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Experimental searches for the thermal radiation from analogue black holes require the measurement of very
low temperatures in regimes where other thermal noises may interfere or even mimic the sought-after effect. In
this letter, we parameterize the family of bosonic thermal channels which give rise to such thermal effects and
show that by use of coherent states and homodyne detection one can rule out the non-Hawking contributions
and identify those candidate sources which arise from Hawking-like processes.
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Introduction.—The ability to measure Hawking radiation
in analogue black hole systems [1, 2] with high experimen-
tal control is approaching. Several experimental groups are
showing signs of analogue black hole production and there
is cautious optimism that soon we will have direct measure-
ments of analogue Hawking radiation and be able to perform
quantum precision tests of this remarkable theory [3].

While there is evidence for Hawking radiation from the
stimulated emission of white holes in the scattering of shal-
low water (gravity) waves [4, 6], thermal fluctuations in water
at room temperature limit further progress in this direction.
On the other hand experiments with ultrashort laser pulse fila-
ments [7] and Bose-Einstein Condensates (BECs) [8] provide
the opportunity to go one step further and investigate the quan-
tum aspects of this effect.

To measure the Hawking radiation one needs to observe
thermal radiation at a temperature proportional to the ana-
logue surface gravity (the derivative of the flow velocity at the
horizon). However, at low temperatures there are potentially
many sources of stray thermal radiation. For example, in the
case of analogue black holes that exploit the non-linear Kerr
effect, the intensity of the pulse is required to be so high that
it begins to damage the medium in which it propagates thus
introducing broadband noise [4, 9]. The possibility exists that
these other sources of thermal noise can in some ways mask,
or give false signatures for, the actual Hawking effect. An im-
portant and timely demand for concrete implementations of
analogue gravity is therefore to develop additional criteria to
experimentally determine whether or not any observed radia-
tion does in fact originate from a Hawking-like process.

In this letter we investigate, using the general formalism
of bosonic channels and adapting methods from quantum es-
timation theory [5], what kind of processes could mimic the
Hawking effect and how these impostor scenarios can be ruled
out with quantum experiments. This adaptation of quantum
parameter estimation to solve a timely experimental problem
in quantum field theory in curved space-times is preceded by
several pioneering works on this subject in different contexts,
see for example [10–13].

Since we consider the detection of thermal radiation to be a
necessary ingredient, let us assume that an experimental group
has demonstrated a candidate thermal effect in the sub-luminal
region. We ask the question, what other processes could pos-
sibly be responsible for this thermal radiation from the vac-

uum? One could approach this by investigating all the pos-
sible physical processes that could operate in each given ex-
periment. However, such processes will be highly dependent
on the implementation of the analogue system. One would
then be faced with the problem of investigating all the poten-
tial non-Hawking thermal processes for each system individ-
ually. In this work, we analyze an abstract parametrization
of all possible processes compatible with the observed ther-
mality, without the need to specialize to a particular physical
setup. We then show that quantum precision measurements
can be used to experimentally constrain the abstract parame-
ter space (giving rise to thermal effects), and to rule out the
potential non-Hawking processes.

There are many ways an experimental group may try to
rule out stray thermal sources. The most direct one would
be by detecting quantum correlations between particles cre-
ated at the analogue horizon. In this letter we will assume
that the experimenter, perhaps because of the experimental
difficulty of their measurement, or due to intrinsic limitations,
cannot access the correlations either classical [15] or quan-
tum [14] present between the super-luminal and sub-luminal
regions. We instead focus on what can be learned from the
observations in the sub-luminal region alone. The extension
to methods encompassing the detection of correlations will be
the subject of a future work [16].

