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ABSTRACT: The synthesis of cationic rhodium and iridium
complexes of a bis(imidazole-2-thione)-functionalized calix[4]-
arene ligand and their surprising capacity for potassium binding are
described. In both cases, uptake of the alkali metal into the
calix[4]arene cavity occurs despite adverse electrostatic interactions
associated with close proximity to the transition-metal fragment
[Rh+···K+ = 3.715(1) Å; Ir+···K+ = 3.690(1) Å]. The formation and
constituent bonding of these unusual heterobimetallic adducts have been interrogated through extensive solution and solid-state
characterization, examination of the host−guest chemistry of the ligand and its upper-rim unfunctionalized calix[4]arene
analogue, and use of density functional theory based energy decomposition analysis.

■ INTRODUCTION

Electrostatic forces between ions are the strongest noncovalent
bonding interactions encountered in supramolecular chemistry.
Correspondingly, the attraction between oppositely charged
components features widely throughout the host−guest
chemistry of biological and synthetic systems.1 Conversely,
repulsion between identically charged host and guest molecules
is significantly destabilizing, and unsurprisingly well-defined
supramolecular complexes featuring such unfavorable inter-
actions are rare.2,3

As part of our ongoing work exploring the coordination
chemistry of calix[4]arene-based ligands,4 we serendipitously
discovered that cationic rhodium and iridium complexes 1,
bearing bis(imidazole-2-thione)-functionalized calix[4]arene
ligand 2, show significant uptake of potassium cations (Chart
1). Although alkali-metal binding by calix[4]arenes is well
documented, it is typically buttressed by the presence of
alkoxide, poly(ether), or carboxyl appendages.5 In the case of 1,
inclusion of potassium is remarkable for the adverse Coulombic
repulsion associated with close proximity of a cationic metal
fragment to the binding site (M+···K+ = 3.7 Å, where M = Rh,
Ir). Indeed, to the best of our knowledge, the nearest well-
defined precedent for the host−guest chemistry observed for 1
is neutral iridium host A described by Balch (Ir···K+ = 3.3 Å;
Chart 1).6 Polycyclic rhodium systems typified by B and
reported by Carroy and Lehn are conceptually similar, although
in this case, the guest cations are held significantly more remote
from the rhodium center.3

Herein we describe the synthesis of 1 and isolation of the
corresponding potassium adducts 1⊃K+. All have been fully
characterized in solution and the solid-state using X-ray
diffraction. In order to probe the interplay between the

interactions associated with the potassium cation binding, the
host−guest chemistry of 1 is contrasted with that of
bis(imidazole-2-thione) 2 and calix[4]arene 3 (Figure 1).
Density functional theory (DFT) calculations have also been
used to help gain insight into the formation of these curious
binuclear complexes.

■ RESULTS AND DISCUSSION
Synthesis and Host−Guest Chemistry of Calix[4]-

arenes 2 and 3. The new bis(imidazole-2-thione) ligand 2
was prepared through reaction of the corresponding bis-
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(imidazolium) salt4 with sulfur in the presence of weak base
(72% isolated yield).7 The solid-state structure of 2 is notable
for π-stacking between the imidazole-2-thione moieties [Cnt−
Cnt = 3.46(1) Å], which enforces a pronounced pinched cone
conformation of the calix[4]arene scaffold and confers overall
C2 symmetry (Figure 1). Although retention of the π-stacking
interaction is not apparent in CD2Cl2 solution at 298 K by 1H

NMR spectroscopy (600 MHz; C2v symmetry), the onset of
signal decoalescence was observed upon cooling to 200 K.
Mixing 2 with K[BArF4] [ArF = 3,5-(CF3)2C6H3]

8 in
anhydrous CD2Cl2 resulted in dissolution of the otherwise
insoluble salt and formation of the 1:1 host−guest complex
2⊃K+ (Figure 1). The system is under slow host−guest
exchange on the NMR time scale (298 K, 400 MHz) and

Figure 1. Potassium binding of 2 and 3. Solid-state structures of 2, 2⊃K+, and 3⊃K+ (ellipsoids drawn at 30%, 50%, and 30% probability,
respectively; symmetry equivalent atoms indicated by asterisks; minor distorted components in 3⊃K+ omitted). [BArF4]

− counteranions omitted
from all structures. Selected bond lengths (Å): 2, S25−C21, 1.687(6); Cnt(N20−C24)−Cnt(N20*−C24*), 3.46(1); C50−C50*, 4.24(1) (* = x, 1
− y, 1/2 − z); 2⊃K+, K2−S25, 3.4019(7); K2−S35, 3.4102(6); K2−Cnt(C50−55), 2.712(2); K2−Cnt(C70−75), 2.711(2); K2−O66, 2.845(1);
K2−O86, 2.807(2); S25−C21, 1.679(2); S35−C31, 1.681(2); C50−C70, 5.306(3); 3⊃K+: K2−Cnt(C50−55), 2.790(9); K2−O66, 2.830(5); C50−
C50*, 5.71(2) (* = 3 − x, 3/2 − y, + z).

