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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

SCHOOL OF ENGINEERING

Doctor of Philosophy

by Jose M. Garro Fernandez

This thesis focuses on implementing and analyzing the original transitional Amplifica-

tion Factor Transport (AFT) model, its extended version with Reynolds Stress Model

(RSM) closure using Unsteady Reynolds Averaged Navier Stokes (URANS), and Delayed

Detached-Eddy Simulation (DDES) approaches in OpenFOAMv1912. The aim is to en-

able transition prediction for correlation with wind tunnel tests at scaled-model Reynolds

numbers. Verification confirms the required conditions for transition prediction, while

validation demonstrates agreement between the implemented and original models. Pre-

dictions for transitional flow over a backward-facing step are first investigated. Results

highlight the sensitivity in the laminar and transitional regions. AFT and AFT-RSM

models demonstrate varying recirculation lengths, whereas Spalart-Allmaras (S-A) and

k−ϵ models show constant recirculation lengths in both regimes. Additionally, AFT and

AFT-RSM successfully predict the presence of a tertiary bubble, which is not captured

by turbulence models. The performance of AFT-based models for flow past a circular

cylinder is then explored. The findings reveal improved predictions compared to fully

turbulent approaches across the upper-subcritical, critical, and supercritical regimes.

In the upper subcritical regime, the AFT model enhances predictions of pressure, skin

friction coefficient, and recirculation length. In the critical regime, although the models

struggle with separation-transition interaction, they successfully capture the stretched

wake and resulting drag reduction. AFT models demonstrate constant values of CD and

St in the supercritical regime, distinguishing them from γ − Reθ and γ models. Addi-

tionally, the AFT-DDES model exhibits similar performance to AFT and AFT-RSM,

while providing an improved description of wake behavior. The correlation study re-

veals differences between original AFT boundary layer properties and LES simulations

for circular cylinder flow. The growth of H12 vs HL in the original model is steeper than

LES results, while kv vs H12 shows faster growth in LES due to smaller momentum

thicknesses. A single correlation is achieved by averaging both behaviours using two

Reynolds numbers. Implemented in OpenFOAM, the new correlations delay transition

by approximately two degrees compared to the modified original AFT model.
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https://www.southampton.ac.uk/about/departments/faculties/engineering-and-physical-sciences.page
https://www.southampton.ac.uk/engineering/index.page
mailto:jmgf1u17@soton.ac.uk




Contents

Nomenclature xvii

1 Introduction 1

1.1 General Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Layout of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review 9

2.1 Transition Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Natural Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Bypass Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Separation-Induced Transition . . . . . . . . . . . . . . . . . . . . 11

2.1.4 Reverse Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Flow Parameters Influencing Transition . . . . . . . . . . . . . . . . . . . 13

2.2.1 Freestream Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Pressure Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Other types of Disturbances . . . . . . . . . . . . . . . . . . . . . . 13

2.3 The intermittency γ concept . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Origin and Development of Intermittency . . . . . . . . . . . . . . 14

2.4 Intermittency Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Conditionally Averaged Flow Equations . . . . . . . . . . . . . . . 18

2.4.2 Algebraic Correlations . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.3 Intermittency Transport Equations . . . . . . . . . . . . . . . . . . 21

2.5 Transitional Flow Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.1 Local-Correlation-Based γ −Reθ Model . . . . . . . . . . . . . . . 23

2.5.2 Local-Correlation-Based γ Model . . . . . . . . . . . . . . . . . . . 24

2.5.3 Laminar Fluctuation Energy Method . . . . . . . . . . . . . . . . . 27

2.5.4 LES and DNS for Transition . . . . . . . . . . . . . . . . . . . . . 28

2.5.5 Summary of Transitional Modelling Methods . . . . . . . . . . . . 29

2.6 Backward Facing Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6.1 Review of experimental studies . . . . . . . . . . . . . . . . . . . . 31

2.6.2 Review of numerical studies . . . . . . . . . . . . . . . . . . . . . . 33

2.6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7 Flow past a circular cylinder . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7.1 Review of experimental studies . . . . . . . . . . . . . . . . . . . . 35

2.7.2 Review of numerical studies . . . . . . . . . . . . . . . . . . . . . . 37

2.7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

v



vi CONTENTS

3 Amplification Factor Transport Model 41

3.1 Amplification Factor Transport Model . . . . . . . . . . . . . . . . . . . . 41

3.2 Transitional Amplification Factor Transport with Reynolds Stress Model . 47

3.2.1 Reynolds Stress Model . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.2 Transitional AFT with Reynolds Stress model . . . . . . . . . . . . 50

3.3 Transitional Delayed Detached Eddy Simulation Amplification Factor Trans-
port Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Zero Pressure Gradient Flat Plate 57

4.1 Details of numerical simulation . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.1 Simulation domain and boundary conditions . . . . . . . . . . . . 58

4.1.2 Design of the grids . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.3 Numerical schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Zero Pressure Gradient Flat Plate Verification and Validation . . . . . . . 59

4.2.1 Sensitivity to wall-normal grid distribution . . . . . . . . . . . . . 59

4.2.2 Ncrit effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.3 Verification of the AFT and AFT-RSM models . . . . . . . . . . . 62

4.2.4 Validation for AFT and AFT-RSM . . . . . . . . . . . . . . . . . . 66

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Backward Facing Step 71

5.1 Details of numerical simulation . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.1 Simulation domain and boundary conditions . . . . . . . . . . . . 71

5.1.2 Numerical properties . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1.3 Design of the grids . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.1 Laminar Region - Re < 1200 . . . . . . . . . . . . . . . . . . . . . 75

5.2.2 Transitional Region - 1200 < Re < 6600 . . . . . . . . . . . . . . . 78

5.2.3 Turbulent Region - Re > 6600 . . . . . . . . . . . . . . . . . . . . 81

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Validation at ReD = 3900 for a circular cylinder flow 85

6.1 Details of numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1.1 Simulation domain and boundary conditions . . . . . . . . . . . . 86

6.1.2 Numerical properties . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Validation - ReD = 3900 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2.1 Transitional URANS . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2.2 Transitional DDES . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7 Performance of AFT models at different Reynolds number regimes 107

7.1 Sub-critical - ReD = 1.5× 105 . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.1.1 Mesh and computational setup . . . . . . . . . . . . . . . . . . . . 108

7.1.2 Prediction of the flow-field . . . . . . . . . . . . . . . . . . . . . . . 108

7.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2 Critical - ReD = 3.5× 105 . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2.1 Mesh and computation setup . . . . . . . . . . . . . . . . . . . . . 118



CONTENTS vii

7.2.2 Predictions of the flow-field . . . . . . . . . . . . . . . . . . . . . . 119

7.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.3 Super-critical - ReD = 6.5− 8.5× 105 . . . . . . . . . . . . . . . . . . . . 130

7.3.1 Mesh and computation setup . . . . . . . . . . . . . . . . . . . . . 130

7.3.2 Predictions of the flow-field . . . . . . . . . . . . . . . . . . . . . . 130

7.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.4 Mean Flow quantities at different Reynolds numbers . . . . . . . . . . . . 144

7.4.1 Drag coefficient CD . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.4.2 Strouhal number St . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.4.3 Minimum pressure (−Cp,min) and separation point ϕi,sep . . . . . . 148

7.4.4 Base pressure −Cp,b and recirculating length Lr/D . . . . . . . . . 149

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8 Analysis of the Amplification Factor Transport Correlations 155

8.1 Initial correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.2 Circular cylinder vs Falkner-Skan profiles . . . . . . . . . . . . . . . . . . 158

8.2.1 Relation between the integral shape factor (H12) and local shape
factor (HL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.2.2 Relation between Reθ and ReV via proportionality function kv . . 160

8.2.3 Function for the critical Reynolds number Recr . . . . . . . . . . . 161

8.2.4 Function for the growth of amplification factor dn/dReθ . . . . . . 162

8.3 Analysis of Correlations Impact . . . . . . . . . . . . . . . . . . . . . . . . 163

8.3.1 Sub-critical regime, ReD = 1× 105 . . . . . . . . . . . . . . . . . . 163

8.3.2 Critical regime, ReD = 3.5× 105 . . . . . . . . . . . . . . . . . . . 166

8.3.3 Super-critical regime, ReD = 8.5× 105 . . . . . . . . . . . . . . . . 166

8.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

9 Conclusion and Future work 171

9.1 Contribution of the AFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

9.2 Analysis of AFT performance . . . . . . . . . . . . . . . . . . . . . . . . . 172

9.3 Future Work Suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Bibliography 177





List of Figures

1.1 (a) Discrepancies in pressure distribution for a section of an airfoil profile
and (b) boundary layer shock-induced separation discrepancies presented
by Blackwell (2013) for low and high Reynolds numbers. . . . . . . . . . . 2

1.2 Drag coefficient distribution in terms of Reynolds number for flow past a
circular cylinder and its regimes based on Schewe (1983) and Zdravkovich
(1997) discussions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Pressure distribution on a single cylinder with transition trip by Jenkins
et al. (2006) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Transition process starting from T-S waves and finishing in fully-turbulent
flow illustrated by White (2006) . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Long and short bubble effects on freestream velocity and wake Malkiel
and Mayle (1996). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Illustration of the observations made by Emmons (1951) . . . . . . . . . . 14

2.4 Digitalized Orr-Sommerfeld spatial amplification curves for different fre-
quencies (dashed line) along the envelope of the growth-rate ñ (solid line)
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Chapter 1

Introduction

1.1 General Background

The main goal of Computational Fluid Dynamics (CFD) and wind tunnel testing in

the aeronautical industry is to predict accurately flight conditions and if possible, to

accurately capture all the flow physics, i.e. transition, flow separation etc. Achieving

such conditions is possible these days in facilities like the European Transonic Wind-

tunnel (ETW) or the National Transonic Facility (NTF) in the USA. These facilities

are cryogenic wind tunnels and they are therefore capable of matching Reynolds num-

bers in flight conditions. For example, Boeing, tested the validity of the measurements

of flight performance in the wind tunnel to compare with flight testing as reported by

Blackwell (2013). These facilities are designed for complex geometries or final designs

but are prohibitively expensive for simpler tests. Thus, the use of simpler facilities,

which are not capable of matching free-flight Reynolds numbers introduces potential

errors when tripping boundary layer such as displaced shock positions, forced laminar

separation bubbles, earlier separation position due to a mismatch between the boundary

layer growth for both low and high Reynolds number conditions Blackwell (2013).

The transition position is highly dependent on the Reynolds number, as it is strongly

related to the thickness and state of the boundary layer. Thus, in lower Reynolds num-

ber conditions or facilities, the transition is sometimes forced using a trip, which helps

to match the high Reynolds number transition location. Determining the transition lo-

cation is relatively easy for simple geometries. However, it becomes difficult for complex

geometries, thus uncertainty is present about how appropriate the tripping location and

size is. Furthermore, determining the transition location is just a part of the problem

since the flow is essentially different to the high Reynolds number flow field downstream

of the trip, as it is still under low Reynolds number conditions. Boundary layers will

potentially be thicker than the real boundary layer which could lead to earlier separation

positions than in the high Reynolds number case.

1
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An example of potential errors is shown in Figure 1.1 for an airfoil profile. In the wind

tunnel, where a low Reynolds number is achieved, the boundary layer is tripped at the

same position as in-flight conditions. The larger Reynolds number at in-flight conditions

however made the relative thickness of the boundary layer smaller, since the turbulent

boundary layer thickness scales with Re−1/5. Thus, the thinning of the boundary layer

moves the shock separation in the streamwise direction closer to the trailing edge, while

the thickening of the boundary layer for a lower Reynolds number induces an earlier

separation. Consequently, readings of lift and drag coefficients will differ between the

two cases.

Figure 1.1: (a) Discrepancies in pressure distribution for a section of an airfoil profile
and (b) boundary layer shock-induced separation discrepancies presented by Blackwell

(2013) for low and high Reynolds numbers.

Differences presented in the paragraph above are also important for bluff bodies, specif-

ically for flow past a circular cylinder at a high Reynolds number. That is the main

interest and focus of this work. At high Reynolds numbers (ReD > 3.8 × 105), flow

past a circular cylinder is characterized by undergoing boundary layer transition and

separation over the cylinder surface. It is crucial to achieving an accurate estimation of

these features for an appropriate description of the flow field. Figure 1.2 presents the

behaviour of CD and St as a function of Reynolds number for smooth circular cylinder

and low freestream turbulence level, which is divided into four regimes. Sub-critical is

characterised by a laminar flow followed by a laminar separation when the flow cannot

withstand the pressure gradient. With an increased Reynolds number, the flow enters

the critical regime where transition and separation occur over one side of the cylinder

surface. This is characterised by the sharp drop of CD, and symmetry between the

two bubbles is achieved within the supercritical regime. A further increase of Reynolds

number would lead to a completely turbulent boundary layer at the early stages of the

upstream face.

Thus, to achieve a similar flow field to high Reynolds number conditions when testing
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Figure 1.2: Drag coefficient distribution in terms of Reynolds number for flow past
a circular cylinder and its regimes based on Schewe (1983) and Zdravkovich (1997)

discussions.

at low Reynolds number conditions, the tripping of the boundary layer is still neces-

sary. However, the question remains where to trip and according to what conditions.

Tripping the boundary layer within the sub-critical regime to match transition with

high Reynolds number conditions, could introduce enough disturbances to cause tran-

sition into a turbulent state before the laminar separation can occur or even introduce

separation bubbles where there should be none as tripping experiments show between

sub-critical regime Jenkins et al. (2006) and trans-critical Roshko (1961) experimen-

tal data, as shown in Figure 1.3. In addition, differences in the turbulent boundary

layer thickness would lead the thicker boundary layer under the low Reynolds number

conditions to an earlier separation, which was confirmed by Roshko (1961). Drag is un-

derpredicted by approximately 0.1 with measurements by Roshko (1961). Consequently,

there are always doubts about the validity of the trip location and its influence on the

overall flow field, particularly when compared to numerical simulations.

The main motivation of this work is then to predict transition using CFD at high

Reynolds numbers and correlate with wind tunnel tests at scale Reynolds numbers.

The importance of CFD has become more significant with the increase in computational

capability. The calculation of the transition point requires either experiments or expen-

sive computations such as Direct Numerical Simulation (DNS) or Large Eddy Simula-

tion (LES). Experiments to determine transition are highly dependent on test conditions

and geometries, thus it is complex to get accurate empirical correlations for determin-

ing the transition location. On the other hand, DNS and LES simulations require a

lot of computational resources and are massively time-consuming for high Reynolds

numbers and industrial applications. However, recent research on Reynolds-averaged

Navier-Stokes (RANS) approaches shows promising applications with less consuming
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Figure 1.3: Pressure distribution on a single cylinder with transition trip by Jenkins
et al. (2006)

estimations, though further verification and validation are still required as lastly dis-

cussed in the AIAA Transitional Modelling workshop held in Chicago during the AIAA

Aviation Forum of 2022.

Before proceeding with the different models, transitional modelling aims to tackle natural

and bypass transitions. Briefly, since both transition mechanisms will be described later

in the literature review, the natural transition can be understood as a transition caused

by the instability generated by the flow itself, with the development of linear instabil-

ities into three-dimensional structures ending up in turbulent spots, while the bypass

transition is triggered by external factors and “bypasses” all intermediate steps with

the direct generation of turbulent spots. The natural transition occurs in environments

with freestream turbulence levels below 1%, while bypass for turbulence levels above

approximately 1%. This work is focused on the natural transition since its appearance

is consistent with external aerodynamic conditions with a low turbulence environment

for flow past a circular cylinder.

Transitional models can be divided into two groups: phenomenological and physics-

based approaches. The former does not account for the physics of transition directly, as

transition physics is hidden behind the use of empirical correlations based on turbulence

intensity and pressure gradient. Models proposed by Langtry and Menter (2009) and

Menter et al. (2015) are examples of phenomenological models, that are mostly focused

on modelling bypass transition for turbomachinery applications although modifications

can be done for a natural transition. Physics-based models aim to describe or quan-

tify the development of instabilities during the pre-transitional stage to determine the

transition onset. The laminar kinetic energy (k − kL − ω) or the amplification factor

transport (AFT) are two different methods proposed by Mayle and Schulz (1997) and

Coder and Maughmer (2014) respectively, which aim to solve natural transition.
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As already introduced, a low turbulence environment is relevant to external aerodynamic

conditions we are interested in this work for the analysis of transitional predictions for

flow past a circular cylinder. The linear stability theory (LST) has been used in aero-

nautical applications since the establishment of the eN method, independently proposed

by van Ingen (1956) and Smith and Gamberoni (1956). Boundary layer codes coupled

to Navier-Stokes equations were able to predict transition via the amplification factor.

However, Coder and Maughmer (2014) implemented the AFT model as a RANS ap-

proach compatible to CFD codes, as any integration throughout the boundary layer to

compute non-local variables is required because integral properties are estimated via

local computations. For either intermittent or laminar kinetic energy approaches, the

natural transition is predicted by employing a threshold function. Similarly to the eN

method, the latest version of the AFT model is also capable of providing transition

predictions comparable to experiments for natural transition over a zero-pressure gra-

dient flat plate and airfoil. Natural transition is also accounted by Langtry and Menter

(2009) or Menter et al. (2015), but physics and upstream flow effects are avoided by

the incorporation of empirical correlations. Conversely, the AFT model does not require

empirical correlations to determine transition and accounts for upstream boundary layer

history, thus making this model of interest for general applications in transitional flows.

1.2 Aims and Objectives

The γ − Reθ, γ, k − kL − ω and AFT transitional models are widely tested on wings,

blades, flat plates but a single study for circular cylinder using γ−Reθ by Zheng and Lei

(2016). With regards to the AFT model, most of the prior analysis are on airfoil-like or

streamlined profiles but any study is available for transitional backward-facing step (only

a single front-facing step in the validation process of k−kL−ω) and bluff bodies such as

circular cylinder, as a gap of study, this is addressed in this thesis. Furthermore, in this

thesis, the implementation of the AFT model in OpenFOAM, followed by its verification

and validation, is presented as the model is not currently available in open source or

commercial solvers. Ultimately, the use of Falkner-Skan similarity assumptions within

the AFT correlations is another gap that is studied in this thesis, especially regarding the

integral properties of the boundary layer compared to LES numerical results provided

by the LES group at Barcelona Supercomputing Center.

Hence, the main aim of this project is to implement the AFT transitional model, and its

variants with Reynolds Stress Model (AFT-RSM) coupling and Delayed Detached Eddy

Simulation (AFT-DDES) hybridization, followed by the comparison to fully-turbulent

approaches for backward-facing step and circular cylinder flow to demonstrate their

improved performance throughout the transitional regime.

The key objectives of the thesis can be summarized in the following points:
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– To verify and validate the implementation of the AFT and AFT-RSM model using

natural transition experimental data for a zero-pressure gradient flat plate.

– To show performance improvement regarding laminar separating bubbles and lam-

inar reattachment regions versus fully turbulent predictions for a backward facing

step scenario throughout its transitional regime reported by Armaly et al. (1983).

– To validate transitional AFT, AFT-RSM and AFT-DDES models at ReD = 3900

for flow past a circular cylinder.

– To demonstrate the improved performance using transitional methods like AFT,

AFT-RSM and AFT-DDES for flow past a circular cylinder at sub-critical, critical

and supercritical regimes. Specifically key flow features such as laminar separa-

tion, laminar separation bubble, transition, and turbulent separation that play an

important role throughout circular cylinder regimes without the need of using pure

LES or DNS.

– To demonstrate that differences regarding the correlations estimating boundary

layer properties and the growth of disturbances can be a possibility to improve

current predictions for AFT-based models for flow past a circular cylinder.

1.3 Layout of the Thesis

Before utilising the AFT model for complex analysis of the flow past a circular cylin-

der, the AFT model needs to be implemented into OpenFOAM and a verification and

validation process is conducted for zero-pressure gradient flat-plate using AFT and its

RSM coupling. Numerical schemes and grid analyses are carried out to understand the

behaviour and gather good practice for the transition prediction with the AFT model

in the OpenFOAM CFD package in Chapter 4.

As an intermediate step before simulating flow past a circular cylinder, a backward-

facing step is used as a simple test case for separation and reattachment of laminar and

transitional flow. In this case, a backward-facing step can be regarded as having the sim-

plest geometry while retaining the rich flow physics manifested by separation, transition,

reattachment, and diverse recirculating bubble lengths depending on the Reynolds num-

ber and the geometrical characteristics of the step and channel. In a backward-facing

step, the flow is not subjected to any curvature change or variable pressure gradient.

Another simplification to the circular cylinder flow is the fixed separation point at the

step location. Thus, it permits an analysis of the AFT performance and its variants for

separated transition and reattachment of laminar and turbulent boundary layers against

the fully turbulent approaches in Chapter 5.

Chapter 7 discusses a novel transitional prediction for flow past a circular cylinder with

the AFT, AFT-RSM and AFT-DDES models at transitional Reynolds number regimes
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after the validation at ReD = 3900 in Chapter 6. This chapter discusses the capability of

the transitional models for predicting separation, transition, laminar separation bubble

and turbulent separation over the cylinder surface. In this case, the flow is subjected to

curvature and variable pressure gradients, which is different to a backward facing step,

to determine the ability of the models to predict the rich flow physics in more complex

scenarios.

From the analysis of the AFT model correlations for flow past a circular cylinder in

Chapter 7, Chapter 8 presents an analysis of the differences between the original for-

mulation of AFT correlations and results from LES prediction for flow past a circular

cylinder. This chapter aims to extend these correlations used in the model for improved

predictions for flow past a circular cylinder using data from published LES simulations

for transition prediction via stability analysis and the laminar boundary layer state.





Chapter 2

Literature Review

2.1 Transition Mechanisms

Different transition mechanisms exist in nature. This section presents the main laminar

to turbulent transition mechanisms: natural transition, bypass transition and separation-

induced transition. Relaminarization, where from a turbulent state the flow recovers its

laminar behaviour if the flow experiences a sufficiently large acceleration, is also dis-

cussed.

2.1.1 Natural Transition

The natural transition mechanism refers to a breakdown process of a laminar boundary

layer that is excited by different types of growing instabilities that eventually force the

transition from laminar to turbulent flow. Surface waviness, vibrations or weak distur-

bances lead the flow to primary instabilities, usually referred to as Tollmien-Schlichting

waves for boundary layer and first observed by Tollmien (1931) and Schilichting (1931).

It is well accepted that for the freestream turbulence level Tu < 1% instabilities within

the laminar boundary layer develop into Tollmien-Schlichting waves as Mayle (1991)

concluded. Primary instabilities are two-dimensional, linear, usually viscous and grow

slowly until they are sufficiently large to trigger instabilities of streamwise periodic

nature, which are so-called secondary instabilities as first experimentally observed by

Schubauer and Skramstad (1947) and Liepmann (1943). Secondary instabilities grow

rapidly into three-dimensional structures like spanwise periodic hairpin vortices, which

develop further downstream causing the breakdown of the laminar boundary layer with

the generation of turbulent spots as described by Klebanoff et al. (1962). These spots

grow and coalesce into a fully turbulent boundary layer further downstream, as shown

in Figure 2.1 and first observed by Emmons (1951).

9
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Figure 2.1: Transition process starting from T-S waves and finishing in fully-turbulent
flow illustrated by White (2006)

The laminar breakdown process is slow and sensitive to all kinds of perturbations as

it normally occurs under very low mean-flow turbulence levels i.e external aerodynam-

ics. This makes the prediction in external aerodynamics very challenging. On the

other hand, in turbomachinery flows, the disturbance levels are rather high, therefore

the perturbations in the pre-transitional stage amplify and control the growth of the

Tollmien-Schilichting waves. Turbomachinery flows are less sensitive to small pertur-

bations because of the high level of freestream turbulence and more suitable to simple

descriptions by correlations because of the highly turbulent environment.

2.1.2 Bypass Transition

Unlike boundary layers with low freestream turbulence, environments with sufficiently

large disturbances, cause the primary and secondary instabilities to be bypassed (see Fig-

ure 2.1). In environments with high-freestream turbulence levels, streamwise elongated

disturbances are induced in the near-wall region of an attached boundary layer.

Klebanoff (1971) is key in the study of bypass transition. It is considered pioneering as he

first reported the presence of three-dimensional large fluctuations of low frequency inside

the laminar boundary layer. These laminar fluctuations are referred to as Klebanoff

modes and are shown as elongated structures called “streaks”. DNS simulations by

Jacobs and Durbin (2001) suggest that low-frequency perturbations in the freestream

can penetrate deep within the laminar boundary layer originating the so-called Klebanoff

modes. These modes are acted upon shear and grow in the flow direction. Jacobs and

Durbin (2001) observed that the laminar fluctuations within the laminar boundary layer

only exist in the streamwise velocity u and that its growth is proportional to the Rex

and Tu. Johnson and Ercan (1999) show the low-frequencies to be amplified up to 50

times the freestream value and the maximum amplification occurs at approximately δ/3,

confirming the deep penetration of the low-frequencies by Jacobs and Durbin (2001),
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Andersson et al. (1999) and Luchini (2000). High-frequency fluctuations instead are

unable to penetrate as deep, since they are damped by the laminar shear layer as observed

by Jacobs and Durbin (2001).

Jacobs and Durbin (2001) showed that Klebanoff modes have slow-moving fluid relative

to the mean flow, which causes the Klebanoff modes to rise to the upper part of the

boundary layer. In the upper region of the boundary layer, shear sheltering has relatively

little influence, and the Klebanoff modes are more receptive to freestream turbulence.

The Klebanoff modes then break into turbulent spots, which spread laterally and grow

longitudinally, eventually leading to a fully turbulent boundary layer. This similar tran-

sition onset was initially observed by Brandt and De Lange (2008) and later confirmed

by Wu et al. (2017).

Most of the efforts have been put into understanding natural transition since the primary

instabilities can be described with linear stability theory (LST) and therefore analytical

solutions can be found. On the other hand, in bypass transition, correlations between

large eddies and the pre-transitional boundary layer are pivotal. This analysis is chal-

lenging and requires high-fidelity numerical simulations such as LES or DNS, to precisely

understand the bypass transition mechanisms.

2.1.3 Separation-Induced Transition

Under large adverse pressure gradients, the transport of streamwise momentum across

the boundary layer is not sufficient to retain the laminar boundary layer attached and

eventually the laminar boundary layer separates from the surface. After the separa-

tion, the transition is initiated at the laminar shear layer by inviscid Kelvin-Helmholtz

instabilities originating spanwise vortices. As for the natural and bypass transition

mechanisms, the instabilities break down to produce turbulent spots. Soon after the

shear layer becomes turbulent which provides enhanced momentum mixing, the turbu-

lent shear layer reattaches to the surface forming the so-called laminar separation bubble

as discussed by Gaster (1969). The mixing properties of the reattached turbulent bound-

ary layer are better than the laminar boundary layer, where the enhanced momentum

transport allows the turbulent boundary to withstand greater pressure gradients. A

transition of this type can occur behind a boundary layer trip and also throughout

laminar separation of the boundary layer in an adverse pressure gradient as presented.

Conventionally, separation bubbles have been divided according to their length and their

effect on the surface pressure distribution. The length of the bubble depends on the

transition process over the free shear layer originated after separation, which essentially

may involve all the stages presented for the natural transition.

Short bubbles have a local impact on the pressure distribution and act as to trigger

transition (see Figure 2.2). In addition, short bubbles can be considered an effective way
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to force turbulent flow and enhance the performance. On the other hand, long bubbles

modify the overall pressure distribution and can lead to large losses in lift performance.

The present difficulty is to predict if the bubble will be short or long as discussed by

Malkiel and Mayle (1996).

Figure 2.2: Long and short bubble effects on freestream velocity and wake Malkiel
and Mayle (1996).

2.1.4 Reverse Transition

The three mechanisms discussed earlier explain how the transition to turbulent can

be triggered in a laminar boundary layer. In this section, the relaminarization of the

boundary layer is discussed. Unlike the separation-induced transition, where the laminar

boundary layer separates because it cannot withstand the adverse pressure gradient, the

reverse transition (or relaminarization process) occurs if the flow experiences a large

favourable pressure gradient.

When a flow is under sufficient acceleration, the transition can be reverted and recover

the pure laminar behaviour from a fully turbulent state, this is called relaminarization.

This mechanism is present at the leading edge of the suction side and the trailing edge of

the pressure side of most turbines. Mayle (1991) investigated this mechanism and pro-

posed the pressure gradient parameter, K = ν/U2
x(dUx/dx). Mayle (1991) investigated

the characterizations of the acceleration parameter and concluded that K = 3 × 10−6

was a limiting value. Hence, any turbulent boundary layer with an acceleration parame-

ter above the limiting value may undergo relaminarization. However, if the acceleration

diminishes below the limit, the laminar boundary layer may become fully turbulent

again.
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2.2 Flow Parameters Influencing Transition

2.2.1 Freestream Turbulence

The freestream turbulence levels (Tu) and the type of disturbances are of great impor-

tance to the laminar to turbulent breakdown process. As already discussed in Section

2.1, freestream turbulence is key to determine the type of transition. It is well established

in the literature, as discussed by Mayle (1991), that below Tu < 1% natural transition

occurs. As Tu increases, secondary instabilities are bypassed. This was initially observed

by Morkovin (1969) and extensively analysed by Klebanoff (1971). Westin et al. (1994),

Kendall (1997) and Jacobs and Durbin (2001) among others concluded that the varia-

tion of laminar fluctuations is proportional to the square root of distance and Tu. On

the other hand, the transitional Reynolds number is inversely proportional to Tu.

The influence of the freestream turbulence is not only key in transition for attached

boundary layers but also important in separation-induced transition. The nature of the

disturbances will determine if the laminar separation bubble reattaches to the surface or

if bubble bursting occurs, where a laminar separation bubble is intermittently appearing

on the surface of the geometry forcing an asymmetric flow, i.e critical region for flow

past a circular cylinder.

2.2.2 Pressure Gradient

Adverse pressure gradients accelerate the laminar to turbulent transition and promote

separation of laminar attached boundary layers. On the other hand, favourable pressure

gradients can be used as a mechanism to delay the transition. According to studies

by Julien et al. (1969) and Jones and Launder (1972) among others, if the favourable

pressure gradient is sufficiently strong it may even cause reverse transition or relaminar-

ization of the turbulent boundary layer. In addition, Mayle (1991) concluded that the

reverse transition may happen when the acceleration parameter reaches levels of 3×10−6

or higher.

2.2.3 Other types of Disturbances

In addition to the freestream turbulence level and pressure gradient, the existence of

other types of disturbances that can be found in nature i.e. surface roughness, com-

pressibility, surface curvature, flow unsteadiness and so on also influences the flow tran-

sition. Surface roughness can be a cause of bypass transition when sufficiently large.

Roberts and Yaras (2005) studied the effect of separation-induced transition who con-

cluded that the effect of the surface roughness is comparable to that of Tu, as well as the

roughness distribution. Compressibility effects were studied by Boyle and Simon (1999)
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among others concluded that modifications to the spot production rate are needed when

M > 2. The effect of flow curvature apart from causing pressure gradients is not signifi-

cant, however on concavely shaped surfaces, Gortler vortices may affect the transitional

behaviour as studied by Schultz and Volino (2003). Flow unsteadiness can act as a

subset of a bypass transition type since those high levels of turbulence in an oncoming

wake will act as a high-turbulence disturbance. Wu and Durbin (1998) and Wu et al.

(1999) demonstrated such behaviour with DNS simulations. Furthermore, imperfections

in solid surfaces, films, and sudden changes in geometry can be also other disturbances

to the boundary layer that can be found in industrial applications and real scenarios.

2.3 The intermittency γ concept

To identify the state of a flow i.e. laminar, turbulent or an intermediate laminar-

turbulent state, the concept of intermittency term has become pivotal in transitional

RANS models. This section introduces the origin of the intermittency concept and its

very first assumptions for transition prediction. Following the origin of intermittency, its

integration within computational methods is discussed via conditionally averaged meth-

ods and transport equations methods. At the end of this section, three state-of-the-art

transitional RANS approaches are discussed.

2.3.1 Origin and Development of Intermittency

The intermittency concept was introduced by Emmons (1951) during a simple water-

table analogy to supersonic flow at Harvard, as a student demonstration. The mechanics

of transition to turbulence could be observed since the turbulent motion disturbed the

surface of the thin layer of water. The disturbances originated from the turbulent spots

were sketched by Emmons (1951) as shown in Figure 2.3.

Figure 2.3: Illustration of the observations made by Emmons (1951)
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According to Emmon’s observations, these turbulent spots grew as they were washed

along with the fluid. The approximate heart-shaped planform and size of the spot after

a period of time is shown in Figure 2.3 (see annotated as A). These spots were observed

to appear at random time instances and locations all over the plate (also referred to

as continuous breakdown), but their frequency of appearance was strongly related to

velocity and disturbance level. These observations led Emmons (1951) to conclude

that turbulence in transition was essentially intermittent since any point of the plate

was covered by laminar flow except the fraction of time when a turbulent spot passes

through. As the spots grow and overlap downstream of the plate. The points in the

downstream region are covered for a greater fraction of time by turbulent spots until

the laminar boundary layer is continuously covered.

Based on prior observation, Emmons (1951) derived a statistical expression for intermit-

tency (γ). The intermittency is defined as the fraction of time at any point (x, z) that

is turbulent due to the growth and convection of the spots produced at (x0, z0, t0). The

equation proposed by Emmons (1951) is the following:

γ(x, z, t) = 1− exp

∫︂∫︂∫︂
V
g(x, z, t) dV (2.1)

where g(x, z, t) is the spot formation rate per unit time per unit area and dV is an in-

finitesimal volume in the propagation volume. The product g dV denotes the probability

that a turbulent spot is originated within the infinitesimal volume dV .

The complexity in Equation 2.1 is to define an expression for the spot formation rate.

As the first assumption, the spot formation rate g(x0, z0, t0) was taken as a constant,

independent of time and space, i.e. g(x0, z0, t0) = g. Furthermore, the propagation

volume region was considered a cone with straight generators as the spot propagation

wedge was considered linear for constant pressure flows . Hence, the integral within the

exponential in Equation 2.1 results in:

g

∫︂∫︂∫︂
dx0 dz0 dt0 = g

∫︂
σ

U
(x0 − x)2 dx0 (2.2)

where σ is the dimensionless spot propagation parameter governed by geometrical char-

acteristics and spot velocity ratio (refer to Appendix of Emmons, 1951 for further de-

tails). Substituting Equation 2.2 into Equation 2.1 leads to the expression

γ(x) = 1− exp

[︃
−σg(x− xt)

3

3U

]︃
(x > xt) (2.3)

where xt denotes the transition onset location.
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The initial assumptions made by Emmons (1951) regarding the linear propagation of

the turbulent spots downstream of a plate were confirmed by Schubauer and Klebanoff

(1956). However, differences between Emmons (1951), Schubauer and Klebanoff (1956)

and later experimental work acquired by Dhawan and Narasimha (1958) suggested that

the assumption of a “continuous breakdown” of turbulent spots after the transition

onset was not accurate, i.e. g(x0, z0, t0) = g. Dhawan and Narasimha (1958) observed

that the spots were originated at a concentrated location at a finite distance from the

leading edge of the flat plate, but randomly in time and spanwise location. Furthermore,

experimental data showed that the turbulent spots stabilize the flow downstream of

the transition onset and therefore the breakdown is unlikely. This stabilization of the

turbulent flow was named initially by Schubauer and Klebanoff (1956) as the “calming

effect”.

Hence, Dhawan and Narasimha (1958) represented the “concentrated breakdown” of the

spot propagation term by a Dirac Delta function centred at the transition onset which

lead to the following intermittency equation

γ(x) = 1− exp
[︂
−nσ

U
(x− xt)

2
]︂

(x > xt) (2.4)

where n is the spot production rate per unit time per unit spanwise distance. Equation

2.4 can be expressed in dimensionless form as

γ(x) = 1− exp
[︁
−n̂σ(Rex −Rext)

2
]︁

(x > xt) (2.5)

by introducing n̂ = nν2/U3, a dimensionless spot production parameter where ν is the

kinematic viscosity.

This equation describes a very complex phenomenon but it is widely used because of its

simplicity. However, the equation remains to be closed since it demands a description of

the transition onset location and the spot production rate. Even though Equations 2.4-

2.5 were derived for zero pressure gradient flows, it is found to produce fair predictions

of many pressure gradient flows, as shown by Cutrone et al. (2007). However, a large

number of experimental data have been gathered over the years to extend its validity

for a wider range of scenarios, most of them being focused on bypass transition.

As the universal distribution by Dhawan and Narasimha (1958) shows that the transition

onset has to be prescribed in the equation. Abu-Ghannam and Shaw (1980) gave one

of the most extensively algebraic correlations for natural transition and low freestream

turbulence levels on by-pass transition. An initial simple relation for the transition

onset was proposed by Abu-Ghannam and Shaw (1980) only as a function of Tu for

zero-pressure gradient flows expressed in Equation 2.6. The range of applicability was

extended for pressure gradient flows by Abu-Ghannam and Shaw (1980) using a pressure
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gradient parameter f(λθ) with λθ = (θ2/ν)(dU/ds), where dU/ds is the acceleration

along the streamwise direction at the edge of the boundary layer. Correlations are given

in Equations 2.7 and 2.8 for completion given its relevance but full details can be found

in the original paper. The inclusion of f(λθ) promotes early transition under the effect of

an adverse pressure gradient and retarding the transition under the effect of a favourable

gradient. The critical Reynolds number (Reθ,t) for zero-pressure gradient flows is

Reθt = 163 + exp(6.91− Tu). (2.6)

With the pressure gradient parameter, the critical Reynolds number reads as

Reθt = 163 + exp

[︃
f(λθ)−

f(λθ)

6.91
Tu

]︃
(2.7)

with

f(λθ) =

⎧⎨⎩6.91 + 12.75λθ + 63.64λ2
θ λθ < 0

6.91 + 2.48λθ − 12.27λ2
θ λθ > 0.

(2.8)

Ten years later Mayle (1991) gathered sufficient experimental data to propose a cor-

relation for zero pressure gradient flows experiencing by-pass transition (Tu > 1%).

Mayle (1991) not only investigated the transition in attached boundary layers but also

the transition onset on shear layers from separation-induced flows. Mayle (1991) derived

correlations for the transition onset in the free shear layer originating from the boundary

layer separation in steady freestream conditions. A distinction is made between short

and long bubbles according to the Reynolds number at the separation point (Reθ,s).

Initial correlations did not take into account the effect of freestream turbulent inten-

sity. Mayle (1991) and Suzen et al. (2003) proposed correlations where the turbulence

intensity level was taken into account for separated flow.

The last information that needs to be introduced into Narashima’s universal distribution

is how the turbulent spots propagate expressed with the product nσ. Mayle (1991)

also proposed a simple correlation for the growth of intermittency in by-pass transition

for attached boundary layers in zero pressure gradient conditions as a function of the

freestream turbulence level. This initial correlation was extended for decelerating and

accelerating flows using Gostelow et al. (1994) and Blair (1992a), Blair (1992b) studies

respectively using a ratio to the zero-pressure gradient case. Steelant and Dick (1996)

expressed this proportional factor in terms of the acceleration parameter (K) and Tu,

which was later improved by Suzen et al. (2003).
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2.4 Intermittency Integration

In most practical flows there exist regions that can be characterized as being either,

laminar, transition or fully turbulent. The transitional regime can be considered a

mixture of both laminar and turbulent behaviour. In the case of a flat plate, initially, the

flow is laminar but as the flow develops downstream, the boundary layer will eventually

undergo a transition to a turbulent state. The three characterizations coexist for example

in a turbulent jet with undisturbed surroundings. The core of the jet is turbulent and

the flow away from the core is laminar. Close to the edge of the jet, the flow is less

obvious since the turbulent jet entrains laminar flow, and therefore a complex mixture

of both flows is expected.

