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This paper describes the design and successful imple-

mentation of a constrained model predictive controller

with integral action for the control of a Twin Rotor

MIMO System (TRMS). The integral action guarantees

zero steady-state error in set-point tracking with robust-

ness towards perturbations of the nominal system param-

eters. In addition to saturation constraints on the input

variables, hard constraints are imposed on the controlled

output variables, i.e. on pitch and yaw angular positions,

to avoid collisions with obstacles. The model predictive

controller was designed using a high-fidelity nonlinear

model of the TRMS developed in previous work. As an in-

termediate step, exact linearised models of the TRMS are

obtained and their closed-form expressions are reported.

The controller was tested experimentally, also showing

its effectiveness in ensuring actual collision avoidance by

the TRMS when physical obstacles were present.

1 INTRODUCTION

The control of the Twin Rotor MIMO System

(TRMS) has proven challenging, due to the simultaneous

presence of strongly nonlinear and coupled dynamics, and

∗Address all correspondence related to ASME style format and fig-

ures to this author.
†Address all correspondence for other issues to this author.

to the fact that actuation torques are obtained through the

aerodynamics of rotor blades, rather than directly (as it

happens, for instance, in robot manipulators). For these

reasons, the control of the TRMS is often employed as

test bed for control strategies, see e.g. [1–8]. In this work,

we report on the implementation of model predictive con-

trol (MPC) for a TRMS.

In MPC [9, 10], a model of the system is used to op-

timise the trajectories of states and inputs, by solving a

constrained optimal control problem over a rolling predic-

tion horizon. The origins of MPC date back to the 1960s,

when its first formulations were defined [11]. Thanks to

its ability to handle multivariable systems, and later to

its ability to deal with operational constraints and nonlin-

earities, MPC was first employed in the process control

industry [12], and later extended to other areas, surveyed

for example in [13, 14]. High computational power is a

key MPC requirement in order to determine optimal in-

put sequences. As a consequence, the availability of high-

performance optimization solvers and faster microproces-

sors has extended the use of MPC from process control to

applications requiring higher sampling frequencies, such

as automotive [15], robotics [16], power electronics [17]

and building control [18].

From the theoretical point of view, MPC can be de-

signed for both linear and nonlinear systems [19], includ-



Fig. 1. The TRMS used in this paper’s experiments

ing hybrid systems [20]. The presence of model inaccura-

cies and external disturbances can be accounted for by re-

lying on the inherent robustness of MPC [21], or devising

approaches that explicitly account for robust constraint

satisfaction, using either a deterministic framework [22]

or a stochastic one [23,24]. Specific approaches were also

defined to guarantee recursive feasibility and closed-loop

stability under inexact numerical optimization [25]. In

case a model of the system is not available, data-driven

approaches to MPC have been recently proposed [26],

following the general data-driven framework used also

for other control methods [27–29]. An approach that is

in some cases advantageous compared to solving a nu-

merical optimal control problem online is explicit MPC,

which has been mainly developed for linear systems, and

formulated using both exact [30] and approximate vari-

ants [31, 32].

The main advantages of MPC compared to other con-

trol approaches are the ability to explicitly impose state or

output constraints, and the possibility to exploit informa-

tion on the future evolution of reference variables, when

available. These characteristics, together with a relatively

simple and intuitive tuning process (similar in most cases

to that of linear quadratic regulators) have greatly con-

tributed to the spread of MPC in the above-mentioned ap-

plication domains. Only a few applications of MPC to a

TRMS have been reported in the literature, such as: MPC

schemes based on adaptive linearization [33, 34], simpler

schemes based on a single linearized model [35, 36], and

decentralized schemes, in which pitch and yaw were reg-

ulated by different model predictive controllers [37].

In this work, we present the use of an MPC law with

integral action and output constraints for the control of a

TRMS. Neither of these two features has ever been shown

in the TRMS literature, and thus the formulation and real-

time experimental validation of this strategy constitute a

novel contribution. More specifically, the main novelties

of our approach are:

1. Zero steady-state error tracking of constant set-points

is obtained by adding the integral of the tracking

error to the MPC cost function. This simple and

straightforward approach, whose rationale is illus-

trated afterwards, is typically used in other state-

space control approaches, is shown here to be effec-

tive in terms of implementation and achieved perfor-

mance.

2. Hard constraints are imposed on both inputs (motor

voltages) and outputs (pitch and yaw angular posi-

tions) and experimental results are shown in which

ensuring these constraints prevents a collision of the

TRMS with an obstacle in its workspace. To the best

of our knowledge, in previous works on MPC applied

to the TRMS [33–37], the ability to enforce output

constraints, which is one of the main advantages of

MPC over other techniques, was never demonstrated.

If we consider the possible presence of obstacles in

the TRMS workspace, this feature can be important

to avoid collisions that might damage the system.

