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Effects of public-health measures for zeroing
out different SARS-CoV-2 variants

Yong Ge 1,2,3,14 , Xilin Wu 1,3,14, Wenbin Zhang 1,3,4,14, Xiaoli Wang5,14,
Die Zhang1,2, Jianghao Wang 1,3, Haiyan Liu 6, Zhoupeng Ren 1,
Nick W. Ruktanonchai7, Corrine W. Ruktanonchai 7, Eimear Cleary4,
Yongcheng Yao4,8, Amy Wesolowski9, Derek A. T. Cummings10, Zhongjie Li11,
Andrew J. Tatem 4 & Shengjie Lai 4,12,13

Targeted public health interventions for an emerging epidemic are essential
for preventing pandemics. During 2020-2022, China invested significant
efforts in strict zero-COVID measures to contain outbreaks of varying scales
caused by different SARS-CoV-2 variants. Based on a multi-year empirical
dataset containing 131 outbreaks observed in China from April 2020 to May
2022 and simulated scenarios, we ranked the relative intervention effective-
ness by their reduction in instantaneous reproduction number.We found that,
overall, social distancing measures (38% reduction, 95% prediction interval 31-
45%), face masks (30%, 17-42%) and close contact tracing (28%, 24-31%) were
most effective. Contact tracing was crucial in containing outbreaks during the
initial phases, while social distancing measures became increasingly promi-
nent as the spreadpersisted. In addition, infectionswithhigher transmissibility
and a shorter latent period posed more challenges for these measures. Our
findings provide quantitative evidence on the effects of public-health mea-
sures for zeroing out emerging contagions in different contexts.

In the early stage of epidemics, it is critical to implement precise and
effective public-health measures to control the spread and contain
community-level transmission in a timely manner, with the aim of
preventing outbreaks fromdeveloping into amajor public-health crisis
similar to COVID-19 crisis1–4. During the COVID-19 pandemic, govern-
ments worldwide have deployed various measures including non-
pharmaceutical interventions (NPIs) and vaccinations to reduce
transmission across waves in 2020–2022. After the initial outbreak in

Wuhan, China’s zero-COVID policy, implemented from April 2020 to
early December 2022, has been among the strictest, longest approa-
ches to tackling the pandemic anywhere in the world5,6. This strategy
for zeroing out emerging contagions aimed to fully interrupt the
transmission of SARS-CoV-2 in varying-scale COVID-19 outbreaks
caused by variants with different transmissibility7. The interventions
included localized and intensepublic-healthmeasures, such as contact
tracing and isolation, full or partial lockdowns, physical distancing,
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mass testing, and strictmaskmandates. Given widespread vaccination
efforts, the decline in clinical severity of variant strains, the high
socioeconomic costs, and potential secondary health hazards includ-
ing mental health5,8–10, the zero-COVID policy has been rapidly lifted
across the country since December 2022, with a surge of infections
caused by the Omicron sub-lineages, BA.5.2 and BF.711,12. However, the
effect of measures under this policy against variants of varying trans-
missibility remains to be quantitatively investigated.

A considerable number of research13–20 has demonstrated the
effectiveness of NPIs in reducing COVID-19 transmission, however,
previous studies have rarely focused on the elimination effects of NPIs
against different variants, particularly for highly contagious pathogens
like the Omicron variant21, particularly because many countries either
instated limited NPIs or exhibited poor adherence during the emer-
gence of Omicron. As emerging infectious diseases may have different
transmission routes and dynamics, public-health interventions should
be tailored accordingly to the different characteristics of infections
during the early stage of epidemics, which is crucial for preventing
escalation to pandemic level22–24. However, the degree to which these

measures are effective in eliminating outbreaks of emerging respira-
tory pathogens with varying epidemiological features, and in different
settings, is yet to be determined.