It is a common approach when computing these types of flows to use turbulent models

tuned for a good performance in turbulent flows for the entire domain considered. The

reason is that the nature of the flow is not known in advance. Even though, these

approaches provide meaningful estimations, the nature of the flow that has undergone a

transition to a turbulent state is different from a laminar flow. The complexity in CFD

is to determine a procedure to treat laminar and turbulent flow separately.

2.4.1 Conditionally Averaged Flow Equations

As discussed, a transitional flow can be understood as a mixture of turbulent and non-

turbulent regions. Hence, it can be described by a model, with intermittency to describe

the probability that the turbulent phase is present. To describe the flow in that way, the

conditional averaging of flow quantities and equations are necessary for turbulent and

non-turbulent regions. Ultimately, in the transitional region both sets of conditioned

equations, laminar and turbulent respectively, can be blended to provide a prediction.

Libby (1975) and Dopazo (1977) introduced the technique initially for the description

of intermittency at the outer edge of boundary layers and mixing layers, but it can also

be used for the transitional description of boundary layers and free shear layers. The

idea behind the technique is to derive an analogue to the experimentalists technique

of “conditional sampling”. This technique is based on splitting a measured signal of

an arbitrary quantity into periods that are either laminar or turbulent so that the

experimentalist can determine the properties of the flow during each phase.

This technique led Libby (1975) and Dopazo (1977) to propose two sets of condition-

ally averaged Navier-Stokes equations for the laminar and turbulent regions of the flow

respectively and interaction terms between the two phases, requiring modelling. Kuan

and Wang (1990) showed that the interaction term can be dropped as the fluctuations

do not contribute significantly to the Reynolds stress term. The turbulent phase is

commonly reproduced by a fully-turbulent model and the laminar fluctuations can be
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modelled, however, ignoring the non-turbulent fluctuations produces good agreement

with experimental data as shown by Vancoillie and Dick (1988). Furthermore, an in-

termittency equation is introduced to the system to discern the fraction of time the

flow is turbulent or non-turbulent. For example, the total contribution of the Reynolds

stress for conditioned equations can be expressed in three terms: the contribution of the

turbulent Reynolds stress, the contribution of the laminar Reynolds stress and the last

term including the effects of the turbulent-laminar interaction.

Vancoillie and Dick (1988) modelled the interaction terms with boundary layer approx-

imations and applied the conditionally averaged flow equations to a flat plate case. The

two sets of equations are combined with a fully-turbulent approach and the intermittency

is described using Narashima universal distribution only for the streamwise direction.

Steelant and Dick (1996) extended this technique to the full Navier-Stokes equations. In

a similar way to Vancoillie and Dick (1988), the conditioned equations were coupled to a

fully-turbulent model and a generalised version of the Narahisma universal distribution

so it took into account the intermittency at the outer edge of the boundary layer due to

freestream eddies and the intermittency inside due to breakdown of turbulent spots.

Nonetheless, the use of a double set of equations considerably increases the computa-

tional effort, while the improvement is mostly in better predictions of fluctuating kinetic

energy across the boundary layer but does not help much in shear stress predictions.

This is due to the interaction term which is prominent halfway through the boundary

layer and is the largest in the middle of the transition region, approximately. Further-

more, the interaction terms can be dropped as investigated by Kuan and Wang (1990)

and the contribution of the laminar fluctuations is only significant at the early stages

of the transition development and can be dropped out too. Therefore, despite the pos-

sibilities that it offers, the same level of performance can be achieved by multiplying

the production term of the turbulence production or the turbulence eddy-viscosity with

intermittency using algebraic models for transition prediction.

2.4.2 Algebraic Correlations

As an alternative to conditionally averaged flow equations, an algebraic transition model

consists of an algebraic formula describing a relevant quantity controlling transition that

is appended to a fully-turbulent model. The algebraic function is mostly introduced as

a multiplier of the production and destruction terms of the turbulent kinetic energy or

the eddy viscosity of a turbulence model. These algebraic models commonly describe

adequate parameters along streamlines using Narashima’s universal distribution or a

similar correlation.

Cho et al. (1993) use a two-layer model where a one-equation model in the viscosity-

affected near-wall region and the standard k − ϵ in the outer region of the flow. In this
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case, the eddy-viscosity is modified using a similar exponential distribution to Dhawan

and Narasimha (1958). A similar approach was used by Michelassi et al. (1999), where

the algebraic transition model was coupled to the standard k − ω turbulence model

modifying the eddy-viscosity.

The models by Kožulović and Lapworth (2009) and Fürst et al. (2013) modified the fully-

turbulent models by multiplying the production and destruction term by γ. Kožulović

and Lapworth (2009) utilize a similar intermittency distribution function to Dhawan

and Narasimha (1958) with Abu-Ghannam and Shaw (1980) correlations. This algebraic

model is coupled to the one-equation Spalart-Allmaras turbulence model, multiplying

the production term of the modified eddy-viscosity equation with the intermittency value

and the destruction term with the same value. The model proposed by Fürst et al. (2013)

used a modified intermittency distribution and followed the same idea, multiplying the

production and destruction term of the turbulent kinetic energy equation of the k − ω

turbulence model. An example of the modified intermittency distribution by Fürst et al.

(2013) is described by

γ = 0.5(γe + γi) + 0.5(γe − γi) tanh (y/δ − 1) (2.9)

where γe is the intermittency of the freestream, which is 1 for a turbulent flow and 0

for a non-turbulent flow, γi is the intermittency in the interior of the boundary layer,

determined with the Narasimha-formula in Equation 2.5, y is the distance to the wall

and δ is the thickness of the boundary layer

Kožulović and Lapworth (2009) or Fürst et al. (2013) are representative algebraic tran-

sition models where the transition onset and growth of intermittency are determined

using the correlations proposed by Mayle (1991), Abu-Ghannam and Shaw (1980) or

modified versions of these correlations to predict the intermittency distribution. This

way, the performance of streamwise algebraic correlations models is directly related to

the quality of the transition correlations utilised.

The boundary layer momentum thickness is necessary for all the presented models is

necessary to estimate the intermittency value. Cho et al. (1993) and Kožulović and

Lapworth (2009) perform an integration of the momentum thickness across the boundary

layer. The computation of non-local information is not an easy procedure because the

edge of the boundary layer is not well defined in a Navier-Stokes environment due to

massive parallelisation and the integration depends on the details of the implementation

of the search algorithm. Difficulties to estimate non-local properties are exaggerated by

current CFD methods based on unstructured grids and massive parallel decomposition,

where the boundary layer can be split up between different CPUs, making an integration

difficult.



Chapter 2 Literature Review 21

On the other hand, Fürst et al. (2013) estimate the boundary layer momentum thickness

using a scaled relation with the monotonic maximum of the vorticity Reynolds number.

Since the vorticity Reynolds number (ReV ) is a local property, it can be easily computed

at each grid point in an unstructured grid and parallel Navier-Stokes solver.

Regardless of the procedure to estimate any integral property to determine the transi-

tion onset, the streamwise algebraic methods only produce a streamwise intermittency

distribution. However, these algebraic models can be generalised for multidimensional

and unsteady predictions as it is introduced in the next section.

2.4.3 Intermittency Transport Equations

As discussed, a major drawback of the algebraic correlations is that they are one-

dimensional, meaning that they are only valid along a streamline. However, an extension

to a three-dimensional and unsteady formulation is possible with the starting point be-

ing the intermittency universal law proposed by Dhawan and Narasimha (1958). This

section introduces the key steps of deriving an intermittency transport equation, which

is extensively used in RANS transitional models.

Differentiating the intermittency distribution of Dhawan and Narasimha (1958) given in

Equation 2.4 and using the following relations derived from Equation 2.4:

dγ

dx
= 2β2

γ(1− γ)(x− xt) (2.10)

√︁
− ln (1− γ) = βγ(x− xt) (2.11)

where βγ is defined by
√︁

nσ/U , results in the following expression for the rate of change

of intermittency in the streamwise direction:

dγ

dx
= 2βγ(1− γ)

√︁
− ln (1− γ) (2.12)

This expression can be generalised using the convective derivative for steady flows as:

−→v · ∇γ = u 2βγ(1− γ)
√︁
− ln (1− γ) (2.13)

where −→v is the local velocity vector, u is the magnitude of the local velocity and U ,

in βγ , is the magnitude of the velocity at the boundary layer edge as described by

Dick and Kubacki (2017). A further generalisation is to introduce the unsteady term
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of the material derivative, the Fonset function and the diffusion term to construct an

intermittency transport equation:

D(ργ)

Dt
= u ρ2βγ(1− γ)

√︁
− ln (1− γ) Fonset +

∂

∂xj

[︃(︃
µ+

µt

σt

)︃
∂γ

∂xj

]︃
(2.14)

The material derivative describes the rate of change of intermittency in time and space.

The Fonset function acts as a trigger of the production term when the transition onset

location is reached. It switches from zero to unity at the transition onset location

allowing the turbulent kinetic energy production term to become active. The diffusion

term allows a cross-stream intermittency distribution within the boundary layer.

It is common in most intermittency transport models to replace the second and fourth

terms in the production term of Equation 2.14 with similar terms. The second factor in

the production term of the intermittency transport equation,
√︁

− ln (1− γ), is propor-

tional to
√
γ and γ, in the range of 0 to 0.35 and the range of 0.35 to 0.95 respectively

from pure mathematical analysis. Therefore, this term can be replaced by
√
γ and γ, or

a combination of both as suggested by Dick and Kubacki (2017).

The fourth factor in the production term of the intermittency transport equation, uU/ν,

has dimensions of rotation or shear rate. The ratio of the factor to S or Ω depends on the

dimensionless thickness of the boundary layer and the shape of the boundary layer. This

dependency is commonly incorporated via the Fonset function or the Flength function.

Ultimately, it is common to find a destruction term (Eγ) in the intermittency transport

equation to dampen any spurious turbulence that might be produced within the laminar

boundary layer before transition. Thus, all prior modifications lead to a most common

intermittency transport equation in Equation 2.15. This equation is very similar to the

general intermittency transport equation discussed in Chapter 3 in Equation 3.10.

D(ργ)

Dt
= FlengthρS(1− γ)

√
γFonset − Eγ +

∂

∂xj

[︃(︃
µ+

µt

σt

)︃
∂γ

∂xj

]︃
(2.15)

The following subsections introduce representative examples that are widely used in

literature for transition modelling. The intermittency transport equation is pivotal to

reproducing the laminar and transition region, coupled with one of the standard fully-

turbulent models.
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2.5 Transitional Flow Modelling

2.5.1 Local-Correlation-Based γ −Reθ Model

The γ − Reθ model is a local correlation-based transition model first introduced by

Menter et al. (2002) and later improved by Menter et al. (2006) and Langtry and Menter

(2009). The local approach to estimating integral properties of the boundary layer allows

the transition model to be fully-compatible with CFD solvers and allows parallelization

on unstructured grids as discussed by Menter et al. (2002). The γ −Reθ model aims to

solve bypass transition for the attached boundary layer in high freestream turbulence

and separated boundary layers at low freestream turbulence.

This is a four-equation model, conformed by the standard k − ω turbulence approach

proposed by Menter (1994) plus two extra equations, an intermittency transport (γ)

and a transition momentum thickness Reynolds number transport equation (Reθt). The

intermittency transport equation is as:

D(ργ)

Dt
= Pγ − Eγ +

∂

∂xj

[︃(︃
µ+

µt

σt

)︃
∂γ

∂xj

]︃
, (2.16)

where the production and destruction terms are given as

Pγ = ca1FlengthρS(1− ce1γ)
√︁
γFonset (2.17)

Eγ = ca2FturbρΩ(ce2γ − 1)γ. (2.18)

The intermittency transport equation takes a similar form as Equation 2.15. In this

case, the Fonset function acts as a trigger for the intermittency production and Fturb

sustains the turbulence production outside laminar regions. The Flength function controls

the transition length and acts as a proportional ratio with the S magnitude to the

term (uU/ν), as discussed in Subsection 2.4.3. The length of the transition is based

on empirical functions as Flength = f(Reθt) published in Langtry and Menter (2009).

Details regarding the calibration constants (ca1, ce1, ca2, ce2 and σt), and the formulation

of Fturb, Fonset and Flength can be found in the former reference.

The transition momentum thickness Reynolds number (Reθt) is estimated using a mod-

ified empirical correlation by Abu-Ghannam and Shaw (1980) as a function of Reθt =

f(Tu, λθ) published in Langtry and Menter (2009). The idea behind Reθt transport

equation is to diffuse Reθt to the interior of the boundary layer via a generalised dif-

fusion term to transform a non-local property at the edge of the boundary layer into
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a local variable that can be computed at every point of the grid. The Reθt transport

equation is defined as

D(ρReθt)

Dt
= Pθt +

∂

∂xj

[︃(︃
µ+

µt

σθt

)︃
∂Reθt
∂xj

]︃
. (2.19)

The source term Pθt forces the freestream values of Reθt to be equal to Reθt while it turns

to zero within the boundary layer. The reader is referred to Langtry and Menter (2009)

for full details regarding the formulation of the source term. As already mentioned, the

Reθt is diffused to the interior of the boundary layer via Reθt to estimate the critical

momentum thickness Reynolds number (Reθc) via empirical correlations Reθc = f(Reθt)

published in Langtry and Menter (2009).

The transitional equations are coupled to the standard k − ω SST approach multiply-

ing the turbulent kinetic energy production and destruction term with the intermittency

scalar. Therefore, there will be no presence of turbulence until the intermittency produc-

tion is activated, in other words, until the transition onset condition is reached according

to the empirical correlations.

As discussed earlier, the quality of the transition correlations determines the performance

of the model. The use of correlations from Abu-Ghannam and Shaw (1980) provides

good performance for a range of different pressure gradients and freestream turbulence

levels as demonstrated by Langtry et al. (2006) and Langtry and Menter (2009) under

flat-plate, turbomachinery and aeronautical test cases. Despite the good performance,

the boundary layer history is not taken into account by Abu-Ghannam and Shaw (1980)

correlations since the maximum pressure gradient is present at the transition point. A

major deficiency of the model is the lack of Galilean invariance due to the use of the

streamline direction when computing the freestream turbulence. This limits the model

to work only on stationary walls with respect to the coordinate system of the simulation.

2.5.2 Local-Correlation-Based γ Model

The γ-model aims to simplify the γ − Reθ model and address the lack of Galilean

invariance present in the estimation of Tu at the edge of the boundary layer. The goal

of this model is the same as the γ −Reθ model, to solve bypass transition for attached

boundary layers in high freestream turbulence levels and separated boundary layers

at low freestream turbulence levels with only the intermittency transport equation in

Equation 2.16 coupled to k − ω SST model.

Menter et al. (2015) proposed to estimate the Reθc with local formulations for the

Tu and λθ, therefore the Reθt transport equation can be avoided. Furthermore, the

model recovers the Galilean invariance due to the use of the value of turbulence kinetic
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energy (k), wall distance (dw), ω and wall-normal velocity gradient over the wall-normal

direction instead of the magnitude of local velocity. Details about this new formulation

can be found in Menter et al. (2015).

The complexity of the Reθc correlation was also tackled by Menter et al. (2015). In-

stead of Rec = f(Reθt), this model estimates Rec = f(Tu, λθ) with similar results

to Abu-Ghannam and Shaw (1980) correlations, except for strongly favourable pres-

sure gradients where Mayle (1991) criteria was used for calibration. Three controlling

constants were introduced, two constants to control the limits and the third constant

controls the rate of decrease of the critical momentum thickness Reynolds number as the

turbulence intensity increases. Furthermore, since the transition momentum thickness

Reynolds number transport equation and its scalar are eliminated, Menter et al. (2015)

approached the Flength correlation to a constant value. The formulation and calibration

of the modified correlations are given in detail in the former reference.

These modifications simplify the model considerably and address the lack of Galilean

invariance from γ − Reθ model. In terms of performance, it is shown in Menter et al.

(2015) that flat-plate tests compare to γ −Reθ results. Aeronautical tests show a good

agreement with experimental data and also with prior results achieved using γ − Reθ.

For turbomachinery applications, overall, the γ model predicts a slightly later transition

on the suction side and is somewhat closer to DNS data than γ − Reθ. However, since

the same correlations are in use, the lack of boundary layer history effects is still present.

Amplification Factor Transport Model

As opposed to the prior γ − Reθ and γ-models, the motivation of the AFT model is

to solve the natural transition mechanism incorporating the linear stability theory in a

manner that is compatible with massively parallelised unstructured CFD solvers. Details

of the model will be discussed in more detail in Chapter 3, however, a brief explanation

is given here for the evolution of the model throughout the years and its rationale.

Mainly, the eN theory proposed independently by Smith and Gamberoni (1956) and van

Ingen (1956) is not appropriate to be incorporated into current CFD solvers as it requires

prior knowledge with regard to the geometry and mesh topology. Furthermore, the eN

theory involves non-local operations that are also difficult to incorporate in massively

parallelised unstructured CFD solvers.

Gleyzes et al. (1985) and Drela and Giles (1987) shed light on the field with a simplified

method for the eN. This method tracks the maximum amplitude of the most-amplified

frequencies while assuming linear growth and locally self-similar boundary layer devel-

opment. Conversely to γ −Reθ and γ transition models, the current formulation of the

Amplification Factor Transport model does not predict the length of transition.
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As shown in Figure 2.4, each solid line describes the spatial amplification curve for a

given frequency and velocity profile. The spatial amplification curves are computed

by solving the spatial instability via the Orr-Sommerfeld equation using Falkner-Skan

velocity profiles for a range of shape factors and unstable frequencies. The dashed line

describes the envelope of the most-amplified frequencies in terms of the momentum

thickness Reynolds number. As presented in Figure 2.4, a linear approximation can be

produced for the envelope of most amplified frequencies, where the growth rate of the

amplification factor is estimated for a given shape factor. Hence, the growth rate of

the amplification factor at any given point can be expressed as a differential equation in

terms of the spatial coordinate.

Figure 2.4: Digitalized Orr-Sommerfeld spatial amplification curves for different
frequencies (dashed line) along the envelope of the growth-rate ñ (solid line) versus the
momentum thickness Reynolds number (Reθ) from Gleyzes et al. (1985). Both terms

are presented for three shape factors as denoted in the top side.

Drela and Giles (1987) expressed the growth rate in terms of the spatial coordinate

using the chain rule with two terms. The rate of change of the amplification factor

in terms of the momentum thickness Reynolds number and its spatial rate of change.

Three terms conform the variation of momentum thickness Reynolds number over the

spatial coordinates; two terms are originally given by Drela and Giles (1987) to describe

the growth of momentum thickness (θ) for the Falkner-Skan boundary layer. The third

term was introduced originally by Coder and Maughmer (2014) and later improved by

Coder (2017, 2018, 2019) relating the local flow velocity and wall effects to the local

vorticity along the focus of maximum values of the local shape factor.

In addition to the amplification factor transport, the model uses an intermittency trans-

port equation. As presented in section 2.4.3, the Fonset acts as a trigger of the intermit-

tency production term. In this case, the Fonset is constructed as a ratio of the current
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amplification factor to a critical amplification factor value. Therefore, when the ratio

reaches unity, the transition onset occurs.

The AFT model is the primary model used in this work, with an extension using

Reynolds Stress Model and a DDES hybridization to introduce transition prediction

onto the DDES approach. The AFT model is chosen instead of the physics-based ap-

proach k − kL − ω since the buffeting problem remains not completely understood and

the simplicity of the AFT formulation compared to laminar kinetic energy models. On

the other hand, the AFT model is chosen ahead of two Menter’s models, γ−Reθ and γ,

because it is a physics-based model that intends to resolve or quantify pre-transitional

physics to determine transition, via linear stability theory that has been proven to be

valid for aeronautical applications for more than 50 years, rather than constructing com-

plex transitional correlations for a vast number of conditions such as different Reynolds

numbers, turbulence levels and pressure gradients. In addition, pressure gradient history

is not considered by such constructions, as the transition is assumed to occur always

at the location of the maximum pressure gradient. As opposed to Menter models, the

amplification factor model considers the upstream boundary layer history via the es-

timation of the mostly amplified frequencies, therefore responding better to pressure

gradients with a transition condition based on the simple relation proposed by Mack

(1977).

2.5.3 Laminar Fluctuation Energy Method

The laminar fluctuation energy method is a physics-based model, based as its name

indicates on the analysis of the laminar fluctuation energy on the pre-transitional stage

of the boundary layer.

In the pre-transitional region, the boundary layer mean velocity profile is laminar. How-

ever, as the freestream turbulence is increased, the mean velocity profile is distorted with

a decrease in momentum in the outer region and an increase in the inner region. This

behaviour can be observed even for Tu as low as approximately 1%. High-amplitude

streamwise fluctuations originate and can reach intensities several times larger than

freestream turbulence level as measured by Dryden (1939). These streamwise fluctua-

tions eventually break down leading to a bypass transition of the boundary layer.

Experiments carried out by Volino and Simon (1997) under moderate and at high

freestream turbulence and analyses by Leib et al. (1999), evinced that the peak en-

ergy of wall-normal velocity fluctuations (v′) in the freestream occurred at the same

low-frequency as the peak of streamwise velocity fluctuations (u’) within the boundary

layer. Bradshaw (1994) named this behaviour the splat mechanism. The splat mech-

anism explains the cause of the u′ fluctuations appearing inside the boundary layer

(Bradshaw, 1994 and Volino, 1998). According to Bradshaw (1994), the v′ compresses
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the boundary layer momentarily as a large-scale eddy passes by, forcing the speed to

increase from the outer region closer to the wall. The wall-normal fluctuation is redi-

rected by the wall to u′ inside the boundary layer leading to disturbance amplification

without involving turbulence diffusion. It can also be understood as large-scale eddies

brought to rest at the wall due to the non-slip condition, instigating its energy to be

addressed tangentially. Note these fluctuations shall not be confused with the turbulent

fluctuations as they are structurally dissimilar.

Mayle and Schulz (1997) introduced the laminar kinetic energy equation to reproduce the

behaviour of the pre-transitional fluctuations in the streamwise direction. As discussed

above, the “splat mechanism” differs from typical turbulence production. Furthermore,

as the “splats” are likely to occur only for eddies with large scales relative to the wall

distance, the turbulence energy spectrum can be divided into wall-limited and non-

wall-limited sections in the near-wall region, or what is the same large-scale eddies that

contribute to the production of non-turbulent fluctuations and small-scale eddies that

contribute to turbulent production, respectively. The cut-off eddy size is determined by

the effective turbulent length scale.

The magnitude of kl represents the magnitude of the non-turbulent streamwise fluctua-

tions. The laminar kinetic energy transport equation differs from the standard turbulent

kinetic energy transport equation since it lacks the shear-stress/strain related produc-

tion term. In this case, the source term is formed by a pressure-diffusion correlation.

This magnitude develops over the pre-transitional stage and local transition parameters

are implemented that depend on the turbulence energy, the effective length scale and

the fluid viscosity based on experimental measurements by Andersson et al. (1999). As

transition conditions are accomplished, the energy is transferred to the turbulent kinetic

energy transport equation kt. After the transition region, the model predicts a fully-

turbulent boundary layer with a small amount of laminar kinetic energy in the viscous

sub-layer.

This is an eddy-viscosity model conformed by three transport equations: the laminar

kinetic energy transport equation kl, turbulent kinetic energy transport equation kt and

specific turbulent kinetic energy dissipation rate ω. The model has not been extensively

validated for general geometries except for flat plate tests and turbine blade scenarios.

Initial results present a good sensitivity to the freestream turbulence and produce fair

results. However, it is still uncertain its validity to predict transition under the effects

of pressure gradient and separation at low Tu levels, specifically below 1%.

2.5.4 LES and DNS for Transition

LES and DNS are suitable methods for transition prediction. In essence, DNS can

accurately predict the laminar flow breakdown, the development of turbulent spots and
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ultimately transition to fully-turbulent flow. As opposed to RANS, DNS solves the time-

dependent Navier-Stokes equations without Reynolds averaging. Consequently, there is

no need to use a turbulence model for turbulence closure.

DNS requires a fine grid to resolve all eddies down to the smallest scales of the turbulence

spectrum. This requirement significantly increases the computation cost by an order of

approximately Re9/4 for a steady state problem and Re3 when time is taken into account

for unsteady flow, which is still too costly for high-Reynolds number scenarios.

To reduce the computational costs associated with DNS, researchers developed the con-

cept of Large Eddy Simulations to transitional flows. In LES only the large-scale eddies

are resolved, while the small-scale eddies are modelled so the grid requirements are al-

leviated. Small-scale eddies are modelled using a subgrid-scale model similar to the

eddy viscosity approach such as the one proposed by Smagorinsky (1963). The main

problem when using LES to predict transition is that it is very sensitive to the choice of

the Smagorinsky constant to calibrate the subgrid-scale model proposed by Smagorin-

sky (1963). The dynamic sub-grid scale model by Germano et al. (1991) adjusts the

Smagorinsky constant dynamically as the calculation progresses. One of the advantages

that the dynamic sub-grid scale model brings is that the sub-grid eddy viscosity is zero

in laminar boundary layers, as the resolved turbulence stress vanishes. This is believed

to help predict transitional flows, however, the dynamic sub-grid scale model is not the

complete solution as shown by Michelassi et al. (2003) for low-pressure turbine blades,

because there are still quantitative differences with DNS results regarding the transition

point and the difficulty to represent the fine scales fluctuations and turbulent spots as

it is suggested in the publication.

2.5.5 Summary of Transitional Modelling Methods

The current available transitional models have been presented along with high-fidelity

approaches such as DNS and LES that can predict the smaller structures within the

boundary layer and free shear layers triggering transition. These former two methods,

for high Reynolds number cases, are not easily accessible yet as the grid requirements

escalate with a factor of 9/4 with Reynolds number to capture the smaller structures.

However, both methods have demonstrated their potential to provide good predictions

for experimental data for transitional scenarios.

As more accessible methods, the transitional approaches have become a rising possibil-

ity for explicit transition prediction. Transitional modelling can be currently divided

into two big groups: phenomenological models and physics-based models. Phenomeno-

logical, as has been discussed, aims to construct complex empirical correlations from

observations and a vast set of experiments for the determination of the transition onset.

Examples are Langtry and Menter (2009) and Menter et al. (2015), which are ruled by
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the quality of the transitional correlations. These models have shown good results for

flat-plate experiments with different pressure gradients, as the basis of their correlations.

Predictions on streamlined bodies along with one test for different Reynolds numbers

for flow past circular cylinder have shown promising results, despite numerical insta-

bilities and regions that are not predicted and bypassed at high Reynolds number, i.e

trans-critical resembles a super-critical behaviour.

Physics-based models, as opposed to the prior group, aim to solve the evolution of

the pre-transitional disturbances within the boundary layer to determine the onset of

transition. The k − kL − ω model is based on the laminar kinetic energy idea, which

aims to determine the evolution of laminar instabilities. The model has shown promising

results for flat plate analysis and streamlined airfoils nonetheless, the understanding of

the “buffeted layer” proposed in the k − kL − ω model is not yet fully understood and

requires further insight.

On the other hand, the AFT model aims to use the linear stability theory to estimate

natural transition, used for more than 50 years in aeronautical applications, within the

CFD environment and it is the primary model used in this work. The amplification

factor is computed locally, thus considering the upstream boundary layer effects and

therefore a better transition response to variable pressure gradients to the phenomeno-

logical model’s correlations. The method has proven valid for flat plate and aeronautical

applications, such as streamlined airfoil profiles. This method does not require transition

correlations but only the computation of the turbulence levels, which is also required

in phenomenological models along the complex transitional correlations. Furthermore,

the model is constructed using the chain rule, which is rather simpler than both the

phenomenological model and all relations necessary for the k−kL−ω model, which still

requires further understanding of the ´´buffet layer” physics and description. Thus, AFT

is considered an interesting option with discussed benefits to other available methods

that can be exploited and improved for transitional prediction.

2.6 Backward Facing Step

Backward-facing step flow is a simple geometry that manifests a rich flow physics regard-

ing flow separation, reattachment and separation bubbles depending on the Reynolds

number and geometry characteristics of the channel. Several experimental measurements

have been performed since the 80s, with the major interest to identify the growth of the

reattachment length in terms of Reynolds number. Here, we present the major find-

ings regarding flow physics, of available experimental data and numerical predictions for

backward facing with an expansion ratio of H/h ∼ 2, which is characteristic of Armaly

et al. (1983) geometry test case, which is a well-reported configuration in literature.
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2.6.1 Review of experimental studies

The key measurements provided by Armaly et al. (1983) are considered state-of-the-art

regarding the flow physics involved within the backward-facing step with ReDh
. From

experimental observation of the results, Armaly et al. (1983) proposed a division in

three regimes according to the flow physics of the primary recirculating length (x1) with

ReDh
: laminar, transitional and turbulence. Figure 2.5 tags the separation bubbles for

backward-facing step flow, while their behaviour in terms of Reynolds number is shown

in Figure 2.6, where the three aforementioned regions are identified.

Figure 2.5: Schematic domain for backward-facing step and recirculating regions.

Figure 2.6: Dimensionless recirculation regions (x/S) in terms of Reynolds number
based on the hydraulic diameter of the channel (ReDh

) reported in experiments by
Armaly et al. (1983).

Throughout the laminar region, the primary recirculation length growths with the in-

crease of Reynolds number, with the appearance of the secondary bubble due to the
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adverse pressure gradient at the step. The three-dimensional behaviour becomes promi-

nent with the appearance of the secondary bubble. The interaction between the struc-

tures emanating from the primary recirculation region and secondary bubble causing

the laminar to turbulent transition, due to the Kelvin-Helmholtz structures. Within the

transitional regime, a third bubble is reported by Armaly et al. (1983). As Reynolds

increases the recirculation lengths reduces their dimension for x1 and x2 as the flow

becomes fully turbulent. At the end of the transitional regime, the secondary bubble is

already vanished and the primary recirculation length is almost constant.

- Laminar regime

Experimental data reveal that the laminar regime is characterized by the stretching of

the primary recirculating length (x1) mainly, but the growth is not linear. The secondary

recirculating bubble appears at approximately ReDh
= 400 and is also stretched with the

increase of ReDh
. The appearance of the secondary bubble (x2) is caused by the sudden

expansion after the step and was first reported by Armaly et al. (1983). Its appearance is

strongly related to the expansion ratio and backward-facing step geometry. The growth

of the recirculating length in terms of Reynolds number is also proven by Denham and

Patrick (1974) and Mouza et al. (2005), with the measurements on a laminar flow in a

similar geometry. Experimental work done by Lee and Mateescu (1998) also presents

the growth of x1 in terms of ReDh
, but with an initial linear growth. The growth is

maintained generally up to ReDh
= 1200, except for experiments carried out by Lee and

Mateescu (1998), that this region is extended until about ReDh
= 1400, as the growth

of the primary recirculating length is slower and more linear.

Measurements by Armaly et al. (1983) at different positions over the spanwise length,

revealed that near the step, the flow was three-dimensional at approximately ReDh
=

400. The flow three-dimensionality is increased with the Reynolds number due to the

interaction between the upper bubble and the main reattachment length. For ReDh
, it

was demonstrated with measurements that the flow was essentially two-dimensional all

the spanwise length.

The growth is maintained generally up to ReDh
= 1200, except for experiments carried

out by Lee and Mateescu (1998), which is extended until about ReDh
= 1400, as the

growth of the primary recirculating length is slower and more linear.

- Transitional regime

The transitional regime is considered to begin as x1 shows a sharp decrease with the

increase of ReDh
until approximately a Reynolds number of 5500. That is accompanied

by a reduction of the x2 until the similar ReDh
and the appearance of a tertiary separa-

tion bubble further downstream of the main reattachment length. This tertiary bubble

was first reported by Armaly et al. (1983) and also decreases in length with the increase

of ReDh
until it vanishes at about ReDh

= 2300. This was later confirmed by DNS.
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Experimental work by Lee and Mateescu (1998) shows the onset of the transitional

regime to be delayed at approximately ReDh
= 1400 and extended up to ReDh

= 2800,

the largest Reynolds number tested. The additional bubble on the lower side is not

captured by Lee and Mateescu (1998) measurements. While Mouza et al. (2005) only

present the behaviour of x1, which agrees with Armaly et al. (1983) measurements.

Measurements along the spanwise length by Armaly et al. (1983) at ReDh
show a strong

three-dimensional behaviour within the transitional regime. Armaly et al. (1983) showed

how the position of the primary reattachment length dictates the position of the onset

of the secondary bubble. This was confirmed with regard to their behaviour along the

span, where if x1 increases, x2 increases too. The length of the secondary bubble behaves

contrarily to former parameters, i.e. x1 and x2 are moved downstream, the length of

the bubble is shortened and vice versa.

- Turbulent regime

With the increase of ReDh
, the secondary bubble disappears and the primary recircula-

tion length rises ever so slightly until resembling a constant behaviour as Armaly et al.

(1983) reported. This agrees with experimental values reported by Mouza et al. (2005)

and prior experiments by Abbott and Kline (1962) at a higher Reynolds number. The

constant behaviour within the turbulent regime was also confirmed by Moss et al. (1979),

however, the larger the expansion ratio is, the larger is the primary reattachment length

within the turbulent regime.

The plateau achieved at high Reynolds number regimes within the turbulent region

was also confirmed by Durst and Tropea (1981), who studied the primary reattachment

length decency to Reynolds number and expansion ratio.

2.6.2 Review of numerical studies

The first DNS for fully turbulent backward-facing step analysis was carried out in the late

90s by Le et al. (1997), with an expansion ratio of 1.2. However, it was not until Biswas

et al. (2004) and Schäfer et al. (2009), that a DNS to study the BFS flow transition from

laminar to turbulent was performed. The growth of x1 with the increase of Reynolds

number, predicted by DNS from Biswas et al. (2004), agrees with Armaly et al. (1983)

as well as the appearance of the secondary bubble. Furthermore, it confirms the three-

dimensional for ReDh
> 400. At the end of the transitional regime ReDh

= 6000,

predictions by Schäfer et al. (2009), confirms the presence of the secondary bubble at

this Reynolds number and its agreement with the length of x1 , and the secondary bubble

measured by Armaly et al. (1983). DNS simulations provide insight about the vortical

structures interactions with the main flow and recirculating bubbles. Furthermore, it

shows the interaction of the primary and the secondary bubble observed by Armaly et al.
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(1983). A fully turbulent DNS with an expansion ratio of 2 was performed by Pont-

Vı́lchez et al. (2019). The constant plateau right after the transitional region is confirmed

and in good agreement with Armaly et al. (1983) experimental data. In addition, they

analyse the vortical Kelvin-Helmholtz structures emanating from the shear layer after

the separation point, to provide a deeper insight into the flow physics.

Rani et al. (2007) study the transitional region for backward-facing step using an LES

approach at ReDh
= 2000, apart from demonstrating the strong dependence of reattach-

ment lengths to Reynolds number. It provides an insight into the interaction between

vortical structures emanating from secondary bubble and primary reattachment length,

concluding that the development of the Kelvin-Helmholtz structures leads to a transition

to a fully developed turbulent flow. Choi et al. (2016) also showed agreement for the pri-

mary reattachment length at an angle of 90◦ and an expansion ratio of 2, although any

further insight is given. Similarly happens for DDES predictions. Spalart et al. (2006)

present a prediction comparing DES and DDES for the Driver and Seegmiller (1985)

case, higher aspect ratio than Armaly et al. (1983) and fully turbulent case. Simulations

for a similar case are carried out by Wang et al. (2014), which shows the possibility to

describe turbulent flow with DDES although the transitional regime is avoided and no

further insight on transitional flow is given.

To the author’s knowledge, only Medina and Early (2014) have performed a test for aft-

facing step flow using URANS transitional model k− kL−ω. This work presents a two-

dimensional analysis using the AFT model, throughout the three big already described

regimes to determine the strengths and weaknesses of using transitional modelling AFT

approach than high fidelity approaches. Ratha and Sarkar (2015) reported an analysis

throughout the three regions using k − ϵ. Predictions show the consistent shortening of

the primary reattachment length and secondary bubble, reaching a constant behaviour

in the early stages of the transitional regime as if the flow field was completely turbulent.

2.6.3 Summary

Major findings were reported by Armaly et al. (1983) with the identification of three

different regimes dependent on the Reynolds number and in this case for an expan-

sion ratio of approximately 2. These regimes are confirmed by DNS, as well as the

appearance of a tertiary laminar bubble. Three-dimensional behaviour of the flow is

also reported by measurements and confirmed by either DNS or LES simulations from

ReDh
∼ 400 approximately. Few attempts to identify the transitional effect have been

done, especially simulations by Rani et al. (2007) report insight into the main cause of

the transitional behaviour. Fully turbulent analyses are performed with LES and DDES

as discussed, showing the capability to provide a better description of the physics within

the recirculating region but any transitional analysis is reported.
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Most RANS methods are focused on producing studies on the fully turbulent regime.

Ratha and Sarkar (2015) produced a complete analysis throughout the whole spectrum

of Reynolds numbers, over the three different regimes, showing the shortening of the

primary and secondary bubbles, without the prediction of the tertiary bubble. This

work aims to present a complete analysis using the transitional AFT and AFT-RSM

models for the laminar, transitional and turbulent regime to demonstrate the improved

predictions that transitional models can bring for backward-facing step flow.

2.7 Flow past a circular cylinder

The analysis of bluff-body transitional flow and specifically flow past a circular cylinder

is the main interest of this project, as already discussed. Flow past a circular cylinder

is known to exhibit a different range of physical phenomena that are interesting to the

scientific community. Existing experimental and numerical analyses are discussed in the

following paragraphs.

2.7.1 Review of experimental studies

Roshko (1961) first divided the behaviour of the flow past a circular cylinder into four big

regimes depending on Reynolds number based on cylinder diameter (ReD), where some

of them are internally dividend in sub-regimes. Bear in mind that this is an idealized

solution for a disturbance-free flow. Regions are sub-critical, critical, super-critical and

trans-critical. Zdravkovich (1997) considered the position of the separation point the

key feature to classify the particular state of the flow past a circular cylinder. This

explanation is done by reflecting on the four big groups initially proposed by Roshko

(1961) and shown in Figure 1.2.

- Laminar and Transition in the wake regime

With the increased Reynolds number, the flow develops from not having a separation,

passing through a steady and stable state with a closed wake to an unsteady behaviour

following the wake transition. At approximately ReD = 1000−2000 the flow is observed

to first become turbulent, due to Kelvin-Helmholtz instability of the two shear layers

separating from the cylinder, as Prasad and Williamson (1997) discussed. Above this

Reynolds number, the turbulence in the wake flow strengthens and gradually moves

closer to the cylinder base with the increased ReD. This marks the onset of shear-layer

transition within the sub-critical regime.

- Sub-critical regime

As introduced, the sub-critical regime coincides with the transition in the shear layers

identified by Zdravkovich (1997). It is commonly called sub-critical, referring to the fact
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that the boundary layer remains laminar up to and beyond the separation position over

the cylinder surface. In this state, the free shear layers are the ones determining the

behaviour of the flow in the near wake. Zdravkovich (1997) named the typical structures

of this regime transition eddies. A general tendency regarding the transition on the shear

layers for increasing ReD, accompanied by a reduction of the recirculating length and

increasing drag coefficient because of the transition eddies moving gradually closer to

the back of the cylinder.

Further increasing the ReD shows a constant behaviour for CD and fluctuating lift and

drag by Zdravkovich (1997) due to the stagnation of transition. This was confirmed

by Weidman (1968) as well since he found the pressure minima for the cylinder surface

between ReD = 104 − 105 are practically similar to the increase of Reynolds number.

Measurements performed by Achenbach (1968), Cantwell and Coles (1983) confirmed the

laminar separation and a rather constant behaviour of CD within the upper sub-critical

range as shown in Figure 1.2.

