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 B S T R A C T 

he only r -modes that exist in a globally barotropic, rotating, Newtonian star are the fundamental l = | m | solutions, where l
nd m are the indices of the spherical harmonic Y 

m 

l that describe the mode’s angular dependence. This is in stark contrast to a
tellar model that is non-barotropic throughout its interior, which hosts all the l ≥ | m | perturbations including radial o v ertones.
n reality, neutron stars are stratified with locally barotropic re gions. Therefore, we e xplore how stratification alters a star’s
bility to support r -modes. We consider the globally stratified case and examine the behaviour of the modes as the star gets close
o barotropicity. In this limit, we find that all but the fundamental l = | m | perturbations change character and become generic
nertial modes. Restricting the analysis to l = | m | perturbations, we develop the r -mode equations in order to consider stellar
odels that exhibit local barotropicity. Our results for such models show that the r -mode o v ertones div erge and join the inertial
odes. In order to see which r -modes persist and retain their character in realistic neutron stars, these calculations will need to

e brought into full general relativity. 

ey words: equation of state – instabilities – stars: neutron – stars: oscillations – stars: rotation. 

 I N T RO D U C T I O N  

tellar interiors host a rich spectrum of oscillation modes (Cox 1980 ; Unno et al. 1989 ). These perturbations are sensitive to the characteristics
f the star. Indeed, each ingredient of physics – density, stratification, rotation, magnetic field etc. – corresponds (more or less) directly to
 unique set of oscillation modes. It would seem, ho we ver, that not all oscillation modes are created equal. An interesting family of modes
hat arise due to stellar rotation are the r -modes. These Coriolis-dominated perturbations possess the remarkable property of being generically
nstable in a perfect-fluid star due to the emission of gravitational radiation (Andersson 1998 ; Friedman & Morsink 1998 ). This result inspired a
ide body of literature (see re vie ws Andersson & Kokkotas 2001 ; Andersson 2003 ), including suggestions that the r -mode instability may limit

he rotation rates of newly born pulsars (Lindblom, Owen & Morsink 1998 ; Andersson, Kokkotas & Schutz 1999a ) and more mature accreting
ystems (Bildsten 1998 ; Andersson, Kokkotas & Stergioulas 1999b ). The r -modes are also candidates for gra vitational-wa ve observations, with
 recent search focused on the glitching neutron star PSR J0537 −6910 (Abbott et al. 2021 ). Ho we ver, so far no gra vitational-wa ve signatures
onsistent with an r -mode instability have been seen. 

It was Cowling ( 1941 ), in his work on non-rotating polytropes, who provided the first classification of modes according to the physics
ominating their behaviour. The simplest stellar model is that of a spherical, incompressible fluid. Such a star will only have one family of
scillation modes, the fundamental f -modes. The f -modes are distinguished by having no nodes in their radial eigenfunctions and inducing large
ensity perturbations in the star. Should one allow for compressibility of the stellar fluid, by including an equation of state, then the p -modes
rise. These are high-frequency acoustic waves restored by the pressure of the fluid, also associated with large perturbations in the density.
uppose the star becomes stratified such that the matter is no longer barotropic. 1 Then g -modes will appear, restored by gravity gradients. The
 -modes have low frequencies and small density perturbations. 

These three families of fluid oscillations, the f -, p -, and g -modes, all belong to the class of polar modes. A perturbation is polar (spheroidal
r even parity) if it varies like a spherical harmonic Y 

m 

l under a parity transformation. In a spherically symmetric, fluid star, this is the only
lass of modes that exists. Furthermore, the perturbations of a spherical star are especially simple as each mode is associated with a single Y 

m 

l .
he class of axial (toroidal or odd parity) modes, which transform opposite under parity to polar modes, require some level of anisotropy in
rder to exist. 
 E-mail: f.w.r.gittins@soton.ac.uk (FG); n.a.andersson@soton.ac.uk (NA) 
 A star is said to be barotropic if the equilibrium and perturbed configurations satisfy the same one-parameter equation of state. Earlier work instead referred 
o such a star as ‘isentropic’, because an isentropic star with no composition gradients has this property. Ho we ver, for neutron stars, the departure from a 
ne-parameter equation of state is dominated by composition gradients. Thus, an isentropic neutron star may not, in general, have the same one-parameter 
quation of state for the background and the perturbation. 
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When the star begins to rotate, a new family of modes appears. These are known as the inertial modes and they are restored by the Coriolis
orce (Bryan 1889 ; Greenspan 1964 ; Lindblom & Ipser 1999 ; Rieutord 2001 ). Even in the non-rotating limit, the inertial modes generically
nvolve a mix of polar and axial perturbations with definite parity and couple multiple spherical harmonics (Lee, Strohmayer & van Horn
992 ; Lockitch & Friedman 1999 ; Yoshida & Lee 2000b ). Formally, these modes inhabit a zero-frequency subspace on the spherical star,
eing stationary conv ectiv e fluid currents, and attain non-zero oscillation frequencies at first order in the star’s angular frequency. Among these
odes exists a special subclass, the purely axial r -modes. 

The r -modes were first studied in the context of astrophysics by Papaloizou & Pringle ( 1978 ), who named them for their similarity to
he Rossby waves of terrestrial meteorology (see Zaqarashvili et al. 2021 , for a recent re vie w). Contrary to a typical inertial mode, an r -mode
s an axial perturbation associated with a single Y 

m 

l on the spherical star. Moreo v er in Newtonian gravity, their leading-order frequency in a
low-rotation expansion can be determined analytically to be 

 0 = 

2 m 

l( l + 1) 
� (1) 

n the rotating frame of the star with angular frequency �. Since the frequency of a mode as measured by an inertial observer outside the star
s simply ω 0 − m �, the r- modes are retrograde in the frame of the star, but prograde in the inertial frame at all rates of rotation. Therefore,
hey satisfy the well-known Chandrasekhar–Friedman–Schutz instability criterion and are generically unstable to perturbations driven by
ravitational radiation (Chandrasekhar 1970 ; Friedman & Schutz 1978 ; Andersson 1998 ; Friedman & Morsink 1998 ). 

To date, most of the r -mode calculations ha ve inv olved Newtonian stellar models that are globally barotropic (Lindblom et al. 1998 ;
ockitch & Friedman 1999 ; Yoshida & Lee 2000b ) or globally non-barotropic (Provost, Berthomieu & Rocca 1981 ; Sme yers, Crae ynest &
artens 1981 ; Saio 1982 ; Andersson et al. 1999a ; Yoshida & Lee 2000a ). The barotropic star is especially simple: there exist only the

undamental l = | m | r -modes in the star and the leading-order axial eigenfunctions can be obtained analytically, independent of the equation of
tate. Ho we ver, the non-barotropic case is more complicated. One must work to beyond leading order in rotation, where the star departs from
pherical symmetry (Papaloizou & Pringle 1978 ; Provost et al. 1981 ; Saio 1982 ). The equations then admit a standard eigenvalue problem for
he l ≥ | m | r -mode solutions. The reason for the concentration on Newtonian stars has been in part due to the challenges in calculating the
 -modes in general relativity. 

Our particular focus is on neutron stars, which are highly relativistic bodies. In order to involve a realistic description for the nuclear
atter, we need to formulate the r -mode problem beyond Newtonian gravity. In relativity, there are no longer any purely axial inertial modes

n barotropes (except for stationary dipole perturbations; Lockitch 1999 ). In this direction, there have been a number of calculations of the
elativistic inertial modes (Lockitch, Andersson & Friedman 2000 ; Lockitch, Friedman & Andersson 2003 ; Ruoff, Stavridis & Kokkotas 2003 ),
ncluding physically moti v ated equations of state (Idrisy, Owen & Jones 2015 ). The relativistic inertial modes may or may not be a reasonable
pproximation of the problem. In reality, neutron stars are stratified due to varying chemical composition (Reisenegger & Goldreich 1992 ;
ndersson & Pnigouras 2019 ). The r -modes exist in non-barotropic, relativistic stars. However, the relativistic perturbation equations imply a

ontinuous spectrum (Kojima 1998 ; Beyer & Kokkotas 1999 ). This is surprising, since the r -modes have well-defined frequencies in Newtonian
ravity. It is unclear whether the continuous spectrum is physical or an artefact of some simplifying assumptions. Adopting the latter view,
here have been efforts to regularize the problem (Lockitch, Andersson & Watts 2004 ; Pons et al. 2005 ), as well as studies using the Cowling
pproximation (Kojima & Hosonuma 1999 ; Kraav, Gusakov & Kantor 2022a , b ). 