Offset-free MPC is an active field of research, with

most approaches based on the use of disturbance ob-

servers - see, e.g. [38, 39]. On the other hand, the inclu-

sion of an integral action to guarantee zero steady-state er-

ror is a simple approach rooted in both frequency-domain

and state-space control frameworks. Its use in this work

is to show that it is effective for highly nonlinear sys-

tems of the TRMS type. It is worth highlighting that only

few works could be found in which a simple integral ac-

tion is used in conjunction with MPC. In [40], MPC with

integral action was used for accurate and automatic in-

sulin delivery in patients with Type-1 diabetes, based on

continuous glucose monitor readings. It was also used

in the field of power electronics and electric power gen-

eration to control a surface-mounted permanent-magnet

synchronous generator [41], and to control a single phase

Z-source inverter [42].

In this work, in order to simplify calculations and ob-

tain a real-time implementation, the high-fidelity nonlin-

ear TRMS model presented in [43] is linearized at some

equilibrium points, and the obtained LTI models are used

by the model predictive controller. The linearisation of

the nonlinear TRMS model [43] is not a trivial task; it

has been carried out in a preliminary conference contribu-

tion [44] and is reported here for the first time in a journal



publication.

The paper is organized as follows: the nonlinear and

linearised models of the TRMS are presented in Section 2,

the model predictive control problem is defined in Section

3, the tuning strategy of the control law is explained in

detail in Section 4, results are presented in Section 5, and

conclusions are drawn in Section 6.

Notation: The notation is standard: In is the identity

matrix of size n. 0n,m is the zero matrix of dimensions n
and m. ′ denotes matrix transposition. diag(λ1, .., λn) is

the diagonal matrix with elements λ1, .., λn. sgn denotes

the sign function.

2 CONTROL-ORIENTED MODELING

The TRMS (Fig. 1) is a two-degree-of-freedom me-

chanical system which consists of a beam mounted on a

rotary bearing enabling the beam to rotate in the vertical

plane (pitch plane). The horizontal motion (yawing mo-

tion) of the beam is permitted thanks to another rotary

bearing situated at the top of and aligned with the col-

umn that supports the whole assembly. The beam is coun-

terbalanced by a perpendicular rod rigidly attached at its

center. The beam is actuated by two mutually perpendicu-

lar propellers located at its ends and driven by DC motors.

Thrust is governed by and is proportional to the square of

propellers’ angular velocity. The TRMS is characterized

by a highly nonlinear and cross-coupled dynamics, and is

a challenging system to control.

2.1 Equations of motion

The TRMS equations of motion were derived in [43]

and consist of the following four coupled, second-order,

nonlinear equations:

Iψψ̈ −HZ(ψ)φ̈+ It1ω̇t = −
1

2
Icφ̇

2 sin(2ψ)

− Im1ωmφ̇ sinψ −GY (ψ) + CTmωm |ωm| lm

− CRtωt |ωt| − fvψψ̇ − fcψ sgn ψ̇ (1)

−HZ(ψ)ψ̈+
(

Iφ+ Ic cos
2 ψ

)

φ̈+ Im1ω̇m cosψ

= HY (ψ)ψ̇
2+ Icφ̇ψ̇ sin(2ψ)+ Im1ωmψ̇ sinψ

+ CTtωt |ωt| lt cosψ− CRmωm |ωm| cosψ

− fvφφ̇− fcφ sgn φ̇− Cc (φ− φ0) (2)
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Fig. 2. TRMS pitch (top) and yaw (bottom) angles definitions.

Im1ω̇m+Im1φ̈ cos(ψ)=Im1φ̇ψ̇ sinψ +
ktmkum
Rm

um

−

(

CRm |ωm|+ fvm +
kvmktm
Rm

)

ωm (3)

It1ω̇t + It1ψ̈ =
kutktt
Rt

ut

−

(

CRt |ωt|+ fvt +
kvtktt
Rt

)

ωt (4)

where

[

HY (ψ)
HZ(ψ)

]

,

[

cosψ − sinψ
sinψ cosψ

] [

Hy

Hz

]

(5)



In these equations, the subscript “m” or “t” refer to the

main or the tail rotor, respectively. The pitch angle is de-

noted as ψ while φ denotes the yaw angle, as indicated

in Fig. 2. The main and tail rotor angular velocities are

referred to as ωm and ωt, respectively. The parameters of

the equations of motion are given in Table 1 where lm and

lt denote the lengths of the main and tail beams, Rm and

Rt are the electric resistances of the motors, kvm and kvt
are the motors EMF constants. ktm and ktt are the motors

torque constants and kum and kut are the main and tail

motors input gains. The other entries in Table 1 are the

mass moments of inertia (initial I), friction coefficients

(initial f ) and main and tail rotors aerodynamics thrust

and drag coefficients with initial C where the subscripts

T (respectively R) refer to thrust (respectively drag) and

the superscripts “+” (respectively “−”) refer to a clock-

wise (respectively an anticlockwise) rotation of the rotor.