Figure 2. Preparation of 1, 1⊃K+, and 4. Solid-state structures of 1a, 1a⊃K+, and 4a (ellipsoids drawn at 50% probability; minor distorted
components omitted). [BArF4]

− counteranions omitted from all structures. Selected bond lengths (Å) and angles (deg): 1a, Rh1−Cnt(C10,11),
2.030(2); Rh1−Cnt(C14,15), 2.015(2); Rh1−S25, 2.3515(5); Rh1−S35, 2.3756(5); C10−C11, 1.386(3); C14−C15, 1.394(3); S25−C21,
1.705(2); S35−C31, 1.720(2); S25−Rh1−S35, 83.81(2); C50−C70, 5.387(3); 1b, Ir1−Cnt(C10,11), 2.017(3); Ir1−Cnt(C14,15), 2.005(3); Ir1−
S25, 2.3390(8); Ir1−S35, 2.3604(8); C10−C11, 1.407(5); C14−C15, 1.422(5); S25−C21, 1.709(3); S35−C31, 1.732(3); S25−Ir1−S35, 84.40(3);
C50−C70, 5.385(5); 1a⊃K+, Rh1−K2, 3.715(1); Rh1−Cnt(C10,11), 2.023(4); Rh1−Cnt(C14,15), 2.029(4); Rh1−S25, 2.366(1); Rh1−S35,
2.3850(9); C10−C11, 1.387(7); C14−C15, 1.386(6); S25−C21, 1.716(4); S35−C31, 1.718(4); S25−Rh1−S35, 77.99(3); K2−S25, 3.472(1); K2−
S35, 3.585(2); K2−Cnt(C50−55), 3.084(4); K2−Cnt(C70−75), 3.078(4); K2−O66, 3.149(3); K2−O86, 3.534(3); C50−C70, 6.709(5); 1b⊃K+,
Ir1−K2, 3.690(1); Ir1−Cnt(C10,11), 2.015(5); Ir1−Cnt(C14,15), 2.016(5); Ir1−S25, 2.352(1); Ir1−S35, 2.364(1); C10−C11, 1.395(9); C14−
C15, 1.381(8); S25−C21, 1.720(5); S35−C31, 1.729(5); S25−Ir1−S35, 78.80(4); K2−S25, 3.521(2); K2−S35, 3.632(2); K2−Cnt(C50−55),
3.068(5); K2−Cnt(C70−75), 3.065(5); K2−O66, 3.087(4); K2−O86, 3.514(4); C50−C70, 6.691(7); 4a, Rh1−Cnt(C10,11), 2.010(3); Rh1−
Cnt(C14,15), 2.020(3); Rh1−S25, 2.3706(6); Rh1−S35, 2.3671(7); C10−C11, 1.380(5); C14−C15, 1.380(5); S25−C21, 1.727(3); S35−C31,
1.729(3); S25−Rh1−S35, 89.06(2); 4b, Ir1−Cnt(C10,11), 1.994(4); Ir1−Cnt(C14,15), 2.005(3); Ir1−S25, 2.3496(8); Ir1−S35, 2.3459(9); C10−
C11, 1.396(6); C14−C15, 1.403(5); S25−C21, 1.728(3); S35−C31, 1.732(3); S25−Ir1−S35, 89.50(3).
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allowed the binding stoichiometry to be unambiguously verified
through in situ experiments involving variation of the 2/
K[BArF4] ratio (see Figure S44). On a preparative scale, the
potassium adduct was isolated in high yield by crystallization
(86%) and fully characterized. The solid-state structure of
2⊃K+ confirms encapsulation of the potassium cation within
the calix[4]arene cavity (Figure 1). Supplemented by chelation
of the thione (S−K+ ca. 3.41 Å), the opposing aryl imidazole-2-
thione units bind potassium [Cnt(ArS)−K+ ca. 2.71 Å], in a
sandwich-type π-complex arrangement. The adjacent aryl ether
units are associated with ArHO···K+ contacts of ca. 2.83 Å.
Sharp 1H resonances and C2v symmetry are observed for 2⊃K+

