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Abstract: Correlation functions of the SL(2,R)-WZW model involving spectrally flowed
vertex operators are notoriously difficult to compute. An explicit integral expression for
the corresponding three-point functions was recently conjectured in [1]. In this paper, we
provide a proof for this conjecture. For this, we extend the methods of [2] based on the
so-called SL(2,R) series identifications, which relate vertex operators belonging to different
spectral flow sectors. We also highlight the role of holomorphic covering maps in this
context. Our results constitute an important milestone for proving this instance of the
AdS3/CFT2 holographic duality at finite ’t Hooft coupling.
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1 Introduction

In most instances of the AdS/CFT duality, the bulk theory is approximated by supergravity,
due to the notorious difficulty in performing stringy computations. The case of string
theory in AdS3 with pure NS fluxes is a notable exception. The dynamics of closed strings
propagating on this background can be described at the worldsheet level in terms of the
Wess-Zumino-Witten (WZW) model built upon the universal cover of SL(2,R). This model
is believed to be exactly solvable, hence providing a concrete scenario in which the AdS/CFT
duality might be proven at finite ’t Hooft coupling.

The worldsheet CFT, being both Lorentzian and non-compact, enjoys a number of
unusual features. Perhaps the most important one is the non-trivial action of the so-called
spectral flow outer-automorphisms of the affine sl(2,R)k algebra. Spectral flow plays a
central role in the determination of the string spectrum and partition function [3, 4]. In a
semi-classical description of long string states, the spectral flow charge ω can be thought
of as a winding number around the asymptotic boundary of AdS3. However, it is not a
conserved quantity since the associated circle becomes contractible in the AdS3 interior.

Spectral flow also introduces important complications, especially concerning the com-
putation of worldsheet correlation functions [5]. Indeed, while being Virasoro primaries,
spectrally flowed vertex operators are not affine primaries. Their operator product expan-
sions (OPEs) with the conserved currents become increasingly complicated with growing ω,
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and contain many unknown terms. Hence, some conventional techniques of two-dimensional
CFT can not be applied directly.

The interest in correlation functions of the SL(2,R)-WZW model is explained by their
important holographic applications, especially in the context of superstring theory in AdS3×
S3×T4 (or K3) [6–9], and for the dynamics of light probes in black hole microstates [10–17].
Worldsheet vertex operators are functions of the worldsheet coordinate z, and of an addi-
tional continuous parameter x, which plays the role of the holomorphic coordinate on the
conformal boundary. Hence, z-integrated correlators are identified with n-point functions of
local operators in the holographic CFT. Although the precise definition of the latter remains
elusive, a concrete albeit perturbative proposal was put forward recently in [18, 19]. The
generators of the spacetime Virasoro algebra are in one-to-one correspondence with those of
the sl(2,R)k algebra, and the worldsheet quantum numbers determine the conformal weight
h of dual CFT operators [6]. Suppressing the anti-holomorphic quantities, we denote the
spectrally-flowed worldsheet vertex operators in the so-called x-basis as V ω

jh(x, z), where j
is the SL(2,R) spin, while h is the spacetime weight.

In this paper, we consider genus-zero worldsheet correlators of spectrally flowed vertex
operators. Recently, progress in the computation of three- and four-point functions has been
made in [1, 20, 21], thanks to the systematic use of the constraints deriving from global
and local symmetries. In particular, the latter imply a set of complicated linear recursion
relations among correlators involving different assignments of spectral flow charges. These
are difficult to derive in general. However, in [1] it has been shown that they can be recast
in the form of partial differential equations thanks to the introduction of the so-called ‘y-
variable’. In this new basis, a vertex operator is now defined as a coherent superposition
of states with different spacetime weights, denoted as V ω

j (x, y, z). The authors of [1] were
able to infer a closed-form expression for all three-point functions

〈V ω1
j1

(x1; y1; z1)V ω2
j2

(x2; y2; z2)V ω3
j3

(x3; y3; z3)〉 . (1.1)

This proposal can be understood intuitively from the existence, in some cases, of a holo-
morphic mapping of the worldsheet to the AdS3 boundary, which has branching points of
order ωi at each of the corresponding insertions. The same authors provided a closed-form
expression for four-point functions in a follow-up work [21]. These proposals satisfy a num-
ber of highly non-trivial consistency checks. However, in both cases, these expressions were
derived on a case-by-case basis, and for a finite set of sufficiently low spectral flow charges.

In this work, we provide a proof for the conjecture of [1] concerning the three-point
functions (1.1). Our methods rely heavily on the so-called ‘series identifications’ of SL(2,R),
originally formulated in [3, 22], which constitute a set of isomorphisms among affine modules
of the sl(2,R)k algebra with adjacent spectral flow charges. The corresponding identities
at the level of y-basis operators were obtained recently in [2]. This allows us to derive the
differential equations satisfied by (and the resulting y-dependence of) all spectrally flowed
three-point functions, including those that do not admit a holomorphic cover.

The structure of the paper is as follows. In section 2, we establish our conventions and
review the derivation of the recursion relations satisfied by the SL(2,R) correlation functions
of [20]. We also introduce the y-basis operators of [1] together with their conjecture for
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three-point functions. Our main results are presented in section 3, where derive the partial
differential equations satisfied by all y-basis three-point functions, and show that all the
corresponding solutions are compatible with the proposal of [1]. In particular, generic odd
parity correlators are considered in section 3.1, while even parity correlators are obtained in
section 3.2. Edge cases and correlators with unflowed insertions are treated in sections 3.3
and 3.4, respectively. Finally, in section 3.5 we fix the y-independent normalisation factors,
following the arguments presented in [2]. We conclude with some discussions and outlook
for future work in section 4.

2 Conventions and brief review of the conjecture

Let us consider the bosonic SL(2,R)-WZW model at level k > 3. In this section, we
introduce the spectrum and the associated vertex operators. We also briefly review the
analysis of [20] leading to the recursion relations satisfied by the correlation functions of
the model, and present the conjecture put forward in [1] for spectrally flowed three-point
functions.

2.1 Vertex operators

We focus mainly on the holomorphic sector. The conserved currents satisfy

Ja(z)Jb(w) ∼ ηabk/2

(z − w)2
+
fabcJ

c(w)

z − w
, (2.1)

with a = +,−, 3, η+− = −2η33 = 2, f+−
3 = −2 and f3+

+ = −f3−
− = 1. In the

so-called x-basis, vertex operators are denoted as V ω
jh(x, z). They depend both on the

worldsheet coordinate z and on x, the coordinate on the boundary of AdS3 associated with
the holographic CFT. Moreover, h and j denote the spacetime weight and the SL(2,R) spin,
respectively. The worldsheet conformal weight is

∆ = −j(j − 1)

k − 2
− hω +

k

4
ω2 , (2.2)

while ω ≥ 0 is the spectral flow charge.
Two types of states must be taken into account [3]. For operators defined upon unflowed

states in the continuous representations Cαj , the relevant quantum numbers are

j ∈ 1

2
+ iR and m = α± n , with α ∈ [0, 1) and n ∈ N0 , (2.3)

where m stands for the spin projection of the corresponding unflowed state. On the other
hand, for the unflowed discrete highest/lowest-weight representations D±j we have

1

2
< j <

k − 1

2
and m = ±(j + n) , with j ∈ R and n ∈ N0. (2.4)

In both cases we have h = m+ k
2ω when ω > 0, while h = j for ω = 0.
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The vertex operators are defined by means of their OPEs with the currents:

J+(w)V ω
jh(x, z) =

ω+1∑
n=1

(
J+
n−1V

ω
jh

)
(x, z)

(w − z)n
+ · · · , (2.5a)

J3(w)V ω
jh(x, z) = x

ω+1∑
n=2

(
J+
n−1V

ω
jh

)
(x, z)

(w − z)n
+

(
J3

0V
ω
jh

)
(x, z)

(w − z)
+ · · · , (2.5b)

J−(w)V ω
jh(x, z) = x2

ω+1∑
n=2

(
J+
n−1V

ω
jh

)
(x, z)

(w − z)n
+

(
J−0 V

ω
jh

)
(x, z)

(w − z)
+ · · · , (2.5c)

where the ellipsis indicates higher order terms in (w − z). Unflowed vertex operators will
be denoted by Vj(x, z). The zero modes act as differential operators in x,(

