the tensionless regime describes the particular
situation of having a string-sized target space L2

AdS/α′ = 1. At the orbifold point, the
relation between the string coupling and N is correct only at large values of the latter.
As explained in [89], one must compare the genus expansion of the worldsheet theory
with that of covering space of the dual orbifold theory: at a given genus g, there is an
infinite series of subleading terms in powers of N.

The supergravity regime is reliable when the size of AdS is much larger to that of
the string length. In case of only NS-NS fluxes (as an example, the NS5-F1-P sys-
tem), some supergravity backgrounds are (partly) described by SL(2, R) Wess-Zumino-
Witten model whose affine Lie algebra ̂sl(2, R)k has level k ∈ Z>1. For the case of the
bosonic string in AdS3 (a particular case of the more general model we consider in this
thesis), the holographic CFT has been recently proposed [90, 91] to be a deformation
of SymN(RQ × T4), where RQ is a linear dilaton theory of slope Q = k−3√

k−2
, where

this time k is the bosonic affine level. The deformation is parametrised by the operator
Φ = e−

√
k−2ϕσ2, where ϕ is the linear dilaton field and σ2 is a twist-2 operator of the

symmetric orbifold theory.

2.5 The holographic CFT

As discussed, in the AdS3 limit of the NS5-F1 system there is a locus in moduli space
at which the holographically dual CFT is an N = (4, 4) symmetric product orbifold
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CFT with target space
(
T4)N /SN , where N = n1n5. To make the presentation self-

contained, we review some aspects of this theory and set the notation.

Recall that we work in Type IIB compactified on S1 × T4, with n5 NS5 branes wrapped
on S1 × T4, n1 units of F1 winding on S1, and nP units of momentum charge along
S1. The moduli space is 20-dimensional and the symmetric product orbifold CFT is
conjectured to lie at a particular locus of this moduli space [44], see also [92]. The
configuration breaks the SO(1, 9) Lorentz group to SO(1, 1)× SO(4)E × U(1)4, where
the external R-symmetry SO(4)E ≃ SU(2)L × SU(2)R corresponds to rotations in the
spatial R4 transverse to the branes (in the IR limit, rotations of the S3). It is customary
to introduce an approximate internal SO(4)I ≃ SU(2)1 × SU(2)2, which is broken to
U(1)4 by the compactification, but which is useful for classifying states and organizing
fields [58, 46].

In the symmetric product orbifold theory, for each copy of T4 there are four free bosons,
together with their left and right-moving fermionic superpartners. Indices α, α̇, A, Ȧ
correspond respectively to SU(2)L , SU(2)R , SU(2)1, SU(2)2. The free fields are denoted
as (we use the conventions of [93])

XAȦ (r)(z, z̄) , ψαȦ
(r) (z) , ψ̄α̇Ȧ

(r) (z̄) , (2.86)

where the subscript (r) denotes the r-th copy of the seed T4 theory. Omitting this
copy subscript and focusing on the holomorphic sector, the energy-momentum ten-
sor T(z), the supercurrents GαA(z) and the SU(2)L currents Ja generate the small (4,4)
superconformal algebra. We denote holographic CFT conformal weights by h and R-
symmetry quantum numbers by (j, m′) and (j̄, m̄′), respectively. Thanks to the quotient
with the symmetric group SN , different copies of the theory can be combined together
into strands of various lengths. Thus, in the orbifold theory we can distinguish two dif-
ferent sectors, namely the untwisted sector, where the theory is thought as a collection
of N strands of length equal to one, and the twisted sector, where multiple strands are
joined together and have length greater than one. The operator that implements such
transformation is the twist operator σn := σ(12...n). More precisely, given a permutation
(12 . . . n), n < N, the operator σn implements the following boundary conditions on the
fields: Xi

(1) → Xi
(2) → · · · → Xi

(n) → Xi
(1), while the remaining strands from n + 1 to N

are left untouched. Another important feature of the orbifold theory is the presence of
an automorphism of the su(2) subalgebra of the superconformal algebra, called holo-
graphic spectral flow31. This automorphism implements a change in the weight and
R-charge of the states given by

h′ = h + αj+
c α2

24
, m′ = m +

c α

12
, α ∈ R . (2.87)

31For the rest of the thesis, the reader should be careful in distinguishing the holographic spectral de-
noted by α flow from the worldsheet spectral flow denoted by w, which instead represents an asymptotic
winding of the strings in AdS3.
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The heavy states we are interested in are obtained by fractional spectral flow [94], see
also [95, 96]. We start from the state dual to Zk-orbifolded global AdS3 × S3 × T4,
which is a tensor product of N/k identical states of twist k, each of which is the lowest
dimension state in the k-twisted sector. This state has conformal dimension

h = h̄ =
c

24

[
1 − 1

k2

]
, (2.88)

where the central charge c = 6N. The R-charges of this state are zero. Because all
the component states (i.e. the “strands” mentioned above) have twist k, there is an
enhancement of the usual spectral flow, such that one can perform spectral flow with
fractional parameters,

α =
m+ n

k
=

2s + 1
k

, ᾱ =
m− n

k
=

2s̄ + 1
k

, (2.89)

where s, s̄ ∈ Z, and we note that the range m > n ≥ 0 is the range s ≥ s̄ ≥ 0. This
generates a new state with quantum numbers

h =
c

24

[
1 − 1

k2 + α2
]

, m′ =
αc
12

,

h̄ =
c

24

[
1 − 1

k2 + ᾱ2
]

, m̄′ =
ᾱc
12

. (2.90)

These states are “heavy” in the sense that their conformal dimensions scale linearly
with the large central charge c. By constrast, the “light” perturbative string states prob-
ing these backgrounds will correspond to holographic CFT states with conformal di-
mensions that are independent of c.

2.5.1 Chiral primaries in the D1D5 CFT

We briefly review the construction of chiral primary operators in the symmetric orb-
ifold CFT [97]. We focus primarily on the holomorphic sector in the following; the
antiholomorphic sector is entirely analogous. In the untwisted sector, on each copy of
the seed T4 theory, the chiral primary operators correspond to the states (suppressing
the copy (r) label)

|0NS⟩ , ψ+Ȧ
− 1

2
|0NS⟩ , J+−1|0NS⟩ = ψ+1̇

− 1
2
ψ+2̇
− 1

2
|0NS⟩ , (2.91)

where |0NS⟩ is the NS vacuum. The corresponding weights and R-charges are h =

m′ = 0, 1
2 , 1, respectively. Physical configurations in the orbifold theory are obtained by

symmetrizing the states in (2.91) over the different copies of the seed theory.
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By including the antiholomorphic sector we can obtain, for instance, the dimension
( 1

2 , 1
2 ) operator (see e.g. [98])

O++ =
N

∑
r=1

O++
(r) =

−i√
2

N

∑
r=1

ψ+Ȧ
(r) ε ȦḂψ̄+Ḃ

(r) , (O++)† = O−− . (2.92)

We will use this operator in an explicit example later in the thesis.

In order to construct more general chiral primaries, one needs to consider the twisted
sectors of the theory. Consider the ‘bare’ twist operators σn, defined on the cylinder,
that impose the following boundary conditions corresponding to a single-cycle permu-
tation,

X(1) → X(2) → · · · → X(n) → X(1) ,

ψ(1) → ψ(2) → · · · → ψ(n) → −ψ(1) ,
(2.93)

and likewise for the antiholomorphic fermions. The bare twist operators are defined
to be the lowest-dimension twist operators that impose the above boundary condi-
tions; they have dimension h = h̄ = 1

4

(
n − 1

n

)
and zero R-charge. Chiral operators are

obtained by exciting the bare twist operators operators to add R-charge. The lowest-
dimension chiral operators have h = m′ = n−1

2 . For n odd, these operators are obtained
by acting with modes of the SU(2) currents, which are bilinears in the free fermions.
Due to the twist operator, the SU(2) currents are fractional-moded in units of 1/n. The
relation between these modes and those of free fermions on the n copies of the seed the-
ory can be found in [97]. To construct the chiral operators, one acts with the currents
J+−l/n for which l is odd and l < n,

n odd : σ−
n =

(n−1)/2

∏
p=1

J+
− 2p−1

n
σn = J+− n−2

n
· · · J+− 3

n
J+− 1

n
σn . (2.94)

For n even, one first acts with a spin field S+
n , which has weight 1

4n and charge 1
2 ,

putting the fermions into the Ramond sector (i.e. their boundary conditions are sim-
ilar to Eq. (2.93) but with the final sign being +ψ(1)). One then acts with the currents
J+−l/n for which l is even and l < n,

n even : σ−
n =

(n−2)/2

∏
p=1

J+
− 2p

n
S+

n σn = J+− n−2
n
· · · J+− 4

n
J+− 2

n
S+

n σn . (2.95)

As in the untwisted case, for both odd and even n we can act with ψ+Ȧ
− 1

2
≡

n
∑

r=1
ψ+Ȧ
− 1

2 (r)

to obtain a chiral operator ψ+Ȧ
− 1

2
σ−

n which has h = m′ = n
2 . Similarly we can act with

J+−1 to obtain a chiral operator J+−1σ−
n which has h = m′ = n+1

2 . Together with the
analogous antiholomorphic operators, this exhausts the single-cycle chiral operators.
Indeed, by making use of anti-commutators of the supercurrent modes G±A

−m/n in the
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corresponding twisted sectors, one can show that chiral weights are bounded by [46]

n − 1
2

≤ h ≤ n + 1
2

. (2.96)

In the twisted sectors, it is often convenient to work in a basis that diagonalizes the
twisted boundary conditions. We shall make use of this basis in later chapters. One
defines

ψ̃αȦ
ρ =

1√
n

n

∑
r=1

eα
2πirρ

n ψαȦ
(r) , ρ = 0, . . . , n − 1 , (2.97)

where the index α = ± should not be confused with the spectral flow parameter in
Eq. (2.89). These are mutually orthogonal, and diagonalize the twisted boundary con-
ditions as

ψ̃αȦ
ρ (e2πiz) = e−α

2πiρ
n ψ̃αȦ

ρ (z) . (2.98)

These fermions can be bosonized to construct an explicit expression for the spin fields
mentioned above. Note that the fields ψ̃αȦ

ρ=0 are invariant under the twisting. For further
discussion, see [99].

We now combine the above holomorphic construction with its antiholomorphic coun-
terpart and define the complete list of scalar left-right chiral primaries we will be inter-
ested in:

O−−
n = σ−−

n , OȦḂ
n = ψ̃+Ȧ

ρ=0
¯̃ψ+Ḃ
ρ=0 σ−−

n , O++
n = ψ̃+1̇

ρ=0 ψ̃+2̇
ρ=0

¯̃ψ+1̇
ρ=0

¯̃ψ+2̇
ρ=0 σ−−

n ,
(2.99)

where σ−−
n is defined similarly to Eqs. (2.94), (2.95), with the same construction in the

antiholomorphic sector. The operators in (2.99) are normalized such that they have unit
two-point functions.

For later reference, we note that in each case the respective weights and twist numbers
can be written in terms of j = n+1

2 as

h
[
O−−

n
]
= j − 1 , h

[
OȦḂ

n

]
= j − 1

2
, h

[
O++

n
]
= j . (2.100)

An analogous list of anti-chiral primaries (which have h = −m′) is obtained by acting
on the bare twist fields with current and fermion modes with opposite charge, i.e. J−−l/n

and ψ−Ȧ. As we will shortly review, and up to a shift related to worldsheet spectral
flow, this j will be identified with the principal quantum number of the bosonic (global)
SL(2,R) algebra of the worldsheet theory, to which we now turn.
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2.6 Superstring theory on AdS3 × S3 × T4

We now review the basics of superstring theory on AdS3 × S3 × T4 using the RNS for-
malism with BRST quantization. We first discuss the bosonic SL(2, R) and SU(2) WZW
models and then present their supersymmetric counterparts. We present the current al-
gebra and review the spectrum, including states arising from worldsheet spectral flow.
Finally, we review the dictionary between holographic CFT operators and their coun-
terparts in the worldsheet theory, following [99, 100].

2.6.1 Bosonic WZW model for SL(2,R)

The SL(2,R) WZW model was studied in detail in [101, 102, 103]. Here we will mostly
follow the notation of [99, 100, 38], and normal ordering will be implicitly assumed.

The holomorphic SL(2,R) currents will be denoted ja(z). They satisfy the OPEs

ja(z)jb(w) ∼ k
2

ηab

(z − w)2 +
f ab

c jc(w)

z − w
, (2.101)

where k is the level of the affine algebra, and where

−2η33 = η+− = 2 , f+−
3 = −2 , f 3+

+ = − f 3−
− = 1 . (2.102)

The holomorphic stress tensor and the central charge follow from the Sugawara con-
struction, and are given by (likewise for the antiholomorphic sector)

Tsl(z) =
1

k − 2

[
−j3(z)j3(z) +

1
2

j+(z)j−(z) +
1
2

j−(z)j+(z)
]

, csl =
3k

k − 2
. (2.103)

We denote bosonic SL(2, R) primary vertex operators by Vj,m,m̄(z, z̄). Their zero-mode
wavefunctions do not factorize between holomorphic and antiholomorphic sectors,
however as is often done we shall work primarily with the holomorphic sector, and
suppress the m̄ and z̄ dependence. The relevant representations of the holomorphic
zero-mode algebra are as follows. The principal series discrete representations of low-
est (highest) weight are spanned by

D±
j = {|j, m⟩ , m = ±j,±j ± 1,±j ± 2, · · · } , (2.104)

respectively, where j30|j, m⟩ = m|j, m⟩. These are unitary representations for any posi-
tive real j, and one is the charge conjugate of the other (we will restrict the range of j
momentarily). There are also the principal continuous series representations, spanned
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by

C α̂
j = {|j, α̂, m⟩ , 0 ≤ α̂ < 1 , j =

1
2
+ is , s ∈ R , m = α̂, α̂ ± 1, α̂ ± 2, · · · } . (2.105)

The particular case α̂ = 1/2 = j is actually reducible. It was shown in [101] that the
spectrum of the model is built out of continuous and lowest weight representations
with

1
2
< j <

k − 1
2

, (2.106)

together with their spectrally flowed images, to be introduced below. The allowed
range (2.106) follows from L2 normalization conditions, no-ghost theorems and spectral
flow considerations.

Before considering worldsheet spectral flow (we refer to this as the “unflowed” sector),
the action of the currents on the primary states is given by

j30|j, m⟩ = m|j, m⟩ , (2.107a)

j±0 |j, m⟩ =

 (m ∓ (j − 1))|j, m ± 1⟩ if m ̸= ∓j

0 if m = ∓j ,
(2.107b)

ja
n|j, m⟩ = 0 ∀n > 0 . (2.107c)

These vertex operators can be obtained from those of the Euclidean counterpart of the
model, namely the H+

3 WZW model [104, 105, 106] (see also [107]), as follows. One
introduces a set of operators depending on a complex label x, written as Vj(x|z), and
having conformal weight

∆ = − j(j − 1)
k − 2

. (2.108)

The action of the currents on Vj(x, z) is given by

ja(z)Vj(x, w) ∼
Da

j Vj(x, w)

(z − w)
, (2.109)

where
D+

j = ∂x , D3
j = x∂x + j , D−

j = x2∂x + 2jx . (2.110)

The two-point function is given by [106]

⟨Vj1(x1, z1)Vj2(x2, z2)⟩ =
1

|z12|4∆1

[
δ2(x1 − x2)δ(j1 + j2 − 1) +

B(j1)
|x12|4j1

δ(j1 − j2)
]

,

(2.111)
with

B(j) =
2j − 1

π

Γ[1 − b2(2j − 1)]
Γ[1 + b2(2j − 1)]

ν1−2j , ν =
Γ[1 − b2]

Γ[1 + b2]
, b2 = (k − 2)−1 . (2.112)
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The operators Vj,m(z) are related to Vj(x|z) by means of the following Mellin-like trans-
form:

Vj,m(z) =
∫

C
d2x xj−m−1 x̄j−m̄−1Vj(x, z) . (2.113)

In the Euclidean H+
3 model, j takes values j = 1/2 + is. To obtain the unflowed Vj,m

for Lorentzian AdS3, one assumes a well-defined analytic continuation to real values
of j. This procedure was discussed in [103], which identified the physical origin of
the different divergences arising in correlation functions. For related work, see [108].
The two-point functions in the m-basis then follow from (2.111), (2.113). Using the
shorthand Vi ≡ Vji ,mi , one finds

⟨V1V2⟩ =
δ2(m1 + m2)

|z12|4∆1

[
δ(j1 + j2 − 1) + δ(j1 − j2)

πB(j1)
γ(2j1)

γ(j1 + m1)

γ(1 − j1 + m1)

]
, (2.114)

where γ(x) = Γ(x)/Γ(1 − x̄), and where δ2(m) is a Dirac delta in m + m̄ times a Kroe-
necker delta in m − m̄.

At first sight, the complex variable x may appear simply as an SL(2,R) version of the
isospin variables defined for SU(2) in [109]. However, given that the integrated zero
modes of the currents realize the spacetime Virasoro modes L0 and L±1, and by examin-
ing the expressions of the associated differential operators (2.110), one is led to interpret
x as the local coordinate on the boundary theory [78]. In other words, the x variable
corresponds to the insertion point of the holographic dual operator at the boundary of
AdS3, and computing worldsheet correlation function in the x-basis is equivalent (after
an appropriate integration over the worldsheet coordinates z, z̄) to computing correla-
tors of the holographic CFT. Indeed, as we will see in more detail later on, according
to (2.111), in the bosonic theory a z-integrated vertex operator Vj(x) is identified with
a local operator on the boundary theory with weight j. Conversely, the corresponding
boundary modes are given by the m-basis operators. Indeed, for states in the discrete
sector, the transform in Eq. (2.113) can be inverted, giving

Vj(x, z) = ∑
m=j+n, n∈N0

xm−j x̄m̄−j Vj,mm̄(z) . (2.115)

The vertex Vj(x, z) is realized via Eq. (2.115) as Vj,j(z) translated from the origin to x.
Poles in the integrand of (2.113) coming from the expansion around x = 0 (x = ∞) are
associated to states in the D+

j (D−
j ) representations [88, 38].

Spectral flow automorphisms of the current algebra (2.101) are defined as

j±(z) → j̃±(z) = z±w j±(z) , j3(z) → j̃3(z) = j3(z)− k ω

2
1
z

, (2.116)

where the so-called spectral flow charge ω is an integer. Analogous formulas hold
for the antiholomorphic sector. We work with the universal cover of SL(2, R), which
imposes that the holomorphic and antiholomorphic spectral flow parameters must be
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equal, ω̄ = ω. The action of (2.116) on the above representations defines in general
inequivalent representations that must be considered in order to generate a consistent
spectrum. This holds up to the so-called series identifications due to the fact that the
affine modules D̂+,w

j and D̂−,w+1
k/2−j are isomorphic. Thus, as mentioned above, the dis-

crete series spectrum is constructed solely upon lowest weight representations with j
restricted to the range (2.106).

At the level of vertex operators and for ω > 0, the spectral flow operation introduced
in (2.116) defines the so-called flowed primaries, whose OPEs with the currents take
the form

j+(z)Vω
j,m(w) =

(m + 1 − j)Vω
j,m+1(w)

(z − w)ω+1 +
ω

∑
n=1

(j+n−1Vω
j,m)(w)

(z − w)n + . . . , (2.117a)

j3(z)Vω
j,m(w) =

(
m + k

2 ω
)

Vω
j,m(w)

(z − w)
+ . . . , (2.117b)

j−(z)Vω
j,m(w) = (z − w)ω−1(m − 1 + j)Vω

j,m−1(w) + . . . , (2.117c)

where the ellipses indicate higher-order terms. Similar expressions hold for ω < 0,
with the roles of j+ and j− inverted. The operators Vω

j,m(z) are not affine primaries.
They are, however, Virasoro primaries, with worldsheet conformal weight

∆̂ = − j(j − 1)
k − 2

− mω − k
4

ω2 . (2.118)

Note that for ω > 0 (ω < 0), independently of the characteristics of the original state,
these correspond to lowest (highest) weight states, with SL(2,R) spin

h = m +
k
2

ω , (2.119)

(h = −m − kω/2, respectively). The notation h anticipates that the SL(2,R) spin is
identified with the holographic CFT conformal weight [110] (see also e.g. [99]), as we
shall see in Eq. (2.121).

The flowed affine modules alluded above are built by acting with the currents on
flowed primary states. In particular, the remaining states in the zero-mode algebra,
which are obtained by acting with j−0 , are not flowed primaries. Nevertheless, one can
proceed as done for the unflowed states, and combine them into a local operator, de-
fined initially for ω > 0 as

Vw
j,h(x, z) = ∑

n∈N0

xn x̄n̄ Vw
j,h+n,h+n̄(z) . (2.120)

Moreover, by inverting x → 1/x in the expansion, one also obtains the states in the
highest-weight representation with the same spin and opposite ω and m. This shows
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that the resulting x-basis states are actually defined in terms of the absolute value of
ω, its sign being irrelevant. A direct x-basis definition for spectrally flowed vertex
operators was recently derived in [39], extending the original proposal of [103] valid
only for the singly flowed case.

The classical analog of the spectral flow operation (2.116) maps space-like geodesics of
point-like strings into solutions in which a long string wound around the AdS3 angular
direction at large radius comes in to the centre of global AdS3, collapses to a point,
and then re-expands to large radial distance [101]. The spectral flow parameter ω is
thus sometimes referred to in the literature as a “winding” number. Note that since the
AdS3 angular direction is contractible in the interior of global AdS3, the parameter ω is
not a conserved quantity. However, the m-basis two-point functions are diagonal in ω:
it was shown in [103] that the m-basis two-point function of flowed primaries is as in
(2.114) with an extra factor of δω1,−ω2 and the worldsheet conformal weight ∆1 replaced
by ∆̂1 given in Eq. (2.118). On the other hand, in the x-basis one finds

⟨Vω1
j1,h1

(x1, z1)V
ω2
j2,h2

(x2, z2)⟩ =
1

|x12|4h1

⟨Vω1
j1,m1

Vω2
j2,m2

⟩
Vconf

. (2.121)

Thus, as mentioned above, the SL(2,R) spin h is identified with the holographic CFT
conformal weight [110], even though in the flowed sectors the spin is independent of
the value of j of the corresponding unflowed operator. The factor Vconf stands for the
divergent volume of the conformal group; it reflects the fact we are picking up the
contribution from a pole, and it will cancel in the relevant computations that follow.

2.6.2 Bosonic WZW model for SU(2)

The bosonic SU(2) WZW model was studied in [111, 109]. We denote the generators of
the current algebra by ka, and for most quantities we use primes to distinguish them
from their SL(2, R) counterparts. The currents satisfy the OPEs

ka(z)kb(w) ∼ k′

2
δab

(z − w)2 +
f ′ab

c kc(w)

z − w
, (2.122)

where k′ is the level of the affine Lie algebra, δab is the Killing form, and f ′abc are the
corresponding structure constants,

2δ33 = δ+− = 2 , f ′+−
3 = 2 , f ′3++ = − f ′3−− = 1 . (2.123)

The energy-momentum tensor and central charge are

Tsu(z) =
1

k′ + 2

[
k3(z)k3(z) +

1
2

k+(z)k−(z) +
1
2

k−(z)k+(z)
]

, csu =
3k′

k′ + 2
.

(2.124)
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We denote SU(2) vertex operators by V ′
j′,m′,m̄′(z, z̄). Again, their zero-mode wavefunc-

tions do not factorize into holomorphic and antiholomorphic parts, however we shall
mostly work holomorphically and suppress antiholomorphic quantities (m̄′, z̄).

For SU(2), the unitary representations of the zero-mode algebra are labeled by

0 ≤ j′ ≤ k′

2
, j′ ∈ Z/2 , (2.125)

and their states are |j′, m′⟩ with m′ = −j′,−j′ + 1, . . . , j′ − 1, j′. Using conventions that
mimic those used above for SL(2, R), we have

k3
0|j′, m′⟩ = m′|j′, m′⟩ , (2.126a)

k±0 |j
′, m′⟩ =

 (j′ + 1 ± m′)|j′, m′ ± 1⟩ if m ̸= ±j

0 if m = ±j ,
(2.126b)

ka
n|j′, m′⟩ = 0 ∀n > 0 , (2.126c)

and
∆′ =

j′(j′ + 1)
k′ + 2

. (2.127)

Unlike SL(2, R), in the SU(2) WZW model spectral flow is not necessary for construct-
ing a consistent spectrum, due to the compactness of the group manifold. Indeed, the
spectral flow automorphisms merely reshuffle primary and descendant fields, and they
do not introduce new inequivalent representations. Nevertheless, for superstring the-
ory applications it is of practical use to include it in the discussion [100, 52, 1]. We will
discuss this in more detail shortly.

For SU(2), spectral flow is defined as

k±(z) → k̃±(z) = z∓w′
k±(z) , k3(z) → k̃3(z) = k3(z)− k′ω′

2
1
z

. (2.128)

In this case, however, it is possible to have ω̄′ ̸= ω′. As before, spectrally flowed
primaries Vω′

j′,m′(z) are Virasoro primaries, with weight

∆̂′ =
j′(j′ + 1)

k′ − 2
+ m′ω′ +

k′

4
ω′2 , (2.129)
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but they are not affine primaries, and for ω′ > 0 they are defined in terms of the OPEs

k+(z)Vω′
j′,m′(w) = (z − w)ω′−1(j′ + 1 + m′)Vω′

j′,m′+1(w) + . . . , (2.130a)

k3(z)Vω′
j′,m′(w) =

(
m′ + k

2 ω′
)

Vω′
j′,m′(w)

(z − w)
+ . . . , (2.130b)

k−(z)Vω′
j′,m′(w) =

(j′ + 1 − m′)Vω′
j′,m′−1(w)

(z − w)ω′+1 +
ω′

∑
n=0

(k−n−1Vω′
j′,m′)(w)

(z − w)n + . . . .(2.130c)

The corresponding two-point functions are, again, the unflowed ones times δω1,−ω2 ,
with the appropriate powers of z12.

2.6.3 Superstrings in AdS3 × S3 × T4

We now review supersymmetric generalizations of the bosonic WZW models discussed
above. We introduce fermions ψa and χa which are superpartners of the SL(2, R) and
SU(2) currents Ja and Ka respectively. The appropriate N = 1 supersymmetric ex-
tensions of the affine sl(2,R)k and su(2)k′ algebras are generated by the supercurrents
ψa + θ Ja and χa + θKa, where θ is a Grassmann variable. The currents Ja and Ka sat-
isfy the OPEs (2.101) and (2.122) respectively, with level n5 in both cases, and the OPEs
involving the fermions ψa and χa are

Ja(z)ψb(w) ∼
f ab

c ψc(w)

(z − w)
, Ka(z)χb(w) ∼

f ′ab
c χc(w)

(z − w)
, (2.131a)

ψa(z)ψb(w) ∼ n5

2
ηab

(z − w)
, χa(z)χb(w) ∼ n5

2
δab

(z − w)
. (2.131b)

One can split the currents into two independent contributions via

Ja = ja − 1
n5

f a
bcψbψc , Ka = ka − 1

n5
f ′abc χbχc . (2.132)

The “bosonic” currents ja and ka commute with the free fermions, and are currents of
bosonic WZW models as described in Section 2.6, with levels k = n5 + 2 and k′ = n5 − 2
respectively. In the fermionic sector, the spectral flow automorphisms act as

ψ̃±(z) = z∓ωψ±(z) , ψ̃3(z) = ψ3(z) , χ̃±(z) = z∓ωχ±(z) , χ̃3(z) = χ3(z) .
(2.133)

The remaining flat compact directions are treated as usual. For the T4, we simply
have four (canonically normalized) free bosons Yi and their fermionic partners λi (i =
6, . . . , 9), with OPEs

Yi(z)Y j(w) ∼ −δij log(z − w) , λi(z)λj(w) ∼ δij

(z − w)
. (2.134)
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We can now write down the energy-momentum tensor T and the supercurrent G of the
worldsheet theory for type II superstrings in AdS3 × S3 ×T4. The matter contributions
read

T =
1
n5

(
ja ja − ψa∂ψa + kaka − χa∂χa

)
+

1
2

(
∂Yi∂Yi − λi∂λi

)
, (2.135)

G =
2
n5

(
ψa ja −

1
3n5

fabcψaψbψc + χaka −
1

3n5
f ′abcχaχbχc

)
+ i λj∂Yj , (2.136)

and the resulting central charge is compensated by the usual bc and βγ ghost systems,
leading to the BRST charge

Q =
∮

dz
(

c
(
T + Tβγ

)
− γ G + c(∂c)b − 1

4
bγ2
)

. (2.137)

Here Tβγ is the energy-momentum tensor of the βγ system, which is bosonized as

β = e−φ∂ξ , γ = ηeφ , (2.138)

where φ(z)φ(w) ≃ − ln(z − w) has background charge 2, and ξ(z)η(w) ∼ (z − w)−1.
The (matter) central charge is

c =
3(n5 + 2)

n5
+

3
2
+

3(n5 − 2)
n5

+
3
2
+ 6 = 15. (2.139)

For computational purposes it is useful to also bosonize the rest of the fermions [78, 99].
We thus define (canonically normalized) bosonic fields HI with I = 1, . . . 5, and write

ĤI = HI + π ∑
J<I

NJ , NJ ≡
∮

i∂HJ , (2.140)

where the number operators NI are introduced in order to keep track of the cocycle
factors, namely

eiaĤI eibĤJ = eibĤJ eiaĤI eiπab , if I > J . (2.141)

We bosonize as

ψ± =
√

n5 e±iĤ1 , χ± =
√

n5 e±iĤ2 , λ6 ± iλ7 = e±iĤ4 , λ8 ± iλ9 = e±iĤ5 , (2.142a)

ψ3 =

√
n5

2

(
eiĤ3 − e−iĤ3

)
, χ3 =

√
n5

2

(
eiĤ3 + e−iĤ3

)
, (2.142b)

where Ĥ†
I = ĤI for I ̸= 3 and Ĥ†

3 = −Ĥ3. Then we have

i∂Ĥ1 =
1
n5

ψ+ψ− , i∂Ĥ2 =
1
n5

χ+χ− , i∂Ĥ3 =
2
n5

ψ3χ3 , (2.143a)

i∂Ĥ4 = iλ6λ7 , i∂Ĥ5 = iλ8λ9 . (2.143b)
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The phases in (2.141) ensure that bosonized fermions anticommute, and will be impor-
tant when working with states in the Ramond sector. From now on we will simply omit
the hats, and explicitly include the phase factors when they are needed.

The spacetime supercharges can be written as:

Qε =
∮

dz e−φ/2Sε , Sε = exp

(
i
2

5

∑
I=1

ε I HI

)
, (2.144)

where Sε are spin fields and ε I = ±1. Imposing BRST invariance – where the relevant
contributions come from the fabcψaψbψc and f ′abcχaχbχc pieces of G in (2.136) – and
mutual locality (chiral GSO) leads to the conditions

3

∏
I=1

ε I =
5

∏
I=1

ε I = 1 . (2.145)

In the holomorphic sector this gives the expected four ‘ordinary’ supercharges and four
‘superconformal’ supercharges. The same applies in the antiholomorphic sector, giving
the total 16 real supercharges of global AdS3 × S3 [78].

For later use, let us also recall that the R-symmetry of the boundary theory is gener-
ated on the worldsheet by the SU(2) currents. More precisely, the zero modes of the
spacetime R-currents are given by the integrated worldsheet currents [78], i.e.

Ja
0 =

∮
dz Ka(z) . (2.146)

Consequently, the holomorphic R-charge in the holographic CFT is identified with m′,
which from now onwards denotes the eigenvalue of K3

0. This is why we used the nota-
tion m′ in Sections 2.5 and 2.5.1. Similarly, from now onwards m denotes the eigenvalue
of J3

0 .

2.6.4 Vertex operators and two-point functions

We now discuss physical vertex operators and their two-point functions, both in NS
and R sectors. This section is largely review, though we also give explicit expressions
for some R sector operators that to our knowledge have not appeared before in the
literature.

Our main interest is in worldsheet operators that correspond to chiral primaries of the
holographic CFT. We thus focus on states belonging to the discrete representations of
SL(2,R), since it has been shown that the chiral primaries of the dual CFT are in one-to-
one correspondence with worldsheet states in the discrete representation [100]. Also,
as discussed in the previous sections, the continuous representation states are lifted at
generic points of the moduli space, and, furthermore, are not part of the spectrum of the
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dual CFT at the orbifold point. We also discuss the role of SL(2,R) and SU(2) spectral
flows in the string theoretical construction. These vertex operators and their two-point
functions will be used as building blocks for constructing the vertex operators and two-
point functions of the null-gauged models.

2.6.4.1 NS sector

The unflowed NSNS sector was considered in [112], see also [99]. We continue to sup-
press antiholomorphic parts of the SL(2, R) and SU(2) vertex operators Vj,m,m̄ and
V ′

j′,m′,m̄′ . The complete NSNS vertex is obtained by including the antiholomorphic
fermions and ghosts.

We work in the canonical “−1” ghost picture, and consider only states with vanishing
momentum in the T4 directions. Then the (holomorphic part of the) BRST invariant
states with up to a single fermionic excitation include the tachyon (which is projected
out by GSO),

Tj,m,j′,m′ = e−φVj,mV ′
j′,m′ , (2.147)

and the following spacetime vectors. To write these, we denote the total spins corre-
sponding to the supersymmetric currents Ja and Ka by J = j + ε and J′ = j′ + ε, with
ε = ±1 (recall that m and m′ now denote the eigenvalues of J3

0 and K3
0 respectively, and

that i = 6, . . . , 9),

V i
J,m,J′,m′ = e−φλiVj,mV ′

j′,m′ , (2.148a)

W ε
J,m,J′,m′ = e−φ

(
ψVj

)
j+ε,m V ′

j′,m′ , (2.148b)

X ε
J,m,J′,m′ = e−φVj,m(χV ′

j′)j′+ε,m′ , (2.148c)

where we have introduced the linear combinations

(ψVj)j+ε,m = cr
εψ

rVj,m−r , (χV ′
j′)j′+ε,m′ = dr

εχ
rV ′

j′,m′−r , (2.149)

in which a summation over r = +1,−1, 0 is implicit, “0” corresponding to the “3”
direction of the respective algebras. These combine the products of bosonic primaries
and free fermions into fields of total spins J and J′ [112]. The Clebsh-Gordan coefficients
are given in our conventions by

cr
− =

(
1
2

,
1
2

,−1
)

, dr
+ =

(
−1

2
,

1
2

, 1
)

,

cr
+ =

(
1
2
(j + m)(j + m − 1),

1
2
(j − m)(j − m − 1), (j + m)(j − m)

)
, (2.150)

dr
− =

(
1
2
(j′ − m′)(j′ − m′ + 1), −1

2
(j′ + m′)(j′ + m′ + 1), (j′ − m′)(j′ + m′)

)
.
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The Virasoro condition associated to all vertex operators in Eq. (2.148) reads

1
2
+

1
2
− j(j − 1)

n5
+

j′(j′ + 1)
n5

= 1 , (2.151)

and is solved by j = j′ + 1 (or its reflection under j → 1 − j), thus implying that we are
dealing with bosonic primaries in the discrete representations of SL(2,R)k.

Let us briefly discuss the worldsheet two-point functions involving these operators.
The different bosonic sectors factorize and the fermions are free, so we can express
the results directly in terms of the non-trivial contributions coming from the bosonic
SL(2,R) WZW model, namely Eq. (2.114). By construction, the only non-vanishing two-
point functions are the diagonal ones. For the 6D scalars coming from the NSNS sector
polarizations on the T4, (2.148a), using the shorthands Vi ≡ Vji ,mi , V ′

i ≡ V ′
j′i ,m

′
i
, we have

⟨V iī
1 V

jj̄
2 ⟩ = ⟨V1V2⟩⟨V ′

1V ′
2⟩
[
⟨e−φ1 e−φ2⟩⟨λi

1λ
j
2⟩ × c.c.

]
= ⟨V1V2⟩⟨V ′

1V ′
2⟩ ×

δijδī j̄

|z12|4
. (2.152)

Since we are dealing with discrete representations, the contact term in (2.114) vanishes,
thus imposing j1 = j2 ≡ j. As discussed above Eq. (2.115), the conformal weight in
the holographic CFT is to be identified with the SL(2,R) spin, i.e. h = j. On the other
hand, the R-charge is given by m′, with |m′| ≤ j′ = j − 1. Thus h ̸= |m′|, so V i cannot
correspond to a chiral primary of the HCFT.

We now turn to the operators introduced in the second and third line of (2.148). When
computing correlators of two W states, we must deal with expressions of the form

⟨
(
ψ1Vj1

)
j1+ε1,m1

(
ψ2Vj2

)
j2+ε2,m2

⟩ = ∑
r1,2

cr1
ε1

cr2
ε2
⟨ψr1 ψr2⟩ ⟨Vj1,m1−r1Vj2,m2−r2⟩ . (2.153)

We use the action of the bosonic currents (2.107) to express ⟨Vj1,m1−r1Vj2,m2−r2⟩ in terms
of ⟨Vj1,m1Vj2,m2⟩, insert the coefficients (2.150), and perform the sum. We obtain

⟨W ε1W ε2⟩ = n2
5

4|z12|4
⟨V1V2⟩⟨V ′

1V ′
2⟩ ×


j1(1 − 2j1)(j21 − m2

1)× c.c. ε1 = ε2 = 1

(j1 − 1)(1 − 2j1)
(j1 − 1)2 − m2

1
× c.c. ε1 = ε2 = −1

0 ε1 = −ε2 .
(2.154)

From Eq. (2.114) we find that the coefficients are exactly those needed to produce the
shift j → j+ ε in the two-point function. Hence, Eq. (2.113) shows that the weight of the
corresponding holographic dual is h = j + ε [113]. In particular, the operator W− with
maximal SU(2) charge has h = j − 1 = m′, and thus corresponds to a chiral primary
operator of the holographic CFT.
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The computation of the ⟨XX ⟩ correlators is analogous; we obtain

⟨X ε1X ε2⟩ = n2
5

4|z12|4
⟨V1V2⟩⟨V ′

1V ′
2⟩ ×



(j′1 + 1)(1 + 2j′1)

(j′1 + 1)2 − m′
1
2 × c.c. ε1 = ε2 = 1

j′1(1 + 2j′1)(j′1
2 − m′

1
2)× c.c. ε1 = ε2 = −1

0 ε1 = −ε2 = ±1 .
(2.155)

For X+ at highest SU(2) weight we have h = j = j′ + 1 = m′, leading to a second
family of spacetime chiral states. We will discuss the corresponding operators in the
holographic CFT theory and fix their normalization below.

So far, we have constructed chiral operators whose boundary weights h = j − 1 and
h = j are bounded from above by h < n5+1

2 , see Eq. (2.106). However, in the D1D5
CFT one can have chiral primaries in n-twisted sectors with n up to n1n5, and where
h grows linearly with n, as discussed around Eq. (2.96). Thus, it seems that so far we
are missing most of the heavier chiral operators. However, as discussed in [100], such
states lie in the sectors of the worldsheet theory with non-trivial spectral flow charges,
as we now review.

In the supersymmetric theory, spectrally flowed primary operators are built by combin-
ing the bosonic flowed primaries introduced in Eqs. (2.117) and (2.130) with fermionic
excitations. The bosons HI allow us to express the spectral flow operation in the fermionic
sectors of SL(2,R) and SU(2), Eq. (2.133), in the following form,

ψ±
ω = ψ±e−iωH1 , χ±

ω′ = χ±eiω′H2 , (2.156)

while the other fermions remain unchanged. Indeed, the OPEs between the operators
in (2.156) and the fermionic currents are analogous to those in (2.117) and (2.130). Once
factors of e−iωH1 and eiω′H2 are included, the corresponding weights take the form in
(2.118) and (2.129), with k − 2 = n5 = k′ + 2.

In principle, one could simply ignore the possibility of including spectral flow in SU(2)
since it does not give any new representations. However, for discrete series states it is
useful to do so in order to solve the modified Virasoro condition, as discussed in [52,
1]. Bosonizing the currents j3 and k3 with canonically normalised scalars ϕ and ϕ′

respectively, we use the spectral flow operator with equal amount of spectral flow in
SL(2,R) and SU(2),

exp

(
−iωH1 + ω

√
n5 + 2

2
ϕ + iωH2 + iω

√
n5 − 2

2
ϕ′
)

, (2.157)

which is mutually local with the supercharges, thus producing flowed singly-excited
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states which will also survive the GSO projection. The corresponding Virasoro condi-
tion for the flowed vertex operators is

1
2
+

1
2
− j(j − 1)

n5
− mω − n5

4
ω2 +

j′(j′ + 1)
n5

+ m′ω +
n5

4
ω2 = 1 . (2.158)

We seek to solve this for general n5. We thus impose j = j′ + 1 as well as m = m′. The
latter constraint is quite restrictive, since by definition we have

V-type operators: |m| ≥ j , |m′| ≤ j′ = j − 1 ,

W-type operators: |m| ≥ j − 1 , |m′| ≤ j′ = j − 1 ,

X -type operators: |m| ≥ j , |m′| ≤ j′ + 1 = j .

Consequently, our only candidates are highest/lowest-weight W−-type operators with
m = m′ = j′ = j − 1 and X+-type operators with m = m′ = j′ + 1 = j. Their explicit
expressions are given by

Wω
j = e−φψ−e−iωH1 eiωH2Vω

j,j V
′ω
j−1,j−1 , (2.159a)

X ω
j = e−φe−iωH1 χ+eiωH2Vω

j,j V
′ω
j−1,j−1 . (2.159b)

These flowed states are also BRST-invariant [100] since the supercurrent G can be writ-
ten in the flowed frame as

G(z) = G̃(z) +
ω

z
(
χ3 − ψ3) , (2.160)

such that the extra terms on the RHS of this equation act trivially on highest/lowest
weight states.

The two-point functions of these spectrally flowed operators can be determined straight-
forwardly from the corresponding bosonic ones. This is because the latter impose
ω2 = −ω1, such that the charge conservation rules for the HI exponentials are au-
tomatically satisfied. Denoting the Hermitian conjugate operators of Wω and X ω by
Ŵω and X̂ ω respectively, we obtain

⟨Wω1
1 Ŵω2

2 ⟩ = ⟨X ω1
1 X̂ ω2

2 ⟩ = ⟨Vω1
j1,j1

Vω2
j1,−j1

⟩⟨V
′ω1
j1−1,j1−1V

′ω2
j1−1,1−j1

⟩ n2
5

|z12|4(1+ω1+ω2
1)

. (2.161)

Spectral flowed primaries are always annihilated by J−0 , and are thus lowest-weight
with respect to the SL(2,R) zero mode algebra. After the supersymmetric spectral flow
(2.157), similarly to the bosonic transformations (2.119), (2.130b), the spectral flowed
primaries have quantum numbers h and m′ that have increased by n5

2 ω from their
values for the unflowed vertex operators. We thus conclude that these vertex operators
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correspond exactly to the additional chiral operators we were looking for, with

Wω
j : h = m′ = j − 1 +

n5

2
ω , X ω

j : h = m′ = j +
n5

2
ω . (2.162)

These quantum numbers extend to large values, by raising ω. In the holographic CFT
there are states with conformal weight of order n1n5, however in our worldsheet mod-
els n1 is of order g−2

s and we work in perturbation theory in gs, so finite n1 physics
is not accessible. Moreover, when considering holographic CFT operators with con-
formal weight of order n1n5, the dual bulk configuration is not a light probe on the
original background, but rather a different background. The rest of the modes associ-
ated to such boundary operators are obtained by acting with the global current J+0 as in
Eq. (2.120), and do not have simple expressions in the m-basis since they are not flowed
primaries.

2.6.4.2 Ramond sector

We now review the Ramond sector physical operators of the worldsheet theory, in the
m-basis. To our knowledge, this construction has only been carried out explicitly in the
literature for the case of highest/lowest-weight states [99, 100]; we shall present explicit
expressions for more general Ramond sector operators.