In this paper, our goal is to study the role of stratification for the r -modes of Newtonian stars. In particular, we want to mo v e be yond
lobal assumptions about the matter and consider the more realistic case where the fluid may be locally barotropic. This is expected to be the
ase for neutron stars; their high-density cores will likely have composition gradients, whereas the outer layers will be barotropic (since matter
t low densities is composed of single nuclei). Our hope is that, in understanding the Newtonian problem, we may make progress towards
alculating the relativistic r -modes. 

This paper is organized as follows. We begin in Section 2 with a brief discussion on constructing slowly rotating stellar models, which will
orm the background for the r -mode oscillations. We mo v e on to Section 3 to describe the perturbation formalism for rotating stars and present
he r -mode equations. We develop these equations into an eigenvalue problem in Section 4 , assuming that the star is globally non-barotropic.
hese expressions are used to calculate the r -modes as the star gets close to the barotropic limit. In Section 5 , seeking to consider more realistic
tellar models, we derive the l = | m | system of equations, where the matter may be locally barotropic. We implement some neutron-star
quations of state for the perturbations with a polytropic background and compute the oscillations. Finally, we summarize and suggest future
irections in Section 6 . 

 SLOW LY  ROTATING  BAC K G RO U N D  

e will examine the r -modes of a slo wly rotating, Ne wtonian star. In principle, this limits the rates of rotation our analysis is accurate to.
o we ver, this will enable us to explore the character of the modes and, in practice, many stars fall comfortably within the slow-rotation regime.

The structure of a uniformly rotating star is a solution to the following system of equations: 

1 

ρ
∇ j p = −∇ j �, (2a) 

 j ∇ 

j � = 4 πGρ, (2b) 
NRAS 521, 3043–3057 (2023) 
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ith an equation of state 

 = p( ρ) , (2c) 

here 

 = � − 1 

3 
�2 r 2 [1 − P 2 ( cos θ )] (3) 

s the ef fecti ve potential – the sum of the gravitational � and centrifugal potentials – ρ is the mass density and p is the pressure. Here, we
se spherical polar coordinates ( r , θ , φ), where the star rotates with angular velocity �j about the θ = 0 axis, P l is a Legendre polynomial of
egree l and ∇ j is the covariant derivative. We assume the star to be rotating slowly such that 

 � ε2 ≡ �2 

GM/R 

3 
, (4) 

here M is the total mass of the star and R is the radius of its corresponding spherical configuration. 2 In this conte xt, a perturbativ e approach
o solving equations ( 2 ) is permitted, where the departure from sphericity is small. 3 

In a spherical star, the surfaces of constant density, pressure, and gravitational potential coincide and depend solely on r . This is not
o when the star begins to rotate, as the centrifugal force spoils the symmetry with respect to the polar angle θ . Therefore, in calculating
otating configurations, it is convenient to adjust the coordinate system in the following way. We use the Clairaut–Legendre expansion (see
.g. section 5.2 of Tassoul 1978 ) and introduce a new coordinate a that corresponds to the isobaric surfaces such that ρ( r , θ ) = ρ( a ) (and thus
lso corresponds to the isopycnic surfaces). By the Euler equation ( 2a ), these surfaces will also coincide with the surfaces of constant �. Since
he star rotates slowly, we may define 

( a, θ ) = a[1 + ε( a, θ )] + O( ε4 ) , (5) 

here ε = O ( ε2 ) characterizes the deviation from spherical symmetry. (That the expansion only involves even powers of ε is a consequence
f the rotational symmetry.) This coordinate change is associated with the metric tensor g jk defined by the line element 

 s 2 = g jk d x 
j d x k = (1 + 2 ε)[d a 2 + a 2 (d θ2 + sin 2 θ d φ2 )] + 2 a( ∂ a ε d a + ∂ θ ε d θ )d a + O( ε4 ) . (6) 

e note that the metric differs from the usual spherical polar coordinates at O ( ε2 ) and the coordinate basis is no longer orthogonal. We can
ee from ( 3 ) that the centrifugal potential only has contributions from the l = 0, 2 Legendre polynomials. Hence, the problem decouples into
hese two sectors and we must have 

( a, θ ) = ε 0 ( a) + ε 2 ( a) P 2 ( cos θ ) . (7) 

The l = 2 sector characterizes the shape of the star and reduces to Clairaut’s equation 

 

2 d 
2 ε 2 

d a 2 
+ 2 

d ln m 0 

d ln a 

d( aε 2 ) 

d a 
= 6 ε 2 , (8) 

here m 0 = O (1) denotes the mass distribution of the non-rotating configuration. We also note ρ0 = O (1), p 0 = O (1), and � 0 = O (1) as the
ass density, pressure, and gravitational potential of the spherical star, respectively. An examination of the behaviour at the centre shows that
 2 approaches a constant. The second boundary condition comes from matching the interior solution for � to the exterior solution that decays
s 1/ r 3 . Therefore, we find 

 ε 2 ( R) + R 

d ε 2 
d a 

∣∣∣∣
a= R 

= −5 

3 
ε2 . (9) 

quipped with the non-spherical shape of the slowly rotating background to second order in rotation, we go on to formulate the perturbation
roblem. 

 T H E  P E RTU R BAT I O N S  

scillation modes are harmonic solutions to the following linearized equations of motion (expressed in the rotating frame): 

ρ = −∇ j ( ρξj ) , (10a) 

 

2 
t ξj + 2 εjkn �

k ∂ t ξ
n = − 1 

ρ
∇ j δp + 

δρ

ρ2 
∇ j p − ∇ j δ�, (10b) 
MNRAS 521, 3043–3057 (2023) 

 The corresponding spherical star must be the same star when � = 0. In order for it to be the same star in any meaningful sense, the two configurations must 
ave identical masses and be described by the same equation of state. Consequently, this means that the rotating configuration will have a smaller central mass 
ensity, as fluid elements will mo v e a way from the centre due to the centrifugal force. 
 We note that the fastest observed pulsar to date has a recorded spin frequency of 716 Hz (Hessels et al. 2006 ). Assuming a canonical M = 1.4 M �, R = 10 km 

eutron star, this corresponds to ε2 ≈ 0.1, which can be reasonably argued to fall under slow rotation. 
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 j ∇ 

j δ� = 4 πGδρ, (10c) 

ith an equation of state for the perturbations 

�p 

p 

= � 1 
�ρ

ρ
, (10d) 

here δ and � denote the Eulerian and Lagrangian variations of a quantity , respectively , ξ j is the Lagrangian displacement vector of the fluid
lements and � 1 = � 1 ( a ) is the adiabatic index of the perturbations. The stratification of the fluid enters the description through the linearized
quation of state ( 10d ). As a starting assumption, it is common to choose � 1 = const. This leads to qualitative insight, but one has to be careful
n drawing quantitative conclusions. In general, when � 1 differs from the adiabatic index of the background 

 = 

d ln p 

d ln ρ
, (11) 

he perturbations obey a different equation of state and thus the star is non-barotropic. 
Since the equilibrium configuration is axisymmetric with respect to the azimuthal coordinate φ, each mode will have a definite order m

nd we may assume the following form for the Lagrangian displacement in our ( a , θ , φ) coordinate basis: 

a = 

1 

a 

∞ ∑ 

l=| m | 
W l ( a) Y 

m 

l e iωt , (12a) 