J+
0 V

ω
jh

)
(x, z) = ∂xV

ω
jh(x, z) , (2.6a)(

J3
0V

ω
jh

)
(x, z) = (x∂x + h)V ω

jh(x, z) , (2.6b)(
J−0 V

ω
jh

)
(x, z) = (x2∂x + 2hx)V ω

jh(x, z) , (2.6c)

while (
J±±ωV

ω
jh

)
(x, z) =

[
h− k

2
ω ± (1− j)

]
V ω
j,h±1(x, z) . (2.7)

Importantly, in terms of the currents

J+(x, z) = J+(z) , J3(x, z) = J3(z)− xJ+(z) , J−(x, z) = J−(z)− 2xJ3(z) + x2J+(z)

(2.8)
we get

J3(x,w)V ω
jh(x, z) =

h

(w − z)
V ω
jh(x, z) + · · · , (2.9a)

J−(x,w)V ω
jh(x, z) = (w − z)ω−1

(
J−−wV

ω
jh

)
(x, z) + · · · . (2.9b)

An alternative (equivalent) definition was given recently in [2], based on [5]. This is
to be understood as a point-splitting procedure between the corresponding unflowed vertex
and the so-called generalized spectral flow operator V ω−1

k
2
, k
2
ω
(x, z), and reads

V ω
jh(x, z) = lim

ε,ε̄→0
εmω ε̄m̄ω

∫
d2y yj−m−1ȳj−m̄−1Vj(x+ y, z + ε)V ω−1

k
2
, k
2
ω
(x, z) . (2.10)

We will come back to this shortly in section 2.3.

2.2 Recursion relations among correlators

We now discuss the correlation functions of the model. It was shown in [20] that they must
satisfy a set of recursion relations. Let us briefly review how this works for three-point
functions of the form

F =

〈
3∏
j=1

V
ωj

jjhj
(xj , zj)

〉
. (2.11)
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We define

F in =

〈(
J+
n V

ωi
jihi

)
(xi, zi)

∏
j 6=i

V
ωj

jjhj
(xj , zj)

〉
, (2.12)

so that, in particular,
F i0 = ∂xiF , (2.13)

and

F iωi
=

(
hi −

k

2
ωi + 1− ji

)〈
V ωi
ji,hi+1(xi, zi)

∏
j 6=i

V
ωj

jjhj
(xj , zj)

〉
, (2.14)

as implied by Eqs. (2.6a) and (2.7) respectively. Note that all F in with n = 1, . . . , ωi − 1

are, in principle, unknown.
By using the OPEs in Eq. (2.5), one finds that correlators involving a current insertion

can be expanded as〈
J+(z)

3∏
j=1

V
ωj

jjhj
(xj , zj)

〉
=

3∑
i=1

[
∂xiF

z − zi
+

ωi∑
n=1

F in
(z − zi)n+1

]
+ · · · , (2.15a)

〈
J3(z)

3∏
j=1

V
ωj

jjhj
(xj , zj)

〉
=

3∑
i=1

[
(hi + xi∂xi)F

z − zi
+

ωi∑
n=1

xiF
i
n

(z − zi)n+1

]
+ · · · , (2.15b)

〈
J−(z)

3∏
j=1

V
ωj

jjhj
(xj , zj)

〉
=

3∑
i=1

[
(2hixi + x2

i ∂xi)F

z − zi
+

ωi∑
n=1

x2
iF

i
n

(z − zi)n+1

]
+ · · · .(2.15c)

Combining these expressions, we get

Gj(z) ≡

〈
J−(xj , z)

3∏
l=1

V ωl
jlhl

(xl, zl)

〉
=
∑
i 6=j

[
(2hixij + x2

ij∂xi)F

z − zi
+

ωi∑
n=1

x2
ijF

i
n

(z − zi)n+1

]
+ · · ·

(2.16)
where xij = xi − xj .

On the other hand, Eq. (2.9b) imposes stringent restrictions on the behavior of Gj(z)
when z is close to zj . More precisely, in this regime, we must have

(z− zj)1−ωjGj(z) =

(
hj −

k

2
ωj − 1 + jj

)〈
V
ωj

jj ,hj−1(xj , zj)
∏
i 6=j

V ωi
jihi

(xi, zi)

〉
+ · · · , (2.17)

where we have used (2.7). As it turns out, the regularity of (z − zj)1−ωjGj(z) at z = zj as
implied by (2.17) for all j = 1, 2, 3 provides enough information to solve for all the unknown
F in in terms of F , its xi-derivatives, and F iωi

. Upon inserting the resulting expressions into
Eq. (2.17), one obtains a set of complicated linear relations between correlators involving
spectrally flowed vertex operators with consecutive spacetime weights and their xi deriva-
tives. Note that the latter are under control since the global Ward identities uniquely fix
the xi-dependence of all such correlators.
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2.3 The conjectured solution

The non-trivial OPEs in Eqs. (2.5) render the computation of correlation functions involving
spectrally flowed insertions quite complicated. It will be useful to work with somewhat
unusual linear combinations of the operators V ω

jh(x, z) with the same j and ω but different
values of h. These are the y-basis operators V ω

j (x, y, z) introduced in [1]. In [2], these were
shown to be precisely the integrands on the RHS of Eq. (2.10), namely

V ω
j (x, y, z) ≡ lim

ε,ε̄→0
|ε|2jωVj(x+ yεω, z + ε)V ω−1

k
2
, k
2
ω
(x, z) . (2.18)

This can be understood directly from Eq. (2.10) above. Indeed, upon changing variables
y → yεω this can be re-written as

V ω
jh(x, z) =

∫
d2y yj−m−1ȳj−m̄−1V ω

j (x, y, z) , (2.19)

which coincides with the so-called y-transform of [1]. More details can be found in [1, 2].
The OPEs of y-basis operators with the conserved currents are

J+(w)V ω
j (x, y, z) =

ω+1∑
n=1

(
J+
n−1V

ω
jh

)
(x, y, z)

(w − z)n
+ · · · , (2.20a)

J3(x,w)V ω
j (x, y, z) =

y∂y + j + k
2ω

(w − z)
V ω
j (x, y, z) + · · · , (2.20b)

J−(x,w)V ω
j (x, y, z) = (w − z)ω−1

(
J−−wV

ω
j

)
(x, y, z) + · · · . (2.20c)

While the zero modes still act as in (2.6), the main motivation for using the y-variable is
that J±±ω act as differential operators in y. More precisely, we have(

J+
ω V

ω
j

)
(x, y, z) = ∂yV

ω
j (x, y, z) , (2.21a)(

J−−ωV
ω
j

)
(x, y, z) = (y2∂y + 2jy)V ω

j (x, y, z) . (2.21b)

This allows one to re-write the recursion relations derived formally in the previous section
as differential equations for correlators of the form

Fy ≡ 〈V ω1
j1

(x1, y1, z1)V ω2
j2

(x2, y2, z2)V ω3
j3

(x3, y3, z3)〉 . (2.22)

The x-basis correlators in Eq. (2.11) can be obtained from these by means of (2.19)1. This
integration procedure can be complicated, and was only carried out explicitly in [1] for a
subset of cases.

In order to discuss the structure of these differential equations and their solutions, it
will be useful to make use of the conformal invariance on the worldsheet and boundary
CFT to fix x1 = z1 = 0, x2 = z2 = 1 and x3 = z3 =∞, and consider

F̂y = 〈V ω1
j1

(y1)V ω2
j2

(y2)V ω3
j3

(y3)〉 ≡ 〈V ω1
j1

(0, y1, 0)V ω2
j2

(1, y2, 1)V ω3
j3

(∞, y3,∞)〉 . (2.23)

1The procedure is slightly different for flowed discrete and continuous states. The former arise as residues
from poles of the integrand in (2.19) around y = 0 or y = ∞, depending on whether the corresponding
unflowed vertex operator belongs to a lowest- or highest-weight representation. For the flowed continuous
states one must integrate over the full complex plane.
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The latter is related to the original correlator in Eq. (2.22) by

〈V ω1
j1

(x1, y1, z1)V ω2
j2

(x2, y2, z2)V ω3
j3

(x3, y3, z3)〉 =
x
h03−h01−h02
21 x

h02−h01−h03
31 x

h01−h02−h03
32

z
∆0

1+∆0
2−∆0

3
21 z

∆0
1+∆0

3−∆0
2

31 z
∆0

2+∆0
3−∆0

1
32

×

〈
V ω1
j1

(
0, y1

x32z
ω1
21 z

ω1
31

x21x31z
ω1
32

, 0

)
V ω2
j2

(
1, y2

x31z
ω2
21 z

ω2
32

x21x32z
ω2
31

, 1

)
V ω3
j3

(
∞, y3

x21z
ω3
31 z

ω3
32

x31x32z
ω3
21

,∞
)〉

,

(2.24)

where
h0
i = ji +

k

2
ωi , ∆0

i = −ji(ji − 1)

k − 2
− jiωi −

k

4
ω2
i . (2.25)