We will make use of the spin fields introduced in (2.144), and distinguish the slightly
more involved AdS3 × S3 sector, for which we write the relevant factors as

Sε1ε2ε3 = e
i
2 (ε1 H1+ε2 H2+ε3 H3) . (2.163)

We denote the AdS3 × S3 chirality by ε ≡ ε1ε2ε3. We shall implement this by consider-
ing ε3 to be fixed to be ε3 = εε1ε2. We impose the chiral GSO projection via the mutual
locality condition ∏5

I=1 ε I = 1, and we implement this by fixing ε5 = εε4. We introduce
a generic linear combination of bosonic primaries and spin fields of AdS3 × S3 of fixed
chirality,

(
SVV ′)ε

J,m,J′,m′ = ∑
ε1,ε2=±1

f ε
ε1 ε2

Sε1ε2ε3Vj,m− ε1
2

V ′
j′,m′− ε2

2
, ε3 = εε1ε2 , (2.164)

where the total spins (J, J′) will be related to (j, j′) in various ways momentarily. Note
that for highest/lowest weight states, there may be only one allowed choice of ε1

and/or ε2, as we shall see in an example below. In the canonical “− 1
2 ” picture, the

Ramond sector vertex operators then take the form

Y ε,ε4
J,m,J′,m′ = e−

φ
2
(
SVV ′)ε

J,m,J′,m′ e
iε4
2 (H4+εH5) . (2.165)
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The Clebsch–Gordan coefficients f ε
ε1 ε2

are computed by requiring that the Y operators
transform appropriately under the action of the currents J±, K±. In our conventions,
this gives four linear combinations. In the equations below, the first bracket specifies
how (J, J′) are related to j and j′; for instance, for case A, (J = j − 1/2, J′ = j′ + 1/2).
For each case we write the coefficients as a list, f ε

ε1 ε2
= ( f ε

++, f ε
+−, f ε

−+, f ε
−−). We obtain

A : (j − 1
2 , j′ + 1

2 ) , f ε,A
ε1 ε2

=
(
1, i, ε, ε i

)
, (2.166a)

B : (j + 1
2 , j′ + 1

2 ) , f ε,B
ε1 ε2

=
(

f B1 , i f B1 , ε f B2 , ε i f B2
)

, (2.166b)

C : (j − 1
2 , j′ − 1

2 ) , f ε,C
ε1 ε2

=
(

f C1 , −i f C2 , ε f C1 , ε(−i) f C2
)

, (2.166c)

D : (j + 1
2 , j′ − 1

2 ) , f ε,D
ε1 ε2

=
(

f B1 f C1 , (−i) f B1 f C2 , ε f B2 f C1 , ε(−i) f B2 f C2
)

, (2.166d)

where

f B1 = m+ j− 1
2

, f B2 = m− j+
1
2

, f C1 = j′ −m′ +
1
2

, f C2 = j′ +m′ +
1
2

. (2.167)

We note that in all cases we have f+ε1ε2
= ε1 f−ε1ε2

. In addition, and using j = j′ + 1, BRST-
invariance gives four equations for each chirality, out of which only two are linearly
independent, namely

f ε
−+ =

1(
j + m − 1

2

) [ f ε
++

(
ε m + m′)− i f ε

+−

(
j′ − m′ +

1
2

)]
, (2.168a)

f ε
−− =

1(
j + m − 1

2

) [i f ε
++

(
j′ + m′ +

1
2

)
+ f ε

+−
(
ε m − m′)] . (2.168b)

These are satisfied by only half of the states in Eq. (2.166). The physical states in the
“− 1

2 ” picture are given by the A and D states with ε = 1 (and either choice of ε4 = ±1),
plus the B and C states with ε = −1 (and again either sign of ε4), making the correct
eight physical polarizations.

The full list of expressions in (2.166) is useful in order to construct the representatives of
such operators in the “− 3

2 ” ghost picture, necessary for computing two-point functions.
To obtain the “− 3

2 ” picture operators, we make an educated guess for their expressions,
and then apply the picture raising operator, i.e.

Φ(− 1
2 )(w) = lim

z→w
(eφG) (z) Φ(− 3

2 )(w) . (2.169)

In order to get a non-trivial propagator, and up to an overall constant, the appropriate
guess is that they are given by the states with the same spins but opposite chirality.
Explicitly, we have

Y ε,ε4 (− 3
2 )

J,m,J′,m′ = ±
√

n5

2j − 1
e−

3φ
2
(
SVV ′)−ε

J,m,J′,m′ e
iε4
2 (H4+εH5) , (2.170)
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where the negative (positive) sign holds for the cases A and B (C and D).

We can now compute the two-point functions in the unflowed Ramond sector. Only
diagonal pairings are non-zero, by construction. Denoting the antiholomorphic sector
contributions by “c.c.”, we obtain

⟨Y ε4,(− 1
2 )

[A]
Y−ε4,(− 3

2 )

[A]
⟩ =

n5

|z12|4
⟨V1V2⟩ ⟨V ′

1V ′
2⟩
(

(2j − 1)
(j − m − 1

2 )(j′ + m′ + 1
2 )

× c.c.

)
,

(2.171a)

⟨Y ε4,(− 1
2 )

[B] Y−ε4,(− 3
2 )

[B] ⟩ =
n5

|z12|4
⟨V1V2⟩ ⟨V ′

1V ′
2⟩
(
(2j − 1)(j + m − 1

2 )

(j′ + m′ + 1
2 )

× c.c.

)
, (2.171b)

⟨Y ε4,(− 1
2 )

[C] Y−ε4,(− 3
2 )

[C] ⟩ =
n5

|z12|4
⟨V1V2⟩ ⟨V ′

1V ′
2⟩
(
(2j − 1)(j′ − m′ + 1

2 )

(m − j + 1
2 )

× c.c.

)
, (2.171c)

⟨Y ε4,(− 1
2 )

[D]
Y−ε4,(− 3

2 )

[D]
⟩ =

n5

|z12|4
⟨V1V2⟩ ⟨V ′

1V ′
2⟩
(
(2j − 1)(m + j − 1

2
)(j′ − m′ +

1
2
)× c.c.

)
,

(2.171d)

where here ⟨V1V2⟩ = ⟨Vm1−1/2V−m1+1/2⟩ and ⟨V ′
1V ′

2⟩ = ⟨V ′
m′

1−1/2V ′
−m′

1+1/2⟩. As ex-
pected, the coefficients resulting from the linear combinations effectively shift the spins
j → J and j′ → J′ in the gamma functions coming from the bosonic correlators.

Among the states described above, the only chiral one corresponds to the SU(2) highest-
weight operator of type A. To simplify notation and for later convenience, we suppress
the SU(2) labels and use the label j rather than J (here J = j − 1/2). This operator has
quantum numbers

Y+,ε4
j,m[A]

: h = J = j − 1
2

= j′ +
1
2

= J′ = m′ . (2.172)

The explicit form of this operator is simpler than the generic Ramond sector operator,
and is given by

Y+,ε4
j,m[A]

= e−
φ
2

(
S+++Vj,m− 1

2
+ S−+−Vj,m+ 1

2

)
j− 1

2 ,m
V ′

j−1,j−1e
iε4
2 (H4+H5) . (2.173)

As in the NS sector, the rest of the chiral operators belong to the spectrally flowed
sectors. These are obtained by acting with the spectral flow operator (2.157). From
the flowed Virasoro condition, similar to Eq. (2.158), the resulting operators must have
m = m′ (together with the relations in (2.172)), and so only the second term in (2.173) is
non-vanishing, giving rise to the flowed Ramond operators (we now suppress also the
label m = J = j − 1/2)

Y+,ε4,ω
j[A]

= e−
φ
2 Sω

−+−Vω
j,j V

′ω
j−1,j−1e

iε4
2 (H4+H5) , (2.174)
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where
Sω
−+− ≡ e

i
2 [(1+2ω)(−H1+H2)−H3] . (2.175)

The corresponding two-point function is equivalent to the highest-weight case of (2.171a),
up to the usual additional δω1,−ω2 factor.

2.6.4.3 Holographic dictionary for light chiral primaries

We have reviewed three sets of m-basis vertex operators corresponding to chiral pri-
maries of the holographic CFT. Two sets are in the NS sector: W−

j,m and X+
j,m, together

with the corresponding spectral flowed operators Wω
j and X ω

j . The third set is in the
Ramond sector, Y+,ε4

j,m[A]
and its spectral flow, Y+,ε4,ω

j[A]
. From now on we shall omit the la-

bel A and the AdS3 × S3 chirality ϵ = +, denoting this operator by Yω,ε4
j . Recall that in

the spectral flowed sectors, the remaining states in the zero-mode algebra are obtained
by acting with J+0 , as discussed around Eqs. (2.120) and (2.162).

In order to reconstruct the corresponding local operators of the spacetime CFT, we need
to combine such modes by going to the x-basis, as done in Eqs. (2.115) and (2.120) in
the bosonic SL(2,R) model.32 For the operators at hand, the sum over m in the analog of
Eqs. (2.115) and (2.120) factorizes between fermionic and bosonic contributions, leading
to expressions of the following form:

Wω
j (x) = e−φψω(x)eiωH2Vω

j (x)V
′ω
j−1,j−1 , (2.176a)

X ω
j (x) = e−φψω−1(x)ei(ω+1)H2Vω

j (x)V
′ω
j−1,j−1 , (2.176b)

Yω,ε4
j (x) = e−

φ
2 Sω(x)Vω

j (x)V
′ω
j−1,j−1e

iε4
2 (H4+H5) . (2.176c)

Here ψω(x) and Sω(x) are defined as follows. First, note that the fermions ψa intro-
duced in (2.131), which generate an affine ̂sl(2, R)−2 algebra with level kψ = −2, con-
stitute affine primaries with spin Jψ = −1, on which, however, the zero-mode currents
act as in (2.107) but with33 J → 1 − J, i.e. J±0 |J, m ± 1⟩ = (m ± J)|J, m ± 1⟩. As a con-
sequence, and in contrast with what happens with bosonic primaries, the action J+0
on ψ−, the lowest-weight state, is truncated. Identifying ψω=0(0) = ψ−, the resulting
x-basis operator has only three terms:

ψω=0(x) ≡ ψ−(x) = exJ+0 ψ−e−xJ+0 = ψ− − 2xψ3 + x2ψ+ . (2.177)

Of course, we already knew the action of the currents on ψa from (2.131), but the advan-
tage of the above discussion is that it extends to the spectrally flowed sectors. Indeed,

32In this thesis we are interested in operators of fixed R-charge. Hence, and in contrast to [99, 100], we
do not introduce isospin variables in the SU(2) sector.

33This convention is perhaps more natural from the SL(2,R) point of view, but we have decided to
employ the conventions used in the most relevant literature for us, i.e. [101, 103, 99, 100].
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ψω(0) =
√

n5e−i(1+ω)H1 is the lowest-weight component of a spin Jω
ψ = −1 − ω field.

The corresponding x-basis operator is of the form

ψω(x) ≡
√

n5 exJ+0 e−i(1+ω)H1 e−xJ+0 , (2.178)

and contains 1 − 2Jω
ψ = 2ω + 3 terms.

Similarly, the spin field (2.175) is the lowest-weight component of a representation with
SL(2,R) and SU(2) spins (Jω

S , J′ωS ) = (− 1
2 − ω, 1

2 + ω), such that the x-basis operator is

Sω(x) ≡ exJ+0 Sω
−+−e−xJ+0 , (2.179)

and contains 2(1 + ω) terms.

We thus have three types of vertices, Wω
j (x, z), X ω

j (x, z) and Yω,±
j (x, z), which corre-

spond to local chiral primary operators of the boundary theory. As mentioned before,
these should be completed with analogous antiholomorphic excitations, which have
been omitted in the presentation. As discussed around Eqs. (2.162) and (2.172), their
boundary weights are given by

h
[
Wω

j

]
= jω − 1 , h

[
Yω,±

j

]
= jω − 1

2
, h

[
X ω

j

]
= jω , (2.180)

where j = j′ + 1 and so

jω = j +
n5

2
ω, j = 1,

3
2

, . . . ,
n5

2
, ω = 0, 1, . . . . (2.181)

Up to normalization, which will be fixed shortly, these operators are identified with
the chiral primaries of the holographic CFT listed in Eq. (2.100). In the Yω,ε4

j tower,
ε4 = ± is identified with the boundary quantum number Ȧ in (2.99). Note also that the
Wω

j tower starts with the identity operator of the boundary theory.34 The dictionary is
summarized in Table 2.3.

Worldsheet Weight h Twist n Dual Operator

Wω
j jω − 1 2jω − 1 O−

n

Yω,ε4
j jω − 1

2 2jω − 1 OȦ
n

X ω
j jω 2jω − 1 O+

n

TABLE 2.3: Dictionary between worldsheet vertex operators and chiral primaries of
the holographically dual CFT. Here jω = j + n5

2 ω, j = 1, 3
2 , . . . , n5

2 , and ω = 0, 1, . . .

34As discussed in [110], this is subtle, since the operator is actually a spectral-flow-sector dependent
constant. This subtlety is related to the fact that spectral flow charge is not conserved in n-point func-
tions with n ≥ 3, and was resolved in [114] by performing a Legendre transform to the microcanonical
ensemble, in which the total number of fundamental strings is fixed.
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Although most of the chiral primaries of the holographic CFT are accounted for by
considering the ranges given in (2.181), it is known that those belonging to the the
n-twisted sectors with n = pn5 with p ∈ N are still missing [99, 100]. These would cor-
respond to operators sitting at the boundary of the allowed range of j in Eq. (2.106),
at which the spectrum becomes degenerate and the continuous representations ap-
pear [104, 115]. The absence of these states in the worldsheet spectrum has been related
to the fact that the NS5-F1 model sits at a singular point in the moduli space where all
RR modes are turned off [50].

The twist n of the holographic CFT operators is identified as [99, 100]

n = 2j − 1 + n5ω . (2.182)

Let us make a side comment regarding the limit in which there is only a single NS5
brane sourcing the background, n5 = 1. This model is special in that it corresponds
to the tensionless limit of the theory. It has to be treated with care since the usual
RNS formalism outlined above breaks down due to the fact that the bosonic SU(2) level
would become negative. It was shown in [87, 116] that for n5 = 1 the worldsheet theory
is exactly dual to the supersymmetric symmetric orbifold (T4)n1 /Sn1 . In this model, the
discrete series is absent, the spectrum truncates to j = 1/2, physical states have ω > 0,
and the spectral flow charge is identified with n, i.e. n = ω. Eq. (2.182) is the known
generalization of this relation for n5 > 1.

In order to fix the normalization of the operators, we compute their two-point func-
tions. Making use of

⟨ψω1(x1)ψ
ω2(x2)⟩ × c.c. = x2(ω1+1)

12 ⟨e−i(1+ω1)H1 ei(1−ω2)H1⟩ × c.c. = δω1,−ω2

|x12|4(ω1+1)

|z12|2(ω1+1)2 ,

⟨Sω1,+(x1)Sω2,−(x2)⟩ × c.c. =
x2ω1+2

12
z12

⟨Sω1
−+−Sω2

+−+⟩ × c.c. = δω1,−ω2

|x12|4ω1+2

|z12|4ω1(ω1+1)+ 5
2

,

we obtain

⟨Wω1
j1
(x1, z1)Wω2

j2
(x2, z2)⟩ =

n2
5B(j1)

16
δ(j1 − j2)δω1,−ω2

|x12|4(j1−1)+2n5ω1 |z12|4
, (2.183)

⟨X ω1
j1

(x1, z1)X ω2
j2

(x2, z2)⟩ =
n2

5B(j1)
16

δ(j1 − j2)δω1,−ω2

|x12|4j1+2n5ω1 |z12|4
, (2.184)

⟨Yω1,±
j1

(x1, z1)Yω2,∓
j2

(x2, z2)⟩ =
n5B(j1)

(2j1 − 1 + n5ω1)2
δ(j1 − j2)δω1,−ω2

|x12|4j1+2(n5ω1−1)|z12|4
.(2.185)

Here we have used that in the spectrally flowed R sectors the denominator in the extra
factor of the corresponding vertex operator in the “− 3

2 ” picture is shifted as 2j − 1 →
2j− 1+ n5ω as compared to (2.170). Moreover, the Vconf factor in Eq. (2.121) is cancelled
by the pole appearing in (2.114) upon setting m1 = j1.
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The string two-point function is then obtained by including an extra factor g−2
s ∼ n1/n5

as usual in string perturbation theory, fixing z1 = 0 and z2 = 1, and dividing by a vol-
ume of the conformal group that leaves such worldsheet insertions fixed. As discussed
in [110, 103], this cancels the divergence coming from δ(j1 − j2), leaving a constant
j-dependent factor of the form (2j − 1 + n5ω). As a consequence, the holographic dic-
tionary reads

O−−
n (x, x̄) ↔ ANS(j, ω)Wω

j (x, x̄), O++
n (x) ↔ ANS(j, ω)X ω

j (x, x̄), (2.186)

OȦḂ
n ↔ AR(j, ω)Yω,ȦḂ

j (x, x̄), (2.187)

with n related to the worldsheet quantum numbers as in (2.182) and where [113, 99]

ANS(j, ω) =
4gs√

n2
5 B(j)(2j − 1 + n5ω)

, AR(j, ω) = gs

√
(2j − 1 + n5ω)

n5 B(j)
. (2.188)

Of course, this identification is only expected to hold at small string coupling, i.e. for
n1 ≫ n5. Analysis and comparison of boundary and worldsheet three-point functions
were carried out in [117, 99, 113].

2.7 Null-gauged WZW models

In this section we review some relevant aspects of the models that we shall study in
this thesis. We will aim to be brief where possible; the interested reader can find the
details in the works [51, 52, 53, 54].

We consider the (10+2)-dimensional upstairs target AdS3 × S3 × Rt × S1
y × T4, where

we have introduced coordinates t and y for the timelike R and spacelike S1 factors
respectively. Since the Cartan direction in SL(2, R) is timelike, and that of SU(2) is
spacelike, and the levels are the same, one can form null linear combinations J3

sl ± J3
su

in both holomorphic and antiholomorphic sectors of the worldsheet theory. Gauging
such null currents leads [118] to the background sourced by a circular array of NS5
branes on their Coulomb branch [119, 120, 121].

The (10+2)-dimensional models have other null currents that are linear combinations
of J3

sl, J3
su, ∂t and ∂y. It was recently found that particular linear combinations of these

currents give rise to a family of backgrounds that include NS5-P and NS5-F1 BPS cir-
cular supertubes [122, 123], as well as NS5-F1-P BPS and non-BPS spectral flowed
supertubes [124, 125, 37, 96, 94]. In the IR, the backgrounds become asymptotically
AdS3 × S3, and correspond to heavy states of the holographically dual CFT at the sym-
metric orbifold point [94].
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2.7.1 Null-gauged sigma models

We now briefly review the null gauging formalism for general sigma models, before
specialising to WZW models (see e.g. [126, 127, 128, 129]). In this passage we follow
the presentation of [54]. We use units in which α′ = 1, and work at tree level in the
string coupling gs.

Consider the string worldsheet M2 and an embedding map φ into a pseudo-Riemannian
manifold N , namely φ : M2 → φ(M2) ⊂ N . The target manifold N is endowed with
a metric with components Gij. We wish to gauge a set of Killing vectors ξa generating
isometries of N , where a labels the different Killing vectors (in this thesis we will al-
ways have a = 1, 2). We introduce a set of independent worldsheet gauge fields Aa, one
corresponding to each Killing vector. Then the kinetic term in the string sigma model
action is written in terms of the covariant derivative

Dφi = ∂φi −Aaξ i
a , (2.189)

and takes the form

LK = Dφi Gij Dφj = (∂φi −Aaξ i
a) Gij (∂̄φj − Āaξ

j
a) . (2.190)

To write the gauged Wess-Zumino (WZ) term we introduce target-space one-forms θa

(we follow the notation of [129]), pulled back to the worldsheet. The WZ term can then
be written as

LWZ = Bij∂φi∂̄φj +Aaθa,i∂̄φi − Āaθa,i∂φi + ξ i
[aθb],iA

aĀb , (2.191)

where θa,i denotes the ith component of the one-form θa. For our null-gauged models,
the target-space one-forms θa are given by

θa = (−1)a+1ξa · dφ ≡ (−1)a+1ξ i
aGijdφj , (a = 1, 2) . (2.192)

For a consistent gauging, the following conditions must hold:

ıaH = dθa , ıaθb = −ıbθa , (2.193)

where H = dB. The expression (2.192) implies that half of the gauge field components
decouple, so that they are naturally chiral. As a result, in our U(1)×U(1) gauged mod-
els, the coefficient of the term quadratic in gauge fields is proportional to the quantity

Σ ≡ −1
2

ξ i
1Gijξ

j
2 . (2.194)
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All together, the terms in the action involving the gauge fields then reduce to

LA = −2A2ξ i
2Gij∂̄φj − 2Ā1ξ i

1Gij∂φj − 4A2Ā1Σ , (2.195)

and in the following, we shall denote A ≡ A2, Ā ≡ Ā1.

We define the worldsheet currents J , J̄ to be pull-backs of the target-space one-forms
as follows35

J ≡ −θ1 · ∂φ ≡ −θ1,i∂φi , J̄ ≡ θ2 · ∂̄φ ≡ θ2,i ∂̄φi . (2.196)

By using (2.192), one can then write the gauge terms (2.195) as

LA = 2A θ2,i ∂̄φi − 2Ā θ1,i∂φi − 4AĀΣ ≡ 2AJ̄ + 2ĀJ − 4AĀΣ . (2.197)

Upon integrating out the gauge fields, the gauge terms in the action then become

J J̄
Σ

= − 1
Σ
(
θ1 · ∂φ

)(
θ2 · ∂̄φ

)
=

1
Σ
(
ξ1 · ∂φ

)(
ξ2 · ∂̄φ

)
, (2.198)

where ξ1 · ∂φ ≡ ξ i
1Gij∂φj. Thus the overall effect of the null gauging procedure is to

add the term (2.198) to the ungauged sigma model lagrangian.

2.7.2 Null-gauged WZW models

We now specialise the discussion to the case where the upstairs theory is a WZW model
whose target space is a Lie group G, and thus we replace φ with a G-valued function
g : M2 → G. We will shortly consider G to be a direct product of simple and abelian
factors, but for the moment we focus on one of the simple factors. We follow in places
the presentation in [53].

We wish to gauge the action of a subgroup H ⊂ G. Its action on G is defined by the
group homomorphism embeddings

ℓ : H → GL , r : H → GR , (2.199)

where GL × GR is the standard left-right isometry group, and such that we will gauge
the transformations

g 7→ ℓ(h) g r(h)−1 , h ∈ H . (2.200)

The group embeddings ℓ and r induce corresponding Lie algebra homomorphisms.
Since the meaning will be clear from the context, it is convenient to abuse notation and

35Note that J , J̄ are related to the CFT current operators J, J̄ by factors of i, e.g. J = iJ .
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re-use the same symbols ℓ and r for the induced Lie algebra homomorphisms,

ℓ : h → g , r : h → g . (2.201)

To write the corresponding Killing vector field, let us denote the left(right)-invariant
vector field corresponding to a generic X ∈ g by XL (XR). Given a basis of h, for each
element Xa there is a corresponding Killing vector field given by (see e.g. [129])

ξa ≡ − ℓ(Xa)
R − r(Xa)

L . (2.202)

Let us write the left and right Maurer-Cartan one-forms as

θL = g−1dg , θR = − dg g−1 . (2.203)

We denote by ⟨·, ·⟩ the standard inner product on g given by the Killing form. More
explicitly, for matrix groups we use the normalisation ⟨A, B⟩ = Tr(AB). In terms of
these, the one-forms θa introduced in Eqs. (2.191)–(2.192) take the form

θa = ⟨ℓ(Xa), θR⟩ − ⟨r(Xa), θL⟩ . (2.204)

2.7.3 The models we study

We work in Type II superstring theory, however we suppress worldsheet fermions in
this section for ease of presentation. Worldsheet fermions will be discussed in detail in
Section 3.2 below. We consider the cosets36

G/H × T4 =
SL(2, R)× SU(2)× Rt × U(1)y

U(1)L × U(1)R
× T4 . (2.205)

To define the action of H = U(1)L ×U(1)R we must specify the embedding into each of
the four subgroups of the upstairs group G that participate in the gauging. Parametris-
ing SL(2, R) as SU(1, 1), we introduce coordinates for the upstairs subgroup elements
as37

g =
(

gsl, gsu, gt, gy
)

=

(
e

i
2 (τ−σ)σ3 eρσ1 e

i
2 (τ+σ)σ3 , e

i
2 (ψ−ϕ)σ3 ei( π

2 −θ)σ1 e−
i
2 (ψ+ϕ)σ3 , et, e

iy
Ry

)
, (2.206)

where σi denotes the ith Pauli matrix and y ∈ [0, 2πRy). At the level of the algebra, the
chiral embeddings we consider are specified by eight arbitrary real parameters li , ri,

36More precisely, the upstairs model involves the universal cover of SL(2, R), and globally we gauge
R × U(1), as we discuss in more detail in Section 3.2.2; see also [52].

37We adopt the conventions in [2, 3].
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i = 1, 2, 3, 4, as follows (the ordering of subgroups is as in Eq. (2.206)),

ℓ(α) =
(

i l1ασ3, −i l2ασ3, l3α, −i
l4

Ry
α
)

, r(α) = 0 ,

r(β) = −
(

i r1βσ3, −i r2βσ3, r3β, −i
r4

Ry
β
)

, ℓ(β) = 0 ,
(2.207)

where α, β ∈ R and the signs have been chosen for later convenience, in particular for
Eq. (2.215) below. The group action (2.200) being gauged is then

g 7→
(

eil1ασ3 gsl eir1βσ3 , e−il2ασ3 gsu e−ir2βσ3 , el3αgt er3β , e−i l4
Ry αgy e−i r4

Ry β
)

. (2.208)

The general gauge-invariant action for such asymmetric cosets can be found in [130].
We introduce two (independent) h-valued worldsheet gauge fields (A1, Ā1) and (A2, Ā2).
The gauged WZW action takes the form

S = ∑
j

sgn(κj)
k j

π

( ∫
M2

1
2

Tr
[

g−1∂gg−1∂̄g
]

j
d2z + i

∫
M3

1
3!

Tr
[

g−1dg ∧ g−1dg ∧ g−1dg
]

j

+
∫
M2

Tr

[
−

2

∑
a=1

[
ℓ(Āa)∂gg−1

]
j
+

2

∑
a=1

[
r(Aa)g−1∂̄g

]
j
−

2

∑
a,b=1

[
g−1ℓ(Āa)g r(Ab)

]
j

]
d2z

)
,

(2.209)

where j runs over the Lie algebras, M3 is a three-dimensional auxiliary space such that
M2 = ∂M3, k j are the levels of the Kac-Moody algebras, and sgn(κj) are the signatures
of the respective Killing forms, which in our conventions is positive for SL(2, R) and
negative for (SU(2), Rt, S1

y). Here the embeddings ℓ, r should be understood as corre-
sponding to each respective Lie subalgebra, i.e. the components of the right-hand sides
of Eq. (2.207).

We now recall from the discussion of general gaugings of sigma models in Eqs. (2.189)–
(2.198) that, since the gauge fields are null and chiral, one of their components simply
drops out, such that we can set

A1 = 0 , Ā2 = 0 . (2.210)

The gauge field embeddings are then

ℓ(Ā1) =
(

i l1Ā1σ3, −i l2Ā1σ3, l3 Ā1, −i
l4

Ry
Ā1

)
, ℓ(A2) = 0 ,

r(A2) = −
(

i r1A2σ3, −i r2A2σ3, r3A2, −i
r4

Ry
A2

)
, r(Ā1) = 0 ,

(2.211)

consistently with (2.207). As before, in order to lighten the notation we set A = A2,
Ā = Ā1 from now on.
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We introduce the currents (our conventions follow [54, App. A])

j3sl = ksl Tr
(
−i

σ3

2
∂gsl g−1

sl

)
, j̄3sl = ksl Tr

(
−i

σ3

2
g−1

sl ∂̄gsl

)
, (2.212)

and similarly for SU(2). Their explicit form in our coordinates is

j3sl = n5
(

cosh2 ρ ∂τ + sinh2 ρ ∂σ
)

, j̄3sl = n5
(

cosh2 ρ ∂̄τ − sinh2 ρ ∂̄σ
)

,

j3su = n5
(

cos2 θ ∂ψ − sin2 θ ∂ϕ
)

, j̄3su = −n5
(

cos2 θ ∂̄ψ + sin2 θ ∂̄ϕ
)

.
(2.213)

We also define

Pt
L = ∂t , Pt

R = ∂̄t , P
y
L = ∂y , P

y
R = ∂̄y . (2.214)

Note that, as usual, the bosonic subsector of the supersymmetric WZW model has ksl =

n5 + 2 and ksu = n5 − 2 while the full supersymmetric model has ksl = ksu = n5.
As noted above, we are suppressing worldsheet fermions in the present section. The
shift in the levels is important (see e.g. the discussion in [54]), and we will take care of
this in detail when discussing results in the worldsheet CFT in later chapters. When
discussing supergravity solutions we will work in the usual supergravity regime n5 ≫
1 (and in the fivebrane decoupling limit gs → 0) and thus for our purposes in this
section we can simply work with ksl = ksu = n5. To have canonical kinetic terms we set
the (otherwise irrelevant) û(1) levels to be kt = 2, ky = 2R2

y .

The group action that we gauge, defined in Eq. (2.207), corresponds to gauging the
currents

J = l1 j
3
sl + l2 j

3
su + l3P

t
L + l4P

y
L ,

J̄ = r1 j̄
3
sl + r2 j̄

3
su + r3P

t
R + r4P

y
R ,

(2.215)

which we require to be null by imposing

n5(l2
1 − l2

2) + l2
3 − l2

4 = 0 , n5(r2
1 − r2

2) + r2
3 − r2

4 = 0 . (2.216)

One can use these constraints to fix the overall normalization of the gauging parame-
ters. We assume that l1 = r1 ̸= 0 and divide through by l21 and r2

1, to work with the
ratios

li =
li

l1
, ri =

ri

r1
, i = 2, 3, 4 . (2.217)

In practice this has the same effect as setting l1 = r1 = 1, however we have introduced
a separate notation for later convenience. Of course, one can modify this step accord-
ingly to deal with models in which l1 = r1 = 0. For later use we record that the ratio
parameters li, ri, i = 2, 3, 4 are subject to the constraints

n5(1 − l2
2) + l2

3 − l2
4 = 0 , n5(1 − r2

2) + r2
3 − r2

4 = 0 . (2.218)
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In the upstairs model, the line element and NSNS three-form flux are given by

ds2 = n5
(
− cosh2 ρdτ2 + dρ2 + sinh2 ρdσ2 + dθ2 + cos2 θdψ2 + sin2 θdϕ2)− dt2 + dy2,

H = n5
(

sinh 2ρ dρ ∧ dτ ∧ dσ + sin 2θ dθ ∧ dψ ∧ dϕ
)
. (2.219)

The Killing vectors associated to the group action (2.200) being gauged are

ξL = (∂τ − ∂σ)− l2(∂ψ − ∂ϕ) + l3∂t − l4∂y ,

ξR = (∂τ + ∂σ) + r2(∂ψ + ∂ϕ) + r3∂t − r4∂y ,
(2.220)

and so we obtain the one-forms θa,

θL = −n5

[(
cosh2 ρ dτ + sinh2 ρ dσ

)
+ l2

(
cos2 θ dψ − sin2 θ dϕ

)]
− (l3 dt + l4 dy) ,

θR = n5

[(
cosh2 ρ dτ − sinh2 ρ dσ

)
− r2

(
cos2 θ dψ + sin2 θ dϕ

)]
+ r3 dt + r4 dy .

(2.221)

The full null-gauged Wess-Zumino-Witten action is then

S = Ssl
0 + Ssl

A + Ssu
0 + Ssu

A + St,y
0 + St,y

A , (2.222)

with

Ssl
0 =

n5

π

∫ [
∂ρ∂̄ρ + sh2ρ ∂σ∂̄σ − ch2ρ ∂τ∂̄τ − sh2ρ

(
∂σ∂̄τ − ∂τ∂̄σ

) ]
d2z ,

Ssl
A =

2n5

π

∫ [
Ā
(

sh2ρ ∂σ + ch2ρ ∂τ
)
+A

(
ch2ρ ∂̄τ − sh2 ρ ∂̄σ

)
−AĀ ch(2ρ)

]
d2z ,

Ssu
0 =

n5

π

∫ [
∂θ∂̄θ + c2

θ∂ψ∂̄ψ + s2
θ∂ϕ∂̄ϕ + c2

θ (∂ϕ∂̄ψ − ∂̄ϕ∂ψ)
]

d2z ,

Ssu
A =

2n5

π

∫ [
l2Ā

(
c2

θ ∂ψ − s2
θ ∂ϕ

)
− r2A

(
c2

θ ∂̄ψ + s2
θ ∂̄ϕ

)
− l2r2AĀ cos(2θ)

]
d2z ,

St,y
0 =

1
π

∫ [
− ∂t∂̄t + ∂y∂̄y

]
d2z ,

St,y
A =

2
π

∫ [
l3Ā∂t + r3A∂̄t + l4Ā∂y + r4A∂̄y − (l3r3 − l4r4)AĀ

]
d2z , (2.223)

where we have used the shorthands cθ = cos θ and sθ = sin θ.

We note that with the Killing vectors (2.220), the quantity Σ defined in Eq. (2.194)
becomes

Σ =
1
2

(
n5
[
cosh(2ρ) + l2r2 cos(2θ)

]
+ l3r3 − l4r4

)
. (2.224)

For convenience let us define the rescaled quantity

Σ0 =
1
n5

Σ = sinh2ρ + l2r2 cos2 θ +
1 − l2r2

2
+

l3r3 − l4r4

2n5
. (2.225)
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Upon integrating out the gauge fields, the gauging procedure effectively adds a term
quadratic in the currents, resulting in an action of the schematic form

SWZW +
2
π

∫ J J̄
Σ

d2z . (2.226)

As we will discuss next, one can then read off the resulting line element and B-field
of the gauged model. The change in the measure also generates a non-trivial dilaton,
which can be obtained by solving for the vanishing of the appropriate worldsheet one-
loop beta function. It is important to note that these solutions are exact in α′, and thus
may receive only non-perturbative corrections: this is a direct consequence of the exact
nature of the gWZW models we consider.

2.7.4 Supergravity fields

By integrating out the gauge fields and choosing the gauge σ = τ = 0, we obtain the
following line element and B-field:

ds2 = − ht

Σ0
dt2 +

hy

Σ0
dy2 +

(l3r4 + l4r3)

n5Σ0
dtdy

+ n5(dθ2 + dρ2) + n5
hϕ

Σ0
sin2 θdϕ2 + n5

hψ

Σ0
cos2 θdψ2

− 1
Σ0

[(l2r3 + l3r2)dt + (l2r4 + l4r2)dy] sin2 θdϕ

+
1

Σ0
[(l2r3 − l3r2)dt + (l2r4 − l4r2)dy] cos2 θdψ ,

B =
(l3r4 − l4r3)

2n5Σ0
dt ∧ dy + n5

hϕ

Σ0
cos2 θ dϕ ∧ dψ

+
1

2Σ0
[(l2r3 − l3r2)dt + (l2r4 − l4r2)dy] ∧ sin2 θdϕ

− 1
2Σ0

[(l2r3 + l3r2)dt + (l2r4 + l4r2)dy] ∧ cos2 θdψ ,

(2.227)

where

ht = sinh2ρ + l2r2 cos2 θ +
1 − l2r2

2
− l3r3 + l4r4

2n5
,

hy = sinh2ρ + l2r2 cos2 θ +
1 − l2r2

2
+

l3r3 + l4r4

2n5
,

hϕ = sinh2ρ +
1 + l2r2

2
+

l3r3 − l4r4

2n5
,

hψ = sinh2ρ +
1 − l2r2

2
+

l3r3 − l4r4

2n5
.

(2.228)
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A non-trivial dilaton Φ is generated as usual at one-loop level on the worldsheet. In the
null-gauging formalism, this arises from a change in the measure in the path integral
formulation. The most direct way to compute the dilaton is by considering the usual
one-loop beta function (equivalently the supergravity equations of motion). This fixes
e2Φ to be proportional to

e2Φ ∼ 1
Σ0

. (2.229)

The overall normalization of the dilaton can be fixed by matching to the NS5-brane
decoupling limit of known solutions; we shall discuss this in detail in Section 3.4. Nev-
ertheless, let us make some preliminary comments on this in order to highlight the
physical meaning of this constant. The simplest scenario corresponds to the solution
sourced by a stack of n5 coincident fivebranes, which is described by using the har-
monic function

H5 = 1 +
n5

r2 , (2.230)

where r is a radial coordinate, and where the dilaton is given by e2Φ = g2
s H5. The

fivebrane decoupling limit corresponds to gs → 0 with fixed r/gs and fixed α′ [131]
(recall that we have set α′ = 1), which can be implemented via a scaling limit gs → ϵ,
r → ϵr, with ϵ → 0. This brings the dilaton to the form

e2Φ =
n5

r2 . (2.231)

Here we could have kept a fiducial rescaled g̃s (i.e. gs = ϵg̃s) as in [51, 52], but since the
asymptotic value of e2Φ is zero this has no precise physical meaning. Next, for an array
of n5 fivebranes in a circular, Zn5 symmetric configuration, the supergravity solution
sees a smeared source and the relevant harmonic function is based on the function
Σ̃ = r2 + a2 cos2 θ, where the scale a parametrises the radius of the circular array (see
e.g. [51] and references within). In this case we take a double scaling limit given by
gs → 0 with fixed r/gs, fixed a/gs and fixed α′ [120, 121], which can be implemented
via a scaling limit gs → ϵ, r → ϵr, a → ϵa with ϵ → 0. Changing variables to r = a sinh ρ

in order to match the notation used above, we have Σ̃ = a2(sinh2ρ + cos2 θ) ≡ a2Σ̃0.
The harmonic function in (2.230) is replaced by [119, 118, 51]

H5 = 1 +
n5

a2Σ̃0
, (2.232)

so in the decoupling limit the dilaton takes the form

e2Φ =
n5

a2Σ̃0
. (2.233)

The backgrounds we consider will turn out to be generalisations of the circular array
of fivebranes, such that, as a general expectation, the normalisation constant for the ex-
ponentiated dilaton in Eq. (2.229) should be proportional to the number of NS5 branes
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in the geometry. When F1 charge is also present this gets divided by n1, giving a factor
n5/n1 (or ∼ n5/np in the NS5-P frame). Furthermore, there should also be a factor in
the denominator given by the square of a length scale characterising the distribution
of the sources. There will turn out be two lengthscales a1, a2 generalizing the scale
a, and the decoupling limit involves scaling gs → ϵ, r → ϵr, a1 → ϵa1, a2 → ϵa2 with
ϵ → 0 [52]. At this point however, we are working generally, so we do not yet know the
details of the underlying bound state of branes. We postpone the precise computation
until Section 3.4.

Together with the constraints (2.216) on the li, ri parameters, the expressions for the su-
pergravity fields (2.227), (2.228), (2.229) describe the most general backgrounds that can
be obtained within the class of null-gauged models considered in this chapter, under
our assumption l1 ̸= 0, r1 ̸= 0. Models in which l1 = 0 or r1 = 0 can easily be treated
as a special case and we shall not consider them further.

As mentioned above, it is known that these models include the JMaRT solutions and
their limits [51, 52]. In the next chapter we shall prove that these are in fact all con-
sistent solutions in this class of null-gauged models. Moreover, we will show that this
conclusion can be reached either from consistency of the worldsheet CFT or from ask-
ing that the supergravity fields (2.227), (2.228), (2.229) are free of CTCs, horizonless and
smooth up to physical sources of string theory (in our cases, orbifold singularities or
NS5-brane singularities).
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Chapter 3

Black hole microstates from the
worldsheet

3.1 Overview of the JMaRT cosets

Bound states of D1 and D5-branes, or of NS5 branes and fundamental strings (F1),
possibly also carrying momentum P in a compact direction, have been a very fruitful
arena in which to study black hole microstates in string theory. Taking the D1-D5 (or
NS5-F1) decoupling limit gives rise to configurations that are asymptotically AdS3 ×
S3 ×M, where M is T4 or K3. This is one of the original examples of holographic
duality [16].

Configurations that have come to be known as circular supertubes [123, 122] were im-
portant early supergravity solutions describing specific microstates of the two-charge
system, in particular in the D1-D5 or NS5-F1 duality frames. These solutions were gen-
eralized by Lunin and Mathur, and others, to the full class of two-charge microstates [65,
66, 67, 72, 70].

An equally important family of three-charge (D1-D5-P or NS5-F1-P) microstate solu-
tions are known as spectral flowed circular supertubes, of which there are both BPS
and non-BPS configurations [132, 124, 125, 37, 96]. In the AdS3 decoupling limit, the
general holographic description of these configurations is well understood [96, 94] and
involves spectral flow in the N = (4, 4) superconformal algebra. Moreover, two-charge
circular supertubes have proven to be important seed solutions in the construction of
much more general families of “superstratum” solutions (see e.g. [133, 134, 135, 92, 136,
137, 138, 139]).

The non-BPS spectral flowed circular supertubes in the family mentioned above are
known as the JMaRT solutions, after the authors of [37]. These microstates emit ergore-
gion radiation, which has been interpreted (via holography) as an enhanced, unitary
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version of Hawking radiation [140, 93, 141]. The JMaRT solutions also contain the BPS
two-charge circular supertubes and BPS three-charge spectral flowed circular super-
tubes as (non-trivial) limits. All of these will be included in our analysis.

Recently a worldsheet description of the JMaRT three-charge NS5-F1-P configurations,
in the NS5-brane decoupling limit, was constructed [51]. This regime corresponds to lit-
tle string theory, an example of stringy holography which remains poorly understood.
The models of [51] make use of a well-known supersymmetric WZW theory, combining
it with the null-gauging formalism. More precisely, they involve an auxiliary (10+2)-
dimensional group manifold, which is reduced to the physical (9+1)-dimensional tar-
get space by gauging a pair of null chiral currents. The corresponding spectrum of
perturbative strings and D-branes were studied respectively in [52, 53]. The null-
gauging construction was further extended to encompass more general Lunin-Mathur
solutions [54], which correspond to a larger family of gauged sigma models that are
generically not cosets. Other coset models that describe wrapped and/or intersecting
fivebranes have also recently been studied [142].

The underlying microscopic configurations involve bound states of NS5 branes (possi-
bly with F1 and/or P charge). Generically, the low-energy supergravity description is
not reliable near the fivebrane sources, however the worldsheet theory remains under
control. Indeed, these coset theories are exact in α′, thus extending the description of
these families of black hole microstates beyond the supergravity limit.

The models considered in [51, 52, 53] have the following basic structure. The upstairs
theory (i.e. before gauging) involves pure NSNS fluxes and is of the form AdS3 × S3 ×
R × S1 × T4, where the R factor is timelike, and where the S1 is separated from the
T4 because it plays a preferred role. Indeed, the gauging does not involve the T4 and
we shall mostly work in six physical spacetime directions downstairs (i.e. after gaug-
ing). The non-trivial WZW model involved is that of the universal cover of SL(2, R)

times SU(2), which constitutes a rich and well studied example of an exactly solvable
model [78, 110, 101, 102, 103]. The currents to be gauged are specific null linear combi-
nations of the Cartan currents of SL(2, R)× SU(2) and the chiral momenta on R × S1,
plus a similar (though generically not identical) linear combination of their anti-chiral
counterparts.

Within this class of models, it is natural to ask what is the general family of well-
behaved backgrounds that can be obtained by considering the most general null linear
combination of the currents just described. This question was not addressed in [51, 52,
53]. Developing a systematic method for classifying such backgrounds is important for
three reasons. First, it offers the possibility of finding novel configurations. Second, it
can sharpen our understanding of the general backgrounds and how their parameters
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are constrained by different consistency conditions, shedding further light on the in-
terplay between worldsheet CFT and spacetime geometry. Third, such techniques may
then be applied to other similar classes of gauged models.

In this chapter we provide the answer to the above question, by proving that the JMaRT
solutions and their limits represent the complete set of supergravity configurations de-
scribed by this family of coset models. We do so from two complementary but indepen-
dent points of view, and, in doing so, we clarify several aspects of both the worldsheet
models and the supergravity backgrounds.

First, we consider the most general family of worldsheet coset theories, and derive
necessary and sufficient conditions that lead to a consistent physical spectrum. These
consistency conditions are obtained from analysing the gauge orbits, relating differ-
ent representatives of the same physical operators, combined with worldsheet spec-
tral flow (not to be confused with the spacetime/holographic spectral flow discussed
above). This includes not only the spectral flow operation that is an essential part of the
SL(2, R) WZW model [101], but also that of SU(2). While SU(2) spectral flow does not
generate new affine representations, it has proven to be quite useful for string theory
applications [118, 100, 52, 54]. As it turns out, we obtain constraints that take the form
of algebraic relations for the a priori continuous gauging parameters, which imply that
they can be written in terms of four integers, k,m, n, p (of which only three are indepen-
dent), plus Ry, the continuous modulus corresponding to the asymptotic proper radius
of the S1. Furthermore, we derive restrictions on the parities of k,m, n, p.

