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Bayesian parameter inference techniques require a choice of prior distribution, which can strongly
impact the statistical conclusions drawn. We discuss the construction of least-informative priors for
neutrinoless double beta decay searches. Such priors attempt to be objective by maximizing the information
gain from an experimental setup. In a parametrization using the lightest neutrino mass ml and an effective
Majorana phase parameter Φ, we construct such a prior using two different approaches and compare them
with the standard flat and logarithmic priors in ml.
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I. INTRODUCTION

Neutrinoless double beta (0νββ) decay is a hypothetical
process of crucial interest due to its sensitivity both to the
neutrino mass scale and to lepton-number violation. Direct
searches for the decay, alongside neutrino oscillation
studies and other probes of neutrino masses such as
cosmological bounds [1] and single-beta decay measure-
ments [2], are key to the improvement of our understanding
of neutrinos. While a measurement of the 0νββ decay rate
has not yet been made, upper bounds have been placed on
the effective 0νββ mass mββ, from which constraints on the
neutrino mass scale and Majorana phases may be inferred.
Lacking evidence to the contrary, early formulations of

the Standard Model (SM) took neutrinos to be massless.
However, data suggesting the occurrence of neutrino flavor
oscillations has accumulated since the 1960s, beginning
with the Homestake Experiment [3] and culminating with
the combined observation of oscillations for atmospheric
neutrinos by Super-Kamiokande (SK), for solar neutrinos
by the Sudbury Neutrino Observatory [4], and for reactor
antineutrinos by the KamLAND-Zen Experiment [5].
From this, it is clear that oscillations necessitate a nonzero
mixing angle as well as a nonzero mass difference; i.e., no
more than one neutrino mass may be zero. For a model
describing the three flavors νe, νμ, and ντ of neutrinos in
the SM, mixing between weak and mass eigenstates is
described by the Pontecorvo-Maki-Nakagawa-Sakata

(PMNS) matrix, and again nonzero mixing angles and
two nonzero mass eigenvalues are required, with the
additional possibility of CP violation.
The realization that at least two generations of neutrinos

are massive leads to natural questions: what is the mecha-
nism responsible for the neutrino masses, and how can all
three masses be measured? Oscillation itself lends evidence
to the latter question, as measurements have been made of
all PMNS matrix elements as well as mass-squared
differences Δm2

21 ∼ 7.4 × 10−5 eV2 and jΔm2
31j ∼ 2.5 ×

10−3 eV2 [6].1 The sign of Δm2
21 is known, due to solar

matter effects on oscillation [8], leading to two candidate
mass hierarchies: the normal ordering (NO)m1 < m2 < m3

and the inverse ordering (IO) m3 < m1 < m2. Throughout
this paper, we take these oscillation parameters to have their
best-fit values from NuFIT4.0 þ SK [9], for which uncorre-
lated errors are also accounted for in simulation.
Further information on neutrino parameters is provided

by cosmological observations, as massive neutrinos play
the unique role of both radiation during the early baryon
acoustic oscillation epoch and hot dark matter during later
formation of large-scale structure. With the reasonable
assumption of equal number densities for all flavors, the
sum of masses

P
mi is proportional to the total energy

density of neutrinos in nonrelativistic eras. As a result, this
quantity is observable in the redshift fluctuations of the
cosmic microwave background, which are controlled by
energy density at last scattering via the integrated Sachs-
Wolfe effect as well as in a suppression of structural matter
fluctuations due to freestreaming neutrinos. The latest fits
from Planck observatory data [1] place an upper boundP

mi < 0.12 eV at 95% confidence, and efforts in this
direction have great potential for further precision.
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1A more recent global fit of oscillation parameters, which does
not significantly impact on our results, may be found in Ref. [7].
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Our focus is on 0νββ decay, which is a hypothetical
nuclear transition 2n → 2pþ þ 2e− [10,11]. Total electron
number is violated by two units, and the process is therefore
not permitted in the SM with zero neutrino masses. It
instead proceeds if the SM Lagrangian is extended by a