Except for a certain subfamily of correlators which will be discussed below, spectrally
flowed y-basis three-point functions and their associated differential equations were studied
in [1] on a case-by-case basis. This was done for sufficiently low values of the spectral flow
charges ωi, thus leading the authors to conjecture a general solution for the y-dependence
of these correlators. The proposed expressions (not including the right-movers, and up to
an overall normalization constant to be discussed below) read as follows. For odd parity
correlators, namely when ω1 + ω2 + ω3 ∈ 2Z + 1, one has

〈
V ω1
j1

(0, y1, 0)V ω2
j2

(1, y2, 1)V ω3
j3

(∞, y3,∞)
〉

= X
k
2
−j1−j2−j3

123

3∏
i=1

X
− k

2
+j1+j2+j3−2ji

i , (2.26)

while for the even parity case, i.e. when ω1 + ω2 + ω3 ∈ 2Z,〈
V ω1
j1

(0, y1, 0)V ω2
j2

(1, y2, 1)V ω3
j3

(∞, y3,∞)
〉

= Xj1+j2+j3−k
∅

∏
i<`

Xj1+j2+j3−2ji−2j`
i` . (2.27)

Here, for any subset I ⊂ {1, 2, 3},

XI(y1, y2, y3) ≡
∑

i∈I: εi=±1

Pω+
∑

i∈I εiei

∏
i∈I

y
1−εi

2
i . (2.28)

The spectral flow parameters are chosen as ω = (ω1, ω2, ω3), while e1 = (1, 0, 0), e2 =

(0, 1, 0) and e3 = (0, 0, 1). The numbers Pω are defined as

Pω = 0 for
∑
j

ωj < 2 max
i=1,2,3

ωi or
∑
i

ωi ∈ 2Z+ 1 (2.29)

and

Pω = Sω
G
(−ω1+ω2+ω3

2 + 1
)
G
(
ω1−ω2+ω3

2 + 1
)
G
(
ω1+ω2−ω3

2 + 1
)
G
(
ω1+ω2+ω3

2 + 1
)

G(ω1 + 1)G(ω2 + 1)G(ω3 + 1)
,

(2.30)
otherwise, where G(n) is the Barnes G function

G(n) =

n−1∏
i=1

Γ(i) (2.31)
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for positive integer values, while Sω is a phase depending on ω mod 2. For more details,
see [1].

Regarding the overall constants, their precise form was also conjectured in [1] and later
proven in [2]. These structure constants are

Cω(j1, j2, j3) =

 C(j1, j2, j3), if ω1 + ω2 + ω3 ∈ 2Z,

N (j1)C
(
k
2 − j1, j2, j3

)
, if ω1 + ω2 + ω3 ∈ 2Z + 1,

(2.32)

where C(j1, j2, j3) are the structure constants of the unflowed three-point functions defined
in terms of Barnes double Gamma functions in [5, 23]. Finally, N (j1) is defined in terms
of the reflection coefficient appearing the unflowed two-point functions, namely

N (j) =

√
B(j)

B
(
k
2 − j

) , (2.33)

with2

B(j) =
2j − 1

π

Γ[1− b2(2j − 1)]

Γ[1 + b2(2j − 1)]
ν1−2j , ν =

Γ[1− b2]

Γ[1 + b2]
, b2 = (k − 2)−1 . (2.34)

As shown in [1], the proposal given in Eqs. (2.26)-(2.32) passes a number of non-
trivial consistency checks, including bosonic exchange symmetry and reflection symmetry
for continuous states. However, no general expression for the y-basis differential equations
is known. Hence, so far, this conjecture remains to be proven.

In the remainder of the paper, we prove that this solution is indeed correct. In doing
so, we highlight the role of holomorphic covering maps. Although these maps appear to be
essential for the study of four-point functions [21], we show that they also play a key role
in the present context. Furthermore, when treating cases where there is no well-defined
covering map available, we will make use of the so-called series identifications for spectrally
flowed vertex operators constructed upon states belonging to the discrete representations
of SL(2,R) [2, 22].

3 The proof for y-basis three-point functions

In this section we prove the conjecture put forward in [1]. It was shown in [5] that all
non-vanishing spectrally flowed three-point functions in the SL(2,R) model must satisfy the
following condition:

ωi + ωj ≥ ωk − 1 ∀ i 6= j 6= k. (3.1)

We first consider the subfamily of odd parity correlators for which an associated holomor-
phic covering map exists [1, 20]. We then show how to compute all remaining non-vanishing
correlators with three non-trivial spectral flow charges. This includes even parity correla-
tors, and also those we denote as edge correlators. The latter correspond to correlators for

2To be precise, ν is actually a free parameter of the model, which essentially plays the role of the string
coupling. Here we simply reproduce the value originally advocated in [23]. For a related discussion, see
[18, 24]. We thank A. Dei and L. Eberhardt for pointing this out.
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which either the inequality in (3.1) for odd parity assignments or the analogous inequality
for even parity cases saturate. These need to be treated with special care. Finally, we also
discuss correlators with unflowed insertions and the overall normalizations.

3.1 Holomorphic covering maps and odd parity correlators

For concreteness, and with no loss of generality, we take ω3 to be the largest spectral flow
charge, i.e. ω3 ≥ ω1,2. Let us consider correlators satisfying

ω1 + ω2 + ω3 ∈ 2Z + 1 , ω1 + ω2 > ω3 − 1 , ωi ≥ 1 , ∀ i. (3.2)

It was shown in [25] that there exists a unique holomorphic covering map Γ[ω1, ω2, ω3](z) ≡
Γ(z) from the worldsheet to the AdS3 boundary such that

Γ(z) ∼ xi + ai(z − zi)ωi + · · · when z ∼ zi , (3.3)

where the ellipsis indicates higher order terms in (z− zi). This is a rational function which
approaches a constant Γ∞ as z →∞. One can show that it develops N single poles, counted
by the Riemann-Hurwitz formula

N =
1

2
(ω1 + ω2 + ω3 − 1) . (3.4)

The coefficients ai appearing in Eq. (3.3) take the form

ai =

 ω1+ω2+ω3−1
2

−ω1+ω2+ω3−1
2

 −ω1+ω2−ω3−1
2

ω1+ω2−ω3−1
2

−1

xi,i+1xi+2,i

xi+1,i+2

(
zi+1,i+2

zi,i+1zi+2,i

)ωi

, (3.5)

where the subscripts are understood mod 3. Note that the last two factors in (3.5) simplify
to 1 upon setting x1 = z1 = 0, x2 = z2 = 1 and x3 = z3 = ∞. We will use the same
notation ai for the resulting purely numerical coefficients.

We now derive the differential equations satisfied by y-basis three-point functions sat-
isfying (3.2). Although the presentation here is slightly different, this was already done in
[20]. Consider the operator J−(Γ(z), z), where we use the notation of Eq. (2.9b), namely

J−(Γ(z), z) = J−(z)− 2Γ(z)J3(z) + Γ2(z)J+(z) . (3.6)

In order to obtain the recursion relations for the correlators under consideration, we compute
following the contour integral:∮

zi

dz

(z − zi)ωi

〈
J−(Γ(z), z)V ω1

j1
(x1, y1, z1)V ω2

j2
(x2, y2, z2)V ω3

j3
(x3, y3, z3)

〉
. (3.7)

Similarly to what was done in Sec. 2.2 above, we do this in two different ways. First, we
note that, near zi, we have

J−(Γ(z), z) = J−(xi, z)− 2ai(z − zi)ωiJ3(xi, z) + a2
i (z − zi)2ωiJ+(z) + · · · . (3.8)
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Hence, by using (2.20) we find that

(3.7) =

[(
2jiyi + y2

i ∂yi
)
− 2ai

(
ji +

k

2
ωi + yi∂yi

)
+ a2

i ∂yi

]
Fy , (3.9)

where Fy was defined in Eq. (2.22). On the other hand, using (3.6) together with the OPEs
in Eq. (2.5), one finds that〈