In many countries, NPI adherence reduced significantly after the
initial wave in 2020 and the goal of interventions across waves chan-
ged from containment to mitigation25–29, implying potential con-
founding between reduced NPI effectiveness and weakenedmeasures.
China’s COVID-19 responses for different strains provide us with a
unique, real-world dataset, in terms of size and duration, to assess the
effectiveness of zero-COVID measures against emerging respiratory
infectious diseases of different transmissibility and virulence indiverse
settings (see Fig. 1). Taking the responses to SARS-CoV-2 variants in
China as an example, we designed a rigorousmulti-year data collection
program to assemble a comprehensive dataset, describing the infec-
tion profile and countermeasures for each outbreak in China from
April 2020 through May 2022. Mathematical models for simulating
transmission and Bayesian inferencemodels were built to evaluate the
impact of different interventions and define which measures were
most useful for eliminating emerging contagions during the early
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Fig. 1 | COVID-19 outbreaks and interventions in China during zero-COVID
policy under Pre-Delta, Delta, andOmicron periods. aDaily new cases reported
during the 131 outbreaks in mainland China, from April, 2020 to May, 2021. The
green arrows mark the predominant strains within each stage of the pandemic.
b Estimated instantaneous reproduction number (Rt ) for each outbreak, aligned
with the start date of each outbreak. The solid blue line illustrates the estimated
overall Rt for 131 outbreaks, while the blue shaded area indicated its 95% con-
fidence interval (95%CI). c Heat map of mean intensity level of interventions for
different variants and geographic regions of China. The color bar on the left side of
the heat map represents the variant of each outbreak, green for Pre-Delta period,

brown for Delta period and blue for Omicron period. The x axis shows the
abbreviations of non-pharmaceuticalmeasures, including stay-at-homeorder (SO),
business premises closure (BPC), public transportation closure (PTC), gathering
restriction (GR), workplace closure (WC), school closure (SC), medicine manage-
ment (MM),mass screening (MS), facialmasking (FM) and contact tracing (CT).We
divided the 10 NPIs into four categories: social distancing measures (SD), poly-
merase chain reaction screening (PCR), contact tracing (CT), and facial masking
(FM). The color bar above the heat map represents the category to which each
individual measure belongs.
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stages of outbreaks, according to local conditions and epidemiological
characteristics (see Methods).

Results
Effects of zero-COVID interventions against different variants
in China
From April 2020 to May 2022, 90 prefecture-level Chinese cities
reported 131 outbreaks that had at least 50 cases and lasted at least 7
days (Fig. 1 and Supplementary Fig. 1). These included 12 outbreaks
caused by the pre-Delta variants (i.e., lineages B.1.1, B.2, and B.1.1.7), 27
outbreaks of the Delta variant, and 92 outbreaks of the Omicron
lineages. The implementation of zero-COVID policy was hetero-
geneous across regions and over time (Fig. 1c). For example, on a
regional average, the intensity of stay-at-home order in South Central
and Southwest China decreased from 0.5 in Pre-Delta era to 0.4 in
Omicron era,whilemass screening had an intensity increasing from0.1
to ~0.3 in most regions (Note that the intensity of each measure was
normalized from 0 to 1, where 1 indicates the strictest and 0 indicates
the least strict). This indicates that affected cities in southern China
eased some stringent measures, such as stay-at-home order, and
increased the frequency of PCR testing. Based on the data of these
outbreaks and Bayesian inference models with a leave-one-out cross-
validation approach30, we estimated the effects of four groups of
interventions, i.e., social distancing measures, nucleic acid PCR
screening, contact tracing, and facial masking, under the policy for
fully interrupting the transmission in local communities. As Fig. 2a
shows, overall, social distancing measures, through reducing the
spread caused by human movements and physical contact, had the
most desirable effect on the reduction in Rt (>38%), while facial
masking (mean 30%, 95% prediction interval 17–42%) and contact tra-
cing (28%, 24–31%) showed a lower impact, respectively.

