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Previous theoretical works using the pre-merger orbital evolution of coalescing neutron stars to
constrain properties of dense nuclear matter assume a gravitational wave phase uncertainty of a
few radians, or about a half cycle. However, recent studies of the signal from GW170817 and next
generation detector sensitivities indicate actual phase uncertainties at least twenty times better.
Using these refined estimates, we show that future observations of nearby sources like GW170817
may be able to reveal neutron star properties beyond just radius and tidal deformability, such as
the matter composition and/or presence of a superfluid inside neutron stars, via tidal excitation
of g-mode oscillations. Data from GW170817 already limits the amount of orbital energy that is
transferred to the neutron star to < 2 × 1047 erg and the g-mode tidal coupling to Qα < 10−3 at
50 Hz (5 × 1048 erg and 4 × 10−3 at 200 Hz), and future observations and detectors will greatly
improve upon these constraints. In addition, analysis using general parameterization models that
have been applied to the so-called p-g instability show that the instability already appears to be
restricted to regimes where the mechanism is likely to be inconsequential; in particular, we show
that the number of unstable modes is ≪ 100 at . 100 Hz, and next generation detectors will
essentially rule out this mechanism (assuming that the instability remains undetected). Finally, we
illustrate that measurements of tidal excitation of r-mode oscillations in nearby rapidly rotating
neutron stars are within reach of current detectors and note that even non-detections will limit the
inferred inspiralling neutron star spin rate to < 20 Hz, which will be useful when determining other
parameters such as neutron star mass and tidal deformability.

I. INTRODUCTION

Measurements of gravitational waves (GWs) from coa-
lescing neutron star (NS) systems provide invaluable in-
sights into the dense matter that comprises the interior of
these stars. As is now well-known, the detection of GWs
from the inspiral and merger of GW170817 enabled new
constraints on the nuclear equation-of-state through de-
termination of the radius and tidal deformability of each
NS [1, 2]. With advancements in GW detector sensitiv-
ities, it may be possible to obtain measurements from
future discoveries that provide constraints which go be-
yond just bulk NS properties. One example, which is the
subject of the current work, is dynamical tidal excitation
of NS oscillation modes. Such a process can occur as
the orbital frequency increases during the binary inspiral
and comes into resonance with the natural oscillation fre-
quencies of the NS. As a result, energy can be transferred
between the orbit and the stellar oscillation, which causes
the inspiral to occur more rapidly (or more slowly) and
creates a phase shift in the GW signal. By measuring the
phase shift and GW frequency at which the phase shift
occurs, it may then be possible to infer physical prop-
erties of the specific oscillation mode, for example, the
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particle fractions in the NS or the superfluid state of the
star’s core.

In this work, we will only be concerned with mode, or-
bital, and GW frequencies below a few hundred Hz, i.e.,
well before NS merger, where differences in current GW
waveform models are much smaller than the estimated
data uncertainties [3]. As such, the strongest coupling be-
tween the gravitational tidal potential and an oscillation
mode (characterized by α = nlm, where n is the number
of radial nodes of the mode displacement eigenfunction ξα
and l and m are indices of the spherical harmonics Ylm)
will be through g-modes (see Section IV for r-modes).
These g-modes are fluid oscillations whose restoring force
is buoyancy caused by, for example, changes in the proton
to neutron or muon to electron fraction as a function of
density, with the latter being important when neutrons
are superfluid [4, 5]. Furthermore, by considering only
the leading order tidal quadrupole and primarily non-
rotating stars, one only needs to consider the quadrupole
modes with l = 2. The strength of the tide-mode cou-
pling is determined by the (dimensionless) overlap inte-
gral Qα = (1/MRl)