J−(Γ(z), z)V ω1
j1

(x1, y1, z1)V ω2
j2

(x2, y2, z2)V ω3
j3

(x3, y3, z3)
〉

=

=
3∑
j=1

{
−

2[Γ(z)− xj ](yj∂yj + jj + k
2ωj)

z − zj
Fy +

ωj∑
n=1

[Γ(z)− xj ]2

(z − zj)n+1
F iy,n

}
,

(3.10)

where F iy,n stands for the y-basis analogues of the F in defined in Eq. (2.12). As discussed
in [20], the RHS of (3.10) is a rational function of z which, as implied by the constraint
equations, has zeros of order ωi− 1 at all zi. It also has double poles at the N simple poles
of Γ(z), and further goes to zero as z−2 for z →∞ due to the global Ward identities. This
implies that it must be proportional to the derivative of the covering map, namely〈

J−(Γ(z), z)V ω1
j1

(x1, y1, z1)V ω2
j2

(x2, y2, z2)V ω3
j3

(x3, y3, z3)
〉

= α∂Γ(z) , (3.11)

where α must be independent of z. This coefficient was also computed in [20]. When
working in the y-basis it takes the following form:

α = − 1

N

3∑
j=1

(
(yj − aj)∂yj + jj +

k

2
ωj

)
Fy . (3.12)

This allows us to provide an alternative expression for the contour integral (3.7). Indeed,
the behavior of the covering map near the insertion points showcased in (3.3) implies that

(3.7) = −aiωi
N

3∑
j=1

(
(yj − aj)∂yj + jj +

k

2
ωj

)
Fy . (3.13)

By combining the results in Eqs. (3.9) and (3.13), and further fixing the insertion points
as in (2.23), one obtains the following differential equations:(yi − ai)2∂yi + 2ji(yi − ai) +

aiωi
N

 3∑
j=1

(
(yj − aj)∂yj + jj

)
− k

2

 F̂y = 0, (3.14)

for i = 1, 2, 3. This was derived originally in this form in [1]3. In this way, the use of the
covering map and its derivative allows one to avoid dealing with the cumbersome unknowns
discussed in Sec. 2.2.

3Note that we have corrected a couple of typos in their presentation.
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The system of equations encoded in (3.14) uniquely fixes the dependence of the cor-
responding correlators on y1, y2 and y3. Up to some overall normalization, which will be
discussed in section 3.5 below, the solution of (3.14) is

〈V ω1
j1

(y1)V ω2
j2

(y2)V ω3
j3

(y3)〉 = (y1 − a1)j2+j3−j1− k
2 (y2 − a2)j3+j1−j2− k

2 (y3 − a3)j1+j2−j3− k
2

×

 ∑
ε1,2,3=±1

2
N ε1,ε2,ε3

1

N

3∏
i=1

a
εi+1

2
i y

εi−1

2
i

 k
2
−j1−j2−j3

. (3.15)

An equivalent, perhaps simpler expression for the same solution is given by

〈V ω1
j1

(y1)V ω2
j2

(y2)V ω3
j3

(y3)〉 = (y1 − a1)−2j1(y2 − a2)−2j2(y3 − a3)−2j3 (3.16)

×
(
ω1
y1 + a1

y1 − a1
+ ω2

y2 + a2

y2 − a2
+ ω3

y3 + a3

y3 − a3
− 1

) k
2
−j1−j2−j3

.

Note that this formulation makes the bosonic exchange symmetry manifest.
At first sight, this expression might seem very different from that in Eq. (2.26). The

connection comes from the fact that while the Pω defined in (2.30) are somewhat compli-
cated, their ratios are actually much simpler. For instance, consider the Xi term appearing
in (2.26). From Eqs. (2.28) and (2.30), up to an overall sign, we find that

Xi = Pω−eiyi + Pω+ei = Pω−ei

(
yi +

Pω+ei

Pω−ei

)
= Pω−ei (yi − ai) . (3.17)

A similar result holds for X123, showing that the y-dependence of the expression in (3.16)
is consistent with that of Eq. (2.26).

As shown in Eq. (3.16), y-basis three-point functions diverge whenever a variable yi
approaches the corresponding coefficient ai. Thus, the ai are very special points in the
y-plane, which signal the existence of an appropriate holomorphic covering map. An even
more extreme situation takes place in the tensionless limit, which corresponds to k = 3

in the bosonic language [20, 26–28]. There, spectrally flowed correlators are non-vanishing
only when yi = ai for all i. The corresponding recursion relations (3.14) are then satisfied
provided4 j1 + j2 + j3 = 3

2 . It would be interesting to fully understand the relation between
y-variables and covering map coefficients in the general case.

We end this section by noting that the same discussion can not be applied directly to
odd parity correlators saturating the inequality in Eq. (3.1), i.e. those with ω3 = ω1 +ω2 +1.
These will be discussed in detail in section 3.3 below. Correlators with unflowed insertions
are further considered in section 3.4.

3.2 Series identification and even parity correlators

We now prove that the conjecture of [1] also holds for correlators satisfying

ω1 + ω2 + ω3 ∈ 2Z , ω1 + ω2 > ω3 , ωi ≥ 1 , ∀ i. (3.18)
4In the supersymmetric case, the RNS formalism breaks down for the tensionless theory. It was shown

in [28], using the so-called hybrid formalism, that in this case only vertex operators with j = 1
2
are allowed.

– 11 –



These include all non-vanishing spectrally flowed three-point functions for which the total
spectral flow charge is even, except for the edge cases where ω3 = ω1 + ω2 and/or some of
the vertex operators are unflowed, which will be treated separately.

When the ωi are as in (3.18), it is not possible to construct a covering map such as the
one used in the previous section. Thus, one might wonder if differential equations similar
to those in (3.14) can be deduced in this context. Indeed, the corresponding recursion
relations have only been obtained on a case-by-case basis and for sufficiently low values of
the spectral flow charges [1].

Nevertheless, we observe that the procedure outlined in Sec. 2.2 guarantees that, pro-
vided the system is compatible, and once the F in have been solved for, the resulting y-basis
recursions must take the formyi(yi∂yi + 2ji) +

3∑
j=1

(Aijyj −Bij)∂yj + Ci

 〈V ω1
j1

(y1)V ω2
j2

(y2)V ω3
j3

(y3)〉 = 0 , (3.19)

where Aij , Bij and Ci are some numerical constants to be determined, which depend on
the spins ji and the charges ωi. The rationale behind the structure of Eq. (3.19), which is
the y-basis version of Eq. (2.17), goes as follows. First, note that, upon using Eq. (2.21b),
the operator yi(yi∂yi + 2ji) is identified with the RHS of (2.17). Second, recall that the
recursion relations were derived by expressing the OPEs of the vertex operators with the
conserved currents in terms of the unknowns coming from the action of the modes of J+(z),
see Eq. (2.16). This implies that the term involving the action of J−(x, z) does not mix with
the rest. By using the Möbius-fixed expression for the three-point function in Eq. (2.24),
one can see that the terms in the recursion relations involving unknowns and x-derivatives
of the correlator are mapped to operators of the schematic form y∂y and ∂y, as well as
y-independent multiplicative factors. In Eq. (3.19) we have allowed for generic coefficients
Aij , Bij and Ci in front of the corresponding contributions.

Moreover, we note that the way in which these equations are derived only depends on
the values of the spectral flow charges involved in a given correlator. In other words, for
a given set of ωi, the recursion relations are independent of whether the vertex operators
involved belong to spectrally flowed discrete or continuous representations. These two
observations will allow us to obtain all y-basis differential equations associated with even
parity correlators in closed form.

As it turns out, even and odd parity cases are not completely disconnected. For the
discrete representations, affine modules in spectral flow sectors with one unit of difference
in the spectral flow charge are identifiable. For y-basis operators the corresponding series
identifications read [2]

V ω
j (x, y = 0, z) = N (j) lim

y→∞
yk−2jV ω+1

k
2
−j (x, y, z), (3.20)

and
lim
y→∞

y2jV ω
j (x, y, z) = N (j)V ω−1

k
2
−j (x, y = 0, z), (3.21)

where N (j) was defined in Eq. (2.33). It was shown recently in [2] that, assuming the
y-dependence proposed in [1] for all three-point functions, these relations fix the y-basis
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structure constants in terms of the unflowed ones, which can be found in [5]. Here we
show that Eqs. (3.20) and (3.21) are actually much more powerful: they allow us to fix the
y-dependence as well. More explicitly, we use them to derive all unknown coefficients Aij ,
Bij , and Ci appearing in (3.19).