We then show that the same conditions can equally be derived from the analysis of the
set of supergravity backgrounds obtained from the general gauged models. More pre-
cisely, we show that imposing absence of horizons, absence of closed time-like curves
(CTCs), and smoothness up to orbifold singularities in the corresponding classical ge-
ometries leads to an identical quantisation of the gauging parameters.

On the other hand, the JMaRT solutions are usually written in terms of their own set
of seemingly continuous parameters, which however are known to be constrained by
regularity and absence of CTCs to obey their own set of algebraic relations [37]. This
parametrisation is quite awkward to work with, and obscures aspects of the physics.

We find that for the (NS5-decoupled) JMaRT solutions and their limits, one can com-
pletely bypass most of the seemingly continuous parameters. Let n5, n1, np denote
respectively the quantised numbers of NS5 branes, fundamental strings, and units of
momentum along S1 present in the background. We show that, in the NS5-brane decou-
pling limit, the six-dimensional metric and the NSNS B-field can be expressed explicitly
in terms of the same set of integers k,m, n, p introduced in the coset models, together
with n5 and Ry. Although this result is strongly inspired by our worldsheet analy-
sis, we have derived it independently and purely within supergravity, via a non-trivial
manipulation of the above-mentioned algebraic constraints.
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For the dilaton, an extra parameter is necessary, which can be taken to be either n1/V4

or np/V4, where V4 is the volume of the T4. In the three-charge solutions, there is a
constraint that relates n1 and np, meaning that only one can be chosen independently.
We take V4 to be microscopic and fixed, and ignore it when counting parameters, so
that we consider the independent ones to be (m, n, n5, Ry) plus one of either k or p, plus
one of either n1 or np. Without loss of generality, one can restrict the range of the integer
parameters to be non-negative.

The resulting expressions for the supergravity fields are identical to those obtained
from the general coset worldsheet actions, completing the proof that these are the
unique backgrounds that arise in these coset theories. Note that for the latter, n5 de-
fines the level of the SL(2, R) and SU(2) affine algebras.

The rewriting of these configurations in terms of the integer parametrisation signifi-
cantly clarifies the properties of these solutions. In particular, it makes some of their
symmetries and the action of T-duality manifest. It also sheds light on the somewhat
delicate limits that lead to the two-charge configurations where either n1 or np is set to
zero. As a result, this allows us to derive a novel and non-trivial two-charge non-BPS
NS5-P limit of the general solutions in a straightforward way.

Finally, we also comment on a potential relation to recent investigations of the so-called
single-trace TT̄ deformation of the (holographic) D1-D5 CFT [143, 144, 145]. In the
worldsheet model, this can be described by using a null-gauging procedure similar to
the formalism employed throughout this chapter, although in that context the SL(2, R)

current involved in the gauging is not in the Cartan subalgebra.

The structure of this chapter is as follows. In Section 3.2 we review in more detail the
SL(2, R) and SU(2) WZW models, and analyse the consistency of the CFT spectrum
in terms of the gauging parameters. In Section 3.3 we analyse absence of horizons,
absence of CTCs, and smoothness in the corresponding supergravity backgrounds. In
Section 3.4 we firstly match the resulting worldsheet models to the general JMaRT so-
lutions. We then discuss in detail their various limits, including two-charge (non-BPS),
BPS, and AdS3 limits. In Section 3.5 we further discuss our results.

3.2 Consistency of the worldsheet spectrum

Here we discuss how the BRST charges are modified and under which conditions the
resulting background is supersymmetric. Then, we derive a series of constraints lead-
ing to a consistent gauge-invariant spectrum. Spectral flow considerations play a key
role in the analysis below.



3.2. Consistency of the worldsheet spectrum 83

3.2.1 Superstring Theory in null-gauged models

We now proceed to analyse the class of gauged WZW models introduced in Section
2.7. In this section we work directly at the level of the coset CFT. We will see that a
number of consistency conditions can be derived, which restrict the possible values of
the parameters li, ri that define the embedding of the abelian subgroups being gauged.

Recall that the transformations we gauge are chiral and correspond to g → hL g h−1
R ,

where g ∈ G = SL(2, R)× SU(2)×Rt ×U(1)y and hL(R) ∈ HL(R) = U(1)L(R). Keeping
the notation general, we have seen that introducing two independent gauge fields A, Ā
transforming as

A → hLA h−1
L + ∂hLh−1

L , Ā → hRĀ h−1
R + ∂̄hRh−1

R , (3.1)

leads to the gauge-invariant action [146]

S[g,A, Ā] = SWZW(g) +
k
π

∫
d2z Tr

[
Ag−1∂̄g − Ā∂gg−1 − g−1ĀgA

]
. (3.2)

By parametrising the gauge fields as

A = ∂HLH−1
L , Ā = ∂̄HRH−1

R , (HL → hLHL , HR → hRHR) , (3.3)

and making use of the Polyakov-Wiegmann identity

SWZW(ab) = SWZW(a) + SWZW(b) + sgn(κ)
k
π

∫
d2z Tr

[
a−1∂̄a∂bb−1

]
, (3.4)

we can rewrite the gauged action as

S[g,A, Ā] = SWZW

(
H−1

L gHR

)
− SWZW

(
H−1

L

)
− SWZW (HR) . (3.5)

A crucial simplification occurs when the currents being gauged are null. In this case
we have SWZW

(
H−1

L

)
= SWZW (HR) = 0. Moreover, the Jacobian associated to the

change of variables in Eq. (3.3) can be seen to trivialise for the same reason, except for
the appearance of the usual b̃c̃ system [146]. Finally, one can change variables from g
to the gauge-invariant G-valued quantity g̃ = H−1

L gHR. As a result, the path integral
of the gauged theory is simply interpreted as that of the original upstairs WZW model
on G combined with the ghost contributions. The same holds for the supersymmetric
case.

The consequences of the presence of the ghosts signalling the null gaugings can be un-
derstood intuitively as follows. Upon quantisation, we find that, on top of the usual
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string theory contributions to the BRST charges Q and Q̄, it becomes necessary to in-
clude new chiral terms of the (schematic) form∮

dz : c̃ J : ,
∮

dz : ¯̃c J̄ : , (3.6)

together with their fermionic counterparts. This ensures that, under the gauging pro-
cedure outlined above, the spectrum of the coset model is built simply out of the vertex
operators of the upstairs theory that are BRST-closed. In other words, physical opera-
tors must be gauge invariant.

We can now make this construction explicit for the models under consideration. These
include black hole microstate solutions with up to three charges, and we view them in
the NS5-F1-P duality frame, where the relevant fields are the metric, the B-field and
the dilaton. The corresponding geometries were described in Section 2.7. We know
from [51] that these models include both BPS and non-BPS black hole microstates.
Given that all the necessary ingredients belong to the NSNS sector we expect to have a
well-defined solvable worldsheet model describing strings propagating in these back-
grounds. Indeed, as shown in [51, 52] and reviewed in Section 2.7 above, the world-
sheet theory associated to the propagation of strings in this context corresponds to a
coset CFT of the form38

SL(2, R)× SU(2)× Rt × U(1)y

U(1)L × U(1)R
× U(1)4 . (3.7)

Let us first characterise the upstairs twelve-dimensional model. Here we simply add
the extra time direction t and spatial circle y to the matter content employed in the
previous section, together with the corresponding fermionic partners λt and λy. The
latter are bosonized as i∂H6 = λtλy, with H†

6 = −H6. They give additional free field
contributions to the matter T and G in (2.135) and (2.136). The null current operators
being gauged are then

J = iJ = J3 + l2K3 + l3Pt + l4Py,L ,

J̄ = iJ̄ = J̄3 + r2K̄3 + r3Pt + r4Py,R ,
(3.8)

where Pt = i∂t , Py,L = i∂y , and Py,R = i∂̄y. Together with the extra coordinates we also
include the additional set of ghosts mentioned above, together with their fermionic
partners. Note that it is necessary to take h[c̃] = 0 and h[γ̃] = 1/2, such that the central
charges cb̃c̃ = −2 and cβ̃γ̃ = −1 cancel the additional matter contribution cty = 3. This
also implies that the bosonization

β̃ = e−φ̃∂ξ̃ , γ̃ = η̃ eφ̃ (3.9)

38As mentioned around Eq. (2.205), the coset involves the universal cover of SL(2, R), and we are
actually gauging the non-compact subgroup R × U(1).
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yields a canonically normalized scalar φ̃ with no background charge. Consequently, we
can work with φ̃-independent vertex operators in the NSNS sector. On the other hand,
the definition of the spin fields and the would-be spacetime supercharges is modified
to [54]

Qε =
∮

dz e−(φ−φ̃)/2Sε , Sε = exp

(
i
2

6

∑
I=1

ε I HI

)
, (3.10)

where the contributions to the conformal dimension of the integrand in Qε from the φ̃

and H6 exponentials cancel exactly. Note that the mutual locality condition now reads

∏6
I=1 ε I = 1. An analogous formula defines the anti-holomorphic counterpart Q̄ε.

As stressed above, the present procedure can lead to both BPS and non-BPS back-
grounds. This depends on whether the charges Qε turn out to be BRST invariant or
not, according to the precise current we choose to gauge. The left-handed BRST charge
takes the form

Q =
∮

dz :
[
c
(

T + Tβγβ̃γ̃

)
+ γG + c̃ J + γ̃λ + ghosts

]
: , (3.11)

and similarly for the right-handed one. Here λ and λ̄ are the superpartners of the
currents in Eq. (3.8), that is

λ = ψ3 + l2χ3 + l3λt + l4λy , λ̄ = ψ̄3 + r2χ̄3 + r3λ̄t + r4λ̄y. (3.12)

This ensures that only operators satisfying the usual Virasoro and γG-invariance con-
ditions that are also uncharged under the bosonic currents J, J̄ and annihilated by γ̃λ

and ¯̃γλ̄ are physical. In particular, by using the γG-invariance condition ε1ε2ε3 = −1,
the Qε supercharges survive the gauging if and only if [54]

ε1 + ε2l2 = 0 , l4 + ε6 l3 = 0, (3.13)

where the former constraint comes from the bosonic current and the latter arises from
the fermionic one. Actually, only one of these two restrictions is independent due to
the null condition (2.216). Analogously, for the antiholomorphic supercharges one has

ε1 + ε2r2 = 0 , r4 + ε6 r3 = 0, (3.14)

For instance, the cases with (4, 4) and (4, 0) spacetime supersymmetry were considered
recently in [54, App. B]. In the present work we focus mainly on the more general
non-supersymmetric case, in which there is no solution to this set of constraints since
l2 ̸= ±1 and r2 ̸= ±1.

We pause here to stress that we start from a (10+2)-dimensional model where all oper-
ators are taken to be mutually local. This includes the charges Qε, Q̄ε. In particular, this
amounts to imposing the analogue of the GSO projection in the upstairs theory. Conse-
quently, there are no tachyons in the resulting spectrum, nor in that of the coset model
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[52, 54]. Indeed, even if no supersymmetry is preserved, the supergravity solutions
we are dealing with are expected to be classically stable. Note that this is consistent
with the fact that we only recover the fivebrane decoupling limit of JMaRT geometries,
where there is no ergoregion [52]. The full solutions with flat asymptotics do exhibit
the well-known ergoregion instability [147, 94], interpreted as an enhanced version of
Hawking radiation [140, 93, 141].

3.2.2 Physical spectrum and consistency conditions

We now consider the physical states in the null-gauged theory. These are given in
terms of vertex operators of the upstairs model that are BRST invariant as defined by
the charge (3.11) and its anti-holomorphic counterpart.

The lightest physical states (with no winding) are given by unflowed operators with a
single fermionic excitation. All such operators must satisfy the Virasoro condition

0 = − j(j − 1)
n5

+
j′(j′ + 1)

n5
− 1

4
E2 +

1
4

P2
y . (3.15)

These are automatically invariant under the action of λ in (3.12), so that they are BRST-
invariant iff the following null-gauging39 constraints hold:

0 = m + l2 m′ +
l3
2

E +
l4
2

Py , 0 = m̄ + r2 m̄′ +
r3

2
E +

r4

2
Py . (3.16)

The simplest states of this sort are the 6D scalars, whose spectrum was shown to coin-
cide with that of minimally coupled massless scalar perturbations on top of the JMaRT
geometries in [52]. There are also the extremal-weight states, which for E = Py = 0
are half-BPS and were studied in [54] in the context of supertubes. Note that opera-
tors with T4 polarisations can also give BPS states in specific models with non-trivial
twisted sectors [112].

On the other hand, operators with more general projections need to be combined with
polarisations on the extra directions t and y in order to achieve BRST-invariance. The
corresponding coefficients are determined by invariance under λ together with transver-
sality in the t, y directions. The anti-holomorphic variables must satisfy analogous con-
ditions as well, together with the gauge invariance conditions (4.12). Consequently,
these constraints restrict the possible polarisations to those expected in the (9+1)- di-
mensional setting.

Let us now consider spectrally flowed states. A particularly simple case corresponds to
the circular array of fivebranes on the Coulomb branch, which is obtained by choosing

39The factors of 2 in the free field terms of Eqs. (3.15) and (3.16) arise from the OPEs ∂t(z)∂t(0) ∼ − 1
2

1
z2 ,

∂y(z)∂y(0) ∼ 1
2

1
z2 (recall that we work with α′ = 1).
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l1 = l2 = r1 = −r2 = 1 and l3 = l4 = r3 = r4 = 0 [118, 51]. From the worldsheet
point of view, this null-gauged model is analogous to the cigar construction used in
[120, 121] provided we replace the extra circle by an S3 and take Jy → K3. Thus, as
in that example, introducing spectral flow with ω = ω′ = ω̄′ does not produce new
physical states since it merely amounts to a large gauge transformation. In a more gen-
eral context, however, this is not true anymore, and spectrally flowed sectors contribute
non-trivially to the spectrum. At this point, we also allow for both momentum ny and
winding ωy on S1

y, and use the shorthands

Py,L/R =

(
ny

Ry
± ωyRy

)
, ny, ωy ∈ Z. (3.17)

For generic states with spectral flow charges ω on SL(2, R), (ω′, ω̄′) on SU(2), and
winding ωy on S1

y, the null-gauge constraints (4.12) read

0 = m +
n5

2
ω + l2

(
m′ +

n5

2
ω′
)
+

l3
2

E +
l4
2

Py,L , (3.18a)

0 = m̄ +
n5

2
ω + r2

(
m̄′ +

n5

2
ω̄′
)
+

r3

2
E +

r4

2
Py,R, (3.18b)

while the Virasoro constraints take the form

1
2
=

j′(j′ + 1)− j(j − 1)
n5

− mω + m′ω′ +
n5

4

(
ω

′2 − ω2
)
− 1

4

(
E2 − P2

y,L

)
+ N ,

(3.19a)

1
2
=

j′(j′ + 1)− j(j − 1)
n5

− m̄ω + m̄′ω̄′ +
n5

4

(
ω̄

′2 − ω2
)
− 1

4

(
E2 − P2

y,R

)
+ N̄. (3.19b)

Here N and N̄ are the excitation numbers, and we have restricted to unflowed states
with no fermion excitations for simplicity.

The discussion so far does not characterise the physical spectrum in a unique way:
there is a residual discrete gauge orbit connecting equivalent representatives of the
same physical state. This fact was noticed in [52], so let us first recall the observa-
tions made in that work before making a set of generalisations. First, spectral flow
in the null direction corresponding to the gauge current is gauge-trivial. Second, the
non-compactness of Rt means that there cannot be independent left and right gauge
spectral flow transformations, since these would shift the zero mode of t differently.
Therefore, globally we work with the universal cover of SL(2, R), in which the left and
right spectral flow parameters are constrained to be equal, ω = ω̄. Moreover, globally
we gauge R × U(1), a (1+1)-dimensional cylinder composed of one compact spacelike
direction and one non-compact timelike direction. The gauged model then has a single
non-compact timelike direction.40 Third, the non-compactness of the time coordinate t

40By contrast, in related models that do not include the Rt factor in the upstairs model, the single cover
of SL(2, R) has been considered [118].
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moreover imposes
l3 = r3 , (3.20)

or, in terms of the original gauging parameters, l3/l1 = r3/r1. We will re-derive the
condition l3 = r3 from an independent point of view in the following section by im-
posing smoothness, absence of horizons, and absence of CTCs in the corresponding
geometry.

We now make a more general analysis of this phenomenon in the general models de-
fined in the previous section. Let us stress that the analysis of such gauge orbits is not
simply about the counting of states. Indeed, being able to identify gauge-equivalent
operators in terms of the quantum numbers of the WZW model is necessary for build-
ing a consistent theory, and we will show that it further constrains the allowed values
for the gauging parameters li, ri.

Given a physical state, let us seek spectral flow transformations that result in the same
operator. By subtracting the two equations in (3.19) we find

0 = ω(m̄ − m) + m′ω′ − m̄′ω̄′ +
n5

4
(ω

′2 − ω̄
′2) + nyωy + N − N̄, (3.21)

which plays the role of the level-matching condition in this context. In order to find
solutions of Eq. (3.21), (ω

′2 − ω̄
′2) must be a multiple of 4, so ω′ ± ω̄′ must be even.

Note that this preserves the statistics of the SU(2) part of the state.

Let us consider a shift of the form41

ω → ω + q , q ∈ Z . (3.22)

We shall show that this can be compensated at the level of the null-gauge constraints
(3.18) without altering the weights (3.19) by shifting the remaining quantum numbers
appropriately. We begin with a general shift and show that only the shift in the null
gauge direction achieves this. We allow for arbitrary multiples of q to shift ω′, ω̄′, E, ny

and ωy as well, namely

(ω′, ω̄′, E, Py,L, Py,R) → (ω′ − a2q, ω̄′ − b2q, E + a3q, Py,L − a4q, Py,R − b4q). (3.23)

41We include both the bosonic and the free fermion spectral flows, so that the shifted charges and
weights are written in terms of the supersymmetric level n5 as opposed to the bosonic levels k = n5 + 2
and k′ = n5 − 2.
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For the weights (3.19) and gauge constraint (3.18) to remain unchanged for arbitrary q,
we must have

0 = m +
n5

2
ω + a2

(
m′ +

n5

2
ω′
)
+

a3

2
E +

a4

2
Py,L,

0 = n5(1 − a2
2) + a2

3 − a2
4, (3.24)

0 = n5(1 − l2a2) + l3a3 − l4a4,

and the same with a2,4 → b2,4, l2,4 → r2,4, m′ → m̄′, ω′ → ω̄′ and Py,L → Py,R. To
satisfy the first of these three conditions for general states without over-restricting the
spectrum, we must set ai = li and bi = ri. Indeed, in this case the first condition
becomes (3.18), while the last two conditions both reduce to (2.218). The compensating
shifts then take the form

ω′ → ω′ − l2 q , ω̄′ → ω̄′ − r2 q, (3.25)

for the left and right SU(2) spectral flow charges, respectively,

E → E + l3 q = E + r3 q, (3.26)

for the energy, and

ny → ny −
Ry

2
(l4 + r4) q , ωy → ωy −

1
2Ry

(l4 − r4) q, (3.27)

for the S1
y quantum numbers.

For Eqs. (3.22) and (3.25)–(3.27) to make sense in terms of integer spectral flows and
momentum/winding numbers, the gauging parameters must be quantised in a specific
way. On the one hand, taking into account that, as argued above, ω′ ± ω̄′ must be even,
for the SU(2) sector we find l2 ± r2 ∈ 2Z. We can thus write as a first pass (to be refined
momentarily)

l2 = m+ n , r2 = −(m− n) , m, n ∈ Z , (3.28)

where the signs are chosen for later convenience. Furthermore, recall that in the SL(2, R)

and SU(2) sectors the spectral flow operations do not act solely on the bosonic sub-
algebras. Indeed, they also shift the fermionic modes as in Eqs. (2.133). At the level of
the vertex operators, this is accounted for by including the H1,2 exponentials introduced
in (2.156), which were taken into account for computing the weights (3.19). However,
if as in the computation above we start from an unflowed state with no fermionic exci-
tations, and use the shifts (3.22) and (3.25) with, say, q = 1 (or any other odd value), the
presence of these exponentials also indicates that the fermion numbers on the left- and
right-handed components will not be preserved for arbitrary values of m± n. Thus, we
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see that it is necessary to make Eq. (3.28) more precise by restricting to

l2 = m+ n ∈ 2Z + 1 , r2 = −(m− n) ∈ 2Z + 1 , m, n ∈ Z . (3.29)

On the other hand, from (3.27) we also must have

1
2Ry

(r4 − l4) = k ∈ Z ,
Ry

2
(l4 + r4) = p ∈ Z , (3.30)

or equivalently
l4 = −

(
kRy −

p

Ry

)
, r4 = kRy +

p

Ry
. (3.31)

By plugging the expressions (3.29) and (3.31) into the null constraints (2.216), we now
solve for l3, r3 and p. Firstly, we obtain

l3 = r3 = −
√

k2R2
y +

p2

R2
y
+ n5 (m2 + n2 − 1), (3.32)

where we have chosen the negative square root for l3, r3, so that we gauge away the
difference of the upstairs time directions. This fixes the energy shift (3.26) in terms of
k,m, n, p. More interestingly, we also get

k p = n5 mn, (3.33)

which shows that only three of the integers k,m, n, p are actually independent. More-
over, either k or p (or both) must be even.

We will show below that the integers m and n introduced above control the angular
momenta of the classical configuration along the S3 coordinates ϕ and ψ, respectively.
We will further argue in the following that the absolute value of the integer k is to be
interpreted as an orbifold parameter. The meaning of the remaining integer p is slightly
complicated to interpret in classical terms. This is due to its stringy nature, and it can
be understood either holographically or in terms of T-duality, as follows.

For k ̸= 0, from (3.33) we find that p is n5 times the momentum per strand mn/k in the
holographic description of JMaRT states, as noted in [52]. This must be an integer since
the holographic CFT is a symmetric product orbifold theory (see the discussions in [96,
94]). On the other hand, it is well known that the worldsheet theory is invariant under
T-duality along a circular direction. In the language of gauged WZW models, T-dual
models arise due to the equivalence of vector and axial gaugings. In the present context,
T-duality along y amounts to l4 → −l4. Together with the usual radius redefinition
Ry → 1/Ry, this exchanges the role of the integers k and p. Thus, depending on the
choice of duality frame, either k or p are interpreted as an orbifold parameter, while
the remaining integer is fixed in terms of n5, m and n, and it controls the momentum
charge.
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While on the subject of the T-duality, let us also observe that (3.31) has special features
at the self-dual radius, which in α′ = 1 units is at Ry = 1. At the self-dual radius, in
string theory one observes an enhancement of the abelian U(1) symmetry to a non-
abelian SU(2) symmetry due to the presence of new massless fields. In our case, when
Ry = 1 the expressions of the gauging parameters l4, r4 corresponding to the U(1)y

component resemble those of their SU(2) counterparts l2, r2. In addition, we see that it
becomes possible to set either l4 or r4 to zero while keeping the other one non-trivial,
which is not possible for generic values of Ry. Since the self-dual radius is associated
with the appearance of new massless states (in the upstairs theory), this might lead to
new solutions. We leave a more detailed exploration of such configurations for future
work.

Note that the values of the gauging parameters (3.29)–(3.32) imply that

Σ0 (ρ = 0, θ = 0) =
1 − l2r2

2
+

l3r3 − l4r4

n5
= m2 +

k2R2
y

n5
,

Σ0

(
ρ = 0, θ =

π

2

)
=

1 + l2r2

2
+

l3r3 − l4r4

n5
= n2 +

k2R2
y

n5
.

(3.34)

The combinations in (3.34) correspond to the minimal values of the quantity Σ0 ap-
pearing in the denominator of various components of the supergravity fields (2.227).
We have just shown that the consistency conditions of the spectrum imply that they are
both non-negative quantities. This will be important when studying the corresponding
geometry in the following section.

Let us summarise our results so far. Starting with a class of generic null gauged models,
the gauged currents are defined in terms of eight parameters, namely li, ri, i = 1, 2, 3, 4.
Since only the direction of the gauging matters, the overall scale becomes irrelevant.
This means that we can work directly with the six ratios li, ri. These must satisfy the
two null conditions (2.218) and also l3 = r3 from the non-compactness of t. Finally,
by focusing on the worldsheet CFT and relating the action of spectral flow in SL(2, R)

to that of the gauge orbits, we have shown that the theory is consistent only if the
remaining three parameters can be written in terms of three integers (in addition to
Ry), which we can take to be m, n and k (when k ̸= 0). Moreover, these must be chosen
so that p = n5mn/k is also integer-valued. It is possible that the quantization conditions
on k,m, n, p could alternatively be obtained by analyzing the global consistency of the
gauging, see e.g. [148, 149, 150, 151, 152]. In the next section we will instead proceed to
analyze the global geometry of the gauged target space.

The set of conditions (3.29)–(3.32) is one of the main results of this chapter. It will al-
low us to rewrite the general supergravity fields in Eqs. (2.227)–(2.229) in a simple way,
making their main physical features and some of their symmetries manifest. Further-
more, this will lead to a complete characterisation of the full set of consistent solutions.
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3.3 Analysis of the supergravity backgrounds

In the previous section we have shown that the gauging parameters li, ri, i = 1, 2, 3
can be defined in terms of k,m, n, p, all of which are integers that have a clear physics
meaning. We now perform an independent supergravity analysis of the metrics in-
troduced in Eq. (2.227), and show that imposing smoothness and absence of closed
timelike curves provides an alternative derivation and complementary interpretation
of the constraints (3.29)–(3.32).

3.3.1 Eliminating potential closed timelike curves

To investigate potential closed timelike curves we complete the squares successively in
the periodic variables ψ, ϕ and y, to rewrite the line element (2.227). We obtain

ds2 =− T(ρ)dt2 + Y(ρ)
[
dy + Ay(ρ; dt)

]2
+ n5(dρ2 + dθ2)+

+ n5 sin2 θ
hϕ

Σ0

[
dϕ + Aϕ(ρ; dt, dy)

]2
+ n5 cos2 θ

hψ

Σ0

[
dψ + Aψ(ρ; dt, dy)

]2 , (3.35)

where the functions Σ0, hϕ and hψ were defined in (2.224) and (2.228) respectively, Ay,
Aψ, and Aϕ are one-forms depending only on the radial variable ρ and with legs in the
appropriate arguments, while T(ρ) will turn out to be a non-negative function whose
explicit expression we will not need. In order to ensure the absence of CTCs we must re-
quire the functions multiplying the squares in the periodic variables to be non-negative,
i.e.

hϕ

Σ0
≥ 0 ,

hψ

Σ0
≥ 0 , Y(ρ) ≥ 0. (3.36)

We now show that asking for the inequalities (3.36) to hold everywhere in geometry is
equivalent to imposing

l3 = r3. (3.37)

Let us first see that (3.36) implies (3.37). By combining the first two inequalities we find
that the product hϕhψ is non-negative. On the other hand, the explicit expression of
Y(ρ; li, ri) reads

Y(ρ) =
4 sinh2 ρ

(
n5 cosh2 ρ + l3r3

)
+ (n5 + l3r3)2 − (n5l2

2 + l2
4)(n5r2

2 + r2
4)

4n2
5hϕhψ

=
4n5 sinh2 ρ

(
n5 cosh2 ρ + l3r3

)
− (l3 − r3)

2

4n5hϕhψ
, (3.38)

where in the second line we have used (2.218). It follows from this last expression that
the third inequality in (3.36) can only be satisfied at the origin ρ = 0 if l3 = r3.
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It remains to be seen that the implication holds in the other direction as well. For this,
we note that the minimal value of Σ0 is given by

Σmin
0 =

1
2n5

[
n5(1 − |l2r2|) + l3r3 − l4r4

]
. (3.39)

Using l3 = r3 we can rewrite the null conditions (2.218) as

n5
(
l2
2 − r2

2
)
+ r2

4 − l2
4 = 0 , l2

3 + r2
3 = 2l2

3 = l2
4 + r2

4 + n5
(
l2
2 + r2

2 − 2
)

, (3.40)

so that
2
[
n5(1 ± l2r2) + l3r3 − l4r4

]
= n5(l2 ± r2)

2 + (l4 − r4)
2 . (3.41)

It follows that Σ0 ≥ 0 everywhere. Given that hϕ = Σ0(ρ, θ = 0) and hψ = Σ0(ρ, θ =

π/2), the same holds for these functions and the first two inequalities in (3.36) are thus
satisfied. The third one also holds, as can be checked from (3.38).

This proves that in the asymptotically linear dilaton geometry the necessary and suffi-
cient condition for avoiding CTCs is precisely l3 = r3, Eq. (3.37). This constraint was
also obtained in the worldsheet analysis of Section 3.2 from the non-compactness of the
t direction, Eq. (3.20). Moreover, once this is imposed we find that, as advertised above,
T(ρ) is non-negative.

3.3.2 Absence of horizons

Here and in the following subsection we perform an analysis which closely follows that
of [37]. The determinant of the metric (2.227) reads

det g = −
(

n2
5 sin(2θ) sinh(2ρ)

4Σ0

)2

, (3.42)

where we have used the null-gauge constraints (2.218). Besides the usual zeros at the
poles of the S3, this only vanishes at ρ = 0. Given that the determinant of the induced
metric on surfaces of constant ρ is simply (3.42) divided by n5, we see that ρ = 0 corre-
sponds to either a horizon or an origin of higher codimension. In order to distinguish
between these two cases, we further compute the determinant of the induced metric on
surfaces of constant ρ and t, and we evaluate it at ρ = 0, giving

lim
ρ→0

det g
∣∣
(y,θ,ϕ,ψ) = −

(
n5(l3 − r3) sin(2θ)

4Σ0(0, θ)

)2

. (3.43)

Hence, in order to obtain a horizonless and possibly smooth geometry we again need to
impose l3 = r3, Eq. (3.37), such that (3.43) vanishes. Smoothness will then be achieved
if some circle direction shrinks appropriately when ρ → 0, as we discuss next.
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3.3.3 Smoothness and quantisation

When the background contains F1 charge, the supergravity solutions must be smooth
up to possible orbifold singularities. In the absence of F1 charge, NS5-brane singulari-
ties will be present. We begin by treating the more general case in which F1 charge is
present, and treat the latter as a special case.

We therefore focus on the periodic directions and consider a generic Killing vector of
the form

ξ = ∂y + α ∂ψ − β ∂ϕ , α, β ∈ R. (3.44)

where the signs have been chosen for later convenience. To find smooth solutions we
seek pairs of coefficients (α, β) such that the norm of ξ vanishes ∀ θ ∈ [0, π

2 ] when we
approach ρ = 0. From the metric (2.227) we find that this is indeed the case when

α =
l2r4 − l4r2

2n5Σ0(0, π
2 )

, β =
l2r4 + l4r2

2n5Σ0(0, 0)
, (3.45)

since for these values, and upon using the null constraint (4.12), we obtain

lim
ρ→0

gij ξ i ξ j = − (l3 − r3)2

4n5Σ0(0, 0) Σ0(0, π
2 )

= 0 , (3.46)

where i, j = y, ψ, ϕ. In the last step we have used the no-CTC condition (3.37). Then,
we define the following shifted coordinates

ψ̂ = ψ + α y , ϕ̂ = ϕ − β y , (3.47)

where the signs are chosen for later convenience. By examining the integral curves of
ξ, we see that the direction that shrinks at ρ = 0 is y at fixed ψ̂, ϕ̂. We find that near
ρ = 0 the line element at fixed (t, θ, ψ̂, ϕ̂) is of the form

ds2
ρ→0 ≃ n5

[
dρ2 + ρ2 d

( y
R

)2
]

, R2 =

[
2n2

5Σ0(0, 0)Σ0(0, π
2 )(

n5 + l2
3

)
(l4 − r4)

]2

, (3.48)

where we have used (2.216) and (3.37), and assumed l4 ̸= r4 (for now). Strictly speak-
ing, a smooth geometry will be obtained only if the radius R coincides with Ry. Given
that string theory is well-defined on orbifold backgrounds, as usual we allow for pos-
sible Zk orbifold singularities, k being the corresponding orbifold parameter. Thus, we
relax this condition and impose R2 = k2R2

y for some positive integer k instead, i.e.

k2R2
y =

[
2n2

5Σ0(0, 0)Σ0(0, π
2 )(

n5 + l2
3

)
(l4 − r4)

]2

. (3.49)
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Making use of the intuition developed in Section 3.2, we further rewrite the values of
the parameters li, ri in terms of new quantities m, n, k and p as in Eqs. (3.28) and (3.30),
namely

l2 = m+ n , r2 = −(m− n) ,
1
2
(l4 − r4) = −kRy ,

1
2
(l4 + r4) =

p

Ry
=

n5

Ry

mn

k
. (3.50)

In (3.50) we could a priori have written k′ instead of k. However, if we were to then
substitute (3.50) into (3.49), we would find that k′ = ±k. In other words, within this
parametrisation Eq. (3.49) is trivially satisfied.

Up to this point, the reparametrisation (3.50) does not assume that m and n are integers.
However, the periodicities of the new angular variables ϕ̂ and ψ̂ should be consistent
with that of y. The corresponding quantisation conditions read

α (k Ry) = m ∈ Z , β (k Ry) = n ∈ Z . (3.51)

From the classical point of view, the values of the integers m and n seem otherwise
unrestricted. However, we know from the discussion around Eq. (3.29) that one of m,
n must be even and the other one must be odd. A geometric argument leading to this
restriction was put forward in [37] in the JMaRT context. This is based on discussing
the periodicity of the fermions along the S1

y circle and the associated spin structure of
the target space. Although it should be possible, we will not attempt to extend these
arguments to the case with general gauging parameters. This is because in the next
section we will directly match the JMaRT solutions to the supergravity fields of our
coset models.

Moreover, out of the four parameters m, n, k and p = n5mn/k, a priori only the first three
appear to be required to be integers from the above smoothness analysis, and nothing
seems to prevent p from being a rational (not necessarily integer) number. The stringy
nature of this parameter manifests itself in the fact that T-duality along S1

y, namely
l4 → −l4 and Ry → 1/Ry, maps k ↔ p. Since in the T-dual geometries p is an orbifold
parameter, it must also be quantised. Moreover, given that m and n may vanish or
be non-vanishing integers with arbitrary signs, so can p, and consequently, the same
applies to k. In due course we will restrict to non-negative values of k,m, n, p, without
loss of generality.

Recall that in the previous passage we assumed l4 ̸= r4. The case l4 − r4 = 0, which
corresponds to k = 0 in the parametrisation (3.50), needs to be treated separately. When
k = 0, Σ0 goes to zero at ρ = 0 and either θ = 0 or θ = π/2, see e.g. Eq. (3.34). The
metric is singular as Σ0 → 0. We choose conventions in which the zero is at θ = π/2.
This corresponds to the location of the (smeared) NS5 brane source. As we shall see in
the next section, this is because the F1 charge vanishes and the solutions are two-charge
NS5-P (see Eqs. (3.69) and (3.76)–(3.77) below). Let us analyse the geometry away from
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the source. The region of interest is the neighbourhood of ρ = 0 for θ ̸= π/2. Note
that, assuming l3 = r3, the null conditions (2.218) imply l2 = ±r2, so that either m = 0
or n = 0. To have the source at θ ̸= π/2, we take l2 = −r2, i.e. n = 0. Then the norm
of the Killing vector (3.44) is always non-vanishing. However, the ψ circle shrinks as
ρ → 0. Indeed, in this neighbourhood the line element at fixed (t, y, θ, ϕ) reads

ds2
ρ→0 ≃ n5

[
dρ2 + ρ2 d

(
ψ

m

)2
]

, (3.52)

where we have used the parametrisation (3.50) without imposing the last equality, so
that p is unconstrained. We conclude that for generic values of θ and m = ±1 the
geometry is smooth. As before, we allow for orbifold singularities, so that m is again
quantised: any other non-zero m ∈ Z leads to a Z|m| orbifold structure. Had we chosen
l2 = r2 instead, the source would have been at θ = 0, the ϕ circle would have been the
one shrinking at small ρ, and the parameter m would have been replaced by n.

3.3.4 Killing Spinors

Finally, we discuss the relation that the embedding coefficient must satisfy in order to
preserve a certain amount of supersymmetry. For simplicity, we work directly in the
AdS3 × S3 limit, which will be shown to exist in all consistent cases. In order to achieve
this, we first consider the Killing spinor in global AdS3, as given in [37]:

ϵ±L = e±
i
2 ϕ̃L e−

i
2 yϵ0 , ϵ±R = e±

i
2 ϕ̃R e−

i
2 yϵ0 , (3.53)

where ϵ0 is a constant AdS3 spinor. The dependence on the spacetime coordinates was
derived in [153] and, in particular, the y dependence is such that the Killing spinors are
regular near the origin (see also [123] and [154, App. D,E]). By a large gauge transfor-
mation one can induce the S3 angular momenta starting from global AdS3 × S3 which,
in terms of the ϕ̃L,R coordinates, translates into the following diffeomorphism

ϕ̃L = ϕ + (m+ n) y = ϕ + l2 y , ϕ̃R = ϕ + (m− n) y = ϕ − r2 y . (3.54)

This is known as spacetime spectral flow (see e.g. [96, 94]). Focusing on solutions that
admit an asymptotically flat completion, the Killing spinor equations demand that the
spinors be independent of y after performing the above large gauge transformation.
This is obtained by imposing

|l2| = 1 or |r2| = 1. (3.55)
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By virtue of the null condition (2.216), the above constraint implies an analogous one
for the remaining embedding coefficients, namely

|l3| = |l4| or |r3| = |r4| . (3.56)

We thus conclude that the above constraints must be satisfied in order to have non-
trivial Killing spinors in spacetime. This is consistent with the discussion around Eqs. (3.13)
and (3.14) above.

Summarising, we have imposed absence of CTCs, absence of horizons, and smooth-
ness up to physical sources (corresponding to orbifold singularities or NS5 branes) of
the general background (2.227). These conditions imply a set of constraints on the
group-theoretic embedding coefficients li, ri parametrising the space of solutions in
which the string propagates without pathologies. These consistency conditions take ex-
actly the same form as those obtained from the worldsheet CFT analysis in Section 3.2,
Eqs. (3.29)–(3.32). In passing, we note that recently a similar relation between consis-
tency of the worldsheet theory and a well-behaved geometry was found in a related
context in [155, 156].

3.4 Matching to JMaRT and two-charge limits

In the previous sections we have shown that the class of null-gauged models defined
in Section 2.7 in terms of the gauging parameters li, ri are consistent iff the latter can be
written simply in terms of the four integers k,m, n and p. Out of these, only three are
independent. Here we show that the resulting models correspond precisely to the full
family of JMaRT solutions [37] and their various limits. The metric and B-field take a
simple form in terms of these parameters, all of which have a clear physical meaning.
Moreover, starting from the generic three-charge solution, we describe in detail the
delicate limits that lead to the two-charge configurations and exhibit novel non-BPS
NS5-P solutions.

3.4.1 JMaRT metric and B-field

Let us recall the form of the NS5-decoupled limit of the NS5-F1-P JMaRT solutions,
that is, the S-duals of the smooth and horizonless non-supersymmetric D1-D5-P back-
grounds obtained in [37]. Note that we are working in units where α′ = 1, hence
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Q5 = n5. In our conventions, these geometries take the form [52]

ds2 =
f

H̃1

(
−dt2 + dy2)+ M

H̃1

(
cpdt − spdy

)2
+ n5

(
dρ2 + dθ2)

+
n5

H̃1

[ (
r2
+ − r2

−
)

cosh2 ρ + r2
− + a2

2 + Ms2
1

]
sin2 θ dϕ2

+
n5

H̃1

[ (
r2
+ − r2

−
)

sinh2 ρ + r2
+ + a2

1 + Ms2
1

]
cos2 θ dψ2

+
2
√

M n5

H̃1

[ (
a2c1cp − a1s1sp

)
dt +

(
a1s1cp − a2c1sp

)
dy
]

sin2 θ dϕ

+
2
√

M n5

H̃1

[ (
a1c1cp − a2s1sp

)
dt +

(
a2s1cp − a1c1sp

)
dy
]

cos2 θ dψ

+ ds2
T4 ,

(3.57)

B = − Ms1c1

H̃1
dt ∧ dy +

n5 cos2 θ

H̃1

[
(r2

+ − r2
−) sinh2 ρ + r2

+ + a2
2 + Ms2

1

]
dϕ ∧ dψ

+

√
Mn5

H̃1

[
(a1c1cp − a2s1sp)dt + (a2s1cp − a1c1sp)dy

]
∧ sin2 θ dϕ

+

√
Mn5

H̃1

[
(a2c1cp − a1s1sp)dt + (a1s1cp − a2c1sp)dy

]
∧ cos2 θ dψ,

(3.58)

together with the dilaton
e2Φ = g2

s
n5

H̃1
. (3.59)

Here the charges are given in terms of the boost parameters δ1,p, that is

Qi = Msici , ci = cosh(δi) , si = sinh(δi) , i = 1, p , (3.60)

and

f =
1
2
[
(r2

+ − r2
−) cosh(2ρ) + (a2

2 − a2
1) cos(2θ) + r2

+ + r2
− + a2

1 + a2
2
]

,

H̃1 = f + Ms2
1 =

1
2
[
(r2

+ − r2
−) cosh(2ρ) + (a2

2 − a2
1) cos(2θ) + M2]+ Ms2

1 , (3.61)

r2
± =

1
2

[
(M − a2

1 − a2
2)±

√
(M − a2

1 − a2
2)

2 − 4a2
1a2

2

]
= −a1a2

(
s1sp

c1cp

)±1

.

In these formulas, parameters such as a1,2 are a priori thought of as continuous. As
will be clear shortly, this is potentially misleading since they are constrained by the
smoothness conditions and the absence of horizons. In this setup, these constraints
read

a1a2 =
Q1Q5

k2R2
y

s2
1c2

1spcp

(c2
1c2

p − s2
1s2

p)
,

M = a2
1 + a2

2 + r2
+ + r2

− = a2
1 + a2

2 − a1a2
c2

1c2
p + s2

1s2
p

c1cps1sp
,

(3.62)
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and

m =

√
M
n5

kRyspcp

(a2s1sp − a1c1cp)
∈ Z , n =

√
M
n5

kRyspcp

(a2c1cp − a1s1sp)
∈ Z. (3.63)

Here the integer numbers m and n again parametrise the angular momenta on S3. More-
over, these constraints imply the important identity

Qp

Q1
=

n5 mn

k2R2
y

=
p

k

1
R2

y
(3.64)

with k p = n5 mn as before, which relates non-trivially the three charges sourcing the
configuration. We now show that the above set of conditions leads to a further set of
relations which enable us to rewrite the JMaRT solutions in terms of the three integers
k, m and n, together with a single dimensionful scale set by Ry. A related but different
calculation was carried out in [157]. Defining

b2 = r2
+ − r2

− ⇒ f = b2 f0 ⇒ H̃1 = b2Σ0 , (3.65)

the most useful relations are of the following form:

a2
2 − a2

1 = b2(m2 − n2) , f + M s2
p = b2 hy , f − M c2

p = b2 ht , (3.66)

M(c2
1 + s2

1) = b2

(
m2 + n2 − 1 +

2k2R2
y

n5

)
, M(c2

p + s2
p) = b2

(
m2 + n2 − 1 +

2p2

n5R2
y

)
,

a2
1 + r2

+ + Ms2
1 = b2

(
n2 +

k2R2
y

n5

)
, a2

2 + r2
+ + Ms2

1 = b2

(
m2 +

k2R2
y

n5

)
,

√
M n5

(
a2c1sp − a1s1cp

)
= b2

(
m

p

Ry
+ n kRy

)
,
√

M n5
(
a2s1sp − a1c1cp

)
= b2 n∆ ,

√
M n5

(
a2s1cp − a1c1sp

)
= b2

(
n
p

Ry
+mkRy

)
,
√

M n5
(
a2c1cp − a1s1sp

)
= b2 m∆ ,

where we have defined

Σ0 = sinh2 ρ + (m2 − n2) cos2 θ + n2 +
k2R2

y

n5
, (3.67)

∆ =

√
n5(m2 + n2 − 1) + k2R2

y +
p2

R2
y

, (3.68)

such that Σ0 is the same quantity as in previous sections. Finally, we have

Q1

b2 =
kRy

n5
∆ ,

Qp

b2 =
p

n5Ry
∆ . (3.69)

We note that for the metric and the B-field we do not need the individual charges Q1

and Qp, but only the ratios (3.69). By using these formulas, the b2 factor cancels out
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completely, and we finally obtain the six-dimensional fields

ds2 = n5(dθ2 + dρ2) +
1

Σ0

[
−
(

sinh2ρ + (m2 − n2) cos2 θ + 1 −m2 − p2

n5R2
y

)
dt2

(3.70)

+

(
sinh2ρ + (m2 − n2) cos2 θ + n2 +

p2

n5R2
y

)
dy2 − 2

p

n5Ry
∆ dtdy

+
(

n5 sinh2ρ + n5m
2 + k2R2

y

)
sin2 θ dϕ2 +

(
n5 sinh2ρ + n5n

2 + k2R2
y

)
cos2 θdψ2

+ 2
(
m∆dt −

(
m

p

Ry
+ nkRy

)
dy
)

sin2 θdϕ − 2
(
n∆dt −

(
n
p

Ry
+mkRy

)
dy
)

cos2 θ dψ

]
,

B =
1

Σ0

[
−

kRy

n5
∆dt ∧ dy +

(
n5 sinh2ρ + n5 m

2 + k2R2
y

)
cos2θ dϕ ∧ dψ

+

(
m∆dt −

(
m

p

Ry
+ nkRy

)
dy
)
∧ cos2 θdψ −

(
n∆dt −

(
n
p

Ry
+mkRy

)
dy
)
∧ sin2 θdϕ

]
.