Majorana mass term of the form − 1
2
mνCLνL. The decay

process is sensitive to Majorana neutrinos with an observ-
able effective mass,

mββ ¼
X3
i¼1

U2
eimi; ð1:1Þ

where PMNS matrix U includes Majorana phases that are
unobservable in oscillation experiments.
The focus of the present work is the development of

computational techniques for data-driven Bayesian infer-
ence on the 0νββ parameter space. Bayesian methodologies
such as Markov chain Monte Carlo (MCMC) require a
choice of prior distribution, which can strongly influence
derived bounds. While it is standard to apply flat priors
to bounded parameters such as Majorana phases, for
unbounded parameters such as neutrino masses, there is
less of a consensus. Recent Bayesian analyses have either
preferred log-flat priors for their scale invariance [12] or
have considered both flat and log-flat priors [13] in order to
demonstrate the strong dependence of quantities such as
discovery probability on the prior selection. In this paper,
we examine a class of least-informative priors (LIPs) and
apply them to the analysis of 0νββ decay. LIPs are
constructed by numerical maximization of the expected
Kullback-Leibler divergence between posterior and prior
distributions [14], which is taken to represent inferential
information gain and therefore to indicate a minimum
quantity of information contained in the prior distribution.
In the frequentist interpretation of statistics, a perfect

theory, whose parameters have an unknown but fixed value,
is believed to exist. Bayesian statistics, however, treats
theories as having associated degrees of belief. Provided
some data, this approach allows a practitioner to infer a
sensible probability that a candidate theory is correct.
Given that the primary goal of particle physics experimen-
tation is to reject or accept candidate theories and refine
their parameters, this Bayesian inference methodology is a
powerful analysis tool. We consider the light neutrino
exchange mechanism for 0νββ decay and use published
or Poisson-estimated likelihood functions from cosmologi-
cal observations of

P
mi and direct searches for mββ to

derive bounds on the neutrino masses andMajorana phases.
In Sec. II, we briefly summarize the key aspects of

neutrinoless double beta decay and howMCMC studies are
being used to infer neutrino parameters. We also introduce
an effective parameter which combines the effect of the
Majorana phases. In Sec. III, we outline the theoretical
foundations for least-informative priors, and we detail an

algorithm for generating LIPs applicable to our physics
context. Our results are presented in Sec. IV. Conclusions
and an outlook are featured in Sec. V.

II. NEUTRINOLESS DOUBLE BETA DECAY
AND NEUTRINO PARAMETER INFERENCE

Thinking of the three terms in Eq. (1.1) as complex
numbers, two relative phases −π ≤ α, β < π are sufficient
to describe mββ. Explicitly writing out the PMNS mixing
matrix elements, this yields

mββ ¼ c212c
2
13m1 þ s212c

2
13m2eiα þ s213m3eiβ

¼ Aþ Beiα þ Ceiβ; ð2:1Þ

where s2ij and c2ij are shorthand for sin2 θij and cos2 θij,
respectively. The real-valued coefficients A, B, and C are
functions of the neutrino masses and mixing parameters.
The neutrino masses are not independent of each other,
with the mass-squared splitting values fixed by oscillations,
where the lightest mass ml can be chosen as a free
parameter; ml ¼ m1 if the neutrinos are normally ordered
and ml ¼ m3 if they are inversely ordered. 0νββ experi-
ments measure the half-life T1=2ðAXÞ of the decay of an
isotope AX [12], which is connected to the effective double
beta mass as

T−1
1=2ðAXÞ ¼ jmββj2G0νjM0νj2: ð2:2Þ

Here,G0ν is a phase-space factor encoding the leptonic part
of the process including Coulomb effects between the
nucleus and outgoing electrons, and M0ν is the nuclear
matrix element (NME) of the underlying nuclear transition.
Both depend on the isotope in question. Because of the
large size of the relevant nuclei considered and correlations
between nucleon states, the 0νββ NMEs are challenging to
calculate, and disagreement between different nuclear
models is a significant source of theoretical error in
0νββ studies [15]. A large number of experiments have
succeeded in placing increasingly restrictive lower bounds
on the 0νββ decay half-life. Recently, the KamLAND-Zen
and GERDA experiments have determined the limits
T1=2ð136XeÞ > 1.1 × 1026 yr [16] and T1=2ð76GeÞ > 1.8 ×
1026 yr [17] at a 90% confidence level.2

A. Effective Majorana phase parameter

The parametrization of 0νββ decay arising from
the neutrino mass matrix, while physically natural, intro-
duces unnecessary complications into our inference.
The Majorana phases entering it cannot be determined