By means of Eqs. (3.20) and (3.21), we find that all even parity correlators can be
related to (at least) three different situations where a covering map satisfying (3.3) and
(3.5) exists. Explicitly, given (ω1, ω2, ω3) satisfying (3.18), it follows that the adjacent
assignments (ω1 + 1, ω2, ω3), (ω1, ω2 + 1, ω3) and (ω1, ω2, ω3 − 1) satisfy all conditions in
(3.2). Let us denote the corresponding covering maps as follows:

Γ+
1 ≡ Γ[ω1 +1, ω2, ω3] , Γ+

2 ≡ Γ[ω1, ω2 +1, ω3] , Γ−3 ≡ Γ[ω1, ω2, ω3−1] . (3.22)

Then, the relations (3.20) and (3.21) provide the following set of identities:

〈V ω1
j1

(0)V ω2
j2

(y2)V ω3
j3

(y3)〉 = lim
y1→∞

yk−2j1
1 N (j1)〈V ω1+1

k
2
−j1

(y1)V ω2
j2

(y2)V ω3
j3

(y3)〉, (3.23a)

〈V ω1
j1

(y1)V ω2
j2

(0)V ω3
j3

(y3)〉 = lim
y2→∞

yk−2j2
2 N (j2)〈V ω1

j1
(y1)V ω2+1

k
2
−j2

(y2)V ω3
j3

(y3)〉, (3.23b)

lim
y3→∞

y2j3
3 〈V

ω1
j1

(y1)V ω2
j2

(y2)V ω3
j3

(y3)〉 = N (j3)〈V ω1
j1

(y1)V ω2
j2

(y2)V ω3−1
k
2
−j3

(0)〉. (3.23c)

Having excluded the even edge cases, the same holds for the adjacent assignments (ω1 −
1, ω2, ω3), (ω1, ω2 − 1, ω3) and (ω1, ω2, ω3 + 1), the corresponding maps being

Γ−1 ≡ Γ[ω1−1, ω2, ω3] , Γ−2 ≡ Γ[ω1, ω2−1, ω3] , Γ+
3 ≡ Γ[ω1, ω2, ω3 +1] . (3.24)

These lead to

lim
y1→∞

y2j1
1 〈V

ω1
j1

(y1)V ω2
j2

(y2)V ω3
j3

(y3)〉 = N (j1)〈V ω1−1
k
2
−j1

(0)V ω2
j2

(y2)V ω3
j3

(y3)〉 (3.25a)

lim
y2→∞

y2j2
2 〈V

ω1
j1

(y1)V ω2
j2

(y2)V ω3
j3

(y3)〉 = N (j2)〈V ω1
j1

(y1)V ω2−1
k
2
−j2

(0)V ω3
j3

(y3)〉, (3.25b)

〈V ω1
j1

(y1)V ω2
j2

(y2)V ω3
j3

(0)〉 = lim
y3→∞

yk−2j3
3 N (j3)〈V ω1

j1
(y1)V ω2

j2
(y2)V ω3+1

k
2
−j3

(y3)〉. (3.25c)

All expressions on the RHS of Eqs. (3.23) and (3.25) are limits of correlators discussed
in the previous section. Hence, they must satisfy the appropriate limits of the differential
equations given in (3.14). For instance, 〈V ω1−1

k
2
−j1

(0)V ω2
j2

(y2)V ω3
j3

(y3)〉 is annihilated by the
differential operators

y2(y2∂y2 + 2j2) + (ω1 − ω2 − ω3)−1
{

(ω1 + ω2 − ω3)a2[Γ−1 ]2∂y2

− 2a2[Γ−1 ]
[
(ω1 − ω3)(j2 + y2∂y2) + ω2(j3 + y3∂y3 − a3[Γ−1 ]∂y3 + j1 + j3)

] } (3.26)

and

y3(y3∂y3 + 2j3) + (ω1 − ω2 − ω3)−1
{

(ω1 − ω2 + ω3)a3[Γ−1 ]2∂y3

− 2a3[Γ−1 ]
[
(ω1 − ω2)(j3 + y3∂y3) + ω3(j2 + y2∂y2 − a2[Γ−1 ]∂y2 + j1 + j2)

] }
,

(3.27)
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where ai[Γ−1 ] denotes the coefficient ai associated with the map Γ−1 . One can obtain analo-
gous equations from the other odd parity correlators involved in (3.23). This leads to twelve
differential operators, which must coincide with the appropriate limits of those provided in
Eqs. (3.19). As an example, in the situation considered above we should match (3.26) and
(3.27) with

y2(y2∂y2 + 2j2) +A22y2∂y2 +A23y3∂y3 −B22∂y2 −B23∂y3 − 2A21j1 + C2,

y3(y3∂y3 + 2j3) +A33y3∂y3 +A32y2∂y2 −B33∂y3 −B32∂y2 − 2A31j1 + C3.
(3.28)

After identifying all linearly independent terms in these 12 equations we find a total of
60 conditions. In the end, 21 of these 60 conditions can be used to solve explicitly for all the
coefficients Aij , Bij and Ci in (3.19). Consistency of the system demands that the remaining
39 conditions must hold. We emphasize that the fact that these are identically satisfied is
a highly non-trivial check of the logic behind our proof, and also a remarkable consequence
of the identities relating the ai coefficients of the different covering maps involved.

There are many equivalent ways to write the resulting coefficients. We find that the
simplest one is as follows:

A =


2(ω3−ω2)
ω1+ω2−ω3

a1[Γ−3 ] 2ω1
ω1+ω2−ω3

a1[Γ−3 ] 2ω1
ω1−ω2+ω3

a1[Γ−2 ]

2ω2
ω1+ω2−ω3

a2[Γ−3 ] 2(ω1−ω3)
−ω1+ω2+ω3

a2[Γ−1 ] 2ω2
−ω1+ω2+ω3

a2[Γ−1 ]

2ω3
ω1−ω2+ω3

a3[Γ−2 ] 2ω3
−ω1+ω2+ω3

a3[Γ−1 ] 2(ω1−ω2)
−ω1+ω2+ω3

a3[Γ−1 ]

 , (3.29)

B =


(ω1−ω2+ω2)
ω1+ω2−ω3

a1[Γ−3 ]2 2ω1
ω1+ω2−ω3

a1[Γ−3 ]a2[Γ−3 ] 2ω1
ω1−ω2+ω3

a1[Γ−2 ]a3[Γ−2 ]

2ω2
ω1+ω2−ω3

a1[Γ−3 ]a2[Γ−3 ] (ω1+ω2−w2)
−ω1+ω2+ω3

a2[Γ−1 ]2 2ω2
−ω1+ω2+ω3

a2[Γ−1 ]a3[Γ−1 ]

2ω3
ω1−ω2+ω3

a1[Γ−2 ]a3[Γ−2 ] 2ω3
−ω1+ω2+ω3

a2[Γ−1 ]a3[Γ−1 ] (ω1−ω2+w2)
−ω1+ω2+ω3

a3[Γ−1 ]2

 , (3.30)

and

C =


4ω1j3

ω1−ω2+ω3
a1[Γ−2 ] + 2ω1(j2+j3)+2j1(ω3−ω2)

ω1+ω2−ω3
a1[Γ−3 ]

4ω2j1
ω1+ω2−ω3

a2[Γ−3 ]− 2ω2(j1+j3)+2j2(ω1−ω3)
ω1−ω2−ω3

a2[Γ−1 ]

4ω3j1
ω1−ω2+ω3

a3[Γ−2 ]− 2ω3(j1+j2)+2j3(ω1−ω2)
ω1+ω2−ω3

a3[Γ−1 ]

 . (3.31)

Consequently, we can write the differential equations for the even parity correlators as

{(
y1 − a1[Γ−3 ]

)2
∂y1 + 2j1

(
y1 − a1[Γ−3 ]

)
+

2a1[Γ−3 ]ω1

ω1 + ω2 − ω3

[
(y1 − a1[Γ−3 ])∂y1 + j1

+ (y2 − a2[Γ−3 ])∂y2 + j2 − (y3 − a3[Γ−2 ])∂y3 − j3
]}
〈V ω1
j1

(y1)V ω2
j2

(y2)V ω3
j3

(y3)〉 = 0 ,

(3.32)

{(
y2 − a2[Γ−3 ]

)2
∂y2 + 2j2

(
y2 − a2[Γ−3 ]

)
+

2a2[Γ−3 ]ω2

ω1 + ω2 − ω3

[
(y1 − a1[Γ−3 ])∂y1 + j1

+ (y2 − a2[Γ−3 ])∂y2 + j2 − (y3 − a3[Γ−1 ])∂y3 − j3
]}
〈V ω1
j1

(y1)V ω2
j2

(y2)V ω3
j3

(y3)〉 = 0 ,

(3.33)
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and{(
y3 − a3[Γ−1 ]

)2
∂y3 + 2j3

(
y3 − a3[Γ−1 ]

)
+

2a3[Γ−1 ]ω3

ω1 − ω2 − ω3

[
(y1 − a1[Γ−2 ])∂y1 + j1

− (y2 − a2[Γ−1 ])∂y2 − j2 − (y3 − a3[Γ−1 ])∂y3 − j3
]}
〈V ω1
j1

(y1)V ω2
j2

(y2)V ω3
j3

(y3)〉 = 0 .