θ = 

1 

a 2 

∞ ∑ 

l=| m | 

[
V l ( a) ∂ θY 

m 

l − iU l ( a) 
∂ φY 

m 

l 

sin θ

]
e iωt , (12b) 

φ = 

1 

a 2 sin 2 θ

∞ ∑ 

l=| m | 

[
V l ( a) ∂ φY 

m 

l + iU l ( a) sin θ ∂ θY 

m 

l 

]
e iωt , (12c) 

here ω is the angular frequency of the mode and Y 

m 

l ( θ, φ) is a spherical harmonic. In the � → 0 limit, the displacement vector ( 12 ) will
end towards the familiar vector decomposition in ( r , θ , φ) coordinates (see e.g. Lockitch & Friedman 1999 ), where W l and V l are the polar
unctions and U l is the axial function. Indeed, since a mode’s parity does not change as it varies continuously along a sequence of equilibrium
onfigurations, beginning with a spherical star and with increasing rotation, it is appropriate to identify ( W l , V l ) and U l with the polar and axial
erturbations, respectively, as they correspond to these classes on a spherical star. 4 The scalar perturbations are consequently decomposed as 

ρ = 

∞ ∑ 

l=| m | 
δρl ( a) Y 

m 

l e iωt , δp = 

∞ ∑ 

l=| m | 
δp l ( a) Y 

m 

l e iωt , δ� = 

∞ ∑ 

l=| m | 
δ� l ( a) Y 

m 

l e iωt . (13) 

.1 Stratification on the spherical star 

lthough we want to formulate the r -mode problem on a rotating star, stratification already plays an important role on the non-rotating star. It
s instructive to consider this case briefly. 

A barotropic ( � 1 = �), spherically symmetric star only admits f - and p -modes. It can be shown that there are time-independent solutions
o the � = 0 perturbation equations ( 10 ) with vanishing perturbed mass densities that are purely polar or axial in nature (Lockitch & Friedman
999 ; see also Lockitch et al. 2000 , for the corresponding result in relativity). These stationary currents are associated with the polar g -modes
nd the axial r -modes and they reside in the zero-frequency subspace on such a star. If the star spins up, these stationary currents will become
scillatory, being restored by the Coriolis force. In general, these polar and axial perturbations will mix, forming the inertial modes. Ho we ver,
here will persist perturbations that are purely axial at zeroth order in rotation, associated with a definite ( l , m ). These solutions are the
undamental l = | m | r -modes. 

Suppose we now consider a stratified ( � 1 
= �), spherical star. Alongside the f - and p -modes, it will host g -modes with non-zero
requencies, supported by the buoyancy. The only trivial solutions that exist in this case are axial. Therefore, when the star rotates, the only
nertial modes that appear are the r -modes. Because the axial perturbations do not have stationary polar currents to mix with, a non-barotropic,
otating star has the complete set of l ≥ | m | r -modes including radial o v ertones. 

In between these two extremal cases, there is a third regime where the stratification and rotation are of the same order of magnitude. This
s a form of weak (but non-zero) stratification relative to the rotation. We discuss this scenario in more detail in Andersson & Gittins ( 2022 ). 

Neutron stars are, in general, non-barotropic since the chemical composition changes throughout the interior. This is illustrated in Fig. 1
or the two realistic equations of state, BSk19 and BSk21 (Fantina et al. 2013 ; Potekhin et al. 2013 ). The exact chemical composition of
eutron-star interiors is at present unknown and is related to the nuclear reactions going on under the surface (Reisenegger & Goldreich 1992 ;
ndersson & Pnigouras 2019 ). Ho we ver, we understand lo w-density nuclear matter quite well and expect the outer layers to be barotropic.

This is shown in Fig. 1 for both equations of state where � 1 = � at low densities.) 
NRAS 521, 3043–3057 (2023) 

 This issue was somewhat confused in the critique of the formulation of Saio ( 1982 ) by Smeyers & Martens ( 1983 ). 
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Figure 1. The relative difference between the adiabatic indices of the equilibrium � and the perturbations � 1 against the baryon-number density n b for two 
nuclear-matter equations of state, BSk19 and BSk21. These models show that, although neutron stars are predominantly non-barotropic, they are expected to 
have barotropic layers. In particular, both equations of state are barotropic towards the surface and BSk19 is also close to barotropic near n b = 0.2 fm 

−3 , 1 fm 

−3 . 
See Andersson & Gittins ( 2022 ) for a description of how � 1 is defined. 
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.2 Slow rotation 

o ving be yond the spherical star, in a slow-rotation e xpansion, an r -mode has the ordering 5 

ω ∼ O( ε) , W l ′ ∼ O( ε2 ) , V l ′ ∼ O( ε2 ) , U l ′ ∼ O(1) , 
δρl ′ ∼ O( ε2 ) , δp l ′ ∼ O( ε2 ) , δ� l ′ ∼ O( ε2 ) . 

(14) 

o uniquely identify the r -modes from the perturbation equations ( 10 ), it is sufficient to look for solutions of the form ( 14 ). By rotational
ymmetry, we can assume the series expansion for the mode frequency (Papaloizou & Pringle 1978 ; Smeyers et al. 1981 ) 

 = ω 0 + ω 2 + O( ε5 ) , (15) 

here ω 0 = O ( ε) and ω 2 = O ( ε3 ). Clearly, the validity of this expansion relies on | ω 2 / ω 0 | = O ( ε2 )  1. (This is a feature we will pay close
ttention to later.) The remaining terms we need only calculate to leading order. 

In addition to the fact that the r -modes are purely axial, they are special among the inertial modes in that their frequency at leading order
s analytic and independent of the equation of state. This can be seen from the angular components of the linearized Euler equation ( 10b ). At
 ( ε2 ), we find the simple expression 

 = ω 0 

∑ 

l 

[ l( l + 1) ω 0 − 2 m�] U l Y 

m 

l . (16) 

here are three solutions to equation ( 16 ): (i) the equation permits a zero-frequency solution with ω 0 = 0; (ii) the axial functions are U l ′ = 0
or all l ′ ; or (iii) a single U l surviv es with frequenc y ( 1 ). The physically interesting case that corresponds to an r -mode is solution (iii). We note
hat there are no axisymmetric ( m = 0) r -modes and all the perturbations travel retrograde to the rotation of the star. Ho we ver , at this order , the
xial function U l is undetermined. To calculate these functions, we need to develop the perturbation equations ( 10 ) into an eigenvalue problem
or the frequency correction ω 2 . 

The equations we need were first derived by Saio ( 1982 ). We will focus on the simple adiabatic case appropriate for (cold) neutron stars.
n this context, the oscillations will be normal modes with manifestly real frequencies, since there are no dissipative effects. As is typically
seful in the numerical computation of oscillation modes, we define the following dimensionless variables (Unno et al. 1989 ): 

 1 ,l ′ = 

W l ′ 

a 2 
, y 2 ,l ′ = 

1 

ag 

(
δp l ′ 

ρ0 
+ δ� l ′ 

)
, y 3 ,l ′ = 

1 

ag 
δ� l ′ , y 4 ,l ′ = 

1 

g 

d δ� l ′ 

d a 
, y 5 ,l ′ = 

V l ′ 

a 2 
, y 6 ,l ′ = 

U l ′ 

a 2 
, (17) 

here g = d � 0 / d a is the gravitational acceleration. Rotation couples spherical harmonics with different values of l ′ . In order to see this, one
ay use the standard recurrence relations 

cos θ Y 

m 

l ′ = Q l ′ + 1 Y 

m 

l ′ + 1 + Q l ′ Y 

m 

l ′ −1 , (18a) 

sin θ ∂ θY 

m 

l ′ = l ′ Q l ′ + 1 Y 

m 

l ′ + 1 − ( l ′ + 1) Q l ′ Y 

m 

l ′ −1 , (18b) 
MNRAS 521, 3043–3057 (2023) 