- Critical regime

As Reynolds increases, the transition advances in the free shear layers until it reaches

the separation location. This triggers a complex interaction between separation and

transition, at about ReD = 2 × 105 but somewhat arbitrary in literature due to its

high sensitivity to experimental conditions and uncontrolled perturbations. However,

the main characteristic is the sharp fall of the drag, as shown in Figure 1.2, due to

a narrowing of the wake and a gradual movement of the separation downstream the

cylinder surface with the increase of Reynolds number. The length of the formation

eddy is stretched and the roll-up of shear layers occurs further downstream. Initial

pressure surface measurements within this region were performed by Fage and Falkner

(1931), Giedt (1951) and Bursnall and Loftin (1951).

With the subtle increase in Reynolds number, a single laminar separation bubble can

appear on one side of the cylinder surface, while the opposite side retains the sub-critical

behaviour as first identified by Bearman (1969) and later on by Achenbach and Heinecke

(1981). Analysis of such asymmetric behaviour was performed by Schewe (1983) in de-

tail. He concluded that these phenomena “lies in the behaviour of the boundary layer”,

with the occurrence of perturbations or fluctuations inherent in the boundary layer and

the freestream causing the single bubble initially. Thus, once the reattachment happens

for the single bubble, there is an acceleration on one side and a deceleration on the

other, delaying the appearance of the second bubble on the opposite side. Therefore, as

Reynolds number is ever so slightly increased, the increased acceleration on the opposite

side (decelerated when single bubble forms) causes the second laminar separation bub-

ble to occur. At this point, the drag is minimum, and the Reynolds number is so-called

critical Reynolds number, marking the beginning of the supercritical regime. The spe-

cific side where the initial single bubble appears is not clear yet since measurements by
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Bearman (1969) and Farell and Blessmann (1983) reveal different behaviour. Further-

more, the Reynolds number occurrence remains to be fully established as Schewe (1983),

Zdravkovich (1997) and Achenbach (1968) determine different Reynolds numbers for the

onset of the critical region.

- Super-critical regime

Hence, this region is characterised by two separation bubbles with a delayed turbulent

separation. Schewe (1983) investigated a constant vortex shedding with maximum values

of St = 0.48 with narrow band lift fluctuations. Throughout the whole region, the mean

drag can be considered constant, although a small rise is observed. Measurements by

Roshko (1961), Achenbach (1968), Schewe (1983) and Shih et al. (1993) confirmed the

supercritical behaviour with the stabilization of the two laminar separation bubbles and

the almost constant value of CD and St over this regime.

- Trans-critical regime

With the further increase of Reynolds number, the suppression of vortex shedding marks

the beginning of the trans-critical regime. In this regime, the drag coefficient is essen-

tially constant, after the rise between the transition from the super-critical regime. This

means the position of the separation point is almost constant. Transition in this case will

move gradually towards the stagnation point until the flow can be considered completely

turbulent as measurements carried out by Roshko (1961) demonstrate.

2.7.2 Review of numerical studies

As discussed, experiments with increased ReD become sensitive to many effects such

as tunnel blockage, surface roughness, turbulence levels and uncontrolled perturbations.

Thus, numerical simulations could potentially avoid some of these effects and therefore

provide a clearer insight into the physics of flow past a circular cylinder.

DNS predictions are available for ReD = 3900, at intermediate sub-critical regime, and

up to ReD = 104 by Dong et al. (2006). However, this Reynolds number is well below the

drag-crisis regime, and consequently further away from supercritical and trans-critical

regimes. With the increased ReD, the grid requirements escalate very rapidly to be

accessible for DNS predictions. Alternatives available at the sub-critical regime are LES

predictions such as Kim (2006),Cheng et al. (2017), Breuer (2000) and DDES simulations

by Liu et al. (2019) and D’Alessandro et al. (2016).

In the critical region, wall-resolved and wall-modelled methods have been used by Cata-

lano et al. (2003), Rodŕıguez et al. (2015), and Cheng et al. (2017) in the study of

flow over a circular cylinder. Travin et al. (1999) produced predictions using a DES

approach at the the critical regime and further deep within the trans-critical region

(ReD = 3.6× 106) and Liu et al. (2019) up to ReD = 3.6× 105 in the critical regime.
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As discussed by Cheng et al. (2017), there have been few efforts in closing the gap

between the current accessible range to DNS simulations and high Reynolds numbers.

To the author’s knowledge, only two have attempted to close that gap with wall-resolved

LES simulations that are Cheng et al. (2017) and Rodŕıguez et al. (2015), with results

at ReD = 6.5− 8.5× 105. One of the aims of this work is to close the gap with the use

of a DDES hybridisation of a RANS transitional approach using AFT methodology for

transition prediction in the near wall region and the recovery of LES behaviour away

from the walls, rather than a fully turbulent assumption of the boundary layer in the

near wall region.

Transitional URANS approaches are currently another possibility for the circular cylin-

der predictions. To the author’s knowledge only Vaz et al. (2009) and Zheng and Lei

(2016) have presented analyses for flow past a circular cylinder using Menter et al. (2015).

In these publications, results show promising results only from skin friction and surface

pressure perspective, but the critical regime analysis is missing, as well as comparisons

to available DDES, LES and experimental. Furthermore, the validity of downstream

results over the cylinder surface are doubtful, while still predicting a fall of CD in the

super-critical regime. Another aim of this work is to present an insight description not

only from a surface perspective but also from a wake perspective using AFT transitional

approach, from sub-critical to trans-critical and demonstrate the enhanced predictions

to Menter models, including the critical regime.

2.7.3 Summary

From the experimental review, there is a general agreement regarding the four big

regimes shaping the flow dynamics for flow past a circular cylinder: sub-critical, critical,

super-critical and trans-critical.

The laminar boundary layer development and the laminar separation are well established

in the literature regarding sub-critical flow physics. Available measurements performed

throughout the sub-critical regime, either mid or upper region of the same, agree with

the drag coefficient, shedding frequency and lift fluctuations, and literature data do not

show a large scatter data. The initial rise and stall of the drag coefficient measures,

once the transition is in a constant location downstream within the shear layers, and

the constant shedding frequency is identified overall.

In the critical regime, the key finding is the deep investigation by Schewe (1983) of a

single laminar separation bubble mode followed by the establishment of a second laminar

separation bubble with a mild increase of the Reynolds number. Nonetheless, there is

scatter data regarding the side of the single bubble appearance and the Reynolds number

of the onset of the critical region. The general conclusion for that scatter is the sensitivity
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of this regime to differences in experimental conditions and uncontrolled disturbances

affecting the boundary layer and free shear layers.

Supercritical and trans-critical key findings are the symmetric recovery with the occur-

rence of the second separation bubble and its disappearance at a sufficient Reynolds

number, respectively. Measurements available on both regimes are in agreement, al-

though at trans-critical regime, measurements of drag coefficient and Strouhal number

show differences in value while presenting the same tendency.

Numerically, only two publications analyse the performance of Menter et al. (2015) from

a surface behaviour perspective with the lack of information on the critical regime and

wake behaviour. DDES by Liu et al. (2019) are carried out up to ReD = 3.6 × 105

showing the fall of CD at the critical regime. Wall-resolved LES simulations provide an

insight into the asymmetric bubble, confirming experimental observations, as well as for

the supercritical regime, with the recovery of symmetric flow with the occurrence of the

second bubble. Travin et al. (1999) demonstrate the agreement with transition occurring

at the upstream face at trans-critical regime ReD = 3.6 × 106. Regarding transitional

URANS just the work done using γ −Reθ mode is available, missing the critical region

and presenting numerical instabilities in the results. Hence, this work aims to present a

deep analysis using transitional AFT, which is a much simpler model than Menter et al.

(2015) approach, along with transitional DDES at high Reynolds numbers.





Chapter 3

Amplification Factor Transport

Model

In this Chapter, the Amplification Factor Transport model details are given. The base

definition of the AFT is a contribution published in Coder and Maughmer (2014). How-

ever, the author’s contribution in this thesis is the implementation of the model into

OpenFOAMv1912 and the modification of the intermittency equation, which is reverted

from ln(γ̃) (as expressed in Coder, 2017) to γ. With regards to the extension of the

AFT model with a Reynolds Stress Model closure is also a contribution, as well as the

implementation into OpenFOAMv1912. The chapter implements and discusses the con-

tribution in Coder and Ortiz-Melendez (2019) for the incorporation of AFT into DDES

hybrid approaches.

3.1 Amplification Factor Transport Model

A wide range of turbulence models are available for fully-turbulent flows using Reynolds-

averaged Navier-Stokes (RANS) simulations. However, they are not suitable for laminar

boundary-layer or transition to turbulence prediction. To incorporate transition pre-

diction different techniques have been proposed and applied in the industry. Empirical

transition criteria as the work by Abu-Ghannam and Shaw (1980) or Gostelow et al.

(1994), the eN method by van Ingen (1956) and transport equation-based approaches.

Out of all of the transitional methods compatible with current CFD methodologies, the

AFT model, proposed by Coder and Maughmer (2014), is appealing as it estimates the

actual amplification of the Tollmien-Schilichting waves via a scalar transport equation

and accounts for the upstream boundary layer history, therefore responding better to

pressure gradients than models by Langtry and Menter (2009) and Menter et al. (2015).

The model has been mainly validated for flow over flat-plate and airfoil-like geometries

with moderate curvature. The main goal of the following chapters is to assess and

41
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demonstrate the performance of the transitional AFT model, and the improvements of

different modifications to the original AFT model for flat-plate, backward-facing step

and most extensively for flow past a circular cylinder at high-Reynolds number, where

the separation point is not fixed and the curvature is not moderate.

The AFT model introduces correlations to compute the variation of the amplification

factor (ñ) in terms of the momentum-thickness Reynolds number (Reθ) for a fixed in-

tegral shape factor, defined as the displacement-thickness to the momentum-thickness

ratio (H12 = δ1/θ) at every point in the flow. In the current AFT model, the ñ cor-

relations were introduced by Drela and Giles (1987) from the analysis of Falkner-Skan

similarity velocity profiles. Moreover, the current AFT model determines the flow stabil-

ity purely based on the critical Reynolds number. All these correlations depend on the

estimation of the momentum thickness Reynolds number and the integral shape factor,

which are estimated via proportionality functions with the local shape factor defined in

Equation 3.5 and the vorticity Reynolds number defined as

Rev =
Sd2w
ν + νt

(3.1)

where dw is the wall distance, S is the strain rate magnitude, ν refers to kinematic

viscosity and νt refers to turbulent eddy viscosity.

The original AFT model proposed by Coder and Maughmer (2014), capable of produc-

ing a transition estimation with the description of the envelope of linearly amplified

instabilities within the boundary layer via the amplification factor (ñ), reads as

∂˜︁n
∂t

+
∂uj˜︁n
∂xj

= ΩFcritFgrowth
d˜︁n

dReθ
+

∂

∂xj

[︄
1

σn
(ν + νt)

∂˜︁n
∂xj

]︄
. (3.2)

Fgrowth = D(H12)
1 +m(H12)

2
l(H12) (3.3)

Fcrit =

⎧⎨⎩0, ReV < ReV,cr

1, ReV ≥ ReV,cr
(3.4)

The AFT equation given above is dominated by the production term (first term on the

right-hand side of Equation 3.2), which controls the rate of amplification of the most

unstable frequencies in terms of Reθ. Drela and Giles (1987) proposed a correlation

for dn̄/dReθ based on similarity velocity profiles together with the correlation for the

critical Reynolds number Reθ,cr as shown Equations 3.7 and 3.8 in terms of an integral

shape factor H12.
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Since the AFT model does not compute any integral boundary-layer property to ensure

the model is compatible for parallel CFD solvers, H12 is estimated via the local shape

factor (HL). The local shape-factor HL is based on the work of Menter et al. (2015) on

the evaluation of a local boundary-layer shape factor or the pressure-gradient parameter

and is defined as.

HL =
d2w
ν

dUy

dy
, (3.5)

where dUy/dy denotes the gradient of the wall-normal velocity in the wall-normal direc-

tion. HL is computed everywhere but its maximum value (approximately in the middle

of the boundary layer) is the one used to establish the correlations, as originally pro-

posed by Coder and Maughmer (2014). This HL estimation is related to the integral

shape factor H12 from Falkner-Skan similarity profiles as defined in Equation 3.6.

H12 = 0.376960 +

√︃
HL + 2.453432

0.653181
. (3.6)

d˜︁n
dReθ

= 0.028(H12 − 1)− 0.0345 exp

[︄
−

(︄
3.87

H12 − 1
− 2.52

)︄2]︄
(3.7)

log10(Reθ,cr) = 0.7 tanh

(︄
14

H12 − 1
− 9.24

)︄
+

(︄
2.492

(H12 − 1)0.43

)︄
+ 0.62 (3.8)

The Fgrowth function encapsulates the effects of the growing boundary layer over separa-

tion bubbles by the use of two empirical correlations proposed by Drela and Giles (1987)

based on solutions from the Falkner-Skan similarity profiles. Fcrit is a function that de-

termines if the local boundary layer is capable of containing instabilities, switching on

or off the production of ñ. The function kv describes the proportionality of the two

Reynolds numbers Rev and Reθ from Falkner-Skan similarity profiles. Since the AFT

model does not compute the momentum thickness at any point, kv is needed to estimate

the momentum-thickness Reynolds number. The proportionality function is defined as

kv = 0.4036H2
12 − 2.5394H12 + 4.3273 where Rev = kvReθ. (3.9)

The vorticity Reynolds number defined in Equation 3.1 can be computed at every single

point in the domain, so if it is larger than its critical value, the Fcrit function equals

unity. Otherwise, it will remain zero and no unstable modes will be amplified within the

boundary layer. Figure 3.1 shows the behaviour of kv, dn/dReθ and Reθ,cr in terms of the

integral shape factor for completeness. The AFT model is coupled to a fully-turbulent



44 Chapter 3 Amplification Factor Transport Model

approach, specifically the Spalart-Allmaras turbulence model proposed by Spalart and

Allmaras (1994), via the following intermittency (γ) transport equation

Dγ

Dt
= c1SFonset(1− γ) + c2ΩFturb(c3γ − 1) +

∂

∂xj

[︃(︃
ν +

νt
σγ

)︃
∂γ

∂xj

]︃
(3.10)

Fonset = max
[︁
min(ñ/Ncrit, 2.0)−max[1− (νt/3.5ν)

3, 0]
]︁

(3.11)

Fturb = exp[−(νt/2ν)
4] (3.12)

where S is the magnitude of strain rate, ω is the vorticity magnitude and c1, c2, c3 and

σγ are calibration constants inherited from Menter et al. (2015) with values 100, 0.06, 50

and 1.0 respectively. The Fonset triggers the production of intermittency depending on

the ñ to Ncrit ratio. The Fturb term ensures that intermittency is not destroyed within

a turbulent boundary layer.
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Figure 3.1: Variation of the kv, dn/dReθ and Reθ,cr factors in terms of the H12.

The coupling is performed using a modified ft2 function from the original Spalart and

Allmaras (1994) turbulence model as

ft2 = ct3(1− γ) (3.13)
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where ct3 is a calibration constant with a value 1.2 which comes from the original Spalart

and Allmaras (1994) fully-turbulent approach. This term ensures stability for regions of

zero eddy viscosity and it is present in both production and destruction terms. When

ν̃ is close to zero, the production term becomes negative and provides stable laminar

solutions. Its effect on the destruction term is to cancel in fully-turbulent layers without

affecting the stability of laminar flows. The rest of the details regarding Spalart and

Allmaras (1994) model can be found in the publication.

These four correlations are pivotal for the prediction of the transition onset. As dis-

cussed, this set of four correlations is based on Falkner and Skan (1931) velocity profiles.

This may have a negative influence on flow past a circular cylinder at high-Reynolds

number predictions. The shortcomings of these correlations are discussed in the follow-

ing chapters. Ultimately, the last chapter presents a study of how these four correlations

compare to relations achieved from LES simulations for flow past a circular cylinder.

Furthermore, new correlations are proposed and their performance for different high-

Reynolds regimes for flow past a circular cylinder is discussed.

To proceed with the implementation details first it is important to understand a bit the

structure of OpenFOAM source code. OpenFOAM is constructed following the bases of

Object-Oriented Programming (OOP), hence for the different methods like RANS, LES

or DNS, the code is divided into “namespaces” that are divided into classes which refer

to specific models like SST, S-A or k − ω SST-DDES among others. In addition, the

structure of OpenFOAM is simplified via templates that can be used as a starting point

to complete new implementations or modifications to the solver.

In this case, the process starts using the template from the already implemented Spalart-

Allmaras model. The fully turbulent approach does not have implemented the ft2 func-

tion, so a method had to be defined and the term incorporated into the corresponding

term of its transport equation. As in the example in Figure 3.2, all the methods to com-

pute the values of Fcrit, Fgrowth are implemented in the same way following the C++

syntax.

Figure 3.2: Definition of ft2 method in OpenFOAM C++ code.

Following the properties of the model, all the calibration constants must be declared

and defined. OpenFOAM implements parsers to do such procedures. As the turbulence
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model is declared in the OpenFOAM environment, a method inside the “read()” function

named “readIfPresent()” is called, which will automatically read the values from the

default defined in the source code or the values defined in the OpenFOAM case property

file. An example of the definition of a calibration constant is shown together and the

shape of the function “read()”.

In addition, the new physical properties γ and ñ, are defined as the calibration constants

but in this case, the properties of the method are different as shown in Figure 3.3.

Figure 3.3: Definition of γ variable in OpenFOAM C++ code.

The last important part is to define the new transport equations for the new model, in

this case, the AFT. An example of the definition of the ñ transport equation is shown

in Figure 3.4.

Figure 3.4: Definition of γ transport equation in OpenFOAM C++ code.
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3.2 Transitional Amplification Factor Transport with Reynolds

Stress Model

To this point, the pivotal equations for the original AFT transitional model is dis-

cussed. The method uses a fully-turbulent Spalart and Allmaras (1994) model based on

eddy-viscosity closure. This section discusses the advantages and disadvantages of the

eddy-viscosity closure and proposes the use of a Reynolds Stress Model for improved

predictions along the AFT transitional model.

The transitional framework from the original AFT alone only provides information about

the state of the boundary layer. As discussed at the beginning of this section, the

intermittency scalar has to be blended with a turbulent closure model, which will be

fully recovered when the criteria for the transition onset are fulfilled.

Currently, the original transitional AFT presented in the first section of this chapter

uses the Spalart-Allmaras turbulent approach. However, there are other versions of the

model with the use of the Shear Stress Transport turbulent approach proposed by Menter

(1993). These turbulence models use the Boussinesq hypothesis by Boussinesq (1903)

as a closure approach which is not ideal for predicting different types of flow-fields, such

as flow with sudden changes in mean strain rate, flow over curved surfaces, anisotropy

of the normal stresses.

3.2.1 Reynolds Stress Model

The Boussinesq hypothesis is based on the postulation made by Boussinesq (1903) that

the momentum transfer caused by turbulent eddies can be modelled with an eddy viscos-

ity term. This assumption is a direct analogy with how the momentum transfer caused

by the molecular motion in a gas is described by molecular viscosity. In a sheared flow,

the lower particles are accelerated by the faster-moving fluid located above. This in-

teraction generates a net transport of momentum to the lower particles. In a general

case, it can be said that the momentum is transported in the direction of the velocity

gradient.

Thus, the Boussinesq hypothesis assumes that the turbulent shear stress is proportional

to the trace-less mean strain rate tensor. The eddy-viscosity has been proven to provide

good predictions for a wide range of scenarios by different turbulent models. However,

the application of such linear relation leads to failure in certain areas as:

• flows with sudden changes in mean strain rate;

• flow over curved surfaces (streamline curvature);

• flow in systematic rotation;
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• the prediction of the anisotropy of the normal stresses;

• the prediction of the return to isotropy.

In addition to the above five points discussed by Wilcox (1994) and Pope (2000), experi-

mental evidence reveals that the history flow effects for τij persist for long distances, thus

compromising the validity of a single linear relationship between the Reynolds stress ten-

sor and the mean strain-rate tensor. Thus, a possibility is to use a higher-order method

to predict the Reynolds stress tensor.

The Reynolds stress equation model is a second-order moment closure that avoids the

computation of a single eddy-viscosity term for all the components of the tensor and

the individual components of the Reynolds stress tensor are directly computed. The use

of the Reynolds stress model addresses some of the shortcomings introduced by the use

of Boussinesq hypothesis, however, the exact equation requires modelling for the dissi-

pation, pressure-strain rate and turbulent transport terms. The following paragraphs

discuss the improvement compared to the use of eddy-viscosity closure from the analysis

of the exact equation for the Reynolds stress tensor in Equation 3.14.

∂τij
∂t

+ Uk
∂τij
∂xk

= −τik
∂Uj

∂xk
− τjk

∂Ui

∂xk
+ ϵij −Πij +

∂

∂xk

[︃
ν
∂τij
∂xk

+ Cijk

]︃
(3.14)

where the dissipation, the pressure-strain redistribution and the turbulent transport

term read as

ϵij = 2ν
∂u′i
∂xk

∂u′j
∂xk

(3.15)

Πij=
p′

ρ

(︃
∂u′i
∂xk

+
∂u′j
∂xk

)︃
(3.16)

ρCijk = ρu′iu
′
ju

′
k + p′u′iδjk + p′u′jδik. (3.17)

It can be seen from the analysis of the exact equation for the Reynolds stress tensor

that a second-order approach for the Reynolds stress tensor description will include

effects of flow history with the presence of convection and diffusion of τij . Additionally,

the time scales unrelated to mean flow time scales are present with the dissipation and

turbulent-transport terms, which leads to a better prediction of the flow history than

eddy-viscosity closure models.

The streamline curvature and system rotation are more realistically represented too

with the use of a second-order approach for describing the Reynolds stress tensor τij .
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This is due to the presence of the convection and production term for the Reynolds

stress tensor, which responds automatically to such effects qualitatively better than

eddy-viscosity closures.

From the analysis of Equation 3.14, it can also be said the Reynolds stress equation for

each component should not predict the normal stresses to be equal when the mean strain-

rate vanishes, since their relationship is not linear as for the eddy-viscosity closures. In

fact, the values of the normal stresses will depend on other flow processes.

The dissipation, turbulent transport and pressure strain terms could be modelled with

different approaches. One of these approaches is the well-known SSG-LRR Reynolds

stress model proposed by Eisfeld et al. (2016). The fundamental idea behind the SSG-

LRR-ω is to combine the ϵ-based SSG model to utilise the pressure-strain correlation

and the insensitivity provided by ϵ to the initial conditions of ω, along with the LRR

model in the near-wall region, which is based on the ω-equation being capable to provide

accurate predictions in the near-wall region.

The dissipation rate in Equation 3.15 is commonly modelled following Kolmogorov’s

hypothesis of local isotropy at the smallest scales of turbulence for high-Reynolds number

flows, where the dissipation occurs. To compute the isotropic dissipation rate, the

ω equation as for the Shear Stress Transport is used. Note that the assumption of

local isotropy is not completely correct in the near wall region where the behaviour

is essentially anisotropic. However, the incorporation of the dissipation term for each

component of the Reynolds stress tensor τij would lead to a better description of flow

history effects.

Another term in the second-order approach of SSG-LRR that helps in the improved

description of flow history effects and that requires modelling is the turbulent transport

term in Equation 3.17. The spatial redistribution of the Reynolds stress tensor due to

fluctuating velocity field and pressure fluctuations is commonly modelled using a simple

gradient diffusion term. This is the case with the SSG-LRR Reynolds stress model.

The last term for the closure of the SSG-LRR Reynolds stress model or any second-order

approach is the pressure-strain term in Equation 3.16. This term is where most of the

efforts are focused by the researchers since its function is crucial for the description of

the Reynolds stress tensor behaviour. This term is also referred to as the pressure-strain

redistribution term and it serves to distribute the energy among the components of the

Reynolds stress tensor. In a turbulent boundary layer, redistribution of energy is as

dominant as production and dissipation terms.

As discussed by Pope (2000), in the energy budget of the streamwise Reynolds stress

R11 for a turbulent boundary layer, the redistribution is as significant as the dissipation

term, since it removes energy at twice the rate of dissipation. This energy deduction is

balanced by the production of energy for the streamwise normal Reynolds stress. For
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the wall-normal and span-wise normal Reynolds stresses, the production is negligible

but the dissipation is significant. In this case, the energy balance is achieved by the re-

distribution term. Essentially, energy is transferred from the dominant axis to the other

two directions of the normal stress. Regarding the energy budget distribution for the

cross Reynolds stress terms, the behaviour is similar to wall-normal and span-wise but

in this case, the redistribution term balances the production term because dissipation

is negligible. The redistribution term also addresses a shortcoming of the Boussinesq

hypothesis which is the return to isotropy with the presence of the term including the

behaviour of self-interaction of the fluctuating field. These explanations show the im-

portant role that the redistribution term plays in the Reynolds stress equation and the

need to propose correct modelling.

The SSG-LRR Reynolds stress model divides the modelling of the pressure-strain-rate

term into two parts. The first part, often referred to as the rapid-strain term, aims to

model the behaviour of the redistribution of energy throughout all the components of

the Reynolds stress tensor due to the interaction between the fluctuating field with the

mean velocity field. The second part of the term is referred to as the slow-strain pressure

term and is responsible for the redistribution of energy for the return to isotropy due to

the self-interaction of the fluctuating field.

3.2.2 Transitional AFT with Reynolds Stress model

The original AFT transitional framework consists of a two-equation model formed by

an intermittency transport equation and the AFT equation. These of two equations

in the original model are coupled to the Spalart-Allmaras fully-turbulent approach via

the intermittency transport equation. Similarly, the SSG-LRR Reynolds stress model

is coupled in this work to the transitional framework via the intermittency transport

equation modifying some of the present terms in the Reynolds stress equation. The

coupling will allow the SSG-LRR Reynolds stress model to produce a laminar solution

until the transition criteria are fulfilled. From the transition onset onward, the SSG-LRR

Reynolds stress model will produce a transitional region until the fully-recovery of the

fully-turbulent behaviour of the Reynolds stress model. Three terms must be modified:

the production of the Reynolds stress, the dissipation of the Reynolds stress and the

pressure-strain term.

The production term represents the work done of the mean velocity gradients to the

Reynolds stresses and can be computed directly without any modelling required. Es-

sentially, this term accounts for the transfer of kinetic energy from the mean flow to the

fluctuating velocity field. Hence, in essence, it sustains the turbulence generation trans-

ferring energy from the largest-scale eddies to the small-scale eddies. This description of

the physical behaviour for the production term is valid for a fully-turbulent flow field. In

a laminar region, experimental results revealed that the contribution of the production
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term of Reynolds stress is negligible. Thus, the transitional SSG-LRR approach needs

to eliminate the contribution of the production term within the laminar region. After

the transition onset, the production term starts to recover its relevance due to the ap-

pearance of the interactions between the mean flow and the growing fluctuating velocity

field. To achieve this behaviour, the new production term for the SSG-LRR Reynolds

Stress Model is

Pt,SSGLRR = γPo,SSGLRR (3.18)

where subscript ′t′ indicates the term for the transitional SSG-LRR model and subscript
′o′ indicates the original term in Equation 3.14, in this case, the production term.

As a consequence of the Reynolds stress production term being negligible within the

laminar region, is that how the dissipation terms behave within that region. Essentially,

since there is no transfer of kinetic energy from the mean flow to the fluctuating velocity

field, there is not any fluctuating velocity being fed and consequently a nonexistent

dissipation at this scale. Thus, similarly to the new production term, the new dissipation

term is multiplied by intermittency to neglect its activation during the laminar regime

as

Et,SSGLRR = min(γ, 1)Eo,SSGLRR (3.19)

where subscript “t” indicates the term for the transitional SSG-LRR model and subscript

“o” indicates the original modelled dissipation term in Eisfeld et al. (2016). The min

factor is used as a safeguard to recover the fully-turbulent dissipation term in case γ

exceeds 1 due to numerical instabilities.

Furthermore, due to the negligible contribution of the Reynolds stresses within the

laminar region, there is not any possible distribution of energy from the streamwise

fluctuating velocity towards the rest of the directions. Consequently, the contribution of

the pressure-strain term is negligible during the laminar region but it regains its relevance

beyond the transition onset point. Hence, the new pressure-strain term is multiplied by

the intermittency term to achieve the behaviour discussed above and reads as

Πt,SSGLRR = γΠo,SSGLRR (3.20)

where subscript ′t′ indicates the term for the transitional SSG-LRR model and subscript
′o′ indicates the original modelled transport term in Eisfeld et al. (2016). The rest of

the details of the model are inherited from the original SSG-LRR-ω.
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The final form of the AFT-RSM consists of the intermittency (γ) transport equation

as Equation 3.10, the amplification factor transport (ñ) equation as Equation 3.2, the

Reynolds stress (τij) transport equation in Equation 3.14 from Eisfeld et al. (2016) with

modifications from Equations 3.18-3.19 and Equation 3.20 and the specific dissipation

rate (ω) transport equation in Eisfeld et al. (2016).

The transitional AFT-RSM model is used in this work for predictions on a zero-pressure

gradient flat-plate, backward-facing step flow and flow past a circular cylinder at high

Reynolds numbers. The first case verifies and validates the implementation of the

Reynolds Stress Model extension coupled with transitional AFT for a zero-pressure

gradient flat plate where a natural transition occurs. Furthermore, Chapter 4 compares

predictions to the AFT model presented in previous paragraphs and experimental data

by Schubauer and Skramstad (1947). Chapter 5 uses the transitional AFT-RSM to

predict laminar, transitional and turbulent regimes and validate its results against the

original AFT and experimental data. Ultimately, Chapter 6 presents estimations us-

ing AFT-RSM for flow past a circular cylinder and its improved performance to fully

turbulent methods and AFT, and further insight from a surface and wake perspective.

3.3 Transitional Delayed Detached Eddy Simulation Am-

plification Factor Transport Model

As introduced earlier in Section 2.5.4, the idea behind the use of RANS/URANS tran-

sitional models is to avoid resolving the complete spectrum of turbulence using DNS

techniques or most of the turbulence spectrum via LES approaches down to the wall.

On the other hand, RANS due to the averaging of all the scales are modelled and for the

URANS, only the unsteady mean flow, i.e scales that are comparable to the geometry

of the flow are resolved, whereas the rest of the scales are modelled.

RANS/URANS simulations have been shown to be useful in a wide range of flow ty-

pologies. As turbulent scales are modelled in RANS/URANS methods, this yields to

inaccurate for some types of flows. In addition, the standard form of the S-A model

becomes overly dissipative in wakes and separated flow regions as a result of the wall

distance being the relevant length scale and approaching infinity. Examples are the

bluff-bodies flows, where the wake consists of unsteady, large turbulent structures or

flows with large separation regions. In fact, as discussed in Section 3.1, the main goal of

this work is to produce predictions for the laminar, transitional and turbulent regimes of

a backward-facing step, where a major part of the flow field is covered by a big separated

region and predictions for bluff-body flow, specifically for flow past a circular cylinder.

Therefore, the use of a DES approach, introduced by Spalart et al. (1997), is an alter-

native to retain the RANS/URANS transitional prediction of the amplification factor
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transport in the near wall region, while switching to LES when the turbulent scale

exceeds the grid dimension. This hybridisation alleviates the demand for fine grid reso-

lution in the near-wall region in comparison to fully-LES approaches down to the wall,

in particular for high-Reynolds flows. Thus, the near-wall region is modelled instead of

being fully resolved and thus a coarser grid is used.

Common shortcomings of the original DES formulation are the modelled stress depletion

and grid-induced separation. Different improvements have been proposed to address

the early switching from RANS to LES mode in attached flow regions. The DDES

formulation proposed by Spalart et al. (2006), is a modified version of the original DES

that aims to delay the switching to LES mode when grid spacing is smaller than the

boundary layer thickness. In this case, the switching function depends not solely on

the grid spacing but also on eddy-viscosity. The Improved Delayed Detached Eddy

Simulation (IDDES) proposed by Shur et al. (2008) also aims to delay the switching to

LES mode in attached flows. However, depending on the grid dimensions, it can work

on a DDES approach or a wall-modelled LES.

The original DDES length scale by Spalart et al. (2006) is defined as

d̃ = dw − fdmax(0, dw − CDES∆) (3.21)

dw is the wall distance, fd is the delaying function defined as fd = 1 − tanh[(8rd)
3],

designed to be 1 in the LES region and 0 elsewhere. The rd term is borrowed from the

S-A turbulence model by Spalart and Allmaras (1994), which includes the molecular and

turbulent viscosity information to delay the switching mechanism in boundary layers.

CDES is the DES constant and ∆ is a grid-based length scale.

For transitional DDES approaches, the behaviour of the rd function needs to be re-

assessed to ensure that the intended behaviour still occurs for different flow regimes viz.

attached or separated and laminar or turbulent. In the attached turbulent boundary

layers, rd is equal to 1 in the log layer and approaches infinity in the viscous sub-layer,

forcing the solution to remain on the RANS behaviour. At the near-wall region, the rd

reflects a constant-stress behaviour. In separated turbulent flows, the rd is smaller than

1 due to the wall distance tending to infinity, thus the model switches to LES behaviour

as Spalart et al. (2006) present.

In the attached laminar boundary layers, rd does not resemble a constant stress be-

haviour, however, it is the inverse of the vorticity Reynolds number. Consequently, rd

can approach very small values within the laminar boundary layer and the switch would

behave as an LES approach, which would lead to unintended behaviours. Therefore,

the DDES length scale needs to be redefined to include the RANS behaviour for at-

tached laminar boundary layers. Coder and Ortiz-Melendez (2019) propose a change
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that includes intermittency (γ) to prevent the already discussed DDES logic in laminar

boundary layers. This new scale is defined as

dm̃ = dw −min(γ, 1)fdmax(0, dw − CDES∆). (3.22)

The factor term min(γ, 1) ensures the recovery of d̃ = dw for laminar regions (γ = 0).

The minima function ensures γ never exceeds 1 so the DDES length scale is originally

recovered for separated and turbulent flows.

For the implementation of the DDES, the implementation for the original AFT can

be followed but then change the namespace to LES and the name of the model to

AFTDDES. Then, only the length scale is required to be modified as discussed in the

paragraphs above. The implemented method with the new definition of the length scale

is shown in Figure 3.5.

Figure 3.5: Definition of dm̃ in OpenFOAM C++ code.

The transitional AFT blended with LES is presented in Chapter 6 for flow past a circular

cylinder. It is validated for a Reynolds number based on the diameter of the cylinder

(ReD) equal to 3900, since it is probably the most extensively benchmarked case for

circular cylinder flow. Following the surface and wake analysis, the transitional DDES

model is used for predictions at sub-critical (ReD = 1.5 × 105), critical (ReD = 3.5 ×
105), and super-critical (ReD = 8.5× 105) regimes for flow past circular cylinder. This

work aims to demonstrate the superior performance of URANS transitional models and

improved predictions against DDES, where turbulent models are used within the RANS

region.
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3.4 Summary

This chapter has presented the implementation process of the original AFT, includ-

ing the changes performed to the intermittency equation for Finite Volume Methods.

This change in the intermittency equation has any effect on the implementation, as the

interpretation of the values for γ are only in the positive range.

With regards to the extension of the AFT model with a Reynolds Stress Model closure,

the author’s contribution to the modification of production, destruction, and transport

terms of the Reynolds Stress Equation have been discussed along the shortcomings

introduced by the eddy-Boussinesq hypothesis. Furthermore, the final form of the model

is given along with a description of the implementation process.

Ultimately, the discussion and implementation process for the hybridization of the AFT

using a DDES approach is presented. Including the analysis of the rd term behaviour

and a small sketch for the understanding in which regions AFT and LES are activated.





Chapter 4

Zero Pressure Gradient Flat Plate

This chapter presents a verification and validation of the AFT and AFT-RSM models

described in the previous chapter. Since there is still a lack of verification data to

compare with, the results achieved by Coder (2019) for a set of five nested grids using

OVERFLOW are compared with the current implementation. Coder (2019) discussed

the lack of convergence for this grid family, as transition shifts downstream as the grid

is refined and the maximum value of ñ increases. However, predictions are presented

to compare behaviours. Along the Turbulence Modelling Website (TMW) nested grids,

predictions are also carried out for the set of five nested grids proposed in the AIAA

Transition Workshop. Details are given in Table 4.1.

Experimental data of Schubauer and Klebanoff (1956) for a flat plate is used to validate

the transitional methods. This experiment consists of a zero-pressure gradient flat plate

with low free-stream turbulence. The initial boundary layer developing over the flat

plate is laminar and eventually undergoes a natural transition.

It is well known that different turbulence models exhibit different behaviours to mini-

mum wall-normal resolution. A sensitivity study is presented before the verification and

validation with the use of a given grid in Table 4.2. Furthermore, the influence of Ncrit

is studied.

Hence, this chapter aims to verify and determine the sensitivity of transitional AFT and

transitional AFT-RSM models for different sets of meshes and to validate the models

by comparing them with experimental results by Schubauer and Skramstad (1947).

57
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4.1 Details of numerical simulation

4.1.1 Simulation domain and boundary conditions

The computational domain consists of a rectangle box as shown in Figure 4.1. The

minimum height of the domain is given by the AIAA Transition Workshop grid family,

Ly = 0.5 m, which is considered to be sufficiently large to avoid any influence on the

boundary layer. The family of TMW grids have a height of Ly = 1 m. The length

of the rectangle is Lx = 2.3 m, extending from −0.3 < Lx < 2 m. The length of the

flat plate is L = 2 m, where a no-slip boundary condition is applied. There upstream

region before the leading of the flat plate has a length of 0.3 m (Ly = −0.3 m), and

a symmetric is applied. It is used to stabilize the flow before it reaches the leading

edge of the “no-slip” surface. A uniform velocity profile at the inlet face is applied with

“fixedValue” of 50.1 m s−1, and a “fixedValue” equal to zero is set for the outlet face in

OpenFOAM. Ultimately, the top surface is set to “symmetryPlane”.

Figure 4.1: Domain and Boundary conditions for the zero-pressure-gradient flat plate
case. (Figure not to scale)

The experiments performed by Schubauer and Klebanoff (1956) achieved a unit Reynolds

number of 3.34 × 106 halfway the plate length (L = 1 m). Thus, the non-dimensional

parameter defining the flow, in this case, is ReL = U∞L
ν . The free-stream velocity (U∞)

is set to 50.1 m s−1, with a kinematic viscosity (ν) of 1.5 × 10−5 m2/s and measured

free-stream turbulence level of Tu = 0.03 %.

4.1.2 Design of the grids

The two grid families used in this section. The TWM grids were created for analysis of

fully-turbulent flat-plate flow without pressure gradient. The mesh is clustered near the

leading edge of the solid surface and grows until x = 0.97 m. This growth is denoted as
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Table 4.1: Grid characteristics for TMW and AIAA families.

TMW AIAA

Nx ×Ny Nx-wall Max. Erx ∆ymin Max. Ery Nx ×Ny Nx-wall Max. Erx ∆ymin Max. Ery
545× 385 449 1.017 5× 10−7 1.03 705× 384 513 1.019 1.25× 10−6 1.0245
273× 193 225 1.035 1× 10−6 1.063 353× 193 257 1.038 1.25× 10−7 1.05
137× 97 117 1.07 2× 10−6 1.13 177× 97 129 1.07 2× 10−7 1.1
69× 49 57 1.13 4× 10−6 1.27 89× 49 65 1.16 4× 10−7 1.21
35× 25 29 1.26 8.3× 10−6 1.62 45× 25 33 1.35 8.3× 10−7 1.46

the maximum expansion ratio in the streamwise direction ERx in Table 4.1. The first

cell height is denoted as ∆ymin and the maximum expansion ratio in the wall-normal

direction is denoted as ERy. The main issue with this mesh is that the position of the

constant expansion ratio falls within the transition position. Therefore, depending on

ERx different solutions are shown. In fact, Coder (2019) showed a lack of convergence

for the two coarser grids, while partly converging for the finest grid.