This is exactly the geometry we get from the null-gauge construction studied in the
previous sections when inserting the parametrisation (3.50) for the li, ri gauging pa-
rameters in Eqs. (2.227).

It is worth discussing some interesting facts about the expressions we have presented in
(3.70). First, we note the trivial symmetry associated to exchanging the two S3 angular
momenta. This corresponds to the re-labelling m ↔ n and ϕ ↔ −ψ, which must
be accompanied by the shift θ → π/2 − θ. On the other hand, we note that while the
usual JMaRT geometry is obtained by replacing p = n5mn/k in the expressions in (3.70),
here we have chosen a slightly more general form by keeping p explicit. As a result,
we easily find a symmetry that corresponds to exchanging k ↔ p and Ry → 1/Ry,
which we have identified above as T-duality. At the classical level, we can now see that
this operation is equivalent the well-known Buscher rules [158], where gyy → 1/gyy,
gty → Bty/gyy, etc.

Importantly, by keeping p explicit in (3.70) we have presented expressions that are valid
even for solutions where k = 0. As will be reviewed below, this includes the limit
associated to the BPS and non-BPS two-charge NS5-P configurations.

3.4.2 The dilaton

As described above, the JMaRT dilaton is of the form (3.59). The only coordinate-
dependent part of this expression corresponds to Σ0 as defined in (3.67), where we
have used (3.65). This matches exactly with the expression obtained in Section 2.7, see
Eq. (2.229), by considering the supergravity equations of motion, which provide the
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dilaton up to a multiplicative constant. The matching with the JMaRT backgrounds
thus gives a criteria for choosing this constant appropriately: it is given by n5/b2, i.e.

e2Φ =
n5

b2Σ0
. (3.71)

In order to make the expression for the dilaton more transparent we proceed as follows.
First, we introduce the canonical expressions for the charges

Q1 = n1
g2

s
V4

, Qp =
np

R2
y

g2
s

V4
, (3.72)

where V4 is the volume of the internal T4, while n1 is the number of fundamental string
sources and np is the integer momentum charge. We observe that the key property
(3.64) is equivalent to

kRy

Q1
=

p

QpRy
. (3.73)

This ties in nicely with the fact that, as discussed above, T-duality interchanges Q1 ↔
Qp and kRy ↔ p/Ry. It also justifies referring to p as being related to the momentum
charge as we did in previous sections. We have seen that the parameters m and n

are associated to the angular momenta of the geometry. Here we find in (3.73) that p
and k relate to the momentum and F1 winding charges of the black hole microstate in
question along the asymptotic y-circle.

Furthermore, while the b2 factor is irrelevant for writing down the metric and B-field,
it does appear when computing the dilaton. This means that we need to work with the
individual charges Q1 and Qp as opposed to the ratios. By making use of Eqs. (3.69) we
obtain two equivalent expressions for the dilaton, namely

e2Φ =
∆
Σ0

kRy

Q1
=

∆
Σ0

p/Ry

Qp
, (3.74)

where ∆ was defined in (3.68). This shows that for the dilaton the Buscher rule Φ →
Φ − 1

2 log gyy is once again equivalent to the simultaneous replacements Q1 ↔ Qp and
kRy ↔ p/Ry since the constant prefactor in front of Σ0 is invariant by itself.

3.4.3 JMaRT uniqueness

Having rewritten the NS5-decoupled JMaRT solutions in the form given in Eq. (3.70),
we observed that these supergravity fields are exactly those we obtained from the null-
gauge construction studied in the previous sections when inserting the parametrisation
(3.29)–(3.32) for the li, ri gauging parameters in the general solutions in Eq. (2.227).
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We have thus shown that we are able to reproduce the full family of supergravity back-
grounds collectively denoted as JMaRT. We now argue that these solutions exhaust the
full set of consistent null-gauged models considered in this chapter, by scrutinising the
allowed ranges of the parameters and identifying physically equivalent solutions.

At first sight, by looking at the metric, B-field and dilaton given in Eqs. (3.70) and
(3.74), one would expect that k,m, n and p could take any integer value. Additionally,
in writing these expressions we have fixed an extra degree of freedom by choosing a
positive sign for ∆. However, this parameter space is constrained. In the general case,
the parameter p is fixed in terms of the other three as in Eq. (3.33), though we will see
below that in the limit in which the fundamental string charge Q1 vanishes, its value
becomes arbitrary. On the other hand, choosing the opposite sign for ∆ simply results in
an equivalent time-reversed configuration. This leaves us with arbitrary m, n and k (for
negative k, the orbifold parameter is identified with its absolute value). Changing the
sign of m, n or k can be compensated by choosing the orientation of the circle coordinate
y or the S3 angles ϕ and ψ, respectively. Therefore we can take all of m, n, k to be non-
negative. In addition, due to the m ↔ n symmetry described below (3.70), we are free
to restrict to m ≥ n. Finally, based on spectral flow considerations we have argued in
Section 3.2 that we must restrict to angular momenta such that m± n are odd, see the
discussion below Eq. (3.28). This clarifies the discussion about spin structures in [37].
This excludes m = n and so we conclude that the set of inequivalent configurations is
given by

k ≥ 0 , m > n ≥ 0, m± n ∈ 2Z + 1, (3.75)

which is precisely the principal range of values considered in [37]. As we shall discuss
below, for k = 0 we take the limit such that one of the angular momenta vanishes and
p is generically kept non-zero and finite.

3.4.4 Two-charge limits and novel non-BPS NS5-P solutions

The expressions (3.70) and (3.74) we have obtained for the metric, B-field and dilaton
generated in the classical limit of the null-gauged models match exactly the solutions
given in [37], which have k > 0 (and where p = n5mn/k). However, and as discussed
above, they are presented in a form that is slightly more general and can be used to
access somewhat delicate limits. In particular, we now examine two-charge limits.

There are two such limits that we can access. The first of these corresponds to NS5-
F1 solutions, obtained by setting Qp = 0, which were analysed in [37]. As shown by
the identity (3.73), in order to keep Q1 finite and arbitrary we need to do this care-
fully. More precisely, we also need to take the limit p → 0 in such a way that the
ratio p/(RyQp) = kRy/Q1 is finite. An analogous conclusion for taking n → 0 with
p/n = n5m/k fixed is obtained by considering (3.33).
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On the other hand, we can now similarly access a different limit leading to novel non-
BPS NS5-P configurations. In this case, we take Q1 = k = n = 0 while keeping the
ratios kRy/Q1 = p/(RyQp) and k/n = n5m/p fixed. This allows Qp to take arbitrary
values as needed. To the best of our knowledge, the metric and B-field for the non-
BPS NS5-P solutions have not been presented in the literature. They take the following
form:

ds2 =
1

Σ0

[
−
(

sinh2ρ +m2(cos2 θ − 1) + 1 − p2

n5R2
y

)
dt2 − 2

p

n5Ry
∆ dtdy (3.76)

+

(
sinh2ρ +m2 cos2 θ +

p2

n5R2
y

)
dy2 + 2m

(
∆ dt − p

Ry
dy
)

sin2 θ dϕ

+ n5

(
sinh2ρ +m2

)
sin2 θ dϕ2 + n5 sinh2ρ cos2 θ dψ2

]
+ n5(dθ2 + dρ2) ,

B =
n5

4Σ0

[
m2 − 1 + cosh(2ρ)

]
cos(2θ) dϕ ∧ dψ +

m

Σ0

(
∆ dt −m

p

Ry
dy
)
∧ cos2 θ dψ ,

with the dilaton given by the second expression in (3.74), and where we now have

Σ0 = sinh2 ρ +m2 cos2 θ , ∆ =

√
n5(m2 − 1) +

p2

R2
y

. (3.77)

Recall that, as discussed around Eq. (3.52), these solutions involve a fivebrane source
at ρ = 0, θ = π/2 and a Z|m| orbifold singularity at ρ = 0, θ ̸= π/2.

Finally, we can restrict to the BPS cases by setting m = 1, as indicated by the super-
symmetry conditions (3.13) and (3.14). Thus, in this limit we find ∆ = kRy for the BPS
NS5-F1 configuration, and ∆ = p/Ry for the NS5-P one. In the former case, the first
expression for the dilaton in (3.74) then gives

e2Φ|NS5−F1 =
1

Q1

k2R2
y

sinh2 ρ + cos2 θ + k2R2
y/n5

, (3.78)

which coincides with that of [51], Eq. (4.13), while for the latter the alternative expres-
sion in (3.74) yields

e2Φ|NS5−P =
1

Qp

(p/Ry)2

sinh2 ρ + cos2 θ
, (3.79)

which coincides with that of [51], Eq. (4.2). One can check that in both cases the metric
and B-field match as well.
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3.4.5 AdS3 limit and holography

The AdS limit of the geometries under consideration is obtained by taking the large
Ry limit, while keeping the charge Q1 fixed. This describes the region of small radial
distances (as compared with Q1 and Ry). The energy and momenta ERy and PyRy also
stay fixed, such that the coordinates

t̃ = t/Ry , ỹ = y/Ry (3.80)

are better suited for this region. The six-dimensional metric (3.70) then takes the form
of an orbifolded AdS3 × S3, namely

ds2 = n5

[
− 1
k2 cosh2 ρ dt̃2 +

1
k2 sinh2 ρ dỹ2 + dρ2

+ dθ2 + sin2 θ
(

dϕ − n

k
dt̃ +

m

k
dỹ
)2

+ cos2 θ
(

dψ +
m

k
dt̃ − n

k
dỹ
)2
]

.
(3.81)

The orbifold singularity structure near ỹ = 0 depends on the common divisors between
m, n, k and is described in [37, 94, 52]. By means of the large gauge transformation

ψ̃ = ψ +
m

k
t̃ − n

k
ỹ , ϕ̃ = ϕ − n

k
t̃ +

m

k
ỹ , (3.82)

one can formally re-absorb the contributions from the angular momenta, that is, the
terms depending on m and n. This is related to the general holographic description
of such configurations. They are interpreted as excited states in the holographic sym-
metric orbifold CFT which can be constructed by considering n1n5/k identical strands
of length k in their NS vacuum state and performing left-right asymmetric fractional
spectral flow [94]. The spectral flow charges are of the form

α =
m+ n

k
, ᾱ =

m− n

k
, (3.83)

which matches the intuition derived from (3.82) and provides yet another interpreta-
tion for the gauging parameters l2 and r2. Note that this is distinct from the worldsheet
spectral flow that was used in Section 3.2. Interestingly, within this description the
momentum per strand is given by mn/k and must be an integer number,

mn

k
∈ Z , (3.84)

which is a slightly more restrictive condition than the quantisation of p discussed above.

Furthermore, we also note that in this AdS limit there seems to be no particular issues
with the solutions with even m± n, see the discussion around Eq. (3.29). In particular,
the case m = n = 0 takes us back to the global AdS3 vacuum. The present perspective
shows that the cases that extend consistently to the full linear dilaton geometry, namely
m± n ∈ 2Z + 1, belong to the RR sector (in the covering space) of the holographic
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CFT, while those that do not are characterised by having spectral flow charges (2.89)
with even numerators, such that they correspond to NSNS states.

Moreover, in this AdS3 limit the dilaton becomes constant, as can be seen from (3.74)
since ∆ → kRy and Σ0 → k2R2

y/n5. In other words, the rescaled harmonic function
H̃1 associated to the fundamental string charges approaches the constant value Q1, see
Eq. (3.69). In terms of the actual harmonic function H1, this roughly corresponds to the
usual dropping the ”1+” term, as is usual in such decoupling limits (see e.g. [136]).

In terms of the null-gauged description, there is an intuitive way of understanding
this AdS3 × S3 limit. Indeed, the upstairs model already contains an SL(2, R)× SU(2)
factor, complemented by the novel Rt × S1

y factor. For large Ry, the gauging parameters
associated to the former are l1,2 ∼ r1,2 ∼ O(1), while those corresponding to the latter
grow parametrically large as l3,4 ∼ r3,4 ∼ O(Ry). Thus, we are mostly gauging away
the extra directions t and y.

3.4.6 From AdS back to the linear dilaton background

At this point, it is interesting to go back to the intuition developed within the sigma
model description presented at the beginning of Section 2.7.1. There, we argued that,
after integrating out the gauge fields, the gauging procedure induces a deformation
given by including an additional term of the form J J̄ /Σ to the action, see Eq. (2.198).
We can simplify the discussion by working in the t = y = 0 gauge, such that the
currents J and J̄ are nothing but linear combinations of the diagonal currents of the
SL(2, R) and SU(2) WZW models. In the AdS limit, we have seen that the coefficient
1/Σ approaches a constant value, such that the induced contribution becomes J J̄ ,
giving a simple marginal deformation of the worldsheet theory.

The situation is to be contrasted with that of [143, 144, 145]. There, the authors make use
of the null-gauging formalism to introduce a J J̄ deformation for the AdS3 worldsheet
theory, the crucial difference being that the current under consideration corresponds to
the J− instead of J3. For related work, see [159]. Based on [110], this procedure is inter-
preted as the dual of the so-called single-trace TT̄ irrelevant deformation of the holo-
graphic CFT. Such deformation triggers a controlled flow to the UV, which is realised
in the dual geometry by effectively reinserting the ”1+” term in the harmonic function
associated to the fundamental string sources. This produces an asymptotically linear
dilaton geometry, i.e. an NS5-decoupled background, such that the above UV flow is
thought of as leading to a realisation of little string theory.

The parallel to our construction can thus be made more general. As described above,
for large Ry we know that Σ becomes constant, and our J J̄ deformation on the world-
sheet made up of J3 and K3 (together with their antiholomorphic counterparts) has a
much less dramatic effect, as it produces a sort of large gauge transformation which,
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however, does not further modify the AdS3 asymptotics, where the dilaton stays con-
stant. On the other hand, when moving away from the AdS limit by keeping Ry finite
one recovers the full non-trivial coordinate dependence of the function Σ, which sits at
the denominator of various terms in the supergravity fields. This modifies the effect of
the J J̄ /Σ, which now does take us back to the full asymptotically linear dilaton back-
ground described by Eqs. (3.70) and (3.74). This effect has also recently been observed
in a larger class of solutions in [54].

3.5 Discussion

In this chapter we have analysed all consistent backgrounds within a general class of
null-gauged WZW models. We showed that the (NS5-decoupled) JMaRT family, and
limits thereof, are the unique supergravity backgrounds that arise in these models. We
also showed that the metric and B-field can be written explicitly in terms of the integers
k,m, n, n5 and the modulus Ry, while for the dilaton one needs further include the ratio
n1/V4 (or np/V4).

Our analysis makes the connection between the worldsheet and geometric descriptions
quite explicit. In the supergravity solutions, imposing absence of CTCs implies l3 = r3,
which excludes horizons. The converse statements are also true: excluding horizons
implies l3 = r3, which excludes CTCs. On the other hand, the condition l3 = r3 is
necessary but not sufficient for smoothness (up to orbifold singularities), which further
requires the quantization of k,m, n. This is consistent with the interpretation of the
allowed configurations as a family of black hole microstates.

At the level of the worldsheet CFT, we have shown that a consistent spectrum is ob-
tained if and only if the gauging parameters are given in terms of three independent
integers k,m, n together with n5 and Ry, as in (3.29)–(3.33). We explicitly rewrote the
JMaRT metric and B-field in terms of these quantities, which enabled us to completely
bypass the usual, somewhat cumbersome, supergravity parametrisation in Eqs. (3.57),
(3.58).

Our parametrisation also provides a clear and important physical understanding of the
quantity p = n5mn/k. In the AdS3 decoupling limit, the quantity mn/k has previously
been interpreted as being the momentum per strand in the holographically dual sym-
metric product orbifold CFT [94]. We have uncovered the direct role of p in the (asymp-
totically linear dilaton) supergravity solutions, as being the quantity that is T-dual to k,
where the T-duality is performed along the y circle.

As we mentioned in the Introduction, one of the motivations of our systematic anal-
ysis was the possibility of finding new backgrounds. Although our uniqueness proof
means that the set of models we analysed does not have more general backgrounds
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than the JMaRT family, we have exhibited a novel sub-family of two-charge non-BPS
NS5-P backgrounds that arise from a non-trivial limit, see Eqs. (3.76) and (3.77). We
observed that in the core of the solutions but away from the fivebrane source, the so-
lutions involve a Zm orbifold singularity. To our knowledge, these solutions have not
appeared before in the literature.

We expect that our results will be useful in analysing generalisations of the models
studied here, either by changing the currents being gauged to include non-Cartan gen-
erators of the non-Abelian factors of the upstairs group, or by changing the upstairs
group, or both. Our systematic approach should enable generalisations to be investi-
gated in a similar way. For instance, there are multi-centre non-BPS generalizations of
the JMaRT family [160, 161, 162].

Besides this, within the models considered in this work there remain several unan-
swered questions. For instance, since we have control over these theories exactly in α′,
there are many interesting correlation functions that can be computed. We intend to
report an analysis of such correlators in the near future.

The results we have obtained, and the possibilities they open up for future work, offer
the prospect of improving our understanding of little string theory and the correspond-
ing non-AdS holography. Furthermore, it is tempting to wonder about extending some
of these ideas beyond the fivebrane decoupling limit into the full asymptotically flat
regime.

Having an exact worldsheet description of heavy pure states, far from the vacuum
of the theory, is rare and valuable. Such models allow us to study aspects of black
hole microstates that are smeared out in supergravity, and so cannot be studied with
supergravity techniques. This offers the tantalising prospect of obtaining a quantitative
understanding of the microscopic degrees of freedom of black holes.
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Chapter 4

Worldsheet Correlators in Black
Hole Microstates

String Theory provides a microscopic description of black holes as being bound states
of strings and branes with an exponentially large number of internal microstates [19].
Amongst these microstates, there are coherent pure states, large families of which have
been shown to be well-described by smooth and horizonless supergravity solutions, see
e.g. [65, 66, 135, 92, 137, 138, 163]. Upon taking an appropriate AdS decoupling limit,
these solutions are proposed to correspond to specific families of pure states in the
holographically dual CFT (HCFT); precision holography has provided sharp evidence
supporting this correspondence [164, 72, 165, 139, 166].

While supergravity constructions provide valuable insight into the structure of black
hole microstates, it is natural to expect that string-theoretic physics beyond supergrav-
ity will be necessary to obtain a complete description of black hole microstructure. A
fruitful arena in which to investigate such stringy physics is provided by bound states
of NS5 branes carrying fundamental string (F1) and/or momentum charge (P). More
specifically, we work in Type IIB compactified on S1 ×T4, with n5 NS5 branes wrapped
on S1 × T4, n1 units of F1 winding on S1, and nP units of momentum charge along S1.

Upon taking the fivebrane decoupling limit, one obtains asymptotically linear dilaton
configurations, which are holographically dual to (doubly scaled) Little String The-
ory [120, 115]. In an appropriate region of the parameter space, there is an AdS3 regime
in the IR, and one can take a further AdS3 decoupling limit [16]. Upon doing so, one
obtains the well-studied NS5-F1 instance of AdS3/CFT2 holography [78, 110].

The NSNS vacuum of the holographic CFT corresponds to the global AdS3 × S3 ×
T4 background, whose worldsheet theory involves an SL(2,R)×SU(2) Wess-Zumino-
Witten (WZW) model [109, 106, 101, 102, 103]. In recent work, a family of gauged
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WZW models involving the same Lie groups has been constructed and studied, pro-
viding an exact worldsheet description of a set of NS5-F1-P black hole microstates
[51, 52, 53, 54, 1].

Processes in which light probes interact with a heavy background such as a black hole
or a black hole microstate give rise to interesting dynamical observables, in particular
mixed heavy-light (HL) correlators. Such correlators have been previously studied in
holographic systems, see e.g. [167, 168, 169, 170, 171]. In the NS5-F1 system, there is
a locus in moduli space at which the holographic CFT is conjectured to be an N =

(4, 4) symmetric product orbifold CFT with target space
(
T4)N /SN , where N = n1n5.

There is now a substantial body of evidence for this conjecture, see e.g. [164, 72, 165,
139, 166, 172, 113, 99, 100]. For recent discussions of holography in related systems,
see [90, 173, 174].

For instance, heavy-light-light-heavy (HLLH) four-point functions have been computed
in the supergravity approximation and/or in the symmetric product orbifold CFT, for
particular sets of heavy and light operators [167, 170, 171]. Having solvable worldsheet
models associated to black hole microstates means we can go much further by taking
into account α′ corrections [51]. Given a worldsheet model describing string dynamics
on a heavy background, the relevant quantities correspond to integrated correlators of
light operators in the worldsheet vacuum.

Worldsheet correlators in global AdS3 were first studied in [103], building in part on [175,
106], and the role of the vertex operators associated with spectrally flowed representa-
tions was highlighted. Further studies include [176, 177, 178, 38, 179]. The spectrum
of chiral primaries and their three-point functions in global AdS3 × S3 × T4 were com-
puted in [172, 113, 99, 100], and shown to match those of the symmetric product orb-
ifold CFT, as studied in [180, 97].

The supergravity backgrounds we consider are known as NS5-F1 circular supertubes
and spectral flows thereof [132, 124, 125, 37, 96, 94]. This includes non-BPS spectrally
flowed supertubes, known as the JMaRT solutions, after the authors of [37]. The associ-
ated worldsheet models are null-gauged WZW models, where before gauging one con-
siders a (10+2)-dimensional target space AdS3 × S3 × Rt × S1

y × T4, and after gauging
one obtains a (9+1)-dimensional spectrally flowed supertube solution. In the asymp-
totic linear dilaton region, the gauging is concentrated mostly in the time and angular
directions of SL(2,R), while in the IR AdS3 region, the gauging is concentrated mostly
along the t and y directions.

These coset models can also be thought of as marginal current-current deformations
of the worldsheet theory for strings in AdS3. These are instances of a larger class of
deformations that undo the decoupling limit with respect to the F1 harmonic function,
i.e. they “add back the 1+” in that function, leading to linear dilaton asymptotics; see
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e.g. [54]. At the level of the dual field theory, a closely related procedure has been ar-
gued to correspond to the so-called single-trace TT̄ irrelevant deformation of the origi-
nal holographic CFT [145, 143], flowing towards a non-local Little String Theory.

To study string correlators in these highly excited backgrounds, we first compute a
large set of physical vertex operators, in both NSNS and RR sectors, building on [52,
54]. These describe linearized perturbations of the background configurations. We
focus primarily on coset states in discrete series representations, including worldsheet
spectral flow, that are dual to chiral primary operator excitations in the HCFT. When
the background is BPS, a subset of these are BPS fluctuations.

The currents being gauged in these cosets are linear combinations of the Cartan gener-
ators of the symmetry algebra. Therefore the “m-basis” for vertex operators, in which
the actions of these currents are diagonalized, is the natural framework to use. In the
IR AdS3 limit, we describe how these operators are related to their global AdS3 × S3

counterparts.

We then compute a large set of correlators in the AdS3 limit. It is well known that in
worldsheet models of global AdS3, one can define an “x” variable that corresponds
to the local coordinate of the holographic CFT [110]. One of the main novelties of
our approach is the identification of the analogous x variable in the coset models we
study. This identification requires some care due to the gauging. Indeed, the construc-
tion of [110] breaks down, because the SL(2,R) raising and lowering operators do not
commute with the BRST charge. A considerable amount of interesting physics follows
from this step. It leads, for instance, to the combination of seemingly simple m-basis
two-point functions into spacetime-local x-basis correlators with highly non-trivial x-
dependence.

Our first main result is of a family of HLLH correlators, for which we obtain fully ex-
plicit expressions. In doing so, we show that these correlators assume a remarkably
simple structure when written in terms of a covering space related only to the heavy
states. From this observation, we obtain our second main result: a closed-form ex-
pression for a set of HL worldsheet correlators with an arbitrary number n of massless
insertions, in terms of a correlator consisting of n light insertions in global AdS3 × S3.
For n = 3 this result can be made completely explicit, and we present a particular ex-
ample in full detail. This constitutes the first correlator in the literature involving three
light worldsheet vertices on a black hole microstate background, dual to a heavy-light
five-point function of the holographic CFT.

A priori, our worldsheet correlators give predictions for correlators of the dual holo-
graphic CFT at strong coupling. Generically, four-point (and higher-point) correlators
are not protected across moduli space, however, a specific set of HLLH correlators have
been shown to precisely agree between supergravity and the symmetric product orb-
ifold CFT [167]. Similarly, the emission spectrum and rate for the unitary analog of
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Hawking radiation from the JMaRT solutions agrees between supergravity and sym-
metric product orbifold CFT [140, 93, 141, 94]. Thus it is natural to investigate more
generally which HL correlators are protected (at large N) between worldsheet and sym-
metric product orbifold CFT, and which are not.

We carry out this comparison for three sub-families of our worldsheet correlators. Firstly,
we compare various sets of HLLH correlators to the symmetric product orbifold CFT,
finding exact agreement in all cases for which the orbifold CFT correlator is available
in the literature. Importantly, this matching holds at leading order in large N, but ex-
actly in α′. This comparison includes a substantial generalization of the supergravity
and holographic CFT correlators computed in [167]. Our comparisons notably include
an example in which the light operators in the symmetric orbifold CFT are twist-two.
In this case, and as shown recently in [181, 182], the Lunin-Mathur covering map used
in the symmetric orbifold computation is different to the one appearing in the world-
sheet computation, making the comparison highly non-trivial. Remarkably, both re-
sults agree exactly in the large N limit.

Secondly, we compute the five-point HLLLH symmetric orbifold CFT correlator corre-
sponding to the three-point worldsheet correlator mentioned above, and also find exact
agreement.

Finally, we compute the analogue of the Hawking radiation rate for the JMaRT solu-
tions. Once again, we find perfect agreement with the dual symmetric product orbifold
CFT, extending the supergravity and holographic CFT results of [140, 93, 141, 94].

A likely explanation for this remarkable agreement is that the heavy states we consider
are quite special. Specifically, the heavy backgrounds are related to the global AdS3 ×S3

vacuum via orbifolding and fractional spectral flow [96, 94]. This fact also underlies our
general formula for the HL correlators with n light insertions. When n > 3, we do not
expect these HL correlators to be generically protected across moduli space; we shall
discuss this in detail in due course.

The structure of the chapter is as follows. In Section 4.1 we construct a large set of
vertex operators of the worldsheet cosets we study, both in the NS and in the R sec-
tors. We then examine their AdS3 limit and relate these vertices to those constructed
in Sec. 2.5.1. In Sections 4.2 and 4.3, we present our main results. We identify the “x”
variable dual to the local coordinate of the holographic CFT, and obtain an extensive
set of novel HLLH correlators, including massless insertions with arbitrary spacetime
weights and charges. The final results are presented in Eqs. (4.81) and (4.93). We then
compare a subset of these results to the symmetric product orbifold CFT, finding exact
agreement for all correlators available in the literature. We present a closed formula for
a large class of worldsheet correlators with an arbitrary number of massless insertions,
Eq. (4.94). We compute a five-point correlator in the symmetric orbifold CFT and find
agreement with our general worldsheet formula. Finally, we compute the amplitude
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describing the unitary analogue of Hawking radiation for the JMaRT microstates. We
discuss our results in Section 4.4.

4.1 Null-gauged description and worldsheet spectrum

We now proceed to describe massless excitations in the worldsheet theories associated
with the heavy backgrounds we study. We describe in detail how to obtain the low-
lying physical states via BRST quantization in these null-gauged models, in both the
NSNS and RR sectors. In the subset of the backgrounds that preserve some supersym-
metry, we discuss the BPS light excitations.

In the full null-gauged models, these massless vertex operators describe linearized fluc-
tuations around the full asymptotically linear dilaton solutions describing the heavy
states, and so can be thought of as worldsheet representatives of light states belonging
to the Little String Theory living on the NS5 branes.

Our main interest in this work will be computing correlators in the IR AdS3 limit, in
which we have reviewed the fact that the backgrounds are related to orbifolded AdS3 ×
S3 × T4 via a spacetime spectral flow large coordinate transformation. We describe
how the AdS3 limit can be taken on the worldsheet vertex operators. This leads to
states that can be understood holographically, in the spacetime (fractionally) spectrally
flowed frame defining the heavy background, as discussed around Eq. (2.89).

4.1.1 BRST quantization

We start by reviewing the quantization of the class of worldsheet coset models intro-
duced in Section 2.7, which describe the propagation of superstrings in the JMaRT back-
grounds and their (BPS and/or two-charge) limits [51, 52, 54, 1].

Before gauging, we have the WZW model associated to the (10+2)-dimensional group
manifold SL(2,R)× SU(2)×Rt ×U(1)y ×U(1)4 as introduced in (2.205). This is de-
scribed simply by adding the extra time direction t and spatial circle y to the matter
content employed in the previous section, together with the corresponding fermionic
partners λt and λy. The latter are bosonized using a canonically normalised scalar H6

as

λt =
1
2

(
eiH6 − e−iH6

)
, λy =

1
2

(
eiH6 + e−iH6

)
, (4.1)

i∂H6 = 2 λtλy , H†
6 = −H6 . (4.2)
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The holomorphic parts of their OPEs are

−t(z)t(w) ∼ y(z)y(w) ∼ −1
2

log(z − w) , − λt(z)λt(w) ∼ λy(z)λy(w) ∼ 1
2

1
(z − w)

,

(4.3)
and they give additional free field contributions to the matter T and G in (2.135) and
(2.136),

T(ty) = ∂t∂t − ∂y∂y , G(ty) = 2i
(
−λt∂t + λy∂y

)
. (4.4)

From now on, T and G will denote the stress tensor and supercurrent of the full model,
including the above terms. Introducing the operators P̂t = i∂t , ˆ̄Pt = i∂̄t , P̂y = i∂y , and
ˆ̄Py = i∂̄y, we gauge the chiral null currents42

J = iJ = J3 + l2K3 + l3P̂t + l4P̂y , J̄ = iJ̄ = J̄3 + r2K̄3 + r3
ˆ̄Pt + r4

ˆ̄Py , (4.5)

which are the quantum operator versions of the classical currents in Eq. (2.215). The
supersymmetric partners of the currents J and J̄ are given in Eq. (3.12).

To perform the null gauging, one introduces additional fermionic and bosonic first-
order ghosts, denoted by (b̃, c̃) and (β̃, γ̃), with conformal weights ∆[c̃] = 0 and ∆[γ̃] =
1/2 [54]. The central charges cb̃c̃ = −2 and cβ̃γ̃ = −1 cancel the additional matter
contribution cty = 3. The (β̃, γ̃) system has no background charge and is bosonized via

β̃ = e−φ̃∂ξ̃ , γ̃ = η̃ eφ̃ . (4.6)

We shall momentarily introduce a modified BRST charge that imposes invariance under
the action of the null currents (3.8) and their supersymmetric partners (3.12). Physical
operators in 9+1 dimensions will be given by states of the ungauged (10+2)-dimensional
WZW model that survive the gauging procedure [54]. Of course, and as we shall see
shortly, the Virasoro conditions and the expressions of the BRST-exact states will be
modified accordingly. We consider a set of mutually local operators before the gaug-
ings, i.e. we perform the analog of the GSO projection in the (10+2)-dimensional model.
We thereby obtain a tachyon-free spectrum in the gauged models.

Underlying this procedure is the fact that for the case of chiral null gaugings, the
Polyakov-Wiegmann identity allows one to rewrite the gauged action of the downstairs
model into a form identical to that of the upstairs model in terms of a new gauge-
invariant variables [146, 118], see also [1]. This is achieved at the level of the path
integral by means of a field redefinition with a Jacobian that is almost trivial except for
a factor which, when exponentiated, gives rise to the additional ghost fields described
above.

42The symbol J for the current operators should not be confused with the total SL(2,R) spin that has
appeared in Section 2.6.4. The meaning should be clear from the context.
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Explicitly, physical operators in the coset model are defined by the cohomology classes
of the BRST charge [54]

Q =
∮

dz
[
c
(

T + Tβγβ̄γ̄

)
+ γG + c̃ J + γ̃λ + ghosts

]
, (4.7)

where the last two terms implement the null-gauging procedure. Whether the resulting
spectrum is supersymmetric or not depends on whether some linear combination(s) of
the following supercharges are BRST-invariant [54],

Qε =
∮

dz e−(φ−φ̃)/2Sε , Sε = exp

(
i
2

6

∑
I=1

ε I HI

)
. (4.8)

For these to be mutually local, we impose the analog of the GSO projection in (10+2)
dimensions,

6

∏
I=1

ε I = 1 , (4.9)

where the sign choice is dictated by requiring compatibility with the (9+1)-d GSO pro-
jection (2.145) and our other conventions, as we shall see below. We shall discuss the
conditions for spacetime supersymmetry after we have analyzed more general Ramond
sector vertex operators, around Eq. (4.29). For now, we emphasize that only a subset of
the backgrounds we consider preserve some spacetime supersymmetry.

4.1.2 The unflowed NS sector

We now analyze physical NS sector states of the gauged models, focusing on states with
no spectral flow charges in SL(2,R) or SU(2), and no winding charge ωy around the y-
circle. As usual, the lightest physical operators come with a single fermionic excitation
on top of the tachyon state

Tj,m,j′,m′ = e−φVj,mV ′
j′,m′ei(−E t+Pyy) . (4.10)

Note that since t is a non-compact direction and ωy = 0, both E and Py are identical on
the left and on the right sectors. For massless states, the L0 and L̄0 Virasoro constraints
both read

0 = − j(j − 1)
n5

+
j′(j′ + 1)

n5
− 1

4
E2 +

1
4

P2
y . (4.11)

Moreover, operators are uncharged with respect to the null-currents J, J̄ in (3.8) if and
only if their quantum numbers are related by

0 = m + l2 m′ +
l3
2

E +
l4
2

Py , 0 = m̄ + r2 m̄′ +
r3

2
E +

r4

2
Py . (4.12)
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We will work in the canonical “−1” picture for the φ ghost. On the other hand, the
fact that φ̃ has background charge Qφ̃ = 0 allows us to build NS states directly at φ̃-
picture zero. BRST-closed operators must then have a vanishing second-order pole in
their OPE with the supercurrent G, and vanishing first-order pole in their OPE with the
fermionic current λ given in (3.12).

As can be expected from the fact that the T4 is untouched by the gaugings, the simplest
solutions are the 6D scalars

V i
j,m,j′,m′ = e−φλiVj,mV ′

j′,m′ ei(−Et+Pyy) , i = 6, . . . , 9. (4.13)

These are direct analogs of the global AdS3 states defined in Eq. (2.148a). They were
considered in detail in [52], and their energies were matched with those of the mini-
mally coupled scalar perturbations on top of the JMaRT background as computed in
supergravity.

The remaining massless vertex operators will constitute the beginning of the main new
results of this work. They are slightly more involved to construct, due to the fact that
their polarization lies in a direction in which the null currents act non-trivially. An
important consequence is that now the raising/lowering operators J±0 and K±

0 do not
commute with the BRST charge Q. So, unlike in global AdS3 × S3 × T4 as reviewed in
Section 2.6, physical states need not have definite SL(2,R) and SU(2) spins. They will,
however, have definite projections m, m̄, m′ and m̄′, and also well-defined energy E and
momentum Py.

This situation is a consequence of the fact that the AdS3 × S3 isometries are absent in
the asymptotically linear dilaton geometry. Nevertheless, these isometries are restored
in the IR, by taking Ry large while keeping ERy and PyRy fixed. In this regime, the
vertex operators of the gauged models will reduce to the AdS3 × S3 expressions in
Eqs. (2.148b) and (2.148c).

Let us consider a generic linear combination of NS sector vertex operators,

e−φ
[(

crψrVj,m−rV ′
j′,m′ + drψrVj,mV ′

j′,m′−r

)
+
(
ctλt + cyλy)Vj,mV ′

j′,m′

]
ei(−Et+Pyy), (4.14)

where the notation mirrors that of the AdS3 × S3 expressions in Eq. (2.149); in particular,
summation over r = +1,−1, 0 is implicit, with “0” corresponding to the “3” direction
of the respective algebras. Of these eight degrees of freedom, two are removed by the
conditions arising from the G and λ terms in the BRST charge, which respectively read

0 = mc3 + (m − j)c+ + (m + j)c− + m′d3 + (j′ + m′)d+ + (j′ − m′)d− + ct E
2
+ cy Py

2
,

(4.15)
and

0 = n5
(
−c3 + l2d3)− l3ct + l4cy. (4.16)



4.1. Null-gauged description and worldsheet spectrum 117

This leaves six states, of which two turn out to be BRST exact. The first exact state
comes, as usual, from the action of G on the tachyon operator (4.10), while the second
one has no global AdS3 counterpart and appears due to the action of λ on the same
state. Their explicit expressions are

ΦG = e−φ

[
2
n5

1
2

V ′
j′,m′

(
(m − j + 1)ψ−Vj,m+1 + (m + j − 1)ψ+Vj,m−1 − 2mψ3Vj,m

)
+

2
n5

1
2

Vj,m

(
(j′ + m′ + 1)χ−V ′

j′,m′+1 + (j′ − m′ + 1)χ+V ′
j′,m′−1 + 2m′χ3V ′

j′,m′

)
+

1
2
(
−Eλt + Pyλy)Vj,mV ′

j′,m′

]
ei(−E t+Pyy), (4.17)

and
Φλ = e−φ

[
ψ3 + l2χ3 + l3λt + l4λy]Vj,mV ′

j′,m′ ei(−E t+Pyy), (4.18)

respectively. Such states are trivially BRST invariant since G and λ square to the Vi-
rasoro constraint (4.11) and the null condition (2.216), and the relevant term in their
product is G(z) λ(0) ∼ λ(z) G(0) ∼ J(0)/z, whose action vanishes by means of the
condition (4.12). In the end, we are left with four physical vertex operators to add to
the four from the T4 directions to give the correct eight polarizations in the holomor-
phic sector in 9+1 dimensions.

We choose a basis for these four physical vertex operators such that, in the AdS3 limit,
they reduce to the basis of global AdS3 vertex operators described around Eq. (2.149).
We thus obtain

W ε = e−φ
[
(ψVj)j+ε,mV ′

j′,m′ +
(
ct

ε λt + cy
ε λy)Vj,mV ′

j′,m′

]
ei(−E t+Pyy), (4.19a)

X ε = e−φ
[
Vj,m(χV ′

j′)j′+ε,m′ +
(
dt

ε λt + dy
ε λy)Vj,mV ′

j′,m′

]
ei(−E t+Pyy), (4.19b)

where the SL(2,R) and SU(2) coefficients are those given in (2.149)–(2.150), while the
novel ones are43

ct
ε = −c3

ε

n5Py

l4E + l3Py
, cy

ε = c3
ε

n5E
l4E + l3Py

, (4.20)

dt
ε = d3

ε

n5l2Py

l4E + l3Py
, dy

ε = −d3
ε

n5l2E
l4E + l3Py

. (4.21)

By construction, the resulting states are polarized transverse to the gauge directions.
As anticipated, they are built out of a linear combination of terms of spin j and j + ε (j′

and j′ + ε). Moreover, at leading order in the large Ry expansion, the coefficients in the
t, y directions go to zero, since E, Py ∼ O(1/Ry), l3,4 ∼ O(Ry), and l2 ∼ O(1).

43The coefficients ct,y and dt,y were reported in the letter [2] with a slightly different notation, related by
ct,y

there = ct,y
ε,here/c3

ε , and likewise for dt,y.
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4.1.3 The unflowed R sector

We now describe the physical states in the R sector of the null-gauged model. The
computation turns out to be more involved than in the NS sector, since the spin fields
necessarily involve all ε-chiralities. As a consequence, we will not find a situation akin
to (4.19) in which a subset of coefficients are exactly those of the global AdS3 × S3 op-
erators. However, we will again show that in the AdS3 limit the vertex operators will
reduce to their global AdS3 × S3 counterparts.

We introduce AdS3 × S3 and Rt × S1
y × T4 spin fields,44

Sε1ε2ε3 = e
i
2 (ε1 H1+ε2 H2+ε3 H3) , Sε6ε4ε5 = e

i
2 (ε6 H6+ε4 H4+ε5 H5) . (4.22)

Recalling the definition of the AdS3 × S3 chirality ε and the mutual locality / chiral
GSO projections in 9+1 and 10+2 dimensions, (2.145), (4.9), we substitute away ε3 and
ε6 via

ε3 = εε1ε2 , ε6 = εε4ε5 . (4.23)

The H4,5 exponentials are spectators under the action of Q, so the parameters ε4, ε5 will
label the vertex operators. For fixed ε4, ε5, we consider ε6 to be controlled by ε through
the second equation in (4.23), and we will form linear combinations of different values
over ε1, ε2, ε.

We work with vertex operators in ghost pictures (qφ, qφ̃) = (− 1
2 ,+ 1

2 ), for which the
λ-constraint is non-trival, while there is no need to worry about BRST-exact states. We
thus make an ansatz for R sector vertices of the following form:

Y ε4,ε5 = e−(φ−φ̃)/2 ∑
ε1,ε2,ε

Fε
ε1ε2ε4ε5

Sε1ε2ε3Sε6ε4ε5Vj,m− ε1
2

V ′
j′,m′− ε2

2
ei(−Et+Py y) . (4.24)

Note that the coefficients Fε
ε1ε2ε4ε5

are not determined by the representation theory of
SL(2, R)×SU(2), since the states will not in general have definite spin.

The cT and c̃ J terms of the BRST operator Q (4.7) act as in the NS sector. Hence the
unflowed, non-winding states of the R sector also satisfy both the Virasoro condition
(4.11) and the bosonic null-gauge constraint (4.12).

Next, the eφ̃λ term in Q leaves ε1,2,4,5 unchanged, so for this term we can treat ε1,2,4,5

as fixed, and focus on the sum over ε = ±. The resulting constraints on F±
ε1ε2ε4ε5

form
a two-dimensional homogeneous linear system, which is degenerate due to the null

44The order of the spin fields in Sε6ε4ε5 has been chosen for convenience in order to reduce clutter in
computations involving cocycle factors.
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condition on the gauge parameters, Eq. (2.216). For each choice of ε1,2,4,5, we have

(l3 + ε4ε5l4)F−
ε1ε2ε4ε5

− i
√

n5 (1 − ε1ε2l2)F+
ε1ε2ε4ε5

= 0 ,

i
√

n5(1 + ε1ε2l2)F−
ε1ε2ε4ε5

− (l3 − ε4ε5l4)F+
ε1ε2ε4ε5

= 0 .
(4.25)

These constraints halve the degrees of freedom. When |l2| = 1 (and so |l3| = |l4|),
some of the Fε

ε1ε2ε4ε5
get set to zero. For a given ε1,2,4,5, when neither of F±

ε1ε2ε4ε5
get set to

zero, their ratio F−
ε1ε2ε4ε5

/F+
ε1ε2ε4ε5

becomes determined. So the 32 d.o.f. remaining after
imposing GSO in (10+2) dimensions have now become 16, corresponding to ε1,2,4,5 in
our parameterization.

Let us pause to discuss how Eq. (4.25) behaves in the large Ry limit. We have l2 ∼ O(1)
and generically |l2| ̸= 1, while l3 + l4 ∼ O(Ry) and l3 − l4 ∼ O(1/Ry), from (3.29)–
(3.32). When ε4ε5 = +1, we obtain F+ ∼ O(1) and F− ∼ O(1/Ry), so at leading order
in large Ry we obtain an operator of purely positive AdS3 × S3 chirality ε. Similarly,
when ε4ε5 = −1, at leading order in large Ry we obtain a purely negative chirality
operator. So we obtain operators of definite AdS3 × S3 chirality ε, with ε4ε5 = ε, exactly
as in Section 2.6, see Eq. (2.165). This explains the sign choice of the (10+2)-d GSO
projection (4.9). As before, one of ε4 or ε5 remains unfixed, say ε4.

