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Abstract: We develop an action principle to construct the field equations for dissipative/resistive gen-
eral relativistic two-temperature plasmas, including a neutrally charged component. The total action
is a combination of four pieces: an action for a multifluid/plasma system with dissipation/resistivity
and entrainment; the Maxwell action for the electromagnetic field; the Coulomb action with a minimal
coupling of the four-potential to the charged fluxes; and the Einstein–Hilbert action for gravity (with
the metric being minimally coupled to the other action pieces). We use a pull-back formalism from
spacetime to abstract matter spaces to build unconstrained variations for the neutral, positively,
and negatively charged fluid species and for three associated entropy flows. The full suite of field
equations is recast in the so-called “3 + 1” form (suitable for numerical simulations), where spacetime
is broken up into a foliation of spacelike hypersurfaces and a prescribed “flow-of-time”. A previously
constructed phenomenological model for the resistivity is updated to include the modified heat flow
and the presence of a neutrally charged species. We impose baryon number and charge conservation
as well as the Second Law of Thermodynamics in order to constrain the number of free parameters in
the resistivity. Finally, we take the Newtonian limit of the “3 + 1” form of the field equations, which
can be compared to existing non-relativistic formulations. Applications include main sequence stars,
neutron star interiors, accretion disks, and the early universe.

Keywords: relativistic fluid dynamics; plasmas

1. Introduction

Two-temperature plasmas have been studied in astrophysical systems for nearly fifty
years. Early work considered the formation of light nuclei in two-temperature plasmas
(the ion temperature being greater than the electrons) that could exist near relativistic
astrophysical objects. Colgate [1,2] and, independently, Hoyle and Fowler [3] looked at the
synthesis of deuterium in a plasma (with ion temperature Ti ∼ 1011 K) generated in shock
waves produced by supernovae. Shapiro et al. [4] applied a two-temperature accretion disk
model for Cygnus X-1 in order to produce the observed thermal emission temperatures
of 109 K and the observed X-ray spectrum above 8 keV. More recently, Zhdankin et al. [5]
looked at the role of extreme two-temperature plasmas in radiative relativistic turbulence,
while Ohmura et al. [6] used simulations of two-temperature magnetohydrodynamics to
describe the propagation of semi-relativistic jets. Ryan et al. [7] have provided axisym-
metric two-temperature general relativistic radiation magnetohydrodynamic simulations
of the inner region of the accretion flow onto the supermassive black hole M87, while
Meringolo et al. [8] have looked at two-temperature plasmas in the context of special
relativistic turbulence.

The literature on electron and ion plasmas shows there are many different scenarios
under which two temperatures result, although whether or not the electrons are hotter
than the ions is very much dependent on the particular scenario. In his classic text on
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plasmas and fusion reactions, Chen [9] writes that positively charged ions can have a
temperature that is different from that of their electrons even though they both have
Maxwellian distributions. This is because the collision rate of the ions with themselves
and the collision rate of electrons with themselves are much higher than that of electrons
with ions. Kawazura et al. [10] argue that in a collisionless plasma heated through Alvenic
turbulence electrons will be preferentially heated when the magnetic energy density is
greater than the thermal energy density, whereas it is the ions that are hotter when the
energy densities are the other way around.

The problem with developing models of complex plasmas in dynamical spacetimes,
particularly for numerical simulations, is the consistency of the approximations used. It is
standard to develop the approximations by dropping terms based on scaling arguments.
Any “inconsistencies” introduced in the process typically lead to some (often small) loss
of total energy or generation of spurious heat. However, as discussed in detail below, in a
relativistic context heat will produce an effective mass, which contributes to the dynamics
of a given system and (at least in principle) the generation of gravitational waves. Therefore,
even small inconsistencies in the model development will lead to systematic errors in the
generated (potentially observable) signals.

Our purpose here is to use well-established action-based techniques [11] to construct
the full suite of field equations for a consistent, resistive, two-fluid, five-constituent, two-
temperature general relativistic plasma. The model involves a positively charged species
flux comoving with a charge-neutral species and a separate negatively charged species flux.
The positively and neutrally charged species are assumed to have the same temperature
and there is a single entropy comoving with them. Because the negatively charged species
is at a different temperature, it will have its own (comoving) entropy.

To see how this comes about, consider the simple case of ionized hydrogen, for which
the collective behavior of the electrons means they can be described as a fluid. They have
well-defined fluid elements with their own four-velocities, and within these elements
there will be a thermodynamic description based on, say, temperature and particle density.
Clearly, this assumes that the electrons are thermalized; i.e., from a kinetic theory point of
view their state can be described by an equilibrium distribution function (say, Maxwell).
From that same kinetic theory point of view, we know that entropy is calculable from the
distribution. All of this is also true for the protons, except that the difference in temperature
would necessarily lead to a different (maybe not in form, but certainly in specific values)
distribution and hence different values for the entropy. Since the electrons are at equilibrium
among themselves, and likewise for the protons, the electron entropy flows along with
the electrons and the proton entropy flows along with the protons; therefore, because the
electrons flow relatively to the protons, there are two entropy fluxes. It is conceptually
straightforward to allow for ionization/recombination, by adding an additional flux of
“neutral” particles. This leads to particle flux creation rates for both of the charged particle
fluxes as well as the neutral particle flux. The conservation of the baryon number will of
course link these two rates.

Given that the physical system considered is broad, and readers may have different
backgrounds—plasma physics, astrophysics, numerical relativity, and so on—we have tried
to make this presentation as self-contained as possible. For example, there is an extended
discussion of the so-called 3 + 1 approach to general relativity. We have attempted to make
this a basic exercise in projecting tensors into spacelike hypersurfaces or onto the normals
to these hypersurfaces. Moreover, in order to set up the taking of the Newtonian limit (in
Section 6), it is advantageous to keep G, c, the magnetic permeability µo, and kB in the
equations. Of course, this involves introducing a set of conventions, which are initially
somewhat arbitrary but eventually self-consistent. The complexity of our total system,
with its mixing of dynamical, electrodynamical, and thermodynamical energies, fluxes,
and momenta, requires a careful, yet admittedly tedious, dimensional analysis of the field
variables. The relevant dimensions of field variables will be discussed as the variables are
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introduced. This is also required for taking the Newtonian limit, where we need to have an
internal calibration of what “small” is when we expand the field equations.

The plan of this effort is as follows: In Section 2, the field variables are introduced,
as well as some of their kinematical features. In Section 3, the “matter space” [11,12] is
introduced as it provides the arena in which fluid displacements are performed in the action
principle. In Section 4, we give the independent pieces of the action principle and derive
the field equations. In Section 5, we give an overview of the 3 + 1 formalism, focusing on
the geometric arguments, and then apply it to the coupled system of general relativistic
plasmas and electromagnetism. The overview is for the reader who is knowledgeable
about plasma physics but not particularly familiar with numerical relativity and/or with
how to take a generally covariant theory and introduce a global separation of space from
time. We follow this up in Section 5.4 with a review of the arguments given in [13] for
building simple models of resistivity, for both the charged and neutral current and entropy
flows. This is used in Section 6, where we take the Newtonian limit. In Section 7, we
offer some concluding remarks. Adding further details, in Appendix A we review total
charge conservation, in Appendix B we derive the “3 + 1” form of the Einstein equations,
and in Appendix C we adapt the “3 + 1" formalism to a preferred coordinate system.
The conventions of Misner, Thorne, and Wheeler [14] are used throughout (although we
use a, b, c, . . . rather than Greek letters to represent spacetime indices). We assume that
the metric gab is dimensionless, the coordinates carry the unit of length l, and the time
unit is given by l/c; e.g., the time coordinate x0 = ct. As one might expect, the notation
will quickly become a nightmare, and so notational conventions will be explained as the
story develops.

2. The Plasma State and the Field Variables

The first step towards modeling a plasma system involves understanding the scales
involved and the relevant variables. Perhaps the most important scale is the Debye length
λD, which is given by [15],

1
λ2

D
= ∑

i

niq2
i

εoTi
, (1)

where ni is the number density of the ith species, qi its charge, and Ti its temperature. The
Debye length is the effective distance at which the influence of a single charge is no longer
felt by other particles; that is, for a length scale l, somewhere between the inter-particle
separation 1/n1/3

i and λD, polarization (or collective) effects will occur so that charges
outside of the Debye sphere (area ∝ λ2

D) are shielded from the single charge. For scales L
much bigger than λD, the system will exhibit fluid-like features, such as wave propagation.

This helps establish criteria through which we can define the plasma state: (1) the
typical length scale L for the system must be much larger than the Debye length—L� λD—
and such that quasi-neutrality holds (∑i qiniL3 ≈ 0);1 (2) there must be a large enough
number of particles in the Debye sphere that collective effects occur so that the shielding
takes hold (niλ

3
D � 1); and (3) letting τ represent the mean collision time for the neutral

particles and 1/ω a time scale for collective plasma phenomena, we have that the last
criterion is ωτ � 1.

In a system like an accretion disc around a black hole, there can be several length
scales—the horizontal reach L of the disc, the size 2GMBH/c2 of the black hole with total
mass MBH , and so on. A satisfactory fluid model of the matter and heat in the disc exists
when the system can be broken up into a continuum of “boxes” of volume l3, each of which
is small enough that it can be considered as being microscopic with respect to the system
as a whole (l/L� 1) and yet large enough that it contains enough particles N for which
the Laws of Thermodynamics hold. In this case, intensive quantities, such as chemical
potential, pressure, and temperature, will be well defined [16].

In the limit where l becomes infinitesimal, these conceptual boxes become the fluid
elements of fluid models. As the fluid evolves, the fluid elements will trace out a continuum
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of worldlines in spacetime, i.e., smooth curves whose spacetime points are identified by a
set of coordinates xa(τ), with τ being the proper time along the curves. Because the fluid
elements contain particles, then these curves form the basis for tracking particle flux. It is
important to note that since a fluid element is infinitesimal with respect to the system as
a whole, then changes in the gravitational field across it are negligible. The equivalence
principle also implies that the local geometry can be treated as flat spacetime.

Particle flux is defined in the standard way as being a number of particles N passing
through an area l2 per some time l/c; i.e., the particle flux magnitude is

(
N/l3)c. We define

entropy flux in the same way, except to note that the entropy unit is kB, which is energy e
per temperature T. Assuming that we can count the amount of entropy as some number
Ns times kB, then the entropy flux will be Ns units of entropy passing through area l2 per
time l/c; i.e., the entropy flux magnitude is

(
Ns/l3)c.2

Our system consists of a neutrally charged species (qη = 0) with particle flux na
η and a

comoving entropy flux sa
η̄/kB; a positively charged species (qP > 0) with particle flux na

P
and a comoving entropy flux sa

P̄/kB; and a negatively charged species (qN = −qP ) with
particle flux na

N and a comoving entropy flux sa
N̄ /kB. As we will see later, associated with

the particle fluxes {na
η , na
P , na

N } are, respectively, canonically conjugate chemical potential
covectors {µη

a , µPa , µNa } (cf. Equation (23)) and for the entropy fluxes {sa
η̄/kB, sa

P̄/kB, sa
N̄ /kB}

there are respective canonically conjugate “temperature” covectors {kBΘη̄
a , kBΘP̄a , kBΘN̄a }.

At this point, it is convenient to simplify the notation, by introducing constituent
indices {x, y, . . .}, which will take the values x = 1, 2, . . . , 6. With these, we will write
generic particles fluxes na

x such that the first three are {na
1 = na

η , na
2 = na

P , na
3 = na

N },
and the next three are {na

4 = sa
η̄/kB, na

5 = sa
P̄/kB, na

6 = sa
N̄ /kB}. For the canonically

conjugate covectors, we will identify {µ1
a = µ

η
a , µ2

a = µPa , µ3
a = µNa } and {µ4

a = kBΘη̄
a , µ5

a =

kBΘP̄a , µ6
a = kBΘN̄a }. In order to make direct contact with the First and Second Laws of

Thermodynamics, we use an energy e to assign to the combination µx
ana

x energy density
units e/l3. This implies that the µx

a must have momentum units e/c. The energy e can
take two distinct forms: a particle energy based on mass energy, em = mc2, for the set
{µ1

a, µ2
a, µ3

a}, and a thermal energy eT = kBT for the set {µ4
a, µ5

a, µ6
a}.