2A Bayesian analysis is also performed by the GERDA
Collaboration, obtaining a slightly weaker bound of T1=2ð76GeÞ >
1.4 × 1026 yr for the same experimental data [17].
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individually [18], and a combination of both leads to the
band structure observed. Figure 1 shows a continuum of
jmββj trajectories against the lightest neutrino mass ml for
constant choices of the Majorana phases ðα; βÞ, where both
α and β are uniformly scanned over the range ½−π; π�. In a
two-dimensional (2D) rectilinear uniform distribution,
volume effects imply that a point is more likely than not
to be found near the boundary of the rectangle, and in
particular near the corners. For both types of ordering, this
and the functional dependence result in four bands of
markedly high density, which are often but not always
located near the theoretical limits on jmββj.
The key distinguishing feature of the NO case is its

funnel, an interval ½m0
l; m

00
l � within which it is possible to

choose α and β such that mββ ¼ 0 is attained. As shown in
Eq. (2.1), we can think of mββ as the sum of three complex
numbers AþBeiαþCeiβ, where A ≈ 0.67m1, B ≈ 0.30m2,
and C ≈ 0.02m3. This is depicted in Fig. 2 and in the IO
case m3 is too small for the sum to reach 0. In the NO case,
many such closed triangles are found. Funnel edges m0

l and
m00

l occur at ðα; βÞ ¼ ðπ; 0Þ and ðπ; πÞ, respectively, and are
analytic over the neutrino masses and mixing angles.
Using best-fit values from NuFITv4.0 þ SK [6,9], m0

l ¼
2.330 meV and m00

l ¼ 6.535 meV. For any ml ∈ ½m0
l; m

00
l �,

there is a unique Majorana phase pair ðα; βÞ which satisfies
mββ ¼ 0. This choice of phase pair is extremely fine-tuned,
leading to a statistical inaccessibility of the funnel in Fig. 1
(left) where mββ ≲ 10−3; within the funnel interval in ml,

FIG. 1. Effective mass jmββj as function of the lightest neutrino mass ml for constant sets of Majorana phases ðα; βÞ, in the NO case
(left) and IO case (right). The trajectories are color coded, interpolating (toroidally) between the four corners ðα; βÞ ¼ ð0; 0Þ (red), ð0; πÞ
(blue), ðπ; 0Þ (green), and ðπ; πÞ (yellow).

FIG. 2. Visualization ofmββ as the sum of three complex numbers in examples of NO (left) and IO (right) scenarios. The NO example
depicts a case where mββ ¼ 0.
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the fraction of ðα; βÞ parameter space with
jmββj < 10−3; 10−4, and 10−5 eV is ≈10−1; 10−3 and
10−5, respectively.
The high-density banding and the inaccessibility of the

funnel in the jmββj −ml parameter space due to the
variation of the Majorana phases are a consequence of
the parametrization chosen. In Bayesian language, we may
also say that the corresponding flat prior on the phases is an
arbitrary choice, given our lack of knowledge on the
phases. Moreover, the two Majorana phases are somewhat
redundant, and what truly matters is the range of values in
jmββj that can occur for a given ml. For phase angles and
parameters derived from phase angles, a flat prior is the
standard choice [12] and may be most easily described by a
linear parametrization. To capture the effects of the
Majorana phases, we therefore introduce an effective phase
parameter 0 ≤ Φ ≤ 1, which interpolates linearly in jmββj
between the boundaries of this permissible region. From
Eq. (2.1), these boundaries occur for pairs of 0 and π
Majorana phases, which leads to the definitions

jmNO
ββ j ¼

8<
:
BþðAþCÞð2Φ−1Þ; ml ≤m0

l;

ðAþBþCÞΦ; m0
l <ml ≤m00

l ;

AþðBþCÞð2Φ−1Þ; ml >m00
l ;

; ð2:3Þ

for the NO case and

jmIO
ββj ¼ Aþ ðBþ CÞð2Φ − 1Þ ð2:4Þ

in the IO case, where A, B, and C depend explicitly upon
ml. In this parametrization, jmββj changes linearly as Φ is
varied linearly. This includes the funnel region of the
NO case.

B. Bayesian methodology

A model ðH; θÞ is defined by both selecting a theory H
and a vector of values θ in the space of continuous
parameters ΘH spanning that theory. The following prob-
ability densities may be defined:

(i) πðθÞ≡ PðH; θÞ is the prior belief in the model
ðH; θÞ before data collection;

(ii) LxðθÞ≡ PðxjH; θÞ is the likelihood of observing
data x if the parametrized model ðH; θÞ is assumed
to be true;

(iii) pðθjxÞ≡ PðH; θjxÞ is the posterior belief in the
model ðH; θÞ given observed data x.

