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ABSTRACT 

The plasma that is generated during laser materials processing can prevent the direct observation of the target. However, the 

appearance of the generated plasma is correlated with the properties of the material being ablated. Here, we show that deep learning 

can enable the identification of the material in real-time directly from processing camera images of the plasma, and hence can be 

used to automatically prevent machining beyond material boundaries. This work could have applications across laser materials 

processing in cases where the laser induced plasma restricts direct observation of the sample.

1. Introduction 

Lasers are widely used across manufacturing and can create 

features at speeds that are difficult or impossible to make 

using mechanical processes. Lasers are used for a huge 

number of applications including cutting [1–3], modifying 

surfaces [4–6], cleaning [7,8], patterning [9,10], material 

removal [11,12], and depositing thin films [13–15]. Whilst 

laser materials processing can enable high precision 

manufacturing (particularly in the case for femtosecond 

lasers, which can result in significantly reduced heat effects), 

high power lasers can lead to the formation of plasma emitted 

from the material due to ionization [16,17]. As such, real-time 

imaging of the machined surface can be challenging [18,19]. 

To tackle this problem, new techniques are required for 

characterizing the surface of the sample, in real-time, during 

the laser-material interaction. 

Deep learning is a type of artificial intelligence that uses 

neural networks for the modelling of complex systems [20]. 

Neural networks have been used widely, for example in 

speech recognition, image recognition, image generation and 

autonomous driving cars [21]. When applied to the field of 

laser machining [22], deep learning has been shown to be 

capable of defective laser weld identification [23], distortion 

prediction in laser additive manufacturing [24], monitoring of 

femtosecond laser ablation [25], and modelling fibre laser 

cutting [26]. Deep learning enables a data-driven approach, 

where the model is created directly from experimental data. 

Deep learning is therefore an ideal technique for optimizing 

and controlling laser materials processing, as it is a highly 

nonlinear and complex process.  

Previous work has shown the application of laser-

induced plasma for real-time composition monitoring of laser 

additive manufacturing [27], pulsed laser ablation of metals 

[28], and monitoring of laser welding  [29]. Here, we use deep 

learning to enable real-time control of femtosecond laser 

materials processing via imaging the plasma emitted when 

single femtosecond laser pulses interact with the target 

material. Specifically, we show the ability for identification 

of the boundary between two different materials, in real-time, 

during femtosecond laser ablation. Whilst here we show 

examples for two adjacent materials (BiSe and quartz) and 

the edge of a material (glass and air), it is anticipated that any 

combinations of materials could be used if a neural network 

can identify the material from the produced plasma. 

The approach demonstrated here could see applications 

in laser machining in many cases, for example where the 

translation stages have high levels of backlash and/or 

imprecise movement, where the target samples are part of a 

moving component (such as moving machinery or in a marine 

environment), where there is an unknown spatial distribution 

of the sample (such as rust on a metallic surface), or for 

materials where the ablation rate is less predictable. In 

addition, simply applying this approach may remove the need 

for pre-programming the stage coordinates, hence saving 

time and money during manufacturing.  

 

2. Methods 

A Light Conversion Pharos SP was used to produce 190 fs, 1 

mJ pulses, with a central wavelength of 1030 nm. The laser 

pulses were focused onto the surface of the sample using a 

20× Nikon objective, resulting in a maximum laser fluence of 

~ 98 mJcm-2. As shown in the schematic in Fig. 1, two 

cameras and two microscope objectives were used in the 

experiment. Camera 1 (Basler acA4112-20uc, 1914 × 1200, 

RGB) imaged the surface of the sample, and camera 2 (Basler 

daA1920-160uc, 4096 × 3000, RGB) imaged the generated 

plasma perpendicular to the surface of the sample. The 

plasma was generated along the laser axis in the opposite 

direction to the propagation of the laser pulses. The plasma 

was imaged using a 50× Olympus long working distance 

objective. The sample was placed on a motorized XYZ 

translation stage (Thorlabs) that enabled automated 

movement of the sample. The translation stages, shutter-

controlled white light source, the cameras, and the laser were 

all controlled using Python, to enable automated data 

collection.  

A stage velocity of 0.1 mms-1 was used to move the 

sample (move X, then move Y), with 10 µm of X and Y 

backlash corrections applied at each position, followed by a 

period of no movement to allow for image capture of the 

sample for validation. The camera recording the plasma 

images had an integration time of 300 ms to ensure the plume 

was recorded correctly even in the case of random latency in 

the generation of pulses from the laser (where the average 

time for between the computer requesting a single pulse and 



laser machining was ~ 600 ms). To validate the results in this 

study, camera images of the sample were recorded before, 

during and after each incident laser pulse, resulting in a total 

of ~8 seconds between laser pulses. However, in a practical 

implementation, this validation step would not be needed, and 

the camera imaging the plasma could be replaced by a low-

latency high-speed camera triggered directly by the laser 

cavity. 

 

Fig. 1. (a) Schematic of the experimental setup in which laser pulses were 

directed onto a dichroic mirror and onto the sample, causing plasma to be 
emitted from the surface. Camera 1 recorded the surface before and after 

ablation whilst camera 2 recorded images of the plasma. 