Condensed matter black hole analogues have an acoustic
metric that is conformal to the Schwarzschild black hole met-
ric [2, 17] in Painlevé-Gullstrand-Lemaître coordinates [18].
Up to conformal factors, the line-element in these coordinates
(~ = c = kB = 1) is:

ds2 = dt2
p − [dx + v(x)dtp]2, (1)

where v(x) is the fluid flow velocity in the negative x direction.
The black hole horizon occurs when the fluid flow equals the
speed of sound v = 1. In analogue systems cutoff scale effects
give rise to a modified wave equation:

�φ = D(∂x)φ, (2)

with the effect of modifying the dispersion relation at high
wave-numbers. For example, in BECs D = −γ2∂4

x, where γ
is related to the healing length. In Einsteinian gravity similar
modifications are speculated to arise from Planck scale cor-
rections [19] to the theory.
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The picture of how the emission occurs in this situation
is quite different to the one originally conceived by Hawk-
ing [21]. The wave-packet that eventually gives rise to the
Hawking particles originates from either inside the horizon
(for super-luminal dispersion at large wave-numbers) or out-
side (sub-luminal dispersion at large wave-numbers).

It was shown in [20] that if the ultraviolet cut-off scale is
much larger than the surface gravity 1/γ � κ then the WKB
method is valid (in appropriately chosen coordinates) through-
out the entire evolution. The initial wave-packet is assumed to
be a superposition of positive frequency waves with respect to
the Kruskal null coordinate, U = −κ−1exp(−κtp − κ

∫
dr

v(r)−1 ).
Canonical quantization then associates an annihilation oper-
ator ÂΩ to the initial wave-packet, where Ω ≡ 2πω/κ and ω
is the ordinary time frequency of the wave-packet when it is
far from the horizon. As this wave-packet evolves towards the
horizon it is ripped into two wave-packets traveling in oppo-
site directions. The late time wave-packet on the sub-luminal
side is associated with the annihilation operator b̂†I , whereas
the late time wave-packet on the super-luminal side is associ-
ated with the annihilation operator b̂†II. Quite remarkably, the
thermal emission is extremely robust even in the presence of
the modified dispersion relation and the transformation can be
described by a two-mode squeezing operation:

ÂΩ = cosh rΩb̂IΩ + sinh rΩb̂†IIΩ, (3)

where rΩ = arctanh(e−Ω),
The process transforms the initial state of the impinging

wave-packet mode into a (thermalized) state in the black hole
exterior. This final state is found by performing the two-mode
squeezing operation (3) and tracing over the mode b̂II that is
swept inside the black hole. The transformation that takes the
initial state to the thermalized output state is a non-unitary
single mode map known as bosonic amplification channel
[10, 22].

Any bosonic channel can be represented in terms of two
real 2n × 2n matrices (X,Y), where n is the number of input
modes of the channel. Given an input Gaussian state with first
moments, d, and covariance matrix (second moments), σ, the
bosonic channel transforms the state according to:

d′ = Xd, (4)
σ′ = XσXT + Y. (5)

Single mode bosonic channels that take thermal states (includ-
ing the vacuum) to thermal states are called single mode ther-
mal channels [23]. In this case, the matrices X and Y can be
expressed as:

X =

( √
|x| 0
0 sgn(x)

√
|x|

)
; and Y =

(
y 0
0 y

)
, (6)

where physical channels must satisfy y ≥ |x − 1|/2.
The covariance matrix of a thermal state has the diagonal

form σ′ = (2n + 1)I2 where I2 is the 2 × 2 identity matrix and
n is the average thermal occupation number of the mode. For
a quasi-monochromatic wave-packet mode of peak frequency
ω, the mean thermal number is related to the temperature, T ,
by n = (eω/T − 1)−1. Therefore, if one prepares the vacuum

FIG. 1. (Color online) We plot the relevant part of the parameter
space of thermal channels parameterized by (x, y) defined in equa-
tion (6). The thick black line corresponds to thermal channels taking
the vacuum state to the thermal state with mean occupation number
n. The Hawking channel is represented by one point on this line at
y = n. Also shown is the classical thermal add noise channel and the
zero transmission thermal channel (see text). The shaded grey region
is an unphysical part of the parameter space and the shaded light blue
region indicates that the channel is entanglement breaking, meaning
that any entanglement initially present between the state and an an-
cilla state (not affected by the channel) is destroyed once the initial
state has passed through the channel.