The density nx, with units N/l3, associated with the flux na
x allows us to define a

four-velocity field ua
x = na

x/nx, which is normalized such that gabua
xub

x = −c2. These
flux worldlines are tied to those of the fluid elements by setting ua

x = dxa
x/dτx, where

τx is the proper time along the worldline traced out by ua
x. We see that nx = −ux

ana
x/c2

or n2
x = −gabna

xnb
x/c2. Note that in addition to the n2

x we can have the mixed terms
n2

xy = −gabna
xnb

y/c2 = n2
yx, where it is to be understood that x 6= y.3 With respect to a

flux’s rest frame, i.e., the local frame that follows the worldline given by ua
x, we can define

the fluid potentials µx = −ua
xµx

a . For x = 1, 2, 3, the µx are chemical potentials, and for
x = 4, 5, and 6 the µx are temperatures µ4 = Tη̄ , µ5 = TP̄ = Tη̄ , and µ6 = TN̄ 6= TP̄ .

The remaining field variables are the four-vector potential Aa and the spacetime metric
gab. The metric couples all fields to the spacetime curvature (and vice versa). With Aa and
the charge density flux ja

x = qxna
x, we can couple the charged fluids to the electromagnetic

field (and vice versa). The total charge density flux is

ja = ∑
x

qxna
x = ja

P + ja
N . (2)

The units of the charged current flux ja
x are

(
qN/l3)c. We note that MKS units are being used

so that the electromagnetic coupling µo combines with εo to give εoµo = 1/c2. The four-
potential Aa has units of momentum per charge, or eEM/(qc), where eEM is a characteristic
electromagnetic energy; for example, in the Debye limit case we would use eEM ∼ qṼeff.

3. The Matter Space Approach to Dissipation

Our analysis builds on a well-established variational approach to relativistic multifluid
dynamics [11], including dissipative aspects. The main fluid fields in the model are the
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fluxes na
x. At the heart of the fluxes are the four-velocities ua

x = dxa
x/dτx. In general, the

ua
x are not surface forming, but they do form a fibration of spacetime. If the ua

x are given,
then dxa

x/dτx = ua
x can be integrated so as to construct the xa

x(τx). Since ua
xux

a = −c2, then
knowing, say, the three spatial pieces dxi

x/dτx, automatically determines the time piece
dx0

x/dτx. For some given spacelike hypersurface, no two worldlines of, say, the xth fluid,
will intersect that hypersurface at the same point.

If we think of this surface in the context of an initial-value problem, then each worldline
will be uniquely determined by the three spatial coordinates they have on that initial hy-
persurface. It is through this that the so-called “matter space” or pull-back approach enters
the fluid dynamics. We replace the initial spacelike hypersurface with an abstract, three-
dimensional space endowed with coordinates XA

x (having dimensions l and A = 1, 2, 3).
Instead of each worldline being identified with a point on the initial spacelike hypersurface,
each point xa

x(τ) on the worldline gets mapped to the same point XA
x in the matter space.

Our goal here is to provide a sketch on how to reformulate our fluid model so that the XA
x

are the fundamental fields (see, e.g., Andersson and Comer [11] for complete details).
The first step in this reformulation is to introduce the three-form nx

abc, which is dual
to na

x:

nx
abc = εdabcnd

x , na
x =

1
3!

εbcdanx
bcd , (3)

where our convention for transforming between the two is

εbcdaεebcd = 3!δa
e . (4)

Likewise, we introduce the three-form µabc
x , which is dual to µx

a :

µabc
x = εdabcµx

d , µx
a =

1
3!

εbcdaµbcd
x . (5)

Because the metric is dimensionless, we see that the three forms carry the same units as
their dual vectors.

We use the map associated with the coordinates XA
x of the xth fluid’s matter space to

“pullback” nx
abc into the matter space where it is identified with the totally antisymmetric

tensor nx
ABC:

nx
abc =

xJ ABC
abc nx

ABC , (6)

such that the Einstein convention applies to repeated matter space indices, and

xJ ABC
abc =

∂X[A
x

∂xa
∂XB

x
∂xb

∂XC]
x

∂xc . (7)

We also use the map associated with XA
x to “push-forward” the fully antisymmetric matter

space quantity µABC
x to the spacetime three-form µabc

x , via

µABC
x = xJ ABC

abc µabc
x , (8)

as well as the symmetric matter space “metric” gAB
x to the spacetime metric gab, via

gAB
x =

∂XA
x

∂xa
∂XB

x
∂xb gab . (9)

Because of the antisymmetry in the indices of nx
ABC and µABC

x , there are natural
definitions for the volume form εx

ABC and its inverse εABC
x on the x-matter space. These

satisfy [13,16]
εx

DEFεABC
x = 3!δ[AD δB

E δ
C]
F =⇒ εx

ABCεABC
x = 3! . (10)
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We can normalize εx
ABC and εABC

x using the determinant of gAB
x ; i.e.,

εx
123 =

1
ε123

x
=

1√
∆x

, (11)

where
∆x =

1

3!
(
εx

123
)2 εx

ABCεx
DEFgAD

x gBE
x gCF

x . (12)

Now, we can write

nx
ABC = N xεx

ABC , N x =
1
3!

εABC
x nx

ABC , (13)

where it can be shown that N x = nx [16]. Similarly, we find

µABC
x =MxεABC

x , Mx =
1
3!

εx
ABCµABC

x , (14)

where it can be shown thatMx = µx.
It is also straightforward to confirm that

ua
x =

1
3!

εbcda xJ ABC
bcd εx

ABC . (15)

From this we can verify that the XA
x are conserved along their own worldlines (i.e., they are

Lie-dragged by their ua
x); that is, using Equation (15), we see

dXA
x

dτx
= ua

x∇aXA
x =

1
nx

(
− 1

3!
εabcd ∂XA

x

∂x[a
∂XB

x
∂xb

∂XC
x

∂xc
∂XD

x

∂xd]

)
nx

BCD ≡ 0 , (16)

since the term in parentheses vanishes identically. The quantity ∇a is the covariant deriva-
tive, with the dimension of inverse length 1/l.

In general, dissipation is directly connected with the (matter and/or entropy) particle
flux creation rate Γx, which is given by

Γx = ∇ana
x . (17)

When Γx = 0, there is no flux change and no dissipation. It is easy to see that there is a one-
to-one, local identification of the divergence of a vector field with the exterior derivative of
its associated three-form, i.e., ∇[anx

bcd]; namely,

∇ana
x =

1
3!

εabcd∇[anx
bcd] . (18)

Simply put, if the three-form is closed (e.g.,∇[anx
bcd] = 0), then ∇ana

x = 0 and there is no
dissipation; if the three-form is not closed (e.g.,∇[anx

bcd] 6= 0), then the divergence is not
zero and dissipation can occur.

This is the lynchpin of the formalism for dissipative multifluid systems developed by
Andersson and Comer [17] and another reason for invoking the matter space. In fact, it
was shown by Celora et al. [16] that

µxΓx =
1
3!

µABC
x

d
dτx

nx
ABC . (19)

We see immediately that if nx
ABC is a function of only the XA

x , then Γx = 0 because of
Equation (16). This is ideal when fluids are non-dissipative, because then their respective
creation rates must vanish. However, if we allow nx

ABC to also depend on XA
y (for y 6= x),

then the flux three-form is no longer closed and a system of fluid equations with resistive
forms of dissipation4 results [13]. This will be shown later in Section 4.2.
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4. The Action Principle and Field Equations

We now set up the action principle used to derive the resistive fluid/plasma, Maxwell,
and Einstein set of field equations.5 The pull-back formalism will be used to build uncon-
strained variations of the fluid fluxes δna

x so that the fluid equations can be obtained. The
Maxwell equations follow from variations of Aa, which appears in two pieces of the total
action: one built from the antisymmetric Faraday tensor Fab defined as

Fab = ∇a Ab −∇b Aa , (20)

and the other constructed from a coupling term based on the scalar ja
x Aa. It is important to

note that Fab satisfies a “Bianchi” identity

∇aFbc +∇cFab +∇bFca = 0 =⇒ 1
2

εabcd∇[bFcd] = 0 . (21)

The Faraday tensor has dimensions eEM/(qcl).
Gravity is incorporated (in the standard way) by using the Einstein–Hilbert action

for the Einstein Equation and by the minimal coupling of the metric gab to the fluid and
electromagnetic fields. The minimal coupling arises from the

√−g term in spacetime
volume integrals, where g is the determinant of the metric; the use of gab in the inner
product of vectors; and replacing partial derivatives with covariant derivatives. The
energy–momentum–stress tensor Tab, with energy density units e/l3, is obtained in the
usual way by varying the total action with respect to gab.

4.1. The Matter, Electromagnetic, Coupling, and Gravity Actions

The fluid action SM uses for its Lagrangian the so-called Master function Λ [11], an
energy density, which is a functional of all the n2

x and n2
xy. An arbitrary variation of SM

with respect to the flux na
x and the metric results in

δSM = δ

(∫
M

d4x
√
−gΛ

)
=

∫
M

d4x
√
−g

[
∑
x

µx
aδna

x +
1
2

(
Λgab + ∑

x
na

xµb
x

)
δgab

]
, (22)

where
µx

a = Bxnx
a + ∑

y 6=x
Axyny

a , (23)

and

Bx = − 2
c2

∂Λ
∂n2

x
, (24a)

Axy = − 1
c2

∂Λ
∂n2

xy
. (24b)

The Axy, with units
(
l3/N

)
e/c2, provide the “entrainment” effect, which causes the

fluid momenta to be “tilted” in the sense that µx
a is not proportional to its corresponding flux

na
x. The implication is that one flux, say na

P , carries along with it a fraction of the components
of a different flux, say na

N . This leads also to effective “mass” effects due to entrainment
between any two particle fluxes, a particle flux and an entropy flux, or two entropy fluxes.
Entropy flux acquires an effective mass6 (a carrier of inertia, which scales like kBT/c2)
through its (non-dissipative) energy/heat exchange within the system, which does work
and can change the conjugate momenta of other fluxes [19]. Shatashvili et al. [20] have
included electron effective masses in their two-temperature plasma equations. It has been
noted by Kotorashvili et al. [21] that the effective mass for a degenerate electron plasma
arises from the degeneracy instead of kinematics and is fully determined by the plasma
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rest frame density (see [22] and references therein), whereas in a hot relativistic electron
plasma the effective mass [23] is determined by the relativistic electron temperature.

Entrainment between neutrons and protons is known to be important in superfluid
neutron star dynamics [24–27]. Entrainment between matter and entropy can be shown (see,
for example, [19]) to lead to the Cattaneo equation [28], which is an important component
of causal heat conductivity. This particle and entropy flux model can also be used to
describe superfluid systems such as He4. In the Landau model of superfluidity [29], there
is an ad hoc separation of the He4 atoms into a superfluid particle flux and a normal fluid
particle flux, which are entrained with each other. In the entropy and particle flux approach,
all of the He4 atoms are described with one particle flux, and the “normal fluid” flux is
replaced with an entropy flux. A one-to-one mapping between the two models exists (see,
for example, Andersson and Comer [30], and references therein), primarily because in
the Landau model the normal fluid represents the excitations of atoms out of the ground
state and is responsible for carrying the heat. This is important because it shows that the
entrainment between the entropy and particle fluxes has a physical impact, whether it is
describing superfluid He4 or more general fluids with an independent heat flow. It is less
clear whether entrainment between two entropies is important physically or just a formally
consistent piece of the overall mathematical construct.