While the posterior and prior distributions are probability
densities over ΘH, and therefore normalizable on this
domain, the likelihood is instead a probability density
over the space of measurable data X. Bayes’ theorem
relates these quantities in a manner analogous to statistical
mechanics, where the posterior gives the probability
density for the model to “occupy” state θ out of all possible
parameter choices,

pðθjxÞ ¼ LxðθÞπðθÞR
ΘH

dθ0Lxðθ0Þπðθ0Þ
≡ LxðθÞπðθÞ

MH
x

; ð2:5Þ

where the normalisation factor MH
x is known as the

marginal likelihood. In practice, the prior πðθÞ is an
educated guess, perhaps taking preceding experimental
information into account, but presumed to be incomplete.
As measured data become available, the prior probability is
updated according to Bayes’ theorem, and each calculated
posterior probability becomes the new prior. Given enough
data, this process converges to the true best-fit model
regardless of error in the prior.3

In this paper, we take 0νββ decay to be mediated by light
neutrino exchange as described above. Our model param-
eter space ΘH is represented by the lightest neutrino mass
ml and the effective Majorana phase parameter Φ,
ðml;ΦÞ ∈ ΘH. For simplicity, the other neutrino oscillation
parameters are fixed at their best-fit values, and the mass
ordering scenario, NO or IO, is considered to be known.
The natural hypothesis to consider is the observation of a
certain number of signal events n in a 0νββ experiment, and
so our data space X is represented by the possible counts
n ¼ 0; 1; 2;…. This framework is easily applied to the
comparison of multiple hypotheses, e.g., NO vs IO neutrino
mass hierarchies, by computing marginal likelihoods for
both models given the same observed data. The ratio of
these quantities K ¼ MNO

x =MIO
x is the Bayes’ factor of the

NO hierarchy versus the IO hierarchy.
Data available from current or upcoming 0νββ decay

experiments in isolation are insufficient to claim conver-
gence of the posterior distribution—instead, predictions
and bounds on model parameters are sought. All such
quantities are expressible as posterior integrals [19], which
we calculate using samples obtained by MCMC with the
Metropolis-Hastings algorithm [20].

III. LEAST-INFORMATIVE PRIORS

We now consider the impact of prior selection on
Bayesian inference from 0νββ decay. In the limit of
perfectly precise measurements of observables which fully
cover the given parameter space, the bias introduced by a
prior vanishes. Unfortunately, this is not the situation for
any real experimental outcome, and any assumption
implicitly made by a prior distribution must contribute
to the posterior, as demonstrated for 0νββ in particular by
Ref. [21]. It is therefore advantageous, to the practitioner
whowishes to avoid inferential bias, to choose priors which
assume the least about the outcome of the experiment, and
are in this sense “uninformative.” In this section, we study

3An exception is priors using Dirac δ-function shapes imprint-
ing on the posterior, pðθjxÞ ¼ πðθÞ ¼ δðθ − θ̂Þ, thereby leading
to an incorrect result regardless of data. Similarly, sharp prior
distributions tend to converge very slowly.
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LIPs, which are intended to maximize the expected
information gained through measurement and inference
and develop a methodology for the case at hand.

A. Theoretical construction of reference priors

It is of import to first cite Ref. [22] for a justification of
the overall methodology of this paper, that is, to conduct
Bayesian inference with a diverse set of priors in order to
arrive at the fullest picture of what our data imply. The
situation in scientific experiment is not so different from
that in psychological studies of human behavior, where
personal knowledge or opinions play a nontrivial role in
even the most rational decision making. By employing
priors which take account of some full range of acceptable
prior beliefs which an experimenter might hold, we can
both gain confidence in inferences which hold broadly
across the considered priors and quantify the variation of
inferred bounds or measurements between priors.
However, even if we are persuaded that no single prior

can offer a complete understanding of any statistical
inference, it becomes necessary to establish a reference
prior against which the performance of all other priors
might be consistently compared. A general procedure is
developed in Ref. [14], which may be applied to any
inference, for identifying such a prior as the solution to an
optimization problem over information gain: an LIP. This
procedure is summarized as follows, applied separately for
each parameter θi with all others fixed.
First, taking only the requirement that information

gained from multiple measurements is additive, the infor-
mation contained in a distribution PðθiÞ is [23,24]