state and measures a thermal state of mean particle number n
one arrives at a constraint on the channel parameters given by:

2n + 1 = |x| + y. (7)

If we assume that n, is measured to very high accuracy we
can use this relation to eliminate one of the channel parame-
ters. Therefore, all possible Gaussian channels that take the
vacuum state to the observed thermal state with mean particle
number n are characterized by a single real parameter y. For
physically allowed channels the y-values are restricted from
2n/3 to 2n + 1. A picture of the allowed channels is shown in
Fig. 1, where those thermal channels which take the vacuum
state to the thermal state with mean occupation number n lie
on a straight-line in this parameter space.

The Hawking channel (amplification channel) is given by
the conditions that x = n + 1 and y = n. Another channel
of interest is the classical add noise channel in which y = 2n
and x = 1. This would correspond to thermal radiation be-
ing added to the initial state radiating from the direction of
the horizon, we could imagine such low energy radiation aris-
ing from random stochastic noise. Another channel to be dis-
tinguished from the classical add noise channel is the zero-
transmission channel in which x = 0 and y = 2n + 1. This
channel corresponds to the situation in which all the initial in-
formation is totally erased and replaced with thermal radiation
at the output. Of course, there is a whole continuous parame-
ter range of possible channels in between those just described.
Those with x < 1 are lossy channels, while those with x > 1
increase the thermal occupation number of the input state.

We see that there are many ways in which a thermal state
can be obtained from the vacuum. Our objective is to some-
how learn what channel is actually operating in a given exper-
iment and in particular whether or not the channel is of the
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Hawking type. Given an initial vacuum state there is clearly
no measurement to distinguish the channels, since all give the
same thermal output state by definition. However, if we could
prepare different initial states, then the output would no longer
be purely thermal, indeed it would change in a way that was
dependent on the channel. By performing measurements on
the output state, one could distinguish the different possible
values of y from the measurement outcomes. To determine
the best strategy to measure the thermal channel we will use
the theory of quantum parameter estimation [5].

In quantum parameter estimation, given some input state,
ρ0, one searches for the best measurement strategy to deter-
mine the value of a not directly observable (continuous) pa-
rameter associated to a transformation of the input. In our case
the output state is ρy, where y indicates that the initial state
was acted on by the thermal channel corresponding to y. Us-
ing a general positive operator-valued measurement {Ôλ}, one
obtains a probability distribution p(λ|y) = Tr[Ôλρy] from the
measurement outcomes. For N repetitions of the experiment,
the variance of the parameter is bounded by the Cramer-Rao
inequality [24–26], (∆y)2 ≥ 1/NF(y), where

F(y) ≡
∫

p(λ|y)
(

d log p(λ|y)
dy

)2

dλ, (8)

is the Fisher information. The Fisher information is bounded
above by the Quantum Fisher Information (QFI) [27], Hy
which can be written as:

Hy(ρy) = lim
dy→0

(1 − 4F
(
ρy, ρy+dy

)
/dy2, (9)

where F (ρ1, ρ2) ≡ Tr[
√
√
ρ1ρ2

√
ρ1]2 is the fidelity. Note

that the QFI evaluates the fidelity between two infinitesimally
separated output states near the channel y and corresponds to
the Fisher information of a measurement which saturates the
Cramer-Rao bound. The QFI thereby provides a measure of
the ultimate precision attainable for a given probe state. By
fixing the energy of the probe state, one can compare the ef-
fectiveness of different probe states in revealing the channel
parameter y.