(3.34)

The structural similarity of these equations with those of the odd case in Eq. (3.14) is
striking. This suggest that there must be a way to derive Eqs. (3.32), (3.33) and (3.34)
directly from the adjacent covering maps along the lines of Sec. 3.1. We will not attempt
to do this here.

By solving Eqs. (3.32), (3.33) and (3.34), we find that, up to an overall constant, even
parity correlators satisfying (3.18) take the form

〈V ω1
j1

(y1)V ω2
j2

(y2)V ω3
j3

(y3)〉 =

(
1− y2

a2[Γ+
3 ]
− y3

a3[Γ+
2 ]

+
y2y3

a2[Γ−3 ]a3[Γ+
2 ]

)j1−j2−j3
×
(

1− y1

a1[Γ+
3 ]
− y3

a3[Γ+
1 ]

+
y1y3

a1[Γ−3 ]a3[Γ+
1 ]

)j2−j3−j1
(3.35)

×
(

1− y1

a1[Γ+
2 ]
− y2

a2[Γ+
1 ]

+
y1y2

a1[Γ+
2 ]a2[Γ−1 ]

)j3−j1−j2
.

As in the odd case, one can check that this is consistent with the conjectured expressions
in Eq. (2.27) by using the relations between covering map coefficients and ratios of the
numbers Pω defined in (2.30). It is also straightforward to see that (3.35) matches all
relevant limits of the corresponding odd cases in Eq. (3.15), as implied by the different
series identifications in Eqs. (3.23) and (3.25). We also note that, upon using some identities
among the ai coefficients such as a1[Γ+

2 ]a2[Γ−1 ] = a1[Γ−2 ]a2[Γ+
1 ], the solution in Eq. (3.35)

manifestly enjoys bosonic exchange symmetry.

3.3 Edge cases

In this subsection, we consider spectral flow assignments lying at the “edge” of the inequal-
ities displayed in Eqs. (3.2) and (3.18). More explicitly, we consider three-point functions
with spectral flow charges satisfying either

ω3 = ω1 + ω2 or ω3 = ω1 + ω2 + 1 , ωi ≥ 1 , ∀ i . (3.36)

Following the nomenclature of the previous sections, we refer to these as the even and odd
edge cases, respectively. Note that, according to the fusion rules in Eq. (3.1), these include
all possibly non-vanishing correlators which were not included in sections 3.1 and 3.2 above,
except for correlators with unflowed insertions, which will be discussed later on.

The treatment of the edge cases is slightly different from what we have discussed so far.
Indeed, the general method based on series identifications employed in Sec. 3.2 breaks down
when considering the even edge cases. We find that many of the coefficients in Eqs. (3.29),
(3.30) and (3.31) become either divergent or indeterminate when ω1+ω2 = ω3, related to the
fact that three of the six adjacent maps cease to exist, namely those in (3.24). Although,
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in principle, the existence of the three maps in (3.22) could give enough constraints, in
practice one runs into similar problems with divergent or indeterminate coefficients. As for
the odd edge cases, it turns out that the associated covering map does not exist. Moreover,
the former are only related to even edge cases by the SL(2,R) series identifications.

We now show that alternative techniques involving current insertions can be used to
derive the relevant differential equations satisfied by the y-basis edge correlators. Some of
these equations are easier to derive in the limit where the first two vertex operators collide.
As discussed in [1], one can take the vertex operators to be inserted at (x1, x2, x3) =

(0, x,∞), and then consider the limit x→ 0. More explicitly, we have [1]

〈V ω1
j1

(0, y1, 0)V ω2
j2

(x, y2, 1)V ω3
j3

(∞, y3,∞)〉

= x−j1−j2+j3+ k
2

(−ω1−ω2+ω3) 〈V ω1
j1

(
0,
y1

x
, 0
)
V ω2
j2

(
1,
y2

x
, 1
)
V ω3
j3

(∞, y3x,∞)〉 . (3.37)

The three-point functions that remain well-defined in this limit are those for which

|ω1 + ω2 − ω3| ≤ 1 , (3.38)

including both edge cases in (3.36). In these instances, it is possible to obtain the correlator
with vertex operators inserted at generic points (x1, x2, x3) from the one in the colliding limit
with (x, x, x3) by means of the global Ward identities. We will derive some of the relevant
differential equations satisfied by the edge correlators in the above collision limit, and only
recover the full correlators at the end. Note that taking x → 0 and x3 → ∞ precisely
corresponds to the limit in which these correlators can be interpreted as m-basis correlators
of flowed primaries as in [5, 29], where they were denoted as spectral flow conserving and
spectral flow violating three-point functions, depending on the overall parity of the spectral
flow charges.

To illustrate how this works, let us derive a constraint that will be satisfied by both
edge cases. We set x1 = x2 = x and consider the integral∮

C
〈J3(x, z)V ω1

j1
(x, y1, z1)V ω2

j2
(x, y2, z2)V ω3

j3
(x3, y3, z3)〉 dz , (3.39)

where C denotes a contour encircling all three insertion points. This trivially vanishes as
there is no residue at infinity. On the other hand, the action of the current on the vertex
operators at x can be read off directly from Eq. (2.20), while for the one inserted at x3 we
use

J3(x, z) = J3(x3, z) + (x3 − x)J+(x3, z) , (3.40)

which follows from (2.8). We obtain the following differential equation:[
3∑
i=1

(
yi∂yi + ji +

k

2
ωi

)
+ (x3 − x)∂x3

]
〈V ω1
j1

(x, y1, z1)V ω2
j2

(x, y2, z2)V ω3
j3

(x3, y3, z3)〉 = 0 .

(3.41)

We now Möbius-fix the worldsheet insertions to (0, 1,∞), and further consider the limit
(x, x3)→ (0,∞). The yi coordinates then get rescaled according to Eq. (2.24). This leads
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to [
y1∂y1 + y2∂y2 − y3∂y3 + j1 + j2 − j3

+
k

2
(ω1 + ω2 − ω3)

]
〈V ω1
j1

(0, y1, 0)V ω2
j2

(0, y2, 1)V ω3
j3

(∞, y3,∞)〉 = 0 .
(3.42)

We find that Eq. (3.42) is the y-basis version of the usual charge-conservation equation for
m-basis three-point functions of spectrally flowed primaries. This holds for all correlators
satisfying (3.38), including both edge cases.

3.3.1 Even edge cases

In this subsection we focus on the even edge cases, where ω3 = ω1 + ω2. We will derive
the remaining two differential equations by considering correlators with an extra insertion
of the J−(x, z) current multiplied by the appropriate ratio of worldsheet coordinates. This
is similar to what was used in [30] when discussing the proof of the m-basis spectral flow
violation rules, and also more recently in [31] in the context of the supersymmetric version
of this model.