4.1.1. The Electromagnetic and Coupling Actions

The Maxwell Action is

SMax =
1

4µo

∫
M

d4x
√
−gFabFab , (25)

and its variation with respect to Aa and the metric gab leads to

δSMax =
1

µo

∫
M

d4x
√
−g
(
∇aFab

)
δAb

− 1
8µo

∫
M

d4x
√
−g
(

FcdFcdgab − 4FacFb
c

)
δgab . (26)

The minimal coupling of the Maxwell field to the charge current densities ja
x is obtained

from the Coulomb action

SC =
∫
M

d4x
√
−g

(
∑
x

ja
x

)
Aa , (27)

whose variation with respect to na
x, Aa, and gab is

δSC =
∫
M

d4x
√
−g ∑

x

(
ja
xδAa + qx Aaδna

x +
1
2

ja
x Aagbcδgbc

)
. (28)

4.1.2. The Gravitational Einstein–Hilbert Action

At the heart of general relativity is the Riemann tensor Rc
dab, with units of 1/l2. It can

be inferred from the antisymmetric operation of two covariant derivatives on an arbitrary
vector va; namely,

∇a∇bvc −∇b∇avc = Rc
dabvd . (29)

From the Riemann tensor, we can obtain the Ricci tensor Rab = Rc
acb and, subsequently,

the Ricci scalar R = gabRab.
The Einstein–Hilbert action is

SEH =
c4

16πG

∫
M

d4x
√
−gR . (30)
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Varying it and the other bits of the total action written above with respect to the metric
gives the Einstein equation; in particular, the left-hand side of the Einstein equations comes
from the variation of SEH with respect to gab, i.e.,

δSEH = − c4

16πG

∫
M

d4x
√
−gGabδgab , (31)

where the Einstein tensor Gab is

Gab = Rab − 1
2

Rgab . (32)

4.1.3. The Total Action Variation

The variation of the total action S for the system is thus

δS = δSEH + δSM + δSMax + δSC

=
∫
M

d4x
√
−g

{
− c4

16πG
Gabδgab + ∑

x
µx

aδna
x +

1
µo

(
∇bFba + µo ∑

x
ja
x

)
δAa

+
1
2

[
Λgab + ∑

x

(
na

xµb
x + jc

x Acgab
)
− 1

4µo

(
FcdFcdgab − 4FacFb

c

)]
δgab

}
, (33)

where the electromagnetic minimal coupling has caused the fluid conjugate momentum
to become

µx
a = µx

a + qx Aa . (34)

Imposing gauge invariance on the total action S (cf. Appendix A) leads to charge conserva-
tion in the form (cf. Equation (A6))

qPΓP + qN ΓN = 0 =⇒ ΓN = ΓP , (35)

where ΓP = ∇ana
P and ΓN = ∇ana

N . Of course, there is also baryon number conservation.
The total baryon number flux is na

B = na
η + na

P , and it is conserved if ΓB = ∇ana
B = 0;

therefore,
0 = ∇ana

B = ∇ana
η +∇ana

P ≡ Γη + ΓP =⇒ Γη = −ΓP . (36)

The field equations obtained from the full action variation above cannot be the final
form, since the term proportional to δna

x implies that the momenta µx
a must vanish. This

happens because the components of δna
x cannot all be varied independently; this is the

main reason for using the pull-back formalism because it provides a set of variables, the
XA

x , which can be varied independently.

4.2. From Matter Space to Spacetime Displacements and Resistivity

Even though we have as our unconstrained dynamical variables the scalars XA
x , ulti-

mately we want the action principle to produce field equations for the fluxes na
x. Fortunately,

we can use the XA
x this time to push forward variations δXA

x in matter space to Lagrangian
displacements ξa

x of fluid element worldlines on spacetime; namely,

δXA
x = −∂XA

x
∂xa ξa

x , (37)

where δXA
x is an Eulerian variation (when the XA

x are taken as scalars on spacetime). The
minus sign comes in because we know that the XA

x do not change along the fluid worldlines,
meaning that their Lagrangian variation ∆xXA

x [11] has to vanish:

∆xXA
x ≡ δXA

x + Lξx XA
x = 0 , (38)
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whereLξx is the Lie derivative with respect to ξa
x. Since ∆xXA

x = 0, we arrive at Equation (37).
Note that, because we have several fluxes, we will need also the mixed Lagrangian variation
∆xXA

y of the XA
y with respect to the x fluid (and vice versa):

∆xXA
y = δXA

y + Lξx XA
y = Lξx XA

y −Lξy XA
y =

(
ξa

x − ξa
y

)∂XA
y

∂xa . (39)

The displacements of the matter space fluid elements will lead to the variation δnx
ABC,

which, in turn, will induce the variation of nx
abc. The Lagrangian variation of nx

abc, in
general, is

∆xnx
abc =

xJ ABC
abc ∆xnx

ABC , (40)

and thus
δnx

abc = −Lξx nx
abc +

xJ ABC
abc ∆xnx

ABC , (41)

where the Lie derivative of nx
abc along the ξa

x is

Lξx nx
abc = ξd

x
∂nx

abc
∂xd + nx

dbc
∂ξd

x
∂xa + nx

adc
∂ξd

x
∂xb + nx

abd
∂ξd

x
∂xc . (42)

The resistive form of dissipation is due to the presence of XA
y in nx

ABC. Applying the
definitions above, we see

∆xnx
ABC = ∑

y 6=x

∂nx
ABC

∂XD
y

∆xXD
y = ∑

y 6=x

∂nx
ABC

∂XD
y

∂XD
y

∂xa

(
ξa

x − ξa
y

)
. (43)

The sum is over y 6= x because ∆xXA
x ≡ 0.

Using the facts that
∆xgab = δgab − 2∇(aξ

b)
x , (44)

δεabcd = −1
2

εabcdge f δge f , (45)

and
εbcdaLξx nx

bcd = 3!
(

ξb
x∇bna

x − nb
x∇bξa

x + na
x∇bξb

x

)
, (46)

we find

δna
x = δ

(
1
3!

εbcdanx
bcd

)
= nb

x∇bξa
x − ξb

x∇bna
x − na

x

(
∇bξb

x +
1
2

gbcδgbc

)
+

1
nx

na
x ∑

y 6=x

(
1

µx
Rxy

b

)(
ξb

x − ξb
y

)
, (47)

where
1

µx
Rxy

a ≡
1
3!

εABC
x

∂nx
ABC

∂XD
y

∂XD
y

∂xa . (48)

The coefficientRxy
a satisfies the identity

ua
yR

xy
a ≡ 0 =⇒ Rxy

a =
(

δb
a + ub

yuy
a /c2

)
Rxy

b . (49)

This says thatRxy
a has only three degrees of freedom; i.e., ua

y is timelike and thereforeRxy
a

has only the spacelike components with respect to the ua
y.
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We will see in the next section, Section 4.3, where the equations of motion are derived,
that there is a total “resistivity” current Rx

a , which is given by

Rx
a = ∑

y 6=x

(
Ryx

a −R
xy
a

)
, (50)

and satisfies the identity
∑
x

Rx
a ≡ 0 . (51)

This identity is important because it guarantees that the energy–momentum–stress ten-
sor Tab is divergenceless; i.e., ∇bTba = ∇bTab = 0 (a consequence of diffeomorphism
invariance [14]).

4.3. The Field Equations

We now have everything we need to derive the full suite of field equations. Let us
begin by returning to the flux variations of the total action given in Equation (33). The fact
that we are summing over all constituents leads to

∑
x

∑
y 6=x
Rxy

a

(
ξa

x − ξa
y

)
= −∑

x
Rx

aξa
x , (52)

so that the variation of the total action for the system is

δS =
∫
M

d4x
√
−g

[
−∑

x
( f x

a + Γxµx
a − Rx

a)ξ
a
x −

1
µo

(
∇bFab − µo ∑

x
ja
x

)
δAa

−1
2

(
c4

8πG
Gab − Tab

)
δgab

]
. (53)

where
f x
a = 2nb

x∇[bµx
a] = 2nb

x∇[bµx
a] + qxnb

xFba , (54)

Ψ = Λ−∑
x

µx
c nc

x , (55)

and
Tab = Ψgab + ∑

x
na

xµb
x −

1
4µo

(
FcdFcdgab − 4FacFb

c

)
. (56)

It is worth noting here that the generalized pressure Ψ takes the form of a Legendre trans-
formation of Λ, which switches the roles of na

x and µx
a , making the latter the independent

degree of freedom; i.e.,
δΨ = −∑

x
nc

xδµx
c . (57)

This will be especially useful later when we write down the Newtonian fluid/plasma field
equations.

Now that the action variation is in place, we can invoke our chosen constraint that
a given particle flux and its corresponding entropy flux flow together. We also restrict
(by assumption!) the neutral and positively charged species to flow together. The net
result is that there are only two matter spaces where XA

1 = XA
2 = XA

4 = XA
5 ≡ XA

P
and XA

3 = XA
6 ≡ XA

N . This also implies there are only two independent Lagrangian
displacements: ξa

1 = ξa
2 = ξa

4 = ξa
5 ≡ ξa

P and ξa
3 = ξa

6 ≡ ξa
N . Likewise, there are only two

independent four-velocities: ua
1 = ua

2 = ua
4 = ua

5 ≡ ua
P and ua

3 = ua
6 ≡ ua

N . We also note
that q1 = q4 = q5 = q6 = 0 and q2 = −q3 = −qN .

In order to obtain the field equations, we employ the action principle, which states that
when δS = 0 for arbitrary values for the variations ξa

x, δAa, and δgab, then the coefficients
multiplying them in δS must vanish. From the coefficient of ξa

P , we obtain a single Euler
equation for the neutrally and positively charged species, which is
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∑
x={1,2,4,5}

[ f x
a + Γxµx

a − (Rx
a − qxΓx Aa)] = 0 , (58)

and from ξa
N we obtain a single Euler equation for the negative species, which is

∑
x={3,6}

[ f x
a + Γxµx

a − (Rx
a − qxΓx Aa)] = 0 . (59)

Coming from the coefficient of δAa are the Maxwell equations (which must also include
Equation (21)),

∇bFab = ∇b

(
∇a Ab −∇b Aa

)
= µo ∑

x={2,3}
ja
x , (60)

and from δgab we obtain the Einstein equation; i.e.,

Gab =
8πG

c4 Tab . (61)

An equivalent form of the Einstein equation, which will be used in Section 5, is

Rab =
8πG

c4

(
Tab − 1

2
Tgab

)
, (62)

where T = gabTab.
From the process of creating the two Euler Equations (58) and (59), we find that the

set of resistivity vectors Rx
a is reduced from six members down to two, which we denote by

RPa and RNa . If we take into account that XA
1 = XA

2 = XA
4 = XA

5 and XA
3 = XA

6 ≡ XA
N , then

we see that Equation (48) implies

R12
a = R14

a = R15
a , R13

a = R16
a , (63a)

R21
a = R24

a = R25
a , R23

a = R26
a , (63b)

R31
a = R32

a = R34
a = R35

a , (63c)

R41
a = R42

a = R45
a , R43

a = R46
a , (63d)

R51
a = R52

a = R54
a , R53

a = R56
a , (63e)

R61
a = R62

a = R64
a = R65

a . (63f)

Inserting these into the definition of Rx
a in Equation (50) leads to

RPa = R1
a + R2

a + R4
a + R5

a = 4
(
R31

a +R61
a

)
− 2
(
R13

a +R23
a +R43

a +R53
a

)
. (64)

In a similar manner, we obtain

RNa = R3
a + R6

a = −4
(
R31

a +R61
a

)
+ 2
(
R13

a +R23
a +R43

a +R53
a

)
= −RPa , (65)

so the identity in Equation (51) becomes

RPa + RNa = 0 . (66)

Ultimately, microphysical calculations will be required to precisely specify RNa (e.g.,
as indicated by Braginskii [31]). However, the formalism itself has already provided
some structure for the resistivities Rx

a , as evidenced by Equations (19), (35), (36), (48), (49),
and (66). Recall that the main assumption is that nx

ABC depends on, in principle, all of the
XA

x . Because of Equation (16), then the chain rule implies

d
dτx

nx
ABC = ua

x ∑
y 6=x

∂XD
y

∂xa
∂nx

ABC
∂XD

y
. (67)
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When we substitute this into Equation (19) and use Equation (49), we obtain

µxΓx = −ua
x ∑

y 6=x

(
Ryx

a −R
xy
a

)
= −ua

xRx
a . (68)

4.4. Impact of Change in Gauge for Aa

A gauge transformation will impact the fluid equations of motion because of the
change to the momentum; i.e., letting Āa = Aa +∇aφ, we find

µx
a = µx

a + qx Aa −→ µ̂x
a = µx

a + qx Āa = µx
a + qx∇aφ . (69)

It is important here to consider in more detail the ramifications of a change in gauge, since
a natural application of the present work would be to numerical evolutions [32]. In the
numerical setting, we expect to be solving for the vector potential Aa as we evolve the
system. This will require a choice of gauge for the vector potential, which will affect the
explicit values of terms (such as the resistivity) in the equations of motion.