If the Hawking process was the dominant thermal process
one would expect to obtain a value of y ∼ n. In order to
perform this type of test the experimentalist needs to prepare
the different initial states in the specified mode. Since we do
not want to limit our analysis to any particular experimental
setup, for simplicity we will assume that any Gaussian oper-
ation is available and restrict the class of initial states that we
consider to coherent states, squeezed states and thermal states.
The analysis can then be repeated for those states which are
available when one considers a specific experimental setup.
Although there may be experimental challenges involved in
preparing such generic states these would not seem to be in-
surmountable for any fundamental reason. Indeed, the pos-
sibility of preparing such states in photon systems, like that
of ultrashort laser pulses, appear viable and recent progress in
the squeezing of BEC phonons [28] is also very promising.

Results.—In Fig. 2 we compare the QFI that could theoret-
ically be attained for the different choices of initial states. We
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FIG. 2. (Color online) Quantum Fisher information for three ini-
tial states: (top green) squeezed state; (middle red) coherent state;
(bottom blue) thermal state. The plot is for the specific choice of
parameters n = 1 (average vacuum–thermal number) and n0 = 10
(mean initial particle number). Grey vertical lines indicate the po-
sition of the Hawking channel (y = 1) and the classical add noise
channel y = 2. While the shape is slightly modified we find a similar
ordering of the strategies for (realistic) low temperature of horizon
radiation n � 1.

consider coherent states of mean particle number n0, squeezed
states with σ = diag{e2s, e−2s} where n0 = sinh s2, and ther-
mal states of mean particle number n0. We find that squeezed
states always give the greatest information in the parameter
space of interest, namely near y ∼ n. In the limit of large
initial energy, n0, we find the simple expressions for the QFI:

Hy(ρcoherent) =
n0

(1 + 2n)(1 + 2n − y)
, (10)

Hy(ρthermal) =
1

(1 + 2n − y)2 + O(n−1
0 ), (11)

Hy(ρsqueezed) =
3
4

(1 + 2n)2n0

y(1 + 2n − y)
+ O(n−1

0 ). (12)

Note that the QFI for the coherent state is exact.
In all cases the QFI depends on the measured parameter,

y. Since the QFI of the coherent state scales linearly with the
initial energy the coherent state makes a very practical probe
state. I.e., we can get as much information as is required sim-
ply by pumping up the intensity. While squeezed states also
have this behavior at large energies, coherent states are in gen-
eral easier to prepare and are therefore preferred.

The extent to which the optimal performance can be
achieved will depend on the technological limitations that are
specific to the analogue spacetime implementation. In gen-
eral, the measurement which attains the QFI may be quite dif-
ficult to perform in practice [27, 29]. However, we find that
for a coherent state with homodyne measurements the Fisher
information is maximized by measuring in the direction of
displacement and is given by F(y) = Hy(ρcoherent). In other
words, the QFI can be attained for coherent state probes (at
any energy) simply by performing homodyne measurements.
Such measurements are readily done in optics experiments
and would appear to be implementable in analogue experi-
ments involving photons. In the phonon case, the reference
field could be created by Bragg scattering techniques [30].

One can verify that a coherent state and homodyne mea-
surements should provide a good strategy to experimentally
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determine the channel parameter y by the following simple
argument. The coherent state provides gain such that the
quadrature measurement (in the direction of the displacement)
yields [32]:

〈q̂〉 = 2
√

2n + 1 − y
√

n0. (13)

Thus y can be determined from the experimentally obtained
values of 〈q̂〉 and n and the known intensity of the coherent
state n0. Furthermore, since ∆q = 2n + 1, the relative un-
certainty of the measurement ∆q/q ∼ 1/

√
n0 decreases like

the inverse square root of the initial energy. Therefore, the
statistical certainty can always be improved by increasing the
intensity of the initial coherent probe state.