 It is straightforward to show from a slow-rotation expansion of the linearized equations ( 10 ) that an axial perturbation at zeroth order in rotation with a frequency 
t linear order will source polar perturbations at second order. 
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here 

 l ′ = 

√ 

( l ′ + m )( l ′ − m ) 

(2 l ′ + 1)(2 l ′ − 1) 
. (19) 

t is useful to note the orthogonality of the spherical harmonics ∫ 
Y 

m 

′ 
l ′ Y 

m ∗
l d � = δl l ′ δmm 

′ , (20) 

here d � is the element of solid angle. Using these identities, the linearized equations ( 10 ) with the ordering ( 14 ) provide the following system
f differential equations: 

 

d y 1 ,l+ 1 

d a 
= 

(
V 

� 1 
− 3 

)
y 1 ,l+ 1 − V 

� 1 
y 2 ,l+ 1 + 

V 

� 1 
y 3 ,l+ 1 + ( l + 1)( l + 2) y 5 ,l+ 1 + 

3 m 

a 2 

d( a 3 ε 2 ) 

d a 
Q l+ 1 y 6 ,l , (21a) 

 

d y 1 ,l−1 

d a 
= 

(
V 

� 1 
− 3 

)
y 1 ,l−1 − V 

� 1 
y 2 ,l−1 + 

V 

� 1 
y 3 ,l−1 + ( l − 1) ly 5 ,l−1 + 

3 m 

a 2 

d( a 3 ε 2 ) 

d a 
Q l y 6 ,l , (21b) 

 

d y 2 ,l+ 1 

d a 
= aAy 1 ,l+ 1 + (1 − U − aA ) y 2 ,l+ 1 + aAy 3 ,l+ 1 − 2 lQ l+ 1 c 1 ε ˜ ω 0 y 6 ,l , (21c) 

 

d y 2 ,l−1 

d a 
= aAy 1 ,l−1 + (1 − U − aA ) y 2 ,l−1 + aAy 3 ,l−1 + 2( l + 1) Q l c 1 ε ˜ ω 0 y 6 ,l , (21d) 

 

d y 3 ,l±1 

d a 
= (1 − U ) y 3 ,l±1 + y 4 ,l±1 , (21e) 

 

d y 4 ,l±1 

d a 
= −aAUy 1 ,l±1 + 

UV 

� 1 
y 2 ,l±1 + 

[
( l ± 1)( l ± 1 + 1) − UV 

� 1 

]
y 3 ,l±1 − U y 4 ,l±1 , (21f) 

ith the algebraic relations 

 l + 1) y 2 ,l+ 1 = −2 lQ l+ 1 c 1 ε ˜ ω 0 y 6 ,l , (21g) 

y 2 ,l−1 = −2( l + 1) Q l c 1 ε ˜ ω 0 y 6 ,l , (21h) 

y 6 ,l = −( l + 1) Q l [ y 1 ,l−1 − ( l − 1) y 5 ,l−1 ] + lQ l+ 1 [ y 1 ,l+ 1 + ( l + 2) y 5 ,l+ 1 ] , (21i) 

here 

 = 

d ln ρ0 

d a 
− 1 

� 1 

d ln p 0 

d a 
= 

(
1 

� 

− 1 

� 1 

)
d ln p 0 

d a 
(22) 

s the Schwarzschild discriminant (useful for characterizing the stratification of the fluid) and we have defined the dimensionless terms 

˜  0 = 

ω 0 √ 

GM/R 

3 
, ˜ ω 2 = 

ω 2 √ 

GM/R 

3 
, 

V = −d ln p 0 

d ln a 
, U = 

d ln m 0 

d ln a 
, c 1 = 

( a 

R 

)3 M 

m 0 
, 

B = 

1 

2 ε ˜ ω 0 
{ 2[ l( l + 1) ̃  ω 0 − mε] ̃  ω 2 − [ l( l + 1) ̃  ω 0 − 8 mε] ̃  ω 0 ε 2 + 3( Q 

2 
l+ 1 + Q 

2 
l )[ l( l + 1) ̃  ω 0 − 12 mε] ̃  ω 0 ε 2 + 6[ lQ 

2 
l+ 1 − ( l + 1) Q 

2 
l ] ̃  ω 

2 
0 ε 2 } . 

(23) 

quations ( 21 ) describe an r -mode and there are a few remarks worth making: (i) the leading-order axial perturbation, associated with the
pherical harmonic Y 

m 

l , sources l ± 1 polar perturbations at O ( ε2 ) (as well as l ± 2 axial perturbations at this order, as we show in Appendix A );
ii) since Q l = 0 for l = | m | , the l − 1 polar terms must vanish and thus the lowest degree mode that exists is l = | m | [this has been assumed in
he decomposition of equations ( 12 ) and ( 13 )]; and (iii) the only rotational quantity from the background that comes into the mode equations is
he non-spherical shape ε 2 . At this point, no assumptions have been made about the state of the matter. 

In the globally barotropic case � 1 = �, where A = 0, the linearized equations ( 21 ) admit a simple solution. We can combine ( 21c ) with
 21g ) and ( 21d ) with ( 21h ) to obtain two equations that an r -mode must satisfy, 

 l+ 1 

[
a 

d y 6 ,l 
d a 

− ( l − 1) y 6 ,l 

]
= 0 , (24a) 

 l 

[
a 

d y 6 ,l 
d a 

+ ( l + 2) y 6 ,l 

]
= 0 . (24b) 

quations ( 24 ) only provide a consistent, non-trivial solution when l = | m | and y 6, | m | ∝ a | m | − 1 . This is the fundamental r -mode that we alluded
o previously. Thus, there are no o v ertones when the star is barotropic and there are no l > | m | solutions. The higher order features, including
he other eigenfunctions and eigenvalue ˜ ω 2 , are determined from the remaining l + 1 equations ( 21 ). 
NRAS 521, 3043–3057 (2023) 
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 G L O B  A L LY  N O N - B  A R  OTR  OPIC  STARS  

e want to express the r -mode equations ( 21 ) in a form that is suitable for integration. As it stands, we are unable to determine y 5, l ± 1 , since
e only have one algebraic relation ( 21i ) for these two functions that appear in equations ( 21a ) and ( 21b ). To begin with, we will assume the

tar to be stably stratified throughout its interior such that � 1 
= �. 6 As we have noted above, this assumption is inappropriate for realistic stars
ith some degree of local barotropicity, but we can learn something about how the r -mode solutions behave as one gets close to the barotropic

imit. 
The variables y 1, l − 1 , y 2, l − 1 , y 5, l ± 1 and y 6, l can be eliminated from the system of equations through the following approach (Saio 1982 ).

tarting with equations ( 21g ) and ( 21h ), we have an algebraic relation for y 6, l and 

 2 ,l−1 = J l y 2 ,l+ 1 , (25) 

here 

 l = 

( l + 1) 2 

l 2 

Q l 

Q l+ 1 
. (26) 

e can make use of these relations with equations ( 21c ) and ( 21d ) in order to obtain 

 Ay 1 ,l−1 = J l a Ay 1 ,l+ 1 + J l (2 l + 1) y 2 ,l+ 1 + aA ( J l y 3 ,l+ 1 − y 3 ,l−1 ) . (27) 

ince we assume that A 
= 0, this allows us to eliminate y 1, l − 1 from the system. Here, we note that ( 27 ) implies that y 2, l + 1 = 0 in barotropic
egions, for l > | m | . Next, we can differentiate ( 27 ) and combine the result with the differential equations ( 21a ) and ( 21b ) to obtain 

 l − 1) ly 5 ,l−1 = J l (2 l + 1) y 1 ,l+ 1 + J l (5 + 2 l − U ) y 3 ,l+ 1 − (4 − U ) y 3 ,l−1 + J l y 4 ,l+ 1 − y 4 ,l−1 + J l ( l + 1)( l + 2) y 5 ,l+ 1 