∫

d3x ρξ∗α · ∇(rlYlm), where M and
R are stellar mass and radius, respectively, and ρ is mass
density [6]. Early works found the largest Qα (∼ 10−3)
for low n g-modes [7, 8] and that these values of Qα

produce phase shifts ∆Φ ∼ 10−3 rad [7, 9], which were
thought to be too small to be detectable given estimates
of GW detector uncertainties at that time (see below).
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A related phenomena which we also examine here is
the p-g instability, where instead of tidal resonances with
specific oscillation modes during the inspiral, instabilities
between coupled p and g-modes supposedly become ex-
cited by the tidal potential at GW frequencies f of a
few tens of Hz and the orbit loses energy continuously
to these modes throughout the remainder of the inspi-
ral [10–13]. Because the p-g instability is not a reso-
nant process and the energy loss occurs over a larger
frequency range, a change in phase can gradually build
up to large values during the NS inspiral, and hence it
was suggested that the instability could strongly alter
the GW signal. It was originally estimated that an effec-
tive p-g instability amplitude A0 & 10−8 would produce
phase shifts ∆Φ & 1 rad [12], although subsequent work
in [13] found this amplitude to be underestimated by a
factor of ∼ (4− n0) (cf. Section III), where n0 describes
the frequency dependence of the p-g instability and is of
order unity.

To be able to measure tidal excitation of g-modes or
the p-g instability, the phase uncertainty of detected
GWs must be smaller than the phase shift ∆Φ (or change
in number of orbital cycles ∆N = ∆Φ/2π) predicted by
the theory of these processes. In the works cited above, as
well as others, the phase uncertainty was assumed to be
either ∆Φ ≈ 1−3 rad, based on an estimate of a detection
with signal-to-noise ratio of 10 and an approximate single
detector sensitivity [14, 15], or ∆Φ = π (or ∆N = 0.5),
based on simple matched-filter arguments. However, re-
cent works quantified the level of uncertainty of mea-
sured or measurable GWs. Specifically in [16], analysis
of the signal from GW170817 using the GW waveform
model IMRPhenomPv2 NRTidal [17], which includes ef-
fects of static tidal deformabilities, find ∆Φ ∼ ±0.1 rad
(or ∆N ∼ ±0.03) at GW frequencies f < 300 Hz, in-
clusive of calibration uncertainties. This uncertainty is
shown in Figure 1; note that while ∆Φ deviate from zero
at 1σ for some frequencies, they are consistent with zero
at 2σ, as shown in Figure 12 of [16]. More recently, [3]
compares a number of GW waveform models and shows
the uncertainty due to waveform differences, and hence
the likely best possible uncertainty at the present time, is
∼ ±0.02 rad for A+ and ±10−3 rad for Cosmic Explorer
(CE); we do not consider here the Einstein Telescope
(ET), but it is expected to have similar phase uncer-
tainties to CE. Since these phase uncertainties are de-
termined from comparisons between measured/expected
GW data and waveform models, they can serve as up-
per limits on any effects that the waveform models do
not take into account but could be present in actual GW
data, such as the influence of dynamical tides (see, e.g.,
[14, 18, 19]).

Given the magnitudes of the phase uncertainty of cur-
rent detectors and A+ and CE, it is clear that the previ-
ously adopted level of phase shift necessary for dynamical
tide effects (see, e.g., [5]) is too conservative by at least
a factor of 20. Thus future detectors are more likely to
detect these effects, which motivates reconsideration and

FIG. 1. Phase uncertainty as a function of GW frequency
f . Shaded regions indicate ±1σ deviation of ∆Φ from a
GW170817 waveform ([16]; see text) and from a model wave-
form weighted by the sensitivity of A+ and Cosmic Explorer
(CE) [3] at a distance of 40 Mpc. Dotted lines indicate ±∆Φ
assuming (dimensionless) overlap integral Qα = 10−3 and NS
radius R = 12 km [see eq. (7)].

points to work that is needed to maximize the science
that can be extracted from future observations. With
this aim in mind, we revisit our previous analysis [5] and
re-evaluate the detectability of g-modes (in Section II)
and the p-g instability (in Section III) in inspiralling NSs
(see Section IV for comments on r-modes).