I ¼
Z
PðθiÞ≠0

dθiPðθiÞ logPðθiÞ; ð3:1Þ

which is familiar in physics as the Boltzmann-Gibbs
entropy for a continuous collection of states, up to a
constant factor [25]. We then take an experiment E, which
measures data x, with likelihood function LxðθiÞ.
Following Ref. [24], Ref. [26] calculates the expected
information gain of prior πðθiÞ as

IfE; πg ¼
Z

dx
Z

dθiLxðθiÞπðθiÞ log
�
pðθijxÞ
πðθiÞ

�

¼
Z

dxMx

Z
dθipðθijxÞ log

�
pðθijxÞ
πðθiÞ

�
; ð3:2Þ

where pðθijxÞ is the posterior given by Bayes’ theorem, and
Mx ¼

R
dθiLxðθiÞπðθiÞ is the marginal likelihood of data

x. The inner integral on the second line of Eq. (3.2) is
known as the Kullback-Leibler divergence K½p; π� between
pðθijxÞ and πðθiÞ [26], of which IfE; πg is therefore an
expectation value over the data space. Whether phrased as a
prior or posterior integral, this quantity depends strongly on

the choice of prior, which appears implicitly in the
inference of the posterior and as the measure over θi in
the marginal likelihood. Letting EðkÞ indicate k indepen-
dent replications of experiment E, the quantity IfEð∞Þ; πg
describes the vagueness of prior πðθiÞ [14], as an infinite
quantity of well-defined experiments must arrive at the
same precise measurement, and so a greater expected
information gain through inference implies that more
information was missing to begin with.
The prior π which maximizes IfEð∞Þ; pg cannot simply

be selected because an infinite quantity of information is
needed to measure any parameter exactly. Instead, a limit
must be taken as the number of measurement repetitions k
approaches ∞. For a given k, the reference prior πkðθÞ is
defined as that among all permissible priors [27] which
maximizes IfEðkÞ; πg, where permissibility is defined
using boundedness and consistency arguments over com-
pact subsets of the parameter space. Given any measure-
ment x, the reference posterior pkðθijxÞ corresponding to
prior πkðθÞ is calculable by Bayes’ theorem, and assuming
compactness on the set of possible posteriors, the limit
pðθijxÞ ¼ limk→∞ pkðθijxÞ is well defined. Because of
consistent validity of Bayes’ theorem across the measure-
ment domain, a prior πðθiÞ proportional to pðθijxÞ=LxðθiÞ
is then a well-defined LIP, which is independent of x.
Obtaining the LIP via a posterior limit of course does not

feel very efficient, but so long as certain regularity con-
ditions are met [27], a limiting sequence among priors
which still maximizes Eq. (3.2) may be found:

πkðθiÞ ∝ exp

�Z
dxLxðθiÞ log ½p�ðθijxkÞ�

�
: ð3:3Þ

Here, xk is a collection of data from k repeated measure-
ments, π�ðθÞ is an initialization prior chosen among any in
the permissible set, and k is taken to be large enough that
the posterior p�ðθjxkÞ induced by prior π�ðθÞ is dominated
by the characteristics of the likelihood rather than by
that prior.
A subtlety of this construction is that a direct limit

limk→∞ πk can be poorly behaved at singularities and
boundaries, resulting in a comblike LIP. In such cases,
the LIP can instead be defined as a conditioned limit at
some well-behaved parameter point θi;0 [27],

πðθiÞ ¼ lim
k→∞

πkðθiÞ
πkðθi;0Þ

: ð3:4Þ

In addition to maximizing the expected inferential infor-
mation gain, the generated LIP enjoys simple Jacobian
transformation under reparametrizations of θ [14].

B. Implementation of LIP algorithm for 0νββ

The application of LIPs to neutrino oscillation experi-
ments is explored in Ref. [26]. When an experiment is such
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that the asymptotic posterior is well approximated by a
Gaussian distribution (a condition known as asymptotic
posterior normality), it can be shown that the LIP is simply
the multivariate Jeffreys prior of the likelihood [14]. This
assumption holds and significantly simplifies computation
for oscillation studies of the neutrino mass splittings and
cosmological studies of the sum-of-masses Σ. However, in
0νββ decay, the observable of interest jmββj may be
asymptotically small, or may even vanish if neutrinos
are not Majorana particles. Asymptotic posterior normality
can therefore not be said to hold for any 0νββ decay search,
and instead, we follow the computational procedure set out
by Berger [27] for solving Eqs. (3.3) and (3.4) in full
generality.
So long as an amenable likelihood model is chosen, the