+ J l (2 l + 1) 

{
1 

aA 

[
5 + l − U − V 

� 1 
− aA − 1 

A 

d( aA ) 

d a 

]
− 3 m 

2 l( l + 1) a 2 c 1 ε ˜ ω 0 

d( a 3 ε 2 ) 

d a 

}
y 2 ,l+ 1 . (28) 

long with equation ( 21i ), we are in a position to decouple y 5, l ± 1 . 
We now have enough information to remove the variables y 1, l − 1 , y 2, l − 1 , y 5, l ± 1 and y 6, l from equations ( 21 ). We end up with 

 

d y 1 ,l+ 1 

d a 
= 

(
V 

� 1 
− 4 − l 

)
y 1 ,l+ 1 −

[
(2 l + 1) C 

1 + J 

2 
l 

+ 

V 

� 1 
+ 

3 m ( l + 1) 

2 la 2 c 1 ε ˜ ω 0 

d( a 3 ε 2 ) 

d a 

]
y 2 ,l+ 1 

+ 

[
V 

� 1 
+ 

J 

2 
l 

1 + J 

2 
l 

( U − 5 − l) 

]
y 3 ,l+ 1 + 

J l 

1 + J 

2 
l 

(4 − U − l) y 3 ,l−1 − J 

2 
l 

1 + J 

2 
l 

y 4 ,l+ 1 + 

J l 

1 + J 

2 
l 

y 4 ,l−1 , (29a) 

 

d y 2 ,l+ 1 

d a 
= aAy 1 ,l+ 1 + (2 + l − U − aA ) y 2 ,l+ 1 + aAy 3 ,l+ 1 , (29b) 

 

d y 3 ,l±1 

d a 
= (1 − U ) y 3 ,l±1 + y 4 ,l±1 , (29c) 

 

d y 4 ,l+ 1 

d a 
= −aAUy 1 ,l+ 1 + 

UV 

� 1 
y 2 ,l+ 1 + 

[
( l + 1)( l + 2) − UV 

� 1 

]
y 3 ,l+ 1 − U y 4 ,l+ 1 , (29d) 

 

d y 4 ,l−1 

d a 
= −J l aAUy 1 ,l+ 1 + J l U 

(
V 

� 1 
− 2 l − 1 

)
y 2 ,l+ 1 − J l aAUy 3 ,l+ 1 + 

[
( l − 1) l − UV 

� 1 
+ aAU 

]
y 3 ,l−1 − Uy 4 ,l−1 , (29e) 

here 

 = 

J 

2 
l 

aA 

[
5 − U − V 

� 1 
− 1 

A 

d( aA ) 

d a 

]
− J 

2 
l + 

1 

2 lc 1 ε ˜ ω 0 

[
− 3 m J 

2 
l 

( l + 1) a 2 
d( a 3 ε 2 ) 

d a 
+ 

( l + 1) 2 B 

l(2 l + 1) Q 

2 
l+ 1 

]
. (30) 

In order to solve the eigenvalue problem ( 29 ), we must provide boundary conditions that constrain the solutions. At the stellar centre, the
unctions must be well behaved and regular. As a → 0, the regular solutions are given by (see section 18.1 of Unno et al. 1989 ) 

 1 ,l+ 1 ∼ a l−1 , y 2 ,l+ 1 ∼ a l−1 , y 3 ,l±1 ∼ a l±1 −2 , y 4 ,l±1 ∼ a l±1 −2 . (31) 

nserting ( 31 ) into the perturbation equations ( 29 ), we find the following boundary conditions at the centre of the star: 

2 l + 3) y 1 ,l+ 1 + 

[
(2 l + 1) C 

1 + J 

2 
l 

+ 

9 m ( l + 1) ε 2 
2 lc 1 ε ˜ ω 0 

]
y 2 ,l+ 1 + 

J 

2 
l 

1 + J 

2 
l 

(2 l + 3) y 3 ,l+ 1 = 0 , (32a) 

 l ± 1) y 3 ,l±1 − y 4 ,l±1 = 0 . (32b) 

t the surface, the Lagrangian variation of the pressure must vanish � p / ρ0 = 0 and the perturbed gravitational potential must match smoothly
o the exterior solution, which decays as δ� l ′ ∝ 1 /r l 

′ + 1 for a given multipole l ′ . Thus, for a = R , we must have 

 1 ,l+ 1 − y 2 ,l+ 1 + y 3 ,l+ 1 = 0 , (33a) 
MNRAS 521, 3043–3057 (2023) 

 This is equi v alent to assuming A 
= 0, except at the very centre of the star. Ho we ver, due to the coordinate system, the equations are divergent at the centre, so 
ne usually circumvents this singularity in the numerical integration by considering a small step away from a = 0. 
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Table 1. The r -mode eigenfrequencies ˜ ω 2 /ε
3 of the n = 1 polytrope with � 1 = 5/3. 

l = 3 l = 2 l = 1 
k m = 3 m = 2 m = 1 m = 2 m = 1 m = 1 

0 0.422 72 0.986 26 0.702 23 0.396 51 1 .860 08 0.000 00 
1 0.692 83 1.960 99 1.430 25 1.022 41 4 .362 69 1.843 39 
2 1.025 24 3.233 40 2.381 89 1.812 37 7 .782 43 4.243 66 
3 1.433 70 4.805 56 3.557 93 2.810 25 12 .122 75 7.393 18 
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 l ± 1 + 1) y 3 ,l±1 + y 4 ,l±1 = 0 . (33b) 
quations ( 29 ) constitute six first-order ordinary differential equations, supplemented by three boundary conditions at the centre ( 32 ) and three
t the surface ( 33 ). The boundary conditions will only be satisfied for an eigenvalue ˜ ω 2 . 

We solve this eigenvalue problem using the following numerical approach (our technique is similar to that used by Lindblom & Detweiler
983 ). Since the system of equations ( 29 ) is linear (by construction, as we are using first-order perturbation theory), we may express it as 

d Y 

d a 
= Q ( a; l, m, ˜ ω 2 ) · Y ( a) , (34) 

ith a matrix Q and abstract vector field Y = ( y 1 ,l+ 1 , y 2 ,l+ 1 , y 3 ,l+ 1 , y 3 ,l−1 , y 4 ,l+ 1 , y 4 ,l−1 ). This is a sixth-order system of linear equations, so
here will exist six linearly independent solutions for a given ( l, m, ˜ ω 2 ). However, only for specific values of ˜ ω 2 will the linearly independent
olutions combine to satisfy all the boundary conditions; these are the eigenfrequencies. At the centre of the star, there are three linearly
ndependent vectors Y ( a → 0) that satisfy boundary conditions ( 32 ). We select three such initial vectors and integrate them using equation
 34 ) to a point 0 < a 0 < R in the star. This generates three solutions Y 1 , Y 2 , Y 3 defined on the domain 0 < a ≤ a 0 , each of which satisfy the
entral boundary conditions ( 32 ). In a similar fashion, we also produce three linearly independent solutions Y 4 , Y 5 , Y 6 for the region a 0 ≤ a

R out of the surface boundary conditions ( 33 ). Therefore, we obtain the general solution 

 ( a) = 

{ 

β1 Y 1 ( a) + β2 Y 2 ( a) + β3 Y 3 ( a) , for 0 < a ≤ a 0 

β4 Y 4 ( a) + β5 Y 5 ( a) + β6 Y 6 ( a) , for a 0 ≤ a ≤ R 

(35) 

ith constants β1 , . . . , β6 . Hence, ˜ ω 2 is an eigenvalue if and only if 

1 Y 1 ( a 0 ) + β2 Y 2 ( a 0 ) + β3 Y 3 ( a 0 ) = β4 Y 4 ( a 0 ) + β5 Y 5 ( a 0 ) + β6 Y 6 ( a 0 ) . (36) 

his matching can be written as the matrix equation A · x = 0, where A depends non-linearly on ˜ ω 2 . For non-trivial eigenvalues, the matrix A
s singular. Thus, we look for values of ˜ ω 2 , for a given ( l , m ), such that det A = 0. 