II. ORBITAL ENERGY TRANSFER AND

G-MODE RESONANCE

We do not repeat here derivations of the relevant equa-
tions, since they are contained in many previous works,
and simply state the main relations, following closely the
Newtonian orbit calculations of [7] (see also [5]). An es-
timate of the shift in orbital phase ∆Φ due to energy
transfer ∆E during orbital decay is

∆Φ

2π
≈ −

tD
torb

∆E

|Eorb|

= −
5c5

128π

1

(GM1Ωorb)5/3
(1 + q)1/3

q

∆E

|Eorb|

= −430M
−5/3
1.4

(

1 + q

2q3

)1/3(
f

100 Hz

)

−5/3
∆E

|Eorb|
,(1)

where the orbital energy is

Eorb = −
GM1M2

2a

= −1.7× 1052 erg M
5/3
1.4 q

(

2

1 + q

)1/3(
f

100 Hz

)2/3

(2)
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FIG. 2. Relative energy transfer |∆E/Eorb| as a function of
GW frequency f . Thick lines are upper limits calculated using
±∆Φ from Fig. 1 and eq. (1) for GW170817 (short-dashed),
A+ (long-dashed), and Cosmic Explorer (CE; solid). Long-
dashed-dotted and short-dashed-dotted lines are for total en-
ergy transferred to normal and superfluid g-modes, respec-
tively (see text for details), while the dotted line is for total
energy dissipated by the p-g instability assuming NS radius
R = 12 km and N0βλ = 1 [see eq. (8)] and the short-long-
dashed line is for energy transferred to the orbit by r-modes
and R = 12 km [see eq. (12)]. Note that for the r-mode, each
particular GW frequency corresponds to a specific NS spin
frequency [here we assumed f = (4/3)fspin].

for binary masses M1 and M2, mass ratio q = M2/M1,
orbital separation a, and orbital frequency Ωorb (= πf).
We also note that the chirp massM = (M1M2)

3/5/(M1+
M2)

1/5 = M1[q
3/(1 + q)]1/5. The two timescales are the

orbital period torb = 2π/Ωorb and orbital decay timescale

tD ≡
a

|ȧ|
=

5c5

64G3

a4

M1M2(M1 +M2)

= 8.6 s M
−5/3
1.4

(

1 + q

2q3

)1/3 (
f

100 Hz

)

−8/3

. (3)

For simplicity, we assume M1.4 = M1/1.4MSun = 1 and
q = 1 throughout the present work.
As noted in the Introduction, the phase uncertainties

shown in Figure 1 are derived from comparisons between
the measured or expected GW data and waveform mod-
els. Since these waveform models do not include dy-
namical tidal effects such as the resonant excitation of
oscillation modes at low frequencies well before merger,
∆Φ from Figure 1 illustrates the potential to constrain
these unmodeled contributions to actual GW data. In
Figure 2, we show inferred upper limits on energy trans-
fer during the inspiral obtained by substituting ∆Φ from

Figure 1 into equation (1). Also shown are the calcu-
lated total energy transferred to normal and superfluid
g-mode oscillations from [20] (for l = 2 and summed
over n = 1, 2, . . . , 8). Note that the (model-dependent)
frequencies of the n = 1 and n = 8 normal g-modes
are approximately 140 Hz and 20 Hz, respectively, while
the corresponding frequencies for superfluid g-modes are
430 Hz and 70 Hz [20]; superfluid g-modes occur at higher
frequencies than normal g-modes of the same n (by about
a factor of the square root of proton fraction; [4, 21]).
We see from Figure 2 that the sensitivity of detectors

available at the time of GW170817 is insufficient to ob-
serve any transfer of energy from the decaying orbit to
either NS with a limit of ∆E/|Eorb| ≈ 10−5 − 10−4 at
f > 30 Hz. However, it seems possible that the sen-
sitivity of A+ detectors may be able to begin to mea-
sure energy transfers to normal and superfluid g-modes
in limited frequency ranges. Meanwhile, CE could mea-
sure energy transfer to normal and superfluid g-modes
throughout the inspiral.
For resonance with a specific m = 2 mode, the relation

between mode oscillation frequency ωα, orbital frequency
Ωorb, and gravitational wave frequency f is

ωα = 2Ωorb = 2πf. (4)