We now examine the action of eφG on the R vertex operator ansatz (4.24). This will
reduce the remaining 16 degrees of freedom to the correct 8 physical polarizations in
the holomorphic sector. It leads to the following set of equations (we suppress the ε4, ε5

subscripts on the RHS for ease of notation):

Bε
ε1ε2ε4ε5

≡
(

m + ε1 j − ε1

2

)
Fε
(−ε1)ε2

+ i ε1ε2

(
j′ − ε2m′ +

1
2

)
Fε

ε1(−ε2)

− (εm + ε1ε2m′)Fε
ε1ε2

+
i
√

n5

2
(ε4ε5P − ε E) F(−ε)

ε1ε2 = 0 . (4.26)

Comparing to the AdS3 × S3 BRST condition, the only new term is the fourth and final
one, proportional to F(−ε)

ε1ε2 , which has the effect of mixing the ε chiralities. The first three
terms are unchanged from the AdS3 × S3 BRST condition, so the AdS3 × S3 limit of this
condition is simply to drop the fourth term. Note that Eq. (4.25) implies that half of
these equations are redundant, and allows us to decouple the F+ from the F− coeffi-
cients. Moreover, by using the Virasoro constraint (4.11), the bosonic null-gauge condi-
tion (4.12), and the null constraint on the gauge parameters (2.216), one can show that
for fixed ε4 and ε5, actually only two equations are linearly independent. For generic
values of quantum numbers, such that all denominators appearing below are nonzero,
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the linearly independent equations can be taken to be

F+
−+ = −i

j′ − m′ + 1
2

j + m − 1
2

F+
+− +

−j(j − 1) + j′(j′ + 1) + m2 − m′2

(j + m − 1
2 )
[
m − m′ + l4−ε4ε5l3

2(l2−1)

(
ε4ε5E − Py

)]F+
++ ,

F+
−− =

m − m′ + l4−ε4ε5l3
2(l2−1)

(
ε4ε5E − Py

)
j + m − 1

2

F+
+− + i

j′ + m′ + 1
2

j + m − 1
2

F+
++ .

(4.27)

Alternatively, the two linearly independent equations can generically be taken to be

F−
−+ = −i

j′ − m′ + 1
2

j + m − 1
2

F−
+− +

−j(j − 1) + j′(j′ + 1) + m2 − m′2

(j + m − 1
2 )
[
−m − m′ + n5(l2−1)

2(l4−ε4ε5l3)

(
ε4ε5E + Py

)]F−
++ ,

F−
−− =

−m − m′ + n5(l2−1)
2(l4−ε4ε5l3)

(
ε4ε5E + Py

)
j + m − 1

2

F−
+− + i

j′ + m′ + 1
2

j + m − 1
2

F−
++ . (4.28)

Let us pause again to check consistency with the AdS3 × S3 limit. Setting ε4ε5 = ε and
taking the large Ry limit of Eqs. (4.27), we indeed find that a solution is given by setting
(the AdS3 × S3 limit of) Fε

ε1ε2
to be equal to the values f ε

ε1ε2
specified in Eqs. (2.166)–

(2.168).

Similarly to AdS3 × S3, Eqs. (4.27) are two equations for four unknowns, so for each
ε4, ε5 there is a two-parameter family of solutions, which we take to be parameterized
by the values of F+

+±. If working with Eqs. (4.28), we take the two-parameter family of
solutions to be parameterized by the values of F−

+±. Together with ε4, ε5, this gives 8
physical polarizations.

In Section 2.6, for AdS3 × S3 these unfixed coefficients were chosen such that the vertex
operators transform appropriately under the action of the currents J± and K±. How-
ever, in the null-gauged worldsheet theory associated to the full asymptotically linear
dilaton geometry this need not necessarily be the case.

In the cosets we fix these coefficients by requiring a reasonable IR limit. We treat the
different ε chiralities separately. For ε = 1 we set the particular components F+

+± equal
to their values in the AdS limit, F+

+± = f++±. The rest of the coefficients are then obtained
using Eqs. (4.27) and (4.25). Alternatively, for ε = −1 we set F−

+± = f−+± and again solve
for the remaining coefficients using Eqs. (4.28) and (4.25).

We now turn to the analysis of the spacetime supercharges preserved by the null gaug-
ing, following on from the initial discussion around Eq. (4.8) (see also [54]). The su-
percharge analysis corresponds to the limit of the Ramond sector analysis in which we
take j = j′ = E = Py = 0, m = ε1

2 , m′ = ε2
2 , as can be seen by comparing Eqs. (4.8) and

(4.24). In this limit, the center-of-mass wavefunction trivializes, and we are left with
integrated vertex operators involving only the spin fields. As before, we parameterize
the ε i according to (4.23); ε4 and ε5 are spectators that will label the supercharges; and
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we will sum over ε, ε1, ε2 as in (4.24). The J constraint (4.12) reduces to

ε1 + ε2 l2 = 0 ⇒ ε1ε2 = −l2 , (4.29)

so supersymmetry is preserved in the holomorphic sector if and only if |l2| = 1, and
thus |l3| = |l4|. The γG constraint (4.26) reduces directly to

ε = −1 , (4.30)

so all supercharges have negative AdS3 × S3 chirality. Then the λ constraint in the first
line of (4.25), with F+ = 0, reduces to

l3 + ε4ε5 l4 = 0 . (4.31)

So when |l2| = 1 and |l3| = |l4| ̸= 0, there are four holomorphic supercharges, labelled
by say ε2 and ε4.

Combining this analysis with the corresponding one in the antiholomorphic sector, we
observe consistency with the passage below Eq. (3.82) describing which subset of the
backgrounds are supersymmetric. In terms of the spacetime spectral flow parameters s,
s̄ introduced in Eq. (2.89), we have l2 = 2s+ 1, r2 = 2s̄+ 1. The circular supertube back-
grounds of [122, 123] have s = s̄ = 0 and preserve supersymmetry in both holomorphic
and antiholomorphic sectors; the backgrounds of [132, 124, 125, 96] have s̄ = 0, s ̸= 0
and so preserve supersymmetry only in the antiholomorphic sector; the general JMaRT
backgrounds [37] have s and s̄ both nonzero, and preserve no supersymmetry. As we
will see in the next chapter, the absence of supersymmetry will not obstruct us in the
computation of correlation functions in the AdS3 limit. However, given that the embed-
ding coefficients li, ri enter the bosonic null gauge constraints Eq. (4.12), the number of
admissible BRST-invariant spectrum of excitations on a given background will change.

Picture changing in the R sector

In order to compute two-point functions of operators Y in the Ramond sector of the
gauged model, we need to define their picture-changed versions. Propagators will be
non-vanishing only if the total ghost charges add up to −Qφ = −2 and −Qφ̃ = 0. The
picture-changing operators are given by P+1 ∼ eφG and P̃+1 ∼ eφ̃λ. One possible nat-
ural choice would be to compute the two-point function (superscripts denote (qφ, qφ̃)

charges)
⟨Y(− 3

2 ,− 1
2 )(z)Y(− 1

2 ,+ 1
2 )(w)⟩ . (4.32)

However, it turns out that looking for an explicit expression for the state Y(− 3
2 ,− 1

2 ) is
not the simplest way to go. This is due to the fact that such a state is automatically
BRST closed, so that it must be determined by the somewhat cumbersome procedure
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of removing all the BRST-exact contributions. To avoid this issue, one can distribute the
ghost charges in a different way inside the correlator, and consider instead the equiva-
lent two-point function

⟨Y(− 3
2 ,+ 1

2 )(z)Y(− 1
2 ,− 1

2 )(w)⟩ . (4.33)

Here Y(− 3
2 ,+ 1

2 ) is in the canonical φ̃-picture, while Y(− 1
2 ,− 1

2 ) is in the canonical φ-
picture. Thus, although this forces us to compute two additional R-sector operators
instead of only one, these are constrained by the γ̃λ and γG BRST constraints, respec-
tively. The procedure is then similar to that employed above to construct Y(− 1

2 ,+ 1
2 ). We

thus make the Ansätze

Y(− 3
2 ,+ 1

2 ),ε4ε5 = e−(
3
2 φ− 1

2 φ̃) ∑
ε,ε1,ε2

Lε
ε1ε2ε4ε5

Sε1ε2ε3Sε6ε4ε5Vj,m− ε1
2

V ′
j′,m′− ε2

2
ei(−Et+Py y) ,

Y(− 1
2 ,− 1

2 ),ε4ε5 = e−(
1
2 φ+ 1

2 φ̃) ∑
ε,ε1,ε2

G ε
ε1ε2ε4ε5

Sε1ε2ε3Sε6ε4ε5Vj,m− ε1
2

V ′
j′,m′− ε2

2
ei(−Et+Py y) .

where again ε3, ε6 are substituted away using (4.23). These must satisfy∮
dz : eφ̃λ : (z) Y(− 3

2 ,+ 1
2 ),ε4ε5(w) = 0 ,∮

dz : eφG : (z) Y(− 1
2 ,− 1

2 ),ε4ε5(w) = 0 ,
(4.34)

and

: eφG : (z) Y(− 3
2 ,+ 1

2 ),ε4ε5(w) = Y(− 1
2 ,+ 1

2 ),ε4ε5(w) ,

: eφ̃λ : (z) Y(− 1
2 ,− 1

2 ),ε4ε5(w) = Y(− 1
2 ,+ 1

2 ),ε4ε5(w) .
(4.35)

By solving the above constraints, all the coefficients Lε and G ε can be expressed explic-
itly in terms of the Fε coefficients in Eq. (4.27).

In addition, one can explicitly check that in the AdS limit they correctly reproduce the
expected behaviour. From the definition of the corresponding coset states Y(− 3

2 ,+ 1
2 )

and Y(− 1
2 ,− 1

2 ), one might reasonably expect that they would reduce to the states Y(− 3
2 )

and Y(− 1
2 ) of Section 2.6.4.2 respectively. However, care is needed when comparing

both chiralities and normalisations in the UV and IR. To explain this, let us consider

for instance Y(− 1
2 )

A , whose ε-chirality is ε = +1. (Analogous comments hold for other
operators.) First of all, recall that already in the case of AdS3 × S3 × T4, the picture-
changing operator induces a change in chirality of the state. Indeed, in case “A” of the
analysis in (2.166), the physical states in the “− 3

2 ” picture have negative ε-chirality.

In the full coset models, an analogous pattern occurs with the two picture-changing

operators P+1, P̃+1. The coset state Y(− 3
2 ,+ 1

2 ) that correctly reduces to Y(− 3
2 ),ε=−1

A in the
AdS limit indeed has positive ε-chirality. This means that, in our case under study, the
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coefficients L+
ε1ε2

reduce to −
√

n5
j+j′ f−ε1ε2

. Similarly, the coset state Y(− 1
2 ,− 1

2 ) with nega-

tive ε-chirality reduces to the Y(− 1
2 )

A state. However, in the latter case there is a nor-
malisation factor (i kRy)−1 to account for. This is removed by taking into account the
normalisation of the picture-changing operator, which indeed contains a term which is
dominant in the AdS limit, l3λt + l4λy ∼ (kRy)(λt + λy).

We illustrate the example of the G−
++ coefficient, appearing in the coset state Y(− 1

2 ,− 1
2 ).

The argument holds analogously for all the other coefficients. The explicit expres-
sion of G−

++ in terms of positive coefficients F+
ε1ε2

is obtained by solving the constraints
Eq. (4.34) and Eq. (4.35), without using Eq. (4.11) and Eq. (4.12). For generic quantum
numbers such that the denominators below are non-zero, one finds

(l3 + l4)2

i(E − Py)n5(1 + l2)
G−
++ (4.36)

=
(m + j − 1

2 )F+
−+ + i(j′ − m′ + 1

2 )F+
+− −

(
2(j−j′+1)(j+j′)(l3+l4)

(E−Py)n5(1+l2)
+ (−1+l2)

(1+l2)
(m − m′)

)
F+
++(

−j(j − 1) + j′(j′ + 1) + n5
(m+l2m′)(E−Py)

l3+l4
+ n5

n5(−1+l2
2)(E−Py)2

4(l3+l4)2

) ,

and thus for Ry ≫ 1 one has G−
++ ≃ (ikRy)−1 f+++ +O(R−2

y ), as claimed above.

The expressions for the coefficients G,L are quite lengthy, and we leave the compu-
tation of correlators in the full coset model for future work. Nevertheless, it is easy
to check that in all cases the coefficients reduce to the expected expressions when go-
ing into the IR regime. Consequently, we find that, to leading order in Ry, the coset
two-point functions in the RR sector reproduce the m-basis expressions in Eq. (2.171),
as they should. As will become clear in Section 4.2 below, this does not mean that the
physics in the IR regime of the coset model is that of global AdS3 × S3 ×T4; the bosonic
null gauge condition (4.12) will lead to substantially different correlators in the appro-
priately defined x-basis.

4.1.4 Flowed/winding sectors

We now briefly discuss the states with non-trivial spectral flow we will be interested
in, that is, those corresponding to the description of the higher-weight chiral primaries
described in Section 2.6.

A generic state with excitation numbers ( 1
2 , 1

2 ) in the null-gauged worldsheet theory
must satisfy the the L0 and L̄0 Virasoro constraints

0 =
j′(j′ + 1)− j(j − 1)

n5
− mω + m′ω′ +

n5

4

(
ω

′2 − ω2
)
− 1

4

(
E2 − P2

y

)
, (4.37a)

0 =
j′(j′ + 1)− j(j − 1)

n5
− m̄ω + m̄′ω̄′ +

n5

4

(
ω̄

′2 − ω2
)
− 1

4

(
E2 − P̄2

y

)
, (4.37b)
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where
Py =

ny

Ry
− ωyRy , P̄y =

ny

Ry
+ ωyRy , (4.38)

and we recall that ωy ∈ Z is the winding on the y-circle. The level-matching L0 − L̄0

constraint thus reads

0 = ω(m̄ − m) + m′ω′ − m̄′ω̄′ +
n5

4
(ω

′2 − ω̄
′2)− nyωy . (4.39)

Let us try to follow the global AdS3 procedure as close as possible, and consider states
with ω = ω′ = ω̄′ and m = m′ = m̄ = m̄′. This will be general enough to describe all
coset states corresponding to chiral primary operators of the spacetime theory. Then,
(4.39) forces us to set ωy = 0. Moreover, for states constructed by spectrally flowing
highest/lowest weight primaries, the discussion around Eq. (2.160) shows that the eφG
part of the BRST charge acts as in the unflowed case. Moreover, the action of eφ̃λ is left
unchanged. The derivation of the coefficients involved in the definition of the vertex
operators constructed above then goes through without changes, and we only need to
restrict to the highest (lowest) possible values of m (m′) in each case.

Regarding the gauge constraints, recall that, both in SL(2,R) and in SU(2), the different
modes of the spectrally flowed operators are obtained by acting with the raising/low-
ering operators J±0 and K±

0 on the flowed primary. Although this does not lead to oper-
ators that can be expressed in a simple way in the m-basis, the presence of these differ-
ent modes is crucial in order to obtain the set of physical modes that satisfy the gauge
constraints. Focusing on (lowest-weight) discrete states corresponding to operators of
spacetime weight h in the chiral multiplets, this gives modes described by worldsheet
operators with projections mω = J + n5

2 ω + n = h + n and m′
ω = J′ + n5

2 ω − n′, with
n, n′ ∈ N0, and similarly in the antiholomorphic sector. The bosonic gauge constraints
now read

0 = mω + l2 m′
ω +

l3
2

E +
l4
2

Py , 0 = m̄ω + r2 m̄′
ω +

r3

2
E +

r4

2
Py . (4.40)

As discussed below Eq. (4.13), this implies that J±0 and K±
0 do not commute with the

BRST charge. Consequently and importantly, only the subset of modes satisfying Eqs. (4.40)
will be physical. The implications will be discussed at length in the following section.
Combining the gauge constraints with the conditions discussed below Eq. (4.39) is then
sufficient to obtain the set of BRST invariant states we are interested in.

Before concluding this section, let us review the fact that there is a residual discrete
gauge symmetry in these models, which implies that operators related by shifts of the
following form describe the same physical state [52], see also [1]. Parameterizing (l4, r4)

through p and k as in (3.31), the symmetry is

δ
(
ω, ω′, ω̄′, E, ny, ωy

)
= (1,−l2,−r2, l3,−p,−k) . (4.41)
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In particular, one can trade a unit of SL(2,R) spectral flow (i.e. shift ω by δω = −1)
for k units of y-winding ωy, together with the corresponding other shifts implied by
Eq. (4.41). In particular, the energy acquires a term linear in Ry, namely δE = kRy +

O(1/Ry). The origin of the factor k relating ω and ωy can be traced back to the Zk orb-
ifold appearing in the IR, see Eq. (3.81). It reflects the fact that the CFT state associated
with the background lives in the k-twisted sector of the D1D5 CFT.

The operators discussed in this section do not exhaust the spectrum of the worldsheet
model; for instance we have not discussed operators that do not not satisfy ωy ≡ 0
mod k, which were analyzed in [52]. However, the operators described above comprise
a large set of light operators in spectral flowed sectors, in parallel to the analysis of
global AdS3 × S3, which will be general enough for our purposes in the present work.

4.2 Novel heavy-light correlators from the worldsheet

In this section we describe the computation of two-point correlators in the null gauged
models, corresponding to HLLH correlators of the holographic CFT. To do so, we take
a set of physical coset operators derived in the previous section and flow them to the
IR, in which the geometry is locally an orbifold of AdS3 × S3. We develop a proposal
to define coset operators in an appropriate x-basis corresponding to local operators
of the holographic CFT. We then use this definition to compute a large set of HLLH
correlators. We observe precise agreement between a subset of these and known results
computed in supergravity and holographic CFT, and significantly extend these results.

4.2.1 Light states in the AdS3 regime

We begin by describing in more detail the vertex operators of the null-gauged model in
the AdS3 limit. We send Ry → ∞, keeping t̃ = t/Ry and ỹ = y/Ry fixed. After choos-
ing the gauge τ = σ = 0, this leads to a geometry described by the six-dimensional
metric (3.81), which is related to Zk-orbifolded AdS3 × S3 × T4 by the large coordinate
transformation Eq. (3.82).

We focus initially on light states with no winding or worldsheet spectral flow. As we
have argued in the previous section, the different polarizations and the associated co-
efficients simply reduce to those described in Section 2.6 in the AdS3 limit. Here we
further describe what happens to their quantum numbers in the regime of interest. In
general, the Virasoro condition (4.11) determines j via the solution

j =
1
2
+

√(
j′ +

1
2

)2

+
n5

4

(
P2

y − E2
)

, (4.42)



126 Chapter 4. Worldsheet Correlators in Black Hole Microstates

where we have fixed the sign in order to have j in the range (2.106). As Ry → ∞, we
hold fixed the rescaled energy and momentum

E = ERy , ny = PyRy . (4.43)

Hence, the second term inside the square root in (4.42) is O
(

1/R2
y

)
, and at large Ry the

solution becomes j = j′ + 1 +O
(

1/R2
y

)
, which to leading order is the usual AdS3 ×

S3 relation. The O
(

1/R2
y

)
corrections to j are non-zero when |E | ̸= |ny|, which is

generically the case. To see this, note that at large Ry the gauging parameters associated
to the t and y directions become

l3 = r3 = l4 = −r4 = −kRy +O
(
1/Ry

)
. (4.44)

On the other hand, those associated to the S3 angular directions do not scale with Ry,
and remain l2 = 2s + 1 and r2 = 2s̄ + 1. Hence, at leading order at large Ry, Eqs. (4.12)
take the form

0 = m + (2s + 1)m′ − k

2
(
E + ny

)
, 0 = m̄ + (2s̄ + 1) m̄′ − k

2
(
E − ny

)
, (4.45)

which fix E and ny in terms of m, m′, m̄, m̄′, such that indeed generically E ̸= ±ny.

Although for simplicity we restricted to light states with no winding or worldsheet
spectral flow in Eqs. (4.42) and (4.45), the present discussion and the computations in
the rest of this section are analogous for winding states after replacing the projections
m → mω, etc, where mω was defined above Eq. (4.40). Our results will be valid for
the full set of chiral primaries that can be described within the usual AdS3 × S3 × T4

worldsheet theory, as well as their descendants under the global part of the chiral alge-
bra, that fill out the short multiplet. We shall comment further on states with non-trivial
winding and/or worldsheet spectral flow in due course.

4.2.2 Identifying the spacetime modes

Let us discuss the identification of the spacetime modes. We shall work in a gauge in
which the upstairs SL(2,R) time τ and angular direction σ are fixed. Then, importantly,
the asymptotic boundary of the physical downstairs AdS3 is parameterized by t/Ry

and y/Ry, at a fixed point on the S3. We therefore define

my =
1
2
(
E + ny

)
, m̄y =

1
2
(
E − ny

)
, (4.46)

and we interpret these as the asymptotic mode labels. We will see that this gives rise to
a rich set of correlators that agree with and extend previous results.
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Let us first consider k = 1, and continue to focus mainly on the holomorphic sector.
Given a holographic CFT chiral primary with spacetime weight h and definite (left)
R-charge m′, we wish to construct the dual worldsheet operator by summing over the
corresponding modes. As reviewed in Section (2.6), in global AdS3 × S3 this leads to
x-basis operators of the form Oh,m′(x) = ∑m xm−hOh,m,m′ , where the modes Oh,m,m′ are
identified as either Wj,m,j′,m′ , Xj,m,j′,m′ or Yj,m,j′,m′ , where j and h are related by Eq. (2.180).
For simplicity, we collect all of these modes under the notation Vj,m,m̄V ′

j′,m′,m̄′ . In the
null-gauged models, we replace m → my in the exponent of x in the sum, defining the
worldsheet operator

Oh,m′(x, x̄) ≡ 1
kh+h̄ ∑

my,m̄y

xmy−h x̄m̄y−h̄Vj,m,m̄V ′
j′,m′,m̄′e−imy(t̃−ỹ)e−im̄y(t̃+ỹ) , (4.47)

where we have temporarily included the antiholomorphic dependence to emphasize
the coupling between the left- and right-moving sectors due to the null gauge con-
straints, Eq. (4.12). The normalization factors of k have been introduced for later con-
venience and will be discussed below Eq. (4.81). We emphasize that, from the point
of view of the worldsheet theory, x is an auxiliary complex variable, while t̃ and ỹ are
scalar fields.

Note that combining the bosonic null constraint (4.45) and the definition of the modes
(4.46), we obtain my = m + (2s + 1)m′. This relation parallels the supergravity spectral
flow large gauge transformation (3.82), and we will make use of this observation when
discussing the relation to the holographic CFT in due course.

For k > 1 we follow the same logic, and make the same definition (4.47). This time
however, combining Eqs. (4.45) and (4.46) we obtain

my =
1
k

(
m + (2s + 1)m′) , m̄y =

1
k

(
m̄ + (2s̄ + 1)m̄′) . (4.48)

We shall shortly see that this gives rise to an important technical complication relating
the holomorphic and antiholomorphic sectors.

Before computing our first example of a HLLH correlator, let us briefly return to oper-
ators with non-zero spectral flow and/or winding charge. In Section 4.1.4 we analyzed
a set of coset vertex operators in sectors with non-zero worldsheet spectral flow, corre-
sponding to chiral primaries of higher twists, similar to those in global AdS3 × S3. In
that section we worked with ωy = 0, and reviewed that the large gauge spectral flow
transformation (4.41) relates these to operators with ωy ∈ kZ.

When ωy ̸= 0, in general one should be careful both when examining whether the
states survive the AdS3 limit, and also when defining the AdS3 energy E and angu-
lar momentum ny, since fundamental string y-winding charge can be exchanged for
background flux [52]. However, for operators which have ωy ∈ kZ, the situation is
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straightforward: we shall simply use gauge spectral flow to always work in a frame in
which ωy = 0, and then use the definitions of E and ny in (4.43) and the modes my, m̄y

in (4.46).

The discussion becomes more complicated when considering global SL(2,R)×SU(2) de-
scendants of the spectrally flowed primaries. The isomorphism between the affine
modules gives a simple identification for the highest/lowest weight states, but this
structure becomes more complicated for rest of the multiplet. Indeed, global descen-
dants of the spectrally flowed affine primary state are identified with affine/Virasoro
descendants of the corresponding unflowed equivalent state with non-trivial y-winding,
such that one needs to include string oscillator excitations. The situation is similar to
what happens for the usual series identification Vω=0

j,j ∼ Vω=1
k
2−j,j− k

2
in bosonic SL(2,R),

where, for instance, one has Vω=0
j,m ∼ (j+0 )

m−jVω=0
j,j ∼ (j+−1)

m−jVω=1
k
2−j,j− k

2
, see [54]. We

leave a more detailed exploration of these features in the coset models for future work.
In the remainder of this chapter we will work with operators that have ωy = 0.

4.2.3 HLLH correlators: first example

We now compute a first explicit example of a worldsheet two-point function in the
cosets corresponding to the heavy backgrounds under consideration. For this pur-
pose, we focus on a particular light operator probing the backgrounds with s̄ = 0
(hence r2 = 1), but general s. These describe supersymmetric spectral flowed su-
pertubes [132, 124, 125, 37, 96]. We shall demonstrate that this worldsheet correlator
agrees with both the supergravity and symmetric product orbifold CFT HLLH four-
point functions computed in [167]. We will also significantly extend beyond the set of
correlators computed in [167].

The light operator in this first example is a massless RR operator of Y[A] type with
h = m′ = 1/2 and hence j = 1, see Eq. (2.172). We shall denote this operator by
Y 1

2
. Together with the analogous antiholomorphic part, this vertex operator is dual

to a particular (h, h̄) = ( 1
2 , 1

2 ) chiral primary of the HCFT denoted by O++, which we
introduced in Eq. (2.92). In the six-dimensional supergravity arising from reduction on
T4, this corresponds to a particular combination of fluctuations of a scalar and anti-self-
dual two-form potential, in a tensor multiplet that is not turned on in the backgrounds
we consider. In type IIB supergravity, in the present NS5-F1-P duality frame, these
fields correspond to a particular combination of supergravity fluctuations of the RR
axion and certain components of the RR two-form and four-form potentials. (In the
D1-D5-P frame, the fluctuations are of the RR axion and certain components of the
RR four-form and NSNS two-form potentials). The light operator corresponds to a
particular scalar spherical harmonic of these fields [167, 139, 166].
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In the large Ry limit, we have shown that the Y operators simply reduce to their
AdS3 × S3 cousins of Section 2.6, times the additional exponentials in t and y. These ex-
ponentials give trivial contributions to the two-point functions ⟨Y 1

2
Y 1

2
⟩ once the charge

conservation conditions my,1 = −my,2 and m̄y,1 = −m̄y,2 are imposed. So do the SU(2)
parts of the vertex operators for m′

1 = −m′
2, upon using the appropriate normalization.

Hence, at the level of the two-point function of m-basis operators, i.e. the mode corre-
lators from the spacetime point of view, the only non-trivial contribution comes from
the SL(2, R) part of the upstairs theory.

To illustrate this more explicitly and also more generally, we introduce the following
notation: Oh,m′ will denote a generic massless worldsheet vertex operator in the AdS
limit of the null-gauged model with spacetime weight h and spacetime R-charge m′.
When m′ = h, we shall suppress the label m′ and write Oh. The corresponding holo-
graphic CFT chiral primaries will be denoted by Oh. Let us then consider the following
worldsheet correlator,

⟨s, s̄, k|Oh1,m′
1
(x1, z1)Oh2,m′

2
(x2, z2) |s, s̄, k⟩

≡ 1
k2h1+2h2

∑
my,i ,m̄y,i

∏
i=1,2

x
my,i−hi
i x̄

m̄y,i−hi
i lim

Ry→∞
⟨V1(z1)V2(z2)⟩ , (4.49)

where V denotes a generic m-basis massless vertex operator of the full coset model. The
spacetime correlator corresponds to the worldsheet-integrated version of (4.49).

As discussed below (2.185), the normalization of the vertex operators is chosen so that
the overall factors coming from the worldsheet integration procedure cancel out. After
setting h1 = h2 = h, x1 = 1 and x2 = x, computing the free-field correlators, and
imposing the various charge conservations, the integrated correlator becomes

⟨s, s̄, k| Oh,m′(1)O†
h,m′(x) |s, s̄, k⟩ =

1
k4h ∑

my,m̄y

xmy−h x̄m̄y−h lim
Ry→∞

⟨V1V2⟩ , (4.50)

where ⟨V1V2⟩ stands for the m-basis two-point function with the z-dependence stripped
out, c.f. Eqs. (2.154), (2.171). Note that on the right-hand side, the sum over my involves
the R-charge and other quantum numbers of the operator located at x.

In turn, the remaining correlator is particularly simple in our context. As argued
around Eq. (2.171a), the m-basis two-point functions of worldsheet chiral primary op-
erators reduce to the Gamma functions expression in the bulk term of (2.114) with
the replacement j 7→ J = h. These are simply the coefficients obtained by Mellin-
transforming the usual propagator |1 − x|−4h, which further all become equal to one
when h = 1

2 . Thus, for Y 1
2

in the s̄ = 0 backgrounds, we obtain

⟨s, k| Y 1
2
(1)Y†

1
2
(x) |s, k⟩ =

1
k2 ∑

my,m̄y

xmy− 1
2 x̄m̄y− 1

2 . (4.51)
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To be fully explicit, we take the operator at x2 = x to be a discrete series state D+
j cor-

responding to an anti-chiral primary which, having set J = h = h̄, has m = h + n,
m̄ = h + n̄ and m′ = m̄′ = −h, where n, n̄ are non-negative integers. For the supersym-
metric backgrounds with s̄ = 0 and setting h = 1

2 , the relation (4.48) becomes

my =
n − s
k

, m̄y =
n̄
k

. (4.52)

Hence, the correlator takes the form

⟨s, k| Y 1
2
(1)Y†

1
2
(x) |s, k⟩ =

1
k2 ∑

n,n̄

′
x

n−s
k − 1

2 x̄
n̄
k−

1
2 , (4.53)

where we have denoted the sum with a prime because the range of summation over
n, n̄ is constrained. We now determine this constraint. Subtracting the two equations
in (4.52) and comparing with (4.46), we obtain

my − m̄y =
1
k
(n − n̄ − s) = ny

⇒ n − n̄ = kny + s .
(4.54)

Thus the allowed values of n − n̄ are constrained by ny ∈ Z. To see this in detail, let us
first write s = kp + ŝ with 0 ≤ ŝ < k and p ∈ N. For convenience here and later, we
define a ≡ k− ŝ, so that s = kp − a, and 1 ≤ a ≤ k. Then the sum in (4.53) is restricted
to be over non-negative integers n, n̄ satisfying

n̄ − n ≡ a mod k. (4.55)

We now demonstrate that the correlator (4.53), (4.55) agrees precisely with the super-
gravity and orbifold CFT expressions derived in [167]. In the holographic CFT, we have
a HLLH four-point function ⟨OH(x3)OL(x1)O†

L(x2)O†
H(x4)⟩. Using Möbius symmetry

we set x3 = 0 and x4 → ∞, in which case the heavy operators are interpreted as in/out
states which we similarly denote as |s, k⟩, such that the four-point function becomes
a two-point function in the heavy background. We further set x1 = 1, while x2 = x
parametrizes the usual cross-ratio. Then the supergravity result of [167, Eq. (4.25)] is

⟨s, k|O 1
2
(1)O†

1
2
(x)|s, k⟩ =

x(ŝ−s)/k

|x||1 − x|2
1 − |x|2(1−ŝ/k) + x̄

(
|x|−2ŝ/k − 1

)
1 − |x|2/k , (4.56)

where the overall normalization of the supergravity amplitude was not fixed in [167].
Eq (4.56) was further shown to coincide with the corresponding symmetric orbifold
CFT calculation for the particular cases ŝ = 0 and ŝ = k− 1.

To demonstrate agreement between (4.53) and (4.56), it is easier to work from (4.56)
towards our expression (4.53). We start by rewriting (4.56) in terms of sums akin to
those involved in the definition of the x-basis, i.e. the mode expansion of local operators
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in spacetime as seen from the worldsheet theory. Recalling that ŝ = k− a, the correlator
becomes

⟨s, k|O 1
2
(1)O†

1
2
(x)|s, k⟩ =

x1−p

|x||1 − x|2
1 − |x|2a/k + x̄

(
|x|2a/k−2 − 1

)
1 − |x|2/k

=
x−p

|x|

[
1

|1 − x|2
1 − |x|2

1 − |x|2/k −
1

1 − x̄
1 − |x|2a/k

1 − |x|2/k

]
. (4.57)

Assuming |x| < 1, the RHS can then be expressed as

∞

∑̂
n̄=0

[
∞

∑̂
n=0

k−1

∑
δ=0

− δn̂,0

a−1

∑
δ=0

]
xn̂+ δ

k−p− 1
2 x̄ ˆ̄n+ δ

k−
1
2 . (4.58)

The second term in (4.58) is understood as subtracting the n̂ = 0 and δ = 0, . . . , a − 1
coming from the first term. As a consequence, we can further rewrite the sum over n̂, ˆ̄n
and δ in Eq. (4.58) as a restricted double sum,

∑
n,n̄

′
x

n−s
k − 1

2 x̄
n̄
k−

1
2 , (4.59)

over pairs of non-negative integers (n, n̄) satisfying the following restrictions

n̄ − n ≡ a mod k , n, n̄ ∈ N0 . (4.60)

Indeed, for a = k we simply parametrize n = kn̂+ δ and n̄ = k ˆ̄n+ δ, which enforces the
mod k condition (4.60), so that the sum gives the first term in (4.58). On the other hand,
for a < k we can take n = kn̂ + δ − a and n̄ = k ˆ̄n + δ, so that the factors of a coming
from s and n cancel each other out in the exponent. However, in this case we need to
explicitly subtract the contribution of all pairs (n̂, δ) which lead to n < 0, thus again giv-
ing (4.58). Therefore we observe agreement between (4.53), (4.55) and (4.56), up to the
overall normalization that was not fixed in the supergravity calculation of [167]. Here
and throughout the chapter, we shall not keep track of overall normalization factors.

For ŝ = 0 and ŝ = k− 1, since Eq. (4.56) matches the corresponding symmetric orbifold
CFT correlator, we have demonstrated an explicit match between the worldsheet and
symmetric orbifold CFT correlators. This is striking, as it is an agreement across moduli
space for a correlator that a priori is not covered by an existing non-renormalization
theorem.

This agreement is almost certainly due to the special nature of the heavy states we
consider. Indeed, let us compare the worldsheet x-basis operator Eq. (4.47) with the
discussion of holographic CFT spectral flow in [93, App. A]. Spectral flow in the holo-
graphic CFT is an automorphism of the small (4, 4) superconformal algebra, that is a
useful tool to relate different states and operators. For instance, the heavy backgrounds
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we consider are related by fractional spectral flow to the k-orbifolded NSNS vacuum,
as discussed around Eq. (2.89).

Given a symmetric orbifold CFT correlator, one can perform spectral flow on both the
operators and the background states. The value of the correlator is invariant under this
operation. One can use this to map the correlator in one of our heavy backgrounds to
a correlator in the k-orbifolded NSNS vacuum. Of course, for k = 1, after undoing the
spectral flows one obtains a vacuum correlator.

Taking for simplicity k = 1 and s̄ = 0, the transformation of a chiral primary operator
under this operation is [93, App. A]

Õh(x) = x(2s+1)m′
Oh(x) . (4.61)

The exponent of x directly parallels the x factors appearing in Eq. (4.47). This observa-
tion generalizes straightforwardly to s̄ ̸= 0 and to k > 1, whereupon operators have
fractional modes taking values in Z/k. We will comment further on the relation be-
tween worldsheet and symmetric product orbifold CFT correlators in due course.

4.2.4 Non-BPS HLLH correlators for h = 1
2

The correlator presented in the previous subsection can be readily generalized to com-
pute a set of novel HLLH correlators involving the same light operators, but probing
the more general class of non-supersymmetric backgrounds given by the JMaRT solu-
tions, in which both spacetime (fractional) spectral flow parameters s and s̄ are non-
trivial. Note that the parameters s, s̄, k defining the background must satisfy s(s + 1)−
s̄(s̄ + 1) ∈ kZ, from combining Eqs. (3.84) and (2.89).

The same steps as described in the previous subsection lead directly to the following
generalization of Eq. (4.53):

⟨s, s̄, k| Y 1
2
(1)Y†

1
2
(x) |s, s̄, k⟩ = 1

k2 ∑
n,n̄

′
x

n−s
k − 1

2 x̄
n̄−s̄
k − 1

2 . (4.62)

To make precise the restricted summation, analogously to s = kp − a we write s̄ =

kp̄ − ā, with 1 ≤ ā ≤ k. We parametrize n = kn̂ + δ − a and n̄ = k ˆ̄n + δ − ā in
order to satisfy the condition coming from the subtracted gauge constraint generalizing
Eq. (4.55), namely

n̄ − n ≡ (a − ā)mod k . (4.63)



4.2. Novel heavy-light correlators from the worldsheet 133

Then, by summing over all possible values of n̂, ˆ̄n and δ such that n and n̄ are non-
negative and satisfy (4.63), defining b ≡ min(a, ā) we obtain

⟨s, s̄, k|Y 1
2
(1)Y†

1
2
(x, x̄)|s, s̄, k⟩ =

1
k2

x−p x̄− p̄

|x| × (4.64)[
1

|1 − x|2
1 − |x|2

1 − |x|2/k −
1

1 − x̄
1 − |x|2a/k

1 − |x|2/k − 1
1 − x

1 − |x|2ā/k

1 − |x|2/k +
1 − |x|2b/k

1 − |x|2/k

]
.

As before, the second and third terms remove contributions for which either n or n̄
become negative, while the fourth one compensates for the over-counting of cases in
which both n and n̄ are negative.

At first sight, Eq. (4.64) may seem to depend on the values of a and ā separately, in
apparent contradiction with the fact that, as is implied by (4.63), only their difference
matters. However, the RHS of Eq. (4.64) can be rewritten as

1
k2

x−s/k x̄−s̄/k

|x||1 − x|2
1

(1 − |x|2/k)

( x
x̄

)(ā−a)/2k
× (4.65)[

(1 − x)|x|(a−ā)/k + (1 − x̄)|x|−(a−ā)/k − |1 − x|2|x|−|a−ā|/k
]

,

which explicitly depends only the orbifold parameter k, the spectral flow parameters s
and s̄, and the difference a − ā ≡ s̄ − s mod k, as expected. Note that (4.65) is symmetric
under the simultaneous replacements x ↔ x̄ and s ↔ s̄.

The worldsheet correlators (4.64)–(4.65) are one of the main results of this thesis. Un-
like the s̄ = 0 supersymmetric example of the previous subsection, generically the
corresponding supergravity or holographic CFT correlators have not been computed
in the literature.

Since the backgrounds are non-supersymmetric when s and s̄ are both non-zero, again a
priori there is no obvious reason to expect the correlators to be protected across moduli
space.

However, better-than-expected agreement between supergravity and holographic CFT
has already been observed for a closely related observable describing the analog of
the Hawking radiation process [140, 141, 94]; we shall comment further on this in due
course.

Moreover, for the particular cases in which s and s̄ are congruent to either 0 or k− 1
mod k, the holographic CFT correlator follows straightforwardly from the techniques
in App. A of [167], providing another exact match even for the non-supersymmetric
backgrounds. We shall generalize this further in the next section.
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4.3 More general heavy-light correlators

In this section we present HLLH correlators for generic chiral primaries of conformal
weights h > 1/2. We then progress to describe higher-point heavy-light correlators.
As an application, we compute the analogue of the Hawking radiation process from
the backgrounds under consideration. We also compute a five-point HLLLH correlator
of the symmetric product orbifold CFT, and demonstrate precise agreement with the
corresponding worldsheet correlator.

4.3.1 HLLH correlators for general h

We now consider HLLH correlators where the light operators are chiral primaries with
h ≥ 1. For these correlators the m-basis SL(2, R) two-point functions do not trivialize,
and the resulting sums become more complicated.

By following the method outlined in the previous sections, the worldsheet computation
leads to restricted sums of the form

1
k4h ∑

n,n̄

′
x

n−2hs
k −h x̄

n̄−2hs̄
k −h Γ(2h + n)Γ(2h + n̄)

Γ(2h)2Γ(n + 1)Γ(n̄ + 1)
. (4.66)

For k = 1, there are no restrictions on the allowed values of the mode numbers n and
n̄, and so the sum can be performed straightforwardly to obtain

⟨s, s̄, k = 1|Oh(1)O†
h(x, x̄)|s, s̄, k = 1⟩ =

x−2hs x̄−2hs̄

|1 − x|4h . (4.67)

This expression agrees with the corresponding HLLH correlator of the symmetric prod-
uct orbifold CFT, as a direct consequence of the discussion around Eq. (4.61).

On the other hand, for k > 1 the sum becomes more difficult to carry out explicitly
since n and n̄, which appear in the arguments of the Gamma functions, must satisfy the
constraint

n̄ − n ≡ 2h (s̄ − s) mod k , (4.68)

which is the direct generalization of Eq. (4.63). We shall first briefly describe a method
to construct these correlators iteratively, starting from the h = 1

2 case obtained above,
then present an improved method.

Our iterative construction operates by expressing the additional coefficients in the sum
in Eq. (4.66) in terms of differential operators acting on results for lower values of h. Let
us illustrate how this works for the simplest non-trivial case h = 1. From the general
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expression (4.66), we have

⟨s, s̄, k|Oh=1(1)O†
h=1(x, x̄)|s, s̄, k⟩ =

1
k4 ∑

n,n̄

′
x

n−2s
k −1 x̄

n̄−2s̄
k −1(n + 1)(n̄ + 1) (4.69)

=
1
k4

x−
2s
k x̄−

2s̄
k

|x|2 (kx∂x + 1)(kx̄∂x̄ + 1)∑
n,n̄

′
x

n
k x̄

n̄
k .

Hence, the differential operators act on a sum similar to the one analyzed in the pre-
vious section. For the general case, the procedure iterates. We redefine a and ā to be
generalizations of the a and ā used in the h = 1/2 correlators (see above Eqs. (4.55)
and (4.63)), where we replace s 7→ 2hs, s̄ 7→ 2hs̄, such that a − ā ≡ 2h(s̄ − s)mod k.
Then we obtain

⟨s, s̄, k|Oh(1)O†
h(x, x̄)|s, s̄, k⟩ = 1

k4h
x−

2hs
k x̄−

2hs̄
k

|x|2h
Dh,kD̄h,k

Γ(2h)2 ∑
n,n̄

′
x

n
k x̄

n̄
k , (4.70)

where we have introduced differential operators of order 2h − 1 defined as

Dh,k ≡ (kx∂x + 2h − 1) · · · (kx∂x + 1) , (4.71)

and where

∑
n,n̄

′
x

n
k x̄

n̄
k =

(1 − x)|x|(a−ā)/k + (1 − x̄)|x|−(a−ā)/k − |1 − x|2|x|−|a−ā|/k

|1 − x|2 (1 − |x|2/k)

( x
x̄

)(ā−a)/2k
.

(4.72)

Although it leads to correct results, the procedure outlined above quickly becomes
cumbersome, and leads to seemingly complicated expressions for higher values of h.
In addition, it does not appear to give any insight into whether the results are likely
to match with computations in the symmetric product orbifold CFT. However, we can
improve on both these points with a different method. We now describe this method
by first rederiving the h = 1/2 correlators of the previous section, and then generaliz-
ing the improved method to arbitrary values of h, and also to higher-point heavy-light
correlators.

Let us thus re-examine the general expression Eq. (4.66), and consider the case in which
a − ā = 0 for simplicity. We can take into account the restriction on the allowed values
of n and n̄ by considering an unrestricted sum over arbitrary positive integers by making
use of a “Kronecker comb”. In other words, we impose that n − n̄ = 0 mod k by
including extra coefficients of the form

∑
q∈Z

δn−n̄,kq =
1
k

k−1

∑
r=0

e2πir n−n̄
k , (4.73)

where the final equality is obtained by Fourier transformation, and represents a simple
form of the discrete Poisson summation formula. The RHS in Eq. (4.73) is interesting,
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because the exponentials can be absorbed into terms involving powers of x and x̄. Ex-
plicitly, we can rewrite the expression (4.66) with a − ā = 0 as

1
k4h+1

x−
2hs
k x̄−

2hs̄
k

|x|2h ∑
n,n̄≥0

k−1

∑
r=0

un
r ūn̄

r
Γ(2h + n)Γ(2h + n̄)

Γ(2h)2Γ(n + 1)Γ(n̄ + 1)
, (4.74)

where ur, ūr are the kth roots of x and x̄, respectively; writing x
1
k ≡ |x| 1

k e2πi Arg(x)
k ,

ur ≡ x
1
k e2πi r

k , ūr ≡ x̄
1
k e−2πi r

k . (4.75)

Thus, inside the convergence region |x| < 1 we can exchange the order of the sums,
such that the unrestricted sum over integers n and n̄ leads to the usual expression for the
CFT two-point function. However, it is evaluated at the different values of ur, instead
of the insertion point itself. Thus, the expression (4.74) becomes

1
k4h+1

x−
2hs
k x̄−

2hs̄
k

|x|2h

k−1

∑
r=0

1
|1 − ur|4h . (4.76)

In fact, we can rewrite this in a slightly more general form. Indeed, it is easy to “unfix”
the first insertion point and write the full expression of the HLLH correlator in terms of
x1 and x2. To do so, we introduce kth roots of x1, x2, and x2/x1 via uk

1,r1
= x1, uk

1,r2
= x2,

and uk
21,r = x2/x1, and then make use of the identity

1

|x1|
4h
k

k−1

∑
r=0

1
|1 − u21,r|4h =

1
k

k−1

∑
r1,r2=0

1
|u1,r1 − u2,r2 |4h . (4.77)

This gives

⟨s, s̄, k|Oh(x1, x̄1)O†
h(x2, x̄2)|s, s̄, k⟩

∣∣∣
2h(s−s̄) = 0 mod k

=
1

k4h+2

(
x2

x1

)−h (2s+1)
k
(

x̄2

x̄1

)−h (2s̄+1)
k

|x1x2|2h( 1
k−1)

k−1

∑
r1,r2=0

1
|u1,r1 − u2,r2 |4h .