Once the eigenfrequency ˜ ω 2 is determined, the eigenfunctions may be calculated. Since we are calculating normal modes, there is a free
mplitude in the functions. We choose to normalise the modes at the surface by 

 6 ,l ( R) = 1 . (37) 

e implement this normalization by replacing a row in A in fa v our of this condition, ˜ A · x = b , where ˜ A becomes a non-singular matrix and
 is a known column vector. This concludes the discussion of our numerical method. 

For our results, we assume a polytropic equation of state for the equilibrium star 

( ρ) = Kρ� , � = 1 + 

1 

n 
, (38) 

here K and n are the polytropic constant and inde x, respectiv ely. We consider n = 1 to approximate a neutron star and obtain the shape ε 2
rom the results of Chandrasekhar & Lebovitz ( 1962 ). 

As a consistency check of our computational technique, we first consider � 1 = 5/3 (also employed by Provost et al. 1981 ; Saio 1982 ). 7

he results are summarized by Table 1 , where the o v ertones, with nodes in their displacement eigenfunctions, are denoted by k . We can
ompare the l = 3 eigenfrequencies with Provost et al. ( 1981 ), who calculated within the Cowling approximation. Our results are compatible
ithin the estimated errors of the approximation. Additionally, we considered the non-analytic n = 3 polytrope, numerically solving ( 8 ) for

he shape, to compare with Saio ( 1982 ), finding excellent agreement. 
The system of equations ( 29 ) is constrained to stellar models that have � 1 
= �. (Indeed, Saio 1982 , was aware of this limitation and so

nly considered l = | m | r -modes for more realistic stellar models in his calculation.) Although we are unable to consider barotropic stars, we
re in a position to explore what happens to the r -mode solutions as the stellar model tends to wards barotropicity. Moti v ated by Fig. 1 , we
ill consider the range 2 < � 1 ≤ 2.25 to approximate n = 1 neutron stars. In Figs 2 –4 , we show how the eigenfrequencies vary in the � 1

 � limit. All but the fundamental ( k = 0) l = | m | eigenfrequencies diverge (and the divergences are worse for the higher o v ertones). That
NRAS 521, 3043–3057 (2023) 

 Such a star is unstable to conv ectiv e phenomena A > 0. The buoyancy forces will tend to increase the displacement of fluid elements, giving rise to unstable 
 -modes. 

23
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Figure 2. The eigenfrequencies ˜ ω 2 of the l = 3 r -modes of the n = 1 polytrope with varying � 1 . Note that only the ( m , k ) = (3, 0) solution remains well 
behaved in the barotropic limit. The other solutions diverge, implying that ˜ ω 2 is promoted to the same order as the leading-order frequency ˜ ω 0 and the frequency 
expansion is spoiled. 
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s, the frequency correction ˜ ω 2 grows exponentially as the star becomes more barotropic, showing that care must be taken with the frequency
xpansion ( 15 ) in this limit. If ˜ ω 2 becomes comparable in magnitude to ˜ ω 0 , the frequency will no longer satisfy the Euler equation ( 16 ) at
eading order, which in turn will result in a breakdown in the assumed ordering ( 14 ). 

Clearly, for sufficiently small ε, | ̃  ω 2 |  | ̃  ω 0 | and the r -modes are perfectly well behaved. Indeed, for the more stratified models, the critical
otation at which ˜ ω 2 ∼ O( ̃  ω 0 ) lies well outside the slow-rotation regime ( 4 ) where the perturbative framework does not apply. However, as
he stellar models become more barotropic, this breakdown sets in at reasonable values of ε2  1. As illustrative examples, consider the k =
 and k = 1 ( l , m ) = (2, 2) solutions where � 1 = 2.01 (which appear in Fig. 3 ). The k = 0 mode has ˜ ω 2 / ̃  ω 0 ≈ 0 . 598 ε2 = O( ε2 ), whereas
 = 1 has ˜ ω 2 / ̃  ω 0 ≈ −37 . 088 ε2 = O(10 ε2 ). The k = 0 solution will al w ays be valid since, for any slow rotation ε2  1, | ̃  ω 2 |  | ̃  ω 0 | will be
atisfied. This is not so for k = 1 where, for (say) ε2 ∼ 0.1, the frequency correction approaches ˜ ω 2 ∼ O( ̃  ω 0 ). This feature worsens with higher
 v ertones k . 

This dependence on ε is important to note since, from the outset, we merely assumed slow rotation according to ( 4 ). Now, it is evident
hat, as we approach barotropicity, the non-fundamental l = | m | r -modes only have support at even slower rotation rates. This is an additional
onstraint on the solutions. In general, if | ̃  ω 2 / ( ε2 ˜ ω 0 ) | � 1, then there is an additional dependence on the rotation ε in addition to slow 

otation. 
Here, we see the competition between the rotation ε of the star and its stratification, parametrized by the adiabatic indices � and � 1 ,

n supporting r -mode oscillations. For rotations of ε ∼ 0.1 (appropriate for rapidly rotating neutron stars), the frequency corrections of the
on-fundamental l = | m | solutions become ˜ ω 2 ∼ O( ε) in the � 1 → � limit. Hence, the leading-order frequencies are no longer simply given
y equation ( 1 ). 
MNRAS 521, 3043–3057 (2023) 
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Figure 3. The eigenfrequencies ˜ ω 2 of the l = 2 r -modes of the n = 1 polytrope with varying � 1 . Note that only the ( m , k ) = (2, 0) solution remains well 
behaved in the barotropic limit. The other solutions diverge, implying that ˜ ω 2 is promoted to the same order as the leading-order frequency ˜ ω 0 and the frequency 
expansion is spoiled. 

Figure 4. The eigenfrequencies ˜ ω 2 of the ( l , m ) = (1, 1) r -modes of the n = 1 polytrope with varying � 1 . Note that only the k = 0 solution remains well 
behaved in the barotropic limit. The other solutions diverge, implying that ˜ ω 2 is promoted to the same order as the leading-order frequency ˜ ω 0 and the frequency 
expansion is spoiled. 
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In Figs 5 and 6 , we present the eigenfunctions for the k = 0 and k = 1 ( l , m ) = (2, 2) r -modes, respectively. As we witnessed for the
igenfrequencies, the eigenfunctions of the k = 0 r -mode in Fig. 5 retain their character and are well behaved in the barotropic limit. Ho we ver,
he k = 1 o v ertone has markedly different behaviour, shown in Fig. 6 . As � 1 → �, the polar displacement eigenfunctions y 1, l + 1 and y 5, l + 1

iverge, again presenting an issue with the assumed ordering ( 14 ) for moderate rotation rates ε. We note that we saw the same qualitative
eatures in all the r -modes we calculated, although the divergences had varying levels of severity (as was the case for the eigenfrequencies). 

Indeed, for ε ∼ 0.1, y 1, l + 1 and y 5, l + 1 get promoted to O (1) perturbations like y 6, l such that the displacement at leading order becomes a
ix of polar and axial functions. We show this feature analytically in Andersson & Gittins ( 2022 ). The scalar perturbations remain at O ( ε2 ).
his, along with the divergence of the eigenfrequency ˜ ω 2 ∼ O( ε), meets the definition of a generic inertial mode. Therefore, the k ≥ 1, l =
 m | perturbations and the l > | m | perturbations become similar in character to inertial modes as the matter becomes barotropic. 