in CD2Cl2 across a wide temperature range (298−200 K, 600
MHz), indicating that the S−K+ interaction is highly fluxional
in nature.
In a similar manner, formation of a 1:1 potassium adduct of

upper-rim-unfunctionalized calix[4]arene 3 was established in
CD2Cl2 solution (slow host−guest exchange at 298 K, 400
MHz) and crystalline 3⊃K+ was subsequently obtained in 80%
isolated yield. A core structure comparable to 2⊃K+ is observed
in the solid state, exemplified by alternating arene−π
interactions [2.790(9) Å] and short lower-rim oxygen contacts
[2.830(5) Å] with the alkali-metal cation (Figure 1). In CD2Cl2
solution, potassium binding results in reduced structural
dynamics of the otherwise flexible calix[4]arene scaffold on
the 1H NMR time scale (600 MHz): most notably, the slow
exchange regime is reached at 200 K for 3⊃K+ (C2v) but not for
3 (C4v).
To help gauge the energetic importance of thione

coordination in the formation of 2⊃K+, a competition
experiment was carried out involving the reaction between 2
and 3⊃K+ in CD2Cl2 (eq 1). The resulting dynamic equilibrium
showed selective binding of potassium by 2, but the transfer of
potassium from 3⊃K+ is only weakly exergonic (ΔG298 K =
−8.4 kJ·mol−1).9 Together the combined solution data suggest
that the potassium cation is primarily bound through the
calix[4]arene scaffold in 2⊃K+, with comparatively weaker S−
K+ interactions. Consistent with this reasoning, 1,3-diisopropyl-
4,5-dimethylimidazole-2-thione (IiPr2Me2S)

10 does not form a
potassium complex upon standing in a suspension of K[BArF4]
in CD2Cl2 at 298 K.11

+ ⊃ ⇌ ⊃ + = ±+ + K2 3 2 3K K 30 8298 K (1)

Reactions of 2⊃K+ and 3⊃K+ with 18-crown-6 resulted in
quantitative extraction of potassium from both of the
calix[4]arene hosts. Likewise, competition experiments involv-
ing [18-crown-6⊃K][BArF4] [see the Supporting Information
(SI) for preparation and solid-state structure; O−K+ ca. 2.77 Å]
and 2 or 3 showed no appreciable potassium uptake by the
calix[4]arenes. Together these data indicate a relatively low
absolute magnitude for the potassium cation binding by 2 and 3
and highlight the importance of employing weakly coordinating
solvent and anion in the formation of 2⊃K+ and 3⊃K+.
Synthesis and Host−Guest Chemistry of Rhodium

and Iridium Complexes 1. Cationic rhodium and iridium
complexes [M(2)(COD)][BArF4] (M = Rh, 1a; M = Ir, 1b)
were prepared by reaction of [M(COD)Cl]2

12 with 2 in
CH2Cl2, followed by halide abstraction, and isolated in
moderate yields (1a, 64%; 1b, 68%; Figure 2). The formation
of 1 were fully corroborated using a combination of NMR
spectroscopy, electrospray ionization mass spectrometry (ESI-
MS), combustion analysis, and X-ray diffraction. Coordination
of 2 is associated with a significant upfield shift of the CS

resonance (1a, δ 156.4; 1b, δ 154.5; 2, δ 163.4) and adoption of
Cs symmetry in CD2Cl2 solution at 298 K (600 MHz). The
solid-state structures show that the {M(COD)}+ fragments are
projected to one side of the calix[4]arene cavity through
asymmetrical cis coordination of the imidazole-2-thione donors,
one synperiplanar (S25) and the other antiperiplanar (S35)
about the M−S vectors, conferring overall C1 symmetry.
Reconciling this structure in solution, gradual cooling from 298
to 200 K resulted in loss of Cs symmetry and signal
decoalescence in the 1H NMR spectra of 1 (ΔG⧧: ∼43 kJ·
mol−1, 1a; ∼48 kJ·mol−1, 1b; Figures S4 and S9). Fluxional
behavior of this type is well-known for complexes of sulfur-
based ligands.13 Bis(imidazole-2-thione) complexes [M-
(IiPr2Me2S)2(COD)][BAr

F
4] (M = Rh, 4a; Ir, 4b; Figure

2)14 were prepared for comparison and also adopt asymmetrical
cis-thione geometries in the solid state but are significantly
more structurally dynamic than 1 in solution.
The potassium binding of 1 was systematically investigated

through in situ reactions involving varying ratios of K[BArF4] in
anhydrous CD2Cl2 (Figures S40 and S42). Partial uptake of
potassium into solution and formation of 1:1 adducts 1⊃K+

