The University of Southampton
University of Southampton Institutional Repository

Fasnall induces atypically transient stress granules independently of FASN inhibition

Fasnall induces atypically transient stress granules independently of FASN inhibition
Fasnall induces atypically transient stress granules independently of FASN inhibition

Stress Granule formation has been linked to the resistance of some cancer cells to chemotherapeutic intervention. A number of studies have proposed that certain anti-tumor compounds promote cancer cell survival by inducing Stress Granule formation, leading to increased cellular fitness and apoptosis avoidance. Here we show that a potent fatty acid synthase inhibitor, fasnall, known for its anti-tumor capabilities, triggers the formation of atypical Stress Granules, independently of fatty acid synthase inhibition, characterized by high internal mobility and rapid turnover.

2589-0042
Amen, Triana
388dc540-e819-4d07-8f1e-ee0f3949a54b
Kaganovich, Daniel
ebb13f4e-e925-4aef-88e7-ddc25ef52d8f
Amen, Triana
388dc540-e819-4d07-8f1e-ee0f3949a54b
Kaganovich, Daniel
ebb13f4e-e925-4aef-88e7-ddc25ef52d8f

Amen, Triana and Kaganovich, Daniel (2020) Fasnall induces atypically transient stress granules independently of FASN inhibition. iScience, 23 (10), [101550]. (doi:10.1016/j.isci.2020.101550).

Record type: Article

Abstract

Stress Granule formation has been linked to the resistance of some cancer cells to chemotherapeutic intervention. A number of studies have proposed that certain anti-tumor compounds promote cancer cell survival by inducing Stress Granule formation, leading to increased cellular fitness and apoptosis avoidance. Here we show that a potent fatty acid synthase inhibitor, fasnall, known for its anti-tumor capabilities, triggers the formation of atypical Stress Granules, independently of fatty acid synthase inhibition, characterized by high internal mobility and rapid turnover.

This record has no associated files available for download.

More information

e-pub ahead of print date: 9 September 2020
Published date: 23 October 2020
Additional Information: © 2020 The Author(s).

Identifiers

Local EPrints ID: 482130
URI: http://eprints.soton.ac.uk/id/eprint/482130
ISSN: 2589-0042
PURE UUID: 95db4f8a-80ad-40ae-9cd4-19d3cb9b517c
ORCID for Triana Amen: ORCID iD orcid.org/0000-0003-4808-7806
ORCID for Daniel Kaganovich: ORCID iD orcid.org/0000-0003-2398-1596

Catalogue record

Date deposited: 19 Sep 2023 17:12
Last modified: 17 Mar 2024 04:22

Export record

Altmetrics

Contributors

Author: Triana Amen ORCID iD
Author: Daniel Kaganovich ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×