For convenience, the mode oscillation frequency can be
made dimensionless via

ωα = ω1ω̂α = 2π × 2170 Hz M
1/2
1.4 R

−3/2
10 ω̂α, (5)

where ω1 = (GM1/R
3)1/2 andR10 = R/10 km, such that

Ωorb = ω1ω̂α/2 at resonance. Note that we only consider
here resonance with one of the NSs in a binary NS system
for simplicity. The energy transfer due to resonant mode
excitation is calculated by [7] to be

∆E

|Eorb|
=

π2

128

(

c2R

GM1

)5/2 (
2

1 + q

)4/3
Q2

α

ω̂
1/3
α

= 11M
−7/3
1.4 R2

10

(

2

1 + q

)4/3

Q2
α

(

f

100 Hz

)

−1/3

.(6)

Substituting equation (6) into equation (1) gives

∆Φ

2π
= −

5π

4096

(

c2R

GM1

)5
2

q(1 + q)

Q2
α

ω̂2
α

= −4800M−4
1.4R

2
10

2

q(1 + q)
Q2

α

(

f

100 Hz

)

−2

.(7)

This phase shift occurs in a narrow frequency range since
the duration of the resonance is short compared to the in-
spiral duration in the GW detector frequency band (see,
e.g., [7, 22, 23]).
Figure 3 shows upper limits on the overlap integral Qα

obtained by substituting ∆Φ from Figure 1 into equa-
tion (7). To illustrate how these limits compare approxi-
mately to theoretical expectations, we plot values of Qα
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FIG. 3. Dimensionless overlap integral Qα as a function
of GW frequency f . Lines are upper limits calculated using
±∆Φ from Fig. 1 and eq. (7) with a NS radius R = 12 km
for GW170817 (short-dashed), A+ (long-dashed), and Cosmic
Explorer (CE; solid). Circles are for constant Γ−γ stratifica-
tion g-modes, while the triangle is for a varying stratification
g-mode (see text); light dotted lines connect Qα values from
g-modes with the same stratification but different radial node
n. Stars are for g-modes (n = 1) calculated from NS mod-
els motivated by the BSk21 and SLy4 equations of state (see
Counsell et al., in prep., and [20], respectively), which have
strong internal composition gradients.

obtained from NSs constructed in Newtonian gravity us-
ing a polytropic (γ = 2) equation of state and g-modes
produced by density stratifications that are parameter-
ized by the factor (Γ − γ), where Γ is the adiabatic in-
dex; results shown are for constant (Γ − γ) (Counsell et
al., in prep.), which reproduce the results of [24], and
for a specific case of varying (Γ − γ) from [24]. [24]
find the mode frequency and overlap integral scale as
ωα ∝ (M/R3)1/2(Γ− γ)1/2 and Qα ∝ (Γ− γ) for a poly-
trope with a constant γ = 2, while [25, 26] find an ap-
proximate scaling ωα ∝ (M/R4)1/3(Γ−γ)1/2 for NSs con-
structed using realistic equations of state but still with
g-mode stratifications parameterized by (Γ − γ). Also
shown are sample results from Counsell et al. (in prep.)
and [20] for Qα determined using NS models which are
motivated by the BSk21 and SLy4 equations of state and
have strong varying stratifications. In a sense, these two
represent optimistic estimates of Qα, while those from
[26] with Qα < 10−4 are likely to be conservative esti-
mates, and the large range shows the level of uncertainty
in current theoretical calculations. Meanwhile, we do not
showQα for superfluid g-modes in Figure 3 since the ones
from [20] would be below the CE curve.

While Figure 2 suggests A+ and CE can constrain

or even measure the total energy transferred to many
modes, Figure 3 shows that measuring the coupling to
individual modes via the overlap Qα will be difficult even
with CE, although there are evident uncertainties in the
theoretical calculations of Qα, as discussed above. Still,
even in the somewhat pessimistic case, we may be able to
draw important conclusions about the NS interior. For
example, non-detection of individual g-mode coupling
with CE could be used to constrain stratification within
the NS, e.g., (Γ − γ) < 0.02, or indicate neutrons in the
NS core are superfluid. Therefore works such as [20, 25–
27] are in the right direction, and more work is needed
in using realistic equations of state and stratification to
calculate g-modes and their binary tidal interactions. It
is also important to keep in mind that Qα from an ex-
traordinary event, such as an inspiralling NS closer than
GW170817, should be within the reach of CE.