The AIAA Transitional Modelling grids, referred to henceforth as AIAA, are generated

for testing transition modelling in ERCOFTAC cases T3A and T3B mainly. However,

they have also been used for T3A- experiment, which consists of a natural transition

at low Tu. The main problem of this grid family is that the nodes along the solid wall

gradually grow. This family of meshes are used to confirm TMW behaviours.

4.1.3 Numerical schemes

The SIMPLEC method was used for all flat-plate simulations. The simulation con-

vergence was assessed using residual values in this case, the solution was considered

converged when residuals fall below 1× 10−6 as shown in Figure 4.2. Transition scalars,

ñ and γ are limited to an 80% change relative to the variable value at the prior step,

which is different to 50% suggested by Denison and Pulliam (2018) to keep the stability

of the solver. Second-order upwind schemes were used for momentum, transition and

turbulent properties, as Coder (2019) employs after stabilizing the simulation with first-

order schemes. Second-order upwind discretization, employing upwind interpolation

weights, with an explicit correction based on the local cell gradient defined by Warming

and Beam (1976). ñ is bounded within [−0.5, 20] and γ within [0, 1] for stability as

suggested by Denison and Pulliam (2018).

4.2 Zero Pressure Gradient Flat Plate Verification and

Validation

4.2.1 Sensitivity to wall-normal grid distribution

This section investigates the impact of the y+ at the wall on the transition onset and

the fully-turbulent recovery for seven different y+ distributions with the AFT and the
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Figure 4.2: Residuals behaviour of AFT for SIMPLEC method using finest grid from
AIAA family grid.

extended RSM models. Table 4.2 gathers the characteristics for the seven different y+

conditions, along with the stretching factor and the y+ average over the full flat plate.

In addition, Figure 4.3 shows the y+ distribution over the flat plate for all grids given in

Table 4.2. To isolate the y+ effect the streamwise resolution was kept unchanged. The

plate is covered with 300 points which are distributed in a constant resolution in the

streamwise direction of 6.6× 10−3 m.

Table 4.2: Grid characteristics for different y+ distributions.

Case Nx ×Ny ∆ymin [m] ERy y+

1 300× 97 0.5× 10−6 1.13952 0.03
2 300× 97 1× 10−6 1.13054 0.07
3 300× 97 2× 10−6 1.12157 0.13
4 300× 97 4× 10−6 1.11262 0.26
5 300× 97 8× 10−6 1.10366 0.50
6 300× 97 16× 10−6 1.09470 1.60
7 300× 97 32× 10−6 1.08570 2.10

(a) y+ distribution for Cases 1 to 4 in terms of Rex. (b) y+ distribution for Cases 5 to 7 in terms of Rex.

Figure 4.3: The y+ distribution for a zero-pressure-gradient flat plate cases given in
Table 4.2.
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For the AFT model, Figure 4.4 shows that agreement is achieved for cases 1 to 5, in

terms of laminar behaviour, transitional region and within the fully-turbulent recovery.

These cases retain a y+ lower than unity while, as can be seen from Table 4.2, cases

6 and 7 are the only scenarios that have an average y+ above unity. Cases 6 and 7 as

shown in Figure 4.4(a), produce an earlier transition onset from the rest of the cases but

retain a good agreement with the rest over the laminar region. Specifically, the coarsest

y+ configuration triggers earlier transition onset than case 6. During the transition,

the peak of skin friction is over-predicted by cases 6 and 7, as well as throughout the

fully-turbulent recovery where both cases show no convergence with the rest of the cases

1-5 and overpredicting the Cf . Hence, when using the AFT model, the first point of the

wall shall have y+ below unity in light of the presented results.

(a) AFT model (b) AFT-RSM model

Figure 4.4: The y+ impact on Cf for the transitional AFT and AFT-RSM models.

The effect of the y+ distributions in the near-wall for cases presented in Table 4.2 is

shown in Figure 4.4(b) for the transitional AFT-RSM. As can be seen, cases 1 to 5 show

a convergence in the complete prediction. The agreement is good within the laminar

region, transition and turbulent region when y+ in the wall region falls within unity.

Case 6, which has the 2nd coarsest y+ distribution, maintains the Cf prediction of

the laminar boundary layer with good agreement with the rest of the solutions. At

the transition onset, the solution does not perfectly match the same position as the

rest of the finest cases. This behaviour is also found for the coarsest y+ distribution.

For the fully-turbulent region, the two coarsest distributions (cases 6 and 7) show an

overprediction of the Cf peak at the very beginning of this region. As the fully-turbulent

boundary layer develops over the flat plate, case 6 shows a reduced overprediction for

the Cf compared to case 7. On the other hand, when compared to the rest of the cases,

cases 6 and 7 overpredict the Cf predicted by grids 1 to 5.
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4.2.2 Ncrit effect

As already discussed, the Ncrit is estimated using the Mack (1977) relationship and it is

dependent on Tu. Hence, as this scalar is imposed by the user, it is necessary to validate

its behaviour. Ncrit is inversely proportional to Tu. Thus, the lower turbulent the

environment is, the larger Ncrit is and a later laminar to turbulent transition is predicted.

Figure 4.5-4.6 shows the impact of different Ncrit factors on the base model AFT and the

AFT-RSM respectively. Furthermore, both Figures shows how the maximum value of

transport ñ is increased as the transition condition with regard to Tu is modified. The

agreement between the AFT and AFT-RSM is good, however, AFT-RSM has shown to

be sensitive to νt/ν and ω since it controls the decaying rate of Tu.

As mentioned, the predictions achieved using AFT and AFT-RSM are similar as Fig-

ures 4.5-4.6 show. When using the Ncrit = 5 the differences between both models are

negligible. It can be seen in 1 × 106 < Rex < 2 × 106 that ñ behaves similarly in

both models and the growth of the amplification factor term is almost the same for

Rex > 2× 106. For Ncrit = 9 the results show similar contour behaviour with the AFT-

RSM showing a larger region with larger values of ñ. This is in agreement with the

slight delayed transition location discussed when comparing AFT and AFT-RSM with

different y+ values in Figure 4.4.

(a) ñ for Ncrit = 5.0 (b) ñ for Ncrit = 9.0

Figure 4.5: Maximum value of ñ varying Ncrit at 5 and 9 for AFT transition model
using TMW 137× 97 Grid.

4.2.3 Verification of the AFT and AFT-RSM models

This section aims to demonstrate the correct implementation of both the AFT and

AFT-RSM models within OpenFOAM using a set of nested grids from two families.
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(a) ñ for Ncrit = 5.0 (b) ñ for Ncrit = 9.0

Figure 4.6: Maximum value of ñ varying Ncrit at 5 and 9 for AFT-RSM transition
model using TMW 137× 97 Grid.

Figure 4.7(b) shows the behaviour for the set of TMW grids with Ncrit = 10.3. This

value is chosen according to analyses by van Ingen (1956), that reports the boundary

layer has fully transitioned from laminar to turbulent flow at a specific Ncrit. The two

coarsest grids by TMW show a lack of transition prediction due to an insufficient number

of points in the streamwise direction. As the grid is refined from 137× 97 to 545× 385,

the transition point is shifted downstream as a difference to the behaviour observed in

Coder (2019), where he notices a lack of convergence due to the coupling of γ and ν̃. In

this case, the original equation from Menter et al. (2015) is utilised, and any convergence

problem is observed during simulations. Furthermore, as the grid is refined, predictions

of Cf in both regions, laminar and turbulent, show a trend of convergence, as the two

finest grid overlap in Figures 4.7-4.8.

(a) TMW Grid (b) AIAA Grid

Figure 4.7: Validation of transition prediction using AFT for TMW and AIAA Grid
families with Ncrit = 10.3.
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(a) TMW Grid (b) AIAA Grid

Figure 4.8: Validation of transition prediction using AFT-RSM for TMW and AIAA
Grid families with Ncrit = 10.3.

This convergence is also shown when using the AIAA Grid family. The two coarsest

meshes present a similar behaviour with a lack of transition convergence. Grids varying

from 177 × 97 to 705 × 385 grids indicate good convergence as the transition is shifted

downstream. With the refinement, the transition point and Cf values during the laminar

and turbulent stages go towards the same results as shown in Figure 4.7(b).

The behaviour for AFT-RSM is shown in Figure 4.8 for TMW and AIAA Grid families.

The observed behaviour validates its implementation into OpenFOAM as both AFT and

AFT-RSM provide similar results regarding transition. AFT-RSM shows a consistent

difference in the transition prediction to AFT of approximately Re = 1 × 105. The

AIAA Grid family predicts similar results for the three finest meshes. Two coarsest

meshes for TMW and AIAA still show a lack of convergence as before. Grid 137 × 97

TMW also shows a lack of convergence when using AFT-RSM, and the same behaviour

is observed for AIAA with the increased number of points (40) in streamwise direction

in 177 × 97 AIAA Grid. The two finest grids 545 × 385 and 705 × 384 (black and

blue line almost completely overlapped), for TMW and AIAA respectively, show similar

transition predictions, laminar and turbulent Cf values with the increased refinement.

Figure 4.9 and 4.10 show the distribution of ñ and H12 for AFT and AFT-RSM using

545 × 385 TMW Grid. Distributions are shown to be fairly similar and show a good

resemblance to what can be observed in Coder (2019). Note Coder (2019) presents

results with Grid 137 × 97 and here Grid 545 × 385 is used. For ñ, there is a growth

until its maximum value, in this case, ñ = 10.3, which agrees with the maximum Ncrit.

Beyond the packet of maximum ñ, it gradually decays as expected from linear stability

theory. Furthermore, outside the boundary layer, the values of amplification are null

as expected. The vertical self-similarity of H12 can be noticed upstream transition as

a consequence of the use of HL. Approximately at the transition point, it can be seen

how the integral shape factor undergoes a streamwise oscillation until the turbulent flow
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is settled down. This effect is due to the transport of momentum near the wall as the

turbulent boundary layer is formed. This effect leads to negative HL values forcing H12

to reach such small figures. This is in agreement with the behaviour observed by Coder

(2019).

(a) ñ (b) H12

Figure 4.9: Distribution of ñ and H12 for AFT transition model using TMW 545×385
Grid.

(a) ñ (b) H12

Figure 4.10: Distribution of ñ and H12 for AFT-RSM transition model using TMW
545× 385 Grid.

Ultimately, velocity profiles within the laminar and turbulent regions are shown in Fig-

ure 4.11 to verify the AFT and AFT-RSM behaviour. Two Reynolds number are chosen

for this verification, Re = 1 × 106 and 4.5 × 106, falling within the laminar and tur-

bulent region respectively. As shown both models do predict laminar and turbulent

profiles where it is expected. The characteristic shape-factor difference between both

can be readily seen in Figure 4.11(a) for the AFT and Figure 4.11(b) for AFT-RSM.

Note the small kink in the turbulent profile predicted by AFT-RSM. This is because
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Re = 4.5 × 106 falls at the end of the transition zone, where the profile is not yet a

fully-developed turbulent profile, as confirmed in Figure 4.13(b).

(a) AFT 137x97 Grid (b) AFT-RSM 137x97 Grid

Figure 4.11: Velocity profiles at laminar and turbulent regions of the flow with AFT
and AFT-RSM transition models using TMW 545× 385 Grid.

4.2.4 Validation for AFT and AFT-RSM

In this section, the AFT and AFT-RSM predictions are compared to experimental data

by Schubauer and Skramstad (1947) and other CFD results with a variety of models.

Furthermore, theoretical behaviours for laminar and turbulent Cf and u+ are used to

establish the capability of the model to reproduce physics. Transitional AFT and AFT-

RSM results are always using Ncrit = 10.3 unless the contrary is stated in the legends.

Figure 4.12(a) compares the AFT and AFT-RSM against the experimental data from

Schubauer and Skramstad (1947) and theoretical Cf predictions for laminar and turbu-

lent boundary layers. When using Ncrit = 10.3, transition onset is expected to occur at

the end of the transition, as this was measured by Van Ingen (2008). As can be seen, the

AFT and AFT-RSM agree with that and predict the transition approximately at the end

of the experimental transition region by Schubauer and Skramstad (1947). As shown

in the verification, there is a consistent difference regarding the transition prediction

between AFT and AFT-RSM. In addition, at the end of the transition prediction, the

AFT-RSM shows a slightly larger Cf peak than AFT. The agreement with the theoret-

ical Cf predictions is good. The laminar region agrees perfectly with Blasius theoretical

Cf = 0.664/
√
Rex. Turbulent theoretical prediction by Prandtl Cf = 0.027/Re

1/7
x shows

an agreement when the turbulent flow has developed for a certain distance.

Predictions for AFT and AFT-RSM are presented along with other transitional methods

in Figure 4.12(b). Compared to Coder (2019) current predictions fall closer to the end of

the transition region measured by Schubauer and Skramstad (1947). On the other hand,

phenomenological models produce a fair prediction but there is no physics involved since
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it is all experimental-based. Furthermore, even though they introduce a term to control

the transition length, results do show a similar prediction to AFT models without any

controlling term. In fact, using Ncrit = 8.22 and 9, which are the values measured by

Van Ingen (2008) that indicate the onset of transition and the average value for typical

aeronautical applications, matches the behaviour of γ − Reθ and γ model respectively.

These behaviours show the potential of AFT models (physics-based), on predicting tran-

sition using ñ to represent the disturbance amplification within the laminar boundary

layer without any transition correlation as a difference to γ − Reθ and γ models. The

former two models require experimental evidence to construct the correlations for tran-

sition prediction i.e the critical Reynolds number, the transition Reynolds number, the

momentum thickness of the boundary layer as a boundary condition and the length

parameter of the boundary layer. In addition, the AFT is a transition model to exploit

since it takes into account the boundary-layer history as a difference to phenomenological

models where the need for experiments for each scenario would be required.

(a) AFT and AFT-RSM model using Ncrit = 10.3 (b) AFT using Ncrit = 8.22, 9, 10.3, identified as AFT-
8.22, AFT-9 and AFT respectively, and AFT-RSM using
Ncrit = 10.3

Figure 4.12: Cf distribution for AFT and AFT-RSM transition model using TMW
545 × 385 Grid with experimental data and γ, γ − Reθ models, theoretical Cf and

experimental data by Schubauer and Skramstad (1947).

To close the validation section, velocity profiles in terms of y/δ and U/U∞ and dimen-

sionless wall distance y+ vs dimensionless velocity u+ are shown in Figure 4.13. This is a

continuation of the verification process presented in the prior section. However, this time

the velocity profiles are compared to theoretical laminar and turbulent dimensionless

profiles. Blasius theoretical profile in Figure 4.13(a) is in agreement with the velocity at

x = 0.3 m predicted by the transitional AFT. Turbulent profile in Figure 4.13(b) shows

the development within the inner region following perfectly the u+ = y+. Log-law region

is also in good agreement with the predictions of both transitional models and lastly

reaches the outer region, which also resembles the typical defect layer or wake-law.
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(a) Laminar profiles (b) Turbulent profiles

Figure 4.13: Dimensionless velocity profiles for AFT and AFT-RSM transition model
using TMW 545 × 385 Grid compared to Blasius and Law of the wall theoretical pre-

dictions.

4.3 Summary

This chapter have presented the verification and validation for the implementation of

the transitional AFT and AFT-RSM models into the OpenFOAM CFD package.

Verification consisted of an initial analysis of the Ncrit impact on the transition position

and the sensitivity of the model to the wall grid resolution. The critical amplification

limits the growth of the instabilities within the boundary layer, thus the smaller its

value is, the earlier the transition onset occurs. On the other hand, if the Ncrit value is

increased, a delay in the transition should occur. This behaviour is confirmed for both

AFT and AFT-RSM models. In the verification process, two families of nested grids were

tested, from the Turbulence Modelling Website and AIAA Transitional Workshop. It

has been shown that with the continuous refinement of both families of grids, transition

onset point, laminar skin friction prediction and turbulent skin friction tend to the

same position. Contours plots regarding ñ and H12 discussing the similarities with the

implementation reported by Coder (2019). Furthermore, a verification of the boundary

layer nature is also presented using two different boundary layer velocity profiles at two

different positions, where the laminar and turbulent behaviour of the boundary layer

were confirmed.

The validation process consisted of a comparison to experimental data regarding the nat-

ural transition for zero pressure gradient flat plate reported by Schubauer and Skramstad

(1947). Additionally, it is validated against the implementation carried out by Coder

(2019) and compared to other transitional methods. According to experimental mea-

surements, Van Ingen (2008) concluded that under the current conditions the end of

transition occurs at approximately Ncrit = 10.3, while the onset of transition is approxi-

mately estimated with a Ncrit = 8.22. Coder (2019) suggested using the value at the end

of the transition since the model does not have any function controlling the length of it.
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The results presented, demonstrate that the current implementation can be considered

validated for the three following reasons:

– Transition onset when using Ncrit = 8.22 agrees with the onset of transition pre-

dicted by measurements.

– The transition positions physically agree with the end the transition region of

the measurements by Schubauer and Skramstad (1947) when using Ncrit = 10.3

suggested by Van Ingen (2008).

– The standard value used for aeronautical applications under low turbulence lev-

els Ncrit = 9, also demonstrates the transition prediction to be approximately

within the middle of the experimental measurements. This is consistent with the

description of the physics of the model.

These three results guarantee a correct physical description of the transition position,

which is validated with experimental data by Schubauer and Skramstad (1947). There-

fore, for the following results, the well-established averaged value for transition prediction

of Ncrit = 9 is used. In addition, it is convenient to maintain a wall grid resolution of

y+ ≤ 1, so the transition onset, laminar and turbulent skin friction prediction are not

degenerated. The expansion ratio in both directions should be ER ≤ 1.05 and the num-

ber of points over the streamwise direction are going to be evaluated with sensitivity

analysis for each flow field configuration.





Chapter 5

Backward Facing Step

In this section numerical solutions of two-dimensional laminar, transitional, and turbu-

lent flow over a backward-facing step (BFS) at high Reynolds numbers are presented for

AFT, AFT-RSM and S-A.

As already discussed, a major interest of this thesis is to study the performance of the

AFT transitional model and its variants for a specific type of bluff body such as the flow

past a circular cylinder at high Reynolds numbers, while most prior studies up to date

have been performed on streamlined bodies such as airfoil-like geometries.

Separation, transition, and reattachment of the boundary layers, along with large re-

circulating regions are encountered in the flow over a circular cylinder throughout the

different regimes depending on the Reynolds number. In this case, a backward-facing

step can be regarded as having the simplest geometry while retaining rich flow physics

manifested by flow separation, flow transition, flow reattachment and diverse recircu-

lating bubbles depending on the Reynolds number and the geometrical characteristics

of the step and channel. In a backward-facing step, the flow is not subjected to any

curvature change and variable pressure gradient. Another of the simplifications to cir-

cular cylinder flow is the fixed separation point at the step location. Thus, it permits

to analyze the AFT performance and its variants for separated transition and reattach-

ment of laminar and turbulent boundary layers against fully-turbulent approaches and

demonstrate their better performance throughout laminar and transitional regimes.

5.1 Details of numerical simulation

5.1.1 Simulation domain and boundary conditions

The geometry of the flow problem was chosen in accordance to the experimental setup

of Armaly et al. (1983) sketched in Figure 5.1. The expansion ratio is defined by Armaly

71
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et al. (1983) as H/h = 1+S/h, by the ratio of the channel height H downstream of the

step to the channel height h of the inflow channel, where S denote the height of the step.

In this case, the expansion ratio H/h is the same as Armaly et al. (1983), H/h = 1.9423.

Upstream and downstream of the step, the computational domain has an extension of

0.8 m, respectively. The inlet section is at x = −0.1 m, and the end of the domain at

x = 0.7 m, with the step located at x = 0.2 m from the origin denoted by O in Figure 5.1.

The origin is located at 0.1 m from the inlet surface. The length of the settling region

is denoted by Ls = 0.2 m/s. According to the literature, a well-established agreement

is that a distance of five times the channel height h upstream of the step is sufficient to

avoid the backward influence of the inlet for the predicted results past the step as shown

by Biswas et al. (2004).

The upper and lower channel walls, including the step, are treated as solid walls, and the

no-slip condition is applied. At the outlet of the computation domain (xe = 0.7 m), a zero

gradient condition is applied. At the inlet of the computational domain (xi = −0.1 m)

a fixed velocity condition is applied with appropriate turbulent values according to the

Re number with Tu = 0.05%.

The non-dimensional parameter describing the different regimes of the backward-facing

step flow is the Reynolds number based on the bulk velocity (Ub) and hydraulic diameter

of the channel (Dh = 2h), which is equivalent to twice its height. Thus, ReDh
is defined

as

Re = ReDh
=

Ub2h

ν
. (5.1)

O

Figure 5.1: Schematic domain for backward-facing step and recirculating regions.
(Figure not to scale)
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5.1.2 Numerical properties

The SIMPLEC algorithm is used to provide an averaged solution as an initial condition to

speed up the necessary time required by the time-dependent solver to avoid the transient

solution until the flow field is established within the geometry. PIMPLE is used to solve

the unsteady flow field, which combines PISO and SIMPLE. The PIMPLE algorithm,

in this case, is set to 2 inner loops, where the Poisson and continuity equations are

solved, while the maximum of iterations in the outer loop is set to 15, which is reduced

according to the residual control with values of 5× 10−3 and 1× 10−4 for pressure and

velocity respectively. Second-order upwind schemes are used for momentum, transitional

and turbulent variables after stabilizing the simulation for one flow-through time with

first-order schemes. Similar to the flat plate, transition scalars are limited to 80%

change relative to the variable value at the prior step. The solution is advanced 9

flow-through times with second-order schemes before sampling for 10 flow-through times

until a constant velocity behaviour at the centre of the domain is observed, assuming a

converged solution.

A second-order implicit scheme is used for time integration, although the appropriate

time step should be determined to resolve the physics of the flow and maintain the

computational efficiency. Predictions for the recirculating length (x1) with different

Courant-Friedrichs-Lewy CFL = ∆tU∞/∆x are given in Table 5.1 at Re = 1200. As

can be seen, differences go down to the third decimal place from the smallest to the

third-largest CFL number. The largest CFL = 2, produces an overprediction of the

primary recirculating region x1. This behaviour is shown to be consistent for all the

models presented in Table 5.1. Overall, the two transitional models compare well with

experimental results by Armaly et al. (1983), which report a x1/S ≈ 14.35. Furthermore,

the S-A predictions evinced a shortened x1, which is shortened due to the turbulence

production and resembling a fully-turbulent behaviour as discussed in the following

paragraphs. Hence, a CFL = 0.9 is used as it shows negligible differences to other x1

predictions when CFL < 1.

Table 5.1: Primary dimensionless reattachment length (x1/S) predictions for
backward-facing step for different CFL using AFT, AFT-RSM and S-A at Re = 1200.

CFL AFT AFT-RSM S-A Armaly et al. (1983) Exp.

0.4 14.222 14.291 6.141 17.63
0.6 14.224 14.293 6.142
0.9 14.225 14.293 6.143
2 14.571 14.591 6.303

5.1.3 Design of the grids

The backward-facing step flow is solved using URANS methods. Four different grid

resolutions were tested initially to carry out a sensitivity analysis at Re = 7000. The
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grids are numbered from the finest to coarsest as 1 to 4, respectively.

The grids vary in the minimum wall spacing as well as the grid spacing in the streamwise

and wall-normal direction, given in Table 5.2. The domain before the step is divided by

40 nodes from the coarsest to 80 points for the finest case, clustered at the extremes.

Downstream of the step, the region is discretized with 75 points to 400 points, from the

coarsest to finest grid respectively. The stretching ratio past the step varies from 1.10

to 1.02 for the finest grid. At the outflow, the grid spacing is about 7 times the step

height for the coarsest and approximately 1 time the step height for the finest grid.

In the wall-normal direction, grids are discretized with 30 to 60 points before the step

and 60 to 120 points past the step, from coarsest to finest respectively in both cases.

These grids distributions result in a minimum wall spacing of ∆ymin = 1 × 10−4 m for

the coarsest mesh and ∆ymin = 1× 10−5 m for the finest configuration.

Table 5.2: Grid characteristics of four different distributions for backward-facing step.

Grid Nxp
1 Nxa

2 Nyp Nya ERx ERy ∆ymin [m]

1 40 75 30 60 1.10 1.10 1× 10−4

2 50 100 40 80 1.07 1.07 8× 10−5

3 80 200 50 100 1.04 1.05 2× 10−5

4 80 400 60 120 1.02 1.02 1× 10−5

1Subscript “p” refers prior the step location.
2Subscript “a” refers after the step location.

Table 5.3 shows the results for the four presented grid discretizations at Re = 7000.

It gives the primary recirculating dimensionless length (x1/S) estimation for the three

different models, as is common in the literature.

Transitional AFT and AFT-RSM for Re = 7000 show an underestimation of the primary

reattachment dimensionless length x1 for the coarsest mesh. This is a consequence of

the y+ > 1 at the inlet and outlet channel, combined with an insufficient number of

grids in the streamwise direction past the step. The underprediction is also shown by

S-A, however, it falls closer to converged results when using grid 3 or finer. For the rest

of the grids, excluding the coarsest, there is a good agreement between the two finest

grids. Hence, according to prior results, grid 3 is utilised as the baseline grid for the

simulations performed over the backward-facing step at different Reynolds numbers in

this section.

Table 5.3: Predictions of x1/S using AFT, AFT-RSM and S-A for grid sensitivity
study for the backward-facing step.

Grid AFT AFT-RSM S-A Armaly et al. (1983) Exp.

1 4.489 5.918 7.142 7.91
2 5.714 6.122 7.550
3 6.122 6.530 8.160
4 6.122 6.530 8.160
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5.2 Results and Discussion

In this section, the results for the AFT transitional model, its RSM extension and S-A

are presented and discussed for Armaly et al. (1983) test case. The description and

discussion of the results are divided into three according to the flow regimes discussed

and classified by Armaly et al. (1983): laminar region (Re < 1200), transitional (1200 <

Re < 6600) and turbulent (Re > 6600) regimes, as discussed in Literature Review

following Armaly et al. (1983) measured data. Furthermore, the different recirculating

regions and bubbles used for the analysis are identified in Figure 5.1.

5.2.1 Laminar Region - Re < 1200

The laminar region extends up to Re < 1200 and it is characterized by the increase of

the reattachment length (x1) of the main recirculating region with Reynolds number as

shown in the experimental data by Armaly et al. (1983) in Figure 5.2. Together with

the experimental data by Armaly et al. (1983) and 2D laminar predictions by Erturk

(2008), numerical results for the transitional AFT and AFT-RSM are presented for

different Reynolds numbers. As shown in Figure 5.2, the AFT and AFT-RSM models

demonstrate good agreement for the recirculation length x1 over the laminar region up

to approximately Re = 400. The transitional AFT and AFT-RSM models show similar

results within the laminar region, however the former always predicts a slightly larger

reattachment length.

Figure 5.2: Predictions of x1/S throughout the laminar region using AFT, AFT-RSM
and S-A, including experimental data by Armaly et al. (1983), laminar DNS simulations

by Erturk (2008) and k − ϵ simulations by Ratha and Sarkar (2015).
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Figure 5.3 and Figure 5.4 show the developing profiles at Re = 100 and 389 for the AFT,

AFT-RSM and S-A models. The agreement is good for the three models at Re = 100.

The maximum inlet velocity achieved at the step agrees well with experimental data

although a small defect of velocity (U) of approximately 2% is observed in the prediction

for the three models. The development of the profiles is similar throughout the separation

and reattachment. At x/S = 2.55, the three computations show an almost attached

velocity profile as a difference from the experimental data by Armaly et al. (1983),

confirming the reduced x1/S dimensions. Ultimately, the three profiles are in agreement

with the experimental velocity profile at location x/S = 12.04. The agreement with

experimental profiles at Re = 389 is good. Both AFT and AFT-RSM show superior

predictions while a shortened recirculating region is predicted by S-A. Differences using

S-A become prominent beyond x/S = 3.57. Furthermore, the quasi-developed and fully-

developed profile within the expansion region of the domain shows a velocity defect when

compared to pure laminar profiles predicted by AFT and AFT-RSM as can be observed

at locations x/S = 11.84 and 13.57. The primary cause of these differences is the

production of turbulence due to the strain rate (S) in the mean velocity profile when

it separates, which is the main source of turbulence production. Conversely, for the

transitional models, the production is suppressed as γ = 0.

Figure 5.3: Normalized velocity profile predictions at Re = 100 for AFT, AFT-RSM
and S-A, including experimental data by Armaly et al. (1983) at positions x/S =

0, 2.55, 3.06, 3.57, 4.18, 6.12, 12.04.

The S-A fully turbulent approach produces sensible results with a fair agreement to ex-

perimental data from Armaly et al. (1983) and computations by Erturk (2008). Nonethe-

less, as the secondary recirculating bubble is formed (Re > 400), the flow becomes

three-dimensional and forcing the x1/S to depart from the growth predicted from lami-

nar results obtained by Erturk (2008). The S-A model under-predicts the length of the

reattachment for Re > 400. This under-prediction scales with Reynolds number in the
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Figure 5.4: Normalized velocity profile predictions at Re = 300 for AFT, AFT-RSM
and S-A, including experimental data by Armaly et al. (1983) at positions x/S =

0, 2.55, 3.06, 3.57, 4.18, 6.12, 8.52, 11.84, 13.57.

laminar region as Figure 5.2 shows. The departure from AFT and AFT-RSM transi-

tional models and 2D simulations by Erturk (2008) is in good agreement with turbulent

predictions by Ratha and Sarkar (2015) using k − ε.

For Re > 400 the transitional AFT and AFT-RSM follow perfectly the results from two-

dimensional laminar simulations presented by Erturk (2008). The departure from the

experimental results by Armaly et al. (1983) is due to the three-dimensional flow induced

by the secondary bubble. Both transitional AFT and AFT-RSM predict the appearance

of the secondary recirculating bubble on the upper wall for Re > 400. The formation

of the secondary recirculating length is due to the adverse pressure gradient seen by the

laminar boundary layer on the upper wall. The start (x2) and the end (x3) of the sec-

ondary recirculating region scale with Reynolds number as shown in Figure 5.5. This is in

agreement with experimental and laminar predictions as shown. Transitional AFT and

AFT-RSM provide fair predictions for x2 and x3, following the tendency predicted by

the laminar simulations performed by Erturk (2008) in both cases. The largest difference

can be found for x3 at Re = 1200, where AFT-RSM does produce a longer secondary

reattachment bubble. In addition, the length of the secondary recirculating bubble also

scales with Re in AFT and AFT-RSM, which is in good agreement with experimental

and two-dimensional laminar data. The shortened recirculation length behaviour ob-

served with the S-A approach follows neither experimental nor two-dimensional laminar

data. Nonetheless, the results in 400 < Re < 1200 range are consistent with turbulent

predictions presented by Ratha and Sarkar (2015) except for the rate of increase of x3.
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Figure 5.5: Predictions of x2/S and x3/S throughout the laminar region using AFT,
AFT-RSM and S-A, including experimental data by Armaly et al. (1983), laminar DNS

simulations by Erturk (2008) and k − ϵ by Ratha and Sarkar (2015).

5.2.2 Transitional Region - 1200 < Re < 6600

The transitional regime is characterised by first, a sharp decrease of the main reattach-

ment length (x1/S) as shown in Figure 5.6 by Armaly et al. (1983) results. A gradual

decrease is continuous down to approximately Re = 5500, then a small increase is ob-

served followed by a plateau region from Re = 7000 characterising a fully-turbulent

regime beyond the former value as reported by Armaly et al. (1983) measurements. The

length of the secondary recirculating region x3/S − x2/S also diminishes with the Re

number as shown in Figure 5.6 and Figure 5.7. In this region, an additional tertiary

recirculating bubble appears downstream of the main separation region at the step. The

tertiary recirculating region is sketched in Figure 5.1 and denoted by x4/S and x5/S. To

avoid confusion, note these are denoted with x2/S and x3/S in the original publication

by Armaly et al. (1983).

Figures 5.6, 5.7 and 5.8 show the behaviour of the different recirculating regions with

the Re number throughout the transitional regime and in the lower turbulent regime

(Re ≈ 7000). At a first glance, the AFT and AFT-RSM models show sensitivity to

the transitional regime, with the reduction in all recirculating regions showing a similar

trend to experimental data. Conversely, the S-A decreases rapidly at the early stages of

the transitional regime and reaches a constant behaviour.

The transitional AFT and transitional AFT-RSM show a better description of the

physics over this region than S-A and fully-turbulent k − ε predictions by Ratha and

Sarkar (2015). In fact, solutions are very similar for both transitional models, which

reinforces the conclusions of a proper implementation shown in Chapter 4. At the early

stages of the transitional regime, there is a sudden decrease of the primary dimensionless
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recirculating length x1/S, resembling the behaviour presented by Armaly et al. (1983).

The AFT-RSM predicts an ever so slightly larger x1/S which is consistent with the

behaviour observed throughout the laminar regime. As the Re number is increased,

x1/S is shown to be reduced for AFT and AFT-RSM in Figures 5.6-5.7 respectively.

Predictions compared to experimental data by Armaly et al. (1983) are consistently un-

derpredicted. Conversely, the S-A predictions show x1/S to increase for Re > 4000 in

the transitional region until it reaches its fully-turbulent behaviour for Re > 6600.

Figure 5.6: Predictions of xi/S where i = [1, 5] throughout laminar, transitional and
turbulent regime for AFT, including experimental data by Armaly et al. (1983).

The secondary recirculating region is predicted by both transitional methods as well as

for the turbulent S-A approach. This is the only additional recirculating region predicted

by the S-A approach. Predictions with S-A show the length of the secondary recirculating

region to diminish until Re ≈ 3000. For Re > 3000, the secondary recirculating length

increases until it vanishes beyond Re > 6600, where only the primary recirculating is

predicted, which is in agreement with Armaly et al. (1983). Nonetheless, there is an

evident underprediction of x1/S, x2/S and x3/S within the transitional regime, as shown

in Figure 5.8. This behaviour is consistent with Ratha and Sarkar (2015) fully-turbulent

predictions.

Figure 5.9 shows the velocity profile at Re = 1200. At this Re number, only two

recirculating regions are predicted by the transitional AFT and AFT-RSM models, as

well as by S-A fully-turbulent approach. The AFT and AFT-RSM show good agreement

in the proximity of the step. Differences regarding the primary recirculating region

are visible in positions x/S = 12.24 and 15.31. The x1/S is shorter for AFT and

AFT-RSM compared to Armaly et al. (1983) data as shown in Figure 5.6-5.7. This

is confirmed by the velocity profiles at x/S = 12.24 and is even more evident with

the positive component at the proximity of the lower wall in the velocity profile at
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x/S = 15.31. The separation point of the secondary recirculating region x2/S is also

shown to occur before the experimental data. This is confirmed by the velocity profiles

at the proximity of the upper wall at x/S = 12.24 and 15.31. Ultimately, at x/S = 26.53

the delayed reattachment of x3/S can be noticed at the proximity of the upper wall.

The experimental data show a more developed profile than AFT and AFT-RSM. The

fully-turbulent approach shows how x1/S reattaches before x/S = 10.2. On the upper

wall, the early separation and reattachment is visible respectively at x/S = 6.12 and

x/S = 10.20, where the flow is already reattached.

Transitional AFT and AFT-RSM models predict the secondary as well as the tertiary

recirculating region throughout the transitional region. The secondary recirculating

region for transitional models predicts a diminishing length from 1200 < Re < 3000. The

position x2/S is shown to be constant, as the primary recirculating region. The position

of x3/S moves upstream with the increased Re. For Re > 3000, with the reduction

of x1/S, the x2/S diminishes as well. The reattachment position of the secondary

recirculating length continues moving upstream until the end of the transitional regime.

The length is shown to increase during the second half of the transitional regime as

opposed to experimental data. As shown in Figure 5.7, the AFT-RSM shows a consistent

overprediction of the positions compared to AFT.

The tertiary recirculating region is predicted between 1500 < Re < 3000 only by AFT

and AFT-RSM, which are superior to fully-turbulent S-A model predictions. This is

consistent with fully-turbulent predictions by Ratha and Sarkar (2015). Armaly et al.

(1983) experimental data shows a rapid upstream movement of the tertiary recirculating

length as the Re is increased between 1200 < Re < 2400. Its length is shown to be

constant until it vanishes. Transitional AFT and AFT-RSM predict a decrease in the

length of the tertiary of the recirculating region. The position of x4/S is consistently

predicted before x3/S as experimental data shows. The position of x5/S is also predicted

to be located always downstream of the position of x3/S, which agrees with Armaly et al.

(1983) data.

The transitional region demonstrates the capability of AFT and AFT-RSM to undergo

transition on the primary and secondary recirculating regions as Re is increased. This

is shown by the upstream displacement of x1/S, x2/S and x3/S over the transitional

region. Thus, not only demonstrate that for a fixed separation region the performance

of AFT and AFT-RSM is superior to fully-turbulent approaches but also the capability

of the model to laminarly separate, undergo transition and reattach without a fixated

position separation position. This behaviour, leads to think that the transitional model

will be able to improve predictions for flow past a circular cylinder, as the boundary layer

undergoes similar changes. Ultimately, everything that has been discussed is performed

without any transitional correlation as a difference to γ or γ −Reθ models.
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Figure 5.7: Predictions of xi/S where i = [1, 5] throughout laminar, transitional and
turbulent regime for AFT-RSM, including experimental data by Armaly et al. (1983).

Figure 5.8: Predictions of xi/S where i = [1, 5] throughout laminar, transitional and
turbulent regime for S-A, including experimental data by Armaly et al. (1983) and k−ϵ

by Ratha and Sarkar (2015).

5.2.3 Turbulent Region - Re > 6600

Performance of the AFT and AFT-RSM in the turbulent region is characterised by a

simulation at Re = 7000. In this region the primary reattachment length is considered

constant. In this region, the secondary recirculating region disappears. As Figures 5.6

and 5.7 show, the secondary recirculating region is still being predicted by the tran-

sitional models at Re = 7000. Furthermore, the x1/S is underpredicted by AFT and

AFT-RSM. This is a consequence of the presence of the secondary recirculating region
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Figure 5.9: Velocity profile predictions at Re = 1295 for AFT, AFT-RSM and
S-A, including experimental data by Armaly et al. (1983) at positions x/S =

0, 3.06, 6.12, 10.2, 12.24, 15.32, 18.37, 22.45, 24.49, 26.53.

at this Re number, as it forces the primary separated flow to deviate, producing an

earlier reattachment.

The main problem that can be observed when using AFT and AFT-RSM is the nature

of the flow at the step location. The flow is still laminar as indicated by γ as shown in

Figure 5.10 for the AFT model, thus it being susceptible to separate on the upper wall

vicinity due to the inability to withstand the adverse pressure gradient of the expansion.

The primary recirculating region is shown to be fully-turbulent as γ = 1, however, the

upper wall is laminar until it separates. In contrast to the transitional approaches, the

S-A is already fully turbulent at the step, with a turbulent boundary layer on the upper

wall capable of withstanding the pressure gradient due to the expansion ratio.

Figure 5.10: Distribution of γ at Re = 7000 using transitional AFT model.
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The S-A continues predicting a constant recirculating length for x1/S. This turbulent

behaviour is exhibited since the latter stages of the laminar region as shown in Figure 5.2.

Hence, the length is still x1/S ≈ 8 at Re = 7000, which is superior to the predictions

observed by transitional methods for the turbulent region. Contrary to the laminar

and transitional regions where it has been demonstrated that AFT and AFT-RSM are

superior.

5.3 Summary

An analysis of the backward facing step flow has been presented in this Chapter, for

an expansion ratio of 1.94, throughout the laminar, transitional and turbulent region,

as described by Armaly et al. (1983) using transitional AFT and AFT-RSM along with

the S-A turbulence model.