Clearly, Rx
a is gauge-dependent, since the quantity µABC

x in Rxy
a (cf. Equation (48))

depends on Aa. Letting R̄x
a denote the particle resistivity in the new gauge, we find

R̄x
a = ∑

y 6=x

(
R̄yx

a − R̄
xy
a

)
= ∑

y 6=x

1
3!

εebcd

[(
µ

y
e + qy∇eφ

)yJ ABC
bcd

∂ny
ABC

∂XD
x

∂XD
x

∂xa

−(µx
e + qx∇eφ)xJ ABC

bcd
∂nx

ABC
∂XD

y

∂XD
y

∂xa

]
= Rx

a + Gx
a , (70)

where

Gx
a = ∑

y 6=x

(
Gyx

a − G
xy
a

)
, Gxy

a =
1
3!

εebcdqx

(
xJ ABC

bcd
∂nx

ABC
∂XD

y

∂XD
y

∂xa

)
∇eφ . (71)

Note that
∑
x

Rx
a = ∑

x
Gx

a = 0 =⇒ ∑
x

R̄x
a = ∑

x
Rx

a + ∑
x

Gx
a = 0 . (72)

Using Equations (10), (15), and (48), we can re-write Gxy
a as

Gxy
a =

1
3!

qx

(
εebcd xJ ABC

bcd δ
[E
A δF

Bδ
G]
C

∂nx
EFG

∂XD
y

∂XD
y

∂xa

)
∇eφ

= − qx

µx

(
1
3!

µxεEFG
x

∂nx
EFG

∂XD
y

∂XD
y

∂xa

)(
1
3!

εbcde xJ ABC
bcd εx

ABC

)
∇eφ

= −qx

(
ub

x∇bφ
)( 1

µx
Rxy

a

)
, (73)

which implies

Gx
a = − ∑

y 6=x

[
qy

(
ub

y∇bφ
)( 1

µy
Ryx

a

)
− qx

(
ub

x∇bφ
)( 1

µx
Rxy

a

)]
. (74)

When the sums in Equations (58) and (59) are performed, we see that the gauge-
dependent part of each of the fluid equations of motion is

R̄Na − qN Γ3 Āa = RNa − qN Γ3 Aa − 4qN
1

µ̄3

(
ub
NR31

b

)
∇aφ
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+2qN

[
1

µ2
ub
PR23

a −
1

µ3
ub
N

(
2R31

a +R36
a

)]
∇bφ . (75)

Clearly, Equations (58) and (59) are modified under a gauge transformation. This was
expected. The point is that we have shown how the transformation enters the field equations
and therefore we can still evolve the system regardless of the choice of gauge.

It is a different story if we look at the projection of Equation (58) along ua
P and Equation (59)

along ua
N . Clearly, ua

P f x
a = 0 for Equation (58) and ua

N f x
a = 0 for Equation (59), leaving two

equations having linear combinations of creation rates Γx, combined with the resistivity
and the gauge-dependent terms. The creation rates must be gauge-invariant. Fortunately,
if we use Equation (49) and project Equation (75) along ua

P and then along ua
N , we obtain

ua
P

(
R̄Na − qN Γ3 Āa

)
= ua

P

(
RNa − qN Γ3 Aa

)
, (76a)

ua
N

(
R̄Na − qN Γ3 Āa

)
= ua

N

(
RNa − qN Γ3 Aa

)
, (76b)

thus verifying that the Γx are gauge-invariant. This was also noted in [13] and is a result
of starting with an action with well-defined couplings. The formalism itself takes care of
gauge issues through internal consistency.

5. 3 + 1 Formulation

Having derived the equations of motion for the plasma system, we want to make
contact with applications and known results in the non-relativistic limit. In order to achieve
this, we work out the 3 + 1 form of the field equations, keeping the speed of light explicit.
This makes taking the Newtonian limit a simple power counting exercise and also sets the
problem up for foliation-based numerical simulations. Our approach to the 3 + 1 problem
follows the set of notes by Gourgoulhon [33].

5.1. The 3 + 1 Setup

We begin by restricting our formalism to a special class of manifolds—globally hy-
perbolic. These manifolds contain a family of causal curves, which are such that every
vector tangent to them is timelike or null. They also contain a Cauchy surface, which is a
spacelike hypersurface that is intersected exactly once by every inextendible causal curve
in the manifold. It can be shown that on these manifolds with coordinates x̄a, a scalar “time”
function t(x̄a) exists such that its level (“constant time”) hypersurfaces can be smoothly
stacked on top of each other to form a foliation of the spacetime.

A normal at a point on a constant-time hypersurface is obtained in the standard way
by taking the gradient of the time function, i.e., ∇at, and then evaluating the gradient at
the point under consideration. A unit normal ua (uaua = −c2) at each point is created by
introducing the so-called lapse function N, which is a speed, as a normalization factor for
∇at; that is,

ua = −cN∇at . (77)

If we build an initial slice of the foliation by solving t(x̄a) = to = constant, the next
one, say for t = to + δt, will consist of the set of points obtained by moving the same,
“small” proper distance in the ua direction. The ua will merge together from slice to slice to
become tangents to worldlines. The acceleration aa of an observer following one of these
worldlines is

aa = ub∇bua ≡
Dua

dt
, (78)

which introduces our notion of the time derivative.
So far, we have a mechanism for stacking the spacelike hypersurfaces, but nothing for

how they “slip” past each other. To take care of that, we introduce a “flow-of-time” vector
ta (with the units of speed), which joins spatial points x̄i

∣∣
to

on the hypersurface t = to to
spatial points x̄i

∣∣
to+δt on the next hypersurface t = to + δt such that x̄i

∣∣
to
= x̄i

∣∣
to+δt; in
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words, it is the observers following ta and not ua who are “at rest” with respect to the
foliation slices. We normalize ta by setting

ta∇at = 1 . (79)

We can use ua/c in two ways to decompose ta into pieces perpendicular and parallel to the
foliation slices; namely,

ta = N(ua/c) + Na , Na =⊥a
b tb , ⊥a

b= δa
b + uaub/c2 , (80)

where Na is the so-called shift vector (with speed units). The tensor ⊥b
a is the (idempotent)

operator that provides the parallel (spacelike) projection and ua/c provides the perpen-
dicular (timelike) projection. Since ⊥a

b ub = 0, the shift vector satisfies (ua/c)Na = 0 and
therefore has no perpendicular component.

Each slice of the foliation is, in principle, a curved space. The curvature information is
contained in an induced three-metric hab given by

hab =⊥c
a⊥d

b gcd = gab + uaub/c2 . (81)

Our notion of spatial covariant derivative Da is generated by the action of ⊥a
b on the

covariant derivative of an arbitrary vector ṽa =⊥a
b vb; namely,

Daṽb =⊥c
a⊥b

d ∇cṽd . (82)

The three-metric hab is compatible with Da; i.e., Dahbc = 0. The intrinsic curvature of slices
of the foliation, (3)Rc

dab, can be inferred from

DaDbṽc − DbDaṽc = (3)Rc
dabṽd . (83)

The acceleration can be shown (by inserting Equation (77) into (78)) to have the alterna-
tive form

aa = c2Da ln(N/c) . (84)

Because the three-dimensional slices of the foliation are embedded in four-dimensional
spacetime, they have an extrinsic curvature Kab (with inverse time dimensions) given by

Kab = −1
2
Luhab = −1

2
(⊥c

b ∇cua+ ⊥c
a ∇cub) . (85)

It is easy to show that the trace of the extrinsic curvature, which is K = gabKab, becomes

K = −∇aua ≡ −Θ . (86)

When we develop the 3 + 1 form of the field equations, it will be found that the
covariant derivative of ua enters repeatedly. A couple of important “tools” for dealing with
this can be obtained by applying the well-known decomposition

∇aub = σab +
1
3

Θhab + vab − abua/c2 = −Kab + vab − uaab/c2 , (87)

where

σab =
1
2
(⊥c

b ∇cua+ ⊥c
a ∇cub)−

1
3

Θhab = −
(

Kab −
1
3

Khab

)
, (88a)

vab =
1
2
(⊥c

b ∇cua− ⊥c
a ∇cub) . (88b)
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The most useful formula is a consequence of the fact that ua is surface-forming: This implies
vab = 0, and so therefore

∇aub = −Kab − uaab/c2 . (89)

From this, we can immediately show

∇c ⊥b
a= −2gbd

[
ucu(aad)/c4 + u(aKd)c/c2

]
. (90)

5.2. Field Decompositions

We have just seen how the metric can be re-framed in terms of the lapse N, the shift-
vector Na, and the three-metric hab. Now, we need to produce the similar re-framing for
the remaining field variables na

x and Aa.
Using the projection operators ua/c and ⊥a

b, and taking into account the dimensional
analysis of the flux earlier, the 3 + 1 forms of the fluxes must be

na
x = ñxua + ña

x , ñx = −
(

ua/c2
)

na
x , ña

x =⊥a
b nb

x . (91)

From the definition of the four-velocity ua
x = na

x/nx, we can infer

ua
x =

ñx

nx
(ua + ũa

x) , ũa
x =

ña
x

ñx
, (92)

and can therefore show

ñx

nx
= γ̃x , γ̃x =

1√
1− ũx

a ũa
x/c2

. (93)

Because ua
xua = −γ̃x and ua

ηua = ua
Pua, we have γ̃1 = γ̃2 = γ̃4 = γ̃5 ≡ γ̃P and conse-

quently ũa
1 = ũa

2 = ũa
4 = ũa

5 ≡ ũa
P . Similarly, we have γ̃3 = γ̃6 ≡ γ̃N and ũa

3 = ũa
6 ≡ ũa

N .
For the chemical potential covector µx

a , the dimensional analysis leads to a slightly
different form for the decompositions:

µx
a = µ̃xua/c2 + µ̃x

a , µ̃x = −uaµx
a , µ̃x

a =⊥b
a µx

b . (94)

If we substitute into the spatial part of this the initial result for µx
a , i.e., Equation (23), we

find a form more amenable for the Newtonian limit, which is

µ̃x
a =

µ̃x

c2 ũx
a + ∑

y 6=x
Axyñyw̃yx

a , (95)

where
w̃a

yx = ũa
y − ũa

x . (96)

As an effect of the tilting of the momenta, the chemical potentials in the fluid rest frames
are related to those of the foliation in more complicated ways, which are

µx = γ̃x(µ̃x − ũa
xµ̃x

a) . (97)

By direct substitution of the decompositions just above into Equation (55), the general-
ized pressure Ψ becomes

Ψ = Λ + ∑
x
(µ̃xñx − µ̃x

a ña
x) , (98)

and the fluid/plasma part of Tab is

Ψgab + ∑
x

na
xµb

x =

(
−Λ + ∑

x
µ̃x

c ñc
x

)
uaub/c2 + ∑

x
ñxµ̃b

xua + ∑
x

µ̃xñx

c2 ũa
xub
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+Ψhab + ∑
x

ña
xµ̃b

x . (99)