(4.78)

The general case is computed entirely analogously. We must simply replace n − n̄ 7→
n − n̄ + (a − ā) in Eq. (4.73), which induces some extra phases. The appropriate gener-
alization of Eq. (4.77) is given by

1

|x1|
4h
k

k−1

∑
r=0

e2πir(a−ā)/k

|1 − u21,r|4h =
1
k

k−1

∑
r1,r2=0

e2πi(r2−r1)(a−ā)/k

|u1,r1 − u2,r2 |4h . (4.79)

Then the HLLH correlator with generic values of the orbifold parameter k, the spectral
flow parameters s and s̄, and the weight of the light chiral primary operator h, takes the



4.3. More general heavy-light correlators 137

form

⟨s, s̄, k|Oh(x1, x̄1)O†
h(x2, x̄2)|s, s̄, k⟩

=
1

k4h+2

(
x2

x1

)−h (2s+1)
k
(

x̄2

x̄1

)−h (2s̄+1)
k

|x1x2|2h( 1
k−1)

k−1

∑
r1,r2=0

e2πi(r2−r1)(a−ā)/k

|u1,r1 − u2,r2 |4h ,
(4.80)

where the sum is over the k-th roots of the insertion points x1 and x2, as defined above
(4.77), and where 2h(s̄ − s) ≡ a − ā mod k.

Note that we can relax the chiral primary condition and consider operators in which
m′ ̸= ±h. We shall continue to focus on massless vertex operators, however this could
be generalized further. In addition, by making use of the phases and the x1,2 powers on
the RHS of (4.80), we can rewrite the result in a cleaner form,

⟨s, s̄, k|Oh,m′(x1, x̄1)O†
h,m′(x2, x̄2)|s, s̄, k⟩

=
1
k2

k−1

∑
r1,r2=0

(
u2,r2

u1,r1

)−m′(2s+1) ( ū2,r2

ū1,r1

)−m̄′(2s̄+1) |u1,r1 u2,r2 |2h(1−k)

k4h|u1,r1 − u2,r2 |4h .
(4.81)

4.3.2 Matching between worldsheet and symmetric product orbifold

The appearance of the kth roots of the physical insertions x1,2 in Eq. (4.81) is related
to the fact that the holographic description of the heavy backgrounds involves heavy
states in k-twisted sectors of the boundary CFT. The same feature appears in certain
computations performed using the Lunin-Mathur covering space technique [97], specif-
ically when there are operators of twist k inserted at the origin and infinity of the CFT
plane, and when there are other untwisted operators in the correlator. Then the coordi-
nate transformation to the k-fold covering space is precisely x = uk.

Thus, when the light worldsheet operators correspond to untwisted operators of the
symmetric product orbifold CFT, it is natural to identify u with the coordinate on the
k-fold covering space that trivializes the twist operators involved in the definition of
the heavy states.

The sum over the different roots generates the usual phases included in the definition
of fractional modes by summing over the different copies of the theory [97],

O m
k
=
∮ dx

2πi

k

∑
r=1

O(r)(x)e
2πim
k (r−1)xh+m

k −1 . (4.82)

Moreover, the fractional spectral flow defining the background, when mapped to a k-
fold covering space, becomes integer spectral flow with parameters 2s + 1 and 2s̄ +
1 [96, 94]. Hence, one can generalize the discussion around Eq. (4.61) and simply con-
sider the appropriate powers of ui,ri to arise from performing spacetime spectral flow



138 Chapter 4. Worldsheet Correlators in Black Hole Microstates

on the operators, in the k-fold covering space. Finally, the last factor on the RHS of (4.81)
corresponds to the usual two-point function evaluated at the roots, including the nec-
essary Jacobian factors arising from mapping to the k-fold covering space, |∂u/∂x|2h.
Obtaining precisely this Jacobian is the justification for the factors of k introduced in the
definition of the x-basis operators in Eq. (4.47). Thus, we see that symmetric orbifold
CFT HLLH correlators for which the covering space is x = uk agree in both structure
and value with the worldsheet correlator (4.81).

By contrast, for twisted operators, the interpretation of our worldsheet result (4.81) is
more involved: the Lunin-Mathur covering map for such correlators is not x = uk. To
understand the precise relation, we focus on light operators of twist two, and show that
Eq. (4.81) nevertheless matches with the symmetric orbifold CFT also in this case. The
relevant four-point function was studied recently in [183, 181, 182] in the SymN(T4)

CFT. At leading order in large N, the correlator is dominated by a contribution from a
covering space with genus zero, where the copy indices of the light twist-two operator
act on different k-strands corresponding to the heavy state. One of the light insertions
effectively joins together two k-strands into a 2k-strand, and the other light insertion
effectively cuts the 2k-strand back to two strands of length k. For this process, and
setting for simplicity s = s̄ = 0 as done in [181], the relation between the physical-
space cross-ratio x and the covering-space cross ratio v is45

x(v) =
(

v + 1
v − 1

)2k

. (4.83)

The correlator of interest is written in terms v(x) as defined through Eq. (4.83), and
involves the sum over the 2k pre-images of x and also an N- and k-dependent overall
factor. However, due to the v → 1/v symmetry of the map (4.83), there are actually
only k distinct contributions [182], corresponding to distinct ramified coverings of the
base space. In more detail, up to overall normalization the correlator takes the form
[182, Eq. (4.17)]

⟨k|Oh,m′(x, x̄)O†
h,m′(1)|k⟩ ∼

k−1

∑
r=0

[
vK0

r (vr − 1)K−(vr + 1)K+ × c.c.
]

, (4.84)

where |k⟩ = |s = s̄ = 0, k⟩. The exponents K0 and K± are defined in [182, Eq. (4.17b)];
for this particular correlator, they evaluate to K0 = −2h and K± = 2h(1 ∓ k) ± 2m′.
Upon inserting the explicit solutions

vr(x) =
x

1
2k e

iπr
k + 1

x
1

2k e
iπr
k − 1

, r = 0, . . . , k− 1 , (4.85)

45Note that in [181, 182], the base (physical) space coordinates are denoted by z or u rather than our x,
while the covering space coordinates are denoted by t or x rather than our v.
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where, as before, x
1

2k stands for a particular (2k)th root of x, the final expression remark-
ably coincides with Eq. (4.81). The analysis for the JMaRT states and for more general
light insertions can be carried out analogously.

Recall that, as reviewed in Section 2.5.1, at a generic spacetime dimension h there is
a degeneracy in the twist n of light states in the symmetric product orbifold CFT. An
interesting feature of the worldsheet correlator (4.81) is that it is independent of this
twist n. Recall also that, for untwisted light operators, the worldsheet correlator has
the same structure as the covering space method of the symmetric product orbifold
CFT. The fact that the agreement of HLLH correlators extends to (at least some) twisted
light operators is thus remarkable from the point of view of the holographic CFT. De-
spite the more complicated covering map, the above discussion demonstrates how, for
these correlators, the end result agrees with an expression whose structure is that of the
simple map x = uk.

4.3.3 Higher-point heavy-light correlators

Our general expression for HLLH correlators, Eq. (4.81), together with the matching to
the symmetric product orbifold CFT that we have observed so far, motivate a deeper
exploration. Thus, we now describe how local x-basis operators are seen from the spec-
trally flowed frame as indicated by our null-gauged worldsheet models. This will allow
us to extract consequences for worldsheet three-point and higher-point functions, cor-
responding to holographic CFT correlators with two heavy states and three or more
light operators.

The AdS3 limit of the holomorphic gauge condition, (4.45), upon using the definition
of my in Eq. (4.46), reads

0 = m + (2s + 1)m′ − kmy . (4.86)

We wish to re-interpret this constraint in the local coordinate basis of the holographic
CFT. A priori, it is perhaps not obvious that this is a useful thing to do, since the usual
x-basis operators are constructed by resumming the action of J±0 , which does not com-
mute with the BRST charge in the coset theory. However we shall see that it will be
very useful.

Let us observe that there are two notions of x-type local coordinates in the worldsheet
model. The one used so far in Section 4.2 and the present section is the physical x
coordinate of the gauged models. However, before gauging, there is an analogous
coordinate for the upstairs SL(2,R) algebra. We will denote the associated coordinate by
the complex variable u; we will see momentarily that uk = x, so that there will be no
clash with the u used above.
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The differential operator x∂x + h corresponds to the quantity my, as can be seen by com-
paring Eqs. (2.110), (2.115), (4.47). On the other hand, the upstairs SL(2,R) projection m
corresponds to an analogous operator in the u variable: we write this as u∂u + h − β,
where we have allowed for a shift β, whose precise form will become clear shortly,
as will the reason for its existence. Then Eq. (4.86) can be expressed in terms of these
differential operators as

kx∂x = u∂u + (2s + 1)m′ + h(1 − k)− β . (4.87)

In order that this condition is solved by uk = x, we choose

β = h(1 − k) + (2s + 1)m′ . (4.88)

Thus the role of β is two-fold. On the one hand, the first term in (4.88) effectively
replaces the weight by h → hu ≡ kh, which further supports the discussion above
about u corresponding to a covering space coordinate in the holographic CFT. It also
generates the Jacobian factor obtained in Eq. (4.81). On the other hand, the second term
in (4.88) takes into account the shift arising from spacetime spectral flow.

We now use this to obtain an improved construction of gauge-invariant operators di-
rectly in the x-basis, built upon u-basis operators of the upstairs SL(2,R), i.e. without
relying on their spacetime Virasoro mode expansion as in (4.47). Although such a con-
struction gives equivalent results at the level of worldsheet two-point functions (4.81),
its importance for higher-point functions was highlighted recently in [38]. The con-
struction proceeds as follows:

1. We consider an operator whose upstairs SL(2,R) part is expressed in the usual
local SL(2,R) basis, Vh(u, ū), where for simplicity we set h = h̄. We multiply this
by an SU(2) vertex operator V ′

j′,m′,m̄′ . We suppress the exponentials of t and y,
since they have weight zero in the AdS3 limit, and their only effect is taken into
account through (4.86) and its antiholomorphic counterpart. We introduce the
notation

Ôh,m′,m̄′(u, ū) ≡ Vh(u, ū)V ′
j′,m′,m̄′ . (4.89)

2. We introduce the above β-shift by multiplying by an extra factor uβūβ̄.

3. We sum the resulting operator over all insertion points u such that uk = x.

Explicitly, we define

Oh,m′,m̄′(x, x̄) ≡ 1
k2h+1 ∑

uk=x

uβūβ̄Ôh,m′,m̄′(u, ū) . (4.90)
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Comparing with Eq. (4.47), using the Kronecker comb (4.73) to impose the constraints
as above, we indeed have

Oh,m′,m̄′(x, x̄) ≡ 1
kh+h̄ ∑

my,m̄y

xmy−h x̄m̄y−h Vj,m,m̄V ′
j′,m′,m̄′

=
1
k2h ∑

m,m̄

′
x

1
k [m+(2s+1)m′]−h x̄

1
k [m̄+(2s̄+1)m̄′]−h Vj,m,m̄V ′

j′,m′,m̄′

=
1

k2h+1 ∑
uk = x

∑
m,m̄

um−h+(2s+1)m′+h(1−k)ūm̄−h+(2s̄+1)m̄′+h(1−k)Vj,m,m̄V ′
j′,m′,m̄′

=
1

k2h+1 ∑
uk = x

uβūβ̄ Ôh,m′,m̄′(u, ū) . (4.91)

We note that in the symmetric product orbifold CFT, when mapping the Sk-invariant
untwisted operators O(x) = ∑k

r=1 O(r)(x) to the k-fold covering space, using the inverse
relation to (4.82),

O(r)(x) =
1
k ∑

m
O m

k
x−

m
k −he−

2πim
k (r−1), (4.92)

one obtains an expression closely analogous to Eq. (4.90).

We now exploit the expression (4.91) to study higher-point functions. We first rewrite
the HLLH correlator (4.81) in the simple form

⟨s, s̄, k|Oh1,m′
1
(x1, x̄1)O†

h2,m′
2
(x2, x̄2)|s, s̄, k⟩ =

1
k4h+2 ∑

uk
i =xi

uβ1
1 ūβ̄1

1 uβ2
2 ūβ̄2

2
|u1 − u2|4h , (4.93)

with βi = hi(1 − k) + (2s + 1)m′
i, β̄i = hi(1 − k) + (2s̄ + 1)m̄′

i, and h1 = h2 = h, and
where the charge conservation m′

1 + m′
2 = 0 is understood. We then deduce that the

worldsheet correlator with n light insertions with weights hi and charges m′
i, m̄′

i is given
by the following straightforward generalization of (4.93) (in which we partially sup-
press antiholomorphic quantities):

⟨s, s̄, k|Oh1,m′
1
(x1) . . .Ohn,m′

n
(xn)|s, s̄, k⟩

=
1

kH+H̄+n ∑
uk

i =xi

(
n

∏
ℓ=1

uβℓ

ℓ ūβ̄ℓ

ℓ

)
⟨Ôh1,m′

1
(u1) . . . Ôhn,m′

n
(un)⟩ , (4.94)

where H = h1 + · · ·+ hn, and ⟨Ôh1,m′
1
(u1) . . . Ôhn,m′

n
(un)⟩ stands for the global AdS3 ×

S3 vacuum n-point function evaluated at the roots of the original insertion points.

The expression (4.94), which holds for generic values of s, s̄, k and generic light weights
and charges hi, m′

i, m̄i, constitutes one of the main results of this thesis. In Eq. (4.94), the
n = 3 case can be made quite explicit, as we shall do so in the next subsection.

The above result can straightforwardly seen to include spectrally-flowed vertex opera-
tors, as follows. Setting ω′ = ω̄′ = ω for simplicity, the bosonic null-gauge condition
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Eq. (4.40) in the AdS limit becomes

0 = mω + (2s + 1)m′
ω − kmy , 0 = m̄ω + (2s̄ + 1)m̄′

ω − km̄y , (4.95)

where, for discrete states in the lowest weight representation, mω = hω + n, hω =

J + n5 ω/2 and m′
ω = h′ω + n5 ω/2 − n′. As a consequence, the exponent β of the

covering space coordinate u gets replaced by β 7→ βω = hω(1 − k) + (2s + 1)m′
ω, and

the power of k in the normalisation factor is modified accordingly. Thus, for the vertex
operators in the coset models, the net effects of the spectral flow procedure are the
replacements h 7→ hω, m 7→ m′

ω. This is understood by the fact that when a boundary
light operator has the spacetime dimension h = J that renders the SL(2,R) spin above
the unitary bound Eq. (2.106), it corresponds holographically to a spectrally-flowed
worldsheet vertex operator [101]. This implies that the structure of the correlator in
Eq. (4.94) is not drastically modified when ω ̸= 0.

It is important to note, however, that the entire computational complication due to
worldsheet spectral flow remains present in the resulting vacuum correlator. Indeed,
we see that the n-point function on the heavy state is now written in terms of a vacuum
n-point function of spectrally-flowed states. It is thus natural to expect that the AdS3

selection rules carry over to n-point functions in the JMaRT microstates. We conclude
that the generalisation of Eq. (4.94) to the case of worldsheet spectrally-flowed states
reads

⟨s, s̄, k|Oω1
h1,m′

1
(x1) . . .Oωn

hn,m′
n
(xn)|s, s̄, k⟩ = (4.96)

1
kHω+H̄ω+n ∑

uk
i =xi

(
n

∏
ℓ=1

uβω,ℓ
ℓ ūβ̄ω,ℓ

ℓ

)
⟨Ôω1

h1,m′
1
(u1) . . . Ôωn

hn,m′
n
(un)⟩ ,

where Hω = ∑i hω,i and the light operators Oωi
hi ,m′

i
are x-basis spectrally-flowed world-

sheet vertex operators.

We emphasize that the construction we have outlined in this section only holds in the
IR AdS3 × S3 limit. In the full asymptotically linear dilaton geometry, the identification
of the modes my and m̄y as defined in (4.46) breaks down, and the t and y exponen-
tials can no longer be ignored. This is consistent with the fact that in the UV the dual
holographic theory is not a CFT, but is instead a little string theory. Since little string
theories are non-local, it is correct that the above definition of local operators does not
apply. Note, however, that the mode correlators computed in the m-basis still make per-
fect sense, and carry information about string perturbation theory in the full geometry.

Let us speculate on which subset of the above correlators can be expected to agree with
those of the symmetric product orbifold theory. Since our expressions for the general
correlators (4.94), (4.96) involve vacuum correlators, it is natural to conjecture that for
these particular heavy backgrounds, the heavy-light correlator is protected whenever
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the global AdS3 × S3 vacuum correlator appearing in (4.94), (4.96) is protected. Recall
that, in the global AdS3 × S3 vacuum, two-point and three-point correlation functions
of chiral primaries are protected [184], while four-point and higher-point functions are
generically renormalized. So heavy-light correlators with two or three light insertions
on these backgrounds may be protected between worldsheet and symmetric product
orbifold CFT. It may even be possible to prove a non-renormalization theorem gener-
alizing [184]; work in this direction is in progress. For now however, we next compute
a heavy-light correlator with three light insertions in both worldsheet and holographic
CFT.

4.3.4 An HLLLH correlator in worldsheet and holographic CFT

We now investigate the general expression for our worldsheet correlator (4.94), in a
particular example with three light insertions, and compare it to the symmetric product
orbifold CFT. We shall observe another highly non-trivial agreement.

We consider three light insertions living in the untwisted sector of the holographic CFT,
with weights (h1, h2, h3) = ( 1

2 , 1
2 , 1). In the dual CFT notation, we are then interested

in computing the correlator ⟨O 1
2
(x1)O 1

2
(x2)O†

1(x3)⟩H. We further focus on heavy back-
grounds with s = kp with p ∈ Z and s̄ = 0.

We start by evaluating the general expression (4.94) for this particular worldsheet cor-
relator. In the worldsheet theory associated to the global AdS3 × S3, the O 1

2
correspond

to two RR states, while O1 is an NSNS state polarized on the S3 directions. The (inte-
grated) vacuum three-point functions for these chiral primaries were studied in [99]. In
our notation, they take the form

⟨ORR
h1

(x1)ORR
h2

(x2)O† NSNS
h3

(x3)⟩ =
1

N1/2

√
(2j1 − 1)(2j2 − 1)(2j3 − 1)−1

|x12|2(h1+h2−h3)|x13|2(h1+h3−h2)|x23|2(h2+h3−h1)
,

(4.97)
where j1 = h1 +

1
2 , j2 = h2 +

1
2 , and j3 = h3. The relevant values for us are simply ji = 1,

and upon a global SL(2,C) transformation to set x3 = 1, we have

⟨O 1
2
(x1)O 1

2
(x2)O†

1(1)⟩ =
1

N1/2
1

|1 − x1|2|1 − x2|2
. (4.98)

In order to compute the HLLLH correlator in the worldsheet coset models correspond-
ing to the JMaRT backgrounds, we must sum (4.98) evaluated at all kth-roots of the
insertion points. An explicit expression can be obtained following the arguments of
Sec. 4.2.3, using the following generalisation of Eq. (4.77) and Eq. (4.79) for the case of
three insertions,

k

|x3|
2(α+β)

k

k−1

∑
r1,2=0

1
|1 − u13,r|2α|1 − u23,r|2β

=
k−1

∑
r1,2,3=0

1
|u3,r3 − u1,r1 |2α|u3,r3 − u2,r2 |2β

, (4.99)
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where ui,ri = x1/k
i e2πi ri/k and ujℓ,r = (xj/xℓ)1/ke2πi r/k with α = β = 1, one obtains

⟨O 1
2
(x1)O 1

2
(x2)O†

1(1)⟩H =
1
k7

(x1x2)p |x1x2|
2
k−1

|1 − x1|2|1 − x2|2
1 − |x1|2

1 − |x1|
2
k

1 − |x2|2

1 − |x2|
2
k

. (4.100)

The result (4.100) constitutes the first computation of a heavy-light worldsheet correla-
tor with three light insertions probing a black hole microstate.

We now show that the same result can be obtained from the HCFT at the symmetric
orbifold point. We follow the method used in [167, App. A] for the HLLH correlator
reviewed in Section 4.2.3. The heavy states we use indicate that we should work in the
k-twisted sector of the theory. The operators can be written in terms of the fermions
introduced in Eq. (2.97). For the h = 1

2 chiral primaries, and for each strand of k copies
of the theory, this simply reads

O 1
2
=

k

∑
r=1

O 1
2 ,(r) = − i√

2

k

∑
r=1

ψ+Ȧ
(r) ψ̃+Ḃ

(r) ϵȦḂ = − i√
2

k−1

∑
ρ=0

ψ+Ȧ
ρ ψ̃+Ḃ

ρ ϵȦḂ , (4.101)

while for the h = 1 operator we find

O†
1 =

k

∑
r=1

O1,(r) =
1
4

k

∑
r=1

ψ−Ȧ
(r) ψ−Ḃ

(r) ψ̃−Ċ
(r) ψ̃−Ḋ

(r) ϵȦḂϵĊḊ

=
1
4k

k−1

∑
ρi=0

δρ1+ρ2,ρ3+ρ4 ψ−Ȧ
ρ1

ψ−Ḃ
ρ2

ψ̃−Ċ
ρ3

ψ̃−Ḋ
ρ4

ϵȦḂϵĊḊ. (4.102)

We will work in the bosonized language, in which

ψ+1̇
ρ = ieiHρ , ψ−2̇

ρ = ie−iHρ , ψ+2̇
ρ = eiKρ , ψ−1̇

ρ = e−iKρ , (4.103)

Here Hρ and Kρ are canonically normalized bosonic fields, in terms of which the (unit
normalized) heavy states take the form [167]

|H⟩ = |s = kp, k⟩ =
[

ΣkΣ̃k

k−1

∏
ρ=0

ei(p+ 1
2−

ρ
k )(Hρ+Kρ)ei( 1

2−
ρ
k )(H̃ρ+K̃ρ)

] N
k

|0⟩ , (4.104)

where Σk and Σ̃k are the twist operators. Note that the contribution of Σk and Σ̃k to the
correlators will simply factorize, since the ψρ fermions diagonalize the twisted bound-
ary conditions. Choosing the labelling of the insertion points for later convenience, the
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correlator to be computed is then

⟨O 1
2
(x1)O 1

2
(x2)O†

1(x3)OH(x4)O†
H(x5)⟩ =

1
k

k−1

∏
ρ,ρ′=0

k−1

∑
ρi=0

δρ3+ρ4,ρ5+ρ6 (4.105)

〈 [
ψ+Ȧ1

ρ1
ψ̃+Ḃ1

ρ1
ϵȦ1 Ḃ1

]
(x1)

[
ψ+Ȧ2

ρ2
ψ̃+Ḃ2

ρ2
ϵȦ2 Ḃ2

]
(x2)

[
ψ−Ȧ3

ρ3
ψ−Ḃ3

ρ4
ψ̃−Ċ3

ρ5
ψ̃−Ḋ3

ρ6
ϵȦ3 Ḃ3

ϵĊ3Ḋ3

]
(x3)

ei(p+ 1
2−

ρ
k )(Hρ+Kρ)(x4)e

−i
(

p+ 1
2−

ρ′
k

)
(Hρ′+Kρ′ )(x5)ei( 1

2−
ρ
k )(H̃ρ+K̃ρ)(x4)e

−i
(

1
2−

ρ′
k

)
(H̃ρ′+K̃ρ′ )(x5)

〉
.

Clearly, charge conservation implies ρ = ρ′. For the same reason, the correlator van-
ishes unless ρ1 = ρ3 and ρ2 = ρ4, or ρ1 = ρ4 and ρ2 = ρ3, or both. An analogous
statement holds with ρ3, ρ4 replaced by ρ5, ρ6, hence all contributions trivially satisfy
the ρ3 + ρ4 = ρ5 + ρ6 constraint. Consequently, we only really need to sum over all
possible values of, say, ρ1 and ρ2, and also compute the product over ρ. In this way, up
to an irrelevant numerical factor, the holomorphic free field contractions give

k−1

∑
ρ1,ρ2=0

1

|x2hH
45 x13x23|2

(
x41x35

x51x34

)p+ 1
2−

ρ1
k
(

x42x35

x52x34

)p+ 1
2−

ρ2
k
(

x̄41 x̄35

x̄51 x̄34

) 1
2−

ρ1
k
(

x̄42 x̄35

x̄52 x̄34

) 1
2−

ρ2
k

(4.106)
where hH is the weight of the heavy state.

We can now take x3 → 1, x4 → 0 and x5 → ∞, and perform the sums over ρ1 and
ρ2 explicitly. Upon doing so, we find that the structure of this orbifold CFT correlator
Eq. (4.106) precisely matches the worldsheet correlator (4.100).

4.3.5 Hawking radiation from the worldsheet

As a final application of our results, we now use the HLLH correlator (4.81) to com-
pute the amplitude that describes the analogue of the Hawking radiation process for
the JMaRT backgrounds [140, 141, 93, 94]. In the bulk, this process is ergoregion ra-
diation, which is a feature of the full asymptotically flat JMaRT solutions [147]. The
ergoregion does not survive the fivebrane decoupling limit [52] or AdS3 decoupling
limit, however aspects of the process can still be studied quantitatively in those lim-
its. This process has been interpreted as an enhanced analogue of Hawking radiation,
since both are described by the same microscopic process in the holographic CFT [140].
Indeed, acting on a thermal state, this vertex operator gives precisely the spectrum
and rate of Hawking radiation of the corresponding black hole, while acting on the
states dual to the JMaRT solutions yields their characteristic spectrum and rate of emis-
sion [140, 141, 93, 94].

The emission spectrum and rate for general k, s, s̄ was computed in supergravity and
symmetric product orbifold CFT in [94], building on the results of [140, 141, 93]. We
will reproduce these results from the worldsheet CFT.
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We start with a specific HLLH correlator in which the light operators are given by min-
imally coupled scalars in six dimensions, after reducing on the T4. The correspond-
ing vertex operators were defined in Eq. (4.13). These are not chiral primaries of the
boundary theory, but are their superdescendants within the short multiplet, so the holo-
graphic correlator arising in the AdS3 limit is easily computed by using the techniques
outlined in the previous sections. The amplitude of interest involves an initial state
consisting of a probe excitation on top of the JMaRT background, a vertex operator
V associated to a light insertion, and a final state given by the black hole microstate.
Schematically we have

⟨s, s̄, k| O(x) |s, s̄, k+ probe⟩ = ⟨s, s̄, k| O(x)O†(0) |s, s̄, k⟩ . (4.107)

To begin with, we work with k = 1. Up to an overall sign, and considering the lowest
energy state, the holomorphic part of the amplitude for the Hawking emission of a
single quanta of dimension h = l

2 + 1 and whose corresponding vertex operator has
charge m′ = k − l

2 reads [93]

AL(x) =
1

x(1+α) l
2−α k+1

=
1

x
l
2+1−α(k− l

2 )
. (4.108)

Here l
2 denotes the total angular momentum of the probe on the S3 part of the geometry,

while k is the number of J+0 operators acting on the state with the lowest projection,
appearing in the definition of the vertex operator. To compare their computation with
our worldsheet result, one uses the following (notation) map:

k − l
2
7→ m′ ,

l
2
+ 1 7→ h , α 7→ l2 = m+ n = 2s + 1 . (4.109)

Taking care of the cylinder-to-plane conversion factor x−
l
2−1, one obtains

AL(x) =
1

x2h−m′(2s+1)
. (4.110)

We now perform the analogous computation in the worldsheet cosets. From Eq. (4.107),
in the worldsheet formalism all we need to do is to insert the second operator at the
boundary origin, i.e. to take the x2 → 0 limit in Eq. (4.81) (with k = 1 for now). This
gives

lim
x2→0

xm′(2s+1)
2 x̄m̄′(2s̄+1)

2 ⟨s, s̄, 1|O(m′,m̄′)
h (x1)O(m′,m̄′)†

h (x2)|s, s̄, 1⟩

=
1

x2h−m′(2s+1)

1
x̄2h−m̄′(2s̄+1)

, (4.111)

in agreement with (4.110) upon including the antiholomorphic contribution.
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The procedure is analogous for general k, s, s̄. We again evaluate the amplitude for
x2 → 0 by including the appropriate Jacobian factor for the light state, and obtain

lim
x2→0

k2hxm′
2
(2s+1)

k +h(1− 1
k )

2 x̄m̄′
2
(2s̄+1)

k +h(1− 1
k )

2 ⟨s, s̄, k|O(m′,m̄′)
h (x1)O(m′,m̄′)†

h (x2)|s, s̄, k⟩

=
1

k2h+2

k−1

∑
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e2πi r1
k (m

′(2s+1)−m̄′(2s̄+1))

xh(1+ 1
k )−m′ (2s+1)

k
1 x̄h(1+ 1

k )−m̄′ (2s̄+1)
k

1

k−1

∑
r2=0

e2πi r2
k (−m′(2s+1)+m̄′(2s̄+1))

=
1
k2h

1

xh(1+ 1
k )−m′ (2s+1)

k x̄h(1+ 1
k )−m̄′ (2s̄+1)

k

∑
ℓ∈Z

δm′(2s+1)−m̄′(2s̄+1), kℓ , (4.112)

where in the first equality we have exchanged the finite sum with the limit, and x =

x1, m = m1 = −m2. When k = 1, this reduces to Eq. (4.111). The Kronecker comb
enforces the constraint (2s + 1)m′ − (2s̄ + 1)m̄′ ∈ kZ, which is a direct consequence
of the difference beween left and right null-gauge constraints (4.45) in the regime of
interest. Moreover, by first multiplying the correlator in Eq. (4.81) by xn x̄n̄ we can
also consider descendant insertions. This condition is in agreement with the results
present in [141, 94] (see also [52]), where our ny has to be identified with their λ from
the supergravity analysis.

When considering the case of multi-particle emission, the above amplitude must be
multiplied by a combinatorial factor, as explained in [140, 93, 141]. To obtain the emis-
sion rate, one needs to consider the unit amplitude evaluated at (x, x̄) = (1, 1), im-
plying that the spatial dependence trivialises. Nevertheless, the crucial feature related
to the presence of the prefactor k−2h, which enters the final expression of the emission
rate46, is reproduced by (4.112).

Even though the spatial dependence of the two-point function Eq. (4.112) plays a trivial
role in the emission rate, the power of x has a precise meaning in terms of the energy
spectrum of the nearly unstable Hawking quanta [93, 94]. Indeed, consider the holo-
morphic part of the energy of these modes. In the conventions of [94], the correspond-
ing spectrum reads

ωkRy =
1
2

αk(mϕ − mψ)−
1
2

ᾱk(mϕ + mψ)− 2
(

l
2
+ 1
)

. (4.113)

In our notation, (mϕ −mψ) = 2m′, (mϕ +mψ) = −2m̄′ , and l
2 + 1 = h, so this becomes

−ωRy =
2h
k

− α m′ − ᾱ m̄′ , (4.114)

46To compare to the final results of [141, 94] one must include the additional factor
√
kν, where ν is

related to the Bose enhancement, which is not visible for a single-particle process.
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where α, ᾱ are the same as in Eq. (2.89). Finally, taking care of the cylinder-to-plane
conversion factor for a field of spacetime conformal dimension h, we obtain

−ωRy = 2h
(

1 +
1
k

)
− α m′ − ᾱ m̄′ . (4.115)

The RHS is exactly the sum of the exponents of x and x̄ in Eq. (4.112). Furthermore,
we note that this relation is precisely the sum of the left and right bosonic null gauge
constraints Eq. (4.45) for discrete states with n = n̄ = 0.

The emission takes place when the energy is positive, ω > 0, and corresponds to quanta
leaving the AdS region; in a near-decoupling limit, these quanta escape into an asymp-
totically flat region. Indeed, the exponent of x in Eq. (4.112) becomes positive and the
amplitude diverges at large x, such that the energy indeed turns from negative to posi-
tive. This is consistent with the description of the ergoregion radiation process as pair
creation [185].

4.4 Discussion

In this chapter we have computed a large set of worldsheet correlators describing the
dynamics of light modes probing a class of highly excited supergravity backgrounds,
the JMaRT solutions, in the fivebrane decoupling limit. The results are exact in α′ and
were obtained by exploiting the solvability of the null-gauged WZW models corre-
sponding to these backgrounds.

These coset models provide a powerful method to calculate HLLH correlators, since
the heavy states are already taken into account in the worldsheet CFT itself. Thus
spacetime HLLH correlators are two-point functions on the worldsheet, which can be
computed once the vertex operators have been constructed.

We constructed physical vertex operators in both NS and R sectors, and then computed
several families of correlators in the full coset models. We primarily focused on short
strings belonging to discrete representations of the affine SL(2,R) algebra, as well as a
tower of modes generated by worldsheet spectral flow. Our main techniques can also
be employed in more general sectors of the theory.

In the IR AdS3 limit, due to the non-trivial gauging, the identification of the x variable
dual to the local coordinate of the holographic CFT requires some care. Once we made
this identification, we computed several non-trivial HLLH correlators explicitly, and
analyzed them in the context of AdS3/CFT2.

Vertex operators that are local on the AdS3 boundary are constructed by summing over
all allowed values of the spacetime modes. An important step in our analysis consists of
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identifying these modes. We chose a gauge in which the IR AdS3 boundary coordinates
are (t, y) of the timelike R and spacelike S1 directions of the (10+2)-dimensional model
before gauging. We therefore identified the spacetime mode indices with the quantum
numbers my and m̄y defined in (4.46). Then the gauge constraints (4.12) satisfied by the
physical states imply that the my mode numbers take values in Z/k. This is how the
worldsheet coset models capture the fact that when k > 1, the heavy background states
of the symmetric product orbifold CFT are in the k-twisted sector [96, 94].

We observed that, at large N, several correlators agree exactly between worldsheet and
symmetric product orbifold CFT. The fact that our correlators are exact in α′ signifi-
cantly strengthens previous results that compared HLLH correlators between the sep-
arate supergravity and symmetric product orbifold CFT regimes.

To demonstrate our method, we presented a detailed example with an (h, h̄) = ( 1
2 , 1

2 )

chiral primary. The worldsheet correlator involves a non-trivial structure in terms of
the boundary coordinate x, Eq. (4.56). When the background is BPS, the correlator
agrees precisely with the supergravity and symmetric product orbifold CFT correlators
computed in [167]. The non-BPS JMaRT backgrounds were not considered in [167],
however we demonstrated that the agreement extends also to those backgrounds.

Similarly to correlators on the background of the global AdS3 vacuum, the holomorphic
and antiholomorphic sectors are related through the constraint my − m̄y = ny, where
ny is the quantized momentum on the y circle. Thus, while the spacetime modes my,
m̄y are fractional, their difference must be an integer. This mirrors the m − m̄ ∈ Z

condition in the SL(2,R)/U(1) cigar coset and in global AdS3, which ensures that the
wavefunctions are single-valued. In our models, the difference of the left and right
gauge constraints leads to the mod k condition in Eq. (4.68), constraining which of the
SL(2,R) modes can contribute. The HLLH correlator is then obtained by summing over
a specific linear combination of m-basis worldsheet two-point functions.

Our analysis of these correlators involving the h = 1/2 light operator indicated a way
to obtain similar expressions for more general correlators. We considered general mass-
less vertex operators, which correspond to symmetric product orbifold CFT operators
in short multiplets whose top component is a chiral primary of arbitrary weight h, in-
cluding those that live in twisted sectors. We computed all HLLH correlators where
the light operators are massless, and where the heavy states correspond to any of the
general family of orbifolded JMaRT configurations, including their BPS limits. The re-
sult assumes a remarkably simple form, presented in Eq. (4.81). It is built from three
distinct factors: (1) the global AdS3 × S3 vacuum two-point function of the light opera-
tors inserted at the k-th roots of the original insertion points xi, (2) the Jacobian factor
associated with the corresponding change of coordinates, and (3) an additional factor
coming from the way in which operators of definite R-charge transform under spectral
flow. The product of these factors is then summed over all such roots. This structure
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reflects that one can formulate the computation in a k-fold covering space of the target
space.

We then obtained a similar expression for all higher-point functions of the schematic
form ⟨H|O1(x1, x̄1) . . .On(xn, x̄n)|H⟩, with heavy JMaRT states, and n massless inser-
tions. This is presented in Eq. (4.94). We expect this to be valid for an arbitrary number
of massless insertions of weights hi and charges m′

i and m̄′
i, and also arbitrary param-

eters (k, s, s̄) for which a consistent background exists. In this way, we have provided
a recipe for computing such (n + 2)-point heavy-light correlators in terms of n-point
global AdS3 × S3 vacuum correlation functions of the corresponding light insertions.

It is known that vacuum two- and three-point functions of chiral primary operators are
protected [184]. We therefore conjectured that heavy-light correlators in JMaRT heavy
states are protected whenever the corresponding vacuum correlator in our general for-
mula (4.94) is protected. We investigated a particular HLLLH five-point function—the
first of its kind in the literature—and found that worldsheet and symmetric product
results agree. We leave a more general investigation of this proposal to future work.

As an application, we have shown that our results describe the analog of the Hawk-
ing radiation process for the general family of non-BPS JMaRT black hole microstates,
generalizing the analysis in [93, 46, 94].

In addition to these main results, our work has clarified some important technical de-
tails. For instance, since the full asymptotically linear dilaton JMaRT backgrounds do
not have AdS3 × S3 isometries, the SL(2,R) and SU(2) raising and lowering operators
J±, K± of the (10+2)-dimensional ungauged worldsheet model do not commute with
the gauging. Thus, the NS sector vertex operators of the cosets do not have well-defined
SL(2,R) or SU(2) spins, see for instance Eq. (4.19). The same holds for the chirality quan-
tum number ε in the R sector, as discussed around Eq. (4.24).

The absence of the SL(2,R) spin has important implications also from the holographic
point of view. It underlines the fact that the construction of x-basis operators is only
appropriate in the AdS3 limit, and breaks down otherwise. The breakdown of the x co-
ordinate is a signal of the non-locality of the non-gravitational little string theory that
lives on the worldvolume of the NS5 branes, dual to the full asymptotically linear-
dilaton models. Thus the states we have constructed contain valuable information
about the dual LST and, more generally, about non-AdS holography [145, 143, 144]. We
have nevertheless demonstrated how, in the AdS3 limit, our vertex operators acquire
definite spins and reduce to the appropriate expressions.

Our results suggest several directions for future investigations. First, it would be in-
teresting to compute more general worldsheet correlators, both in the AdS3 limit and
in the full models. Our correlators are likely to generalize to a larger set of worldsheet
vertex operators that correspond to operators in the symmetric product orbifold CFT
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that transform nicely under spacetime spectral flow [186]. In global AdS3, correlators
are known to involve a highly non-trivial structure related to the non-conservation of
the spectral flow number [103]. More generally, one would like to describe the physics
of long/winding strings and their correlators in these backgrounds. A number of in-
teresting techniques recently developed in [38, 179] (for the bosonic case) are likely to
have interesting implications for computations in the coset theories, for which SL(2,R)
constitutes a crucial building block.

It would also be interesting to study such correlators by using conformal perturbation
theory on top of a putative dual CFT explicitly associated to the NSNS singular point
[50] of the moduli space, defined along the lines of [174, 90]. Doing so would require an
understanding of how to define the JMaRT heavy states in such a theory. Separately, it
would be interesting to investigate the case n5 = 1, which would require going beyond
the RNS formalism, as done in related recent developments [187, 87, 188]. Here one
should go though the coset construction starting with the supergroup PSU(1,1—2).

In the full asymptotically linear dilaton models, more general correlators can be com-
puted by using the vertex operators constructed in Section 4.1. However, a shift in
perspective will be needed, since the x coordinate seems unlikely to be of any use in
this regime. Although a priori in our case it is more natural to work in the m-basis,
it seems plausible to relate our results to the momentum-space correlators studied in
[143, 145], see also [189]. In those papers, the authors work with a related null-gauged
model, and further interpret their holographic LST correlators in terms of an irrelevant
(single-trace) TT̄-deformation of the IR CFT2.

Separately, it will be interesting to investigate our proposal for the subset of heavy-light
correlators that we expect to be protected by considering the dual computations in the
symmetric product orbifold CFT.

Last, but not least, one would like to explore further how these correlation functions
encode more detailed information about the physics of the microstate backgrounds we
are working with. For instance, two-point functions are expected to probe the multipole
ratios of the geometry [190, 191], while certain worldsheet three-point functions should
be related to the Penrose process in the JMaRT backgrounds [192].

Although the JMaRT backgrounds are atypical microstates, the HLLH correlators we
have computed approach black-hole-like behaviour at large k, reflecting the properties
of the backgrounds in this limit. We expect that the techniques developed in this work
will help further the study of more typical black hole microstates in string theory.
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Chapter 5

A proof for string three-point
functions in AdS3

In most known cases of the AdS/CFT duality, the bulk theory is approximated by su-
pergravity, due to the notorious difficulty in performing stringy computations. The
case of string theory in AdS3 with pure NS fluxes is a notable exception. The dynam-
ics of closed strings propagating on this background can be described at the worldsheet
level in terms of the Wess-Zumino-Witten (WZW) model built upon the universal cover
of SL(2, R). This model is believed to be exactly solvable, hence providing a concrete
scenario in which the AdS/CFT duality might be proven at finite ’t Hooft coupling.

The worldsheet CFT, being both Lorentzian and non-compact, enjoys a number of
unusual features. Perhaps the most important one is the non-trivial action of the so-
called spectral flow outer-automorphisms of the affine sl(2,R)k algebra. Spectral flow
plays a central role in the determination of the string spectrum and partition function
[101, 102]. In a semi-classical description of long string states, the spectral flow charge
ω can be thought of as a winding number around the asymptotic boundary of AdS3.
However, it is not a conserved quantity since the associated circle becomes contractible
in the AdS3 interior.

Spectral flow also introduces important complications, especially concerning the com-
putation of worldsheet correlation functions [103]. Indeed, while being Virasoro pri-
maries, spectrally flowed vertex operators are not affine primaries. Their operator
product expansions (OPEs) with the conserved currents become increasingly compli-
cated with growing ω, and contain many unknown terms. Hence, some conventional
techniques of two-dimensional CFT can not be applied directly.

The interest in correlation functions of the SL(2,R)-WZW model is explained by their
important holographic applications, especially in the context of superstring theory in
AdS3 × S3 ×T4 (or K3) [78, 110, 100, 113], and for the dynamics of light probes in black
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hole microstates [51, 52, 53, 54, 193, 1, 2, 3]. Worldsheet vertex operators are functions of
the worldsheet coordinate z, and of an additional continuous parameter x, which plays
the role of the holomorphic coordinate on the conformal boundary. Hence, z-integrated
correlators are identified with n-point functions of local operators in the holographic
CFT. Although the precise definition of the latter remains elusive, a concrete albeit per-
turbative proposal was put forward recently in [90, 174].

The generators of the spacetime Virasoro algebra are in one-to-one correspondence
with those of the sl(2, R)k algebra, and the worldsheet quantum numbers determine
the conformal weight h of dual CFT operators [78]. Suppressing the anti-holomorphic
quantities, we denote the spectrally-flowed worldsheet vertex operators in the so-called
x-basis as Vω

jh (x, z), where j is the SL(2, R) spin, while h is the spacetime weight.