III. P-G INSTABILITY

To quantify current and potential future constraints
on the p-g instability, we first estimate, from the rate of
orbital energy dissipation by the unstable modes Ėpg [see
eq. (3) of [12]], that the total energy dissipated is

∆E

|Eorb|
∼

ĖpgtD
|Eorb|

= 10−8

(

2

1 + q

)2/3(
2πf

ω1

)4/3

ω1tDN0βλ

= 1.9× 10−5M
−11/6
1.4 R

1/2
10

1

q

(

2

1 + q

)1/3

×

(

f

100 Hz

)

−4/3

N0βλ, (8)

where N0 is the number of independently unstable
modes, β (≤ 1) indicates how close the energy at which
unstable modes saturate is to a maximum given by the
wave breaking energy, and λ (∼ 0.1 − 1) is a slowly
varying function of binary separation [11]. Figure 2
plots equation (8) for N0βλ = 1, which yields a limit
∆E < 4 × 1047 erg at f < 70 Hz from GW170817. It is
argued in [10–12] that N0 ∼ 100 − 104, but we see that
this is only possible if β ≪ 0.1 and f . 70 Hz using just
GW170817. This limit would extend to all frequencies of
importance for the p-g instability (. 100 Hz; [12, 13]) by
the time detectors reach A+ sensitivity.
Next, we consider two parameterizations to determine

the effect of the p-g instability on the phase shift ∆Φ.
The first from [13] is

∆Φ(f > f0) = −
2C0

3B2(3− n0)(4 − n0)

(

f

fref

)n0−3

= −2π × 3.1× 106M
−10/3
1.4 q−2

×
A0

(3− n0)(4− n0)

(

100 Hz

f

)3−n0

,(9)

where B = (32/5)(GMπfref/c
3)5/3, C0 = [2/(1 +

q)]2/3A0, fref (= 100 Hz here) is an arbitrary reference
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FIG. 4. Amplitude of p-g instability A0 as a function of GW frequency f . Lines are upper limits calculated using ±∆Φ from
Fig. 1 and the power law model given by eq. (9) (left panel) and the asymptotic model given by eq. (11) (right panel) with
frequency power law index n0 = 0 for GW170817 (short-dashed; light lines are for n0 = −1,+1,+2), A+ (long-dashed), and
Cosmic Explorer (CE; solid). The vertical line in the right panel indicates the frequency at which mode saturation is assumed
to occur, here taken to be f0 = 50 Hz. Parameters of the p-g instability are the number of unstable modes N0 and mode energy
relative to saturation maximum β (≤ 1) and λ (∼ 0.1− 1) is a function of binary separation.

frequency, and n0 describes the frequency scaling of the
orbital energy dissipation rate and is assumed to be in the
range −1 ≤ n0 ≤ 3. Note that the full parameterization
of [13] includes dependences on the Heaviside function
Θ(f −f0), where f0 (∼ 50 Hz; [11, 12]) is the mode satu-
ration frequency, but here we only kept the term that is
non-zero at f > f0. In effect, we are ignoring the energy
loss before the system reaches saturation, which is rea-
sonable provided the instability grows fast enough. As
in the resonance case, we consider the phase contribu-
tion due to one NS rather than both. One can relate the
amplitude A0 to N0βλ at f = fref as discussed in [12],
i.e.,

A0 =

(

2πfref
ω1

)1/3 (
ωg

Λgω1

)2

[N0βλ]fref

= 3.6× 10−9

(

ωg

10−4Λgω1

)2

[N0βλ]fref , (10)

where ωg is the minimum g-mode frequency and Λg =
l(l + 1).
The second parameterization is from [12]:

∆Φ(f > f0) =
A0FM

n0 − 3

(

f0
fref

)n0−3
[

1−

(

f

f0

)n0−3
]

= −2π × 3.1× 106 M
−10/3
1.4 q−2

×
A0

3− n0

(

100 Hz

f0

)3−n0

[

1−

(

f0
f

)3−n0

]