The charge current flux ja
x is

ja
x = σ̃xua + j̃a

x , σ̃x = −
(

ua/c2
)

ja
x , j̃a

x =⊥a
b jb

x , (100)

and the four-potential Aa is

Aa = Ṽua/c2 + Ãa , Ṽ = −ua Aa , Ãa =⊥b
a Ab , (101)

where we have introduced the scalar potential Ṽ (with the standard energy per charge
units) and the three-vector potential Ãa. Inserting this into the Faraday tensor, and using
Equation (89) for the covariant derivative, we find

Fab =
1
c2 (ubDa − uaDb)Ṽ +

1
c2 Ṽ(aaub − abua) +

1
c2 ub

DÃa

dt
− 1

c2 ua
DÃb

dt
− 1

c2

(
ubδd

a − uaδd
b

)
ÃcKdc + Da Ãb − Db Ãa . (102)

The electric Ẽa and magnetic B̃a fields are defined as

Ẽa = −
ub

c
Fba = −DaṼ− ⊥b

a
DÃb

dt
− Ṽaa/c2 + ÃbKab , (103a)

B̃a =
1
2

ε̃a
bcFbc = ε̃a

bcDb Ãc , ε̃abc =
ud

c
εdabc , (103b)

which implies

Fab =
2
c2 u[aẼb] + ε̃abc B̃c . (104)

Finally, the electromagnetic contribution to Tab is

− 1
4µo

(
FcdFcdgab − 4FacFb

c

)
=

1
2c2µo

(
Ẽ2 + c2B̃2

)
uaub

+
1

c2µo

(
ua ε̃bcd + ub ε̃acd

)
Ẽc B̃d

− 1
c2µo

[
ẼaẼb + c2B̃a B̃b − 1

2

(
Ẽ2 + c2B̃2

)
hab
]

. (105)

We end this subsection by pointing out that Equations (99) and (105) show that Tab
naturally separates into “time-time”, “time-space”, and “space-space” pieces. Respectively,
these give the total mass energy density E, the total momentum density Pa, and the total
stress Sab:

E =
1
c2 uaubTab , (106a)

Pa = −1
c

ub ⊥a
c Tbc = −1

c
ub ⊥a

c Tcb , (106b)

Sab =⊥a
c⊥b

d Tcd , S = habSab . (106c)
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The terms in Equations (99) and (105) combine to give

E = −Λ + ∑
x

µ̃x
a ña

x +
1

2c2µo

(
Ẽ2 + c2B̃2

)
, (107a)

Pa =
1
c ∑

x
µ̃xñxũa

x +
1

cµo
ε̃abcẼb B̃c

= c ∑
x

ñxµ̃a
x +

1
cµo

ε̃abcẼb B̃c , (107b)

Sab = Ψhab + ∑
x

ña
xµ̃b

x −
1

c2µo

[
ẼaẼb + c2B̃a B̃b − 1

2

(
Ẽ2 + c2B̃2

)
hab
]

, (107c)

S = 3Ψ + ∑
x

µ̃x
a ña

x +
1

2c2µo

(
Ẽ2 + c2B̃2

)
. (107d)

5.3. The 3 + 1 Field Equations

The logic of rewriting the Einstein, fluid/plasma, and electromagnetic field equations
in their 3 + 1 forms is the same as for the field variables—project free indices perpendicular
to the foliation slices using the operator ua/c and project free indices parallel to the foliation
slices using ⊥a

b, and then make substitutions of the decomposed quantities derived in the
previous section. The main complication is that the field equations have derivatives, and
we will need to replace everywhere covariant derivatives ∇a with their 3 + 1 counterparts
D/dt and Da.

We will start with the Einstein equations as given in Equation (62). The projections of
the Ricci tensor Rab are performed in Appendix B. When these and the terms E, Pa, and Sab

are substituted back into Equation (62) we obtain the Hamiltonian constraint

(3)R +
1
c2 K2 − 1

c2 KabKab =
16πG

c4 E , (108)

the momentum constraint
Db

(
Kb

a − Kδb
a

)
=

8πG
c3 Pa , (109)

and finally an evolution equation

− 1
c2LuKab −

1
N

DaDbN + (3)Rab +
1
c2 KKab −

2
c2 KacKc

b

=
8πG

c4

[
Sab −

1
2
(S− E)hab

]
. (110)

For the fluid/plasma equations, the results are long, and so it is better to break them
up into individual pieces and present them instead as follows:

ua f x
a = −ña

x

(
Daµ̃x +

Dµ̃x
a

dt

)
− 1

c2 µ̃xña
xaa + Kabña

xµ̃b
x + j̃a

xẼa , (111a)

⊥b
a f x

b = ñx

(
⊥b

a
Dµ̃x

b
dt

+ ũb
xDbµ̃x

a

)
+ ñxDaµ̃x − ñb

xDaµ̃x
b

+
µ̃xñx

c2 aa − ñxµ̃b
xKba −

(
σ̃xẼa + ε̃abc j̃b

xB̃c
)

, (111b)

(−uaµx
a)Γx = µ̃x

(
Daña

x +
Dñx

dt

)
− Kµ̃xñx +

1
c2 µ̃xña

xaa , (111c)(
⊥b

a µx
b

)
Γx =

(
Dbñb

x +
Dñx

dt

)
µ̃x

a − Kñxµ̃x
a +

1
c2 ñb

xabµ̃x
a , (111d)

ua(Rx
a − qxΓx Aa) = uaRx

a + qxΓxṼ , (111e)

⊥b
a (Rx

b − qxΓx Ab) =⊥b
a Rx

b − qxΓx Ãa . (111f)
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We will present a more detailed look at uaRx
a and ⊥b

a Rx
b later in Section 5.4.

Lastly, we have to evaluate the following projections of the Maxwell equations:

ua∇bFab = µoc2 ∑
x={2,3}

ua ja
x , (112a)

⊥a
c ∇bFcb = µo ∑

x={2,3}
⊥a

b jb
x , (112b)

uaεabcd∇[bFcd] = 0 , (112c)

⊥a
e εebcd∇[bFcd] = 0 . (112d)

Before applying the projections, it is convenient to perform a little preparatory work: take
the covariant derivative of Equation (104), and use Equation (89) to obtain

∇aFbc =
1
c2 ua

(
2
c2 a[cẼb] +

2
c2 u[c ⊥d

b]
DẼd
dt
− 1

c
εbc

dead B̃e − ε̃bcd
DB̃d

dt

)
+

2
c2 u[bD|a|Ẽc] +

2
c2 Ka[cẼb] −

1
c

εbc
deKad B̃e + ε̃bcdDa B̃d , (113)

which, in turn, gives

∇bFab =
1
c2 uaDbẼb − 1

c2 ⊥
b
a

DẼb
dt

+ ε̃abc

(
Db B̃c +

1
c2 ab B̃c

)
− 1

c2 (Kab − Khab)Ẽb , (114)

and

1
2

εa
bcd∇bFcd = −uaDb B̃b +

1
c2 ⊥

b
a

DB̃b
dt

+
1
c2 ε̃abc

(
DbẼc +

1
c2 abẼc

)
+

1
c2 (Kab − Khab)B̃b . (115)

Therefore, the ua/c and ⊥b
a projections of the Maxwell equations and the continuity equa-

tion are [34]

DaẼa = µoc2 ∑
x={2,3}

σ̃x , (116a)

ε̃a
bc

(
Db B̃c +

1
c2 ab B̃c

)
= µo ∑

x={2,3}
j̃a
x +

1
c2 ⊥

a
b

DẼb

dt
+

1
c2

(
Kab − Khab

)
Ẽb , (116b)

Db B̃b = 0 , (116c)

ε̃abc

(
DbẼc +

1
c2 abẼc

)
= − ⊥b

a
DB̃b
dt
− (Kab − Khab)B̃b , (116d)

∑
x={2,3}

∇a ja
x = ∑

x={2,3}

(
Da j̃a

x +
Dσ̃x

dt
− Kσ̃x +

1
c2 j̃a

xaa

)
= 0 . (116e)

5.4. Resistivities and Dissipation in the 3 + 1 Formalism

We have now finished our development of the 3 + 1 form of the full suite of field
equations. This has been accomplished without having to make detailed statements about
the specific dependence of nx

ABC on {XA
P , XA

N } nor, in turn, the specific dependence of Λ
on nx

ABC. In fact, we have taken the point of view that each of these are “known” a priori,
meaning that once a specific application is considered the relevant forms and dependencies
can, at least in principle, be constructed based on the relevant microphysics of the system.
However, even without such an analysis, the action-based formalism has taken us a long
way. This has been pointed out already by Andersson et al. [13]. They used this as a basic
platform upon which resistivities could be built phenomenologically. Our purpose now
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is to give a review of the salient points and then to apply them to the two-temperature
extended system considered here.

We start by applying Equation (49) to the 3 + 1 decomposition ofRxy
a , which is

Rxy
a = R̃xyua/c2 + R̃xy

a , R̃xy = −uaRxy
a , R̃xy

a =⊥b
a R

xy
b . (117)

By imposing Equation (49), we find thatRxy
a becomes

Rxy
a =

(
δb

a + uaũb
y/c2

)
R̃xy

b , (118)

and the resistivity Rx
a is

Rx
a = ∑

y 6=x

[(
ũb

xR̃
yx
b − ũb

yR̃
xy
b

)
ua/c2 + R̃yx

a − R̃
xy
a

]
. (119)

Inserting this modified form for Rx
a into Equation (68), we determine that the creation

rate becomes
Γx =

γ̃x

µx
∑

y 6=x
R̃xy

a w̃a
xy . (120)

To make further progress, we impose three physical constraints—charge conservation,
baryon number conservation, and the Second Law of Thermodynamics. The conservation
of charge (cf. Equation (35)) leads to

0 = ∑
x=2,3

exΓx = ∑
x=2,3

qxγ̃x

µx
∑

y 6=x
R̃xy

a w̃a
xy , (121)

while the baryon number conservation (cf. Equation (36)) says

0 = ∑
x=1,2

Γx = ∑
x=1,2

γ̃x

µx
∑

y 6=x
R̃xy

a w̃a
xy . (122)

The Second Law of Thermodynamics gives the inequality

∑
x=4,5,6

Γx = ∑
x=4,5,6

γ̃x

µx
∑

y 6=x
R̃xy

a w̃a
xy ≥ 0 . (123)

In order to satisfy these, we need to be more specific about the terms, meaning that we
will now make an ansatz about the form of the resistivity and flux creation rates but in a
manner which is consistent with the overall formalism.

Onsager [35] (see also [36,37]) developed an approach that relies on the notions of
thermodynamic fluxes and forces. In our case, the thermodynamic fluxes are the R̃xy

a , and
the thermodynamic forces are the w̃a

xy. The key step is to combine the fluxes and forces
in such a way that they tend to drive the system towards a dynamical equilibrium where
the relative flows are zero and a thermodynamical equilibrium where Γx → 0 all the while
maintaining the inequality of Equation (123).