Social distancing measures similarly showed a strong ability to
reduce transmission before the Delta-variant outbreaks (over 50%).
However, during the Delta and Omicron outbreaks, social distancing
measures with a 30% and 33% reduction in Rt , respectively, were
relatively less effective at preventing transmission than they were
before the Delta era. For facial masking, the lowest contribution to
transmission reduction (24%, −1%–60%) was shown in the pre-Delta
era. In the Delta era, it demonstrated a moderate Rt reduction of 43%
(20%-64%), while in the more recent Omicron era, it showed the
highest effectiveness of 53% (32%-64%). In addition, contact tracing
demonstrated the highest ability to reduce transmission (24%,
0%–47%) after the emergence of the Omicron variant, ranking second
among the original and Alpha strains (12%, 0%-46%). Mass PCR
screening showed various abilities to reduce Rt among pre-Delta (11,
0%–45%), Delta (3%, −1–15%), and Omicron era (2%, −1–13%).

Nevertheless, when the 131 COVID-19 outbreaks were divided into
four groups based on infectivity and duration, we found that PCR
screening, which focused on detecting each infected individual in
communities, was more effective in combating outbreaks that had
sustainable transmission. Contact tracing played a critical role in
containing outbreaks in the early stages, particularly for small out-
breaks (32%, 95%CI 28–35%). However, as transmission continued, the
relative impact of contact tracing decreased (from 32% to 2%), while
social distancing emerged as the most effective measure (from 34% to
62%). More details can be found in supplementary Section B.7.

To further validate the effects of NPIs estimated by Bayesian
inference, we employed an Intervention-SEIR-Vaccination (ISEIRV)
model to simulate transmission under varying real-world and coun-
terfactual intervention scenarios (e.g.,without implementing one or all
NPIs, see Fig. 2b). We found the implementation of NPIs protected
>98% of the would-be infected populations from infection in each city.
The prompt implementation of, and stringent adherence to, NPIs
protected 80 (95% confidence interval [CI], 55–110) million people
from infection during the same periods of real-world outbreaks in the

affected areas. Furthermore,we evaluated the contributionof eachNPI
in reducing infections under different variants by simulating trans-
mission in the absence of NPI implementation. The results corroborate
the ranking of NPI effects inferred by the Bayesian model (Fig. 2).

However, there are two key aspects that need to be considered
when interpreting the above findings. First, this study did not assess
the effects of long-lasting international travel restrictions and quar-
antine for reducing the introduction risk, which might overestimate
the impact of other interventions in containing local transmission
within each city. Second, the small-scale, short-duration outbreaks
were excluded from the modeling, which might have led to an
underestimation of the effectiveness of some NPIs, such as contact
tracing, thatmight also play an important role in controlling epidemics
in the early phases.

Impacts of timing and intensity on NPI effects
To further understand how the timing and intensity of various NPIs
shaped their effectiveness in containing emerging infections under
different settings, we ran simulations for different cities, including five
large population-size cities (LC), five medium population-size cities
(MC), and five small population-size cities (SC), where Omicron out-
breaks occurred (Supplementary Table 9). Each group of simulations
contained transmission curves for 1800 scenarios, of which four NPIs
with ten levels of intensity were implemented at five different start
times under nine combinations of propagation parameters (R0 = 3, 8,
and 13; Latent period = 1, 4, and 7 days). Fig. 3 shows the relative
reduction of daily mean infections for each scenario in different
population-size cities, relative to the baseline scenario without any
interventions implemented.

We found universally that the sooner all NPIs were in place, the
more effective they were. Themore contagious the pathogen and the
longer the latent period was, the more necessary it was to introduce
NPIs as early as possible. Meanwhile, a smaller population means a
shorter window of timing for NPI implementation, as the susceptible
population would be depleted more quickly in smaller cities. Among
the four NPI groups, contact tracing proved to be the most effective
measure across city sizes, showing more effectiveness at intensities
above 0.6, 0.5, and 0.4 in LCs, MCs, and SCs, respectively. However,
when the start time exceeded a certain threshold (~25 days), the
effect of contact tracing fell dramatically even at the highest intensity
across bothMCs and LCs. The second-ranked intervention was social
distancing measures, particularly in containing the spread of infec-
tious diseases in LCs.We also found that a higher intensity of NPI was
necessary for diseases with higher transmissibility and shorter latent
periods. Facial masking showed similar effects among all cities, but
the effect of large-scale testing diminished as the population
increased.