It has been demonstrated how the transitional approach improves predictions compared

to fully turbulent approaches, as the one presented by Ratha and Sarkar (2015) using

k − ϵ turbulence model. There are improvements over the laminar region, where the

fully turbulent model shortens the reattachment length of the primary recirculating re-

gion and the secondary bubble and in a similar manner within the transitional region.

Both transitional AFT and AFT-RSM, give sensible predictions in the laminar and

transition regions as discussed, predicting longer reattachment lengths. AFT-RSM con-

sistently predicts an elongated length for x1, x2 and x3. The tertiary bubble is present

downstream of the main recirculating region for transitional predictions using AFT and

AFT-RSM. However, their dimensions are overestimated.

The dimensions of x1, x2 and x3 regions have shown to increase with Reynolds number for

transitional models up to approximately ReDh
= 1200, showing the capability to predict

laminar separation bubbles, separation and reattachment situations. For the turbulent

approach, the growth with Reynolds number is approximately up to ReDh
= 800 for x1

and x3, while x2 shows a concave behaviour with Reynolds number up to ReDh
= 2000

that is completely different from measurements.

When studying the turbulent region, it is shown how fully turbulent model performance

is superior to transitional AFT and AFT-RSM. Even though that happens at approxi-

mately the middle of the transitional region as Figure 5.8 shows. In addition, the length

of the secondary bubble is almost constant while measurements reveal to shrink. That

also is shown by transitional AFT and AFT-RSM, however, the secondary bubble does

not disappears at ReDh
= 6600 as it is still predicted within the turbulent region at

ReDh
= 7000.
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Hence, we can conclude that the transitional AFT and AFT-RSM improve predictions

over the laminar and transitional regime to fully turbulent approaches. The perfor-

mance for both transitional models is similar, although the AFT-RSM provides larger

x/S values the improvements are not that significant. Nevertheless, it shows promising

behaviour for the use of transitional models in more complex flow fields such as flow

past a circular cylinder. However, there are questions regarding its behaviour when the

flow is expected to be fully turbulent as in ReDh
> 6600.



Chapter 6

Validation at ReD = 3900 for a

circular cylinder flow

Chapter 4 and Chapter 5 have demonstrated a successful implementation of the AFT

and AFT-RSM model into the OpenFOAM computational fluid dynamics package. As

discussed in the former chapter, the AFT-based models have demonstrated the superior

a performance given compared to fully-turbulent approaches regarding the estimation

of recirculating length and the appearance of separation bubbles within the transitional

regime for backward step flow, where the pressure gradient and main separation point

are fixed.

This chapter aims to perform a grid sensitivity analysis to validate the performance

of two-dimensional simulations using the transitional AFT and AFT-RSM models and

three-dimensional simulations for the hybrid AFT-DDES model for flow past a circular

cylinder. The validation is performed at ReD = 3900 as it is a really well-benchmarked

case that can be found in the literature. The flow past a circular cylinder, as opposed

to the backward-facing step, has a variable pressure gradient and a separation that is

not static.

The discussion is divided in three: pressure coefficient and skin-friction coefficient, a

wake velocity analysis and the study of the behaviour of the turbulence intensities at six

different position within the wake. Before proceeding with the result section, the domain,

boundary conditions and the numerical properties of the simulations are described.

85
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6.1 Details of numerical simulations

6.1.1 Simulation domain and boundary conditions

The geometry of the flow problem is a circular cylinder of diameter D = 0.05 m. The

chosen domain has a circular topology, exemplified in Figure 6.1 to ensure mesh orthog-

onality. As it is discussed extensively in literature i.g. Cheng et al. (2017), the domain

extends upstream (Li) and downstream (Lo) the circular cylinder a distance of ±15D.

This dimension is sufficient to avoid interactions with the flow-filed in the proximity of

the cylinder surface and a sufficient distance for the wake to develop. The blockage ratio

is 3.33%, which is sufficiently below 6% to have any impact on the drag and pressure

predictions, as discussed by West and Apelt (1982).

The non-dimensional parameter describing the different regimes of the flow field is the

Reynolds number based on the freestream velocity (U∞) and the diameter D of the

circular cylinder, defined as

ReD =
U∞D

ν
. (6.1)

Inlet Boundary Outlet Boundary

Figure 6.1: Schematic domain for circular cylinder simulation case including the inner
cylinder for the wake refinement of 5D. (Figure not to scale)

The upstream boundary is set to uniform velocity inlet and the downstream boundary is

set to “zero- gradient” condition. At the connection point between the inlet and outlet

boundary there is any numerical effect, as the “zero-gradient” condition ensures any

spurious data as shown in Figure 6.2 as an example. The cylinder surface is treated
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Figure 6.2: Example of instantaneous velocity magnitude contour plot for circular
cylinder flow at Re = 1.5 × 105 to show that any spurious data is generated with the

joint forward facing and backward facing boundaries of the domain.

as a solid surface and therefore is set to a no-slip condition. Front and back surfaces

are set to “empty” for two-dimensional simulations, while to simulate cylinders with

an infinite span, periodic boundary conditions are imposed in the spanwise direction in

three-dimensional simulations.

In this case, the interest is to simulate the flow past a circular cylinder under low-

freestream turbulence conditions of approximately Tu ≈ 0.05%. Values of Rii, ω and

Ncrit are set according to the boundary conditions presented in Section 3.1 for the AFT-

RSM. The turbulent viscosity ratio for transitional methods is set ν̃/ν = 0.1 for AFT,

DDES-SA and AFT-DDES and νt/ν = 5, for AFT-RSM as discussed in Chapter 2.

6.1.2 Numerical properties

For URANS, a second-order upwind scheme (UW) is used for the spatial discretization

of momentum, transitional and turbulence equations. The momentum equations in

the DDES are spatially discretized using a second-order interpolation scheme limited

Linear (CD). This model is a total variation diminishing (TVD) interpolation method,

which combines the upwind and centered schemes to minimize diffusion inherited by

the upwind scheme and retain stability within the simulation, as discussed by Mockett

et al. (2009). It is reported in the literature that second-order upwind for scale-resolving

methods has a significant numerical dissipation due to the upwind nature of the scheme.

Gradients are discretized using a second-order scheme. A second-order implicit temporal

discretization is used for URANS and DDES simulations, allowing stable and accurate

predictions using large CFL numbers. Dimensionless time step (∆t˜ = ∆tU∞/D) is given

in Table 6.1 and Table 7.1 for Re = 3900 and a range of Reynolds numbers respectively.

All dimensionless time-step ensures a CFL number below 2.
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The pressure-velocity coupling is solved using the PIMPLE algorithm, which is a combi-

nation of the SIMPLE (Semi-Implicit Method for Pressure Linked Equations) and PISO

(Pressure Implicit with Splitting of Operators) algorithms. Specifically, in each time

step, the SIMPLE algorithm is applied, while between different time steps, the PISO

algorithm applies Greenshields and Weller (2022). For such specific cases, the number of

inner loops is set to 3, with a non-orthogonal correction of 2 as a default scenario. The

outer loop is set to a maximum of 25 iterations that is reduced as the residual control is

set to 1× 10−3 and 1× 10−4 for pressure and velocity respectively, with the relaxation

factors as discussed in Chapter 4.

6.2 Validation - ReD = 3900

Before proceeding with the analysis of the upper-sub-critical, critical and super-critical

regimes, new predictions at ReD = 3900 using AFT, AFT-RSM and AFT-DDES are

discussed. This will serve first, to determine a baseline mesh, from where the following

Reynolds number grids are constructed, and secondly, as a validation case for the current

wall-transition resolved DDES code in OpenFOAMv1912.

Near-wall and near-wake measurements are available in the literature. Norberg (1994)

reported pressure coefficient measurements over the surface while Lourenco and Shih

(1993) and Parnaudeau et al. (2008) presented experimental results for mean velocity,

variance and covariance profiles in the near-wake region at six different locations up to

x/D = 10. Discrepancies are found in the mean velocity profile inside the recirculation

bubble. Ma et al. (2000) reported that mean velocity converges to a U-shape for Lz =

πD, but to a V-shape for Lz = 2πD, which is consistent with numerical simulations by

Parnaudeau et al. (2008) and D’Alessandro et al. (2016), however, there is not yet a

clear answer for such behaviour.

Here, we choose the experimental data by Parnaudeau et al. (2008) and Lourenco and

Shih (1993), and LES predictions by Cheng et al. (2017), Kravchenko and Moin (2000) to

compare with. The two-dimensional predictions for AFT and AFT-RSM are discussed

first, followed by the analysis of the results obtained by the AFT-DDES model applied to

a three-dimensional flow field. The discussion is divided into three sections: the surface

pressure and skin friction, the wake velocity and finally the recirculating and turbulence

intensities.

6.2.1 Transitional URANS

The transitional URANS sensitivity to AFT and AFT-RSM is studied using two different

grid distributions, as given in Table 6.1: 120 × 160 (AFT-G1 and AFT-RSM-G1) and

240 × 220 (AFT-G2 and AFT-RSM-G2) number of points for the radial and angular
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directions. The coarser mesh (AFT-G1 and AFT-RSM-G1) is the same as the one

used by Breuer (2000) at a higher Reynolds number, while the second mesh provides

the same resolution in radial and angular directions as used by many simulations in

literature, i.e. Cheng et al. (2017), Liu et al. (2019) and Breuer (2000). In all cases, y+

is maintained below 1, as concluded in Chapter 4 for a good laminar and turbulent skin

friction prediction. Furthermore, the mean flow characteristics discussed in the following

paragraphs are given in Table 6.2.

Table 6.1: Grid characteristics for AFT, AFT-RSM and AFT-DDES simulations for
the validation case at ReD = 3900.

Run Grid Domain Model ∆t Scheme
Nr ×Nθ ×Nz Li × Lo × Lz

AFT-G1 120× 160 15D × 15D AFT 0.004 UW
AFT-G2 240× 220 15D × 15D AFT 0.004 UW
AFT-RSM-G1 120× 160 15D × 15D AFT-RSM 0.004 UW
AFT-RSM-G2 240× 220 15D × 15D AFT-RSM 0.004 UW
AFTDDES-G1 160× 160× 30 15D × 15D × 3D AFT-DDES 0.004 CD
AFTDDES-G2 160× 160× 60 15D × 15D × 3D AFT-DDES 0.004 CD
AFTDDES-G3 256× 256× 60 15D × 15D × 3D AFT-DDDES 0.004 CD

A: Surface pressure (Cp) and skin friction (Cf)

The surface pressure coefficient at ReD = 3900 is shown in Figure 6.3(a). The two

grids produce similar results for AFT and AFT-RSM. The pressure coefficient shows a

reduction over the upstream face of the cylinder, as the flow is accelerated, until reaching

its minimum value. The minimum pressure coefficient (Cp,min) indicates the extension

of the favourable pressure gradient region from the stagnation point. Thus, an increased

favourable pressure gradient region, and a lower minimum pressure (Cp,min), leads to

delayed separation of the boundary layer. In this case, AFT-G1 and AFT-G2 predict

a −Cp,min = 1.68, and AFT-RSM-G1 and AFT-RSM-G2 predict a −Cp,min = 1.65.

The smallest value of −Cp,min predicted by AFT-RSM-G1 and AFT-RSM-G2, is in

agreement with its earlier separation location, as given in the next paragraph using Cf .

Following the flow separation, one can see how there is a sharp decrease in the pressure

coefficient from approximately ϕ = 130◦ to the aft-part of the cylinder surface. This

represents a pair of counter-rotating vortices, due to the reattachment of the flow as

shown by the skin friction coefficient Cf in Figure 6.3(b), between ϕ = 130◦ − 180◦.

The Cf predictions for the current runs are shown in Figure 6.3(b). The prediction for

AFT-G1 and AFT-G2, and AFT-RSM-G1 and AFT-RSM-G2, are similar throughout

the upstream face. The Cf profiles show that AFT-G1 and AFT-G2 predict a laminar

separation ϕl,s = 99◦, while AFT-RSM-G1 and G2, predict an earlier separation at

ϕl,s = 97◦. Beyond the separation location, the Cf resembles a plateau region until

the counter-rotating vortex produces an attached region since the Cf becomes positive

again at ϕ = 130◦ until ϕ = 180◦ for all runs.
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(a) Cp

(b) Cf

Figure 6.3: (a) Cp and (b) Cf distribution for AFT-G1, AFT-G2, AFT-RSM-G1 and
AFT-RSM-G2 transition models for validation case at ReD = 3900.

Experimental results by Norberg (1994) and LES simulations by Cheng et al. (2017)

are included in Figure 6.3(a) for comparison. It is readily seen that the favourable

pressure gradient region predicted in the literature data is smaller than predicted by all

transitional URANS cases. Norberg (1994) and Cheng et al. (2017) report a −Cp,min ≈
1.14, while AFT-G1 and AFT-G2 predict a larger −Cp,min by 47% and AFT-RSM-G1

and AFT-RSM-G2 predict a larger −Cp,min too, by 44%. The limitations of the two-

dimensional URANS models, using even transitional approaches, to resolve the turbulent

structures downstream of the separation have a direct impact on the separation point,

and on the Cp prediction. The delay of separation and the increased −Cp,min were also
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seen in the URANS predictions by Pereira et al. (2018).

After the separation, the plateau pressure value between ϕ = 100◦−130◦, is also observed

to be lower than literature in Figure 6.3(a). AFT-G1 and G2, predict a Cp = −1.31

and the two grids for AFT-RSM predict a Cp = −1.32, which is approximately 52%

smaller than Norberg (1994) and Cheng et al. (2017). This is consistent with the three-

dimensional URANS prediction by Pereira et al. (2018), where the difference to Norberg

(1994) is 33.6% over the plateau region of the Cp after separation. The pressure rise

is related to the proximity of the core of the two-symmetric counter-rotating vortices

to the aft-part of the cylinder surface. This is also consistent with observations within

the wake by Pereira et al. (2018). Lastly, a sharp decrease is observed for G1 and G2

with AFT and AFT-RSM, which is not captured by Norberg (1994) or Cheng et al.

(2017). The three-dimensional URANS prediction by Pereira et al. (2018) shows a

similar sharp decrease of the Cp, which is milder than the one predicted by the current

simulations. With the increase of the modelled to the resolved kinetic energy ratio, the

sharp decrease disappears, as the three-dimensional structures generated in the shear

layer can be resolved by LES but not with two-dimensional or three-dimensional URANS

predictions. Thus, this confirms the inability of the URANS to resolve certain turbulent

structures within the wake in two-dimensional and three-dimensional cases. In fact, LES

simulations with a short spanwise domain resemble the same behaviour as reported by

Cheng et al. (2017).

Predictions of Cf are compared to LES results by Kravchenko and Moin (2000) and

Cheng et al. (2017). The Cf prediction over the upstream face for G1 and G2 with AFT

and AFT-RSM show an agreement up to ϕ = 40◦. Beyond that angle, the maximum Cf

is overpredicted by 9%, compared to the results of Beaudan and Moin (1994) and Cheng

et al. (2017). Laminar separation prediction is delayed by 9◦ and 12.5◦ using AFT-G1

and AFT-G2, while AFT-RSM-G1 and AFT-RSM-G2, delay the separation by 7◦ and

10.5◦, compared to Beaudan and Moin (1994) and Cheng et al. (2017) respectively.

B: Wake velocity

Predictions of the mean streamwise velocity along the centerline within the wake are

shown in Figure 6.4. Recirculation length (Lr/D) is determined as the distance from

the aft-part of the cylinder to the position where the mean velocity at the centerline

recovers to zero, U/U∞ = 0. The AFT-G1 and AFT-G2 predictions show a similar

distribution of the velocity, with a rise of velocity after a recirculating length Lr/D =

0.18 until approximately x/D = 2. AFT-RSM-G1 and AFT-RSM-G2 predict a similar

Lr/D = 0.30, which is 15% larger than the AFT model for both grids. Beyond that

point, the velocity does not recover gradually and shows a wavy behaviour instead from

x/D = 6, for all current URANS simulations. This is a consequence of the narrowing

and widening of the wake downstream of the back of the cylinder. As seen in Figure 6.4,
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differences with the data in the literature are large, and the reasons are discussed in the

following paragraph.

Figure 6.4: Mean normalized streamwise velocity U/U∞ at centerline downstream
the cylinder surface.

Experimental work done by Parnaudeau et al. (2008) (Lr/D = 1.56) and Lourenco

and Shih (1993) (Lr/D = 1.19) are presented along with LES by Cheng et al. (2017)

(Lr/D = 1.34) and Parnaudeau et al. (2008) (Lr/D = 1.61). Shortened Lr/D = 1.19

from PIV measurements by Lourenco and Shih (1993) are attributed to experimental

error and an early transition of the shear layer as discussed in Kravchenko and Moin

(2000). AFT-G1 and AFT-G2, predict a Lr/D shorter by x/D = −1.1, and AFT-

RSM-G1 and AFT-RSM-G2, predict a Lr/D shorter by x/D = −0.89 to Lourenco

and Shih (1993), while 1.38 and 0.89 to experimental measurements by Parnaudeau

et al. (2008) respectively. The error to the LES simulation by Cheng et al. (2017) is

x/D = −1.16 and x/D = −1.04 for AFT, and AFT-RSM, respectively. Thus, the

shortening of the recirculating length in URANS predictions is a cause of the unresolved

shear layer that triggers its earlier transition, as discussed by Kravchenko and Moin

(2000). Consequently, the turbulent eddies are brought closer to the back of the cylinder.

This is consistent with the predictions of Pereira et al. (2018), where Lr/D ≈ 0.5

is largely underpredicted even in three-dimensional simulations when using URANS

models.

Figure 6.5(a) and Figure 6.5(b) show mean streamwise (U) and mean crossflow velocity

(V ), respectively, at six different positions downstream of the cylinder (x/D = 1.06,

x/D = 1.54, x/D = 2, x/D = 4, x/D = 7 and x/D = 10). The AFT and AFT-RSM

with G1 and G2 predict a similar behaviour for U , where the velocity defect within

the wake can be observed around y/D = 0 at all locations, with its consequent veloc-

ity recovery at the centerline. Figure 6.5(b) shows an anti-symmetric behaviour for all

URANS simulations when predicting V . This is physically expected as two-symmetric
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counter-rotating vortices occur within the wake. From the current predictions, no no-

ticeable differences can be observed in the U and V data.

(a) U

(b) V

Figure 6.5: Normalized (a) U/U∞ distribution and (b) V /U∞ distribution for AFT-
G1, AFT-G2, AFT-RSM-G1 and AFT-RSM-G2 transition models (see Figure 6.4 for
legend) and experimental data by (◦) Parnaudeau et al. (2008), (□) Lourenco and Shih

(1993) and (△) Ong and Wallace (1996) .

Experimental data by Lourenco and Shih (1993) and Parnaudeau et al. (2008) are shown

for U and V along with all current predictions. Two different shapes can be observed

in Figure 6.5(a). The U-shape mean streamwise profile is measured in Parnaudeau

et al. (2008) but V-shape is measured in experiments by Lourenco and Shih (1993).

As discussed for shortened Lr/D by Lourenco and Shih (1993), Beaudan and Moin

(1994) attributed this to experimental error, and an early transition of the shear layer
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as discussed in Kravchenko and Moin (2000). However, Ma et al. (2000) examined this

contradiction by performing DNS simulations with different spanwise domains. The

mean velocity from Ma et al. (2000) converges to V-shape with Lz = 2πD but to a

U-shape using Lz = πD. Recent research by Lysenko et al. (2012) and D’Alessandro

et al. (2016) suggest that a V-shaped profile is observed in flow fields, which have a

short recirculating length, which is in agreement with what it is observed with the use

of AFT and AFT-RSM in two-dimensional simulations.

The two-dimensional predictions when using AFT and AFT-RSM in grids G1 and G2

show a V-shape velocity profile in the near wake, with the largest deficit in velocity at

x/D = 1.54, compared to experimental data by Lourenco and Shih (1993) and Par-

naudeau et al. (2008). Predictions using AFT and AFT-RSM with G1 and G2, show a

maximum deficit at the mentioned position of 70% and 76% to Lourenco and Shih (1993)

and Parnaudeau et al. (2008), respectively. This large difference is a consequence of the

shortened wake predicted by two-dimensional AFT and AFT-RSM with G1 and G2.

As the mean velocity streamlines have already closed the pair of two-counter rotating

vortices way earlier than x/D = 1.06, the flow-field is closer to zero than Lourenco and

Shih (1993) and Parnaudeau et al. (2008) in this same position. Thus, further down-

stream the differences are much smaller as can be easily seen, with a fair agreement of

approximately 9% when compared to Ong and Wallace (1996) for x/D > 4.

For the V behaviour, as already discussed, differences between Lourenco and Shih (1993)

and Parnaudeau et al. (2008) are also shown, especially in the near wake for x/D =

1.06 − 1.54. Beyond the near-wake region, it is shown that both measurements show

the same behaviour. Figure 6.5(b) shows how all predictions, resemble the Lourenco

and Shih (1993) behaviour more than Parnaudeau et al. (2008), as occurred for U . The

asymmetric behaviour is not predicted by any of the current simulations. AFT-G1 and

AFT-G2 show an anti-symmetric behaviour with the peak being overpredicted by almost

twice from Lourenco and Shih (1993) at x/D = 1.06. This shifts downstream, as it is

underpredicted by 15% at x/D = 2. Further downstream, differences are about 8−10%

to Ong and Wallace (1996). The error reduction is consistent with analyses of U .

C: Turbulence intensities

AFT and AFT-RSM with G1 and G2 predict a peak in the variance of the streamwise

velocity fluctuations as shown in Figure 6.6. This peak is related to the distance from

the base of the cylinder where the vortices are shed as discussed by D’Alessandro et al.

(2016). AFT-G1 and AFT-G2 predict the same peak value of u′u′ = 0.1025, while AFT-

RSM-G1 and AFT-RSM-G2 predict the same value of u′u′ = 0.1139. Furthermore, the

position of such peak is further downstream predicted by AFT-RSM (Lf/D = 0.8925),

than AFT (Lf/D = 0.8035). This behaviour is consistent with predictions achieved for

Lr/D with AFT-RSM, which were discussed earlier in the wake velocity section.
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Figure 6.6: Mean variance of normalized streamwise velocity fluctuations u′u′/U2
∞ at

centerline downstream of the cylinder surface.

Experimental data by Norberg (1994), Parnaudeau et al. (2008) and LES by Parnaudeau

et al. (2008) are shown along with the AFT and AFT-RSM predictions. Qualitatively,

it is observed in Figure 6.6 that none of the URANS simulations predicts the two peaks

observed in experiments by Norberg (1994) and Parnaudeau et al. (2008). The primary

peak, with the largest value, is related to the vortex shedding and the secondary peak is

believed by Norberg (1994) to be caused by a longitudinal vortex. However, Parnaudeau

et al. (2008) report that the link between the second peak and vortical effects is unclear.

LES prediction only shows the peak associated with the vortex shedding, as well as

AFT and AFT-RSM with grids, G1 and G2. In this case, the peaks are located further

upstream than in the experiments and LES given in Figure 6.6. This is a cause of the

short recirculating length predicted by 2D AFT and AFT-RSM with grids G1 and G2,

as already discussed in the paragraphs above. Downstream of the peak we can see the

reduction of the u′u′, which may be related to the dissipation of the upwind nature of

the numerical scheme utilised for URANS simulations.

Figure 6.7(a) and Figure 6.7(b) show the mean-variance of the streamwise and transverse

velocity fluctuations. Predictions of the AFT and the AFT-RSM with both G1 and G2

meshes are in agreement regarding the behaviour exhibited from the near cylinder to

further downstream up to x/D = 10. In the plot there are 4 lines but AFT-G1 and

G2 are coincident, as well as AFT-RSM-G1 and G2. Two peaks for u′u′ are predicted

by the current simulations, that are related to the vortex shedding process. Since the

recirculation length predicted by the current simulations is shorter than the value in

the literature, as presented in Figure 6.7(a), the flow field between the two prominent

peaks approaches to zero, as at x/D = 1.06 the shedding has already occurred. When

compared to measurements by Lourenco and Shih (1993) and Parnaudeau et al. (2008),

one can see the tendency follows better the first set of experiments in the near wake,
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(a) u′u′

(b) v′v′

Figure 6.7: Normalized (a) u′u′/U2
∞ distribution and (b) v′v′/U2

∞ distribution for
AFT-G1, AFT-G2, AFT-RSM-G1 and AFT-RSM-G2 transition models (see Figure 6.4
for legend) and experimental data by (◦) Parnaudeau et al. (2008), (□) Lourenco and

Shih (1993) and (△) Ong and Wallace (1996) .

specifically at locations x/D = 1.06, x/D = 1.56 and x/D = 4. The difference in the

peaks to Lourenco and Shih (1993) at the near wake (x/D = 1.06) is approximately

84%.

The mean-variance of the crosswise velocity fluctuations predicts a peak at the centerline

for current predictions as expected, due to the vortex periodic shedding from the cylinder

surface. The peak of v′v′ gradually diminishes as flow moves away from the cylinder

until the vortex shedding vanishes. Experimental data by Lourenco and Shih (1993)
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and Parnaudeau et al. (2008) show a milder peak than AFT and AFT-RSM with G1

and G2, specifically from x/D = 1.06 to x/D = 4. Overprediction from the closest to

the furthest position is large. The latest position at x/D = 10 shows a good agreement

with experimental data, as the contribution almost vanishes.

6.2.2 Transitional DDES

The transitional DDES sensitivity is studied using two different grid distributions given

in Table 6.1 with a central difference (CD) numerical scheme. The grids use 160× 160

and 256 × 256 numbers of points for the radial and angular directions. The base mesh

is similar to the used by Breuer (2000) with two different number of points along the

spanwise direction, 30 (AFTDDES-G1) and 60 (AFTDDES-G2). With a refinement

factor of about
√
2, grid 256 × 256 × 60 (AFTDDES-G3) is a standard mesh used in

literature by Cheng et al. (2017), D’Alessandro et al. (2016) amongst others, for this

validation case at ReD = 3900. Furthermore, in this case, the spanwise length is kept

at Lz = 3D, as different literature (i.e. D’Alessandro et al., 2016, Cheng et al., 2017)

showed that this is sufficient to develop the vortical structures, while shorter spanwise

lengths alter the near-wake velocity and velocity fluctuation predictions.

A: Surface pressure (Cp) and skin friction (Cf)

Figure 6.8(a) shows predictions of surface pressure from DES calculations using AFT as

the turbulence models. Differences in Figure 6.8(a) show the resolution in grids G1 and

G2 to be insufficient. The −Cp,min is smaller as the mesh is refined as AFTDDES-G2,

as well as the −Cp,b. On the other hand, when increasing the resolution in the radial

and angular directions from G2 to AFTDDES-G3, the −Cp,min is reduced and the −Cp,b

too. AFTDDES-G3 falls closer to experimental results than G1 and G2 meshes, due

to the refinement in the angular and radial direction. The −Cp,min from G3 mesh is

overpredicted by 10%, similarly to −Cp,b. Due to the lack of grid resolution in some of all

the directions, AFTDDES-G1 and AFTDDES-G2 show an overprediction of minimum

pressure coefficient and back pressure compared to literature data in Figure 6.8(a).

As −Cp,min is reduced, the laminar separation point predicted by the current simulations

moves upstream with positions: ϕl,s = 88, ϕl,s = 87.5, ϕl,s = 87 degrees, respectively for

AFTDDES-G1, AFTDDES-G2 and AFTDDES-G3 as shown in Figure 6.8(b). The small

counter-rotating vortex is predicted at approximately from ϕv,r = 130◦ to ϕv,s = 150◦

for three meshes. It is also shown how the lack of resolution in radial, angular and

spanwise directions does not have much of an effect at this Reynolds number on the

Cf prediction. Nonetheless, the AFTDDES-G3 configuration shows the best agreement

to Cheng et al. (2017) overall, and to Beaudan and Moin (1994) after separation. Pre-

dictions using AFTDDES-G1 and G2 are also in good agreement. However, the Cp is

influenced by its lack of resolution in the radial, angular and spanwise direction. The
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(a) Cp

(b) Cf

Figure 6.8: (a) Cp and (b) Cf distribution for AFTDDES-G1, AFTDDES-G2 and
AFTDDES-G3 transition models for validation case at ReD = 3900.

predictions using three-dimensional AFT-DDES simulations show improvements com-

pared to two-dimensional transitional AFT and AFT-RSM at this Reynolds number.

Thus, reinforcing the idea that the correct prediction of the shear layer is pivotal for

this low Reynolds number and throughout the sub-critical regime.

B: Wake velocity

Figure 6.9 shows predictions of centerline velocity profiles compared with reference data.

The mesh AFTDDES-G1 produces a shortened Lr/D = 1.0, as discussed by Lysenko

et al. (2012) and D’Alessandro et al. (2016). When increasing the spanwise resolution to
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60 in the case of AFTDDES-G2, it is shown how the Lr/D = 1.1 is stretched compared

to AFTDDES-G1. With AFTDDES-G3, the recirculating length is stretched down to

Lr/D = 1.43. This behaviour is consistent with Lysenko et al. (2012) and D’Alessandro

et al. (2016) as discussed earlier in the validation section of transitional URANS models.

Figure 6.9: Mean normalized streamwise velocity U/U∞ at centerline downstream of
the cylinder surface.

Experimental data by Lourenco and Shih (1993) and Parnaudeau et al. (2008), and

LES by Parnaudeau et al. (2008) and Cheng et al. (2017) are also shown in Figure 6.9.

Predictions by AFTDDES-G1 and AFTDDES-G2 show a better agreement compared

to Lourenco and Shih (1993). The insufficient spanwise resolution in AFTDDES-G1

reduces the Lr/D by roughly 9% and shows Umin = −0.2482 which is similar to Lourenco

and Shih (1993). Improving the spanwise resolution for case AFTDDES-G2 stretches

the Lr/D close to the value of Lr/D = 1.1 given by Lourenco and Shih (1993). The

case AFTDDES-G3 shows an agreement with Cheng et al. (2017), while still producing a

similar result to Parnaudeau et al. (2008) experimental Lr/D = 1.56 and LES predictions

Lr/D = 1.61, with an Lr/D = 1.43. The minimum velocity for G3 is still underpredicted

by roughly 25% to experiment and 1% to LES by Parnaudeau et al. (2008).

Similarly, the mean centerline velocity predictions from AFTDDES-G1 and AFTDDES-

G2 follow the Lourenco and Shih (1993) behaviour, resembling a V-shape profile in the

near wake, due to the insufficient resolution of the mesh. This is consistent with Lysenko

et al. (2012) and D’Alessandro et al. (2016), as a short recirculating length resembles a

V-shape profile as they reported. On the other hand, AFTDDES-G3 predicts a U-shape

profile in the near wake location, x/D = 1.06, due to the stretched Lr/D compared to

the other predictions. AFTDDES-G1, G2 retain the V-shape as we move further away

from the cylinder surface, while AFTDDES-G3 develops into a V-shape profile, at the

end of the formation length.
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(a) U

(b) V

Figure 6.10: Normalized (a) U/U∞ distribution and (b) V /U∞ distribution for
AFTDDES-G1, G2 and G3, transition models (see Figure 6.9 for legend) and experi-
mental data by (◦) Parnaudeau et al. (2008), (□) Lourenco and Shih (1993) and (△)

Ong and Wallace (1996) .

AFTDDES-G1 and G2 show a maximum underprediction compared to Lourenco and

Shih (1993) of approximately 14% in the near wake, that error diminishes downstream

the wake down to approximately 3%. AFTDDES-G3 as described above, is consistent

with Parnaudeau et al. (2008) measurements, underpredicting the defect of velocity by

a maximum of 11% at x/D = 1.56 and diminishing to values of roughly 3% in the far

wake.

The antisymmetric behaviour is shown for V with predictions AFTDDES-G1, G2 and
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G3. The tendencies are still the same, G1 and G2 follow Lourenco and Shih (1993),

while G3 agrees with Parnaudeau et al. (2008) measurements, at the two initial posi-

tions x/D = 1.06 and x/D = 1.54. For x/D = 4 both measurements show a similar

tendency although Lourenco and Shih (1993) profile is asymmetric. Further away, the

same behaviour as Ong and Wallace (1996) experimental data is predicted.

C: Turbulence intensities

Figure 6.11 shows the variance of the streamwise velocity fluctuation along the centerline

downstream of the circular cylinder. The shorter Lr/D predicted by AFTDDES-G1

and G2 is consistent with the maximum peak of u′u′. The longer Lr/D predicted

by AFTDDES-G3 compared to G1 and G2, is consistent with the displaced peak of

u′u′ shown in Figure 6.11. Maximum value of u′u′ = 0.1188 for AFTDDES-G3, while

reduced peak is predicted by AFTDDES-G1 and AFTDDES-G2, u′u′ = 0.11, 0.1138

respectively.

Figure 6.11: Mean-variance of streamwise velocity fluctuations u′u′/U2
∞ at centerline

downstream of the cylinder surface.

Here, AFTDDES-G3 shows better agreement to experimental data by Norberg (1994)

(u′u′max = 0.1117) and LES predictions Parnaudeau et al. (2008) (u′u′max = 0.116),

with a similar decay after the formation length. On the other hand, AFTDDES-G1 and

G2 show the best agreement with measurements produced by Parnaudeau et al. (2008).

Nonetheless, an explanation regarding the differences observed between measurements

and LES by Parnaudeau et al. (2008) is not discussed in the publication, it might be

attributed to experimental errors, as there is a mismatch between the peak and the

Lr/D provided by their measurements. Furthermore, the Lr/D given in the LES by

Parnaudeau et al. (2008) is overpredicted when compared to the experiment as given in

Table 6.2.
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Predictions with AFTDDESG1, G2 and G3 capture the two dominant peaks regarding

the shedding process as shown in Figure 6.12(a). However, the AFTDDESG1, and G2,

due to the lack of resolution and the initial short Lr/D estimation, show two thick peaks

due to V-shape contribution from the mean velocity profile. The U-shape mean velocity

profile predicted by AFTDDES-G3, is translated into two separated peaks, with a quiet

flow field in between. As the flow develops into a V-shape profile as shown prior, the

bulky peaks are predicted. Further downstream, close to the recirculating length, the

flow at the centerline becomes agitated due to the end of the formation length. For

x/D ≤ 4 the agreement is good between AFTDDES-G1, G2 and G3.

As for the wake velocity analysis, AFTDDES-G3 shows a better agreement with Par-

naudeau et al. (2008), while AFTDDES-G1 and AFTDDES-G2 show a better agreement

with Lourenco and Shih (1993) measurements. In fact, the agreement by AFTDDES-G3

is really good that the maximum error in the defect of velocity estimation can be found

at x/D = 2.0, and it is roughly 8%. Furthermore, the position of the peaks is coincident

with the current prediction and experimental data. The refinement of AFTDDES-G2

improves the predictions compared to G1, as the defect of velocity falls closer to Lourenco

and Shih (1993) measurements of approximately a maximum of 3% in the three closest

positions.

The peak at the centerline resembled by transitional URANS models is also predicted

by AFTDDES estimations of u′u′ as shown in Figure 6.12(b). The AFTDDES-G2 shows

improvements over AFTDDES-G1 of even a 10%, at x/D = 1.54 and x/D = 2. Further

downstream than x/D = 4%, the peak at the centerline diminishes its intensity with

differences in predictions for G1, G2 and G3 of a 5% maximum y/D = 0.

AFTDDES-G1 and G2 show a closer behaviour to Lourenco and Shih (1993), which

is consistent with all the parameters analysed prior to this point. On the other hand,

AFTDDES-G3 agrees well with the behaviour of Parnaudeau et al. (2008) in the near

wake region. The maximum difference to Parnaudeau et al. (2008) by AFTDDES-G3

is approximately 9% at x/D = 1.06, diminishing to 3% further downstream the wake.

The maximum overprediction of the peak value for v′v′ compared to Lourenco and Shih

(1993) by AFTDDES-G1 and G2, is approximately 15% and 21%, respectively. The

error diminishes as the flow field moves downstream, with a minimum of 3% in the far-

wake region (x/D ≥ 4) compared to experimental measurements by Ong and Wallace

(1996).

6.2.3 Summary

From the sensitivity analysis, we have observed that increasing angular resolution below

2 degrees does not provide any benefit when using AFT and AFT-RSM. Similar effects

are observed when analysing the wake velocity and turbulence intensities, and were due
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(a)

(b)

Figure 6.12: Normalized (a) u′u′/U2
∞ distribution and (b) v′v′/U2

∞ distribution for
AFTDDES-G1, G2 and G3 transition models (see Figure 6.9 for legend) and experi-
mental data by (◦) Parnaudeau et al. (2008), (□) Lourenco and Shih (1993) and (△)

Ong and Wallace (1996) .

to the two-dimensional simulation and the subsequent shortened recirculating length.

Predictions are consistently similar to Lourenco and Shih (1993), which is expected as

discussed in prior paragraphs, and also studied in literature by Lysenko et al. (2012),

Beaudan and Moin (1994) and Kravchenko and Moin (2000). Downstream at x/D = 4,

in the far-wake, the agreement falls by approximately 5% compared to the experimental

data by Ong and Wallace (1996).
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On the other hand, the increased resolution given by G2 and G3 when validating AFT-

DDES makes a difference compared to the coarser mesh G1, especially in the wake

description. The lack of resolution by AFTDDES-G1 produces a sharp drop in Cp and

a delayed laminar separation. However, this effect is not relevant to the most refined

case, AFTDDES-G3 when analysing Cp or Cf over the cylinder surface.

The improvement is evident in the near-wake to the cylinder surface. The lack of resolu-

tion in G1 and G2 produces a V-shape. As a consequence, all predictions by AFTDDES-

G1 and G2 follow the tendency of measurements by Lourenco and Shih (1993) measure-

ments. With a common resolution used in literature by many authors for DDES and

LES, such as D’Alessandro et al. (2016) or Cheng et al. (2017) among others, predictions

using AFTDDES-G3 fall close to Parnaudeau et al. (2008) experimental data and LES

by Cheng et al. (2017). Furthermore, the boundary layer predicted here is laminar until

separation, as a difference to standard turbulent DDES, as shown and discussed in the

following Chapter 7.

Hence, the grid configuration of AFT-G2 and AFT-RSM-G2 is going to be used as the

baseline for two-dimensional simulations. Even though differences are not significant

to AFT-G1 and AFT-RSM-G1, we want to keep consistency with the AFTDDES-G3

grid configuration. Evidently, the grid configuration given in AFTDDES-G3 is used as

the baseline mesh for three-dimensional analyses because of its agreement with well-

established experimental data by Parnaudeau et al. (2008) and also to LES in literature,

than AFTDDES-G1 and AFTDDES-G2.

As demonstrated the results obtained from 2D simulations differ from 3D runs. The first

reason is the inability of the transitional model using RANS in the 2D simulations to

predict the shear-layer transition that occurs at this Reynolds number, as a difference to

the following analyses, where the transition occurs for an attached boundary layer over

the cylinder surface, leading to improved predictions in such conditions. Conversely,

the 3D simulation with the use of the hybrid AFT-DDES activates the LES behaviour

once the laminar boundary layer separates, which predicts smaller turbulent scales in-

teraction and therefore the shear-layer transition prediction is enhanced compared to

2D simulations.



C
h
a
p
ter

6
V
a
lid

a
tio

n
a
t
R
e
D
=

3900
for

a
circu

lar
cy
lin

d
er

fl
ow

105

Table 6.2: Mean flow field characteristics at ReD = 3900 for the validation.

Case −Umin/U∞ −Cp,min −Cp,b Lr/D
1 Lf/D

2 u′u′/U2
∞ ϕl,s [deg.]