 A L L OW I N G  F O R  L O C A L  B  A R  OTR  OPICIT Y  

s we have discussed, equations ( 29 ) assume the star to be globally non-barotropic such that � 1 
= �. In reality, neutron stars will have regions
here the matter is barotropic (see Fig. 1 ). We want to explore the extent to which we can drop this assumption and mo v e towards more

ealistic matter models. We begin with equations ( 21 ), where no assumption about the matter has been made. 
One problem immediately rears its ugly head. Without using the algebraic relation ( 27 ), which has divergent behaviour as � 1 → �, one

s unable to decouple the functions y 5, l ± 1 that appear in equations ( 21a ), ( 21b ), and ( 21i ). But, given what we found in Section 4 , this may not
e too surprising. As a star goes from being globally non-barotropic to globally barotropic, all but the fundamental l = | m | r -mode solutions
NRAS 521, 3043–3057 (2023) 
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MNRAS 521, 3043–3057 (2023) 

Figure 5. The eigenfunctions of the ( l , m , k ) = (2, 2, 0) r -mode of the n = 1 polytrope for dif ferent v alues of � 1 . The eigenfunctions of fundamental r -modes 
are relatively unchanged as the star becomes more barotropic. 

Figure 6. The eigenfunctions of the ( l , m , k ) = (2, 2, 1) r -mode of the n = 1 polytrope for different values of � 1 . Note the divergences of the polar eigenfunctions 
y 1, l + 1 and y 5, l + 1 in the barotropic limit � 1 → �. This sho ws ho w the polar displacement terms are promoted to the same order as the axial displacement y 6, l 

and the perturbation becomes a generic inertial mode on the barotropic star. 
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Table 2. The l = | m | r -mode eigenfrequencies ˜ ω 2 /ε
3 of an n = 1 polytrope, with M = 1.4 M � and R = 10 km. The 

quantity � 1 / � is determined from a neutron-star equation of state, BSk19 or BSk21. Note the divergent values with 
higher o v ertones. 

m = 3 m = 2 m = 1 
k BSk19 BSk21 BSk19 BSk21 BSk19 BSk21 

0 0 .4278 0 .4282 0 .3986 0 .3989 0 .0000 0 .0000 
1 − 2 .6945 − 0 .4610 − 6 .2134 − 1 .2297 − 18 .2599 − 3 .7280 
2 − 5 .1463 − 1 .6301 − 14 .6769 − 3 .9823 − 53 .6627 − 11 .9555 
3 − 11 .5551 − 3 .1305 − 28 .7989 − 7 .6752 − 94 .0447 − 23 .5897 
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iverge in such a way that they change character and become like generic inertial modes. Should this result hold if the star becomes locally
arotropic (even, say, at a point), then it stands to reason that the perturbation equations constructed from the assumed ordering ( 14 ) will not
dmit any solutions, since no such modes would exist. This seems to be the situation we find ourselves in and we will provide further evidence
or this in this section. 

As one might expect, the problem simplifies in the l = | m | case. We know that a barotropic star only has one solution for a given l = | m |
the fundamental r -mode; see equations ( 24 )]. Therefore, we can examine whether a star that is locally barotropic supports l = | m | r -modes
ith o v ertones k ≥ 1. 

These modes have no l − 1 couplings. Equations ( 21g ) and ( 21i ) enable us to remove y 5, | m | + 1 and y 6, | m | from the system of equations.
ence, we obtain the following system for the l = | m | r -modes: 

 

d y 1 , | m |+ 1 

d a 
= 

(
V 

� 1 
− 4 − | m | 

)
y 1 , | m |+ 1 −

{ 

V 

� 1 
+ 

| m | + 1 

2 | m | c 1 ε ˜ ω 0 

[ 

( | m | + 1) B 

| m | Q 

2 
| m |+ 1 

+ 

3 m 

a 2 

d( a 3 ε 2 ) 

d a 

] } 

y 2 , | m |+ 1 + 

V 

� 1 
y 3 , | m |+ 1 , (39a) 

 

d y 2 , | m |+ 1 

d a 
= aAy 1 , | m |+ 1 + (2 + | m | − U − aA ) y 2 , | m |+ 1 + aAy 3 , | m |+ 1 , (39b) 

 

d y 3 , | m |+ 1 

d a 
= (1 − U ) y 3 , | m |+ 1 + y 4 , | m |+ 1 , (39c) 

 

d y 4 , | m |+ 1 

d a 
= −aAUy 1 , | m |+ 1 + 

UV 

� 1 
y 2 , | m |+ 1 + 

[
( | m | + 1)( | m | + 2) − UV 

� 1 

]
y 3 , | m |+ 1 − Uy 4 , | m |+ 1 . (39d) 

he behaviour of the eigenfunctions at the centre is given by ( 31 ) and the l + 1 surface conditions from ( 33 ) remain the same. 
For our calculation, we use the ratio � 1 / � from the BSk19 and BSk21 nuclear-matter models shown in Fig. 1 , where � is obtained

rom the stellar background. These equations of state depend on the number density of baryons n b in the neutron star and therefore introduce
imensionality to the problem. We assume our n = 1 stellar model to have M = 1.4 M � and R = 10 km. The eigenfrequencies we calculate are
isted in Table 2 . We first note that the eigenfrequencies with k ≥ 1 are larger in magnitude for the BSk19 model than BSk21. This is related
o the fact that BSk19 is more weakly stratified and is consistent with our results abo v e with � 1 = const. 

Some of the eigenfrequencies of the BSk19 and BSk21 equations of state do not exhibit particularly strong divergences. As we expect,
he k = 0 r -modes have reasonable values of ˜ ω 2 . However, we find that all the modes with k ≥ 1 that we considered have issues with their
igenfunctions. As representativ e e xamples, we show the eigenfunctions of the k = 0 and k = 1 ( l , m ) = ( | m | , 3) r -modes in Figs 7 and 8 ,
espectively. These two modes do not have strong divergences in ˜ ω 2 (see Table 2 ). (Although, the k = 1 solution will begin to breakdown at
pins of ε2 ∼ 0.1.) The eigenfunctions of the k = 0 r -mode in Fig. 7 are perfectly well behaved and seem to be relatively insensitive to the
inearized equation of state. This is in contrast to the k = 1 solution, shown in Fig. 8 , which has divergent behaviour in the polar displacement
unctions y 1, | m | + 1 and y 5, | m | + 1 . Thus, violating the assumed ordering ( 14 ) at reasonable rates of rotation. To summarize, we do not find
n y well-behav ed solutions with k ≥ 1; all these solutions hav e div ergences in the y 1, | m | + 1 and y 5, | m | + 1 eigenfunctions and man y also hav e
ivergences in their eigenfrequency ˜ ω 2 . 

Complementary to what we saw for the � 1 
= � calculation in Section 4 , our results for the BSk19 and BSk21 models show that most
f the r -mode solutions diverge when the star hosts barotropic regions. The only solution that retains its character is the fundamental l = | m |
 -mode. 

 C O N C L U S I O N S  

e have considered the role stratification plays in supporting r -mode oscillations on slowly rotating, Newtonian stars. We focused on stellar
odels approximating neutron stars. Ho we ver, our qualitative results should be the same for other stars that are locally barotropic. 

In using the linearized equations derived by Saio ( 1982 ), which are only valid for stellar models that are globally non-barotropic � 1 
= �,
e found that the majority of solutions exhibited divergences in the barotropic limit � 1 → �. These divergences occur for the k ≥ 1, l = | m |
 -modes and the l > | m | r -modes and manifest themselves in two ways. (1) The frequency correction ˜ ω 2 becomes comparable in magnitude to
he linear term ˜ ω 0 such that ˜ ω 2 / ̃  ω 0 ∼ O(1) for modest rates of rotation ε. This spoils the usual identification of the r -mode frequency at leading
rder. (2) The polar terms in the displacement vector increase to O (1); the same order as the axial term. Thus, the displacement becomes a
ixture of polar and axial functions at zeroth order in rotation. These two divergences lead to the solutions becoming generic inertial modes.
NRAS 521, 3043–3057 (2023) 
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Figure 7. The eigenfunctions of the ( l , m , k ) = ( | m | , 3, 0) r -mode of the n = 1 polytrope, with M = 1.4 M � and R = 10 km, for the BSk19 and BSk21 
neutron-star equations of state. Note that the eigenfunctions are similar for the two models. 