Finally, φ0 denotes the yaw angle position for which the

restoring moment (due to the cables) is zero and ψ0 de-

notes the pitch position at rest (i.e. when the main rotor is

idle). See [43] for a complete description and estimation

of the TRMS parameters.

In the sequel, the TRMS state vector is defined as:

x ,
[

ψ φ ψ̇ φ̇ ωm ωt
]′

(6)

and the control input as:

u ,
[

um ut
]′

(7)

which consists of voltages in the interval [−2.5, 2.5 ]V
that are then linearly amplified in order to map to the ap-

propriate DC motors ranges.

2.2 Solutions at equilibrium

The equilibrium states of a nonlinear model can, in

principle, be found numerically using e.g. quadratic se-

quential programming or Newton-Raphson algorithms.

One drawback is that these algorithms require an initial

guess and the convergence to an equilibrium state is not

guaranteed. Another issue, due to the ill-conditioned na-

ture of the TRMS model, is that standard numerical tools

such as the “trim” and “linmod” MATLAB routines do

not provide reliable results for this model. This subsec-

tion and the next provide exact, closed-form solutions to

the equilibrium states along with explicit expressions for

the state-space matrices of the linearized TRMS model.

The results of this section were preliminary introduced

in [44].

Table 1. Parameters of the equations of motion [43]

parameter value unit

lm 0.254 m

lt 0.275 m

Rm Rt 8 Ω

kvm kvt 0.0202 NmA−1

ktm ktt 0.0202 V rad−1 s

kum 8.5 No units

kut 6.5 No units

Im1 1.7249× 10−4 kgm2

It1 3.2170× 10−5 kgm2

Iψ 6.1644× 10−2 kgm2

Iφ 2.1117× 10−2 kgm2

Ic 8.3286× 10−2 kgm2

fvψ 4.2150× 10−4 Nmrad−1 s

fcψ 4.0548× 10−4 Nm

fvφ 1.1243× 10−4 Nmrad−1 s

fcφ 1.1758× 10−5 Nm

fvm 4.1993× 10−6 Nmrad−1 s

fvt 3.2498× 10−6 Nmrad−1 s

C+
Tm 1.4971× 10−5 Ns2 rad−2

C−
Tm 8.9974× 10−6 Ns2 rad−2

C+
Tt 3.7755× 10−6 Ns2 rad−2

C−
Tt 2.3046× 10−6 Ns2 rad−2

C+
Rm 5.0582× 10−7 Nms2 rad−2

C−
Rm 4.5047× 10−7 Nms2 rad−2

C+
Rt 9.7031× 10−8 Nms2 rad−2

C−
Rt 9.9176× 10−8 Nms2 rad−2

Cc 9.8664× 10−3 Nmrad−1

ψ0 −0.5369 rad

φ0 0.2500 rad

Gz −0.252 54 Nm

Gy 0.150 32 Nm

Hz −1.5446× 10−3 kgm2

Hy 6.6120× 10−3 kgm2



The angular velocities of the rotors, ωme and ωte, at

equilibrium, are obtained by solving the nonlinear equa-

tions of motion (1)-(2) in which ψ̇, φ̇, ψ̈ and φ̈ are set to

zero, that is:

[

CTmlm −CRt
−CRm cosψe CTtlt cosψe

] [

ωme|ωme|
ωte|ωte|

]

=

[

Gy cosψe −Gz sinψe
Cc(φe − φ0)

]

where ψe and φe are the equilibrium values for pitch

and yaw angles, respectively. Solving for ωme|ωme| and

ωte|ωte| yields:

ωme|ωme| =
1

∆
((Gy cosψe −Gz sinψe)CTtlt cosψe

+ CRtCc(φe − φ0))

ωte|ωte| =
1

∆
((Gy cosψe −Gz sinψe)CRm cosψe

+ CTmlmCc(φe − φ0))

where

∆ = (CTmCTtlmlt − CRmCRt) cosψe.

These equations can be rearranged as:

ωme|ωme| =
CTtlt
2∆

(√

G2
y+G

2
z cos(2ψe−θ)+Gy

)

+ CRt
Cc
∆

(φe − φ0) (8)

ωte|ωte| =
CRm
2∆

(√

G2
y+G

2
z cos(2ψe−θ)+Gy

)

+ CTmlm
Cc
∆

(φe − φ0) (9)

where θ := tan−1(−Gz/Gy).
The propeller thrust and drag coefficients such as

CTm and CRm (for the main rotor) depend on the sign of

the rotor velocity, that is, these can take the values C+
Tm,

C+
Rm or C−

Tm, C−
Rm depending on the direction of rota-

tion of the rotor. Thus, when solving (8)-(9), since there

are two rotors, four cases must be tested for each given

equilibrium position pair (ψe, φe). The velocities to re-

tain are those which have their signs matching the correct

propeller drag and thrust coefficients which were a priori

assigned to the right-hand sides of (8) and (9).
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Fig. 3. Propellers’ velocities at equilibrium versus pitch positions

for the fixed rest yaw position: φe = φ0.