AFT-G1 0.6177 1.68 1.91 0.18 0.8035 0.1025 99
AFT-G2 0.6175 1.68 1.91 0.18 0.8035 0.1025 99

AFT-RSM-G1 0.6766 1.65 1.745 0.3 0.8925 0.1139 97
AFT-RSM-G2 0.6756 1.65 1.745 0.3 0.8925 0.1139 97
AFTDDES-G1 0.2482 1.261 1.086 1 1.498 0.11 88
AFTDDES-G2 0.2694 1.235 1.01 1.1 1.5 0.1138 87.5
AFTDDES-G3 0.2533 1.184 0.9129 1.43 1.804 0.1188 87

Literature Data

Exp-Parnadeau et al. (2008) 0.3187 - - 1.56 1.445 0.1047 -
LES-Parnadeau et al. (2008) 0.251 - - 1.61 2.124 0.116 -

Cheng et al. (2017) 1.143 0.8996 1.34 - - 86
Lourencho-Shih (1993) 0.2457 1.19 - - -

Norberg (1963) - 1.125 0.8571 - 2.152 0.1117 -
Beaudan-Moin (1994) - - - - - - 90

1Lr/D is defined as the distance from the cylinder rear end to the saddle point formed at the wake.
2Lf/D is defined as the distance between the cylinder centroid and the peak of the squared streamwise velocity.





Chapter 7

Performance of AFT models at

different Reynolds number

regimes

This chapter studies the performance of the transitional AFT and AFT-RSM models for

two-dimensional simulations and the AFT-DDES for three-dimensional scenarios. The

analysis is performed throughout sub-critical, critical, and super-critical regimes for flow

past a circular cylinder.

Chapter 5 has demonstrated the superior performance given by transitional methods

to fully-turbulent approaches regarding the estimation of recirculating length and the

appearance of separation bubbles within the transitional regime for backward-facing step

flow, where the pressure gradient and main separation point are fixed.

The main objective is to demonstrate the superior performance of URANS transitional

AFT and AFT-RSM against fully turbulent approaches from a skin-friction perspective,

surface pressure coefficient, and wake analysis as a continuation of the simulations per-

formed in Chapter 6 at ReD = 3900, where the transitional AFT and AFT-RSM have

demonstrated the capability of reproducing the laminar boundary layer at the upstream

face of the cylinder. Even though the initial predictions in the wake are not good as

shown in Chapter 6 , these models are tested at higher Reynolds numbers because of

the transition occurring in an attached boundary layer, rather than in a separated one,

which has shown to be not feasible for the models to predict correctly.

In this Chapter, the study of the flow at sub-critical, critical and super-critical regimes

is presented, at ReD = 1.5− 3.5− 8.5× 105 respectively. The AFT and AFT-RSM are

tested at a higher Reynolds number than the Reynolds numbers used in Chapter 6 to

demonstrate their capabilities in predicting transition in attached boundary layers as

107
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a difference to transition in the shear-layers as already shown. Predictions with AFT-

DDES are presented to demonstrate the capability to substitute turbulent RANS/DDES

approaches since the laminar prediction of the boundary layer plays an important role

throughout the sub-critical, critical and super-critical stages. To finalise the analysis,

an overall perspective of the improvement when using transitional methods to fully-

turbulent approaches is given for the Reynolds number effect.

Furthermore, unless stated otherwise, when referring to terms such as U , V , Reynolds

stress term, variance of cross-stream velocity fluctuations and variance of streamwise ve-

locity fluctuations, it denotes the normalized value either by U∞ or U2
∞ for the Reynolds

stress and variance terms.

7.1 Sub-critical - ReD = 1.5× 105

In this section, predictions at a sub-critical Reynolds number of Re = 1.5× 105 are dis-

cussed in this Chapter. The sub-critical regime is characterised by a laminar separation

over the cylinder surface. Predictions using transitional AFT and AFT-RSM models are

compared to AFT-DDES, as well as other transitional methods such as γ − Reθ and γ

models of Langtry and Menter (2009) and Menter et al. (2015) respectively, LES by Kim

(2006) and measurements by Cantwell and Coles (1983) and Achenbach (1968). Mean

flow characteristics that are discussed in the following sections are given in Table 7.2.

7.1.1 Mesh and computational setup

The grid characteristic used for this Reynolds number is given in Table 7.1. Note the

mesh used for the URANS 2D cases are the same in the plane x− y. This specific grid

is refined by a factor of
√
2 in the radial and angular direction to the mesh utilised for

the validation case at ReD = 3900. The number of points in the angular direction is

between the resolution utilised by DDES grids by Liu et al. (2019) and higher resolution

due to the pure LES simulations by Rodŕıguez et al. (2015) and Cheng et al. (2017). In

the radial direction the number of nodes is similar to sub-critical meshes by Cheng et al.

(2017), as well as the resolution in the spanwise length with Nz = 96 planes, resulting

in a resolution of ∆z ≈ 1.5 × 10−2 m. The spanwise length is Lz = 3D, as discussed

by Cheng et al. (2017) for the full sub-critical regime. The y+ values are always kept

approximately y+ ≈ 1 as learnt in Chapter 4.

7.1.2 Prediction of the flow-field

A: Surface pressure (Cp) and skin friction (Cf)
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Table 7.1: Numerical resolutions and schemes for grid at different Reynolds numbers

Case Grid Lz ∆t˜ Scheme 2D Scheme 3D ∆θ [deg.] ∆z [m]
Nr ×Nθ ×Nz

1.5× 105 256× 256× 96 3D 0.05 UW CD 1.4 1.5× 10−2

3.5× 105 320× 320× 128 D 0.06 UW CD 1.125 3.9× 10−3

6.5× 105 450× 450 − 0.05 UW - 0.8 −
8.5× 105 450× 450× 192 D 0.05 UW CD 0.8 2.6× 10−3

Figure 7.1(a) shows predictions of Cp using the AFT, AFT-RSM and AFT-DDES along

with other transitional models compared with literature data such as Cantwell and

Coles (1983) and Kim (2006). The pressure reduction over the upstream surface is

similar for the URANS transitional models but the minimum pressure coefficient is

different, as well as the angular position where the minimum is achieved. AFT predicts

a −Cp,min = 1.826 and AFT-RSM predicts a −Cp,min = 1.624, which is about 11%

smaller. On the other hand, the minimum position is shifted downstream for the AFT

approximately by 5◦ compared to the AFT-RSM minimum position at ϕCp,min = 75◦.

This difference is believed to be influenced by the downstream flow. For the AFT the

streamlines are rather curved at about 90◦ which is a consequence of a reduced adverse

pressure gradient, while for the AFT-RSM, the streamlines are more aligned to the

freestream flow, thus observing a larger expansion, caused by a greater adverse pressure

gradient that would lead to an earlier separation than AFT. This is consistent with

observations in Figure 7.1(b), where the Cf predicted by AFT and AFT-RSM shows an

earlier separation for AFT-RSM than AFT. The 3D prediction using AFT-DDES shows

a reduced −Cp,min = 1.39 at about ϕ = 72◦, thus leading to an earlier separation as it

is confirmed in Figure 7.1(b) by the Cf .

Over the plateau region of Cp, approximately between ϕ = 120 − 150◦, differences are

about 10%, while the AFT still produces this sharp decrease in Cp from ϕ = 160◦. This

sharp decrease is consistent with the shortened recirculation region that will be discussed

in the following section, and with the observations at ReD = 3900. Consequently, the

AFT predicts a higher back pressure −Cp,b = 1.29 as vortical structures are brought

closer to the cylinder surface, than AFT-RSM−Cp,b = 0.911. Hence, the wake prediction

using AFT-DDES should be better than AFT. In fact, a longer recirculating length is

expected, as the plateau region is predicted after the flow separation as expected. Since

the AFT-RSM and AFT-DDES are similar over this plateau region, differences to AFT

are approximately 10%.

When compared to measurements by Cantwell and Coles (1983), the AFT-DDES shows

a better agreement than to LES predictions by Kim (2006). This has also been shown

by Liu et al. (2019) DDES predictions. The overprediction of the −Cp,min by AFT-

DDES is roughly 11% to Cantwell and Coles (1983), while Kim (2006) predicts a value

of −Cp,min = 1.668. Furthermore, the minimum pressure by Kim (2006) is located

further downstream, which leads to an even more delayed separation point in their
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Table 7.2: Mean flow field characteristics at ReD = 1.5×105 for transitional URANS
and literature data.

Case −Umin/U∞ −Cp,min −Cp,b Lr/D ±u′v′/U2
∞ ϕl,s [deg.]

AFT 0.1264 1.826 1.295 0.35 0.1629 91
AFT-RSM 0.3245 1.624 0.911 0.73 0.083 87
AFT-DDES 0.1883 1.39 0.91 0.6 0.112 84

γ - 1.843 2.124 - 0.1921 95
γ −Reθ 0.08982 1.798 1.634 0.3 0.214 89
SST 0.2275 2.091 1.103 0.49 0.1489 98

Literature Data

Achenbach (1968) - - - - - 78
Kim (2006) - 1.668 1.343 - - -

EXP Cantwell Coles - 1.236 1.249 0.48 - -
LES Breuer 0.181 - - 0.58 0.111 -

predictions. This is what happens to AFT and AFT-RSM, as both predictions are in

better agreement with Kim (2006). AFT-RSM produces a similar prediction but AFT

shows an even further delay in the minimum pressure location by about ∆ϕ = 8◦ and

a minimum value of −Cp,min = 1.826. With the drastic decrease due to the shortened

recirculating length, the AFT predicts a similar −Cp,b than the literature data given in

Figure 7.1(a). On the other hand, the AFT-DDES and AFT-RSM underpredict back

pressure values to experimental and LES data. Nonetheless, AFT-DDES predictions

demonstrate an improvement to URANS methods and to fully turbulent models such as

k − ω SST as can be observed due to its fully turbulent assumption.

Skin friction Cf over the upstream face for all model show similarities up to approxi-

mately ϕ = 55◦, where maximum differences are about 15.5% between AFT-DDES and

SST fully turbulence models. After the maximum Cf peak, the reduction of skin fric-

tion presents differences that are similar for transitional models but overpredicted by

the SST as shown in Figure 7.1(b). Beyond the maximum peak, the reduction region

shows similar trends with maximum differences observed when the Cf crosses the zero

value, indicating the separation point.

Predicted results of Cf given in Figure 7.1(b) show the delayed laminar separation (ϕl,s)

by the AFT at ϕl,s = 91, while AFT-RSM moves the laminar separation upstream to

ϕl,s = 87 and finally the AFT-DDES to ϕl,s = 84. Note that all three transitional models

are capable of predicting laminar flow, as a difference to standard DDES approaches or

wall-modelled LES, while requiring URANS grid characteristics rather than wall-resolved

LES requirements. After the separation, the AFT-RSM does not show any reattachment

of the flow, while AFT and AFT-DDES do predict one. The AFT shows a reattachment

from ϕ = 150◦ − 180◦. On the other hand, AFT-DDES predicts a small reattachment

between ϕ = 130−150. This reattachment has been also observed in Travin et al. (1999)

predictions between ϕ = 115− 140◦.
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(a)

(b)

Figure 7.1: (a) Cp distribution with Achenbach (1968) experimental data at ReD =
1 × 105and (b) Cf distribution with experimental data by Cantwell and Coles (1983)
and Kim (2006) along current predictions with SST, AFT, AFT-RSM, AFT-DDES,

Langtry and Menter (2009) and Menter et al. (2015) model at ReD = 1.5× 105.

Experimental data by Achenbach (1968) are also given in Figure 7.1(b), along with

Langtry and Menter (2009) and Menter et al. (2015) transitional predictions. Tran-

sitional AFT, AFT-RSM and AFT-DDES underpredict the Cf at ϕ = 50◦ by about

6 − 10%. This is consistent with DDES results by Liu et al. (2019). The closest pre-

diction of the laminar separation point is predicted by AFT-DDES, with a difference

of about ∆ϕ = 4◦. AFT-RSM and AFT delay the laminar separation to Achenbach

(1968) by ∆ϕ = 7◦ and ∆ϕ = 11◦, respectively. When compared to fully-turbulent SST,

one can see how the separation is delayed to about ϕt,s = 98◦, and the separation is
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turbulent, as the subscript “t” indicates.

B: Wake velocity and mean flow field

Figure 7.2 shows the mean streamwise velocity at the centerline downstream of the wake

for AFT, AFT-RSM and AFT-DDES. Overall except for the γ model, a recirculation

length can be distinguished. AFT and AFT-RSM follow overall a similar tendency to

experimental and LES data by Cantwell and Coles (1983) and Breuer (2000), while

Menter models predict a sharp velocity recovery after crossing the zero velocity axis.

The fully turbulent SST model also presents such sharp velocity recovery to freestream

velocity. The transitional DDES shows the best agreement to the overall tendency of

the velocity at the centerline as shown in Figure 7.2.

The shortened prediction of Lr/D = 0.35 by AFT is consistent with prior analysis at

ReD = 3900. As can be seen in Figure 7.2, AFT-DDES produces the intermediate of

the values for the recirculating lengths Lr/D = 0.6 of the three models, and AFT-RSM

stretches its value to Lr/D = 0.73, which is consistent with the discussion of the Cp

behaviour in the section above. Furthermore, the wavy behaviour observed using AFT

and AFT-RSM is not predicted anymore downstream the surface of the cylinder as

the velocity is gradually recovered. The overprediction of Lr/D by AFT-RSM is also

accompanied by an overprediction of Umin, with a value of about Umin = −0.37. AFT-

DDES predicts a value of Umin = −0.1883 and AFT a reduced value of Umin = −0.1264.

Figure 7.2: Mean normalized streamwise velocity U/U∞ at centerline downstream
the cylinder surface.

Data by Cantwell and Coles (1983) and LES by Breuer (2000) are used for comparison

in here. Furthermore, the 2D fully turbulent SST prediction shows to produce a similar

recirculating length Lr/D = 0.49 than Cantwell and Coles (1983) (Lr/D = 0.5), but its

velocity recovery is faster than literature data for x/D > 1. It can be seen in Figure 7.2
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how AFT, AFT-RSM and AFT-DDES perform better than SST for the wake velocity

prediction, as the overall behaviour follows the tendency of Cantwell and Coles (1983)

and Breuer (2000) data. AFT-DDES shows the best agreement to LES by Breuer (2000)

with Umin = −0.1883 and Lr/D = 0.6. Far away from the cylinder surface the velocity

recovery shows a wavy behaviour x/D > 4 for Breuer (2000), which might be related

to an insufficient grid resolution, as other estimations in the literature show a gradual

recovery such as Cantwell and Coles (1983) measurements, and DDES by Liu et al.

(2019). AFT instead, underpredicts −Umin by 30.1% to Breuer (2000), as Cantwell and

Coles (1983) do not provide measurements for the minimum velocity. On the other hand,

AFT-RSM overpredicts by 79% to Breuer (2000). Regarding the Lr/D, the estimation

by AFT is underpredicted by about 30% and 41%, and AFT-RSM overpredicts Lr/D

to Cantwell and Coles (1983) and Breuer (2000) by 52% and 26%, respectively.

From just a simple observation of Langtry and Menter (2009) and Menter et al. (2015),

it can be observed how the performance of the AFT base model, (including AFT-RSM

and AFT-DDES) is superior to these two models. The differences between Langtry and

Menter (2009) to AFT are for −Umin and Lr/D, roughly 28% and 15% respectively as

given in Table 7.2, while the recovery velocity is completely different from expectations,

as they show rapid velocity recovery.

C: Turbulence Intensities

Mean Reynolds stress, normalized by the freestream velocity, predictions for AFT, AFT-

RSM and AFT-DDES are given in Figure 7.3 at x/D = 1, which is 0.5D away from

the back of the cylinder. Overall it is shown in Figure 7.3 that the anti-symmetric

behaviour is predicted by all transitional methods, including Menter models and SST,

when compared to LES simulations reported by Breuer (2000).

It is shown in the figure, how the shortened recirculating length predicted by AFT is

translated into the strength of the Reynolds stress peak, with an overprediction of almost

46% compared to A1 LES by Breuer (2000). Nonetheless, the location of the peaks is

about y/D = 0.29. The peak position is displaced ∆(y/D) = 0.03 by the AFT-RSM

compared to AFT, although its maximum value is reduced to u′v′max = 0.083, as the

wake is stretched. AFT-DDES predicts a correct maximum value of the Reynolds stress

(u′v′max = 0.112) as well as the location of the peak y/D = 0.4. Here, one can see

how the shortened recirculating length produces a smooth peak than AFT-RSM and

AFT-DDES predictions, whose Lr/D is larger than AFT.

The peak of the Reynolds stress can give information about the distance from the cen-

terline of the shedding location and its strength, thus it can give information about the

wake too. As peaks fall closer to the centerline for AFT and AFT-RSM, it is possible to

say that the wake is narrower than for AFT-DDES predictions. However, it is common

to analyse the normalized u′u′ or v′v′ but data in the literature is not available.
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Figure 7.3: Mean normalized Reynolds stress term u′v′/U2
∞ at x/D = 1 downstream

the cylinder surface.

LES prediction by Breuer (2000) and DDES prediction by Liu et al. (2019) at a given

Reynolds number is used for comparison to the current three transitional approaches.

The agreement when using AFT-DDES to both LES and DDES is good. This is con-

sistent with observations regarding the mean streamwise velocity variation along the

centerline, in the section above. The capability of predicting turbulent structures has an

impact on the estimations when compared to AFT and AFT-RSM. In addition, the per-

formance shown by AFT-RSM is superior to SST, Langtry and Menter (2009), Menter

et al. (2015) and AFT, where the error in the peak prediction is between 20 − 30%.

Predictions by Langtry and Menter (2009) and Menter et al. (2015) show a large over-

prediction of the peak by about 73% and 93%, with the position of the peak being

located at y/D = 0.34 and y/D = 0.25, instead of the expected y/D = 0.4 by Breuer

(2000) and Liu et al. (2019). The overprediction of the peak value is consistent with the

shortened Lr/D shown by these two models, as for AFT prediction.

Predictions for the variance of streamwise and cross-stream velocity fluctuations at three

different positions x/D = 1, x/D = 3 and x/D = 7, are given in Figure 7.4 and

Figure 7.5, respectively. As for the Reynolds stress description, a variety of behaviours

can be observed from predictions, although the tendencies are generally sound in terms

of the description of the two prominent peaks in the near-wake of u′u′ and the main

peak for v′v′. These two different behaviours are consistent with those observed at

ReD = 3900.

As observed from the Reynolds stress predictions, differences between AFT and AFT-

RSM are visible too. Although the trends are similar regarding the two peaks that

are related to the shedding of the shear layers, the maximum peaks are around 45%

different, with AFT maximum being u′u′max = 0.2 and AFT-RSM being u′u′max = 0.11.
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Further away from the rear part of the cylinder the strength of the two peaks is reduced,

reducing the differences as well.

The former behaviour is also observed for predictions of v′v′ using AFT and AFT-RSM,

where the maximum difference is found in the near-wake x/D = 1, and beyond that

point, both models converge to an approximately similar solution. This is consistent with

the behaviour observed at ReD = 3900, where the difference between models diminishes

as the analysis moves downstream the wake.

The differences observed in AFT-DDES predictions when compared to AFT and AFT-

RSM are evident, however not as pronounced as the ones we observed with Menter

models, the γ-model and the γ − Reθ model that generally overpredicts the values for

u′u′ and v′v′ as Figures 7.4-7.5 show.

Figure 7.4: Mean normalized variance of streamwise velocity fluctuations u′u′/U2
∞ at

x/D = 1, 3, 7 downstream the cylinder surface.

Menter models show the two peaks of u′u′ and the single peak for v′v′. However, when

compared to AFT, AFT-RSM and AFT-DDES (all AFT-based models) they overpredict

the maximum values for both distributions. This is also consistent with predictions of

Reynolds stress in Figure 7.3, where γ and γ−Reθ overpredict the anti-symmetric peaks

in the near-wake and beyond up to x/D = 7 predictions, as shown. Differences between

the two Menter models diminish as the analysis moves downstream within the wake.

Specifically, predictions of u′u′ show maximum differences of 40%, while v′v′ at x/D = 1

measures maximum differences of about 31%.

D: Instantaneous flow-field

In this Section D, a three-dimensional simulation using the URANS AFT base model

is presented along the AFT-DDES case. The grid utilised for the three-dimensional

AFT simulation is given in Table 7.1, with the same spanwise length. The main aim in
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Figure 7.5: Mean normalized variance cross-stream velocity fluctuations v′v′/U2
∞ at

x/D = 1, 3, 7 downstream the cylinder surface.

showing these structures is to demonstrate the difference in the instantaneous flow-field

structures predicted when averaging all the structures or modelling only the smallest

scales. Figure 7.6 and Figure 7.7 represent the vortical structures with Q = 200 1/s2 for

three-dimensional computations using AFT and AFT-DDES respectively.

From a visual perspective, the AFT structures are close to being approximately two-

dimensional, from the vicinity of the cylinder surface to the furthest position downstream

within the wake. On the other hand, the variety of structures resolved by the use of

AFT-DDES are identified in Figure 7.7 compared to the AFT prediction in Figure 7.6.

Specifically, the description of the shear-layer is superior to AFT, thus being able to

capture its transition to turbulent and therefore producing a better estimation of the

wake than pure transitional URANS methods.

As coherent structures are predicted by the AFT-DDES, AFT does not have the ca-

pability to provide any insight into the turbulent cascade. With the averaging of the

Navier-Stokes equations, only the mean turbulent structure is predicted as shown in

Figure 7.6. These observations, from a qualitative point of view, are consistent with

prior analyses where AFT-DDES improves results obtained using AFT or AFT-DDES.

7.1.3 Summary

As analysed, we have shown simulations using the transitional AFT, AFT-RSM and

AFT-DDES over circular cylinder flow at the sub-critical region. The base model AFT

has a superior performance to fully turbulent approach SST and the γ and γ − Reθ

transitional approaches of Langtry and Menter (2009) and Menter et al. (2015).
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Figure 7.6: Q criterion iso-surface representation of valueQ = 200 for 3D computation
using AFT.
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Figure 7.7: Q criterion iso-surface representation of valueQ = 200 for 3D computation
using AFT-DDES.

The capabilities of predicting a laminar boundary layer of the transitional turbulence

models improve the laminar separation position for two-dimensional predictions over

SST as shown in Figure 7.1(b). In fact, at this Reynolds number, AFT-RSM shows

better predictions than AFT overall which is attributed to the largest eddy separation

to the back of the cylinder surface. The three-dimensional AFT-DDES estimations show

to be superior to two-dimensional URANS transitional models, not only from a surface

perspective but evidently from a wake analysis perspective too. This is mainly due to the

resolved large scales by the LES mode away from the wall, while retaining transitional

capabilities in the wall. This is even more apparent in the sub-critical range as the
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transition occurs over the separated free shear layer, where the transitional models are

not fit for that specifically. Therefore, switching to LES mode in the far wall when

using AFT-DDES helps to determine this and consequently, a correct prediction of the

Lr/D is given. The instantaneous flow field for three-dimensional AFT and AFT-DDES

shows the superior description of the vortical structures by the AFT-DDES approach to

AFT, which is predicted to be essentially two-dimensional even with three-dimensional

configuration.

Hence, we have demonstrated that AFT, AFT-RSM and AFT-DDES models show better

results than existing predictions with Langtry and Menter (2009) and turbulent SST by

Menter (1994) which is novel as it has not been demonstrated before for flow past circular

cylinder. Furthermore, the improvements when using AFT-DDES are intrinsic to shear

layer prediction and turbulent structures within the wake, which have an impact on the

flow field topology affecting from the separation location to the recirculating length.

7.2 Critical - ReD = 3.5× 105

This Reynolds number is chosen as it is characteristic of the asymmetric flow in the

critical regime and simulations by Rodŕıguez et al. (2015) and Cheng et al. (2017) can

be used for comparison. At this ReD = 3.5 × 105, it is common to observe under a

low turbulence environment a single laminar separation bubble on one side, while the

opposite side resembles sub-critical behaviour with laminar separation as discussed in

Chapter 2.

This section discusses the results at ReD = 3.5×105 using the pressure and skin-friction

coefficient over the cylinder surface, wake velocity, turbulence intensities and instanta-

neous flow field. In this region, wake measurements are not available in the literature

regarding the wake velocity and turbulence intensities, therefore a novel insight is pro-

vided for the behaviour of AFT-based models along with SST and Menter transitional

models. All the mean flow quantities are given in Table 7.3 for all transitional models

and literature data used in the section.

7.2.1 Mesh and computation setup

With the increase of Reynolds number, the spanwise length is reduced to Lz = D as

detailed in Table 7.1. This is adopted as a consequence of the analyses by Cheng et al.

(2017) and Rodŕıguez et al. (2015), where it is discussed that the domain can be reduced

due to the presence of smaller turbulent eddies (with the increased Reynolds number)

around the separation region than in sub-critical regime.

The radial direction is distributed with Nr = 320 points as the angular direction. The

resolution is improved to DDES performed by Liu et al. (2019), with a resolution of
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∆θ ≈ 1.125◦. In the spanwise direction, the number of planes is Lz = 128 giving a

resolution of the same order as Liu et al. (2019) and Rodŕıguez et al. (2015), and a

reduced resolution compared to Cheng et al. (2017). Hence, these characteristics ensure

a similar resolution in all directions to prior DDES simulations by Liu et al. (2019) in

this regime.

7.2.2 Predictions of the flow-field

A: Surface pressure (Cp) and skin friction (Cf)

Results of Cp and Cf are shown in Figure 7.8(a) and Figure 7.8(b), respectively. As can

be seen, the transitional predictions by AFT and AFT-RSM are similar overall, although

differences are found in −Cp,min and −Cp,b. In general, both show a laminar separa-

tion bubble with a reattachment region. Ultimately, turbulent separation is predicted

by AFT and AFT-RSM after reattachment at approximately 94 − 93◦ respectively, re-

sembling a super-critical-like regime on both sides of the cylinder without any sign of

asymmetric flow. Prediction with AFT-DDES shows similar behaviour to full URANS

methods, where the flow is symmetric too. Conversely, γ − Reθ and γ resemble a sub-

critical-like flow field without any laminar separation bubble, which is attributed to the

transition correlations. This influences the nature of the separation which is laminar for

Menter models while AFT and AFT-RSM models predict a turbulent separation after

the small separation region predicted at approximately 90◦.

The main differences between AFT and AFT-RSM are observed for Cp and also for Cf

around 70◦. The difference in −Cp,min is observed, with AFT-RSM underestimating by

2% the value of AFT. These small differences are attributed to numerical differences,

as Cf prediction shows in Figure 7.8(b). Further downstream, at about 90◦, the Cp

predicted by the URANS transitional models by AFT and AFT-RSM show a small

disruption of the Cp, which is attributed to the appearance of a rather small laminar

separation bubble. The following paragraphs give details about the dimensions of the

laminar separation bubble when analysing the Cf profile. Pressure recovery to the back

face of the cylinder is almost coincident for both models, but the values at 180◦ differ by

approximately 15% which may be attributed to the position of the recirculation eddies.

Pressure is lower further away from the cylinder and higher close to the cylinder as

discussed in Chapter 6.

The Cp behaviour of γ − Reθ and γ show similar behaviour to AFT and AFT-RSM,

although the γ model underpredicts the −Cp,min by 10%, as well as the −Cp,b by 9%.

Furthermore, another difference is that there is no evidence of a laminar separation

bubble is observed from the Cp profile, as is confirmed by the Cf discussion later in this

section. Thus, resembling a sub-critical-like behaviour within the critical regime. The

AFT-based models show a closer prediction with the prediction of the laminar separation
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bubble, in this case on both sides of the cylinder. Thus, the separation is fully laminar

for Menter models while AFT-based models predict a turbulent separation which falls

in better agreement to the physical behaviour discussed by Bearman (1969).

The AFT-DDES behaviour is similar to AFT as shown in Figure 7.8(a), for Umin and

the pressure recovery to the −Cp,b. In this case, this behaviour is expected due to

the use of the AFT model in the near-wall region with the hybridisation of the model.

Although minimal changes can be observed especially on the skin friction prediction.

Furthermore, the interaction between transition and separation is not expected because

of the use of AFT in the RANS region. Consequently, a symmetric flow is predicted

although improvements in the wake are expected because of the LES mode away from

the wall.

LES simulations by Cheng et al. (2017) and Rodŕıguez et al. (2015), along with mea-

surements by Bursnall and Loftin (1951) are also given in Figure 7.8(a) for comparison.

Qualitatively, the main difference observed is the increment of −Cp,min and the position

of the minimum pressure that is displaced downstream, which leads to a delayed laminar

separation compared to URANS transitional models, AFT and AFT-RSM. In fact, this

is confirmed by the location for the three literature measurements regarding the −Cp,min

position, 83◦, 85◦ and 85◦ to Rodŕıguez et al. (2015), Bursnall and Loftin (1951) and

Cheng et al. (2017) respectively. Differences between LES simulations can be attributed

to grid characteristics. Underprediction by AFT and AFT-RSM is about 11%, 18% and

15% to Rodŕıguez et al. (2015), Cheng et al. (2017) and Bursnall and Loftin (1951), plus

2% to prior percentages for AFT-RSM, respectively.

The behaviour of the AFT-DDES is similar over the cylinder surface to that predicted

by the AFT model. Thus, the differences to LES data by Rodŕıguez et al. (2015) and

Cheng et al. (2017) are about the same order, as to the experimental data reported

by Bursnall and Loftin (1951), since predictions are practically similar, except for the

−Cp,b. However, we see an improvement compared to pure DDES reported by Liu et al.

(2019) on the −Cp,min prediction. Although the separation point is approximately 10◦

upstream than Liu et al. (2019), which is consistent with sub-critical behaviour.

Regarding Menter models (γ and γ − Reθ models), differences are similar to the AFT

and AFT-RSM, except for the −Cp,min using the γ model, as the reduction to literature

data is about 9− 10% more than AFT predictions for the three cases respectively.

On the upstream face, the tendencies are generally in good agreement, although there

are significant differences at about ϕ = 55◦, which coincides with the maximum value of

Cf . Predictions using AFT and AFT-RSM do not show significant differences as results

are almost coincident, however, an overprediction of about 6− 7% compared to γ−Reθ

and AFT-DDES respectively is observed. On the other hand, γ and SST predict a

larger overprediction by 4% to AFT-based models and γ−Reθ and AFT-DDES by 11%.
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(a)

(b)

Figure 7.8: (a) Cp distribution with Bursnall and Loftin (1951) experimental data at
ReD = 3.5× 105 and LES by Cheng et al. (2017) and Rodŕıguez et al. (2015) and (b)

Cf distribution with LES predictions by Cheng et al. (2017) at ReD = 3.5× 105.

Beyond that point, differences can be identified by analysing the laminar separation

position.

As Cf shows, AFT and AFT-RSM predict the laminar separation ϕl,s at about ϕ = 88.9◦

and ϕ = 88.6◦, respectively. This is consistent with the reduced −Cp,min and the ever

so slightly displacement of its location downstream compared to AFT-RSM, leading to

a delayed separation. The length of the laminar separation bubble is about ∆ϕb = 2◦.

This bubble is rather small and the reattachment region is rather small too, roughly
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2◦, followed by the separation of the flow at about ϕt,s = 94.5◦ and 93.4◦ by AFT and

AFT-RSM.

The γ and γ − Reθ models predict a Cf such as the one observed in the sub-critical

region at ReD = 1.5 × 105, as opposed to AFT-based models which capture a laminar

separation bubble expected in this regime. This is consistent with observations already

discussed in the Cp profiles. The laminar separation is about ϕl,s = 92.5◦, which is

∆ϕ = 3.5 − 4◦ off from AFT and AFT-RSM. It is believed to be attributed to the

empirical correlations used in the model, that does not consider any pressure gradient

history of the boundary layer.

The AFT-DDES model, in this case, predicts a small bubble within this regime. In fact,

a sub-cricital behaviour is resembled by the AFT-DDES with a laminar separation at

about ϕl,s = 89.5◦. Discrepancies might be attributed to numerical differences as also

discussed by Cheng et al. (2017) and Rodŕıguez et al. (2015), where in some scenarios

they found the bubble and in others they do not. Once the flow separates from the sur-

face, there is no reattachment downstream of the cylinder surface, which is in agreement

with Cheng et al. (2017) predictions and Liu et al. (2019) using DDES.

The Cf predicted by Cheng et al. (2017) reported the laminar separation at approx-

imately ϕl,s = 106◦. Separation predicted by URANS AFT and AFT-RSM show an

earlier transition and consequently an earlier reattachment, although as discussed it

may be understood as the sub-critical regime. The laminar separation is still resembling

the position of the sub-critical regime at about 90◦. The turbulent separation is differ-

ent as AFT and AFT-RSM separate at about ϕt,s = 94.5◦ and 93.4◦ respectively, while

Cheng et al. (2017) predict a turbulent separation at approximately ϕt,s = 150◦.

As discussed when analysing the Cp profiles by γ and γ − Reθ, the suggested sub-

critical behaviour is consistent with the prediction of Cf . In this case, Figure 7.8(b)

shows an offset to literature data by Cheng et al. (2017) of approximately 16◦. This

difference is consistent with the incapability of the model to predict any interaction

between separation and transition in the cylinder surface.

B: Wake velocity

Figure 7.9 gives a novel insight into the streamwise velocity behaviour throughout the

centerline of the wake for transitional AFT, AFT-RSM and AFT-DDES along with fully

turbulent SST and transitional models by Langtry and Menter (2009) and Menter et al.

(2015).

The AFT and AFT-RSM models predict a similar behaviour for the streamwise velocity

within the wake as shown in Figure 7.9, with a difference in the −Umin of approximately

15%. The gradual velocity recovery is similar too and reaching a value of about U/U∞ =

0.8 at x/D = 5. Here, it can be seen how the Lr/D = 0.6 predicted by AFT is stretched

when compared to the sub-critical region, as expected with the turbulent eddies moving
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downstream the wake and rolling up (see Chapter 2). On the other hand, as discussed,

the AFT-RSM (Lr/D = 0.59) behaviour in this regime can be considered sub-critical

still, since the change in the topology and length of the recirculating length is almost

similar to its sub-critical behaviour.

When compared to 2D simulations using Langtry and Menter (2009) and Menter et al.

(2015), it can be seen how Lr/D = 0.73 is stretched from the sub-critical regime with the

increased Reynolds number. However, these two models are still showing a very rapid

recovery of velocity downstream the cylinder surface than AFT-based models including

AFT-DDES, which switches to LES away from the wall.

The AFT-DDES model predicts a similar performance to Liu et al. (2019) with a recir-

culating length of approximately Lr/D ≈ 1.1, which is stretched compared to the rest of

the transitional models using two-dimensional simulations, although differences are not

extremely large. Minimum velocity Umin ≈ −0.3519 which is similar to Menter models

in this case. The gradual recovery of the velocity is observed as expected.

Liu et al. (2019) predict a Lr/D ≈ 1.13, with a minimum velocity of Umin = −0.3519

and an expected gradual velocity recovery until its freestream velocity is away from the

aft-part of the cylinder surface. AFT and AFT-RSM models show a shortened Lr/D

of approximately 50%. This may find an explanation due to the early transition of

the shear layer. The γ and γ − Reθ models, in this case, show a shortened Lr/D of

approximately 44%, which may be attributed as well to an early transition of the shear

layer resembling a sub-critical-like behaviour.

The fully turbulent approach is still showing a reduced recirculation length, which is

comparable to the sub-critical Lr/D result. It is also expected that as Reynolds number

is increased, the turbulent approach is able to better predict the flow field, as we approach

a fully turbulent regime. Nonetheless, this is not the case for the critical regime, as

transition still plays an important role as discussed in Chapter 2.

C: Turbulence Intensities

The behaviour of u′u′ at the critical regime for AFT, AFT-RSM and AFT-DDES is

given in Figure 7.10. The analysis of the stresses behaviour using AFT-based models for

circular cylinder flow is novel to the authors’ knowledge. Furthermore, SST and Langtry

and Menter (2009) and Menter et al. (2015) are also given for comparison. With the

stretching of the wake, the formation length is consequently stretched too, as identified

in Figure 7.10 with the location of the peaks compared to the sub-critical regime.

As discussed within ReD = 3900 section, the peak of u′u′ is related to the shedding

process, which gives information about the formation length. In Figure 7.10, it can be

seen the overprediction of the variance for the streamwise velocity fluctuations using the

fully turbulent SST model, where the wake is completely turbulent once it separates.

On the other hand, one can see the reduction in the peak of u′u′ when using transitional
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Figure 7.9: Mean normalized streamwise velocity U/U∞ at centerline downstream
the cylinder surface.

models to 1/3 of the fully turbulent prediction and 1/2 of the AFT-DDES prediction to

URANS transitional models as given in Table 7.3.

The peak location is in agreement for AFT-RSM, γ and γ − Reθ models, while only

γ − Reθ differs by about 13% regarding the maximum value of u′u′. Furthermore, it

is consistently slightly larger than Lr/D discussed in previous Section B. On the other

hand, the position of the peak is displaced downstream when using AFT model at the

location of x/D = 1.22 and a peak value of u′u′max = 0.01643.

With the stretched Lr/D predicted by the AFT-DDES, that shows agreement with

DDES within the wake of Liu et al. (2019), the peak of u′u′/U2
∞ = 0.04392 is predicted

downstream compared to the rest of transitional models at x/D ≈ 1.63. Furthermore,

the peak of the variance of the streamwise velocity fluctuations is shown to be under-

predicted by the URANS transitional models, which is possibly linked to the width of

the wake, as it is discussed by Rodriguez and Lehmkuhl (2021).

Predictions within the wake for u′u′ and v′v′ are given in Figures 7.11-7.12 using AFT-

based transitional models and Menter models, γ and γ − Reθ at x/D = 1, x/D = 3

and x/D = 7. Overall, the two peaks for the streamwise fluctuations and the main

peak for the cross-wise fluctuations are predicted by all the models. Consistent with to

prior analyses, the two peaks reduce their strength as the flow-field moves downstream

as happens to the primary peak of v′v′.

Results with AFT and AFT-RSM show similarity in the predictions for both u′u′. Mild

differences in the near-wake u′u′ peaks are observed of about 6%, reducing this to 1%

downstream the wake at location x/D = 7. The two large values of the peaks are
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Figure 7.10: Mean normalized variance of streamwise velocity fluctuations u′u′/U2
∞

at centerline downstream the cylinder surface.

attributed to the separation of the shear layers, allowing larger structures to interact

and therefore produce stronger interactions.

On the other hand, when compared to AFT-DDES, both URANS transitional models

show an overprediction of the peaks around 40% − 46% in the near-wake. Further

downstream of the wake, at x/D = 7, the error is about 5%. Figure 7.11 shows how

the value of u′u′ over the centerline at x/D = 1 is larger than predictions given by AFT

and AFT-RSM, as shown in the analysis for streamwise velocity fluctuations over the

centerline of the wake in Figure 7.10.

Both Menter models, γ and γ − Reθ, show similarities in the behaviour predicted by

AFT and AFT-RSM for the prediction of u′u′. Two prominent peaks, which are related

to shear layers that diminish as the flow moves downstream, are overpredicted compared

to AFT-based models. At location x/D = 7, the differences to AFT and AFT-RSM are

readily visible with an overprediction of the two peaks. This overprediction also occurs

for v′v′ as it is discussed in the following paragraphs.

Similar to u′u′, the prediction by AFT and AFT-RSM is similar for v′v′, where small

differences of about 7.8% are found in the maximum peaks at each location, as shown in

Figure 7.12. As the flow moves downstream the wake, these differences in the predictions

diminish to approximately 1.5%.

For the AFT-DDES, it can be seen how the peak is smaller in the near-wake and becomes

agitated as the recirculation region forms, followed by another reduction of its value as

can be seen at location x/D = 7. It can be seen how the predictions by AFT and AFT-

RSM show stronger interaction between the cross-stream velocity fluctuations, as both

predictions close the formation length at approximately x/D = 1.09 − 1.2 respectively.
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Figure 7.11: Mean normalized variance of streamwise velocity fluctuations u′u′/U2
∞

at x/D = 1, 3, 7 downstream the cylinder surface.