The integral∮
C
〈J−(x3, z)V

ω1
j1

(x1, y1, z1)V ω2
j2

(x2, y2, z2)V ω3
j3

(x3, y3, z3)〉 (z − z1)ω1(z − z2)ω2

(z − z3)ω3
dz (3.43)

vanishes since there is no pole at infinity. Using the OPEs of J−(x3, z) with the vertex
operators, this yields[

x2
31

zω2
12

zω3
13

∂y1 + x2
32

zω1
21

zω3
23

∂y2 + zω1
31 z

ω2
32 (y2

3∂y3 + 2j3y3)
]

〈V ω1
j1

(x1, y1, z1)V ω2
j2

(x2, y2, z2)V ω3
j3

(x3, y3, z3)〉 = 0 . (3.44)

Proceeding similarly with∮
C
〈J−(x, z)V ω1

j1
(x, y1, z1)V ω2

j2
(x, y2, z2)V ω3

j3
(x3, y3, z3)〉 (z − z3)ω3

(z − z1)ω1(z − z2)ω2
dz , (3.45)

where we have imposed the collision limit mentioned above, we find[zω3
13

zω2
12

(y2
1∂y1 + 2j1y1) +

zω3
23

zω2
21

(y2
2∂y2 + 2j2y2) +

(x− x3)2

zω1
31 z

ω2
32

∂y3

]
〈V ω1
j1

(x, y1, z1)V ω2
j2

(x, y2, z2)V ω3
j3

(x3, y3, z3)〉 = 0 . (3.46)

We now fix the worldsheet coordinates to (0, 1,∞) while sending x → 0 and x3 → ∞,
and use Eq. (2.24) for the corresponding rescaling of the y variables. Including the charge
conservation condition (3.42), the system of differential equations satisfied by the even edge
correlator in the collision limit is then

0 =
[
j1 + j2 − j3 + y1∂y1 + y2∂y2 − y3∂y3

]
〈. . .〉 ,

0 =
[
(−1)ω1∂y1 + (−1)ω3∂y2 + (y2

3∂y3 + 2j3y3)
]
〈. . .〉 ,

0 =
[
(−1)ω1(y2

1∂y1 + 2j1y1) + (−1)ω3(y2
2∂y2 + 2j2y2) + ∂y3

]
〈. . .〉 .

(3.47)
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where 〈. . .〉 stands for 〈V ω1
j1

(0, y1, 0)V ω2
j2

(0, y2, 1)V ω3
j3

(∞, y3,∞)〉. Note that only the second
equation in (3.47) remains valid away from the collision limit.

Up to an overall y-independent constant, the general solution of the system (3.47) can
be written as follows:

〈V ω1
j1

(0, y1, 0)V ω2
j2

(0, y2, 1)V ω3
j3

(∞, y3,∞)〉 (3.48)

= ((−1)ω1y1 − (−1)ω3y2)j3−j1−j2(1 + (−1)ω3y2y3)j1−j2−j3(1 + (−1)ω1y1y3)j2−j1−j3 .

This matches the result of [1], see their Eq. (5.37b).
As mentioned above, for more general values of the insertion points the corresponding

three-point functions follow from the global Ward identities. As it turns out, we can infer
the result in a heuristic way by looking at the general expression given in Eq. (3.35). Indeed,
one can verify that, upon setting ω3 = ω1 + ω2, the coefficients a1(Γ+

3 ), a2(Γ+
3 ) and a2(Γ−1 )

diverge, which is a manifestation of the fact that the associated covering maps do not exist.
Since all other coefficients remain finite, we obtain

〈V ω1
j1

(y1)V ω2
j2

(y2)V ω3
j3

(y3)〉 =

(
1 + (−1)ω1

(ω1 + ω2 − 1)!

(ω1 − 1)!ω2!
y3 + (−1)ω3y2y3

)j1−j2−j3
×
(

1 + (−1)ω1+1 (ω1 + ω2 − 1)!

ω1!(ω2 − 1)!
y3 + (−1)ω1y1y3

)j2−j3−j1
(3.49)

×
(

1 + (−1)ω1+1 ω1!ω2!

(ω1 + ω2)!
((−1)ω1y1 − (−1)ω3y2)

)j3−j1−j2
.

Up to the normalisation, to be discussed below, this precisely matches the conjecture (2.27).

3.3.2 Odd edge cases

We now turn to the odd edge cases, where ω3 = ω1 + ω2 + 1. Since the procedure is
analogous to what we just described we will skip some of the intermediate steps.

In addition to (3.42), we find two differential equations by considering contour integrals
very similar to that in Eq. (3.43). We first take∮

C
〈J−(x3, z)V

ω1
j1

(x1, y1, z1)V ω2
j2

(x2, y2, z2)V ω3
j3

(x3, y3, z3)〉 (z − z1)ω1+1(z − z2)ω2

(z − z3)ω3
dz ,

(3.50)
which again vanishes due to the absence of a residue at infinity. The same holds for∮

C
〈J−(x3, z)V

ω1
j1

(x1, y1, z1)V ω2
j2

(x2, y2, z2)V ω3
j3

(x3, y3, z3)〉 (z − z1)ω1(z − z2)ω2+1

(z − z3)ω3
dz .

(3.51)
Hence, we find the following system of differential equations:

0 =
[
j1 + j2 − j3 −

k

2
+ y1∂y1 + y2∂y2 − y3∂y3

]
〈. . .〉 ,

0 =
[
(−1)ω3∂y2 + (y2

3∂y3 + 2j3y3)
]
〈. . .〉 ,

0 =
[
(−1)ω1∂y1 + (y2

3∂y3 + 2j3y3)
]
〈. . .〉 .

(3.52)
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where 〈. . .〉 again denotes 〈V ω1
j1

(0, y1, 0)V ω2
j2

(0, y2, 1)V ω3
j3

(∞, y3,∞)〉. In this case, only the
first of these equations gets eventually modified away from the collision limit.

We find that, up to an overall normalization, the odd edge three-point functions read

〈V ω1
j1

(0, y1, 0)V ω2
j2

(0, y2, 1)V ω3
j3

(∞, y3,∞)〉 (3.53)

= y
j1+j2−j3− k

2
3 (1 + (−1)ω1y1y3 + (−1)ω3y2y3)

k
2
−j1−j2−j3 ,

in the collision limit, thus matching the result in [1], see their Eq. (5.37c). Moreover, as in
the even edge case, we can infer the solution for generic insertion points from the general
expression in Eq. (3.16). For this, we set ω3 = ω1 + ω2 + 1 and carefully take the limit
a3 → 0, a1,2 →∞ with the products a1a3 and a2a3 fixed. This yields

〈V ω1
j1

(0, y1, 0)V ω2
j2

(1, y2, 1)V ω3
j3

(∞, y3,∞)〉 = y
j1+j2−j3− k

2
3 (3.54)

×
(

1 + (−1)ω1+1 (ω1 + ω2)!

ω1!ω2!
y3 + (−1)ω1y1y3 + (−1)ω3y2y3

) k
2
−j1−j2−j3

.

One can check that this matches the y-dependence given in the conjecture of Eq. (2.26) for
correlators with appropriate spectral flow assignments. Moreover, upon using Eq. (3.20)
and (3.21) we also see that, as expected, the expressions in Eq. (3.35) and Eq. (3.54) are
related via series identifications.

3.4 Three-point functions with unflowed insertions

So far, we have considered three-point functions where all vertex operators had non-zero
spectral flow charges. However, it is natural to expect that the above results include the
special cases where some of the insertions are unflowed. We now show how the latter are
obtained. Note that we still assume ω3 ≥ ω1,2, as in the previous sections.

Let us start by discussing the case of a single unflowed insertion, namely ω1 = 0. The
fusion rules in Eq. (3.1) can then be satisfied iff ω3 = ω2 or ω3 = ω2 + 1. These are
exactly the two cases that were computed in [29] in full generality from m-basis techniques.
In this sense, the results presented in this section are not new, but we include them for
completeness. Hence, the relevant correlators correspond to the spectral flow assignments
(0, ω, ω + 1) and (0, ω, ω). By means of

Vj(x, z) = N (j)V 1
k
2
−j,h=j

(x, z) = N (j) lim
y→∞

yk−2jV 1
k
2
−j(x, y, z) , (3.55)

which is a particular case of (3.20), these can be obtained from the three-point functions
with charges (1, ω, ω + 1) and (1, ω, ω), respectively. More precisely, we have

〈Vj1V ω
j2 (y2)V ω+1

j3
(y3)〉 = N (j1) lim

y1→∞
yk−2j1

1 〈V 1
k
2
−j1

(y1)V ω
j2 (y2)V ω+1

j3
(y3)〉 , (3.56)

and
〈Vj1V ω

j2 (y2)V ω
j3 (y3)〉 = N (j1) lim

y1→∞
yk−2j1

1 〈V 1
k
2
−j1

(y1)V ω
j2 (y2)V ω

j3 (y3)〉 , (3.57)

where we have abbreviated Vj1(0, 0) ≡ Vj1 .
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Focusing on (3.56), the RHS involves an even edge correlator. We thus need to consider
the appropriate limit of Eq. (3.49), which gives

〈Vj1V ω
j2 (y2)V ω+1

j3
(y3)〉 = y

j1+j2−j3− k
2

3 (1− y3 − (−1)ωy2y3)
k
2
−j1−j2−j3 . (3.58)

up to an overall constant. On the other hand, the RHS of (3.57) is obtained as the appro-
priate limit of the solution in Eq. (3.15), namely

〈V 1
j1(y1)V ω

j2 (y2)V ω
j3 (y3)〉 = (y1 − ω)j2+j3−j1− k

2 (y2 + (−1)ω)j1+j3−j2− k
2 (y3 − 1)j1+j2−j3− k

2

×
(

(−1)ω+1(ω + 1) + (−1)ωy1 − y2 + (−1)ωy3 − (ω − 1)y2y3 + y1y2y3

) k
2
−j1−j2−j3

. (3.59)

Hence, we get

〈Vj1V ω
j2 (y2)V ω

j3 (y3)〉 = (y2 + (−1)ω)j3−j1−j2 (y3 − 1)j2−j1−j3 ((−1)ω + y2y3)j1−j2−j3 .