LIP computation expressed in Eq. (3.3) is well suited to a
sampling procedure. We employ Berger’s method of
selecting m sets of k likelihood samples each: for each
set, Bayesian inference is made using a fiducial flat prior
and the product of the k likelihoods, as the samples are
treated as occurring from independent experiments. The
resultant posterior distribution is used to compute Eq. (3.3),
where the numerical integration is performed by averaging
over the m sample sets.
Following Ref. [13], we define our 0νββ measurement

model to be a Poisson counting experiment, where the
likelihood of observing n counts given a background
expectation λ and signal expectation ν is

LnðνÞ ¼ e−λ−ν
ðλþ νÞn

n!
: ð3:5Þ

The number of expected signal events ν is related to the
0νββ decay half-life by

ν ¼ ENA log 2
miso

T−1
1=2; ð3:6Þ

where NA is Avogadro’s constant,miso is the molar mass of
the enriched isotope used in detection, and E is the sensitive
exposure, also accounting for detection efficiency. In our
simulations for the LEGEND-200 76Ge experiment, we
take one year of run time with miso ¼ 75.921 u and
λ ¼ 1.7 × 10−3 cts=ðkg · yrÞ · E with sensitive exposure
E ¼ 119 kg · yr [12]. The half-life T1=2ðjmββjÞ also
depends on the isotope through the phase-space factor
and nuclear matrix element, where we use the values
G0ν ¼ 3.04 × 10−26 yr−1 eV−2 and jM0νj ¼ 4.32 [28].
Berger’s algorithm discussed above applies only to a

single parameter θi, and therefore in a multiparameter
problem such as ours, the LIP must be obtained sequen-
tially. Following Ref. [26], at step j in the iteration, the
prior on θj is computed using fixed values of all θi>j,
written πðθjjθi>jÞ. The likelihood function is then margin-
alized by parameter θj,

Lxðθi>jÞ ¼
Z

dθjπðθjjθi>jÞLxðθi≥jÞ: ð3:7Þ

Note that this procedure must be repeated for each
combination of parameter values for which we seek to
know the LIP, placing a strong bottleneck on achievable
precision. At the end of the iteration, the total LIP is given
by the product

πðθÞ ¼
Y
j≤n

πðθjjθi>jÞ: ð3:8Þ

For a nonseparable likelihood function, this depends on the
ordering of parameters [26], with more impactful param-
eters customarily ordered first; we therefore take θ1 ≡ml
and θ2 ≡Φ. The resultant two-stage LIP algorithm is
summarized in Fig. 6 in the Appendix. A “free-phi”
approximation is also considered, in which the above
multiparameter procedure is still followed, but the Φ-
likelihood LΦ

n ðΦÞ is computed over a flat ml prior, thereby
removing costly interpolation evaluations.
From a practical standpoint, the number of repetitions m

impacts the precision of the final LIP, while the sample
quantity k affects its accuracy. If m is too small, the prior
may be noisy but still accurate, while a k far from the
convergence region could lead to a prior which is far from
least informative. We select m ¼ 100 for our simulations,
sufficiently large to be near convergence but small enough
to avoid precision errors as the product of likelihoods dips
near 10−200. The outer loops of the algorithm are paral-
lelizable, and so a 16-core Message Passinng Interface
implementation of the algorithm leads to significant speed-
up, allowing for k up to 2000 with approximately 12 h
run times.

IV. RESULTS

A. Generated LIPs for LEGEND-200

To illustrate the above procedure, we choose the future
0νββ decay experiment LEGEND-200 [29] as the basis for a
measurement example. LEGEND-200 plans to use 175 kg of
the isotope 76Ge to achieve a 3σ sensitivity to half-lives
greater than1027 yr. This corresponds to an expected number
of background events of λ ¼ 1.7 × 10−3 cts=ðkg · yrÞ · E
with sensitive exposure E ¼ 119 kg · yr [12] taken over
one year of run time as an example to illustrate our algorithm.
Here, the sensitive exposure E is defined as the product
of the total exposure with fiducial volume and signal
detection efficiencies, also accounting for a 2σ region of
interest around the decay energy. Two configurations of the
LIP algorithm were considered: the full two-parameter
integration discussed above and specified in Fig. 6 in
Appendix and the free-phi approximation.
The results of our simulation, with 2 × 105 likelihood