For the AFT-DDES, the near-wake strength is shown to be reduced but increased at

location x/D = 3, as the formation length is closed at approximately x/D = 1.6.

Maximum differences between URANS AFT-based models and AFT-DDES are found

in the near-wake position, while the differences diminish downstream of the wake.

The description of v′v′ by γ and γ−Reθ is also shown in Figure 7.12. As can be seen, in

the near-wake at location x/D = 1, the estimation is in agreement with AFT and AFT-

RSM, however further downstream the maximum value is largely overpredicted. This

behaviour is not related to the closure of the formation length as it retains the strength

down to x/D = 7. It can be concluded here that there is an excessive production of

fluctuations in both Menter models, that is related to an overproduction of the eddy-

viscosity in the model.

D: Instantaneous flow-field

From an instantaneous point of view using AFT-DDES in Figure 7.13, it can be seen

how the length of the wake is elongated when compared to sub-critical regime, that is

discussed in Figure 7.2. In this case three-dimensional AFT simulation is not presented

as the main aim is to present two-dimensional simulations with URANS approaches.

Furthermore, it can be seen how the vortical structures have diminished in dimension.

As discussed, the spanwise dimension is reduced compared to the sub-critical regime,

from Lz = 3D to Lz = D.

The elongated wake is also shown qualitatively in the Q-criterion representation of a

similar Reynolds number (ReD = 3.8 × 105) by Rodŕıguez et al. (2015). However, in

their LES the asymmetric behaviour is captured with a single laminar separation bubble

being predicted by LES. Instantaneous information reported by Cheng et al. (2017) at
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Figure 7.12: Mean normalized variance of cross-stream velocity fluctuations v′v′/U2
∞

at x/D = 1, 3, 7 downstream the cylinder surface.

ReD = 3.5 × 105, also presents the appearance of a single laminar separation bubble

over the upper surface of the circular cylinder.

-0.5 0 0.5 1 1.5

U/U_0

Figure 7.13: Q criterion iso-surface representation of value Q = 300 for 3D compu-
tation using AFT-DDES.

7.2.3 Summary

In summary, the most significant findings are:
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Transitional models show improvements over fully turbulent models from a surface per-

spective and within the wake. Results using DDES transitional models show similar

results to Liu et al DES simulations over the cylinder surface and within the wake

compared to fully turbulent and full URANS transitional models.

Differences in transitional prediction between URANS AFT-based transitional models

and Menter models have been observed. Specifically, the AFT-based model predicts a

laminar separation bubble while Menter models, γ − Reθ and γ predict a sub-critical

behaviour over the cylinder surface.

The differences between the AFT and AFT-RSM models are not significant from on-

surface, wake velocity and turbulence intensities. As discussed both predict a laminar

separation bubble and their dimensions are similar too as given in Table 7.3. In addition,

the minimum pressure falls closer to experimental and numerical data from literature

than Menter models and the nature of the separation is turbulent. The improvement

compared to the fully turbulent model is clear not only from the analysis of Cp and

Cf over the surface, but also from a wake perspective where the recirculation length is

significantly short.

AFT-based models predict a laminar separation bubble which is in agreement with

LES simulations by Cheng et al. (2017) and Rodŕıguez et al. (2015). Nonetheless,

the flow field is still symmetric. On the other hand, the sub-critical-like behaviour

by Menter models shows no significant changes regarding surface features to ReD =

1.5× 105. Recirculating length predicted by URANS transitional models is consistently

underpredicted compared to literature data, as well as the variance of the streamwise

velocity fluctuations. AFT-DDES does not show any asymmetric flow but the wake

description is in good agreement with Liu et al. (2019) data.
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Table 7.3: Mean flow quantities at ReD = 3.5× 10 using transitional URANS and literature data.

Case Umin/U∞ −Cp,min −Cp,b Lr/D Lf/D u′u′/U2
∞ ϕl,s [deg.] ϕt,s [deg.] ϕBL [deg.]

AFT 0.2637 2.174 0.688 0.6 1.2 0.01643 88.9 94.5 2.4
AFT-RSM 0.3057 2.131 0.7952 0.59 1.09 0.0229 88.6 93.4 3
AFT-DDES 0.3048 2.046 0.6305 1.1 1.6 0.04392 89.5 - -

γ 0.3552 1.937 0.5969 0.73 1.097 0.02294 92.5 - -
γ −Reθ 0.3376 2.174 0.6671 0.73 1.09 0.0207 92.5 - -
SST 0.1991 2.307 0.9869 0.433 0.8667 0.06216 - 100 -

Literature Data

Liu et al. (2019) 0.3519 - - 1.138 - - - - -
Rodriguez et al. (2015) - 2.443 0.4693 - - - - - -
Cheng et al. (2017) - 2.658 0.1284 - - - 106 150 -

Bursnall and Loftin (1951) - 2.564 0.1989 - - - - - -
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7.3 Super-critical - ReD = 6.5− 8.5× 105

As discussed in Chapter 2, throughout this region the symmetry of the flow field is

recovered with the appearance of a second laminar separation bubble on the cylinder

surface. As previous results show, the transitional models play an important role in

estimating these two features on each side of the cylinder while the fully-turbulent ap-

proaches cannot. After the drag crisis, the recovery of the symmetry flow brings back

stable behaviour.

Before proceeding with the discussion of the results, note that Table 7.4 gathers all

the mean flow properties at ReD = 6.5 × 105 and ReD = 8.5 × 105 using transitional

models and also the relevant literature data analysed and discussed in the following

paragraphs. Note that AFT-DDES simulation is performed at ReD = 8.5 × 105, as

the super-critical regime is expected to be a quasi-steady regime. At ReD = 6.5 ×
105 full URANS transitional models are presented using a second-order upwind scheme

as identified in Table 7.1 for completing the analysis and confirming the quasi-steady

prediction throughout this regime, where as the AFT-DDES model is only applied to

8.5× 105 as the behaviour is expected to be similar at 6.5× 105.

7.3.1 Mesh and computation setup

The grid properties for ReD = 6.5− 8.5× 105 are given in Table 7.1. The two grids are

similar for the super-critical regime with an increased resolution compared to critical

regime grid characteristics. The spanwise length is maintained to Lz = D, which is the

length utilised by Cheng et al. (2017) in their simulations following the discussion from

the sub-critical regime. The number of points in the spanwise domain is Nz = 192,

which gives a resolution of approximately ∆z = 2.6 × 10−3 m which is similar to the

critical regime, in an analogy to Cheng et al. (2017) grid construction.

The radial and angular direction have 450 points, which is increased in a factor of
√
2

to critical regime radial and angular direction to ensure a sufficient resolution for the

super-critical prediction within the wake. As the resolution is increased to ∆θ = 0.8◦

from the critical regime where results are in good agreement with DDES by Liu et al.

(2019), it is considered to be sufficient for the description of the super-critical regime as

an analogy to the maintained resolution by Cheng et al. (2017) in their LES simulations

between ReD = 3.5× 105 and ReD = 8.5× 105.

7.3.2 Predictions of the flow-field

A: Surface pressure (Cp) and skin friction (Cf) A1: ReD = 6.5× 105
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The predictions using AFT and AFT-RSM for Cp is shown in Figure 7.14(a). Predic-

tions are similar between both models, although differences regarding the location and

the value of the −Cp,min are observed. In fact, the upstream location at 82◦ of the

−Cp,min by 1.5% compared to AFT, and its reduced value by 15.5% is consistent with

the earlier separation observed in the skin friction predictions given in Figure 7.14(b).

These differences are attributed to the different turbulence models used and therefore

the wake effect to the upstream flow field. Further downstream of the laminar separation

bubble, the pressure recovery becomes coincident at about 120◦ and the −Cp,b ≈ 0.5.

Local correlation-based models, γ−Reθ and γ by Langtry and Menter (2009) and Menter

et al. (2015), show similar behaviour to the AFT model in predicting Cp. However, the

γ-model does not show any plateau in the Cp profile that indicates a laminar separation

bubble, which is confirmed by the Cf in Figure 7.14(b). Beyond 120◦, the γ-model

resembles a similar sharp decrease on the Cp that resembles behaviour observed atReD =

3900, with an increased −Cp,b of twice the predicted value by the rest of transitional

models. This might be attributed to simplified correlations from γ-model.

Roshko (1961) experimental data at ReD = 6.5 × 105 and Spitzer (1965) at ReD =

7.5 × 105 are given in Figure 7.14(a) for comparison. As shown, predictions using the

transitional models over the upstream face agree well with the measurements. The

minimum pressure coefficient is shown to be similar to AFT, γ and γ−Reθ, while AFT-

RSM underpredicts its value due to the smallest LSB. The laminar separation bubble

is shown to be delayed by Roshko (1961) and Spitzer (1965) compared to transitional

predictions and therefore the −Cp,b underprediction of the current simulations, either

compared to Roshko (1961) or Spitzer (1965).

The laminar separation bubble can be observed in the Cf profiles, as crosses zero from

positive to negative values for AFT and AFT-RSM, at approximately ϕl,s = 95◦ and

ϕl,s = 92◦ respectively in Figure 7.14(a) and Figure 7.14(b), where any test data at

this Reynolds number is available within the literature. The laminar separation bubble

predicted by AFT is smaller than AFT-RSM, as the bubble length is ϕBL = 2◦ and

ϕBL = 3◦ respectively. Following the laminar separation bubble, the boundary layer

reattaches to the cylinder surface and develops a turbulent boundary layer until its

complete separation for both AFT and AFT-RSM transitional models. The turbulent

separation point is shown to be different for AFT and AFT-RSM as the turbulent

approach is recovered. This is also consistent with Cp behaviour after a small disturbance

of the profile indicating the LSB. The AFT transitional model predicts a turbulent

separation point at ϕt,s = 115◦, while the transitional AFT-RSM model predicts an

earlier turbulent separation point at approximately ϕt,s = 109◦.

At this Reynolds number, as shown in Figure 7.14(a) and Figure 7.14(b), the γ − Reθ

model predicts a similar length of the separation bubble to AFT-RSM, with a turbulent

separation around the same angular position. On the other hand, the γ model shows
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(a)

(b)

Figure 7.14: (a) Cp distribution and (b) Cf distribution with experimental data by
Roshko (1961) and Spitzer (1965) at ReD = 6.5− 7.5× 105 respectively along current
predictions with SST, AFT, AFT-RSM, AFT-DDES, Langtry and Menter (2009) and

Menter et al. (2015) model at ReD = 6.5× 105.

a closer prediction to the AFT model but without the appearance of the pure laminar

separation, as the Cf never crosses the Cf = 0 axis and the transition occurs without

any laminar separation at all. This shortcoming is also shown with the increased ReD

at 8.5× 105.

Rodŕıguez et al. (2015) reported the laminar separation bubble on their LES simulations

to be distributed at angles about ϕ ≈ 100◦ − 110◦, which is approximately ϕ = 5◦ − 7◦

different downstream from the current URANS predictions. The laminar separation



Chapter 7 Performance of AFT models at different Reynolds number regimes 133

bubble predicted by AFT is smaller than AFT-RSM, as the bubble length is ϕBL = 2◦

and ϕBL = 3◦ respectively, while Rodŕıguez et al. (2015) report a ϕBL ≈ 8◦. In both

cases, the separation point is moved upstream compared to literature data by Rodŕıguez

et al. (2015) and Cheng et al. (2017), which is reported approximately ϕt,s = 148◦

throughout the super-critical regime.

A2: ReD = 8.5× 105

With the increased Reynolds number, the behaviour of the flow field from a surface per-

spective is expected to be similar to ReD = 6.5×105. Figure 7.15(a) and Figure 7.15(b)

show the Cp and Cf predictions respectively.

Similarities in the predictions using transitional models are observed. In fact, all of

them are similar to the previous Reynolds number. The main difference is the peak of

Cf when the turbulent flow reattaches after the laminar separation bubble. As in prior

Reynolds, the laminar separation bubble is still rather small and the separation point

is still at approximately ϕl,s = 97 − 99◦. The length of the bubble is approximately

ϕBL = 2− 3◦. Turbulent separation is also shown to be similar to ReD = 6.5× 105 for

the AFT case, as ϕt,s ≈ 115◦ and AFT-RSM at ϕt,s = 109◦.

The γ−Reθ model still shows similar behaviour to AFT-RSM, while the γ-model predicts

a transition without any laminar separation bubble and a turbulent separation at about

the same position as AFT predicts. This shortcoming seems to be consistent for the

whole super-critical regime when using γ-model.

At this Reynolds number, the AFT-DDES prediction for Cp and Cf is shown. It is

shown how the behaviour is similar to the AFT model, which includes the prediction

of the laminar separation bubble over the cylinder surface. This is an approximation to

the capabilities of pure LES, rather than turbulent assumptions of the near wall region

when using standard DDES. In fact, it can be seen how the back pressure is closer to

Rodŕıguez et al. (2015) data although differences are still about ∆Cp,b ≈ 0.2.

The laminar separation bubble using AFT-DDES is located at ϕl,s = 95◦ with a length

of the bubble of ϕBL = 2◦. Experimental data by Achenbach (1968) does not report

a bubble, as any Cf = 0 is shown in Figure 7.15(b). On the other hand, Rodŕıguez

et al. (2015) and Cheng et al. (2017) report a laminar separation bubble ϕl,s ≈ 148◦,

with a length of approximately ϕBL ≈ 8◦. Differences might be attributed to the use of

correlations based on Falkner-Skan profiles over a flat plate, for the growth of the bound-

ary layer momentum-thickness and the growth of instabilities throughout the boundary

layer. Theses effects will be investigated in the last chapter of this thesis.

B: Wake velocity

In this section, the near wake is analysed using the streamwise velocity variation at

the centerline downstream of the cylinder surface at ReD = 8.5 × 105. The behaviour



134 Chapter 7 Performance of AFT models at different Reynolds number regimes

(a)

(b)

Figure 7.15: (a) Cf distribution with Achenbach (1968) and Shih et al. (1993) ex-
perimental data at ReD = 8.5× 105and (b) Cp distribution with experimental data by
Achenbach (1968) and LES by Rodŕıguez et al. (2015) along current predictions with
SST, AFT, AFT-RSM, AFT-DDES, Langtry and Menter (2009) and Menter et al.

(2015) model at ReD = 8.5× 105.

at ReD = 6.5 × 105 for completeness in Figure 7.16(a), to justify the almost constant

behaviour throughout the super-critical regime, as also discussed in the literature by

Rodriguez and Lehmkuhl (2021). Physical behaviour expected within the super-critical

regime from the critical regime is to reduce the length of the recirculating length Lr/D,

as analysis by Rodŕıguez et al. (2015) and Rodriguez and Lehmkuhl (2021) reported.

Predictions using AFT and AFT-RSM models at ReD = 6.5×105 and ReD = 8.5×105,

show a reduction to the critical values, respectively. Specifically, the prediction of AFT
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(a) ReD = 6.5× 105

(b) ReD = 8.5× 105

Figure 7.16: Mean normalized streamwise velocity (a) U/U∞ at ReD = 6.5×105 and
(b) U/U∞ at ReD = 8.5× 105 at centerline y/D = 0.

and AFT-RSM predict similar values, Lr/D = 0.45 and Lr/D = 44 respectively. The

gradual velocity recovery is similar in trend to the sub-critical and critical regimes, except

what was observed at ReD = 3900, where a wavy behaviour was observed away from

the cylinder surface. There are small differences regarding the −Umin where AFT and

AFT-RSM predict Umin = −0.2847 and Umin = −0.328 respectively. This difference is

similar at ReD = 6.5× 105, confirming the stable behaviour within super-critical regime

by AFT and AFT-RSM.

The predictions by γ −Reθ show a constant behaviour too regarding the wake velocity.

Nonetheless, the value of Lr/D = 0.425 is shortened compared to AFT-based transitional
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models, including literature data shown by Rodriguez and Lehmkuhl (2021). The γ

model shows a shortened recirculating length compared to γ − Reθ. The flow field

is different from a surface perspective and from a wake perspective too. In fact, the

recirculating length is similar to SST predictions, where flow is considered fully turbulent

from the inlet surface.

AFT-DDES shows a stretched Lr/D = 0.614 for both Reynolds numbers, which is about

26% longer than predictions using URANS. The velocity recovery to the freestream

value is similar beyond x/D = 0 to AFT and AFT-RSM. Nonetheless, results do show

similarities between the use of DDES and URANS transitional models.

LES prediction by Rodriguez and Lehmkuhl (2021) at ReD = 7.2 × 105 is given in

Figure 7.16(b), with an Lr/D = 0.57. It shows to be similar to transitional URANS

predictions using AFT, AFT-RSM and AFT-DDES. In Rodŕıguez et al. (2015) reports

Lr/D at 6.5 × 105, 7.2 × 105 and 8.5 × 105 to be Lr/D ≈ 0.56 − 0.59. Hence, the

agreement is good with the AFT-based models as values are within 25 − 27% of error.

AFT-DDES shows a similar prediction to Rodriguez and Lehmkuhl (2021) profile given

in Figure 7.16(b). The value predicted is about Lr/D = 0.614, which is approximately

6.3%, with a similar velocity recovery beyond x/D = 0.

C: Turbulence intensities

Analogous to the critical regime, the analysis of the variance of streamwise velocity

fluctuations is given to analyze the near wake behaviour at the super-critical regime.

Furthermore, it provides information about the formation length prediction for the dif-

ferent models.

The behaviour of u′u′ at the critical regime for AFT, AFT-RSM and AFT-DDES is

given in Figure 7.17(a) and Figure 7.17(b). This has not been reported before for AFT-

based models. Along AFT, AFT-RSM, and AFT-DDES, the fully turbulent SST and

transitional models by Langtry and Menter (2009) and Menter et al. (2015) are also

given for comparison. In general, the location of the peaks are upstream compared to

the sub-critical regime, and to critical values in Figure 7.10

With the increase of Reynolds number, the maximum values diminishes. This is consis-

tent for all models presented in Figure 7.17. The agreement between AFT and AFT-

RSM is consistent with the wake behaviour observed in Section B. The maximum peak

value falls close to LES data by Rodriguez and Lehmkuhl (2021) (u′u′max = 0.35) by an

average of 22% and 44% for the two Reynolds numbers given.

Menter models show a much stronger peak, which may be attributed to the shortened

recirculating length and wider wake, as the shear layers are more separated the inter-

action between each other in the formation zone is more intense. This is a consistent

discussion with Rodriguez and Lehmkuhl (2021). Overprediction is about four times
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(a) ReD = 6.5× 105

(b) ReD = 8.5× 105

Figure 7.17: Mean normalized variance of streamwise velocity fluctuations (a)
u′u′/U2

∞ at ReD = 6.5 × 105 and (b) u′u′/U2
∞ at ReD = 8.5 × 105 at centerline

y/D = 0.

the peak value of AFT and AFT-RSM, while predictions for both Menter models are

similar to fully turbulent SST model estimation.

The AFT-DDES shows consistent results regarding the peak estimation of the u′u′ with

its position being shifted downstream compared to Rodriguez and Lehmkuhl (2021)

estimations. This is consistent too with the recirculating length estimation shown in

Section B. In this case, demonstrates a similar performance to AFT and AFT-RSM

predictions.
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LES given by Rodriguez and Lehmkuhl (2021) only shows one peak at this regime,

different to the two peaks observed in ReD = 3900. As reported by Rodriguez and

Lehmkuhl (2021), the maximum value is about u′u′max/U
2
∞ = 0.035, and the behaviour

is similar to the previous analysis of the variance of the streamwise velocity fluctuations,

it goes from zero right at the back of the cylinder to its maximum value, and then

reduces its value further once the shedding vortex has been formed.

Predictions of u′u′ and v′v′ using AFT, AFT-RSM, AFT-DDES and Menter models, γ

and γ−Reθ at ReD = 8.5×105 are shown in Figure 7.18 and Figure 7.19, respectively for

three different positions (x/D = 1, x/D = 3 and x/D = 7). Estimations using AFT and

AFT-RSM are similar overall for u′u′. The main two peaks are predicted practically with

the same value of approximately u′u′max ≈ 0.04 and the value at x/D = 1 corresponds

to the values that can be observed in Figure 7.17(b).

The AFT-DDES is shown to predict a stronger peak for u′u′ at all three locations given

in Figure 7.18 and Figure 7.12. The maximum value of u′u′ = 0.013 is in agreement

with the value reported by Rodriguez and Lehmkuhl (2021). The strength is reduced

downstream the wake, in fact the agreement is fair with AFT and AFT-RSM at x/D = 3

and x/D = 7.

Menter models, γ and γ − Reθ, both show an overprediction of the peaks for both u′u′

and v′v′. Both Menter models show similarities in their predictions. The two peaks for

the streamwise velocity fluctuations are consistent with URANS AFT-based models and

AFT-DDES, and the single peak for the cross-wise velocity fluctuations.

Figure 7.18: Mean normalized variance of streamwise velocity fluctuations u′u′/U2
∞

at x/D = 1, 3, 7 downstream the cylinder surface.

A similar behaviour between AFT and AFT-RSM is shown in the prediction of v′v′. The

maximum peak diminishes as the flow moves downstream. This is the case as well for
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the AFT-DDES, where the peak is stronger at the near-wake location x/D = 1, followed

by a reduction at x/D = 3 and x/D = 7.

Differences between AFT-DDES and URANS AFT-based models are maximum at loca-

tion x/D = 1 by 68% while diminishing down to 5% at the furthest measured position

x/D = 7.

As a difference to URANS AFT-based models, the Menter models show large values for

the peaks of approximately 0.5 and 0.23 for γ and γ −Reθ respectively. This difference

diminishes to about 35% at location x/D = 7. Predictions using γ and γ − Reθ result

in a difference to URANS AFT-based model of 79% and 84% to AFT-DDES.

Figure 7.19: Mean normalized variance of cross-stream velocity fluctuations v′v′/U2
∞

at x/D = 1, 3, 7 downstream the cylinder surface.

D: Instantaneous flow-field

The use of hybrid transitional-DDES shows that in the near-wall region the flow can be

either laminar or turbulent depending on the transition conditions. A three-dimensional

AFT simulation is not presented in this regime. In this case, the appearance of the

two laminar separation bubbles is similar to the LES simulations close to the wall but

with less intensive near-wall grid requirements. Time-spanwise-averaged data shows

the prediction of two laminar separation bubbles over the cylinder surface in the skin-

friction profile in Figure 7.15(b). The laminar separation bubble is also present as a

small plateau in the Cp profile in Figure 7.15(a).

The vortical structures within the wake are shown in Figure 7.20, where lateral and

zenith points of view are shown. From both, it can be seen that the recirculating length

is shortened while the separation point is moved downstream. In fact, the laminar

separation bubble line can be observed clearly in Figure 7.20(b) along the spanwise
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Figure 7.20: (a) Qcriterion = 500 for AFT-DDES at ReD = 8.5 × 105 showing the
vortical structures within the wake and (b) zoom of theQcriterion = 500 close to cylinder

surface to show the laminar separation bubble line across the span.

length. Further downstream, the turbulent separation is observed with the formation of

three-dimensional vortical structures, at approximately ϕ = 120◦.
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Thus, the misprediction provided by the AFT is conserved within the near-wall region

with the hybrid formulation. However, if transition prediction is improved with the

use of refined transitional correlations as discussed in Chapter 8, the performance can

become a closer alternative to LES. In this case, with a less intensive requirement in the

near-wall region but retaining the LES performance away from the near-wall region.

7.3.3 Summary

This section demonstrates the superior performance of the AFT-based models, including

the AFT-DDES to fully turbulent approaches when describing the flow features for flow

past a circular cylinder at the super-critical regime. In addition, predictions by γ−Reθ

and γ models are introduced for comparison reasons.

It is evident from previous analysis that γ and SST cannot predict the laminar separation

bubble in any of the two Reynolds numbers within the super-critical regime. This is

considered to be attributed to the simplified correlations used in this model, which forces

the production significantly earlier than separation occurs and therefore no laminar

separation occurs, just on-surface transition. The original model proposed by Menter

et al. (2015), referred to as γ −Reθ, has shown a better performance than its modified

version. From a surface perspective, the performance is similar to AFT-RSM, while the

base AFT shows the best fit to experimental and LES data presented in this section.

Within the wake, the AFT-based models show improved predictions by γ − Reθ and

γ as discussed when analysing wake velocity and turbulence intensities in Sections B,

C. Menter models consistently predict a shortened recirculating length and formation

length, consequently bringing eddies closer to the back of the cylinder surface.

Regarding the AFT-DDES, it is shown that the performance is similar to AFT in the

near-wall predictions. However, it is important to comment on the capability of the

hybrid model to introduce sensitivity to explicit transition prediction, which improves

the physical description of the boundary layer over the cylinder surface to turbulent

DDES and provides a closer behaviour to pure LES. Within the wake (away from the

walls), with the recovery of the LES performance, the results show an improvement

when compared to URANS transitional models.

Hence, not only the use of AFT shows promising results regarding two-dimensional sim-

ulations and the capability of flow description but, three-dimensional AFT-DDES also

shows promising results for transitional prediction blended with LES. Accordingly, the

transitional correlations may need to be revisited as discrepancies have been observed

in the experiments by Achenbach (1968) and LES predictions by Cheng et al. (2017),

Rodŕıguez et al. (2015) and Rodriguez and Lehmkuhl (2021). However, URANS transi-

tional models show a clear improvement to fully turbulent SST predictions. The revision

of these transitional correlations are performed in Chapter 8, where the behaviour of the
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original correlations are compared to the behaviour given in laminar profiles predicted

by LES at two different Reynolds numbers.
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Table 7.4: Mean flow field characteristics at ReD = 6.5× 105 and ReD = 8.5× 105 for transitional URANS and literature data.

Case −Umin/U∞ −Cp,min −Cp,b Lr/D Lf/D u′u′/U2
∞ ϕl,s [deg.] ϕt,s [deg.] ϕBL [deg.]

ReD = 6.5× 105

AFT 0.2934 2.442 0.513 0.54 1.148 0.02608 99 115 2
AFT-RSM 0.3437 2.115 0.6471 0.5 1 0.01957 95 108.5 3

γ 0.2387 2.501 1.175 0.316 0.84 0.07963 - 119 -
γ −Reθ 0.221 2.297 0.513 0.428 0.7317 0.07692 95 109 4
SST 0.2504 2.297 0.9104 0.428 0.8417 0.08375 - 109 -

ReD = 8.5× 105

AFT 0.2847 2.561 0.6276 0.45 1.148 0.01728 99 115 2
AFT-RSM 0.3286 2.39 0.5791 0.44 1 0.02141 98 109 3
AFT-DDES 0.336 2.332 0.4138 0.614 1.14 0.051 95 115 2

γ 0.2234 2.537 1.052 0.31 0.84 0.072 - 120 -
γ −Reθ 0.2504 2.365 0.4828 0.425 0.735 0.072 97 113 3
SST 0.2568 2.338 0.9422 0.425 0.84 0.0796 - 112 -

Literature Data

Rodriguez et al. (2021) 0.2507 2.575 0.2131 0.575 1.094 0.035 100-110 148 8
Cheng et al. (2017) - - - - - - - 148 8
Achenbach (1968) - 2.806 0.4404 - - - - - -
Roshko (1961) - 2.399 0.1815 - - - - - -
Spitzer (1965) - 2.336 0.1817 - - - - - -
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7.4 Mean Flow quantities at different Reynolds numbers

7.4.1 Drag coefficient CD

As discussed in the introduction to this chapter, one of the main goals is to study the

Reynolds effect for flow over a circular cylinder when using transitional methods versus

fully-turbulent approaches. Predictions for typical Reynolds numbers over different flow

regimes are compared for transitional and fully turbulent models. Figure 7.21 shows the

CD variation with the increase of ReD up to ReD ≈ 107 with Tu = 0.4% and Tu = 4%

respectively. Note the lines presented in the following figures are a visual aid for the

reader to follow the behaviour of the transitional models. Experimental data by Roshko

(1961) and Schewe (1983), DES by Vaz et al. (2009) and LES by Rodŕıguez et al. (2015)

are presented along with the current computations.

The CD is predicted to remain almost constant up to ReD = 1.5× 105 for the URANS

transitional models. As Reynolds number is increased the sharp decrease in CD is

observed followed by an almost plateau region over the super-critical regime by AFT

and AFT-RSM. The γ-model and γ − Reθ predict a continuous reduction of CD at

ReD = 8.5 × 105. Beyond that, at ReD > 107, a continuous reduction in drag is still

being predicted by URANS transitional models, including γ and γ −Reθ.

It can be seen how the performance using URANS transitional models is superior to

fully turbulent SST prediction given in Figure 7.21, where the sensitivity to the critical

and super-critical regimes is almost negligible. Beyond ReD > 107, the fully turbulent

model recovers its performance, showing agreement with the literature data.

The CD predictions using AFT-DDES show a similar behaviour to URANS transitional

methods. Throughout the sub-critical the behaviour is almost constant, followed by a

sharp decrease within the critical region or drag crisis. With the continuous increase of

Reynolds number at ReD = 8.5× 105, the agreement is also good with URANS transi-

tional models except for γ −Reθ. The difference with fully turbulent predictions is also

readily visible in Figure 7.21. The sensitivity at the critical region is almost negligible,

and similarly with the increased Reynolds number throughout the super-critical regime.

Further predictions using AFT-DDES beyond ReD > 107 are not performed in this

thesis, but it can be considered future work to do.

The CD is shown to remain almost constant up to ReD = 1.5 × 105 for the URANS

transitional methods and the AFT-DDES models. This is consistent with prior DDES

and LES predictions in the literature. Furthermore, transitional URANS and AFT-

DDES agree with Zdravkovich (1997) observations regarding the “stabilization effect”

throughout the sub-critical regime.

With the increase of Reynolds number, the wake narrows down and the separation

point is displaced downstream stretching the recirculating length, inducing significant
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changes to CD results in a sharp decrease in CD estimations. Transitional URANS and

AFT-DDES demonstrate this sharp decrease in CD and stretching of the Lr/D. This

is consistent with Liu et al. (2019) DDES predictions, although this region is really

sensitive to any numerical perturbation as discussed by Rodŕıguez et al. (2015) and

Cheng et al. (2017). Conversely, the fully turbulent SST predicts a rather small change

in comparison to the rest of the models and overpredicts CD compared to literature data

and transitional URANS models, as shown in Figure 7.21(a).

Flow begins to recover its symmetric behaviour in the super-critical region, as CD,min

is reached. As Reynolds number increases, the flow field is relatively similar throughout

the super-critical regime. AFT and AFT-RSM retain the plateau behaviour (CD ≈ 0.4

and CD ≈ 0.3 respectively), with an overpredicted CD when compared to literature

data. Both Menter models, the γ − Reθ model and the γ-model still predicts a fall of

CD until approximately ReD = 8.5× 105, which is consistent with the drastic change of

Lr/D predicted by the two models within the super-critical regime. Langtry and Menter

(2009) and Menter et al. (2015) keep reducing their CD, while AFT and AFT-RSM keep

a constant behaviour. Overall, Menter (1993) do not show significant sensitivity as the

model demonstrates a moderate CD reduction (consistent with the moderate change of

Lr/D) until it reaches its fully-turbulent behaviour, where it recovers its performance.

7.4.2 Strouhal number St

The shedding frequency is presented in terms of the Strouhal number for the Reynolds

number spectra. The Strouhal number is computed from the lift coefficient fluctuations

using a fast Fourier transform.

Transitional URANS show a constant behaviour of the Strouhal number, which is ap-

proximately constant at about St ≈ 0.2 for the whole sub-critical range as shown in

Figure 7.22. This behaviour, is consistent with CD predictions and Lr/D, where in-

significant changes are observed. For the fully turbulent SST, the Strouhal number is

consistently overpredicted within the sub-critical regime, and in fact it is almost constant

throughout all circular cylinder regimes.

The constant behaviour of the Strouhal number is also predicted by AFT-DDES as

shown in Figure 7.22. In fact, transitional URANS and AFT-DDES are in agreement

overall throughout the sub-critical regime prediction for the Strouhal number. This is

consistent with experimental data reported by Schewe (1983) (St ≈ 0.2).

With the increase of the Reynolds number, within the critical regime, transitional

URANS show an increase in the Strouhal number, that is in agreement with literature

data by Liu et al. (2019) and Schewe (1983). Conversely, the fully turbulent prediction

does not show any significant change from its sub-critical behaviour, where the value

remains almost constant at approximately St ≈ 0.26. The AFT-DDES shows a similar



146 Chapter 7 Performance of AFT models at different Reynolds number regimes

10
4

10
6

0

0.5

1

1.5

2

(a) Tu = 0.4%

10
4

10
6

0

0.5

1

1.5

2

EXP - Rhosko (1961) - Tu = 4%

(b) Tu = 4%

Figure 7.21: (a) CD variation with Reynolds number using AFT, AFT-RSM and
AFT-DDEs along Menter (1993), Langtry and Menter (2009), Menter et al. (2015)
model predictions and literature data DES by Vaz et al. (2009), LES by Rodŕıguez
et al. (2015) and experimental data by Schewe (1983) with Tu = 0.4%, (b) CD variation
with Reynolds number using AFT, AFT-RSM and AFT-DDES along Menter (1993),
Langtry and Menter (2009), Menter et al. (2015) model predictions and experimental

data by Roshko (1961) with Tu = 4%.

behaviour to transitional URANS methods and the agreement is good with Rodŕıguez

et al. (2015), but over-predicting the values given by Schewe (1983) and Liu et al. (2019).

At the super-critical regime, the St predicted by transitional URANS rise from the

critical regime but shows an almost constant behaviour with values approximately St ≈
0.3 − 0.35. The behaviour of the St is opposite to CD. As commented above, the St
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Figure 7.22: (a) St variation with Reynolds number using AFT, AFT-RSM and AFT-
DDEs along Menter (1993), Langtry and Menter (2009), Menter et al. (2015) model
predictions and literature data DES by Vaz et al. (2009), LES by Rodŕıguez et al.
(2015) and experimental data by and Schewe (1983) with Tu = 0.4%, (b) St variation
with Reynolds number using AFT, AFT-RSM and AFT-DDES along Menter (1993),
Langtry and Menter (2009), Menter et al. (2015) model predictions and experimental

data by Schewe (1983) with Tu = 4%.

number predicted by the fully turbulent SST model, does not show a large different

behaviour from previous regimes (St = 0.27 − 0.29) as transitional URANS. Beyond

ReD > 107, the continuous rise of St by the transitional URANS is consistent with the

continuous reduction of the CD. The SST instead, shows a good agreement to literature

data as for CD beyond ReD > 107.



148 Chapter 7 Performance of AFT models at different Reynolds number regimes

Predictions using AFT-DDES at ReD = 8.5× 105 show a better agreement than transi-

tional URANS to literature data provided by Rodŕıguez et al. (2015) and Schewe (1983),

as the turbulent structures within the wake are predicted. Similarly to transitional

URANS, the AFT-DDES shows improvements against fully turbulent behaviour within

the super-critical regime. Further predictions using AFT-DDES beyond ReD > 107 are

not performed in this thesis, but it is considered as future work.

As discussed in the CD section, the constant behaviour of the St and the value predicted

by the transitional URANS methods is consistent with the literature data given in Fig-

ure 7.22. Furthermore, this behaviour is consistent with Zdravkovich (1997) observations

regarding the “stabilization effect” throughout the sub-critical regime.

With the interaction of separation and transition location as Reynolds increases to

ReD = 3.5 × 105, the turbulent eddies roll up further away from the cylinder surface

stretching the Lr/D and narrowing the wake. Thus, the shedding frequency increases as

it is predicted by the transitional URANS models and the AFT-DDES too. The wake

by the SST predictions remains almost unaltered and therefore the St predictions show

a similar value all over the Reynolds spectrum.

As the Reynolds keeps increasing, the formation of the second bubble stabilizes the

flow and the wake remains almost constant throughout the super-critical regime. This

behaviour is consistent with transitional URANS predictions and the AFT-DDES given

at ReD = 8.5×105. Nonetheless, the estimation is still underpredicted as the separation

of the turbulent boundary layer is not close to the results reported by literature data as

discussed in the super-critical section.

7.4.3 Minimum pressure (−Cp,min) and separation point ϕi,sep

Predictions of the minimum pressure and the separation point are discussed together

in this section and shown in Figure 7.23(a) and Figure 7.23(b) respectively for different

Reynolds numbers for flow past a circular cylinder.

In the sub-critical regime, the behaviour of the −Cp,min and separation point remains

almost constant, or the changes are not significantly large as can be seen in both Figures.

Transitional URANS tend to overpredict the minimum pressure value as well as the

separation point as analysed in Sub-critical section. The change observed in the fully

turbulent SST does not resemble an almost constant prediction of the minimum pressure

but the turbulent separation point remains at approximately ϕt,s = 100◦, overpredicting

transitional URANS values and literature results.

Predictions using AFT-DDES show a reduced−Cp,min compared to transitional URANS,

and consequently an earlier separation point as shown in Figure 7.23(b). However, the

behaviour is shown to remain almost constant although there is a bit of an increase
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regarding the minimum pressure from 1.2 to 1.4, but falls within the scatter data of the

DES predictions given by Liu et al. (2019) within the sub-critical regime as the magenta

triangle indicates.

Within the critical regime, transitional URANS show an increase of the −Cp,min, as well

as the angle of the separation point as shown in Figure 7.23(a) and Figure 7.23(b). This

trend persists in the super-critical regime. Predictions using AFT-DDES also predict

this behaviour, which is in fact in agreement with literature data like Achenbach (1968)

and Liu et al. (2019).

In the super-critical range, the behaviour remains almost constant with transitional

URANS predictions. A similar behaviour is observed by the fully turbulent SST although

this behaviour is already fully turbulent as changes in CD and St are not comparable to

those with the transitional approach.

Similarly to transitional approaches using URANS methods, the AFT-DDES shows a rise

in the minimum pressure prediction and a delay of the turbulent separation compared to

prior regimes. The rise is still underpredicted when compared to Rodŕıguez et al. (2015)

in the super-critical regime, which is mainly due to the early separation predicted by

the model.

Physically, the transitional URANS models and the AFT-DDES capture the constant

behaviour throughout the sub-critical and super-critical regime, where the flow field

does not change drastically with the increase of Reynolds number. The trend regard-

ing the early laminar separation and the delayed turbulent separation sub-critical and

super-critical respectively is physically sound although still underpredicted compared to

literature data.

7.4.4 Base pressure −Cp,b and recirculating length Lr/D

The base pressure and the recirculating length for the increased Reynolds number are

shown in Figure 7.24(a) and Figure 7.24(b), respectively. Overall, transitional AFT and

AFT-RSM show a decrease with the increase of ReD. In fact, the Lr/D correlates to

this with a decrease in the recirculating length for ReD > 1.5× 105.

Predictions by AFT-DDES also show sensitivity to different regimes for flow past a

circular cylinder. Throughout the sub-critical regime, for ReD < 1.5× 105, both −Cp,b

and Lr/D is shown to be almost constant. With the increased complexity of the flow

and the roll-up of the transition vortices downstream the wake, the wake is stretched as

expected to values of Lr/D = 1.1 within the critical regime, although over the surface

the flow still resembles sub-critical. −Cp,b falls and Lr/D shows a drastic increase up

to Lr/D = 1.1. With a further increase of Reynolds number, the flow enters the super-

critical regime, where the AFT-DDES is capable of producing the laminar separation



150 Chapter 7 Performance of AFT models at different Reynolds number regimes

(a)

(b)

Figure 7.23: (a) −Cp,min variation with Reynolds number using AFT, AFT-RSM
and AFT-DDEs along Menter (1993), Langtry and Menter (2009), Menter et al. (2015)
model predictions and literature LES by Rodŕıguez et al. (2015) and Cheng et al. (2017).
(b) ϕs variation with Reynolds number using AFT, AFT-RSM and AFT-DDEs along
Menter (1993), Langtry and Menter (2009), Menter et al. (2015) model predictions and

literature LES by Rodŕıguez et al. (2015) and Cheng et al. (2017).

bubble as a difference of turbulent DDES hybridizations. This prediction is closer to full

LES performance, where laminar boundary layers are solved. −Cp,b reduces at super-

critical, following the tendency given by Cheng et al. (2017) LES estimations. Similarly,

Lr/D is also reduced but overpredicting the LES estimations of Rodŕıguez et al. (2015).