In this chapter, we consider genus-zero worldsheet correlators of spectrally flowed ver-
tex operators. Recently, progress in the computation of three- and four-point functions
has been made in [88, 38, 179], thanks to the systematic use of the constraints deriving
from global and local symmetries. In particular, the latter imply a set of complicated
linear recursion relations among correlators involving different assignments of spec-
tral flow charges. These are difficult to derive in general. However, in [38] it has been
shown that they can be recast in the form of partial differential equations thanks to the
introduction of the so-called ‘y-variable’. In this new basis, a vertex operator is now de-
fined as a coherent superposition of states with different spacetime weights, denoted
as Vω

j (x, y, z). The authors of [38] were able to infer a closed-form expression for all
three-point functions

⟨Vω1
j1

(x1; y1; z1)V
ω2
j2

(x2; y2; z2)V
ω3
j3

(x3; y3; z3)⟩ . (5.1)

This proposal can be understood intuitively from the existence, in some cases, of a
holomorphic mapping of the worldsheet to the AdS3 boundary, which has branching
points of order ωi at each of the corresponding insertions. The same authors provided
a closed-form expression for four-point functions in a follow-up work [179]. These
proposals satisfy a number of highly non-trivial consistency checks. However, in both
cases, these expressions were derived on a case-by-case basis, and for a finite set of
sufficiently low spectral flow charges.

In this work, we provide a proof for the conjecture of [38] concerning the three-point
functions (5.1). Our methods rely heavily on the so-called ‘series identifications’ of
SL(2,R), originally formulated in [175, 101], which constitute a set of isomorphisms
among affine modules of the sl(2, R)k algebra with adjacent spectral flow charges. The
corresponding identities at the level of y-basis operators were obtained recently in [39].
This allows us to derive the differential equations satisfied by (and the resulting y-
dependence of) all spectrally flowed three-point functions, including those that do not
admit a holomorphic cover.
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The structure of the chapter is as follows. In section 5.1, we establish our conventions
and review the derivation of the recursion relations satisfied by the SL(2,R) correla-
tion functions of [88]. We also introduce the y-basis operators of [38] together with
their conjecture for three-point functions. Our main results are presented in section
5.2, where derive the partial differential equations satisfied by all y-basis three-point
functions, and show that all the corresponding solutions are compatible with the pro-
posal of [38]. In particular, generic odd parity correlators are considered in section 5.2.1,
while even parity correlators are obtained in section 5.2.2. Edge cases and correlators
with unflowed insertions are treated in sections 5.2.3 and 5.2.4, respectively. Finally, in
section 5.2.5 we fix the y-independent normalisation factors, following the arguments
presented in [39]. We conclude with some discussions and outlook for future work in
section 5.3.

5.1 Conventions and brief review of the conjecture

Let us consider the bosonic SL(2,R)-WZW model at level k > 3. In this section, we
introduce the spectrum and the associated vertex operators. We also briefly review the
analysis of [88] leading to the recursion relations satisfied by the correlation functions
of the model, and present the conjecture put forward in [38] for spectrally flowed three-
point functions.

5.1.1 Vertex operators

We focus mainly on the holomorphic sector. Compared to previous chapters, the present
focuses on the purely bosonic sector of the theory. For this reason, in this chapter the
bosonic currents will be denoted by J.

The conserved currents satisfy

Ja(z)Jb(w) ∼ ηabk/2
(z − w)2 +

f ab
c Jc(w)

z − w
, (5.2)

with a = +,−, 3, η+− = −2η33 = 2, f+−
3 = −2 and f 3+

+ = − f 3−
− = 1. In the

so-called x-basis, vertex operators are denoted as Vω
jh (x, z). They depend both on the

worldsheet coordinate z and on x, the coordinate on the boundary of AdS3 associ-
ated with the holographic CFT. Moreover, h and j denote the spacetime weight and
the SL(2,R) spin, respectively. The worldsheet conformal weight is

∆ = − j(j − 1)
k − 2

− hω +
k
4

ω2 , (5.3)

while ω ≥ 0 is the spectral flow charge.
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Two types of states must be taken into account [101]. For operators defined upon un-
flowed states in the continuous representations Cα

j , the relevant quantum numbers are

j ∈ 1
2
+ iR and m = α ± n , with α ∈ [0, 1) and n ∈ N0 , (5.4)

where m stands for the spin projection of the corresponding unflowed state. On the
other hand, for the unflowed discrete highest/lowest-weight representations D±

j we
have

1
2
< j <

k − 1
2

and m = ±(j + n) , with j ∈ R and n ∈ N0. (5.5)

In both cases we have h = m + k
2 ω when ω > 0, while h = j for ω = 0.

The vertex operators are defined by means of their OPEs with the currents:

J+(w)Vω
jh (x, z) =

ω+1

∑
n=1

(
J+n−1Vω

jh

)
(x, z)

(w − z)n + · · · , (5.6a)

J3(w)Vω
jh (x, z) = x

ω+1

∑
n=2

(
J+n−1Vω

jh

)
(x, z)

(w − z)n +

(
J3
0 Vω

jh

)
(x, z)

(w − z)
+ · · · , (5.6b)

J−(w)Vω
jh (x, z) = x2

ω+1

∑
n=2

(
J+n−1Vω

jh

)
(x, z)

(w − z)n +

(
J−0 Vω

jh

)
(x, z)

(w − z)
+ · · · , (5.6c)

where the ellipsis indicates higher order terms in (w − z). Unflowed vertex operators
will be denoted by Vj(x, z). The zero modes act as differential operators in x,(

J+0 Vω
jh

)
(x, z) = ∂xVω

jh (x, z) , (5.7a)(
J3
0 Vω

jh

)
(x, z) = (x∂x + h)Vω

jh (x, z) , (5.7b)(
J−0 Vω

jh

)
(x, z) = (x2∂x + 2hx)Vω

jh (x, z) , (5.7c)

while (
J±±ωVω

jh

)
(x, z) =

[
h − k

2
ω ± (1 − j)

]
Vω

j,h±1(x, z) . (5.8)

Importantly, in terms of the currents

J+(x, z) = J+(z) , J3(x, z) = J3(z)− xJ+(z) , J−(x, z) = J−(z)− 2xJ3(z) + x2 J+(z)
(5.9)
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we get

J3(x, w)Vω
jh (x, z) =

h
(w − z)

Vω
jh (x, z) + · · · , (5.10a)

J−(x, w)Vω
jh (x, z) = (w − z)ω−1

(
J−−wVω

jh

)
(x, z) + · · · . (5.10b)

An alternative (equivalent) definition was given recently in [39], based on [103]. This is
to be understood as a point-splitting procedure between the corresponding unflowed
vertex and the so-called generalized spectral flow operator Vω−1

k
2 , k

2 ω
(x, z), and reads

Vω
jh (x, z) = lim

ε,ε̄→0
εmω ε̄m̄ω

∫
d2y yj−m−1ȳj−m̄−1Vj(x + y, z + ε)Vω−1

k
2 , k

2 ω
(x, z) . (5.11)

We will come back to this shortly in section 5.1.3.

5.1.2 Recursion relations among correlators

We now discuss the correlation functions of the model. It was shown in [88] that they
must satisfy a set of recursion relations. Let us briefly review how this works for three-
point functions of the form

F =

〈
3

∏
j=1

V
ωj
jjhj

(xj, zj)

〉
. (5.12)

We define

Fi
n =

〈(
J+n Vωi

jihi

)
(xi, zi)∏

j ̸=i
V

ωj
jjhj

(xj, zj)

〉
, (5.13)

so that, in particular,
Fi

0 = ∂xi F , (5.14)

and

Fi
ωi

=

(
hi −

k
2

ωi + 1 − ji

)〈
Vωi

ji ,hi+1(xi, zi)∏
j ̸=i

V
ωj
jjhj

(xj, zj)

〉
, (5.15)

as implied by Eqs. (5.7a) and (5.8) respectively. Note that all Fi
n with n = 1, . . . , ωi − 1

are, in principle, unknown.
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By using the OPEs in Eq. (5.6), one finds that correlators involving a current insertion
can be expanded as〈

J+(z)
3

∏
j=1

V
ωj
jjhj

(xj, zj)

〉
=

3

∑
i=1

[
∂xi F

z − zi
+

ωi

∑
n=1

Fi
n

(z − zi)n+1

]
+ · · · , (5.16a)

〈
J3(z)

3

∏
j=1

V
ωj
jjhj

(xj, zj)

〉
=

3

∑
i=1

[
(hi + xi∂xi)F

z − zi
+

ωi

∑
n=1

xiFi
n

(z − zi)n+1

]
+ · · · , (5.16b)

〈
J−(z)

3

∏
j=1

V
ωj
jjhj

(xj, zj)

〉
=

3

∑
i=1

[
(2hixi + x2

i ∂xi)F
z − zi

+
ωi

∑
n=1

x2
i Fi

n

(z − zi)n+1

]
+ · · · .(5.16c)

Combining these expressions, we get

Gj(z) ≡
〈

J−(xj, z)
3

∏
l=1

Vωl
jl hl

(xl , zl)

〉
= ∑

i ̸=j

[
(2hixij + x2

ij∂xi)F

z − zi
+

ωi

∑
n=1

x2
ijF

i
n

(z − zi)n+1

]
+ · · ·

(5.17)
where xij = xi − xj.

On the other hand, Eq. (5.10b) imposes stringent restrictions on the behavior of Gj(z)
when z is close to zj. More precisely, in this regime, we must have

(z − zj)
1−ωj Gj(z) =

(
hj −

k
2

ωj − 1 + jj

)〈
V

ωj
jj,hj−1(xj, zj)∏

i ̸=j
Vωi

jihi
(xi, zi)

〉
+ · · · , (5.18)

where we have used (5.8). As it turns out, the regularity of (z − zj)
1−ωj Gj(z) at z = zj

as implied by (5.18) for all j = 1, 2, 3 provides enough information to solve for all the
unknown Fi

n in terms of F, its xi-derivatives, and Fi
ωi

. Upon inserting the resulting
expressions into Eq. (5.18), one obtains a set of complicated linear relations between
correlators involving spectrally flowed vertex operators with consecutive spacetime
weights and their xi derivatives. Note that the latter are under control since the global
Ward identities uniquely fix the xi-dependence of all such correlators.

5.1.3 The conjectured solution

The non-trivial OPEs in Eqs. (5.6) render the computation of correlation functions in-
volving spectrally flowed insertions quite complicated. It will be useful to work with
somewhat unusual linear combinations of the operators Vω

jh (x, z) with the same j and
ω but different values of h. These are the y-basis operators Vω

j (x, y, z) introduced in
[38]. In [39], these were shown to be precisely the integrands on the RHS of Eq. (5.11),
namely

Vω
j (x, y, z) ≡ lim

ε,ε̄→0
|ε|2jωVj(x + yεω, z + ε)Vω−1

k
2 , k

2 ω
(x, z) . (5.19)
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This can be understood directly from Eq. (5.11) above. Indeed, upon changing variables
y → yεω this can be re-written as

Vω
jh (x, z) =

∫
d2y yj−m−1ȳj−m̄−1Vω

j (x, y, z) , (5.20)

which coincides with the so-called y-transform of [38]. More details can be found in
[38, 39].

The OPEs of y-basis operators with the conserved currents are

J+(w)Vω
j (x, y, z) =

ω+1

∑
n=1

(
J+n−1Vω

jh

)
(x, y, z)

(w − z)n + · · · , (5.21a)

J3(x, w)Vω
j (x, y, z) =

y∂y + j + k
2 ω

(w − z)
Vω

j (x, y, z) + · · · , (5.21b)

J−(x, w)Vω
j (x, y, z) = (w − z)ω−1

(
J−−wVω

j

)
(x, y, z) + · · · . (5.21c)

While the zero modes still act as in (5.7), the main motivation for using the y-variable
is that J±±ω act as differential operators in y. More precisely, we have(

J+ω Vω
j

)
(x, y, z) = ∂yVω

j (x, y, z) , (5.22a)(
J−−ωVω

j

)
(x, y, z) = (y2∂y + 2jy)Vω

j (x, y, z) . (5.22b)

This allows one to re-write the recursion relations derived formally in the previous
section as differential equations for correlators of the form

Fy ≡ ⟨Vω1
j1

(x1, y1, z1)V
ω2
j2

(x2, y2, z2)V
ω3
j3

(x3, y3, z3)⟩ . (5.23)

The x-basis correlators in Eq. (5.12) can be obtained from these by means of (5.20)47.
This integration procedure can be complicated, and was only carried out explicitly in
[38] for a subset of cases.

In order to discuss the structure of these differential equations and their solutions, it
will be useful to make use of the conformal invariance on the worldsheet and boundary
CFT to fix x1 = z1 = 0, x2 = z2 = 1 and x3 = z3 = ∞, and consider

F̂y = ⟨Vω1
j1

(y1)V
ω2
j2

(y2)V
ω3
j3

(y3)⟩ ≡ ⟨Vω1
j1

(0, y1, 0)Vω2
j2

(1, y2, 1)Vω3
j3

(∞, y3, ∞)⟩ . (5.24)

47The procedure is slightly different for flowed discrete and continuous states. The former arise as
residues from poles of the integrand in (5.20) around y = 0 or y = ∞, depending on whether the corre-
sponding unflowed vertex operator belongs to a lowest- or highest-weight representation. For the flowed
continuous states one must integrate over the full complex plane.
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The latter is related to the original correlator in Eq. (5.23) by

⟨Vω1
j1

(x1, y1, z1)V
ω2
j2

(x2, y2, z2)V
ω3
j3

(x3, y3, z3)⟩ =
xh0

3−h0
1−h0

2
21 xh0

2−h0
1−h0

3
31 xh0

1−h0
2−h0

3
32

z∆0
1+∆0

2−∆0
3

21 z∆0
1+∆0

3−∆0
2

31 z∆0
2+∆0

3−∆0
1

32

×

〈
Vω1

j1

(
0, y1

x32zω1
21 zω1

31

x21x31zω1
32

, 0
)

Vω2
j2

(
1, y2

x31zω2
21 zω2

32
x21x32zω2

31
, 1
)

Vω3
j3

(
∞, y3

x21zω3
31 zω3

32

x31x32zω3
21

, ∞
)〉

,

(5.25)

where
h0

i = ji +
k
2

ωi , ∆0
i = − ji(ji − 1)

k − 2
− jiωi −

k
4

ω2
i . (5.26)

Except for a certain subfamily of correlators which will be discussed below, spectrally
flowed y-basis three-point functions and their associated differential equations were
studied in [38] on a case-by-case basis. This was done for sufficiently low values of
the spectral flow charges ωi, thus leading the authors to conjecture a general solution
for the y-dependence of these correlators. The proposed expressions (not including the
right-movers, and up to an overall normalization constant to be discussed below) read
as follows. For odd parity correlators, namely when ω1 + ω2 + ω3 ∈ 2Z + 1, one has

〈
Vω1

j1
(0, y1, 0)Vω2

j2
(1, y2, 1)Vω3

j3
(∞, y3, ∞)

〉
= X

k
2−j1−j2−j3
123

3

∏
i=1

X− k
2+j1+j2+j3−2ji

i , (5.27)

while for the even parity case, i.e. when ω1 + ω2 + ω3 ∈ 2Z,〈
Vω1

j1
(0, y1, 0)Vω2

j2
(1, y2, 1)Vω3

j3
(∞, y3, ∞)

〉
= X j1+j2+j3−k

∅ ∏
i<ℓ

X j1+j2+j3−2ji−2jℓ
iℓ . (5.28)

Here, for any subset I ⊂ {1, 2, 3},

XI(y1, y2, y3) ≡ ∑
i∈I: εi=±1

Pω+∑i∈I εiei ∏
i∈I

y
1−εi

2
i . (5.29)

The spectral flow parameters are chosen as ω = (ω1, ω2, ω3), while e1 = (1, 0, 0), e2 =

(0, 1, 0) and e3 = (0, 0, 1). The numbers Pω are defined as

Pω = 0 for ∑
j

ωj < 2 max
i=1,2,3

ωi or ∑
i

ωi ∈ 2Z+ 1 (5.30)

and

Pω = Sω
G
(−ω1+ω2+ω3

2 + 1
)

G
(ω1−ω2+ω3

2 + 1
)

G
(ω1+ω2−ω3

2 + 1
)

G
(ω1+ω2+ω3

2 + 1
)

G(ω1 + 1)G(ω2 + 1)G(ω3 + 1)
,

(5.31)
otherwise, where G(n) is the Barnes G function

G(n) =
n−1

∏
i=1

Γ(i) (5.32)
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for positive integer values, while Sω is a phase depending on ω mod 2. For more de-
tails, see [38].

Regarding the overall constants, their precise form was also conjectured in [38] and
later proven in [39]. These structure constants are

Cω(j1, j2, j3) =

 C(j1, j2, j3), if ω1 + ω2 + ω3 ∈ 2Z,

N (j1)C
(

k
2 − j1, j2, j3

)
, if ω1 + ω2 + ω3 ∈ 2Z + 1,

(5.33)

where C(j1, j2, j3) are the structure constants of the unflowed three-point functions de-
fined in terms of Barnes double Gamma functions in [106, 103]. Finally, N (j1) is de-
fined in terms of the reflection coefficient appearing the unflowed two-point functions,
namely

N (j) =

√√√√ B(j)

B
(

k
2 − j

) , (5.34)

with48

B(j) =
2j − 1

π

Γ[1 − b2(2j − 1)]
Γ[1 + b2(2j − 1)]

ν1−2j , ν =
Γ[1 − b2]

Γ[1 + b2]
, b2 = (k − 2)−1 . (5.35)

As shown in [38], the proposal given in Eqs. (5.27)-(5.33) passes a number of non-trivial
consistency checks, including bosonic exchange symmetry and reflection symmetry for
continuous states. However, no general expression for the y-basis differential equations
is known. Hence, so far, this conjecture remains to be proven.

In the remainder of the chapter, we prove that this solution is indeed correct. In doing
so, we highlight the role of holomorphic covering maps. Although these maps appear
to be essential for the study of four-point functions [179], we show that they also play
a key role in the present context. Furthermore, when treating cases where there is no
well-defined covering map available, we will make use of the so-called series identifi-
cations for spectrally flowed vertex operators constructed upon states belonging to the
discrete representations of SL(2,R) [175, 39].

5.2 The proof for y-basis three-point functions

In this section we prove the conjecture put forward in [38]. It was shown in [103] that
all non-vanishing spectrally flowed three-point functions in the SL(2,R) model must

48To be precise, ν is actually a free parameter of the model, which essentially plays the role of the string
coupling. Here we simply reproduce the value originally advocated in [106]. For a related discussion, see
[99, 90]. We thank A. Dei and L. Eberhardt for pointing this out.



162 Chapter 5. A proof for string three-point functions in AdS3

satisfy the following condition:

ωi + ωj ≥ ωk − 1 ∀ i ̸= j ̸= k. (5.36)

We first consider the subfamily of odd parity correlators for which an associated holo-
morphic covering map exists [88, 38]. We then show how to compute all remaining
non-vanishing correlators with three non-trivial spectral flow charges. This includes
even parity correlators, and also those we denote as edge correlators. The latter corre-
spond to correlators for which either the inequality in (5.36) for odd parity assignments
or the analogous inequality for even parity cases saturate. These need to be treated
with special care. Finally, we also discuss correlators with unflowed insertions and the
overall normalizations.

5.2.1 Holomorphic covering maps and odd parity correlators

For concreteness, and with no loss of generality, we take ω3 to be the largest spectral
flow charge, i.e. ω3 ≥ ω1,2. Let us consider correlators satisfying

ω1 + ω2 + ω3 ∈ 2Z + 1 , ω1 + ω2 > ω3 − 1 , ωi ≥ 1 , ∀ i. (5.37)

It was shown in [180] that there exists a unique holomorphic covering map Γ[ω1, ω2, ω3](z) ≡
Γ(z) from the worldsheet to the AdS3 boundary such that

Γ(z) ∼ xi + ai(z − zi)
ωi + · · · when z ∼ zi , (5.38)

where the ellipsis indicates higher order terms in (z − zi). This is a rational function
which approaches a constant Γ∞ as z → ∞. One can show that it develops N single
poles, counted by the Riemann-Hurwitz formula

N =
1
2
(ω1 + ω2 + ω3 − 1) . (5.39)

The coefficients ai appearing in Eq. (5.38) take the form

ai =

 ωi+ωi+1+ωi+2−1
2

−ωi+ωi+1+ωi+2−1
2

 −ωi+ωi+1−ωi+2−1
2

ωi+ωi+1−ωi+2−1
2

−1

xi,i+1xi+2,i

xi+1,i+2

(
zi+1,i+2

zi,i+1zi+2,i

)ωi

, (5.40)

where the subscripts are understood mod 3. Note that the last two factors in (5.40)
simplify to 1 upon setting x1 = z1 = 0, x2 = z2 = 1 and x3 = z3 = ∞. We will use the
same notation ai for the resulting purely numerical coefficients.

We now derive the differential equations satisfied by y-basis three-point functions satis-
fying (5.37). Although the presentation here is slightly different, this was already done



5.2. The proof for y-basis three-point functions 163

in [88]. Consider the operator J−(Γ(z), z), where we use the notation of Eq. (5.10b),
namely

J−(Γ(z), z) = J−(z)− 2Γ(z)J3(z) + Γ2(z)J+(z) . (5.41)

In order to obtain the recursion relations for the correlators under consideration, we
compute following the contour integral:

∮
zi

dz
(z − zi)ωi

〈
J−(Γ(z), z)Vω1

j1
(x1, y1, z1)V

ω2
j2

(x2, y2, z2)V
ω3
j3

(x3, y3, z3)
〉

. (5.42)

Similarly to what was done in Sec. 5.1.2 above, we do this in two different ways. First,
we note that, near zi, we have

J−(Γ(z), z) = J−(xi, z)− 2ai(z − zi)
ωi J3(xi, z) + a2

i (z − zi)
2ωi J+(z) + · · · . (5.43)

Hence, by using (5.21) we find that

(5.42) =
[(

2jiyi + y2
i ∂yi

)
− 2ai

(
ji +

k
2

ωi + yi∂yi

)
+ a2

i ∂yi

]
Fy , (5.44)

where Fy was defined in Eq. (5.23). On the other hand, using (5.41) together with the
OPEs in Eq. (5.6), one finds that〈

J−(Γ(z), z)Vω1
j1

(x1, y1, z1)V
ω2
j2

(x2, y2, z2)V
ω3
j3

(x3, y3, z3)
〉
=

=
3

∑
j=1

{
−

2[Γ(z)− xj](yj∂yj + jj +
k
2 ωj)

z − zj
Fy +

ωj

∑
n=1

[Γ(z)− xj]
2

(z − zj)n+1 Fi
y,n

}
,

(5.45)

where Fi
y,n stands for the y-basis analogues of the Fi

n defined in Eq. (5.13). As discussed
in [88], the RHS of (5.45) is a rational function of z which, as implied by the constraint
equations, has zeros of order ωi − 1 at all zi. It also has double poles at the N simple
poles of Γ(z), and further goes to zero as z−2 for z → ∞ due to the global Ward iden-
tities. This implies that it must be proportional to the derivative of the covering map,
namely〈

J−(Γ(z), z)Vω1
j1

(x1, y1, z1)V
ω2
j2

(x2, y2, z2)V
ω3
j3

(x3, y3, z3)
〉
= α ∂Γ(z) , (5.46)

where α must be independent of z. This coefficient was also computed in [88]. When
working in the y-basis it takes the following form:

α = − 1
N

3

∑
j=1

(
(yj − aj)∂yj + jj +

k
2

ωj

)
Fy . (5.47)

This allows us to provide an alternative expression for the contour integral (5.42). In-
deed, the behavior of the covering map near the insertion points showcased in (5.38)
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implies that

(5.42) = − aiωi

N

3

∑
j=1

(
(yj − aj)∂yj + jj +

k
2

ωj

)
Fy . (5.48)

By combining the results in Eqs. (5.44) and (5.48), and further fixing the insertion points
as in (5.24), one obtains the following differential equations:{

(yi − ai)
2∂yi + 2ji(yi − ai) +

aiωi

N

[
3

∑
j=1

(
(yj − aj)∂yj + jj

)
+

k
2

]}
F̂y = 0, (5.49)

for i = 1, 2, 3. This was derived originally in this form in [38]49. In this way, the use of
the covering map and its derivative allows one to avoid dealing with the cumbersome
unknowns discussed in Sec. 5.1.2.

The system of equations encoded in (5.49) uniquely fixes the dependence of the corre-
sponding correlators on y1, y2 and y3. Up to some overall normalization, which will be
discussed in section 5.2.5 below, the solution of (5.49) is

⟨Vω1
j1

(y1)V
ω2
j2

(y2)V
ω3
j3

(y3)⟩ = (y1 − a1)
j2+j3−j1− k

2 (y2 − a2)
j3+j1−j2− k

2 (y3 − a3)
j1+j2−j3− k

2

×
[

∑
ε1,2,3=±1

2
Nε1,ε2,ε3

1
N

3

∏
i=1

a
εi+1

2
i y

εi−1
2

i

] k
2−j1−j2−j3

. (5.50)

An equivalent, perhaps simpler expression for the same solution is given by

⟨Vω1
j1

(y1)V
ω2
j2

(y2)V
ω3
j3

(y3)⟩ = (y1 − a1)
−2j1(y2 − a2)

−2j2(y3 − a3)
−2j3 (5.51)

×
(

ω1
y1 + a1

y1 − a1
+ ω2

y2 + a2

y2 − a2
+ ω3

y3 + a3

y3 − a3
− 1
) k

2−j1−j2−j3
.

Note that this formulation makes the bosonic exchange symmetry manifest.

At first sight, this expression might seem very different from that in Eq. (5.27). The
connection comes from the fact that while the Pω defined in (5.31) are somewhat com-
plicated, their ratios are actually much simpler. For instance, consider the Xi term
appearing in (5.27). From Eqs. (5.29) and (5.31), up to an overall sign, we find that

Xi = Pω−ei yi + Pω+ei = Pω−ei

(
yi +

Pω+ei

Pω−ei

)
= Pω−ei (yi − ai) . (5.52)

A similar result holds for X123, showing that the y-dependence of the expression in
(5.51) is consistent with that of Eq. (5.27).

As shown in Eq. (5.51), y-basis three-point functions diverge whenever a variable yi

approaches the corresponding coefficient ai. Thus, the ai are very special points in the

49Note that we have corrected a couple of typos in their presentation.
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y-plane, which signal the existence of an appropriate holomorphic covering map. An
even more extreme situation takes place in the tensionless limit, which corresponds to
k = 3 in the bosonic language [194, 187, 87, 88]. There, spectrally flowed correlators are
non-vanishing only when yi = ai for all i. The corresponding recursion relations (5.49)
are then satisfied provided50 j1 + j2 + j3 = 3

2 . It would be interesting to fully understand
the relation between y-variables and covering map coefficients in the general case.

We end this section by noting that the same discussion can not be applied directly
to odd parity correlators saturating the inequality in Eq. (5.36), i.e. those with ω3 =

ω1 + ω2 + 1. These will be discussed in detail in section 5.2.3 below. Correlators with
unflowed insertions are further considered in section 5.2.4.

5.2.2 Series identification and even parity correlators

We now prove that the conjecture of [38] also holds for correlators satisfying

ω1 + ω2 + ω3 ∈ 2Z , ω1 + ω2 > ω3 , ωi ≥ 1 , ∀ i. (5.53)

These include all non-vanishing spectrally flowed three-point functions for which the
total spectral flow charge is even, except for the edge cases where ω3 = ω1 +ω2 and/or
some of the vertex operators are unflowed, which will be treated separately.

When the ωi are as in (5.53), it is not possible to construct a covering map such as the
one used in the previous section. Thus, one might wonder if differential equations
similar to those in (5.49) can be deduced in this context. Indeed, the corresponding
recursion relations have only been obtained on a case-by-case basis and for sufficiently
low values of the spectral flow charges [38].

Nevertheless, we observe that the procedure outlined in Sec. 5.1.2 guarantees that, pro-
vided the system is compatible, and once the Fi

n have been solved for, the resulting
y-basis recursions must take the form[

yi(yi∂yi + 2ji) +
3

∑
j=1

(Aijyj − Bij)∂yj + Ci

]
⟨Vω1

j1
(y1)V

ω2
j2

(y2)V
ω3
j3

(y3)⟩ = 0 , (5.54)

where Aij, Bij and Ci are some numerical constants to be determined, which depend on
the spins ji and the charges ωi. The rationale behind the structure of Eq. (5.54), which is
the y-basis version of Eq. (5.18), goes as follows. First, note that, upon using Eq. (5.22b),
the operator yi(yi∂yi + 2ji) is identified with the RHS of (5.18). Second, recall that the
recursion relations were derived by expressing the OPEs of the vertex operators with
the conserved currents in terms of the unknowns coming from the action of the modes

50In the supersymmetric case, the RNS formalism breaks down for the tensionless theory. It was shown
in [87], using the so-called hybrid formalism, that in this case only vertex operators with j = 1

2 are allowed.
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of J+(z), see Eq. (5.17). This implies that the term involving the action of J−(x, z) does
not mix with the rest. By using the Möbius-fixed expression for the three-point function
in Eq. (5.25), one can see that the terms in the recursion relations involving unknowns
and x-derivatives of the correlator are mapped to operators of the schematic form y∂y

and ∂y, as well as y-independent multiplicative factors. In Eq. (5.54) we have allowed
for generic coefficients Aij, Bij and Ci in front of the corresponding contributions.

Moreover, we note that the way in which these equations are derived only depends on
the values of the spectral flow charges involved in a given correlator. In other words,
for a given set of ωi, the recursion relations are independent of whether the vertex
operators involved belong to spectrally flowed discrete or continuous representations.
These two observations will allow us to obtain all y-basis differential equations associ-
ated with even parity correlators in closed form.

As it turns out, even and odd parity cases are not completely disconnected. For the dis-
crete representations, affine modules in spectral flow sectors with one unit of difference
in the spectral flow charge are identifiable. For y-basis operators the corresponding se-
ries identifications read [39]

Vω
j (x, y = 0, z) = N (j) lim

y→∞
yk−2jVω+1

k
2−j

(x, y, z), (5.55)

and
lim
y→∞

y2jVω
j (x, y, z) = N (j)Vω−1

k
2−j

(x, y = 0, z), (5.56)

where N (j) was defined in Eq. (5.34). It was shown recently in [39] that, assuming
the y-dependence proposed in [38] for all three-point functions, these relations fix the
y-basis structure constants in terms of the unflowed ones, which can be found in [103].
Here we show that Eqs. (5.55) and (5.56) are actually much more powerful: they allow
us to fix the y-dependence as well. More explicitly, we use them to derive all unknown
coefficients Aij, Bij, and Ci appearing in (5.54).

By means of Eqs. (5.55) and (5.56), we find that all even parity correlators can be re-
lated to (at least) three different situations where a covering map satisfying (5.38) and
(5.40) exists. Explicitly, given (ω1, ω2, ω3) satisfying (5.53), it follows that the adjacent
assignments (ω1 + 1, ω2, ω3), (ω1, ω2 + 1, ω3) and (ω1, ω2, ω3 − 1) satisfy all conditions
in (5.37). Let us denote the corresponding covering maps as follows:

Γ+
1 ≡ Γ[ω1 + 1, ω2, ω3] , Γ+

2 ≡ Γ[ω1, ω2 + 1, ω3] , Γ−
3 ≡ Γ[ω1, ω2, ω3 − 1] .

(5.57)
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Then, the relations (5.55) and (5.56) provide the following set of identities:

⟨Vω1
j1

(0)Vω2
j2

(y2)V
ω3
j3

(y3)⟩ = lim
y1→∞

yk−2j1
1 N (j1)⟨Vω1+1

k
2−j1

(y1)V
ω2
j2

(y2)V
ω3
j3

(y3)⟩,(5.58a)

⟨Vω1
j1

(y1)V
ω2
j2

(0)Vω3
j3

(y3)⟩ = lim
y2→∞

yk−2j2
2 N (j2)⟨Vω1

j1
(y1)V

ω2+1
k
2−j2

(y2)V
ω3
j3

(y3)⟩,(5.58b)

lim
y3→∞

y2j3
3 ⟨Vω1

j1
(y1)V

ω2
j2

(y2)V
ω3
j3

(y3)⟩ = N (j3)⟨Vω1
j1

(y1)V
ω2
j2

(y2)V
ω3−1
k
2−j3

(0)⟩. (5.58c)

Having excluded the even edge cases, the same holds for the adjacent assignments
(ω1 − 1, ω2, ω3), (ω1, ω2 − 1, ω3) and (ω1, ω2, ω3 + 1), the corresponding maps being

Γ−
1 ≡ Γ[ω1 − 1, ω2, ω3] , Γ−

2 ≡ Γ[ω1, ω2 − 1, ω3] , Γ+
3 ≡ Γ[ω1, ω2, ω3 + 1] .

(5.59)
These lead to

lim
y1→∞

y2j1
1 ⟨Vω1

j1
(y1)V

ω2
j2

(y2)V
ω3
j3

(y3)⟩ = N (j1)⟨Vω1−1
k
2−j1

(0)Vω2
j2

(y2)V
ω3
j3

(y3)⟩ (5.60a)

lim
y2→∞

y2j2
2 ⟨Vω1

j1
(y1)V

ω2
j2

(y2)V
ω3
j3

(y3)⟩ = N (j2)⟨Vω1
j1

(y1)V
ω2−1
k
2−j2

(0)Vω3
j3

(y3)⟩,(5.60b)

⟨Vω1
j1

(y1)V
ω2
j2

(y2)V
ω3
j3

(0)⟩ = lim
y3→∞

yk−2j3
3 N (j3)⟨Vω1

j1
(y1)V

ω2
j2

(y2)V
ω3+1
k
2−j3

(y3)⟩.(5.60c)

All expressions on the RHS of Eqs. (5.58) and (5.60) are limits of correlators discussed in
the previous section. Hence, they must satisfy the appropriate limits of the differential
equations given in (5.49). For instance, ⟨Vω1−1

k
2−j1

(0)Vω2
j2

(y2)V
ω3
j3

(y3)⟩ is annihilated by the
differential operators

y2(y2∂y2 + 2j2) + (ω1 − ω2 − ω3)
−1{(ω1 + ω2 − ω3)a2[Γ−

1 ]
2∂y2

− 2a2[Γ−
1 ]
[
(ω1 − ω3)(j2 + y2∂y2) + ω2(j3 + y3∂y3 − a3[Γ−

1 ]∂y3 + j1 + j3)
] } (5.61)

and

y3(y3∂y3 + 2j3) + (ω1 − ω2 − ω3)
−1{(ω1 − ω2 + ω3)a3[Γ−

1 ]
2∂y3

− 2a3[Γ−
1 ]
[
(ω1 − ω2)(j3 + y3∂y3) + ω3(j2 + y2∂y2 − a2[Γ−

1 ]∂y2 + j1 + j2)
] }

,
(5.62)

where ai[Γ−
1 ] denotes the coefficient ai associated with the map Γ−

1 . One can obtain
analogous equations from the other odd parity correlators involved in (5.58). This leads
to twelve differential operators, which must coincide with the appropriate limits of
those provided in Eqs. (5.54). As an example, in the situation considered above we
should match (5.61) and (5.62) with

y2(y2∂y2 + 2j2) + A22y2∂y2 + A23y3∂y3 − B22∂y2 − B23∂y3 − 2A21 j1 + C2,

y3(y3∂y3 + 2j3) + A33y3∂y3 + A32y2∂y2 − B33∂y3 − B32∂y2 − 2A31 j1 + C3.
(5.63)
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After identifying all linearly independent terms in these 12 equations we find a total
of 60 conditions. In the end, 21 of these 60 conditions can be used to solve explicitly
for all the coefficients Aij, Bij and Ci in (5.54). Consistency of the system demands
that the remaining 39 conditions must hold. We emphasize that the fact that these are
identically satisfied is a highly non-trivial check of the logic behind our proof, and also
a remarkable consequence of the identities relating the ai coefficients of the different
covering maps involved.

There are many equivalent ways to write the resulting coefficients. We find that the
simplest one is as follows:

A =


2(ω3−ω2)

ω1+ω2−ω3
a1[Γ−

3 ]
2ω1

ω1+ω2−ω3
a1[Γ−

3 ]
2ω1

ω1−ω2+ω3
a1[Γ−

2 ]

2ω2
ω1+ω2−ω3

a2[Γ−
3 ]

2(ω1−ω3)
−ω1+ω2+ω3

a2[Γ−
1 ]

2ω2
−ω1+ω2+ω3

a2[Γ−
1 ]

2ω3
ω1−ω2+ω3

a3[Γ−
2 ]

2ω3
−ω1+ω2+ω3

a3[Γ−
1 ]

2(ω1−ω2)
−ω1+ω2+ω3

a3[Γ−
1 ]

 , (5.64)
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2ω3

−ω1+ω2+ω3
a2[Γ−
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(ω1−ω2+w2)
−ω1+ω2+ω3

a3[Γ−
1 ]

2

 ,

(5.65)
and

C =


4ω1 j3

ω1−ω2+ω3
a1[Γ−

2 ] +
2ω1(j2+j3)+2j1(ω3−ω2)

ω1+ω2−ω3
a1[Γ−

3 ]

4ω2 j1
ω1+ω2−ω3

a2[Γ−
3 ]−

2ω2(j1+j3)+2j2(ω1−ω3)
ω1−ω2−ω3
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4ω3 j1
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a3[Γ−
2 ]−

2ω3(j1+j2)+2j3(ω1−ω2)
ω1+ω2−ω3

a3[Γ−
1 ]

 . (5.66)

Consequently, we can write the differential equations for the even parity correlators as

{ (
y1 − a1[Γ−

3 ]
)2

∂y1 + 2j1
(
y1 − a1[Γ−

3 ]
)
+

2a1[Γ−
3 ]ω1

ω1 + ω2 − ω3

[
(y1 − a1[Γ−

3 ])∂y1 + j1

+ (y2 − a2[Γ−
3 ])∂y2 + j2 − (y3 − a3[Γ−

2 ])∂y3 − j3
]}

⟨Vω1
j1

(y1)V
ω2
j2

(y2)V
ω3
j3

(y3)⟩ = 0 ,

(5.67)

{ (
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3 ]
)2

∂y2 + 2j2
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y2 − a2[Γ−

3 ]
)
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2a2[Γ−
3 ]ω2

ω1 + ω2 − ω3

[
(y1 − a1[Γ−

3 ])∂y1 + j1

+ (y2 − a2[Γ−
3 ])∂y2 + j2 − (y3 − a3[Γ−

1 ])∂y3 − j3
]}

⟨Vω1
j1

(y1)V
ω2
j2

(y2)V
ω3
j3

(y3)⟩ = 0 ,

(5.68)
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and{ (
y3 − a3[Γ−

1 ]
)2

∂y3 + 2j3
(
y3 − a3[Γ−

1 ]
)
+

2a3[Γ−
1 ]ω3

ω1 − ω2 − ω3

[
(y1 − a1[Γ−

2 ])∂y1 + j1

− (y2 − a2[Γ−
1 ])∂y2 − j2 − (y3 − a3[Γ−

1 ])∂y3 − j3
]}

⟨Vω1
j1

(y1)V
ω2
j2

(y2)V
ω3
j3

(y3)⟩ = 0 .

(5.69)

The structural similarity of these equations with those of the odd case in Eq. (5.49) is
striking. This suggest that there must be a way to derive Eqs. (5.67), (5.68) and (5.69) di-
rectly from the adjacent covering maps along the lines of Sec. 5.2.1. We will not attempt
to do this here.

By solving Eqs. (5.67), (5.68) and (5.69), we find that, up to an overall constant, even
parity correlators satisfying (5.53) take the form

⟨Vω1
j1

(y1)V
ω2
j2

(y2)V
ω3
j3

(y3)⟩ =

(
1 − y2

a2[Γ+
3 ]

− y3

a3[Γ+
2 ]

+
y2y3

a2[Γ−
3 ]a3[Γ+

2 ]

)j1−j2−j3

×
(

1 − y1

a1[Γ+
3 ]

− y3

a3[Γ+
1 ]

+
y1y3

a1[Γ−
3 ]a3[Γ+

1 ]

)j2−j3−j1
(5.70)

×
(

1 − y1

a1[Γ+
2 ]

− y2

a2[Γ+
1 ]

+
y1y2

a1[Γ+
2 ]a2[Γ−

1 ]

)j3−j1−j2
.

As in the odd case, one can check that this is consistent with the conjectured expres-
sions in Eq. (5.28) by using the relations between covering map coefficients and ratios
of the numbers Pω defined in (5.31). It is also straightforward to see that (5.70) matches
all relevant limits of the corresponding odd cases in Eq. (5.50), as implied by the differ-
ent series identifications in Eqs. (5.58) and (5.60). We also note that, upon using some
identities among the ai coefficients such as a1[Γ+

2 ]a2[Γ−
1 ] = a1[Γ−

2 ]a2[Γ+
1 ], the solution in

Eq. (5.70) manifestly enjoys bosonic exchange symmetry.

5.2.3 Edge cases

In this subsection, we consider spectral flow assignments lying at the “edge” of the
inequalities displayed in Eqs. (5.37) and (5.53). More explicitly, we consider three-point
functions with spectral flow charges satisfying either

ω3 = ω1 + ω2 or ω3 = ω1 + ω2 + 1 , ωi ≥ 1 , ∀ i . (5.71)

Following the nomenclature of the previous sections, we refer to these as the even and
odd edge cases, respectively. Note that, according to the fusion rules in Eq. (5.36),
these include all possibly non-vanishing correlators which were not included in sec-
tions 5.2.1 and 5.2.2 above, except for correlators with unflowed insertions, which will
be discussed later on.
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The treatment of the edge cases is slightly different from what we have discussed so
far. Indeed, the general method based on series identifications employed in Sec. 5.2.2
breaks down when considering the even edge cases. We find that many of the coeffi-
cients in Eqs. (5.64), (5.65) and (5.66) become either divergent or indeterminate when
ω1 + ω2 = ω3, related to the fact that three of the six adjacent maps cease to exist,
namely those in (5.59). Although, in principle, the existence of the three maps in (5.57)
could give enough constraints, in practice one runs into similar problems with diver-
gent or indeterminate coefficients. As for the odd edge cases, it turns out that the asso-
ciated covering map does not exist. Moreover, the former are only related to even edge
cases by the SL(2,R) series identifications.

We now show that alternative techniques involving current insertions can be used to
derive the relevant differential equations satisfied by the y-basis edge correlators. Some
of these equations are easier to derive in the limit where the first two vertex opera-
tors collide. As discussed in [38], one can take the vertex operators to be inserted at
(x1, x2, x3) = (0, x, ∞), and then consider the limit x → 0. More explicitly, we have [38]

⟨Vω1
j1

(0, y1, 0)Vω2
j2

(x, y2, 1)Vω3
j3

(∞, y3, ∞)⟩

= x−j1−j2+j3+ k
2 (−ω1−ω2+ω3) ⟨Vω1

j1

(
0,

y1

x
, 0
)

Vω2
j2

(
1,

y2

x
, 1
)

Vω3
j3 (∞, y3x, ∞)⟩ . (5.72)

The three-point functions that remain well-defined in this limit are those for which

|ω1 + ω2 − ω3| ≤ 1 , (5.73)

including both edge cases in (5.71). In these instances, it is possible to obtain the corre-
lator with vertex operators inserted at generic points (x1, x2, x3) from the one in the col-
liding limit with (x, x, x3) by means of the global Ward identities. We will derive some
of the relevant differential equations satisfied by the edge correlators in the above col-
lision limit, and only recover the full correlators at the end. Note that taking x → 0 and
x3 → ∞ precisely corresponds to the limit in which these correlators can be interpreted
as m-basis correlators of flowed primaries as in [103, 178], where they were denoted as
spectral flow conserving and spectral flow violating three-point functions, depending on
the overall parity of the spectral flow charges.

To illustrate how this works, let us derive a constraint that will be satisfied by both edge
cases. We set x1 = x2 = x and consider the integral∮

C
⟨J3(x, z)Vω1

j1
(x, y1, z1)V

ω2
j2

(x, y2, z2)V
ω3
j3

(x3, y3, z3)⟩ dz , (5.74)

where C denotes a contour encircling all three insertion points. This trivially vanishes
as there is no residue at infinity. On the other hand, the action of the current on the
vertex operators at x can be read off directly from Eq. (5.21), while for the one inserted
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at x3 we use
J3(x, z) = J3(x3, z) + (x3 − x)J+(x3, z) , (5.75)

which follows from (5.9). We obtain the following differential equation:[
3

∑
i=1

(
yi∂yi + ji +

k
2

ωi

)
+ (x3 − x)∂x3

]
⟨Vω1

j1
(x, y1, z1)V

ω2
j2

(x, y2, z2)V
ω3
j3

(x3, y3, z3)⟩ = 0 .