The solutions are plotted in figures 3 and 4. Fig. 3

shows the equilibrium main and tail rotors angular veloc-

ities against various pitch angle equilibrium values when

the yaw angle is constant and equals to its rest value φ0.

Equations (8)-(9) show that ωme and ωte simultaneously

vanish and change signs at the rest positions (ψ0, φ0)
where

ψ0 =
(

−θ − cos−1Gy/
√

G2
y +G2

z

)

/2

≈ −0.5369 rad (10)

Note that, because thrust and drag coefficients depend on

rotor velocity directions, the equilibrium velocities curves

are not symmetric with respect to the point (ψ0, 0) as

seen in Fig. 3.

In the most general situation, when φe 6= φ0, equa-

tions (8)-(9) show that the equilibrium yaw position will

not be affected by the main rotor velocity significantly

becauseCTtlt is much greater than CRtCc. However, be-

cause the yaw axis is subject to a restoring torque due to

an electric connection cable which acts like a weakly non-

linear torsional spring, the equilibrium tail rotor velocity,

ωte, will depend heavily on both equilibrium pitch and

yaw values as observed on the contour map of Fig. 4. The

equilibrium tail rotor velocity also depends on the main

rotor position which, due to its size, generates stronger

vortices and so stronger aerodynamics couplings.



2.3 Linearization of the equations of motion

The equations of motion are linearized by perturbing

the system state, x(t), and the control input, u(t), about

their equilibrium points xe and ue, that is, by introducing

x(t) = xe + δx(t) and u(t) = ue + δu(t) into the equa-

tions of motion (1)-(4). Neglecting the Coulomb friction

parameters fcψ and fcφ and the terms of order higher than

one in (1)-(4) provides directly the linear, time-invariant

approximated dynamics in descriptor form:

Eδẋ = AEδx+BEδu (11)

where the descriptor matrix E is given by:

E =

[

I2 0
0 E2

]

and where E2 is the symmetric, invertible matrix given

by:

E2 =








Iψ −HZ(ψe) 0 It1
−HZ(ψe) Iφ + IC cos2 ψe Im1 cosψe 0

0 Im1 cosψe Im1 0
It1 0 0 It1









whose entries consist of the various inertia terms and are

functions of the pitch equilibrium position ψe.
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Fig. 4. Equilibrium tail rotor angular velocity contour lines for

equilibrium values of pitch angles in ±1 rad and yaw angles in

±2 rad.

The matrixAE depends on the pitch equilibrium, ψe,
and on the propellers angular velocities, ωme and ωte, and

is given by:

AE =

[

02,2 I2 02,2
AE21 AE22

]

where

AE21 =








GZ(ψe) 0 −fvψ −Im1ωme sinψe
CRmω

2
me sinψe −Cc Im1ωme sinψe −fvφ
0 0 0 0
0 0 0 0









and

AE22 =








2CTmlmωme sgnωme −2CRtωte sgnωte
−2CRm cosψeωme sgnωme 2CTtlt cosψeωte sgnωte

−2CRmωme sgnωme 0
0 −2CRtωte sgnωte









−









0 0
0 0

fvm + kvmktm
Rm

0

0 fvt +
kvtktt
Rt









Finally, the control matrix is given by:

BE =

















0 0
0 0
0 0
0 0

ktmkum

Rm
0

0 kttkut

Rt

















Because E is non-singular for any ψe, the linearized

TRMS dynamics reduce to the continuous-time, linear

state-space dynamics:

δẋ = E−1AEδx+ E−1BEδu

= Ac(ψe, ωme, ωte)δx+Bc(ψe)δu (12)

which are valid about the equilibrium state:

xe =
[

ψe φe 0 0 ωme ωte
]′

(13)



and the equilibrium control input voltages, deduced from

(3) and (4), given by:

ume =
Rm

ktmkum
(CRm |ωme|+ fvm)ωme

+
kvm
kum

ωme (14)

ute =
Rt

kttkut
(CRt |ωte|+ fvt)ωte +

kvt
kut

ωte (15)

where ωme and ωte — which are both functions of the

pitch and yaw equilibrium positions — satisfy equations

(8) and (9). The interested reader is referred to [44] for

more details.