We begin with an obvious choice for the R̃xy
a , which is to write

R̃xy
a = r̃xyw̃xy

a =⇒ Rxy
a = r̃xy

(
δb

a + uaũb
y/c2

)
w̃xy

b . (124)

This causes the sum for the total entropy creation rate to be over the set of positive definite
terms given by wa

xywxy
a . Because the relation forRxy

a is linear in the r̃xy, then we can reduce
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the number of r̃xy by imposing that (in their indices) they satisfy the same equalities that
theRxy

a do in Equations (63a)–(63f). Noting that

Γ1 = 2
γ̃P
µ1

r̃13w̃PNa w̃a
PN , (125a)

Γ2 = 2
γ̃P
µ2

r̃23w̃PNa w̃a
PN , (125b)

Γ3 = 4
γ̃N
µ3

r̃31w̃PNa w̃a
PN , (125c)

Γ4 = 2
γ̃P
µ4

r̃43w̃PNa w̃a
PN , (125d)

Γ5 = 2
γ̃P
µ5

r̃53w̃PNa w̃a
PN , (125e)

Γ6 = 4
γ̃N
µ6

r̃61w̃PNa w̃a
PN , (125f)

we can reduce again the number of r̃xy, by imposing charge (cf. Equation (35)) and baryon
number [cf. Equation (36)] conservation, since they imply

r̃23 = −µ2
µ1

r̃13 , (126a)

r̃31 = −1
2

γ̃P
γ̃N

µ3
µ1

r̃13 . (126b)

The Second Law of Thermodynamics (cf. Equation (123)) implies that the coefficients must
satisfy

γ̃P
µ4

r̃43 +
γ̃P
µ5

r̃53 + 2
γ̃N
µ6

r̃61 ≥ 0 . (127)

The independent resistivity vector takes the final form

RNa = 2

[(
2r̃61 −

γ̃P
γ̃N

µ3
µ1

r̃13

)
w̃b
PN w̃PNb

c2 + r̃N
ũb
N w̃PNb

c2

]
ua + 2r̃N w̃PNa , (128)

where

r̃N = 2r̃61 +

(
1− γ̃P

γ̃N

µ3
µ1
− µ2

µ1

)
r̃13 + r̃43 + r̃53 . (129)

We see that our final model requires the four coefficients {r̃13, r̃43, r̃53, r̃61} to completely
determine the creation rates Γx and the independent resistivity RNa . Notably, as w̃a

PN → 0
(all the fluids are comoving), then RNa → 0 and Γx → 0. Any further development of this
model would require the microscopic modeling of specific systems to determine the four
coefficients.

6. The “Newtonian” Limit

In order to make contact with existing work on two-temperature plasmas, which is
mainly in the Newtonian setting, we will now work out the “Newtonian limit” of our
equations. Poisson and Will [38] point out that when gravity is formulated as a metric
theory, then the limit we are imposing is to be understood as the first-order correction to
flat spacetime, which is not, a priori, the same thing as Newtonian gravity, which is based
on forces and action at a distance.

Our definition of the “Newtonian limit” includes the following criteria: (a) the particles
are moving much slower than the speed of light c; (b) the gravitational field is “weak”,
meaning it is a linear perturbation away from flat spacetime (Rc

dab = 0); and (c) the
gravitational field is static. The latter two criteria will be imposed by an expansion of N,
Na, and hab away from flat spacetime. Some of this work is presented in Appendix C,



Universe 2023, 9, 282 22 of 34

where we have taken the 3+ 1 formulas and adapted them to a coordinate system such that
the time coordinate x̄0 = ct, where recall t(x̄a) is the scalar field from which the spacelike
hypersurfaces of the foliation are constructed.

It is still an open question as to whether or not Newtonian gravity is a subset of this
limit of general relativity or if it is all inclusive. Philosophical issues aside, we take a
practical point of view, which is to impose the criteria (a), (b), and (c) above on the field
equations and thereby extract the terms that formally survive the limit. It then becomes a
question of the particular physical scenario to which the field equations are being applied
as to whether or not all of the remaining terms are required.

6.1. The Metric Expansion and Linear Corrections to Flat Spacetime

In order to take the Newtonian gravitational limit of the Einstein equations, we will
need to analyze the left- and right-hand sides separately. Here, we will be setting up the
left-hand sides of the Hamiltonian and momentum constraints—Equations (108) and (109),
respectively—and the evolution Equation (110). We simplify the equations by taking the x̄i

to be Cartesian coordinates.
A linear expansion of the metric away from flat spacetime takes the form

gab = ηab + δgab , (130)

where ηab = diag[−1, 1, 1, 1] is the Minkowski metric and the components of δgab are taken
to be small, meaning that we ignore any terms of the form δgabδgcd, δgab∇cδgde, and so on.
The flat spacetime pieces of the metric are N = c, Ni = 0, and hij = δij = diag[1, 1, 1]. The
flat spacetime plus linear perturbations metric pieces are

N = c + δN , (131a)

Ni = δNi , δNi = δijδNi , (131b)

hij = δij + δhij . (131c)

These expansions will be inserted into the left-hand sides of Equations (108)–(110), keeping
only the first-order terms.

However, before we take that step, it is important to note that the Einstein equations
have a “gauge” symmetry that basically comes from their coordinate invariance (or, more
formally, diffeomorphism invariance). We employ that here by using the harmonic gauge,
which takes the form

∂b

(
δgba − 1

2
ηbaηcdδgcd

)
= −

(
ηacη jd +

1
2

ηajηcd
)

∂jδgcd = 0 , (132)

where we have used
δgab = −ηacηbdδgcd . (133)

In terms of the 3 + 1 decomposition, we have

δgab =

[
− 2

c δN 1
c δNi

1
c δNi δhij

]
, (134)

and so the gauge condition leads to

0 = ∂iδNi , (135a)

0 = ∂jδhij + ∂i

(
1
c

δN +
1
2

δh
)

, (135b)
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where δh = δijδhij. The unit normals to the hypersurfaces ua, the acceleration aa, and
non-zero components of the projection operator ⊥b

a become, respectively,

ua =
(

c− δN, δNi
)

, ua = (−c− δN, 0, 0, 0) , (136a)

aa =
(

0, c∂iδN
)

, aa = (0, c∂iδN) , (136b)

⊥i
0 =

1
c

δNi , ⊥j
i= δ

j
i . (136c)

In order to build (3)Rl j, we need to know the (3)Γi
jk. Taking Equation (A25) and

substituting in the expansions above, while keeping only the linear terms, we find

(3)Γi
jk =

1
2

δil
(

∂jδhlk + ∂kδhl j − ∂lδhjk

)
. (137)

The gauge choice leads to K = 0, but there remain linear-order Kij terms, which are

Kij =
1
2
(
∂iδNj + ∂jδNi

)
. (138)

We find that the linearized forms for (3)Rl j and (3)R are

(3)Rij =
(3)Γk

ij,k −
(3)Γk

ik,j = −∂i∂j

(
1
c

δN + δh
)
− 1

2
∂k∂kδhij , (139a)

(3)R = δij(3)Rij = −∂i∂
i
(

1
c

δN +
3
2

δh
)

, (139b)

The left-hand sides of Equations (108), (109), and (110), respectively, now become

(3)R +
1
c2 K2 − 1

c2 KabKab = −∂i∂
i
(

1
c

δN +
3
2

δh
)

, (140a)

Dj

(
K j

i − Kδ
j
i

)
=

1
2

∂j∂
jδNi , (140b)

− 1
c2LuKij −

1
N

DiDjN + (3)Rij +
1
c2 KKij −

2
c2 KikKk

j

= −∂i∂j

(
2
c

δN + δh
)
− 1

2
∂k∂kδhij . (140c)

6.2. Newtonian Limit of the Fluid/Plasma and 3 + 1 Energy–Momentum–Stress
Tensor Components

The main approximations for the flux variables are that their relative speeds ũa must
be much less than the speed of light—we neglect terms of order O

(
ũ2

x/c2) and higher—and
energies that scale with c2 (such as the rest-mass energy densities mxc2nx) are much bigger
than other energy densities. The typical leading-order terms in the Master function Λ are
the rest-mass energy densities, and so it is convenient to re-fashion Λ as a sum of mxc2nx
and an “internal energy” density U (having the same functional dependence as Λ):

−Λ = ∑
x

mxc2nx + U . (141)

We assume that entropy has zero rest-mass, but, because of entrainment, it does have an
effective mass with a leading-order term proportional to c2 and it enters the field equations
through its inclusion in U (cf. Equation (145b)).

We need to first consider the Newtonian limit of the momenta, as given in
Equation (94), but with the Bx and Axy computed using the rewritten Λ of Equation (141).
We will also reintroduce the notation that splits the particle number fluxes into the matter na

x
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and the entropy sa
x̄ pieces and the momenta into µx

a and Θx̄
a . Here, the constituent indices for

the matter are without a bar and range over x, y, . . . = {η,P ,N}, whereas the indices with
a bar are for the thermal pieces and range over x̄, ȳ, . . . = {η̄, P̄ , N̄ }. In order to generate
the momentum coefficients, we have five different sets of scalars, which can appear in the
Λ: the first two are n2

x = −gabna
xnb

x/c2 and n2
xy = −gabna

xnb
y/c2 = n2

yx, for which y 6= x; the
next two are s2

x̄ = −gabsa
x̄sb

x̄/c2, s2
x̄ȳ = −gabsa

x̄sb
ȳ/c2 = s2

ȳx̄, for which ȳ 6= x̄; and the last is
the mixed term m2

xȳ = −gabna
xsb

ȳ/c2 = m2
ȳx.

A variation of the re-formulated Λ yields the coefficients

Bx =
mx

nx
+

1
c2nx

∂U
∂nx

, (142a)

S x̄ =
1

c2sx̄

∂U
∂sx̄

, (142b)

Bxy =
1
c2

∂U
∂n2

xy
, (142c)

S x̄ȳ =
1
c2

∂U
∂s2

x̄ȳ
, (142d)

Mxȳ =
1
c2

∂U
∂m2

xȳ
, (142e)

which combine together to give

µx
a =

1
nx

(
mx +

1
c2

∂U
∂nx

)
nx

a + ∑
y 6=x
Bxyny

a + ∑̄
y
Mxȳsȳ

a , (143a)

µx =

(
mx + ∑

y 6=x
Bxy n2

xy

nx
+ ∑̄

y
Mxȳ m2

xȳ

sȳ

)
c2 +

∂U
∂nx

, (143b)

Θx̄
a = S x̄sx̄

a + ∑
ȳ 6=x̄
S x̄ȳsȳ

a + ∑
y
Mx̄yny

a , (143c)

Tx̄ =

(
∑

ȳ 6=x̄
S x̄ȳ s2

x̄ȳ

sx̄
+ ∑

y
Mx̄y m2

x̄y

sx̄

)
c2 +

∂U
∂sx̄

. (143d)

In 3 + 1 form we have

µ̃x
a =

µ̃x

c2 ũx
a + ∑

y 6=x
Bxyñyw̃yx

a + ∑̄
y
Mxȳ s̃ȳw̃ȳx

a , (144a)

µ̃x = m̃xc2 +
∂U
∂nx

γ̃x , (144b)

Θ̃x
a =

T̃x̄

c2 ũx̄
a + ∑

ȳ 6=x̄
S x̄ȳ s̃ȳw̃ȳx̄

a + ∑
y
Mx̄yñyw̃yx̄

a , (144c)

T̃x̄ = m̃x̄c2/kB +
∂U
∂sx̄

, (144d)

where we have defined

m̃x = mxγ̃x + ∑
y 6=x
Bxyñy + ∑̄

y
Mxȳ s̃ȳ , (145a)

m̃x̄ = kB

(
∑

ȳ 6=x̄
S x̄ȳ s̃ȳ + ∑

y
Mx̄yñy

)
. (145b)
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We can obtain a handle on the lowest-order impact of the condition ũx
a ũa

x � c2 by
expanding the parameters n2

x, n2
xy, s2

x̄, s2
x̄ȳ, and m2

xȳ:

n2
x = ñ2

xγ̃−2
x ≈ ñ2

x

(
1− ũx

i ũi
x/c2

)
, (146a)

n2
xy = − 1

c2 nxnygabua
xub

y ≈ ñxñy

(
1− ũx

k ũk
y/c2

)
, (146b)

s2
x̄ = s̃2

x̄γ̃−2
x̄ ≈ s̃2

x̄

(
1− ũx̄

i ũi
x̄/c2

)
, (146c)

s2
x̄ȳ = − 1

c2 sx̄sȳgabua
x̄ub

ȳ ≈ s̃x̄ s̃ȳ

(
1− ũx̄

k ũk
ȳ/c2

)
, (146d)

m2
xȳ = − 1

c2 nxsȳgabua
xub

ȳ ≈ ñx s̃ȳ

(
1− ũx

k ũk
ȳ/c2

)
. (146e)

We see from this that the differences ñ2
x − n2

x, ñxñy − n2
xy, etc., are small. The expansion of

Λ gives

−Λ ≈ ∑
x

mxc2ñx + Uo

(
ñ2

x, s̃2
x̄

)
−1

2 ∑
x

[
1
ñx

(
mx +

∂
(
U/c2)
∂nx

∣∣∣∣∣
o

)
ñx

i + ∑
y 6=x
Bxy

o ñy
i + ∑̄

y
Mxȳ

o s̃ȳ
i

]
ñi

x

−1
2 ∑̄

x

[
1
s̃x

∂
(
U/c2)
∂sx̄

∣∣∣∣∣
o

s̃x̄
i + ∑

ȳ 6=x̄
S x̄ȳ

o s̃ȳ
i + ∑

y
Mx̄y

o ñy
i

]
s̃i

x̄ , (147)

where the “o” subscript means the quantity is evaluated for the ratio ũx
i ũi

x/c2 → 0. Be-
cause of effective mass effects, the combination U/c2 as it appears in, say, Bxy

o , is not
necessarily small.