Optimal intervention packages and challenges in zeroing out
emerging infections under varying scenarios
To seek the optimal combination of interventions, we simulated the
infection profile with two or more NPIs implemented simultaneously
under different outbreak parameters. As illustrated in Fig. 4 and sup-
plementary Section D.1, we traversed each combined scenario of
intervention strategies aswell as the start time and intensity in LC,MC,
and SC settings. Since the long-term implementation of NPIs usually
requires enormous resource and livelihood sacrifice31,32, a simulated
policy scheme that failed to stop the transmission within 3 months
(90 days) or where the outbreak infects >10,000 people was deemed
ineffective, considering the policy’s potential socioeconomic and
secondary health impacts (e.g., overwhelmed healthcare)33–35.

We found that implementing NPIs after day 14 of the outbreak
would fail to interrupt transmission within 60 days when R0 exceeded
8.When R0 was <3, contact tracing coupled with amask-wearing order
can effectively contain the outbreak within 60 days, regardless of a
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city’s population size. As the latent period grew or the population size
increased, the time cost of zeroing infections would increase con-
comitantly. For all cities, tracing and isolating at least 60% of close
contacts by day 7 of outbreaks was generally effective. However, if the
start of intervention was delayed until day 14, the intensity of contact
tracingmight need to be increased to 70% contacts traced forMCs and
80% contacts traced for LCs.

Containing infectious diseases with higher transmissibility and
shorter incubation period could be particularly challenging using NPIs
alone. To effectively prevent an outbreak (R0 = 13 and latent period =
4) from escalating into pandemic, cities might start interventions
within a week of the outbreak, coupled with efficient close contact
tracing (>70%) and relatively rigorous social distancing measures
(>0.5). For areas with more dense populations (e.g., LCs), the strictest
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measures were necessary to zero a highly transmissible disease (e.g.,
infections with an R0 of 13) within 3 months. That means a significant
investment of time, effort, and resources thatmight not be feasible for
a long time in the real-world.

Discussion
Based on China’s zero-COVID practice and data in 2020–2022, we
evaluated the impact of different public-health interventions for
eliminating emerging respiratory viral infections in diverse settings.

Fig. 2 | The relative effects of interventions in containing different SARS-CoV-2
variants. a The overall effects were estimated by the coefficient of each individual
NPI in Bayesian inference models. Reductions in Rt were shown as mean, 50%, and
95% prediction intervals. PCR screening showed the joint effect of mass screening
and medicine management (generic antipyretics, not specific drugs for COVID-19).
Social distancing measures represented the joint effect of stay-at-home order,
business premises closure, public transportation closure, gathering restriction,
workplace closure, and school closure.b Infections simulatedby Intervention-SEIR-
Vaccination (ISEIRV) model under all real-world NPIs (curves in brown) or in
counterfactual scenarios where social distancing measures (SD), facial mask (FM),