(3.60)
up to the overall constant. Finally, we consider correlators with exactly two unflowed
insertions, ω1 = ω2 = 0. According to (3.1) this can only be non-trivial for ω3 = 1. By
using again Eq. (3.55) we get

〈Vj1Vj2V 1
j3(y3)〉 = N (j2) lim

y2→∞
yk−2j2

2 〈Vj1V 1
k
2
−j2

(y2)V 1
j3(y3)〉

= y
j1+j2−j3− k

2
3 (y3 − 1)

k
2
−j1−j2−j3 , (3.61)

where in the last line we have ignored an overall normalization factor. In this way, we match
all the corresponding results of [1], where the authors showed that this further reproduces
the original computations of [5, 29].

3.5 Normalization

So far we have focused on the dependence of the y-basis spectrally flowed correlators on
the variables y1, y2 and y3, and shown that it matches precisely the predictions of [1]. We
now describe how the overall normalizations in Eqs. (2.26)-(2.32) are obtained5.

Once again, the argument relies on the SL(2,R) series identifications. Indeed, identities
such as those in Eqs. (3.23) and (3.25) must hold exactly, including the normalization fac-
tors. Having fixed the y-dependence, we can thus determine the normalizations recursively,
starting from the unflowed three-point functions of [5, 23]. For instance, we consider the
following identity:

lim
y3→∞

y2j3
3

〈
V ω1
j1

(y1)V ω2
j2

(y2)V ω3
j3

(y3)
〉

= N (j3)

〈
V ω1
j1

(y1)V ω2
j2

(y2)V ω3−1
k
2
−j3

(0)

〉
, (3.62)

which will give us a recursion relation for Cω(j1, j2, j3). Since the latter is independent
of the yi, we can set y1 = y2 = 0. Using the y-dependence derived above, written as in

5This was already discussed in [2], assuming the y-dependence of the correlators was as in [1]. We
reproduce the argument here for completeness
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Eqs. (2.26) and (2.27), one finds that the product of XI factors on the left- an right-hand
sides of (3.62), both reduce to either

P j1+j2+j3−k
ω P j3−j1−j2ω+e1+e2 P

j1−j2−j3
ω+e2−e3 P

j2−j3−j1
ω+e1−e3 , (3.63)

or
P

k
2
−j1−j2−j3

ω+e1+e2−e3
P
−j1+j2+j3− k

2
ω+e1 P

j1−j2+j3− k
2

ω+e2 P
j1+j2−j3− k

2
ω−e3 , (3.64)

depending on the overall parity of the spectral flow charges. Consequently, in both cases
we find that Eq. (3.62) holds iff

Cω(j1, j2, j3) = N (j3)Cω−e3

(
j1, j2,

k

2
− j3

)
. (3.65)

Analogous statements can be derived by shifting the spectral flow charges ω1 and ω2 instead.
Moreover, one has the identity

N (j1)C

(
k

2
− j1, j2, j3

)
= N (j2)C

(
j1,

k

2
− j2, j3

)
= N (j3)C

(
j1, j2,

k

2
− j3

)
. (3.66)

Since N (j)N (k2 − j) = 1, it follows that, as stated in (2.32), Cω(j1, j2, j3) can only be
C(j1, j2, j3), i.e. the unflowed three-point function, or N (j1)C(k2 − j1, j2, j3), depending on
the parity of ω1 +ω2 +ω3. To be precise, this argument is valid for discrete representations,
although we expect that it holds also for the continuous series by analytic continuation in
j [5, 32]. This concludes our computation of three-point functions with arbitrary spectral
flow charges.

4 Discussion

In this paper, we have computed the y-basis string three-point function in AdS3 involving
vertex operators with arbitrary spectral flow charges. This provides a proof for the con-
jecture put forward recently in [1], thus establishing integral expressions for all (primary)
three-point functions of the SL(2,R)-WZW model at level k, for all k > 3.

The subfamily of (odd parity) correlators for which a holomorphic covering map from
the worldsheet to the AdS3 boundary exists had been obtained in [1, 20]. Here we have
relied on the general structure of local Ward identities (in their y-basis formulation) and
made extensive use of the SL(2,R) series identifications, whose importance was recently
highlighted in [2]. This allowed us to extend the methods based on covering maps to all
other non-vanishing correlators, as defined by the fusion rules computed in [5].

Our strategy can be summarised as follows. We first argued that the differential equa-
tions satisfied by all y-basis three-point functions must take the form given in Eq. (3.19).
Obtaining the general expressions for these equations for all even parity correlators then
reduces to computing all unknown coefficients in (3.19). We have provided the relations
among correlators with adjacent spectral flow assignments that follow from SL(2,R) series
identifications in Eqs. (3.23) and (3.25). These provide a considerable number of identities
between even and odd parity correlators in the limit where one of the y variables is taken
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to either zero or infinity. This allowed us to evaluate all relevant coefficients Aij , Bij and
Ci in closed form, as given in Eqs. (3.29)-(3.31). The derivation of these 21 coefficients
involves solving a total of 60 conditions, of which 39 can be taken as consistency checks.
The latter turn out to be satisfied in a highly non-trivial manner, related to the existence
of a set of identities relating the behaviour of different covering maps in the vicinity of the
insertion points.

The resulting differential equations satisfied by even parity correlators are provided in
Eqs. (3.32)-(3.34). These show a striking similarity with the cases of odd total spectral
flow, a hallmark of the existence of a more direct derivation by means of adjacent covering
maps. We leave this for future work. Here we have shown that the general solution to these
equations, namely Eq. (3.35), is compatible with the proposal of [1].

We have also discussed the so-called edge cases, whose spectral flow assignments sat-
urate the fusion rules in Eqs. (3.2) and (3.18). Some subtleties arise when trying to apply
the general method described above in this context. For these cases we have provided an
alternative approach, based on an improved version of the m-basis methods [5, 29]. We
have then described how to obtain correlators involving unflowed insertions. Finally, we
fixed the overall normalization of all y-basis three-point functions, following the arguments
of [2].

At this point, it is natural to ask if an analogous story holds for four-point func-
tions, which encode crucial dynamical information about the theory. A closed formula
for four-point functions in the y-basis with arbitrary spectral flow assignments in terms of
the corresponding unflowed correlator was conjectured in [21]. Here the situation is more
subtle: on top of the four yi variables, four-point functions also depend non-trivially on
the worldsheet and spacetime cross-ratios, and must satisfy the corresponding Knizhnik-
Zamolodchikov equations. It has been known for some time [33, 34] that the latter inter-
twine non-trivially with the recursion relations of the type described in section 2.2. If the
structure put forward in [21] is correct, its proof is likely to work in two steps. First, one
should use arguments similar to those we have considered in this paper to show that solu-
tions to the y-basis differential equations associated with the four-point functions consist of
various prefactors given by powers of the generalized differences XI , defined in Eq. (2.28),
multiplied by an arbitrary function of the so-called generalized cross-ratio. Second, one
should prove that this arbitrary function must satisfy the same Knizhnik-Zamolodchikov
equation as the corresponding unflowed four-point function. The extension of the proof for
the case of correlation functions involving four spectrally-flowed vertex operators is a work
in progress.
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