In this case, the relation for transitional URANS predictions is easy to see, since the

reduction of −Cp,b is translated in a shortening of the Lr/D. On the other hand, the
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fully-turbulent approach does not show any significant relation as with an increase in

Reynolds number, the recirculating length is constant.

(a)

(b)

Figure 7.24: (a) −Cp,b variation with Reynolds number using AFT, AFT-RSM and
AFT-DDEs along Menter (1993), Langtry and Menter (2009), Menter et al. (2015)
model predictions and literature LES by Rodŕıguez et al. (2015) and Cheng et al. (2017)
and (b) Lr/D variation with Reynolds number using AFT, AFT-RSM and AFT-DDEs
along Menter (1993), Langtry and Menter (2009), Menter et al. (2015) model predictions

and literature LES by Rodŕıguez et al. (2015) and Liu et al. (2019)
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7.5 Summary

In this section, the superior performance achieved by the AFT and AFT-RSM has been

demonstrated compared to fully-turbulent approaches when transition occurs over the

cylinder surface. The key improvements are seen in the laminar boundary layer de-

scription throughout the upstream face, with its consequent transition at critical and

super-critical regime, where the laminar separation bubble is predicted too as summa-

rized in Sections 7.1.3, 7.2.3 and 7.3.3.

The physical description of the transition behaviour provided by AFT and AFT-RSM

also implies improvements in the prediction of CD and St, with the change of trend

within the critical region, followed by a closer description of the constant behaviour

for both properties in the super-critical regime. The sensitivity for the critical and

super-critical regimes are also resembled by the prediction of separation location and

recirculation length. The fully turbulent approach is not sensitive and almost predicts

a constant behaviour for all Reynolds numbers. This behaviour is also shown for the

prediction of the separation location and the recirculation length.

Overall, the CD and St increase and decrease respectively, when entering into the critical

regime when utilising AFT and AFT-RSM for circular cylinder flow predictions. The

separation point is delayed and the recirculation length is stretched as discussed by

Zdravkovich (1997) and confirmed by later numerical studies.

The hybrid AFT-DDES has shown a much better performance at the lower sub-critical

due to the capabilities of the LES mode to resolve the shear-layer transition when com-

pared to AFT, AFT-RSM and evidently to fully-turbulent approaches. The improve-

ment is also translated throughout the upper sub-critical, critical and super-critical

regimes as already summarized in Sections 7.1.3, 7.2.3 and 7.3.3.

As prior, not only the Cf and Cp predictions have improved but also the overall estima-

tions of the CD and St, along with the separation location and the recirculation length,

where the LES prediction demonstrates its superior performance to URANS.

The CD values at the super-critical are in better agreement with numerical studies as

well as the St ≈ 0.4, where the increase is in better agreement to Schewe (1983) and

LES simulations by Rodŕıguez et al. (2015). The separation point is shown to be delayed

as the Reynolds number is increased, following similar results to AFT and AFT-RSM.

Ultimately, as mentioned the activation of the LES mode away from the cylinder surface

provides an improved performance compared to URANS transitional methods. In fact,

in the critical region the stretching of the wake is evident up to Lr/D = 1.2 and once

the flow enters super-critical, the Lr/D is reduced to approximately 0.6.

Hence, the superior performance by AFT, AFT-RSM and AFT-DDES over fully-turbulent

approaches for flow past circular cylinder predictions at high-Reynolds numbers has been
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demonstrated. However, it is important to remind the limitations when using URANS

for the shear-layer transition at lower sub-critical and the wake prediction throughout

the Reynolds number spectrum compared to the AFT-DDES approach.





Chapter 8

Analysis of the Amplification

Factor Transport Correlations

As discussed in Chapter 6, it has been observed that the performance of transitional

models where correlations are built via linear stability theory as the AFT model by Coder

(2019), and transitional methods based on empirical data such as Langtry and Menter

(2009) and Menter et al. (2015), have improved performance when predicting transition

over the cylinder surface. This also results in improvements for overall parameters like

CD and St. This indicates that using empirical, or analytical results for a flat plate

geometry as the AFT does, has an impact on transition prediction when testing over a

complex flow-field like the one resulting in flow past a circular cylinder, where pressure

gradient and curvature are significant. The purpose of developing these new correlations

is to improve the transition predictions for flow past a circular cylinder. These new

correlations have been produced via data fitting which produces an exponential form as

it is presented in this Chapter.

Thus, the first part of this Chapter 8, is to use LES data for flow past a circular cylinder

by Rodŕıguez et al. (2015) to demonstrate the differences regarding the boundary layer

characteristics and rate of amplification factor to the original Falkner-Skan similarity

profiles over a flat-plate. The laminar characteristics of the boundary layer developing

over the cylinder surface are analysed for two Reynolds numbers, ReD = 1.5× 105 and

ReD = 5.3× 105 and the behaviour of the four relations presented in Section 8.1 will be

discussed and compared to current correlations of the AFT model.

With the results obtained by LES simulations, the second part of the chapter presents

new four correlations specific for circular cylinder flow in Section 8.2, that are tested at

different circular cylinder flow regimes to demonstrate, that further analysis can be used

for the improvement of the predictions using transitional URANS models like AFT-based

ones for flow past a circular cylinder.

155
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8.1 Initial correlations

The amplification factor transport equation is dominated by the production term (first

term on the right-hand side in Equation 3.2), which controls the rate of amplification

of the most unstable frequency in terms of Reθ. Drela and Giles (1987) proposed a

correlation for dn̄/dReθ based on laminar boundary layer similarity velocity profiles

together with the correlation for the critical Reynolds number Reθ,cr as shown later in

Equations 8.3 and 8.4 in terms of an integral shape factor H12.

Since the AFT model does not compute any integral boundary-layer property, H12 is

estimated via a local shape factor (HL). The local shape factor HL is proposed by

Menter et al. (2015), based on the evaluation of a local boundary layer shape factor or

pressure-gradient parameter, and is defined as

HL =
d2w
ν

dV

dy
, (8.1)

where dw is the wall distance and dV/dy denotes the gradient of the wall-normal veloc-

ity in the wall-normal direction. HL is computed everywhere but its maximum value

(approximately in the middle of the boundary layer) is the one used to establish the cor-

relations by Coder and Maughmer (2014). This HL estimation is related to the integral

shape factor H12 from Falkner-Skan similarity profiles as defined in Equation 8.2.

H12 = 0.376960 +

√︃
HL + 2.453432

0.653181
. (8.2)

d˜︁n
dReθ

= 0.028(H12 − 1)− 0.0345 exp

[︄
−

(︄
3.87

H12 − 1
− 2.52

)︄2]︄
(8.3)

log10(Reθ,cr) = 0.7 tanh

(︄
14

H12 − 1
− 9.24

)︄
+

(︄
2.492

(H12 − 1)0.43

)︄
+ 0.62 (8.4)

The Fgrowth function encapsulates the effects of the growing boundary layer over sep-

aration bubbles by the use of two empirical correlations proposed by Drela and Giles

(1987) based on solutions from the Falkner-Skan similarity profiles. Fcrit is a func-

tion that determines if the local boundary-layer is capable of containing instabilities,

switching on or off the production of ñ. Since the AFT model does not compute the

momentum thickness at any point, kv is needed to estimate the critical momentum-

thickness Reynolds number Coder (2019). The function kv describes the proportionality

of the two Reynolds numbers Rev and Reθ from Falkner-Skan similarity profiles. The

proportionality function is defined as
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kv = 0.4036H2
12 − 2.5394H12 + 4.3273 where Rev = kvReθ. (8.5)

The vorticity Reynolds number (Rev = Sd2w/(ν + νt)) can be computed at every single

point in the domain, so if it is larger than its critical value, the Fcrit function equals

1. Otherwise it will remain zero and no unstable modes will be amplified within the

boundary layer. The AFT model is coupled to a fully-turbulent approach, specifically

the Spalart-Allmaras turbulence model, via the intermittency (γ) transport equation.

Details of the model can be found in Coder (2019).

Even though correlations are estimated from the Falkner-Skan profiles, the physics of

the transition produced by the model in a complex flow field like the flow past a circular

cylinder is in reasonable agreement with experimental and LES data as discussed in

Chapter 6. In the sub-critical regime, the model improves the predictions when compared

to fully turbulent but the laminar separation onset requires a deeper analysis. However,

the transition onset is not properly estimated at critical, super-critical regimes as shown

in Chapter 6. Hence, the aim is to obtain correlations for dñ/dReθ and Reθ,cr for a

fixed shape factor by performing a stability analysis for velocity profiles from flow past

a circular cylinder from sub-critical to trans-critical regimes to improve the transition

prediction. Another thing to quantify is how the evolution of the proportionality between

the local shape factor HL and the integral shape factor H12 differs from the original one

proposed based on similarity profiles. Similar to the evolution of H12 in terms of HL,

the proportionality between Rev and Reθ for flow past a circular cylinder is analysed

and compared to the current correlations in Chapter 6.

Laminar velocity profiles to obtain the realistic behaviour for flow past circular cylinder

are extracted from Rodŕıguez et al. (2015) LES simulations at ReD = 1×105 and ReD =

5.3×105, where the Reynolds number is based on the cylinder diameter. Several velocity

profiles are extracted at different angles and post-processed accordingly to obtain the

relations between H12 = f(HL) and kv = f(H12). Furthermore, the temporal stability

analysis is computed for every velocity profile solving the Orr-Sommerfeld equation for

small disturbances. The 4th order differential equation is solved with a finite difference

method for a range of wavenumbers (α) and Re numbers to initially achieve the neutral

stability curves and consequently the critical Re for the flow around a circular cylinder

at different flow regimes. From the temporal stability analysis, the spatial amplification

factor (ñ) in terms of Reθ can be estimated using Gaster’s transformation proposed in

Gaster (1969). The dñ/dReθ profiles are approximated to slopes for a fixed shape factor

similar to what is proposed by Drela and Giles (1987) and Gleyzes et al. (1985).



158 Chapter 8 Analysis of the Amplification Factor Transport Correlations

8.2 Circular cylinder vs Falkner-Skan profiles

This section analyses the differences for the four correlations integrated into the AFT

model to determine whether and where the transition occurs, with post-processed LES

data at ReD = 1.5×105 and ReD = 5.3×105. The variations of the HL, H12 and kv are

determined by integrating the velocity profiles, while Reθ,cr and dñ/dReθ are estimated

via linear stability analysis, similarly to Drela and Giles (1987), but for the LES velocity

profiles of flow over a circular cylinder by Rodŕıguez et al. (2015).

The LES simulations were performed by a group of researchers led by Dr Ivette Ro-

driguez at the Barcelona Supercomuting Center (BSC) Rodŕıguez et al. (2015)-Rodriguez

and Lehmkuhl (2021). Simulations at Reynolds number of 1 × 105 and 5.3 × 105 were

provided, where the Reynolds number is defined in terms of the free-stream veloc-

ity and the cylinder diameter. The dimensions of the computational domain being

of x = [−16D, 16D]; y = [−10D, 10D] for the stream- and cross-stream directions,

whereas the span-wise direction z = [0, 0.5πD] is considered. The resultant blockage

ratio between the size of the computational domain in the cross-stream direction and

the cylinder diameter is 5%.

The velocity was set to uniform at the inflow (u, v, w) = (1, 0, 0), symmetry conditions

at the top and bottom boundaries of the domain, while at the outlet a pressure-based

condition is used. On the cylinder surface, no-slip conditions are applied. As for the

span-wise direction, periodic boundary conditions are prescribed.

To capture the complexities of the physical phenomenon in the zone close to the cylin-

der; i.e. delayed separation, transition to turbulence upon separation, reattachment,

and further turbulent separation, amongst others; the boundary layer should be well-

resolved. Control volumes are clustered towards the cylinder wall and prism layers are

constructed so as the non-dimensional wall distance is kept below y+ < 2.

8.2.1 Relation between the integral shape factor (H12) and local shape

factor (HL)

To determine the critical Reynolds number (when the flow is unstable and is able to

develop instabilities within the boundary layer), it is necessary to know the state of the

boundary layer at any given point in the domain. For that, as described in Section 2.3,

it is common to use the momentum-thickness θ and integral shape factor H12, to provide

information about the state of the boundary layer and the surrounding conditions.

Hence, the problem is how to estimate integral parameters of the boundary layer such

as θ and H12, without having to integrate through the wall-normal direction the bound-

ary layer in a massively parallelized environment like current CFD frameworks. As a
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workaround, the estimation of the integral shape factor H12 is based on a local esti-

mation of the same, so-called local shape factor by Coder (2017). Then, a relation is

established between both factors that allow H12 to be locally computed and to be used

as the pivotal function of the rest of the correlations, as described in Section 8.1.

The definition of the local shape factor, given in Equation 8.1, is inherited from the

proposal of Menter et al. (2015). The main goal behind this formulation was to simplify

the complexity of the empirical correlations constructed in Langtry and Menter (2009) to

determine the local pressure gradient. Menter et al. (2015) proposed this simplification

by assuming the following for a flat plate:

λθ =
ρθ2

µ

dU

ds
= −ρθ2

µ

dV

dy
(8.6)

where V and y are wall-normal velocity and coordinate respectively, that can be esti-

mated for general geometries as

dV

dy
≡ ∇(−→n ·

−→
V ) · −→n . (8.7)

From Equation 8.6, it can be seen that θ is replaced by the wall-distance dw. This was

assumed by Menter et al. (2015) because the activation of γ-model occurs at approxi-

mately the middle of the boundary layer, and at that location, the scaling of θ can be

assumed as half of the boundary layer thickness and therefore dw = δ/2 ∼ θ. At that

point is where a maximum of the local shape factor is present, therefore a monotonic

correlation can be established. However, this is not true for the boundary layer devel-

oping over a circular cylinder, where the values of θ are approximately θ ∼ δ/3− δ/4 for

the boundary layer profiles developing over the cylinder surface. Therefore, assuming

a similar pressure gradient condition estimated by dV/dy, the resultant HL is overpre-

dicted compared to the same scenario for flow over a circular cylinder. Consequently, a

larger HL predicts a larger H12 when employing the current correlations for the AFT

model than the integral shape factor from circular cylinder profiles.

The local and integral shape factors are calculated from velocity profiles of flow over

a circular cylinder, as shown in Figure 8.1(a) for ReD = 1 × 105 and 5.3 × 105, along

with the original correlation proposed by Coder (2019). It can be seen that the results

computed from cylinder LES data in the literature show a less pronounced growth of the

H12. This is due to the acceleration region in the upstream face of the circular cylinder,

which delays the growth of the boundary layer. The agreement with the original AFT is

similar to the original correlation at the very early stages of the boundary layer growth.

However, as the boundary layer grows over the surface, the correlation is not followed

by any of the two sets of LES data as the average behaviour is shown in Figure 8.1(b).
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(a) (b)

Figure 8.1: (a) The behaviour of H12 in terms of HL for LES predictions at ReD =
1× 105 and 5.3× 105 and (b) the averaged correlation from two Reynolds numbers.

Hence, the aim here is to transform the correlation line given in Figure 8.2 into an

equation that can be introduced within the AFT transitional framework to predict a

fixed H12 in terms of HL for the development of the boundary layer for flow past a

circular cylinder. Due to the scarce number of LES simulations, we opted to use an

average of the results for the two Reynolds numbers, so that mainly the tendency is

retained given the difference observed in the Falkner-Skan development of the H12 in

terms of HL. This way, the new relation between the integral shape factor and the local

shape factor that substitutes Equation 8.2 reads as

H12 = 0.1663H0.3793
L + 2.406 (8.8)

8.2.2 Relation between Reθ and ReV via proportionality function kv

With the estimation of the relation between H12 and HL, the information on the shape-

factor is readily available at any given grid point within the computational domain.

However, either the displacement thickness or momentum thickness is necessary to deter-

mine whether the flow can contain and develop instabilities. The workaround proposed

by Coder and Maughmer (2014) is to find a correlation between the vorticity Reynolds

number ReV and the momentum thickness Reynolds number Reθ. The choice of the

vorticity Reynolds number is because it can be computed at any given point within the

flow field and has a maximum at approximately y ∼ δ/2. The maximum value is taken

as the ReV value, which grows monotonically with H12. On the other hand, Reθ is

defined as Reθ = θU/ν for any given velocity profile. Thus, the proportionality function

kv can be found as kv = Rev/Reθ, as given in Equation 8.5.

The original correlation from Equation 8.5 is presented in Figure 8.2(a) along with up-

dated correlations from LES data of circular cylinder profiles. As shown in Figure 8.2(a),
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(a) (b)

Figure 8.2: (a) The behaviour of kv in terms of H12 for LES predictions at ReD =
1×105 and 5.3×105 and (b) the averaged correlation from the two Reynolds numbers.

the kv predicted by the correlation is smaller than the computed ratio from the circu-

lar cylinder velocity profiles. The ratio differs due to the growth of the boundary layer,

where the boundary layer property θ is over-predicted when compared to current bound-

ary layer characteristics. Hence, for the velocity profiles around the circular cylinder,

the momentum thickness is smaller than the one predicted by the correlations due to

the definition of HL. Therefore increasing the ratio kv. This new tendency is estimated

in the same way as Equation 8.8 and reads as

kv = 0.1048H3.055
12 + 0.9875. (8.9)

Equation 8.9 represents an average of behaviour for the proportionality function kv =

Rev/Reθ between ReD = 1× 105 and 5.3× 105, which will replace Equation 8.5 in the

original AFT that is represented in Figure 8.2(b).

8.2.3 Function for the critical Reynolds number Recr

The kv proportionality function estimates θ in terms of the Reynolds number via Rev at

any given point, thus allowing to compare to the critical momentum-thickness expressed

as a Reynolds number to determine whether instabilities can be developed. To determine

the critical value of the Reynolds number in terms of θ, the Orr-Sommerfeld equation for

small disturbances is solved iteratively for a given laminar velocity profile extracted from

the LES simulations of flow over a circular cylinder by Rodŕıguez et al. (2015). Then,

the neutral curve is estimated (αi = 0) and the furthest point with neutral amplification

on the left side of the plane is taken as Reθ,cr.

Figure 8.3(a) shows the behaviour of the critical momentum thickness Reynolds number

as a function of the integral shape factor using Equation 8.4 along with the critical value
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achieved through the stability analysis for flow over a circular cylinder. For the profiles

developing on the upstream face with shape factors up to approximately 2.5 to 2.6,

the critical Reynolds number is predicted to be delayed when compared to the values

predicted by the correlations. On the other hand, as the velocity profiles start to exhibit

an inflection point, the critical Reynolds number is reduced.

(a) (b)

Figure 8.3: (a) The behaviour of Reθ,cr in terms of H12 for LES predictions at
ReD = 1 × 105 and 5.3 × 105 and (b) the averaged correlation from two Reynolds

numbers.

Following the same rationale as the two prior new correlations, Equation 8.10 uses the

average behaviour for the Reθ,cr that will replace Equation 8.4 in the modified AFT

model and it is represented in Figure 8.3(b).

Reθ,cr = 1.265× 106H−6.361
12 + 2.804 (8.10)

8.2.4 Function for the growth of amplification factor dn/dReθ

With the estimation of the Reθ,cr, the Fcrit function discerns whether the local Reθ is

larger than Reθ,cr. If that is the case, the model will start to transport instabilities

throughout the laminar boundary layer with the production of ñ in Equation 3.2. The

amplification factor is estimated along different dimensionless frequency lines within the

instability region and then the locus of the maximum amplified frequencies is taken to

construct the envelope curve.

Figure 8.4 shows the dñ/dReθ for four different shape factors calculated from LES data

of flow over a circular cylinder by Rodŕıguez et al. (2015). Over the first part of the

acceleration region, the rate of amplification is reduced when compared to the original

AFT correlation given in Equation 8.3. As soon as the flow gets closer to a stagnation

point, with the appearance of the inflection points in the velocity profiles, the rate is

shown to grow faster than predicted by the original AFT correlation. Nonetheless, it



Chapter 8 Analysis of the Amplification Factor Transport Correlations 163

can be seen in Figure 8.4 how the differences are not large with the increase of the

amplification factor.

Figure 8.4: The behaviour of dn/dReθ in terms of H12 for LES predictions at ReD =
1× 105 and 5.3× 105.

Ultimately, the growth rate of the amplification factor using the new results from LES

data by Rodŕıguez et al. (2015) for flow past a circular cylinder reads as

dñ/dReθ,cr = 1.039× 10−8H13.78
12 + 3.074× 10−3, (8.11)

where the rationale for using this single equation is to retain the averaged behaviour for

sub-critical and super-critical regimes due to the scarce set of LES simulations obtained.

8.3 Analysis of Correlations Impact

This section aims to analyse the effect of the new correlations for flow past a circular

cylinder at the sub-critical, critical and super-critical regimes. Results are compared with

original estimations, which have been discussed in detail in Chapter 7. Furthermore,

the limitations of the newer predictions are discussed and further work is suggested for

the improvement of such estimations.

8.3.1 Sub-critical regime, ReD = 1× 105

The sub-critical regime does not exhibit any transition over the cylinder surface in any of

the data available in the literature. Therefore, the impact of the updated relationships is

expected to be minimal. It is shown in Figure 8.5(a) how the impact on the prediction by

the modified AFT model is negligible since the laminar separation point is still delayed

until approximately ϕsep = 88− 90◦. As shown as well with ReD = 3900 in Chapter 7,

there is always a consistent delay in the laminar separation throughout the sub-critical



164 Chapter 8 Analysis of the Amplification Factor Transport Correlations

regime. This is also evident with the overprediction of the −Cp,min in Figure 8.5(b), due

to the large favourable pressure gradient region.

A interesting comparison is to run a laminar case at the same Reynolds number to

understand how the purely laminar flow behaves on the upstream face. Downstream

from that, the transition should occur within the shear layers but up to the separation

point, only the pressure gradient and the state of the boundary layer are key factors for

its separation. As shown in Figure 8.5(a), the laminar solution performs as expected a

separation at approximately ϕ = 82◦. This is in good agreement with Achenbach (1968)

measurements at ReD = 105. The laminar, the AFT with Ncrit = 9 and Ncrit = 15

show three different behaviours after the separation, which are due to the reattachment

of counter-rotating vortices within the wake. These vortices are also evident in the Cp

profile beyond 90◦ and the agreement by the use of Ncrit = 15 with −Cp,min measure-

ments by Cantwell and Coles (1983) is better than AFT, in fact, similar to AFT-DDES

shown in Chapter 7.

(a) (b)

Figure 8.5: (a) Cf predictions within the supercritical regime at ReD = 1.5 × 105

with the original AFT and modified version along Achenbach (1968) measurements
ReD = 1.5 × 105 and (b) Cp with LES data by Kim (2006) and measurements by

Cantwell and Coles (1983)

.

From observation of the Cf and Cp profiles predicted by the AFT, it may seem that

there is an energization of the boundary layer at the vicinity of separation thus it remains

attached longer than expected from measurements, and demonstrated by the laminar

solution. Figure 8.6(b) shows how the growth of intermittency is rapid when the flow

approaches the separation point. See in Figure 8.6(a) how intermittency reaches values of

approximately 0.2-0.3 at about the separation position, and then the separation occurs

right after that as averaged streamlines of mean velocity indicate. Thus, it may be

possible that the boundary layer is not completely laminar at all, delaying its separation.

In Figure 8.7, the prediction with Ncrit = 15 is shown. There, it can be seen how

intermittency starts growing a little bit further away than observed when usingNcrit = 9,



Chapter 8 Analysis of the Amplification Factor Transport Correlations 165

according to our boundary conditions. After the separation both show a rapid increase

in the n factor. Furthermore, it can be seen how similar the averaged streamlines for

the laminar solution and Ncrit = 15 cases are in Figures 8.8-8.7.

(a) (b)

Figure 8.6: (a) γ contour and (b) ñ for AFT with Ncrit = 9 with averaged streamlines.

(a) (b)

Figure 8.7: (a) γ contour and (b) ñ for AFT with Ncrit = 15 with averaged stream-
lines.

Hence, with the delay of transition seems that the separation is predicted where it is

expected theoretically. Thus, this problem requires further investigation especially since

the ñ grows very rapidly after the approximate position of separation and it can interfere

with the final solution as demonstrated for Ncrit = 9. A possibility could be to generate

a ramp function for gradual growth rather than a very steep increase, since when the

transition condition is delayed, the separation is not impacted.
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Figure 8.8: Velocity magnitude with averaged streamlines for laminar flow solution.

8.3.2 Critical regime, ReD = 3.5× 105

The complexity of this regime is still a challenge to solve with transitional URANS

models. The main problem in this regime is the intermittent appearance of one lam-

inar separation bubble due to the interaction of the attached boundary layer and the

separated shear layer. This occurrence is strongly dependent on initial conditions as dis-

cussed by Zdravkovich (1997) and presented with LES simulations by Rodŕıguez et al.

(2015) and Cheng et al. (2017).

As shown in Figure 8.10(a), results from the original and modified AFT models still

resemble a sub-critical-like behaviour on both sides of the cylinder. The separation

bubble is rather small again as shown in prediction in the Chapter 7. Thus, this region

can be considered a critical regime with two separation bubbles, as the CD continues

decreasing with the increased Reynolds number. The separation-transition interaction

expected within this region is crucial for the description of the flow physics. In this case,

when using URANS for the complete domain, the flow undergoes transition right after

separation due to the rapid increase of ñ after that.

Furthermore, it is necessary to further analyse a larger Reynolds number range within

that regime to completely understand how integral properties vary against original Am-

plification Factor Transport correlations. In this case, only two Reynolds numbers were

available outside of this regime.

8.3.3 Super-critical regime, ReD = 8.5× 105

With the increased Reynolds number, the flow field recovers its symmetry with the ap-

pearance of two stable laminar separation bubbles on each side of the circular cylinder in

the super-critical regime. In contrast to the sub-critical scenario, the flow-field enhances

its momentum exchange to undergo a transition in the form of a laminar separation
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(a) (b)

Figure 8.9: (a) Cf predictions within the critical regime at ReD = 3.5 × 105 with
the original AFT and modified version along Cheng et al. (2017) LES predictions at
ReD = 3.5 × 105 and (b) Cp with LES data by Rodŕıguez et al. (2015), Cheng et al.

(2017) and measurements by Bursnall and Loftin (1951) measurements

.

bubble and reattach back onto the cylinder surface. Then, a fully-turbulent bound-

ary layer develops downstream until it cannot withstand the adverse pressure gradient.

Separation of the turbulent boundary layer is consistently separated at ϕt,sep ∼ 140◦ as

discussed by Cheng et al. (2017) and Rodŕıguez et al. (2015).

The main problem observed in the prior analysis of the super-critical regime was the

early separation onset and consequently the early turbulent reattachment and turbulent

separation point. Figure 8.10(b) shows the prediction for the original AFT model along

with the new modified version. It is shown how there is a small improvement in terms

of separation and reattachment points when using the modified correlations. The differ-

ence is approximately consistent in 2◦ when compared to the original behaviour. This

small displacement in the separation point is also translated to a small increment of the

−Cp,min.

Thus, even the small improvement, gives some promising indications that with further

experimental and high-fidelity simulations an improved prediction of transition can be

achieved with the AFT method. Furthermore, as demonstrated in Chapter 6, the blend-

ing of an LES method with the transitional AFT can provide similar predictions to pure

LES. Not only that, but the analysis of URANS AFT and AFT-RSM shows improve-

ments compared to fully-turbulent SST.

8.3.4 Summary

The incorporation of the new correlations has shown promising results in the super-

critical regime, while the analysis within the sub-critical regime has opened a new branch

of study regarding the effect of Ncrit over the laminar separation of the boundary layer.
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(a) (b)

Figure 8.10: (a) Cf predictions within the supercritical regime at ReD = 8.5 × 105

with the original AFT and modified version along Achenbach (1968) measurements
ReD = 8.5×105 and (b) Cp with LES data by Rodŕıguez et al. (2015) and measurements

by Achenbach (1968)

.

As shown in Section 8.3.1, there is an impact regarding the value of Ncrit used to

the location of the laminar separation position, which suggests an influence on a small

portion of the boundary layer, thus delaying the separation. With the increased value

of Ncrit, the position resembles the location predicted by a fully-laminar estimation.

Evidently as expected, in the critical region there is not any improvement at all, due to

the complexity of the flow field and the incapability of the URANS approaches to predict

the small turbulent structures that rule the separation-transition interaction discussed

in Chapter 2.

In the super-critical regime, the new correlations show a slight delay in the transition

position as shown in Figure 4.10(b). With the scarce LES simulations, the prediction is

improved by approximately 2◦ when compared to the original AFT correlations. This

behaviour suggests that the correction on the integral estimation of boundary layer

properties and the correction on the rate of amplification factor have an impact on the

transition prediction, and it is improved compared to Falkner-Skan similarity profiles.

Thus, setting a stone for further investigation and improvement of the correlations.

8.4 Conclusions

This chapter has presented the initial steps to improve the behaviour of the AFT model

for flow past a circular cylinder, from the results observed and discussed in Chapter 6.

Although improvements have shown only 2◦ in the super-critical regime, it is something

that shows promising behaviour with an increase of data from LES simulations or even

experimental measurements.
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It has been discussed how the boundary layer parameters are important for a proper esti-

mation of the momentum-thickness Reynolds number within the transitional framework

of the AFT model. The nature of the flow field shows a completely different tendency

specifically regarding the H12 vs HL, which is crucial for the estimation of the θ, the

critical Reynolds number and therefore the growth rate of the amplification factor. This

is a path to follow to improve current correlations, and it is starting to become a new

branch of research, as Yuxuan et al. (2022) produce a similar analysis for compressible

predictions at super-sonic speeds.

In this case, we have only been capable of analysing two Reynolds numbers, one at sub-

critical regime and another at the super-critical regime. More data is needed for a better

insight into the variation of each of the aforementioned parameters of the boundary layer,

and the linear stability analysis of the profiles for the estimation of the growth rate in

terms of the momentum-thickness. Therefore, not only a simple averaged behaviour

can be constructed but a Reynolds-sensitive relation could be explored, always trying

to make it Galilean invariant if possible.

Ultimately, not only LES simulations can help gather more knowledge about the be-

haviour of the laminar boundary layer for flow past a circular cylinder but also mea-

surements or experimental data. However, with the increase of Reynolds number the

boundary layer becomes so thin that measurements can become rather complicated with

additional uncertainties associated with such measurements.





Chapter 9

Conclusion and Future work

9.1 Contribution of the AFT

One of the major contributions of this thesis is the implementation of the original AFT

model proposed by Coder (2017) into OpenFOAMv1912, followed by its validation and

verification against the original implementation for finite element methods and com-

pared to other transitional methods, such as Langtry and Menter (2009) and Menter

et al. (2015). The original meaning of only positive values for the intermittency term

is recovered, as the implementation is performed in a solver using the finite volume

method. On the other hand, important routines such as the conditional comparison for

the Fcrit factor and the implementation of the transport equation have been presented.

As shown in Chapter 3, the results for zero pressure gradient flat-plate are satisfactory

and in line with other transitional estimations with different solvers.

A second contribution, in this case with its definition and implementation by the author

is the AFT-RSM model. The redefinition of the production, destruction and pressure

terms are discussed along with the improvements the Reynolds Stress Closure provides

compared to the Boussinesq-hypothesis along curved surfaces and sudden changes of

strain rate. The implementation of the model has been verified and validated in Chap-

ter 3 and then tested for different cases in the following chapters.

Furthermore, the redefined hybrid length scale d̃m proposed by Coder (2019) has been

discussed and its implementation method has also been provided. The implementation

has been verified as well in Chapter 6 and Chapter 7, where the results using the hybrid

approach show superior performance at lower sub-critical, upper sub-critical, critical

and super-critical regime to fully turbulent approaches and URANS AFT and AFT-

RSM methods.
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9.2 Analysis of AFT performance

In this thesis, the focus has been put as well into the analysis of the amplification factor

transport model for transitional prediction for flow past a circular cylinder from the

sub-critical to the super-critical regime using the OpenFOAM CFD package.

Before investigating transitional flow using AFT-based models, the original model pro-

posed by Coder and the extension using a Reynolds Stress Model closure has been im-

plemented into the OpenFOAM package successfully. Throughout the verification and

validation process, it has been concluded that a minimum grid resolution of y+ ≈ 1 and

Dx+ ≈ 25 is sufficient to produce a correct prediction of the transition onset for both

implementations. The transition prediction using AFT-RSM is consistently delayed with

the use of second-order schemes. Nonetheless, the physical behaviour of the implemen-

tation is correct with the variation of the Ncrit factor as discussed by measurements for

a natural transition case.

One of the novel analyses that is presented in this thesis, before the study of the flow

past a circular cylinder, is the laminar, transitional and turbulent prediction using two-

dimensional AFT and AFT-RSM for backward-facing step flow reported in experiments

by Armaly et al. (1983). An expansion ratio of H/h = 1.942 results in the appearance

of three different regions using the transitional AFT and AFT-RSM using a critical

factor of 9; laminar, transitional, and turbulent regime. The dimensionless primary

dimensionless length increases throughout the laminar regime up to 1200 < Re2h < 1300

using transitional AFT and AFT-RSM. This trend showed good agreement to DNS

simulations while proving superior performance to fully turbulent models for Reynolds

number larger than Re2h ≈ 700. At this Reynolds number, the fully turbulent model

starts shortening the primary recirculation length due to the short separation bubble as

it has enhanced momentum compared to the fully laminar separation predicted by the

AFT-based models.

Throughout the transitional regime, whose onset is located at about 1300 < Re2h < 1500

by the transitional AFT and AFT-RSM models. It is identified by the start of a decrease

in the primary recirculation length and the appearance of a third separation region.

This third separation bubble has not been reported by any other author using URANS

transitional approach, neither using fully turbulence models. Transitional prediction

using AFT and AFT-RSM show a reducing primary recirculation region, secondary and

tertiary recirculation region up to Re2h ≈ 4000, with an almost constant length down to

Re2h = 5500. The AFT-RSM in this region consistently predicts a longer recirculation

length for x1 and x2, with a slightly better agreement to the literature data. Conversely,

from Re2h ≈ 700, the fully turbulent approach predicts a similar dimension for all three

bubbles.
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One of the limitations of the AFT method is the recovery of fully turbulent behaviour,

as the onset of the fully turbulent region is not clear with the use of transitional models

as the secondary bubble does not disappear in the predictions. Thus, the onset of the

region can be considered where the main recirculation region and the secondary bubble

show a constant behaviour with the increase of Reynolds number.

The second novel analysis is the prediction using AFT, AFT-RSM and hybrid AFT-

DDES model for flow past a circular cylinder. The study comprises the sub-critical,

critical, and super-critical regimes, with a previous validation analysis with a well-

benchmarked case at ReD = 3900, where a limitation of the AFT model is observed

for the prediction of the shear-layer transition and the improved performance by the

AFT-DDES with the activation of the LES mode away from the cylinder is shown.

The use of transitional AFT and AFT-RSM with two-dimensional simulations has shown

improvements in the upper sub-critical regime compared to the URANS fully turbulent

approach like SST presented in this dissertation. Whereas in the lower sub-critical region

(ReD = 3900), the dependency of the shear-layer transition within the wake showed a

poor prediction with AFT and AFT-RSM. One of the main points is the difference

in the state of the separation. The transitional models are capable of producing a

laminar boundary layer while the SST model assumes a turbulent boundary layer until

its separation. The former assumption consequently forces the separation point to be

delayed to approximately 100 degrees. As opposed to the fully turbulent prediction, the

laminar boundary layer undergoes an earlier separation, with an improvement presented

by the AFT and AFT-RSM. The wake then is wider; consequently, the drag predictions

fall closer to the measurements available in the literature, with an increase of CD to 1.2.

The critical region has been concluded to be complex, where the appearance of a single

laminar separation bubble is predicted by neither the AFT, AFT-RSM nor the hybrid

AFT-DDES. In this case, the transitional models predict a wake that is stretched as

opposed to fully turbulent approaches, with a consequent reduction of the CD with

the entrance in the drag crisis. The interaction between the separation and transition

location has not been captured by any of the simulations, although the AFT and AFT-

RSM have shown the appearance of small separation regions with the same numerical

schemes and meshes, which has not been reported by any URANS transitional model to

the author’s best knowledge.

The super-critical region using transitional AFT and AFT-RSM showed the prediction

of two laminar separation bubbles on both sides of the cylinder surface, followed by a

turbulent separation. The appearance of the bubble with a simpler model than Menter’s

formulations has been demonstrated. Furthermore, the predictions within the wake are

in better agreement with the description of the recirculation length and peak locations
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regarding the variance of the streamwise and crossflow velocity fluctuations. Nonethe-

less, the performance achieved by all the transitional methods is superior to the use of

the fully turbulent SST method.

The AFT-DDES in the super-critical regime introduces the prediction of two laminar

separation bubbles in the near-wall surface alleviating the grid requirements imposed

by LES simulations as the ones presented in the literature. Furthermore, the results

regarding the recirculation length are improved to pure two-dimensional simulations

with URANS methods, and therefore show promising results for further investigation.

Finally, the differences between the Falkner Skan correlations and the ones achieved

using LES data from sub-critical and super-critical regimes are presented and discussed.

In particular, the growth of the integral shape factor is based on the local shape factor

and the momentum thickness parameters. With the results, four new equations have

been derived and introduced into the AFT implementation in the OpenFOAM CFD

package for testing. The improvement has shown to be a 2◦ better prediction in the

location of the separation bubble and its transition using only two different Reynolds

numbers.

9.3 Future Work Suggestions

Currently, only two-dimensional simulations using the AFT and AFT-RSM have been

presented for backward-facing step flow as this geometry was not the primary focus of

this work. Thus, the three-dimensional flow prediction using the AFT, AFT-RSM and

the hybrid AFT-DDEs is suggested as the next phase of the analysis for transitional

prediction in the backward-facing step type of flow, with special emphasis on the growth

of the primary recirculation length compared to two-dimensional simulations and the

interaction with the secondary bubble in the laminar region; the interaction between the

three recirculation regions and their three-dimensional effects in the transitional regime;

and the definition of the fully turbulent regime with the transitional approaches.

In addition, the use of different expansion ratios that are already well-benchmarked

would be also useful to further understand the behaviour of the model, especially for

the separation bubbles prediction.

A similar suggestion is also considered for future work to do for the flow past a circular

cylinder with the use of the AFT, and AFT-RSM models. The main focus should be put

on the separation point of the sub-critical regime since the two-dimensional simulations

showed a consistently delayed position, with changes of Ncrit. In fact, in an analogy to

the term controlling the length of the transition used in Menter’s models, a term could

be utilised to control such impact on the separation location.
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The critical regime remains a complex region to test using URANS methods or DDES

approaches, thus it is complex to establish a future work suggestion in this region as in

this case LES should be used for a correct physical prediction. With the further increase

of the Reynolds number, the three-dimensional analysis would give an insight into the

behaviour of the separation bubble that characterises the super-critical region.

Ultimately, the need of gathering more experiments and LES simulations at different

high Reynolds regimes is pivotal for work on further extensions for circular cylinder

flow. As Chapter 8 demonstrated, the differences with Falkner-Skan velocity profiles

are significant, especially for the boundary layer characteristics like the integral shape

factor and the momentum thickness estimation. The modifications to the correlations

in Chapter 8 have shown improvements of approximately 2◦. More published data at

higher Reynolds numbers could lead to better improvements in the transition estimation

with better correlations.
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