,(11)

where A0FM = 2C0/3B
2. Although [13] points out

that this parameterization was calculated incorrectly, it
is useful to compare the two since they can be inter-
preted more generally as models for unknown processes
that could affect GW signals, in particular, the former
is simply a power law and the latter is asymptotic to a
constant phase shift. Specific to the p-g instability, the
above two parameterizations of ∆Φ differ in amplitude by
∼ (4 − n0)(f/f0)

3−n0 [cf. (4 − n0) as stated in [13]]. In
the more general case, they have very different frequency
behavior. Equation (9) implies that ∆Φ ∝ (1/f)3−n0 ,
so that A0 ∝ f3−n0 for a given ∆Φ, and hence ∆Φ
(A0) decreases (increases) as the frequency increases for
n0 < 3. On the other hand, equation (11) states that
∆Φ ∝ [1 − (f0/f)

3−n0], so that ∆Φ (A0) increases (de-
creases) as the frequency increases for n0 < 3 and asymp-
totes to a constant when f ≫ f0.
The left and right panels of Figure 4 show the upper

limits on the amplitude A0 (and N0βλ) obtained by sub-
stituting ∆Φ from Figure 1 into equations (9) and (11),
respectively. One clearly sees the significantly differ-
ent amplitudes and frequency behavior described above.
Note that the small changes in A0 at f ≫ f0 in the right
panel are due to the frequency dependence of the mea-
sured/expected ∆Φ from Figure 1.
Focusing only on the power law results from the more

recent, corrected parameterization of the p-g instability
shown in the left panel, we see that the amplitude A0

is already constrained using GW170817 data to A0 <
10−7 for n0 > −1 at frequencies most relevant to the
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instability, i.e., f . 100 Hz. Converting this amplitude
A0 to N0βλ using equation (10) and assuming β ∼ 1
and λ ∼ 1, the number of unstable p-g modes is limited
to N0 ≪ 100 just from GW170817 and could be as low
as N0 ∼ a few at f . 50 Hz and/or for n0 & 2. The
constraint from the amplitude A0 here is weaker than
from energy loss ∆E shown in Figure 2, where the latter
gives N0βλ < 1 at f < 70 Hz using GW170817. While
there are many uncertainties with the physics of the p-
g instability and with our estimates, the p-g instability
appears to be much less effective than first suggested.
In fact, it may be inconsequential in the evolution of
inspiralling NSs. Our analysis can also be interpreted as
constraining the amplitude of undetermined mechanisms
that are described by the two parameterization models
considered above.
A detailed study of GW data from GW170817 specifi-

cally searching for effects of the p-g instability was con-
ducted in [13]. The analysis did not provide evidence for
effects of the instability but, if assumed to be present,
obtained constraints on its parameters f0, n0, and A0.
The search for the mode saturation frequency f0 in the
range 10–100 Hz yielded a peak in the posterior distri-
bution at ∼ 70 Hz, but such a peak also appeared in
simulated data and thus was attributed to noise. The re-
sults indicated a slight preference for n0 > 2. An upper
limit of A0 ≈ (3 − 7) × 10−7 was obtained, and hence
N0 . 200 at 100 Hz, assuming β = 1 and λ = 1. The
energy dissipated by the p-g instability was constrained
to be ∆E < 2× 1048 erg (90% confidence) at f ≤ 70 Hz.
These constraints on A0, N0, and ∆E from the more
comprehensive study are all within a factor of several of
our simple estimates.

IV. DISCUSSION

In this work, we showed that recently calculated un-
certainties of the phase of GW signals detected from the
binary NS inspiral and merger GW170817 and similar un-
certainties expected from the future detectors of A+ and
CE (and presumably ET) are much smaller than prior
work assumed at GW frequencies f ≤ 300 Hz, where
differences in theoretical waveforms are not significant.
These smaller ∆Φ suggest future detections of nearby
merging NSs could begin to measure additional orbital
energy loss via mechanisms such as excitation of NS g-
mode oscillations. However, the precision in ∆Φ may
be insufficient to enable measurements of the strength of
the coupling between the tidal potential and individual
oscillation modes Qα, unless a very nearby NS inspiral is
detected. But it is important to be mindful of the fact
that our current values of Qα are uncertain due to the-
oretical uncertainties and approximations. In order to
make progress, we need accurate relativistic calculations
for realistic NS models. At the least, non-detections with
CE may provide constraints on particle fractions or su-
perfluid matter inside NSs. We also find that the phase