The limiting form of the generalized pressure Ψo (cf. Equation (55)) is

Ψo = −Uo + ∑
x

(
µ̃x|o −mxc2

)
ñx + ∑̄

x
T̃x̄
∣∣
o s̃x̄ , (148)

and the 3+ 1 total energy density E, momentum Pa, and stress Sab tend towards the values

Eo →∑
x

mxc2ñx , (149a)

Pi
o →∑

x
µ̃xñx

(
ũi

x/c
)
+ ∑̄

x
T̃x̄ s̃x̄

(
ũi

x̄/c
)
+

1
µo

(
ε̃ijkẼj B̃k/c

)
→ 0 , (149b)

Sij
o →∑

x

(
m̃xũj

x + ∑
y 6=x
Bxy

o ñyw̃j
yx + ∑̄

y
Mxȳ

o s̃ȳw̃j
ȳx

)
ñxũi

x

+ ∑̄
x

(
m̃x̄ũj

x̄ + ∑
ȳ 6=x̄
S x̄ȳ

o s̃ȳw̃j
ȳx̄ + ∑

y
Mx̄y

o ñyw̃j
yx̄

)
s̃x̄ũi

x̄

+

(
Ψo +

1
2µo

B̃2
)

hij − 1
µo

B̃i B̃j . (149c)

We have assumed that the so-called “~E×~B” drift velocity for plasmas, i.e.,~vdr = ~E×~B/|~B|2,
must be small with respect to c. This leads to the constraint that |~vdr| ∼ |~E|/|~B| � c. We
have assumed also that {Uo, B̃i B̃j/µo} � m̃xc2nx.
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6.3. The Field Equations

To obtain the limiting form of the Einstein equation, we first work out the leading-order
of the right-hand sides of Equations (108)–(110):

16πG
c4 Eo →

16πG
c2 ∑

x
mxñx , (150a)

8πG
c3 Pi

o → 0 , (150b)

8πG
c4 Sij

o → 0 , (150c)

8πG
c4 So → 0 . (150d)

Here, a factor of 1/c2 combines with the velocity terms ũi
xũj

y to drive to zero the stress

terms Sij
o and So; the same factor drives Ψo/c2 → 0. The limiting forms of the Einstein

equation components are

−∂i∂
i
(

1
c

δN +
3
2

δh
)
≈ 16πG

c2 ∑
x

mxñx , (151a)

1
2

∂j∂
jδNi ≈ 0 , (151b)

−∂i∂j

(
2
c

δN + δh
)
− 1

2
∂k∂kδhij ≈

4πG
c2

(
∑
x

mxñx

)
hij . (151c)

If we take the trace of Equation (151c), we can solve for ∂i∂
iδh. Substituting this into

Equation (151a) gives
∂i∂

iΦ ≈ 4πG ∑
x

mxñx , (152)

where cδN ≡ Φ is the standard gravitational potential. As a check of this identification, we
note that the geodesic equation—ub

p∇bua
p = 0, where ua

p is a point particle four-velocity—
gives in this limit

d2xi

dt2 ≈ −c2Γi
00 = −c2∂i

(
1
c

δN
)
= −∂iΦ = ai , (153)

where the last equality follows from Equation (136b).
Using again the trace Equation (151c) but substituting it into Equation (152), then we

find (to consistent order in c)
∂i∂

iδh ≈ 0 , (154)

which then implies
∂k∂kδhij ≈ 0 . (155)

In this Newtonian context, we assume our system has compact support and is such that an
asymptotically flat infinity exists for which δNi → 0 and δhij → 0. Given that they both
satisfy the Laplace equation, it is consistent to have δNi = 0 and δhij = 0 everywhere.

With this, we can implement now the limit of the fluid/plasma equations. Taking
into account the fact that µ̃x/c2 and T̃x̄/c2 can have non-zero terms in the limit ũi

x/c→ 0,
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then the individual pieces of the fluid/plasma equations in Equations (111a)–(111f) and
the projections of the final form of RNa given in Equation (128) become

ua f x
a = −ñi

x

(
∂µ̃x

i
∂t

+ ∂iµ̃x

)
− m̃xñxũi

xai + j̃ixẼi , (156a)

ua f x̄
a = −s̃i

x̄

(
∂Θ̃x̄

i
∂t

+ ∂iT̃x̄

)
− m̃x̄(s̃x̄/kB)ũi

x̄ai , (156b)

⊥j
i f x

j = ñx

(
∂

∂t
+ ũj

x∂j

)
µ̃x

i − ñj
x∂iµ̃

x
j + ñx∂iµ̃x + m̃xñxai

−
(

σ̃xẼi + ε̃ijk j̃j
xB̃k
)

, (156c)

⊥j
i f x̄

j = s̃x̄

(
∂

∂t
+ ũj

x̄∂j

)
Θ̃x̄

i − s̃j
x̄∂iΘ̃x̄

j + s̃x̄∂iT̃x̄ + m̃x̄(s̃x̄/kB)ai , (156d)

(−uaµx
a)Γx = µ̃x

(
∂ñx

∂t
+ ∂iñi

x

)
+ m̃xñxũi

xai , (156e)

(
−uaΘx̄

a
)
Γx̄ = T̃x̄

(
∂s̃x̄

∂t
+ ∂i s̃i

x̄

)
+ m̃x̄(s̃x̄/kB)ũi

x̄ai , (156f)(
⊥j

i µx
j

)
Γx =

(
∂ñx

∂t
+ ∂jñ

j
x

)
µ̃x

i +
1
c2 ñj

xajµ̃
x
i , (156g)(

⊥j
i Θx̄

j

)
Γx̄ =

(
∂s̃x̄

∂t
+ ∂j s̃

j
x̄

)
Θ̃x̄

i +
1
c2 s̃j

x̄ajΘ̃x̄
i , (156h)

ua
(

RNa − qN ΓN Aa

)
= −2

[(
2r̃61 −

γ̃P
γ̃N

µ3
µ1

r̃13

)
w̃i
PN + r̃N ũi

N

]
w̃PNi + qN ṼΓN , (156i)

⊥j
i

(
RNj − qN ΓN Aj

)
= r̃N w̃PNi − qN ΓN Ãi . (156j)

The Maxwell equations and the continuity equation take the expected form of

∂i Ẽi = c2µoqP (ñP − ñN ) , (157a)

ε̃i
jk∂j B̃k = µoqP

(
ñi
P − ñi

N

)
+

∂Ẽi

∂t
, (157b)

∂i B̃i = 0 , (157c)

ε̃ijk∂jẼk = −∂B̃i
∂t

, (157d)

∑
x

(
∂i j̃ix +

∂σ̃x

∂t

)
= 0 . (157e)

6.4. The Final Fluid/Plasma Newtonian Equations

Now we will write the final set of field equations so that we can point to some
differences with those of the extant literature (such as [39,40]). We have clearly recovered
the Newton equation for gravity and the Maxwell equations. The last thing is to collect all
the fluid/plasma pieces to write the final form of their equations. To obtain the spirit of
their role, we will assume that the gravitational and electromagnetic terms are known.

In total, we have to determine the six components ũi
η̄ = ũi

P̄ = ũi
η = ũi

P and ũi
N̄ = ũi

N ,
as well as the six scalars {ñx, s̃x̄}. Once the components

{
ũi
P , ũi

N
}

are known, then we
can use the divergence formulas in Equations (125a)–(125f), taken in combination with
Equations (156e) and (156f), to determine the six scalars. Likewise, we can use the non-
relativistic limit of the Euler Equations (58) and (59) to determine

{
ũi
P , ũi

N
}

if the six scalars
are known.
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Using the sum of the non-relativistic forms of Equations (58) and (59) as the first Euler
equation and keeping the non-relativistic form of Equation (59) as the second, we find

0 = ∑
x

[
ñi

x

(
∂µ̃x

i
∂t

+ ∂iµ̃x

)
+ Γxµ̃x

]
+ ∑̄

x

[
s̃i

x̄

(
∂Θ̃x̄

i
∂t

+ ∂iT̃x̄

)
+ Γx̄T̃x̄

]

+

[
∑
x

m̃xñxũi
x + ∑̄

x
m̃x̄(s̃x̄/kB)ũi

x̄

]
ai + ∑

x
j̃ixẼi , (158a)

0 = ñi
N

(
∂µ̃Ni

∂t
+ ∂iµ̃N

)
+
(
µ̃N − µN + qN Ṽ

)
ΓN + s̃i

N̄

(
∂Θ̃N̄i

∂t
+ ∂iT̃N̄

)
+
(
T̃N̄ − TN̄

)
ΓN̄ + [m̃N ñN + m̃N̄ (s̃N̄ /kB)]ũi

N ai + j̃iN Ẽi − 2r̃N ũi
N w̃PNi , (158b)

0 = ∑
x

[
ñx

(
∂

∂t
+ ũj

x∂j

)
µ̃x

i + Γxµ̃x
i

]
+ ∑̄

x

[
s̃x̄

(
∂

∂t
+ ũj

x̄∂j

)
Θ̃x̄

i + Γx̄Θ̃x̄
i

]
+

[
∑
x

m̃xñx + ∑̄
x

m̃x̄(s̃x̄/kB)

]
ai + ∂iΨ−∑

x

(
σ̃xẼi + ε̃ijk j̃j

xB̃k
)

, (158c)

0 = ñN

(
∂

∂t
+ ũj

N ∂j

)
µ̃Ni + ΓN µ̃Ni + ñN ∂iµ̃N − ñj

N ∂iµ̃
N
j

+ s̃N̄

(
∂

∂t
+ ũj

N ∂j

)
Θ̃N̄i + ΓN̄ Θ̃N̄i + s̃N̄ ∂iT̃N̄ − s̃j

N̄ ∂iΘ̃N̄j

+ [m̃N ñN + m̃N̄ (s̃N̄ /kB)]ai − 2r̃N w̃PNi + qN ΓN Ãi −
(

σ̃N Ẽi + ε̃ijk j̃j
N B̃k

)
, (158d)

where we have used Equation (57) to infer

∂iΨ = ∑
x

(
ñx∂iµ̃x − ñj

x∂iµ̃
x
j

)
+ ∑̄

x

(
s̃x̄∂iT̃x̄ − s̃j

x̄∂iΘ̃x̄
j

)
. (159)

The obvious difference with the current literature is the impact of entrainment. We
see that its effect of “tilting” the fluid momenta for the particles has survived the non-
relativistic limit. Something else that survives is the entropy momentum. An unanticipated
difference is the coupling of the particle m̃x and thermal m̃x̄ effective masses to gravity (via
the acceleration ai).

Tracing back, it is the presence of n2
xy in Λ that leads to m̃x and m̃x̄ in the first place.

Given the approach taken here, there is no a priori, generic principle for why the entrain-
ment pieces in the gravitational couplings should be negligible; obviously they survive the
c→ ∞ limit. In the absence of a generic principle for why it should be, say, mx and not m̃x
that couples to gravity, one must rely on the microscopic details of the particular system to
be modeled. The difference between m̃x and mx can be assessed and then compared with
the “smallness” of other approximations in the model.7

7. Conclusions and Follow-On Work

We have presented an action principle that yields, from start to finish, the field equa-
tions for a dissipative/resistive general relativistic two-fluid two-temperature plasma, with
a neutrally charged component. The model is distinct from previous general relativistic
formulations of the two-temperature plasma system (some of which are cited throughout
the text), none of which rely on action principles, as far as we know.