Figure 8. The eigenfunctions of the ( l , m , k ) = ( | m | , 3, 1) r -mode of the n = 1 polytrope, with M = 1.4 M � and R = 10 km, for the BSk19 and BSk21 
neutron-star equations of state. Note the large values of the polar displacement eigenfunctions y 1, | m | + 1 and y 5, | m | + 1 suggesting that these perturbations are 
more like generic inertial modes. 

H  

i
 

T  

s  

t  

t  

d  

t  

r  

e  

s  

w  

m
 

e  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/521/2/3043/7068091 by Southam
pton O

ceanography C
entre N

ational O
ceanographic Library user on 15 Septem

ber 2023
o we ver, as one may expect, none of these features are seen in the fundamental ( k = 0) l = | m | r -mode solutions, which remain well behaved
n the non-stratified limit. 

Mo ving be yond the globally non-barotropic approximation, we considered stars that have varying stratification with barotropic regions.
he perturbation equations cannot be expressed as a standard eigenvalue problem for general l ≥ | m | r -modes if the star is barotropic at
ome point. Ho we ver, the situation becomes tractable for l = | m | modes. We calculated the l = | m | r -modes of an n = 1 polytrope with
he perturbations described by the BSk19 and BSk21 nuclear-matter equations of state. Numerically, we obtained solutions in addition to
he fundamental r -mode with k ≥ 1. Although these numerical solutions e xist, the y also present div ergent behaviour in ˜ ω 2 and the polar
isplacement functions. Formally, these results confirm the expectation that for stratified stars there will be a critical rotation rate abo v e which
he fluid only supports the fundamental l = | m | r -modes. In addition, we have shown that the same is true for stars that are barotropic in a local
e gion. The remaining Coriolis-driv en perturbations must join the general inertial-mode family. Furthermore, depending on how stratified the
quation of state is, the rotation at which the solutions change character can be very modest indeed. This implies that rapidly rotating neutron
tars, which are of interest for gra vitational-wa ve observations, may only host the fundamental l = | m | r -modes. Ho we ver, in order to verify
hich modes persist at fast rotations, we must address the issues with the relativistic problem. Only then can we construct realistic neutron-star
odels using nuclear-matter equations of state. 

This work has some natural extensions. Our analysis was limited to examine perturbations that have the r -mode ordering in a slow-rotation
 xpansion. Clearly, the div ergences we hav e witnessed spoil this ordering and the equations we use are not strictly valid when they arise. It
MNRAS 521, 3043–3057 (2023) 
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ould therefore be interesting to examine the behaviour of the divergent r -modes using machinery appropriate for the inertial modes. It is
otable that the vast majority of the work on inertial modes has focused on barotropic stars. Moreo v er, efforts in the non-barotropic context
end to assume � 1 = const (Lee & Saio 1987 ; Yoshida & Lee 2000a ), with Villain, Bonazzola & Haensel ( 2005 ) and Kraav, Gusakov & Kantor
 2022b ) as exceptions. Further work should consider whether realistic stratification has important consequences for the r -modes of relativistic
tars. 
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PPENDIX  A :  S E C O N D - O R D E R  A X I A L  P E RTU R BAT I O N S  

e expand the axial perturbation as 

 l ′ = U l ′ , 0 + U l ′ , 2 + O( ε4 ) , (A1) 

here U l ′ , 0 = O(1) and U l ′ , 2 = O( ε2 ). We develop the angular components of the Euler equation ( 10b ) further to O ( ε4 ) and find 

 = 

∑ 

l 

(2 �ω 0 [2 W l − l( l + 1) V l ] cos θ Y 

m 

l + 2 �ω 0 ( W l − V l ) sin θ ∂ θY 

m 

l 

+ 

{
2[ l( l + 1) ω 0 − m�] ω 2 − [ l( l + 1) ω 0 − 8 m�] ω 0 ε 2 

}
U l, 0 Y 

m 

l 

+ [ l( l + 1) ω 0 − 2 m�] ω 0 U l, 2 Y 

m 

l + 3[ l( l + 1) ω 0 − 12 m�] ω 0 ε 2 U l, 0 cos 2 θ Y 

m 

l + 6 ω 

2 
0 ε 2 U l, 0 cos θ sin θ ∂ θY 

m 

l ) . (A2) 

y the recursion relations ( 18 ) with the orthogonality of the spherical harmonics ( 20 ), we have 

 = 2( l ′ + 1) Q l ′ �ω 0 [ W l ′ −1 − ( l ′ − 1) V l ′ −1 ] − 2 l ′ Q l ′ + 1 �ω 0 [ W l ′ + 1 + ( l ′ + 2) V l ′ + 1 ] 

+ 

{
2[ l ′ ( l ′ + 1) ω 0 − m�] ω 2 − [ l ′ ( l ′ + 1) ω 0 − 8 m�] ω 0 ε 2 + 3( Q 

2 
l ′ + 1 + Q 

2 
l ′ )[ l 

′ ( l ′ + 1) ω 0 − 12 m�] ω 0 ε 2 

+ 6[ l ′ Q 

2 
l ′ + 1 − ( l ′ + 1) Q 

2 
l ′ ] ω 

2 
0 ε 2 

}
U l ′ , 0 + [ l ′ ( l ′ + 1) ω 0 − 2 m�] ω 0 U l ′ , 2 

+ 3 Q l ′ −1 Q l ′ [( l 
′ − 2)( l ′ + 1) ω 0 − 12 m�] ω 0 ε 2 U l ′ −2 , 0 + 3 Q l ′ + 2 Q l ′ + 1 [ l 

′ ( l ′ + 3) ω 0 − 12 m�] ω 0 ε 2 U l ′ + 2 , 0 . (A3) 

learly, for l ′ = l , the term with U l ′ , 2 will vanish due to equation ( 1 ). Although we note that in principle U l , 2 
= 0. Then we need only work
ith the O (1) contribution to U l . We have 

 = 2( l + 1) Q l �ω 0 [ W l−1 − ( l − 1) V l−1 ] − 2 lQ l+ 1 �ω 0 [ W l+ 1 + ( l + 2) V l+ 1 ] 

+ 

{
2[ l( l + 1) ω 0 − m�] ω 2 − [ l( l + 1) ω 0 − 8 m�] ω 0 ε 2 + 3( Q 

2 
l+ 1 + Q 

2 
l )[ l( l + 1) ω 0 − 12 m�] ω 0 ε 2 

+ 6[ lQ 

2 
l+ 1 − ( l + 1) Q 

2 
l ] ω 

2 
0 ε 2 

}
U l, 0 . (A4) 

his is the dimensional form of equation ( 21i ). We see that we may obtain the l ± 2 second-order axial corrections by examining l ′ = l + 2, 

 = 2( l + 3) Q l+ 2 �ω 0 [ W l+ 1 − ( l + 1) V l+ 1 ] + [( l + 2)( l + 3) ω 0 − 2 m�] ω 0 U l+ 2 , 2 + 3 Q l+ 1 Q l+ 2 [ l( l + 3) ω 0 − 12 m�] ω 0 ε 2 U l, 0 , (A5a) 

nd l ′ = l − 2, 

 = −2( l − 2) Q l−1 �ω 0 ( W l−1 + lV l−1 ) + [( l − 2)( l − 1) ω 0 − 2 m�] ω 0 U l−2 , 2 + 3 Q l Q l−1 [( l − 2)( l + 1) ω 0 − 12 m�] ω 0 ε 2 U l, 0 . (A5b) 

hese couplings were also discussed by Smeyers et al. ( 1981 ). 
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