3 THE MODEL PREDICTIVE CONTROL LAW

3.1 Formulation

As the model predictive control law is formulated in

discrete time, it is necessary to discretize the linearized

system dynamics given in (12). These are obtained with

the zero-order-hold method with sampling period Ts as:

δxk+1 = Aδxk +Bδuk (16)

with

A = eAcTs , B =

∫ Ts

0

eAcsBc ds (17)

and with state and control input deviations from equilib-

rium defined as:

δxk = xk − xe, δuk = uk − ue (18)

in which xe and ue refer to the equilibrium state and equi-

librium control input about which the continuous-time

nonlinear TRMS model (1)-(4) is linearized. For the sam-

pling periods typically used for the TRMS, that is, rang-

ing from 1 to 25 ms, the pair (A,B) is found to be stabi-

lizable.

The control objective is to steer asymptotically to

zero the tracking error:

ek = rk − yk = rk − C(xe + δxk) (19)

where rk is the set-point signal which specifies the desired

pitch and yaw trajectories and yk = [ψk, φk]
′ = Cxk is

the TRMS output to be controlled where

C =

[

1 0 0 0 0 0
0 1 0 0 0 0

]

(20)

The set-point introduced above specifies absolute trajec-

tories. Depending on the tracking problem, a relative set-

point can be specified with ek = rk − Cδxk .

In order to achieve a zero steady state tracking error

in response to a constant set-point, the tracking error ek =
rk − yk is integrated as follows:

σk+1 = σk + Tsek (21)

where σ denotes the integrator state vector. The discrete-

time plant model (16) together with the integrator dynam-

ics given in (21) is thus governed by:

ξk+1 = fa(ξk, δuk, ρk) = Aaξk +Baδuk + ρk (22)

where

ξk =

[

δxk
σk

]

(23)

is the state-vector of the augmented system and where

Aa =

[

A 0
−TsC I

]

, Ba =

[

B
0

]

, ρk =

[

0
Ts(rk − ye)

]

are the corresponding state space matrices where ye =
Cxe.

It can be shown that the pair (Aa, Ba) is stabilizable

if (A,B) is stabilizable and if

[

A− I B
C 0

]

has full row-

rank. The latter condition ensures that the system does not

contain transmission zeros at the zero frequency. For the

TRMS, it is easy to verify that the rank condition always

holds with the C matrix given in (20). In general, if the

above conditions are satisfied and if the control horizon

is long enough, an unconstrained model predictive con-

troller for the augmented system will be able to asymp-

totically steer the error to zero.

Throughout, we will assume that the specified set-

points are feasible, that is, asymptotic tracking can

be achieved without violating the physical constraints.

Hence, in the context of integral control, the MPC track-

ing problem of a constant set-point reduces to a standard

MPC regulation problem.



The model predictive controller is implemented by

solving a finite-horizon optimal control problem at each

sampling instant. In the finite-horizon optimal control

problem formulation, the discrete-time index k refers to

the time evolution of the actual system dynamics, while

k + i|k refers to values predicted at time k + i given

the initial condition at time k. The total length of the

prediction in terms of discrete-time steps (namely, the

prediction horizon) is indicated as N , and is chosen for

our application as N = 20 together with a sampling pe-

riod Ts = 20 ms: this implies a total prediction time of

NTs = 0.4 s. We also define the sequences

δUk =
{

δuk|k, δuk+1|k, . . . , δuk+N−1|k

}

(24)

Ξk =
{

ξk|k, ξk+1|k, . . . , ξk+N |k

}

(25)

which allow us to introduce the cost function

J(Ξk, δUk)

=

N−1
∑

i=0

ℓ(ξk+i|k, δuk+i|k) + Vf (ξk+N |k) (26)

In (26), the so-called stage cost is defined as

ℓ(ξk+i|k , δuk+i|k)

= ξ′k+i|kQξk+i|k + δu′k+i|kRδuk+i|k (27)

where Q and R are diagonal matrices with strictly posi-

tive entries. The terminal cost is given by

Vf (ξk+N |k) = ξ′k+N |kPξk+N |k (28)

where P is the unique symmetric, positive semi-definite

matrix, solution to the discrete-time algebraic Riccati

equation forAa,Ba,Q andR. The existence ofP is guar-

anteed thanks to the stabilizability of the pair (Aa, Ba).
The constraints in the finite-horizon optimal control

problem impose upper and lower bounds on the control

inputs, as u = ue + δu ∈ [umin, umax], where

umin =

[

−2.5
−2.5

]

, umax =

[

2.5
2.5

]

(29)

are defined to satisfy the physical limits on input voltages

already mentioned in Section 2. The constraints on the

output are defined by y = ye + δy ∈ [ymin, ymax], where

��

Fig. 5. Model Predictive Controller with integral action (z−1 rep-

resents the unit time-delay)

δy = Cδx and ymin, ymax are limits which depend on the

specific obstacles present in the TRMS workspace.