Due to the very nature of action principles, the couplings between the fields are self-
consistently incorporated into the full suite of field equations. For example, Tab follows
automatically from the fields and couplings built into the total action, and its covariant
divergence ∇bTb

a vanishes identically when the field equations are satisfied; i.e., ∇bTb
a = 0

is not itself an equation of motion but rather an identity (as it should be because of diffeo-
morphism invariance). Along these same lines, we have shown how the formal inclusion of
terms such as n2

xy in the fluid action naturally leads to entrainment between different fluids
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and effective masses for particles and entropy. We have also seen that electromagnetic gauge
issues are automatically accounted for by the internal consistency of the overall formalism.

Because of the fact that systems containing plasmas occur across many independent
branches of physics, we made an effort to provide a, more or less, self-contained presenta-
tion. This is especially true for the 3 + 1 decomposition discussion, which includes steps
that are textbook material. However, while these steps are well known in the general
relativity community, they may well be new to other readers. Moreover, one of our main
goals was to derive the Newtonian limit in a self-consistent way. This way, we recovered
field equations very much like those in the extant literature, but we also saw a new element
emerge: the effective mass of entropy.

By developing the framework from the fibration picture into 3+ 1 language, a step was
taken towards a practical implementation of a two-temperature plasma within a general
relativistic numerical simulation, as needed for neutron-star mergers. There are, however,
many further steps that are required. As noted in [32], as soon as an entrained multifluid
system is constructed from this action approach not all the equations of motion can be
written in a conservation law form. Standard approaches for numerically evolving solutions
with discontinuities, particularly the shocks forming during mergers, then do not apply.
Instead, path-conservative methods are required (see, e.g., [41] for a brief review). However,
these methods require a deeper understanding of the correct form of the dissipative terms
appropriate to the model. Whilst the form of these terms can be deduced from the action
framework, as detailed in [17], we have not taken those steps here. Further work in this
direction is required.

Moving forward, there are several steps that should be performed: The first step would
be to analyze local waves and modes of oscillation, to obtain a basic understanding of the
stability/instability properties of the system. This would provide some insight on when
the temperature difference is driven to zero or forced to diverge. Another step would be to
allow for the additional terms in the fluid action that lead to bulk and shear viscosity, so as
to tackle the numerical evolution issue raised above. Finally, a post-Newtonian expansion
of the field equations will further unravel the role of (particle and entropy) effective masses
and their coupling to the gravitational field. This may shed further light on the relevance
of the entropy entrainment.
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Appendix A. Gauge Invariance, Charge Conservation, and ∇bTba = 0

The Coulomb piece SC (cf. Equation (27)) has a direct coupling of the four-potential
Aa to the total charge current flux ja. This leads to the situation where the total action S is a
priori not gauge-invariant. Of course, the resolution is a well-established process—insist
on gauge invariance for the total action and see where this leads you.

Start by considering a variation of the total action, where the vector potential variation
takes the form

δAa = ∇aδφ , (A1)

and the other field variables have zero variation; i.e., ξa
x = 0 and δgab = 0. So, even though

Rx
a acquires the gauge piece Gx

a (cf. Equation (71)) it does not enter the calculation. The
total action variation is

δS = − 1
4π

∫
M

d4x
√
−g

(
∇bFab − 4π ∑

x
ja
x

)
∇aδφ



Universe 2023, 9, 282 30 of 34

= − 1
4π

∫
M

d4x
√
−g∇a

(
∇bFab − 4π ∑

x
ja
x

)
δφ , (A2)

and therefore
∇a

(
∇bFab

)
= 4π ∑

x
ex∇ana

x = 4π ∑
x

exΓx . (A3)

Note that the antisymmetric combination of covariant derivatives acting on two-index
objects (in this case, Fab) is

∇a∇bFc
d −∇b∇aFc

d = Rc
eabFe

d − Re
dabFc

e ; (A4)

therefore,
1

4π
∇a

(
∇bFab

)
=

1
4π

RabFab ≡ 0 , (A5)

since Rab is symmetric in its indices and Fab is antisymmetric. Hence, we find charge
conservation in the form

∑
x

qxΓx = ∑
x
∇a ja

x = 0 . (A6)

If we take the field equations and Equations (66) and (35), we find that

∇bTb
a = ∇b

[
Ψδb

a + ∑
x

nb
xµx

a −
1

16π

(
FcdFcdδb

a − 4FbcFac

)]

= ∑
x

Rx
a +

(
∑
x

qxΓx

)
Aa ≡ 0 ; (A7)

hence, ∇aTab vanishes identically (as expected because of diffeomorphism invariance [14]).

Appendix B. 3 + 1 Projections of Riemann and the Einstein Equations

In order to develop the 3 + 1 form of the Einstein equations, we need to work out
certain projections of the full, four-dimensional Riemann tensor. The first projection is
to “hit” each free index of Rc

dab with ⊥b
a. We derive this indirectly, however, by inserting

Equation (82) into Equation (83) and then manipulating the terms until the left-hand side
of Equation (29) (evaluated on ṽa) appears. This leads to a relation where each term is
contracted with ṽa, and since ṽa is arbitrary [33] we obtain the Gauss Relation:

⊥g
a⊥e

b⊥
c
f⊥

h
d R f

hge =
(3)Rc

dab + Kc
aKbd − Kc

bKad . (A8)

The second projection is to hit each free index of the Ricci tensor with ⊥b
a. This is also

acquired indirectly but this time by setting a = c in Equation (A8); i.e.,

⊥c
a⊥d

b Rcd + hac ⊥d
b ueu f Rc

f de =
(3)Rab + KKab − KacKc

b , (A9)

where (3)Rab = (3)Rc
acb. Finally, we can take the trace of Equation (A9) with gab and show

that the Ricci scalar satisfies

R + 2uaubRab = (3)R + K2 − KabKab , (A10)

where (3)R = hab
(3)Rab.
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We see from Equation (62) that there are three independent projections to make:

uaubRab = 8πuaub
(

Tab −
1
2

Tgab

)
, (A11a)

ub ⊥c
a Rbc = 8πub ⊥c

a

(
Tbc −

1
2

Tgbc

)
, (A11b)

⊥c
a⊥d

b Rcd = 8π ⊥c
a⊥d

b

(
Tcd −

1
2

Tgcd

)
. (A11c)

To work out the left-hand side of Equation (A11a), we use the fact that R = −8πT and
insert it into Equation (A10). This then leads to the so-called “Hamiltonian Constraint”; i.e.,

(3)R + K2 − KabKab = 16πuaubTab ≡ 16πE . (A12)

To determine the left-hand side of Equation (A11b), we replace vc with uc in Equation (29),
project onto the free indices with the combination ⊥a

c⊥b
e , and eventually arrive at the

“Momentum Constraint”; i.e.,

Db

(
Kb

a − Kδb
a

)
= 8πPa . (A13)

Lastly, we determine the left-hand side of Equation (A11c) by again replacing vc with uc in
Equation (29) but this time projecting onto the free indices with the combination hecnb ⊥a

f .
Using this projection in tandem with Equations (84) and (89) leads to

hac ⊥d
b ueu f Rc

f de = LuKab +
1
N

DaDbN + KacKc
b , (A14)

which can be substituted into Equation (A9) to give the remaining bits of the Einstein
equation, which are

−LuKab −
1
N

DaDbN + (3)Rab + KKab − 2KacKc
b = 8π

[
Sab −

1
2
(S− E)hab

]
. (A15)

Appendix C. The 3 + 1 Coordinates

We now take t to be the time coordinate and take the set xi, i, j, ... = {1, 2, 3}, which
are Lie-dragged by ta from slice to slice of the foliation to be the spatial coordinates; i.e.,

£txi = ta∇axi ≡ dxi

dt
= 0 . (A16)

Next, we introduce the coordinate transformation

x̄a = f a
(

t, xi
)
⇒ dx̄a =

∂ f a

∂t
dt +

∂ f a

∂xi dxi . (A17)

In the new coordinates, we have

ta =
dx̄a

dt
=

∂ f a

∂t
dt
dt

+
∂ f a

∂xi
dxi

dt
=

∂ f a

∂t
. (A18)

Hence,

dx̄a = (Nua/c + Na)dt +
∂ f a

∂xi dxi , (A19)

and the proper distance between spacetime points is given by

ds2 = gab

[
(Nua/c + Na)dt +

∂ f a

∂xi dxi
][(

Nub/c + Nb
)

dt +
∂ f b

∂xj dxj

]
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= − 1
c2

(
N2 − Ni Ni

)
d(ct)2 + 2

1
c

Nid(ct)dxi + hijdxidxj . (A20)

where

Ni = Na
∂ f a

∂xi = hijN j , (A21)

hij = hab
∂ f a

∂xi
∂ f b

∂xj , hikhkj = δi
j . (A22)

Now, we can write for the metric

gab =

[
−
(

N2 − Ni Ni)/c2 Ni/c
Ni/c hij

]
,

gab =

[
− c2

N2
c

N2 Ni

c
N2 Ni hij − 1

N2 Ni N j

]
. (A23)

Taking into account Equation (79), the flow-of-time vector ta, unit normal ua, shift Na, and
acceleration aa become

ta = [c, 0, 0, 0] , ta =
[

Ni Ni/c− N2/c, Ni

]
, (A24a)

ua =

[
c

c
N

,−c
Ni

N

]
, ua = [−N, 0, 0, 0] , (A24b)

Na =
(

0, Ni
)

, Na =
(

NjN j, Ni

)
, (A24c)

aa =
[
0, c2∂i ln(N/c)

]
, aa =

[
0, c2∂i ln(N/c)

]
, (A24d)

The Christoffel symbol (3)Γi
jk associated with Di is given by

(3)Γi
jk =

1
2

hil
(

∂jhlk + ∂khl j − ∂lhjk

)
. (A25)

The extrinsic curvature Kab components are

K00 =
1
c2 Ni N jKij . K0i =

1
c

N jKij , Kij =
c

2N

(
Di Nj + DjNi −

∂

∂t
hij

)
. (A26)

The Riemann tensor, Ricci tensor, and Ricci scalar of the leaves of the foliation are

(3)Rk
lij =

(3)Γk
lj,i −

(3)Γk
li,j +

(3)Γm
lj
(3)Γk

mi − (3)Γm
li
(3)Γk

mj , (A27a)
(3)Rij =

(3)Γk
ij,k −

(3)Γk
ik,j +

(3)Γl
ij
(3)Γk

lk −
(3)Γl

ik
(3)Γk

lj , (A27b)
(3)R = hij(3)Rij . (A27c)

Notes
1 This also maintains consistency with one of the assumptions in the derivation of λD, which is the potential energy due to the

effective potential Ṽeff generated by the polarization is much smaller than the thermal kinetic energy kBTi ∼ miv2
th; that is,

qṼeff/kBTi � 1.
2 This is not to suggest that entropy is “quantized” but rather that the flux measurement is itself a discrete process.
3 Even though it seems counter-intuitive, we start out by assuming that none of the fluxes are comoving, as this allows for a more

compact approach to the notation. In Section 4, we will impose the condition of only two independent flux directions.
4 Andersson and Comer [17] show how other functional dependence, such as gAB

x , can result in bulk and shear viscosity.
5 As we are interested in only the field equations, boundary terms generated during the variations will be ignored.
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6 In the action-based formalism, the entropy flux degree of freedom represents the heat flux (see, for example, [18]). As such,
because of the equivalence of mass and energy in relativity, it is not surprising that the entropy flux, just as any other flux, also
acquires an effective mass.

7 For example, the relativistic entrainment model of [26] can be used to show that the fractional percentage difference between the
effective m̃n and bare mn neutron masses in neutron stars has a range of (m̃n −mn)/mn ∼ 1–10%.
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