(5.76)

We now Möbius-fix the worldsheet insertions to (0, 1, ∞), and further consider the limit
(x, x3) → (0, ∞). The yi coordinates then get rescaled according to Eq. (5.25). This leads
to [

y1∂y1 + y2∂y2 − y3∂y3 + j1 + j2 − j3

+
k
2
(ω1 + ω2 − ω3)

]
⟨Vω1

j1
(0, y1, 0)Vω2

j2
(0, y2, 1)Vω3

j3
(∞, y3, ∞)⟩ = 0 .

(5.77)

We find that Eq. (5.77) is the y-basis version of the usual charge-conservation equa-
tion for m-basis three-point functions of spectrally flowed primaries. This holds for all
correlators satisfying (5.73), including both edge cases.

5.2.3.1 Even edge cases

In this subsection we focus on the even edge cases, where ω3 = ω1 + ω2. We will de-
rive the remaining two differential equations by considering correlators with an extra
insertion of the J−(x, z) current multiplied by the appropriate ratio of worldsheet co-
ordinates. This is similar to what was used in [107] when discussing the proof of the
m-basis spectral flow violation rules, and also more recently in [195] in the context of the
supersymmetric version of this model.

The integral

∮
C
⟨J−(x3, z)Vω1

j1
(x1, y1, z1)V

ω2
j2

(x2, y2, z2)V
ω3
j3

(x3, y3, z3)⟩
(z − z1)

ω1(z − z2)ω2

(z − z3)ω3
dz (5.78)

vanishes since there is no pole at infinity. Using the OPEs of J−(x3, z) with the vertex
operators, this yields

[
x2

31
zω2

12
zω3

13
∂y1 + x2

32
zω1

21
zω3

23
∂y2 + zω1

31 zω2
32 (y

2
3∂y3 + 2j3y3)

]
⟨Vω1

j1
(x1, y1, z1)V

ω2
j2

(x2, y2, z2)V
ω3
j3

(x3, y3, z3)⟩ = 0 . (5.79)
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Proceeding similarly with

∮
C
⟨J−(x, z)Vω1

j1
(x, y1, z1)V

ω2
j2

(x, y2, z2)V
ω3
j3

(x3, y3, z3)⟩
(z − z3)ω3

(z − z1)ω1(z − z2)ω2
dz , (5.80)

where we have imposed the collision limit mentioned above, we find

[ zω3
13

zω2
12

(y2
1∂y1 + 2j1y1) +

zω3
23

zω2
21

(y2
2∂y2 + 2j2y2) +

(x − x3)2

zω1
31 zω2

32
∂y3

]
⟨Vω1

j1
(x, y1, z1)V

ω2
j2

(x, y2, z2)V
ω3
j3

(x3, y3, z3)⟩ = 0 . (5.81)

We now fix the worldsheet coordinates to (0, 1, ∞) while sending x → 0 and x3 → ∞,
and use Eq. (5.25) for the corresponding rescaling of the y variables. Including the
charge conservation condition (5.77), the system of differential equations satisfied by
the even edge correlator in the collision limit is then

0 =
[

j1 + j2 − j3 + y1∂y1 + y2∂y2 − y3∂y3

]
⟨. . .⟩ ,

0 =
[
(−1)ω1 ∂y1 + (−1)ω3 ∂y2 + (y2

3∂y3 + 2j3y3)
]
⟨. . .⟩ ,

0 =
[
(−1)ω1(y2

1∂y1 + 2j1y1) + (−1)ω3(y2
2∂y2 + 2j2y2) + ∂y3

]
⟨. . .⟩ .

(5.82)

where ⟨. . .⟩ stands for ⟨Vω1
j1

(0, y1, 0)Vω2
j2

(0, y2, 1)Vω3
j3

(∞, y3, ∞)⟩. Note that only the sec-
ond equation in (5.82) remains valid away from the collision limit.

Up to an overall y-independent constant, the general solution of the system (5.82) can
be written as follows:

⟨Vω1
j1

(0, y1, 0)Vω2
j2

(0, y2, 1)Vω3
j3

(∞, y3, ∞)⟩ (5.83)

= ((−1)ω1 y1 − (−1)ω3 y2)
j3−j1−j2(1 + (−1)ω3 y2y3)

j1−j2−j3(1 + (−1)ω1 y1y3)
j2−j1−j3 .

This matches the result of [38], see their Eq. (5.37b).

As mentioned above, for more general values of the insertion points the corresponding
three-point functions follow from the global Ward identities. As it turns out, we can in-
fer the result in a heuristic way by looking at the general expression given in Eq. (5.70).
Indeed, one can verify that, upon setting ω3 = ω1 + ω2, the coefficients a1(Γ+

3 ), a2(Γ+
3 )

and a2(Γ−
1 ) diverge, which is a manifestation of the fact that the associated covering

maps do not exist. Since all other coefficients remain finite, we obtain

⟨Vω1
j1

(y1)V
ω2
j2

(y2)V
ω3
j3

(y3)⟩ =

(
1 + (−1)ω1

(ω1 + ω2 − 1)!
(ω1 − 1)!ω2!

y3 + (−1)ω3 y2y3

)j1−j2−j3

×
(

1 + (−1)ω1+1 (ω1 + ω2 − 1)!
ω1!(ω2 − 1)!

y3 + (−1)ω1 y1y3

)j2−j3−j1
(5.84)

×
(

1 + (−1)ω1+1 ω1!ω2!
(ω1 + ω2)!

((−1)ω1 y1 − (−1)ω3 y2)

)j3−j1−j2
.
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Up to the normalisation, to be discussed below, this precisely matches the conjecture
(5.28).

5.2.3.2 Odd edge cases

We now turn to the odd edge cases, where ω3 = ω1 + ω2 + 1. Since the procedure is
analogous to what we just described we will skip some of the intermediate steps.

In addition to (5.77), we find two differential equations by considering contour integrals
very similar to that in Eq. (5.78). We first take

∮
C
⟨J−(x3, z)Vω1

j1
(x1, y1, z1)V

ω2
j2

(x2, y2, z2)V
ω3
j3

(x3, y3, z3)⟩
(z − z1)

ω1+1(z − z2)ω2

(z − z3)ω3
dz ,

(5.85)
which again vanishes due to the absence of a residue at infinity. The same holds for

∮
C
⟨J−(x3, z)Vω1

j1
(x1, y1, z1)V

ω2
j2

(x2, y2, z2)V
ω3
j3

(x3, y3, z3)⟩
(z − z1)

ω1(z − z2)ω2+1

(z − z3)ω3
dz .

(5.86)
Hence, we find the following system of differential equations:

0 =
[

j1 + j2 − j3 −
k
2
+ y1∂y1 + y2∂y2 − y3∂y3

]
⟨. . .⟩ ,

0 =
[
(−1)ω3 ∂y2 + (y2

3∂y3 + 2j3y3)
]
⟨. . .⟩ ,

0 =
[
(−1)ω1 ∂y1 + (y2

3∂y3 + 2j3y3)
]
⟨. . .⟩ .

(5.87)

where ⟨. . .⟩ again denotes ⟨Vω1
j1

(0, y1, 0)Vω2
j2

(0, y2, 1)Vω3
j3

(∞, y3, ∞)⟩. In this case, only
the first of these equations gets eventually modified away from the collision limit.

We find that, up to an overall normalization, the odd edge three-point functions read

⟨Vω1
j1

(0, y1, 0)Vω2
j2

(0, y2, 1)Vω3
j3

(∞, y3, ∞)⟩ (5.88)

= yj1+j2−j3− k
2

3 (1 + (−1)ω1 y1y3 + (−1)ω3 y2y3)
k
2−j1−j2−j3 ,

in the collision limit, thus matching the result in [38], see their Eq. (5.37c). Moreover,
as in the even edge case, we can infer the solution for generic insertion points from the
general expression in Eq. (5.51). For this, we set ω3 = ω1 + ω2 + 1 and carefully take
the limit a3 → 0, a1,2 → ∞ with the products a1a3 and a2a3 fixed. This yields

⟨Vω1
j1

(0, y1, 0)Vω2
j2

(1, y2, 1)Vω3
j3

(∞, y3, ∞)⟩ = yj1+j2−j3− k
2

3 (5.89)

×
(

1 + (−1)ω1+1 (ω1 + ω2)!
ω1!ω2!

y3 + (−1)ω1 y1y3 + (−1)ω3 y2y3

) k
2−j1−j2−j3

.
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One can check that this matches the y-dependence given in the conjecture of Eq. (5.27)
for correlators with appropriate spectral flow assignments. Moreover, upon using
Eq. (5.55) and (5.56) we also see that, as expected, the expressions in Eq. (5.70) and
Eq. (5.89) are related via series identifications.

5.2.4 Three-point functions with unflowed insertions

So far, we have considered three-point functions where all vertex operators had non-
zero spectral flow charges. However, it is natural to expect that the above results in-
clude the special cases where some of the insertions are unflowed. We now show how
the latter are obtained. Note that we still assume ω3 ≥ ω1,2, as in the previous sections.

Let us start by discussing the case of a single unflowed insertion, namely ω1 = 0. The
fusion rules in Eq. (5.36) can then be satisfied iff ω3 = ω2 or ω3 = ω2 + 1. These are
exactly the two cases that were computed in [178] in full generality from m-basis tech-
niques. In this sense, the results presented in this section are not new, but we include
them for completeness. Hence, the relevant correlators correspond to the spectral flow
assignments (0, ω, ω + 1) and (0, ω, ω). By means of

Vj(x, z) = N (j)V1
k
2−j,h=j(x, z) = N (j) lim

y→∞
yk−2jV1

k
2−j(x, y, z) , (5.90)

which is a particular case of (5.55), these can be obtained from the three-point functions
with charges (1, ω, ω + 1) and (1, ω, ω), respectively. More precisely, we have

⟨Vj1Vω
j2 (y2)Vω+1

j3 (y3)⟩ = N (j1) lim
y1→∞

yk−2j1
1 ⟨V1

k
2−j1

(y1)Vω
j2 (y2)Vω+1

j3 (y3)⟩ , (5.91)

and

⟨Vj1Vω
j2 (y2)Vω

j3 (y3)⟩ = N (j1) lim
y1→∞

yk−2j1
1 ⟨V1

k
2−j1

(y1)Vω
j2 (y2)Vω

j3 (y3)⟩ , (5.92)

where we have abbreviated Vj1(0, 0) ≡ Vj1 .

Focusing on (5.91), the RHS involves an even edge correlator. We thus need to consider
the appropriate limit of Eq. (5.84), which gives

⟨Vj1Vω
j2 (y2)Vω+1

j3 (y3)⟩ = yj1+j2−j3− k
2

3 (1 − y3 − (−1)ωy2y3)
k
2−j1−j2−j3 . (5.93)
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up to an overall constant. On the other hand, the RHS of (5.92) is obtained as the
appropriate limit of the solution in Eq. (5.50), namely

⟨V1
j1(y1)Vω

j2 (y2)Vω
j3 (y3)⟩ = (y1 − ω)j2+j3−j1− k

2 (y2 + (−1)ω)j1+j3−j2− k
2 (y3 − 1)j1+j2−j3− k

2

×
(
(−1)ω+1(ω + 1) + (−1)ωy1 − y2 + (−1)ωy3 − (ω − 1)y2y3 + y1y2y3

) k
2−j1−j2−j3

.

(5.94)

Hence, we get

⟨Vj1Vω
j2 (y2)Vω

j3 (y3)⟩ = (y2 + (−1)ω)j3−j1−j2 (y3 − 1)j2−j1−j3 ((−1)ω + y2y3)
j1−j2−j3 .

(5.95)
up to the overall constant. Finally, we consider correlators with exactly two unflowed
insertions, ω1 = ω2 = 0. According to (5.36) this can only be non-trivial for ω3 = 1. By
using again Eq. (5.90) we get

⟨Vj1Vj2V1
j3(y3)⟩ = N (j2) lim

y2→∞
yk−2j2

2 ⟨Vj1V1
k
2−j2

(y2)V1
j3(y3)⟩

= yj1+j2−j3− k
2

3 (y3 − 1)
k
2−j1−j2−j3 , (5.96)

where in the last line we have ignored an overall normalization factor. In this way, we
match all the corresponding results of [38], where the authors showed that this further
reproduces the original computations of [103, 178].

5.2.5 Normalization

So far we have focused on the dependence of the y-basis spectrally flowed correla-
tors on the variables y1, y2 and y3, and shown that it matches precisely the predictions
of [38]. We now describe how the overall normalizations in Eqs. (5.27)-(5.33) are ob-
tained51.

Once again, the argument relies on the SL(2,R) series identifications. Indeed, identities
such as those in Eqs. (5.58) and (5.60) must hold exactly, including the normalization
factors. Having fixed the y-dependence, we can thus determine the normalizations
recursively, starting from the unflowed three-point functions of [106, 103]. For instance,
we consider the following identity:

lim
y3→∞

y2j3
3

〈
Vω1

j1
(y1)Vω2

j2
(y2)Vω3

j3
(y3)

〉
= N (j3)

〈
Vω1

j1
(y1)Vω2

j2
(y2)Vω3−1

k
2−j3

(0)
〉

, (5.97)

which will give us a recursion relation for Cω(j1, j2, j3). Since the latter is independent
of the yi, we can set y1 = y2 = 0. Using the y-dependence derived above, written as in

51This was already discussed in [39], assuming the y-dependence of the correlators was as in [38]. We
reproduce the argument here for completeness
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Eqs. (5.27) and (5.28), one finds that the product of XI factors on the left- an right-hand
sides of (5.97), both reduce to either

Pj1+j2+j3−k
ω Pj3−j1−j2

ω+e1+e2
Pj1−j2−j3

ω+e2−e3
Pj2−j3−j1

ω+e1−e3
, (5.98)

or
P

k
2−j1−j2−j3

ω+e1+e2−e3
P−j1+j2+j3− k

2
ω+e1

Pj1−j2+j3− k
2

ω+e2
Pj1+j2−j3− k

2
ω−e3

, (5.99)

depending on the overall parity of the spectral flow charges. Consequently, in both
cases we find that Eq. (5.97) holds iff

Cω(j1, j2, j3) = N (j3)Cω−e3

(
j1, j2,

k
2
− j3

)
. (5.100)

Analogous statements can be derived by shifting the spectral flow charges ω1 and ω2

instead. Moreover, one has the identity

N (j1)C
(

k
2
− j1, j2, j3

)
= N (j2)C

(
j1,

k
2
− j2, j3

)
= N (j3)C

(
j1, j2,

k
2
− j3

)
. (5.101)

Since N (j)N ( k
2 − j) = 1, it follows that, as stated in (5.33), Cω(j1, j2, j3) can only be

C(j1, j2, j3), i.e. the unflowed three-point function, or N (j1)C( k
2 − j1, j2, j3), depending

on the parity of ω1 + ω2 + ω3. To be precise, this argument is valid for discrete repre-
sentations, although we expect that it holds also for the continuous series by analytic
continuation in j [103, 196]. This concludes our computation of three-point functions
with arbitrary spectral flow charges.

5.3 Discussion

In this chapter, we have computed the y-basis string three-point function in AdS3 in-
volving vertex operators with arbitrary spectral flow charges. This provides a proof for
the conjecture put forward recently in [38], thus establishing integral expressions for all
(primary) three-point functions of the SL(2,R)-WZW model at level k, for all k > 3.

The subfamily of (odd parity) correlators for which a holomorphic covering map from
the worldsheet to the AdS3 boundary exists had been obtained in [88, 38]. Here we have
relied on the general structure of local Ward identities (in their y-basis formulation) and
made extensive use of the SL(2,R) series identifications, whose importance was recently
highlighted in [39]. This allowed us to extend the methods based on covering maps to
all other non-vanishing correlators, as defined by the fusion rules computed in [103].

Our strategy can be summarised as follows. We first argued that the differential equa-
tions satisfied by all y-basis three-point functions must take the form given in Eq. (5.54).
Obtaining the general expressions for these equations for all even parity correlators
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then reduces to computing all unknown coefficients in (5.54). We have provided the
relations among correlators with adjacent spectral flow assignments that follow from
SL(2,R) series identifications in Eqs. (5.58) and (5.60). These provide a considerable
number of identities between even and odd parity correlators in the limit where one of
the y variables is taken to either zero or infinity. This allowed us to evaluate all relevant
coefficients Aij, Bij and Ci in closed form, as given in Eqs. (5.64)-(5.66). The derivation
of these 21 coefficients involves solving a total of 60 conditions, of which 39 can be
taken as consistency checks. The latter turn out to be satisfied in a highly non-trivial
manner, related to the existence of a set of identities relating the behaviour of different
covering maps in the vicinity of the insertion points.

The resulting differential equations satisfied by even parity correlators are provided in
Eqs. (5.67)-(5.69). These show a striking similarity with the cases of odd total spectral
flow, a hallmark of the existence of a more direct derivation by means of adjacent cover-
ing maps. We leave this for future work. Here we have shown that the general solution
to these equations, namely Eq. (5.70), is compatible with the proposal of [38].

We have also discussed the so-called edge cases, whose spectral flow assignments sat-
urate the fusion rules in Eqs. (5.37) and (5.53). Some subtleties arise when trying to
apply the general method described above in this context. For these cases we have pro-
vided an alternative approach, based on an improved version of the m-basis methods
[103, 178]. We have then described how to obtain correlators involving unflowed in-
sertions. Finally, we fixed the overall normalization of all y-basis three-point functions,
following the arguments of [39].

At this point, it is natural to ask if an analogous story holds for four-point functions,
which encode crucial dynamical information about the theory. A closed formula for
four-point functions in the y-basis with arbitrary spectral flow assignments in terms
of the corresponding unflowed correlator was conjectured in [179]. Here the situation
is more subtle: on top of the four yi variables, four-point functions also depend non-
trivially on the worldsheet and spacetime cross-ratios, and must satisfy the correspond-
ing Knizhnik-Zamolodchikov equations. It has been known for some time [197, 198]
that the latter intertwine non-trivially with the recursion relations of the type described
in section 5.1.2. If the structure put forward in [179] is correct, its proof is likely to
work in two steps. First, one should use arguments similar to those we have consid-
ered in this chapter to show that solutions to the y-basis differential equations associ-
ated with the four-point functions consist of various prefactors given by powers of the
generalized differences XI , defined in Eq. (5.29), multiplied by an arbitrary function
of the so-called generalized cross-ratio. Second, one should prove that this arbitrary
function must satisfy the same Knizhnik-Zamolodchikov equation as the correspond-
ing unflowed four-point function. The extension of the proof for the case of correlation
functions involving four spectrally-flowed vertex operators is a work in progress.
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Chapter 6

Conclusions

In this final chapter we summarise the findings presented above, and we will discuss
some possible future projects and generalisations.

In Chapter 3 we have shown, among other things, how the consistency of the world-
sheet CFT is in one to one correspondence with absence of CTCs, singularities and
horizon. We have proven that the quantisation conditions derived from the world-
sheet BRST analysis are exactly the same as those obtained in the gravity description
when demanding absence of singularities, horizons and CTCs. Using these results,
we showed that the metric, B-field and dilaton obtained from the coset model can be
rewritten in terms of the integers k,m, n, n5 and the modulus Ry. These background
fields precisely coincide with the NS5-decoupled JMaRT background [37], thus prov-
ing that the latter is the most general consistent supergravity background described by
the coset Eq. (2.205). Despite this ’no-go theorem’, we were able to derive a novel sub-
family of two-charge non-BPS NS5-P backgrounds not appeared before in the literature,
see Eqs. (3.76) and (3.77).

The computation of stringy observables involving light probes in the NS5-decoupled
JMaRT background was presented in Chapter 4. Here we first constructed the phys-
ical vertex operators (in both NS and R sectors) in the AdS limit of the coset model,
and we carefully identified the worldsheet x variable dual to the local coordinate of the
holographic CFT. Our findings heavily generalise the results available in the literature
[167, 183, 181]. We first extended the computation of HLLH correlators to the full non-
supersymmetric AdS limit of the JMaRT solution. The light massless probes involved
in the correlation function possess any conformal dimension and R-charge. Secondly,
we further generalised the results to an arbitrary number of light insertions, provid-
ing an elegant formula that express the coset correlator as a function of the vacuum
AdS3 × S3 correlator, see Eq. (4.94). This is valid for an arbitrary number of massless
insertions of weights hi and charges m′

i and m̄′
i, and also arbitrary parameters (k, s, s̄) for
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which a consistent background exists. We also observed that, at large N, certain world-
sheet correlators exactly match the that of the dual orbifold CFT. The non-BPS JMaRT
backgrounds were not considered in [167], however we demonstrated that the agree-
ment extends also to those backgrounds. It is known that vacuum two- and three-point
functions of chiral primary operators are protected [184]. We thus conjectured that
heavy-light correlators in JMaRT heavy states are protected whenever the correspond-
ing vacuum correlator in our general formula (4.94) is protected. We investigated a
particular HLLLH five-point function—the first of its kind in the literature—and found
that worldsheet and symmetric product results agree.

Given its importance for coset correlators and more broadly for the AdS3/CFT2 corre-
spondence, in Chapter 5 we presented the computation of the y-basis string three-point
function in AdS3 involving vertex operators with arbitrary spectral flow charges. This
proves the conjectured integral expressions for all primary three-point functions of the
SL(2,R)-WZW model at level k, for all k > 3, first appeared in [38]. In order to achieve
this goal we exploited the general y-basis structure of local Ward identities and, cru-
cially, made extensive use of the y-basis SL(2,R) series identifications [39].

A number of possible ideas for future research projects can originate from this thesis.
Let us discuss some possible developments.

First of all, it would be tempting to generalise the results of Chapter 3 to different back-
grounds. The fascinating relation between the worldsheet consistency and absence
of singularities, horizons and CTCs is very suggestive and perfectly in line with the
Fuzzball proposal mentioned in the Introduction. However, great care is due. At the
point of writing it is far from obvious how to generalise these results to all the back-
grounds that admit a worldsheet description of some sort. Hence, an obvious task
would be that of finding more general (and more typical) microstate backgrounds and
verify the absence of horizons, singularities and CTCs. Finding new worldsheet mod-
els is notoriously difficult. However, a natural extension of our work is immediate
when involving the T4 in the gauging. In the latter case, we strongly believe that the
majority of the results will be unchanged: the background will be absent of singulari-
ties, horizons and CTCs. Most of the computations presented in Chapter 3 will follow
through.

Nevertheless, we expect that our results will be useful in analysing generalisations of
the models studied here, either by changing the currents being gauged to include non-
Cartan generators of the non-Abelian factors of the upstairs group, or by changing the
upstairs group, or both. Our systematic approach should enable generalisations to be
investigated in a similar way. For instance, there are multi-centre non-BPS generaliza-
tions of the JMaRT family [160, 161, 162] or the newly discovered NS-NS superstrata
[163].
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Once new worldsheet descriptions for microstate backgrounds are found, it is natu-
ral to try to generalise the results we have presented in Chapter 4. The computation
of heavy-light correlators will provide valuable information about possible non-trivial
properties of the background and be of great interest in the light of holography in back-
grounds different from the global vacuum. We expect that our results may provide a
guideline for these possible developments.

The reader should note that the computations of Chapter 4 were restricted to the AdS
limit of the coset model. However, a natural question to ask is how to extend the results
to the UV theory. In the full asymptotically linear dilaton models, correlators can be
computed by using the vertex operators of Section 4.1. However, the x coordinate
seems unlikely to be of any use in this regime given the non-local nature of the dual
theory.

The results in Chapter 5 concern the proof of the conjecture for three point functions.
It is very natural to ask if an analogous story holds for four-point functions, which en-
code crucial dynamical information about the theory. A closed formula for four-point
functions in the y-basis with arbitrary spectral flow assignments in terms of the corre-
sponding unflowed correlator was conjectured in [179]. Here the situation is more sub-
tle: on top of the four yi variables, four-point functions also depend non-trivially on the
worldsheet and spacetime cross-ratios, and must satisfy the corresponding Knizhnik-
Zamolodchikov equations. It has been known for some time [197, 198] that the latter
intertwine non-trivially with the recursion relations of the type described in Section
5.1.2.

In this thesis we have shown that worldsheet techniques, when available, are tremen-
dously effective and powerful. By contrast, trying to use a field theory description for
black hole interior and horizon physics has proven so far to be largely unsuccessful.
Being able to compute observables to all orders in α′ allows us to depart from (super-
)gravity results, and hence be able to directly address problems associated to black hole
physics with the power of string theory. Indeed, on top of the infinite degrees of free-
dom provided by stringy excitations, it is the extended nature of strings and branes that
allows us to tame issues related to curvature singularities and black hole paradoxes.

Despite its success, string theory is nowadays still in large development. Many aspects
of it are still not clear, especially in strong coupling and less supersymmetric settings,
two regimes that may be crucial for an appropriate description of black holes and their
interior. However, there are indications that string theory will shed a definite light on
problems involving short distance physics, strong gravity, singularities, and various
other puzzles and paradoxes. A deeper understanding of the whole theoretical frame-
work will necessarily help in the resolution of the information paradox and the entropy
puzzle: these issues afflict black holes since the very first computations that followed
from the tremendous insight and intuition of Stephen Hawking.
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[80] R. Blumenhagen, D. Lüst and S. Theisen, Basic concepts of string theory,
Theoretical and Mathematical Physics. Springer, Heidelberg, Germany, 2013,
10.1007/978-3-642-29497-6.

[81] E. Witten, Some comments on string dynamics, in STRINGS 95: Future Perspectives
in String Theory, pp. 501–523, 7, 1995, hep-th/9507121.

[82] N. Seiberg, Observations on the Moduli Space of Superconformal Field Theories, Nucl.
Phys. B 303 (1988) 286.

[83] S. Cecotti, N=2 Landau-Ginzburg versus Calabi-Yau sigma models: Nonperturbative
aspects, Int. J. Mod. Phys. A 6 (1991) 1749.

[84] J. de Boer, J. Manschot, K. Papadodimas and E. Verlinde, The chiral ring of
AdS3/CFT2 and the attractor mechanism, JHEP 03 (2009) 030 [0809.0507].

[85] L. Eberhardt and K. Ferreira, Long strings and chiral primaries in the hybrid
formalism, JHEP 02 (2019) 098 [1810.08621].

[86] M. R. Gaberdiel, R. Gopakumar and C. Hull, Stringy AdS3 from the worldsheet,
JHEP 07 (2017) 090 [1704.08665].

[87] L. Eberhardt, M. R. Gaberdiel and R. Gopakumar, The Worldsheet Dual of the
Symmetric Product CFT, JHEP 04 (2019) 103 [1812.01007].

[88] L. Eberhardt, M. R. Gaberdiel and R. Gopakumar, Deriving the AdS3/CFT2

correspondence, JHEP 02 (2020) 136 [1911.00378].

[89] A. Pakman, L. Rastelli and S. S. Razamat, Extremal Correlators and Hurwitz
Numbers in Symmetric Product Orbifolds, Phys.Rev. D80 (2009) 086009 [0905.3451].

[90] L. Eberhardt, A perturbative CFT dual for pure NS–NS AdS3 strings, J. Phys. A 55
(2022) 064001 [2110.07535].

[91] A. Dei and L. Eberhardt, String correlators on AdS3: analytic structure and dual
CFT, 2203.13264.

[92] I. Bena, S. Giusto, E. J. Martinec, R. Russo, M. Shigemori, D. Turton et al.,
Asymptotically-flat supergravity solutions deep inside the black-hole regime, JHEP 02
(2018) 014 [1711.10474].

[93] S. G. Avery, B. D. Chowdhury and S. D. Mathur, Emission from the D1D5 CFT,
JHEP 10 (2009) 065 [0906.2015].

https://doi.org/10.4310/ATMP.1998.v2.n4.a3
https://doi.org/10.4310/ATMP.1998.v2.n4.a3
https://arxiv.org/abs/hep-th/9806194
https://arxiv.org/abs/hep-th/9607235
https://doi.org/10.1007/978-3-642-29497-6
https://arxiv.org/abs/hep-th/9507121
https://doi.org/10.1016/0550-3213(88)90183-6
https://doi.org/10.1016/0550-3213(88)90183-6
https://doi.org/10.1142/S0217751X91000939
https://doi.org/10.1088/1126-6708/2009/03/030
https://arxiv.org/abs/0809.0507
https://doi.org/10.1007/JHEP02(2019)098
https://arxiv.org/abs/1810.08621
https://doi.org/10.1007/JHEP07(2017)090
https://arxiv.org/abs/1704.08665
https://doi.org/10.1007/JHEP04(2019)103
https://arxiv.org/abs/1812.01007
https://doi.org/10.1007/JHEP02(2020)136
https://arxiv.org/abs/1911.00378
https://doi.org/10.1103/PhysRevD.80.086009
https://arxiv.org/abs/0905.3451
https://doi.org/10.1088/1751-8121/ac47b2
https://doi.org/10.1088/1751-8121/ac47b2
https://arxiv.org/abs/2110.07535
https://arxiv.org/abs/2203.13264
https://doi.org/10.1007/JHEP02(2018)014
https://doi.org/10.1007/JHEP02(2018)014
https://arxiv.org/abs/1711.10474
https://doi.org/10.1088/1126-6708/2009/10/065
https://arxiv.org/abs/0906.2015


REFERENCES 189

[94] B. Chakrabarty, D. Turton and A. Virmani, Holographic description of
non-supersymmetric orbifolded D1-D5-P solutions, JHEP 11 (2015) 063
[1508.01231].

[95] E. J. Martinec and W. McElgin, String theory on AdS orbifolds, JHEP 04 (2002) 029
[hep-th/0106171].

[96] S. Giusto, O. Lunin, S. D. Mathur and D. Turton, D1-D5-P microstates at the cap,
JHEP 1302 (2013) 050 [1211.0306].

[97] O. Lunin and S. D. Mathur, Three point functions for M(N) / S(N) orbifolds with
N=4 supersymmetry, Commun. Math. Phys. 227 (2002) 385 [hep-th/0103169].

[98] E. Moscato, Black hole microstates and holography in the D1D5 CFT, Ph.D. thesis,
Queen Mary, U. of London, 9, 2017.

[99] A. Dabholkar and A. Pakman, Exact chiral ring of AdS(3) / CFT(2), Adv. Theor.
Math. Phys. 13 (2009) 409 [hep-th/0703022].

[100] G. Giribet, A. Pakman and L. Rastelli, Spectral Flow in AdS(3)/CFT(2), JHEP 06
(2008) 013 [0712.3046].

[101] J. M. Maldacena and H. Ooguri, Strings in AdS(3) and SL(2,R) WZW model 1.: The
Spectrum, J. Math. Phys. 42 (2001) 2929 [hep-th/0001053].

[102] J. M. Maldacena, H. Ooguri and J. Son, Strings in AdS(3) and the SL(2,R) WZW
model. Part 2. Euclidean black hole, J. Math. Phys. 42 (2001) 2961 [hep-th/0005183].

[103] J. M. Maldacena and H. Ooguri, Strings in AdS(3) and the SL(2,R) WZW model.
Part 3. Correlation functions, Phys. Rev. D65 (2002) 106006 [hep-th/0111180].

[104] J. Teschner, On structure constants and fusion rules in the SL(2,C) / SU(2) WZNW
model, Nucl. Phys. B546 (1999) 390 [hep-th/9712256].

[105] J. Teschner, The Minisuperspace limit of the sl(2,C) / SU(2) WZNW model, Nucl.
Phys. B 546 (1999) 369 [hep-th/9712258].

[106] J. Teschner, Operator product expansion and factorization in the H+(3) WZNW model,
Nucl. Phys. B571 (2000) 555 [hep-th/9906215].

[107] W. McElgin, Notes on the SL(2,R) CFT, 1511.07256.

[108] D. Harlow, J. Maltz and E. Witten, Analytic Continuation of Liouville Theory, JHEP
12 (2011) 071 [1108.4417].

[109] A. Zamolodchikov and V. Fateev, Operator Algebra and Correlation Functions in the
Two-Dimensional Wess-Zumino SU(2) x SU(2) Chiral Model, Sov. J. Nucl. Phys. 43
(1986) 657.

https://doi.org/10.1007/JHEP11(2015)063
https://arxiv.org/abs/1508.01231
https://doi.org/10.1088/1126-6708/2002/04/029
https://arxiv.org/abs/hep-th/0106171
https://doi.org/10.1007/JHEP02(2013)050
https://arxiv.org/abs/1211.0306
https://doi.org/10.1007/s002200200638
https://arxiv.org/abs/hep-th/0103169
https://doi.org/10.4310/ATMP.2009.v13.n2.a2
https://doi.org/10.4310/ATMP.2009.v13.n2.a2
https://arxiv.org/abs/hep-th/0703022
https://doi.org/10.1088/1126-6708/2008/06/013
https://doi.org/10.1088/1126-6708/2008/06/013
https://arxiv.org/abs/0712.3046
https://doi.org/10.1063/1.1377273
https://arxiv.org/abs/hep-th/0001053
https://doi.org/10.1063/1.1377039
https://arxiv.org/abs/hep-th/0005183
https://doi.org/10.1103/PhysRevD.65.106006
https://arxiv.org/abs/hep-th/0111180
https://doi.org/10.1016/S0550-3213(99)00072-3
https://arxiv.org/abs/hep-th/9712256
https://doi.org/10.1016/S0550-3213(99)00071-1
https://doi.org/10.1016/S0550-3213(99)00071-1
https://arxiv.org/abs/hep-th/9712258
https://doi.org/10.1016/S0550-3213(99)00785-3
https://arxiv.org/abs/hep-th/9906215
https://arxiv.org/abs/1511.07256
https://doi.org/10.1007/JHEP12(2011)071
https://doi.org/10.1007/JHEP12(2011)071
https://arxiv.org/abs/1108.4417


190 REFERENCES

[110] D. Kutasov and N. Seiberg, More comments on string theory on AdS(3), JHEP 04
(1999) 008 [hep-th/9903219].

[111] V. Fateev and A. Zamolodchikov, Parafermionic Currents in the Two-Dimensional
Conformal Quantum Field Theory and Selfdual Critical Points in Z(n) Invariant
Statistical Systems, Sov. Phys. JETP 62 (1985) 215.

[112] D. Kutasov, F. Larsen and R. G. Leigh, String theory in magnetic monopole
backgrounds, Nucl. Phys. B 550 (1999) 183 [hep-th/9812027].

[113] M. R. Gaberdiel and I. Kirsch, Worldsheet correlators in AdS(3)/CFT(2), JHEP 04
(2007) 050 [hep-th/0703001].

[114] J. Kim and M. Porrati, On the central charge of spacetime current algebras and
correlators in string theory on AdS3, JHEP 05 (2015) 076 [1503.07186].

[115] A. Giveon and D. Kutasov, Notes on AdS(3), Nucl. Phys. B621 (2002) 303
[hep-th/0106004].

[116] L. Eberhardt, Partition functions of the tensionless string, JHEP 03 (2021) 176
[2008.07533].

[117] A. Pakman and A. Sever, Exact N=4 correlators of AdS(3)/CFT(2), Phys. Lett. B 652
(2007) 60 [0704.3040].

[118] D. Israel, C. Kounnas, A. Pakman and J. Troost, The Partition function of the
supersymmetric two-dimensional black hole and little string theory, JHEP 06 (2004)
033 [hep-th/0403237].

[119] K. Sfetsos, Branes for Higgs phases and exact conformal field theories, JHEP 01 (1999)
015 [hep-th/9811167].

[120] A. Giveon and D. Kutasov, Little string theory in a double scaling limit, JHEP 10
(1999) 034 [hep-th/9909110].

[121] A. Giveon and D. Kutasov, Comments on double scaled little string theory, JHEP 01
(2000) 023 [hep-th/9911039].

[122] J. M. Maldacena and L. Maoz, Desingularization by rotation, JHEP 12 (2002) 055
[hep-th/0012025].

[123] V. Balasubramanian, J. de Boer, E. Keski-Vakkuri and S. F. Ross, Supersymmetric
conical defects: Towards a string theoretic description of black hole formation, Phys. Rev.
D 64 (2001) 064011 [hep-th/0011217].

[124] S. Giusto, S. D. Mathur and A. Saxena, Dual geometries for a set of 3-charge
microstates, Nucl. Phys. B701 (2004) 357 [hep-th/0405017].

https://doi.org/10.1088/1126-6708/1999/04/008
https://doi.org/10.1088/1126-6708/1999/04/008
https://arxiv.org/abs/hep-th/9903219
https://doi.org/10.1016/S0550-3213(99)00144-3
https://arxiv.org/abs/hep-th/9812027
https://doi.org/10.1088/1126-6708/2007/04/050
https://doi.org/10.1088/1126-6708/2007/04/050
https://arxiv.org/abs/hep-th/0703001
https://doi.org/10.1007/JHEP05(2015)076
https://arxiv.org/abs/1503.07186
https://doi.org/10.1016/S0550-3213(01)00573-9
https://arxiv.org/abs/hep-th/0106004
https://doi.org/10.1007/JHEP03(2021)176
https://arxiv.org/abs/2008.07533
https://doi.org/10.1016/j.physletb.2007.06.041
https://doi.org/10.1016/j.physletb.2007.06.041
https://arxiv.org/abs/0704.3040
https://doi.org/10.1088/1126-6708/2004/06/033
https://doi.org/10.1088/1126-6708/2004/06/033
https://arxiv.org/abs/hep-th/0403237
https://doi.org/10.1088/1126-6708/1999/01/015
https://doi.org/10.1088/1126-6708/1999/01/015
https://arxiv.org/abs/hep-th/9811167
https://doi.org/10.1088/1126-6708/1999/10/034
https://doi.org/10.1088/1126-6708/1999/10/034
https://arxiv.org/abs/hep-th/9909110
https://doi.org/10.1088/1126-6708/2000/01/023
https://doi.org/10.1088/1126-6708/2000/01/023
https://arxiv.org/abs/hep-th/9911039
https://doi.org/10.1088/1126-6708/2002/12/055
https://arxiv.org/abs/hep-th/0012025
https://doi.org/10.1103/PhysRevD.64.064011
https://doi.org/10.1103/PhysRevD.64.064011
https://arxiv.org/abs/hep-th/0011217
https://doi.org/10.1016/j.nuclphysb.2004.09.001
https://arxiv.org/abs/hep-th/0405017


REFERENCES 191

[125] S. Giusto, S. D. Mathur and A. Saxena, 3-charge geometries and their CFT duals,
Nucl. Phys. B710 (2005) 425 [hep-th/0406103].

[126] A. A. Tseytlin, Conformal sigma models corresponding to gauged
Wess-Zumino-Witten theories, Nucl. Phys. B 411 (1994) 509 [hep-th/9302083].

[127] C. Klimcik and A. A. Tseytlin, Exact four-dimensional string solutions and Toda like
sigma models from ’null gauged’ WZNW theories, Nucl. Phys. B 424 (1994) 71
[hep-th/9402120].

[128] C. Hull and B. J. Spence, The Gauged Nonlinear σ Model With Wess-Zumino Term,
Phys. Lett. B 232 (1989) 204.

[129] J. M. Figueroa-O’Farrill and N. Mohammedi, Gauging the Wess-Zumino term of a
sigma model with boundary, JHEP 08 (2005) 086 [hep-th/0506049].

[130] T. Quella and V. Schomerus, Asymmetric cosets, JHEP 02 (2003) 030
[hep-th/0212119].

[131] D. Kutasov, Introduction to little string theory, ICTP Lect. Notes Ser. 7 (2002) 165.

[132] O. Lunin, Adding momentum to D1-D5 system, JHEP 04 (2004) 054
[hep-th/0404006].

[133] I. Bena, S. Giusto, R. Russo, M. Shigemori and N. P. Warner, Habemus
Superstratum! A constructive proof of the existence of superstrata, JHEP 05 (2015) 110
[1503.01463].

[134] I. Bena, E. Martinec, D. Turton and N. P. Warner, Momentum Fractionation on
Superstrata, JHEP 05 (2016) 064 [1601.05805].

[135] I. Bena, S. Giusto, E. J. Martinec, R. Russo, M. Shigemori, D. Turton et al., Smooth
horizonless geometries deep inside the black-hole regime, Phys. Rev. Lett. 117 (2016)
201601 [1607.03908].

[136] I. Bena, P. Heidmann and D. Turton, AdS2 holography: mind the cap, JHEP 12
(2018) 028 [1806.02834].

[137] N. Ceplak, R. Russo and M. Shigemori, Supercharging Superstrata, JHEP 03 (2019)
095 [1812.08761].

[138] P. Heidmann and N. P. Warner, Superstratum Symbiosis, JHEP 09 (2019) 059
[1903.07631].

[139] S. Giusto, S. Rawash and D. Turton, Ads3 holography at dimension two, JHEP 07
(2019) 171 [1904.12880].

[140] B. D. Chowdhury and S. D. Mathur, Radiation from the non-extremal fuzzball,
Class. Quant. Grav. 25 (2008) 135005 [0711.4817].

https://doi.org/10.1016/j.nuclphysb.2005.01.009
https://arxiv.org/abs/hep-th/0406103
https://doi.org/10.1016/0550-3213(94)90461-8
https://arxiv.org/abs/hep-th/9302083
https://doi.org/10.1016/0550-3213(94)90089-2
https://arxiv.org/abs/hep-th/9402120
https://doi.org/10.1016/0370-2693(89)91688-2
https://doi.org/10.1088/1126-6708/2005/08/086
https://arxiv.org/abs/hep-th/0506049
https://doi.org/10.1088/1126-6708/2003/02/030
https://arxiv.org/abs/hep-th/0212119
https://doi.org/10.1088/1126-6708/2004/04/054
https://arxiv.org/abs/hep-th/0404006
https://doi.org/10.1007/JHEP05(2015)110
https://arxiv.org/abs/1503.01463
https://doi.org/10.1007/JHEP05(2016)064
https://arxiv.org/abs/1601.05805
https://doi.org/10.1103/PhysRevLett.117.201601
https://doi.org/10.1103/PhysRevLett.117.201601
https://arxiv.org/abs/1607.03908
https://doi.org/10.1007/JHEP12(2018)028
https://doi.org/10.1007/JHEP12(2018)028
https://arxiv.org/abs/1806.02834
https://doi.org/10.1007/JHEP03(2019)095
https://doi.org/10.1007/JHEP03(2019)095
https://arxiv.org/abs/1812.08761
https://doi.org/10.1007/JHEP09(2019)059
https://arxiv.org/abs/1903.07631
https://doi.org/10.1007/JHEP07(2019)171
https://doi.org/10.1007/JHEP07(2019)171
https://arxiv.org/abs/1904.12880
https://doi.org/10.1088/0264-9381/25/13/135005
https://arxiv.org/abs/0711.4817


192 REFERENCES

[141] S. G. Avery and B. D. Chowdhury, Emission from the D1D5 CFT: Higher Twists,
JHEP 01 (2010) 087 [0907.1663].

[142] T. D. Brennan and E. J. Martinec, Wrapped fivebranes redux, 2020.

[143] A. Giveon, N. Itzhaki and D. Kutasov, TT and LST, JHEP 07 (2017) 122
[1701.05576].

[144] M. Asrat, A. Giveon, N. Itzhaki and D. Kutasov, Holography Beyond AdS, Nucl.
Phys. B 932 (2018) 241 [1711.02690].

[145] A. Giveon, N. Itzhaki and D. Kutasov, A solvable irrelevant deformation of
AdS3/CFT2, JHEP 12 (2017) 155 [1707.05800].

[146] S.-w. Chung and S. H. H. Tye, Chiral gauged WZW theories and coset models in
conformal field theory, Phys. Rev. D 47 (1993) 4546 [hep-th/9202002].

[147] V. Cardoso, O. J. C. Dias, J. L. Hovdebo and R. C. Myers, Instability of
non-supersymmetric smooth geometries, Phys. Rev. D 73 (2006) 064031
[hep-th/0512277].

[148] K. Gawedzki, Noncompact WZW conformal field theories, in NATO Advanced Study
Institute: New Symmetry Principles in Quantum Field Theory, 10, 1991,
hep-th/9110076.

[149] C. M. Hull, Global aspects of T-duality, gauged sigma models and T-folds, JHEP 10
(2007) 057 [hep-th/0604178].

[150] C. M. Hull, Doubled Geometry and T-Folds, JHEP 07 (2007) 080 [hep-th/0605149].

[151] K. Gawedzki, R. R. Suszek and K. Waldorf, Global Gauge Anomalies in
Two-Dimensional Bosonic Sigma Models, Commun. Math. Phys. 302 (2011) 513
[1003.4154].

[152] P. de Fromont, K. Gawedzki and C. Tauber, Global gauge anomalies in coset models
of conformal field theory, Commun. Math. Phys. 328 (2014) 1371 [1301.2517].

[153] J. M. Izquierdo and P. K. Townsend, Supersymmetric spacetimes in (2+1)
ads-supergravity models, Classical and Quantum Gravity 12 (1995) 895–924.
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