(slow exchange at 298 K, 400 MHz) was observed (eqs 2 and
3). Association constants determined by integration of 1H
NMR data are consistent with marginally stronger potassium
binding for 1a (12 ± 2) compared to 1b (8 ± 2). Analytically
pure samples of 1⊃K+ were subsequently obtained in low yield
by selective crystallization of the dications from solution (ca.
10%). Reestablishment of the equilibrium occurs upon
dissolution of isolated 1⊃K+ in CD2Cl2 solution (ca. 24 h)
but is sufficiently slow that the potassium adducts can be
comprehensively characterized.

+ ⇌ ⊃ = ±+ + K1a 1aK (s) K 12 2298 K (2)

+ ⇌ ⊃ = ±+ + K1b 1bK (s) K 8 2298 K (3)

The solid-state structures of 1⊃K+ reveal the potassium
cation bound within the calix[4]arene cavity in very close
proximity to the transition-metal centers: Rh+···K+ = 3.715(1)
Å; Ir+···K+ = 3.690(1) Å (Figure 2). Compared to 1, the solid-
state structures of 1⊃K+ are notable for more symmetrical, all-
synperiplanar (about the M−S vectors) configurations of the
thione donors. The associated Cs symmetry is also observed in
CD2Cl2 solution at 298 K. This change in conformational
preference was verified in silico (see the SI) and is presumably
driven by electrostatic repulsion between the metal atoms. For
instance, 1⊃K+ are characterized by significantly enlarged
proximal Cnt(ArH)···M+ distances [M: Rh, 5.688(5) vs
4.869(2) Å; Ir, 5.705(7) vs 4.851(4) Å] and widened
calix[4]arene cavity openings, as gauged through the (ArS)
CN···(ArS)CN separations [M: Rh, 6.709(5) vs 5.387(3) Å; Ir,
6.691(7) vs 5.385(5) Å], compared to 1. Notably, the X-ray-
derived metrics associated with the encapsulation of potassium
by the calix[4]arene ligand in 1⊃K+ are indicative of a weaker
interaction compared to those in 2⊃K+, viz. Cnt(ArS)−K+ ca.
3.07 vs 2.71 Å, S−K+ ca. 3.55 vs 3.41 Å, and ArHO···K+ ca. 3.12/
3.52 vs 2.83 Å.
The partial uptake of potassium into solution observed for 1

and the solid-state metrics of 1⊃K+ both imply significantly
weaker binding compared to 2; observations supported by
complete retention of potassium by 2 when 2⊃K+ was reacted
with 1 in competition experiments (eq 4). The associated
energetics (ΔG298 K ∼ +22 kJ·mol−1) were instead assessed
indirectly through competition experiments between 1 and
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3⊃K+ in CD2Cl2 (eqs 5 and 6).9 As for the association
constants, the rhodium-based host appears to show a more
pronounced capacity for potassium inclusion in these
competition experiments [(5 ± 2 vs 3 ± 2) × 10−3]; however,
the large experimental error associated with these values
prevents a definitive conclusion to be drawn. Given the weak
nature of the S−K+ interaction, it is rather unsurprising that no
reactions were detected by 1H NMR spectroscopy for control
experiments involving 4 and either K[BArF4] (insoluble) or
3⊃K+ in CD2Cl2. Moreover, quantitative extraction of
potassium from 1⊃K+ resulted upon addition of 18-crown-6.
Thus, although 1 are competent hosts for potassium cation
guests, this series of competition experiments unequivocally
demonstrate the significant destabilizing effect of the M+···K+

interaction.

+ ⊃ →̷ ⊃ ++ +1 2 1 2K K (4)

+ ⊃ ⇌ ⊃ + = ± ×+ + −K1a 3 1a 3K K (5 2) 10298 K
3

(5)

+ ⊃ ⇌ ⊃ + = ± ×+ + −K1b 3 1b 3K K (3 2) 10298 K
3

(6)

Computational Analysis of Potassium Binding. The
interactions associated with formation of 1⊃K+ were analyzed
computationally using a DFT-based energy decomposition
analysis (EDA)15 and compared to those of 2⊃K+ and 3⊃K+.
Inspection of the deformation densities associated with
fragmentation between K+ and 1 reveals that the largest charge
transfer occurs from the thione donors to potassium (illustrated
for 1a⊃K+ in Figure 3 and 1b⊃K+ in Figure S65: Δρ1−Δρ3; Eρ

= −7.37 to −13.62 kJ·mol−1). Interestingly, in Δρ3, some
charge depletion is evident on the transition metal. Significant
charge flow also occurs from the aryl (Δρ4−Δρ6; Eρ = −5.41 to
−7.67 kJ·mol−1) units of the calix[4]arene to potassium but
curiously not from the lower-rim oxygen atoms (Eρ < 5 kJ·
mol−1), suggesting that the short ArHO···K+ contacts of ca.