After defining as N[a,b], with a, b integers, the se-

quence {a, a+ 1, . . . , b}, the finite-horizon optimal con-

trol problem can be finally introduced as follows:

min
Ξk,δUk

J(Ξk, δUk) (30a)

subject to

ξk|k = ξk (30b)

ξk+i+1|k

=fa(ξk+i|k , δuk+i|k, ρk), i ∈ N[0,N−1] (30c)

umin ≤ δuk+i|k+ ue ≤ umax, i ∈ N[0,N−1] (30d)

ymin ≤ δyk+i|k+ ye ≤ ymax, i ∈ N[1,N ] (30e)

The first equality constraint (30b) provides the initial

state to the prediction model (30c) with the current value

ξk, whose components are directly obtained from sensor

measurements (for δxk) and from the control law (for

σk). The second equality constraint (30c) imposes the

dynamics (22) of the augmented system along the pre-

diction horizon. Finally, the inequality constraints (30d)-

(30e) impose the input and output constraints, respec-

tively. Once the optimal control sequence δU∗
k has been

computed only its first entry, namely δu∗
k|k is used to form

the control input applied to the plant:

uk = ue + δu∗k|k (31)

The above optimization problem is then repeatedly solved

at each sampling instant, according to the receding-

horizon principle [10]. The overall model predictive con-

trol law with integral action is shown in Fig 5. No-

tice that the integral action, in addition to allowing the

achievement of a set-point different from xe without re-

linearizing the system dynamics, provides an implicit



compensation of the discrepancy between the actual (non-

linear) TRMS dynamics and its linearized version.

If the MPC control law that generates uk in (31)

asymptotically brings system (22) to a steady state, then it

can be shown that ek tends to zero as k → ∞, and thus no

steady-state error is present. Indeed, if system (22) tends

to a steady state as k → ∞, this holds also for the state of

the integral action σk, and thus limk→∞ σk+1 − σk = 0.

By substituting this result in (21), as Ts is a positive con-

stant, we obtain

lim
k→∞

ek = 0. (32)

As ek is defined in (19) as the error between angles ψ and

φ and their references, the convergence to zero steady-

state error directly holds for the nonlinear system as well.

As this result does not rely on any specific values of the

system parameters, it also holds when inexact values are

used for the parameters in (1)-(4).

3.2 Model predictive controller implementation

As all equality and inequality constraints in (30) are

linear and the cost function is convex and quadratic, the

optimal control problem is a convex quadratic program.

Both input and state variables are employed as decision

variables, and following the so-called simultaneous ap-

proach, the quadratic optimization program is formulated

and solved using CVXGEN [45,46]. The high level CVX-

GEN code for the MPC optimization problem of this pa-

per is given in Fig. 6. For computational efficiency, the

sparsity of the augmented system matrices Aa and Ba
was taken into account in the ‘parameter definition sec-

tion’ (not shown here) of the code, which permitted a pre-

diction horizon of length 20. The code of Fig. 6 was then

processed by the online CVXGEN code generator [47] to

produce a C source code, which was then compiled and

used by a 3.20 GHz laboratory PC for the real-time exe-

cution of the control law.

4 CONTROLLER TUNING

To summarize, at each sampling instant (with Ts =
20 ms), after obtaining the state measurement, the MPC

problem (30) is solved using the embedded MPC con-

troller generated via CVXGEN. As a quadratic cost func-

tion is used, the parameters to be tuned consist of the

weighting matrices,Q andR in the stage cost (27). These

are tuned appropriately to penalise the augmented state

(ξ) and the control input (u) respectively. Tuning is

aimed at achieving a fast tracking of set commands with

dimensions

m = 2 # Dimension of the control input

n = 8 # Dimension of the augmented state

N = 20 # Length of the horizon

end

variables

# Augmented system state-vector array

xi[i] (n), i=1..N

# Control input array

delta_u[i] (m), i=0..N-1

end

minimize

# Cost function

sum[i=0..N-1](quad(xi[i], Q) +

quad(delta_u[i], R)) + quad(xi[N], P)

subject to

# Augmented System Dynamics

xi[i+1] == Aa*xi[i] + Ba*delta_u[i] +

rho, i=0..N-1

# Control Input Constraints

u_min <= (delta_u[i] + u_e) <= u_max,

i=0..N-1

# Pitch and Yaw Constraints

psi_con <= (xi[i][1] + x_e[1]), i=1..N

phi_con <= (xi[i][2] + x_e[2]), i=1..N

end

Fig. 6. High level CVXGEN code of the finite-horizon optimal

control problem defined in (30).

a smooth transient response i.e. small overshoot, rise and

settling times. Q and R are initially set up using the

Bryson’s rule [48], and then finetuned so as to yield re-

sponses in line with the contributions of this paper. If we

define Q and R as follows:

Q = diag(q1, q2, ..., q8); R = ηI2

where η is a gain value used in tuning R whose diagonal

elements are equally weighted, the finetuning done for Q
is based on the experiential knowledge that:

- The higher q7 and q8 entries are, the quicker offset-

free tracking response is achieved forψ and φ respec-

tively, by reducing settling time and rise time, but this

may cause an overshoot or an increase of it.