The objective of this experiment was to demonstrate that 

a neural network could be used, in real-time, to ensure that a 

scanning laser beam could be prevented from moving beyond 

the boundary of two adjacent materials, directly from 

observation of the generated plasma. This is demonstrated 

through two experiments. Firstly, laser pulses were scanned 

over the surface of a silica slide, whilst the laser was 

prevented from scanning beyond the edge of the silica slide. 

Secondly, laser pulses were scanned over the surface of a 

quartz substrate with regions where the quartz was coated 

with a 1-micron thick layer of BiSe, and the laser focus was 

prevented from scanning beyond the boundary of BiSe-

coated-quartz and uncoated-quartz.  

Surface images of the sample (camera 1) were combined 

with images of the plasma (camera 2) to allow the manual 

identification of the most appropriate label for each recorded 

plasma image. The labels used for the first experiment were 

0 (air), 1 (boundary), and 2 (silica), and the labels for the 

second experiment were 0 (uncoated-quartz), 1 (boundary), 2 

(BiSe-coated-quartz). This data was used to train the two 

convolutional neural networks (CNNs) used for this work, 

each of which received a plasma image and outputted a single 

number (i.e. the label value). 

The plasma images were cropped and resized to 256 × 

256 pixels, before being used as inputs. Both CNNs had 3 

convolutional layers, each consisting of ReLU and max 

pooling sublayers, and the final layer was a regression output. 

The loss function was MSE, and the optimizer was ADAM 

[30]. No data augmentation was applied. The neural networks 

were trained in Python on the Microsoft Windows 10 

computer (Titan Xp 12 GB, Intel i7-7700 CPU @ 3.60GHz, 

64 GB RAM) used to automate the experiment. For 

experiment 1, the training data for initial work had labels of 

0 (35 items), 1 (9 items) and 2 (26 items), whilst the further 

collection of data allowed for training data with labels of 0 

(68 items), 1 (17 items) and 2 (53 items). For experiment 2, 

the training data had labels of 0 (50 items), 1 (4 items) and 2 

(34 items). Training took ~ 2 minutes. Once trained, each 

CNN was then applied to new areas of the samples, in real-

time, to prevent the laser scanning beyond the material 

boundaries. Due to the small size of the CNNs, the time from 

camera data capture to category prediction was ~ 100 ms. If 

the predicted value was below a threshold, then the laser was 

considered to have gone beyond the boundary, and the stages 

were automatically translated to a new line, as shown by the 

flow diagram in Fig. 2. 

 

Fig. 2. Flow diagram showing the sequence of firing a laser pulse, capturing 

surface and plasma images, then inputting the plasma image into a CNN, 

which then processed the image to give an output value. If the output value 
was less than the threshold value (T), the stage translated to a new line. 

Otherwise, the stage moved to the next scan position in the current line. 

3. Results and Discussion 

Figure 3(a) shows the results of laser ablation of a snaking 

pattern beyond the edge of the silica sample, when the laser 

focus was not prevented from scanning beyond the edge of 

the sample. At the center of the laser focus for each position, 



the output value of the CNN is shown as a colored circle. The 

dashed lines (and arrows) indicate the path and direction of 

the laser focus over the sample. As shown in the figure, the 

plasma from silica is associated with a higher predicted value 

than plasma generated from air. Due to the high intensity of 

the femtosecond laser pulse (98 mJcm-2), ionisation of air can 

occur at the laser focus, hence allowing the identification of 

positions beyond the edge of the glass slide. 

The result of laser ablation where the laser is prevented 

from scanning beyond the edge of the silica sample is shown 

in Fig. 3(b). The figure shows the laser ablation ceased once 

the edge of the silica had been reached (using a threshold 

value of 2) and the stages were automatically translated to a 

new line. The figure also shows example plasma images and 

their associated predicted values calculated in real-time, for 

ionizing (c) air, (d) the air/silica boundary, and (e) silica. 

 

Fig. 3. Experimentally collected microscope images of laser ablation of silica 
and air, with the corresponding regression output values for the plasma 

images taken at each position displayed as solid circles in the figure, for (a) 

real-time control turned off (CNN trained with initial training data), and (b) 
real-time control turned on (CNN trained on additional data). Also shown are 

example plasma images and their associated predicted values for (c) air, (d) 

the air/silica boundary, and (e) silica. 

Figure 4(a) and (b) show the result of real-time control of 

laser ablation around the boundary of uncoated-quartz and 

BiSe-coated-quartz. Example plasma images and associated 

predicted values as shown for (c) uncoated-quartz, (d) 

material boundary, and (e) BiSe-coated-quartz. The threshold 

values for Fig. 4 were (a) 1 and (b) 1.5, demonstrating 

patterning control. 

 

Fig. 4. Experimentally collected microscope images of laser ablation of 

uncoated-quartz and BiSe-coated-quartz, with the corresponding regression 

output values for the plasma images taken at each position displayed as solid 
circles in the figure, for threshold values of (a) 1 and (b) 1.5. Also shown are 

example plasma images and their associated predicted values for (c) 

uncoated-quartz, (d) the material boundary, and (e) BiSe-coated-quartz. 

4. Conclusion 

In conclusion, we have demonstrated the real-time control of 

laser materials processing of silica and BiSe-coated quartz, 

through processing of images of plasma generated during 

femtosecond ablation. The results show the application of 

convolutional neural networks for preventing a scanning laser 

focus from moving beyond material boundaries. This work 

could have applications across laser materials processing 

where direct observation of the target sample is restricted. 
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