3.12/3.52 may result from the pinched cone conformation of
the calix[4]arene scaffold rather than any meaningful bonding.
Equivalent arene−π (Eρ = −4.81 to −9.92 kJ·mol−1) and thione
(Eρ = −15.78 to −17.07 kJ·mol−1) interactions with the
potassium cation can be identified in 2⊃K+, with the larger
magnitude of these interactions consistent with weaker bonding
in 1⊃K+ (Figure S66). Even stronger potassium bonding with
the aryl units of 3 (Eρ = −7.01 to −12.73 kJ·mol−1) is evident
in 3⊃K+ and supplemented in this case by a small degree of
charge transfer from the lower-rim oxygen atoms to potassium
(Figure S67).
The total bonding energy values derived from EDA (EInt)

corroborate the relative potassium binding strengths established
experimentally (2 > 3 ≫ 1a > 1b; Table 1). The similarity of

the orbital interaction energies for all of the host−guest adducts
(ca. −126 kJ·mol−1) suggests that this bonding component is
associated almost exclusively with the calix[4]arene scaffold and
marks out electrostatic interactions as the origin of the
differences in the binding energy. Correspondingly, it is evident
from these data that the ability of 1 to bind potassium, albeit
weakly, is only possible because the electrostatic repulsion
between potassium and the transition-metal cations (ca. +266
kJ·mol−1) is partially offset by the electrostatic attraction
between potassium and the thione donors (ca. −64 kJ·mol−1),
and there are significant orbital interactions between the
potassium cation and the calix[4]arene cavity. Hirshfeld charges
for 1 highlight greater charge differences between the sulfur and
rhodium (−0.12/+0.19) than between the sulfur and iridium
(−0.09/+0.07), which presumably accounts for the slightly less
unfavorable electrostatic term in the EDA of 1a⊃K+, compared
to 1b⊃K+, and correspondingly the marginally different binding
affinities of the transition-metal-based hosts.

■ SUMMARY AND OUTLOOK
The preparation and host−guest chemistry of cationic rhodium
and iridium complexes (1) of a new bis(imidazole-2-thione)-
functionalized calix[4]arene ligand (2) have been presented.
Contrary to significantly destabilizing Coulombic repulsion
resulting from close proximity to the bound transition metal,
these complexes are competent hosts for the 1:1 binding of
potassium cations within the central ligand cavity. The
formation and constituent bonding of the resulting hetero-
bimetallic adducts (1⊃K+) has been interrogated through
extensive solution and solid-state characterization, examination
of the host−guest chemistry of 2 and its upper-rim-
unfunctionalized calix[4]arene analogue 3, and use of DFT-
based EDA. On the basis of this work, the formation of 1⊃K+

can be attributed to robust potassium binding by the
calix[4]arene scaffold and the ability of the thione donors to
partially offset the destabilizing electrostatic repulsion asso-
ciated with close proximity of the two metal centers (M+···K+ =
3.7 Å, where M = Rh, Ir).

Figure 3. Leading ETS-NOCV deformation densities (Δρ) and
associated eigenvalues for fragmentation between K+ and 1a in 1a⊃K+.
Charge flow from red to blue. Energies associated with the equivalent
deformation densities in 1b⊃K+ are given in parentheses.

Table 1. EDA of Host−Guest Complexes of Potassium
(Energies in kJ·mol−1)

host EPauli EElectro EOrb Int EInt

1a 58.46 46.65 −125.37 −20.26
1b 56.09 54.00 −125.41 −15.32
2 78.00 −215.79 −122.70 −260.50
3 91.04 −151.76 −128.93 −189.65
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In the context of host−guest chemistry, the formation of
1⊃K+ showcases an unusual confluence of bonding interactions
that may inform new approaches for engineering effective
molecular receptors, while from an organometallic chemistry
perspective, the use of a cavitand-based ligand, such as 2, to
study the unusual coordination chemistry of the late transition
metals is a potentially powerful concept. We are particularly
interested in exploring the latter as part of our ongoing research
at the interface of supramolecular and organometallic
chemistry.
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