- The higher q3 and q4 entries are, the smoother the

transient responses of ψ and φ become, but at the

cost of increasing the rise time.

- The higher q1 and q2 entries are, the lesser the over-

shoots of ψ and φ become, but at the cost of increased

control action potentially leading to saturation.

- q5 and q6 are left at zero (not tuned) as this would



otherwise present competing objectives against pitch

(ψ) and yaw (φ) position control.

In tuning the R matrix towards achieving satisfactory

tracking, care is taken in finding a tradeoff between not

effectively penalising the control inputs on the one hand,

and avoiding a continued saturation of the control inputs

(um, ut) about umax and umin on the other hand. While

the former is usually very evident in simulation, the latter

(continued saturation of control inputs) is rather subtle in

simulation with hints such as a slight increase in actual

time taken for each simulation, and at an extreme, noisy

control input signals. As a result, continued saturation

of inputs is usually most evident in real-time experimen-

tation, and in the case of the TRMS, causes inordinate

and noisy vibrations of the rotor shields and will tend to

damage the rotor motors if sustained over longer periods.

To avoid continued saturation while getting the best out

of penalising the control inputs, R is usually set as an

identity matrix multiplied by a high gain value, η, usu-

ally 0.1% – 0.2% of the maximum gain value in Q. Sim-

ulation and experimentation offered no significant merit

when the diagonal elements ofR are weighted differently.

The differences between the TRMS pitch and yaw

positions at rest y0 = Cx0, the equilibrium output ye
and the reference positions to be tracked rk (i.e. y0 6=
ye 6= rk) present a large error. This phenomenon leads

to control actions starting at saturation points, meaning

the rotors are forced to start at maximum velocities, and it

causes overshoots usually between 0s and 5s for pitch and

yaw. Having different Q matrices for each command in

rk is one good method to counteract the effect of this phe-

nomenon, among its other benefits to tracking set com-

mands but this method presents an added complexity as

the commands to be tracked in rk increases. As an alter-

native method, σ0 is carefully chosen to reduce the over-

shoots caused by this phenomenon.

5 RESULTS AND DISCUSSIONS

Three experimental cases corresponding to Figs. 7 –

9 respectively are presented below, in which simultaneous

offset-free output command tracking is shown in the first

case, and output constraints are present in the second and

third cases. In all cases (see bottom plots of Figs. 7 – 9),

the control signal satisfies the voltage constraints given in

(29).

In the first case, the TRMS pitch and yaw an-

gles are required to follow two square waves applied

simultaneously, each of period 30 s and of respec-

tive amplitudes 0.4 rad and 1 rad. In this case,

the model predictive controller uses the TRMS dy-
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Fig. 7. Top: pitch (ψ) and yaw (φ) responses to ±0.4 rad and

±1 rad set-points without output constraints. Bottom: main and

tail rotors control signals with limits

namics linearized at values of pitch and yaw both

equal to zero (i.e. ye = [0, 0]′), as well as

Q = diag(6000, 3500, 2000, 1000, 0, 0, 5500, 5000),
R = diag(8, 8), and σ0 = [−0.9, 0.3]′. Well-

damped responses with zero steady-state tracking errors

are achieved thanks to the integral actions as seen in Fig.

7 (top plots). This is also achieved for the second and

third cases, before and after the output constraints are ac-

tively imposed.

In the second case, the yaw reference is fixed at φ0 =
0.25 rad, while the pitch is required to follow a square

wave of amplitude 0.4 rad and of period 30 s. As before,

the model predictive controller uses the TRMS dynamics

linearized at values of pitch and yaw both equal to zero,

as well as σ0 = [−0.9, 0.3]′ and R = diag(8, 8) but with

Q = diag(5000, 500, 500, 6000, 0, 0, 5000, 6000). The

responses in the absence of output constraints and obsta-

cles are shown in Fig. 8 (left plots). A first obstacle is

then inserted, consisting of a paper box. Collision avoid-

ance can be guaranteed for the TRMS if the yaw angle is
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Fig. 8. Top: pitch (ψ) and yaw (φ) responses to set-points ±0.4 rad and φ0 = 0.25 rad for unconstrained and unobstructed yaw

(left), unconstrained but physically obstructed yaw (center), and obstructed yaw with output constraint. The line φobs indicates the

yaw values at which the TRMS hits the obstacle and the line φcon represents the lower yaw constraint. Bottom: control signals um,

ut and limits

kept equal to or above φobs = 0.17 rad (Fig. 10 - top - and

Fig. 8 - middle plots). To prevent collisions with the box,

a lower bound equal to φcon = 0.20 rad is enforced for

the yaw angle in the MPC law; the value of φcon is chosen

slightly higher than φobs to safeguard against a possible

position error of the box, or to the possibility that slight

constraints violation occur due to (i) slight discrepancies

between the nonlinear system model and the behaviour

of the actual plant, (ii) model uncertainties caused by the

linearization procedure and (iii) small computation delays

due to the need to solve the optimisation problem (30) on-

line. The plots of Fig. 8 (right) show the corresponding

responses. It can be seen that pitch overshoot and cou-

pling into pitch are more pronounced when compared to

the unconstrained case i.e. Fig. 8 - middle plots. This is

a probable adverse effect of MPC enforcing the yaw con-

straint at the expense of the introduction of extra dynamic

couplings into the pitch axis. One can also notice that

a slight violation of the imposed state constraint occurs

around 18 s, as the value of φ falls below φcon = 0.20 rad.