uncertainty of the signal from GW170817 compared to
the phase changes implied by the dissipated energy and
amplitude of the p-g instability already limits the num-
ber of unstable p-g modes to as low as N0 ∼ 1 if the other
parameters are at values expected from the model, i.e.,
β ∼ 1 and λ ≈ 0.1−1. Such low values of N0 indicate the
p-g instability is unlikely to produce interesting effects in
GW signals from NS mergers, although there are many
unknowns here as well.
One avenue that might lead to improved sensitivity to

detecting dynamical tidal effects like those studied here is
to combine GW signals from multiple inspiralling NS sys-
tems. Indeed there are studies of stacking signals to de-
termine how well masses and tidal deformabilities could
be measured (see, e.g., [28]). The strategy for the case
here would be more complicated as it also involves matter
composition, but it is clearly worth exploring. To mea-
sure resonances at specific GW frequencies from a stacked
signal would require that, e.g., the relation between g-
mode frequencies and mass, radius, and stratification are
known precisely.
We focused on effects at GW frequencies below 300 Hz

because comparisons between current waveforms used to
analyze GW data of merging NSs have differences that
exceed the measured or expected ∆Φ at higher frequen-
cies [3]. This aspect also needs to be addressed. As wave-
form systematic uncertainties are improved in the coming
years, ∆Φ at higher frequencies would become limited
only by physics not included in the waveforms. Thus
these more precise waveforms could be used to constrain
the presence of unmodeled physics like those studied here
but at higher frequencies, e.g., g-modes in superfluid NSs.
Finally, in Section II, we considered orbital energy loss

and GW phase shifts due to resonant excitation of g-
mode oscillations during the inspiral. Another potential
fluid oscillation that could be resonantly excited gravit-
omagnetically is a r-mode oscillation [22, 29]. The phase
shift from r-mode resonance is estimated by [22] (see also
[23]) to be

∆Φ

2π
= 0.006M

−10/3
1.4 R4

10

1

q

(

2

1 + q

)1/3(
f

100 Hz

)2/3

.

(12)
Figure 2 shows the result of substituting this into equa-
tion (1). We see that the effect of r-mode resonances
may be quite significant and could be detectable in the
near future. This motivated recent, more detailed cal-
culations, performed in order to estimate how well NS
parameters could be extracted from data [18, 19].
There are several important points to note regarding

tidal excitation of r-modes. First, the above r-mode
phase shift implies energy is transferred to the orbit such
that orbital decay is prolonged, although [23] finds there
are several related mode resonances that could lead to
phase shifts in the opposite direction, depending on the
alignment between orbital and NS spin angular momenta.
Second, the frequency at which resonance, and thus the
phase shift, occurs is proportional to the NS spin rate
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fspin, i.e., f = (4/3)fspin with a slightly larger coefficient
after accounting for relativistic effects that depend on
M/R [30, 31]. Therefore the NS must be rapidly rotat-
ing in order for the resonance to come into effect in the
sensitivity band of ground-based detectors. Based on our
current understanding and observations of Galactic sys-
tems, NSs in binaries that will merge in a Hubble time
have spin rates fspin < 50 Hz. For an inspiralling NS-NS
system, it is probably unlikely that both NSs would have
high enough spin rates for each to have their r-mode reso-
nantly excited during the late stages of inspiral. Most im-
portantly though, detection of a phase delay at a specific
frequency would provide independent determinations of
M , R, and fspin, which would complement parameters
extracted from the conventional inspiral signal and thus
could be used to break degeneracies. Even non-detection

could be indicative of a merging NS (or NSs) that has a
low spin rate. Thus, while more challenging at lower GW
frequencies, detection is possible and an exciting prospect
for the era of A+, CE, and ET.
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