draws at each parameter point ðml;ΦÞ across a grid with
resolutions ΔΦ ¼ 0.1 and Δ log10ðmlÞ ¼ 0.2, are shown in
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Fig. 3. The top left and top right plots show the LIP
πðml;ΦÞ in the NO scenario calculated using the full
simulation and the free-phi approach, respectively. They
demonstrate that the free-phi approximation is generally
valid throughout the parameter space. The greatest
deviation occurs for large values of both parameters, a
region where relevant likelihoods tend to be very low, and
the impact upon posterior inference is therefore expected to
be negligible. It should be noted that slow convergence at
parameter boundaries causes erroneous growth of the raw
LIP, producing boundary walls which are locally smoothed
in postprocessing to produce the visuals throughout this
work and before MCMC or information computations are
performed. Signal-to-noise ratio (SNR) analysis of repeated
trials showed a minimum SNR of 1000, or 30 dB, between
individual generated LIPs and averages of three LIPs, as a

reference. Practically, this corresponds to a noise amplitude
of at most �0.05 everywhere in the LIP distribution.
In the right column of Fig. 3, LIPs computed for NO (top)

and IO (bottom) neutrino mass orderings are compared and
seen to be structurally similar. Both priors feature a near-
linear increase with Φ and a significant trough in ml

between 10−2 and 10−1 eV. On either side of this trough,
the prior is nearly flat in ml, with higher density for
ml > 0.1 eV. Note that these functions are distributions
over ml, plotted on a logarithmic scale, rather than dis-
tributions over logðmlÞ, which would feature the presence of
an additional factor 1=ml from the Jacobian transformation.
It is significant that a predominantly flat prior inml emerges

from a first-principles Bayesian simulation, perhaps indicat-
ing the naturalness of a flat prior for unknown particlemasses.
The trough may be understood physically as the region of

FIG. 3. Least-informative priors πðml;ΦÞ in terms of the lightest neutrino mass ml and the effective Majorana phase parameter Φ
based on a likelihood using the LEGEND-200 experiment [expected background events λ ¼ 1.7 × 10−3 cts=ðkg · yrÞ · E with sensitive
exposure E ¼ 119 kg · yr]. The LIPs in the NO scenario are computed using the full algorithm (top left) and free-phi integration (top
right). The bottom right plot shows the LIP for IO using free-phi integration.
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parameter space where LEGEND-200 has the greatest pro-
pensity tomake either ameasurement or an exclusion; the LIP
therefore reduces the weight in this region so that any
inferences made can be said to more fully data driven.

B. Comparison of inferred bounds on ml

We evaluate the performance of the computed LIPs
by utilizing them (after bicubic spline interpolation) in

our MCMC analysis, equipped with the effective para-
metrization ðml;ΦÞ. Only the experimental likelihood
from LEGEND-200 is included, modeled with a Poisson
distribution following Ref. [13] with λ¼1.7×10−3 cts=ðkg·
yrÞ ·E with sensitive exposure E ¼ 119 kg · yr [12].
We consider first the case where LEGEND-200 registers

n ¼ 0 signal events during its run. We include 107 MCMC
samples, using a Gaussian proposal distribution of width

FIG. 5. As Fig. 4, but in the case of observation of one signal event, n ¼ 1.

FIG. 4. Posterior distributions over ml, computed from marginalized MCMC samples for the projected LEGEND-200 likelihood for
NO (left) and IO (right) in the case of nonobservation (count n ¼ 0). The curves correspond to the different priors used: log prior
(log-flat ml and flat Φ, blue), flat prior (flat ml and flat Φ, orange), free-phi LIP (LEGEND-200 LIP with free-phi integration, green),
and LIP (full LEGEND-200 LIP, red).
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10−2 in bothml andΦ. The resulting posterior distributions
for flat (in bothml andΦ) and log-flat (flat in logml andΦ)
priors as well as both LIP implementations are shown in
Fig. 4 for NO (left) and IO (right). A further confirmation of
the strong match between free-phi and full LIP calculations
is gained, and both are seen to lead to very similar
inferences as the flat prior. In the NO case, these three
priors exclude ml > 0.11 eV at a 90% credibility level,4

while the log-flat prior excludes ml > 0.03 eV; in the IO
case, these upper bounds are expectedly slightly higher,
though within simulation error.
Next, we set the observed count to n ¼ 1 and repeat the

inference procedure, with results shown in Fig. 5. Again,
both calculated LIPs give similar posteriors to the flat prior.
In the NO case, Fig. 5 (left), these three priors result in
ml ¼ 90� 50 meV. In the IO case, Fig. 5 (right), the flat and
LIP measurements give slightly lower values, but with
comparable precision. However, the log-flat prior fails to
make any measurement in either hierarchy, instead placing
an exclusion at 90% credibility onml > 75 meV in the NO
case and on ml > 45 meV in the IO case, as the measure-
ment falls squarely within the region extending to low ml
which log-flat priors are intended to probe. It is not surprising
that LEGEND-200 fails to distinguish between the neutrino-
mass hierarchies, as it does not probe sufficiently small jmββj
where the allowed parameter regions notably diverge.