However, as the violation is very small, the TRMS still re-

mains at a safe distance from the box, and no collisions

occur.

The third case follows a similar scenario. The yaw

axis is now required to track a ±1 rad square wave of

period 30 s and the pitch axis is required to stay at

its rest position, ψ0 = −0.5369 rad. Unlike previ-

ous cases, the TRMS dynamics is linearized at a pitch

value equal to −0.5 rad and a yaw value equal to 0 rad

(i.e. ye = [−0.5, 0]′) since the TRMS dynamics

is highly influenced by the pitch position. This chal-

lenge is most evident in this case due to the constant

pitch position being tracked (−0.5369 rad) and explains

the vast gap in the weights in q1, q3, q7 vs q2, q4, q8
in Q = diag(6000, 2000, 6000, 2000, 0, 0, 6000, 1500).
R = diag(8, 8), and σ0 = [−0.45, 0]′ are also used in

this case. Fig. 9 - left - shows the responses in the ab-

sence of output constraints and obstacles. A paper box is

then placed such that the TRMS will hit the box if the

pitch angle falls below ψobs = −0.69 rad (Fig. 10 -

bottom - and Fig. 9 - middle plots). To prevent colli-

sions with the box, a state constraint is introduced in the

MPC law, by requiring the pitch angle to remain above

ψcon = −0.6369 rad; this value is chosen slightly higher

than ψobs to safeguard against the sources of uncertainty

already mentioned above for the yaw angle constraints.
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Fig. 9. Top: pitch (ψ) and yaw (φ) responses to set-points ψ0 = −0.5369 rad and ±1 rad for unconstrained and unobstructed

yaw (left), unconstrained but physically obstructed pitch (center), and obstructed pitch with output constraint. The lineψobs represents

the pitch values at which the TRMS hits the obstacle and the lineψcon represents the lower pitch constraint. Bottom: control signals

um, ut and limits

Similar to the second case, the yaw response presents an

increased overshoot (Fig. 9 - right) when the pitch con-

straint is present. Also, no significant violation of the

state constraint can be seen in this case.

The difference in the violations for the constrained

yaw and the constrained pitch cases can be partially at-

tributed to the effect of cross-couplings. The effect on

the yaw position with pitch constraint imposition is sig-

nificantly milder (Fig. 9 - right) in comparison with the

opposite case in Fig. 8 - right. This is expected since

the dynamics of the TRMS depend on the pitch position,

making it easier to control in comparison with the yaw.

A potential key limitation to this work is the rela-

tively short prediction horizon (N = 20) used in the

control law implementation, and this may have also con-

tributed to the negligible output constraint violations dis-

cussed above. This is because the online solver genera-

tor, CVXGEN, can only generate solvers for medium-size

QPs up to 4000 non-zero Karush-Kuhn-Tucker (KKT)

matrix entries, thereby limiting the possible prediction

horizon length. Different online fast solver generators

that can allow longer prediction horizons could be consid-

ered as future work. Another possibility for future work

is to define distributed MPC schemes that can leverage

on a reduced number of decision variables for each con-

troller, thereby providing further chances for increasing

the predictions horizons.

6 CONCLUSIONS

This paper has proposed, formulated and experimen-

tally tested model predictive control laws for a TRMS

with both input and output constraints. In addition, this

paper has proposed a simple yet effective alternative to

the offset-free tracking paradigm commonly found in the

MPC literature. Here, integral action is employed to pro-

vide zero steady-state tracking to constant set-points. The

implementation of a model predictive control law in real-

time has been demonstrated and the experimental results

have shown success in tracking constant references while

satisfying all the input and output constraints aimed at

avoiding collisions between the TRMS and the obstacles

present in its surrounding environment.

Some drawbacks of MPC have also been shown,

in particular the satisfaction of the constraints sometime

led to nonlinear couplings and/or irregularities in the re-
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Fig. 10. Obstructed yaw (top) and obstructed pitch (bottom) corresponding to the second and the third cases of Section 5

sponses which were not observed in the absence of output

constraints and/or when using a linear state-feedback con-

troller. These issues, which can be critical in some appli-

cations and which cannot be easily suppressed by adding

extra constraints to the optimization control problem, re-

quire future attention.
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