So far, we have assumed that the experimentalist can pre-
pare an initial vacuum state in order to measure the temper-
ature of the candidate Hawking radiation and subsequently
determine n. Obviously this is only an approximation since
one can never go to absolute zero temperature. For example,
in non-linear Kerr media there is an ambient temperature of
the environment that the fibre is contained within, and even in
ultra cool systems like BECs the BEC itself will necessarily
have some small but non-zero temperature. One might think
such situations can already be accommodated for in our setup
by considering initial probe states that are very weakly ther-
malized at this ambient temperature, nT . The issue is that the
method we have adopted required measurement of n to elim-
inate one of the channel parameters, namely x. However, if
the initial state of the field is not at zero temperature, then the
modified measured value of thermal radiation from the hori-
zon will carry over into an incorrect identification of x which
introduces an error in the channel identification.

Fortunately, we can handle this situation even when we
don’t know a priori what is the actual thermal channel. Exper-
iments using the nT thermal state will yield a modified tem-
perature with mean particle number:

2n′ + 1 = (2n + 1 − y)(2nT + 1) + y, (14)

where n is still defined to be the thermal number associated
with the action of the channel on the true vacuum state. This
error can be corrected if one knows the ambient temperature
of the system nT and the measured value n′ of radiation from
the horizon. Solving for n we obtain:

2n + 1 =
2n′ + 1 − y

2nT + 1
+ y, (15)

in which case the channel is given by (6) with the same free
parameter y but now x takes the value:

x =
2n′ + 1 − y

2nT + 1
. (16)

A simple calculation reveals that preparation of a coherent
state of mean photon number n0, will lead to gain in the q̂

quadrature according to:

〈q̂〉 = 2

√
2n′ + 1 − y

2nT + 1
√

n0, (17)

which reduces to equation (13) when nT → 0. Therefore, the
measured quadrature value 〈q̂〉, the observed temperature of
thermal radiation from a horizon in the pseudo vacuum state,
n′, and the ambient temperature of the BEC under normal (no
horizon) conditions, nT , allow one to determine the channel
value y. With these modifications one would expect that even
with non-zero initial temperature, one would obtain y ∼ n for
Hawking effects at the horizon.

Conclusion.—By parameterizing the set of thermal chan-
nels and applying tools from parameter estimation we have
formulated quantum tests that could be used to rule out non-
Hawking effects in analogue black hole experiments. The real
benefit of this approach is that one does not need to have a
complete understanding of the fundamental processes of the
system in order to rule out the alternatives. Thereby offering
the use of these techniques in any analogue black hole setup.

We found the nice strategy of coherent state preparation and
homodyne measurements can be used to determine the ther-
mal channel parameter y, and the uncertainty in this parameter
could be made arbitrarily small simply by turning up the in-
tensity of the coherent state. At low energies one could obtain
even better performance by using squeezed states. However,
in practice setups involving squeezed states are likely to be
more difficult to engineer.

The coherent state strategy resembles the strategy re-
cently suggested to discriminate the Unruh effect from non-
amplifying theories [31]. However, in that case a Kennedy
receiver was proposed to implement the measurement which
is considerably more difficult than homodyne detection. Mea-
suring the Hawking thermal channel with coherent states, as
described in this letter, is extremely promising in light of the
fact that homodyne measurements are so easy to implement.

We first presented results for the ideal case in which the
system could be cooled to arbitrarily small temperatures. We
then showed that even non-zero initial temperatures could be
accounted for within our analysis. Our main conclusion is that
if the ambient thermal temperature is properly accounted for,
then one would observe a value of y equal to the the mean
thermal number of the Hawking thermal state at a tempera-
ture proportional to the analogue surface gravity. Estimation
of the channel parameter near the expected value y ∼ n would
certainly rule out a large class of alternatives and give a lot of
support to the interpretation of the temperature as a Hawking
effect. In this work we did not utilize the additional infor-
mation that exists in the correlations between the inside and
outside of the black hole, which may be inaccessible in cer-
tain analogue implementations. This information will provide
even further clues into the nature of the processes taking place
and would be a very interesting path to pursue in future.
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