C. Information content of inferences

However, the value of LIPs does not lie in their propensity
to give a conservative bound or measurement (which the flat
prior already achieves) but in their trustworthiness as a
reference prior with minimized bias. In Table I, we report the
Kullback-Leibler divergences of each MCMC posterior
against its prior, using the same LEGEND-200 likelihood
as above. Error propagation was performed by considering a
noisy LIP of the form πðθÞ ¼ πtrueðθÞ � nπðθÞ, which in the
limit of small noise (and assuming that variation in the
posterior is dominated by variation in the prior) corresponds
to noisy Kullback-Leibler divergence,

K½p; π� ¼ K½p; πtrue� �
1

logð2Þ
Z

dθpðθÞ nπðθÞ
πtrueðθÞ

; ð4:1Þ

where the integrated error may be interpreted as the posterior
expectation value of the inverse of the signal-to-noise ratio
distribution for πðθÞ. Computation of this integral for the
worst-case noise distributionmentioned in Sec. IV. 1 gave an
error of�0.03 bits, leading us to quote our divergencevalues
to 0.01 bit precision.
The results give a numerical confirmation of the sim-

ilarity between free-phi and full LIP computations, whose
divergences consistently fall within 0.25 bits. In all
configurations, the LIPs outperform both standard priors
in information gain, as expected from their construction.

V. CONCLUSION

Bayesian parameter inference is a common tool to
constrain or determine parameters in particle physics. An
inherent issue in this context is the choice of a prior
distribution over the model parameters. We have here
focused on the neutrino parameter space relevant to
0νββ decay searches, specifically the lightest neutrino
mass ml and an effective Majorana phase parameter Φ
encapsulating the effect of the Majorana phases in the
lepton mixing matrix. Given that 0νββ decay has not been
observed yet, prior distributions are expected to have a
strong impact on the conclusions drawn.
We have adapted an algorithm for computing least-

informative priors for a given experiment via likelihood
sampling to the case of 0νββ direct searches, resulting in
exact and approximate parallelized implementations. The
LIPs were seen to take the form of a flat-ml, linear-Φ
distribution broken by a trough between ml ¼ 10−2 and
10−1 eV. We demonstrated that for the proposed 200 kg
76Ge LEGEND experiment these priors give similar pos-
terior bounds to the usually adopted flat prior for both
neutrino orderings, and in both observation and nonobser-
vation scenarios. Furthermore, the LIPs were seen in
nearly all cases to outperform both standard flat and
logarithmic priors as far as their information gain during
MCMC inference is concerned. This supports the function-
ality of the adapted algorithm and strengthens the argument
for the use of LIPs as reference priors for 0νββ decay
searches.
Natural extensions of this work include a study of the

variation in LIP performance across proposed experiments
of diverse background levels and exposures, simulation of
LIPs for the usual parametrization using two Majorana
phases, and research toward the construction of a prior
which is jointly least informative over both the 0νββ
observable jmββj and the cosmology observable

P
mi.

TABLE I. Kullback-Leibler divergences (in bits) for different
priors, computed from MCMC LEGEND-200 posteriors in the
case of NO and IO as well as observed counts n ¼ 0, 1, as
indicated. The entries in bold denote the highest divergence
achieved among the different priors used.

Prior NO, n ¼ 0 IO, n ¼ 0 NO, n ¼ 1 IO, n ¼ 1

Log prior 14.64 14.63 15.90 15.23
Flat prior 20.63 20.61 20.63 20.73
Free-phi LIP 21.92 21.94 21.76 21.81

LIP 22.08 22.09 21.90 22.04

4Bayesian credibility intervals may be thought of as analagous
to frequentist confidence intervals.
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APPENDIX: LIP ALGORITHM FLOWCHART

FIG. 6. Algorithm for generating a least-informative prior on the ðml;ΦÞ parameter space, given experimental settings λ, miso, and E,
and fiducial priors π�ðm�

l Þ and π�ðΦ�Þ.
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