contact tracing (CT), PCR screening (PCR), or all NPIs were not implemented,
respectively. Mean and 95% confidence intervals (CI, shaded areas) are presented.
The brown dashed lines are the total population of cities with outbreaks of each
variant. The gap between the simulated curve without each NPI and the red curve
represents the effect of each removed NPI in containing the spread. The wider the
gap, the higher the effect of NPIs. c The ratio of the area under the cumulative
infection curve for the corresponding scenario (with one NPI removed) to the area
under thebaseline scenario curve (with all NPIs removed). The closer it gets to 100%
indicates the more effective the removed NPI is for the respective variant.
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We found that containing highly transmissible infectious diseases with
short incubation periods through NPIs can be particularly challenging,
due to the relatively heterogeneous effectiveness of interventions
under varying epidemiological and socioeconomic contexts. The
relative effect of public-health measures on zeroing out transmission
was sensitive to the infectivity of pathogens, the timing and intensity of
NPIs, and combinations of interventions, which should be considered
in tailoring response strategies at different stages of an emerging
epidemic or pandemic in various regions14,15,36. For instance, similar to
findings in the United Kingdom37 and the United States38, contact tra-
cing was found to be more effective than social distancing and large-
scale tests at the early stages of outbreaks, in curbing transmission by
pinpointing the infected individuals and isolating close contacts in

communities39–42, while social distancing represents a general
requirement applied to all individuals in an area, regardless of people’s
infection or exposure status. However, if there are many scattered
cases or a significant proportion of the population infected in the
middle to late stages of the outbreak, we might expect social distan-
cing and masking to work better than mass screening and contact
tracing37,43,44. In places with considerable population flow, contact
tracing and mass screening might be more effective than social dis-
tancing andmasking in reducing imported infections40,45. Nonetheless,
mass testing could be increasingly laborious and time-consuming
facing a large population size. Pre-symptomatic or asymptomatic
infectionsmight alsoweaken the impact of population-scale testing, as
many infected individuals cannot be identified or the gatherings in test
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the total number of infections in the corresponding size of cities, while the y axis
represents themean value of the durations in the corresponding size of cities. The
rings of each combination represent the start day of NPI implementation for each
outbreak (innermost ring), social distancing intensity (middle ring), and contact
tracing intensity (outer ring), respectively. The green, red, and blue colors

correspond to large cities (LC), medium cities (MC), and small cities (SC). We
considered each combination to be effective when it is valid for more than three
cities in parallel. We assumed a 50% probability that an individual wears a mask
when in contact with an infected person during outbreaks, considering feasibility
and generalizability to the other countries/areas. The simulation results of other
scenarios are available in supplementary (See Supplementary Figs. 16–38).
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sites could potentially increase the riskof transmission46. Nevertheless,
facial masking played a most stable role, especially given its role in
reducing the risk of transmission in households or indoor settings46–50.
In light of this, many governments worldwide have responded to the
emergence of COVID-19 by enacting legislationmandatingmask usage
in public places51. Additionally, the continued significance of mask-
wearing as a vital tool in East Asia to control the spread of respiratory
infections is well-documented52.

The surge of cases and delayed responses during an outbreak
might overwhelm the system of tracing and testing53, leading to a
reduction in the likelihood of cases being properly identified. In such
scenarios, social distancing measures could play a more important
role for containing outbreaks that have spread widely, showing its
stronger cumulative effects in simulations over a longer time period.
These measures might be relatively effective, straightforward, and
easy to implement14,54, compared to other interventions that require
changes in individual health behaviors (such as mask wearing) or
involve the deployment of resources (such as testing kits and
laboratories). Moreover, as highlighted by Brauner et al.30, the com-
bined implementation of certain NPIs has the potential to yield even
more optimal effectiveness in mitigating pandemics. However,
maintaining the social distancing policy over time could lead to
potential adverse consequences, including negative socioeconomic
and mental health impacts55–57. Governments and health depart-
ments, therefore, should remain vigilant and shift their strategies as
appropriate.

While the data from the zero-COVID policy provided real-world
evidence of interventions for zeroing out outbreaks caused by variants
with different severities, however, the lack of knowledge about
emerging contagions renders challenges in conceiving precise NPIs
packages as well as their efficient implementation. Simulated out-
breaks indicated that tracing and isolation alone can control outbreaks
caused by less transmissible contagions. Nevertheless, if a disease with
high clinical severity spreads rapidly in a population, further social
distancing interventions like school closures andgathering restrictions
might be necessary as supplements. In addition, as the transmissibility
increased, social distancing measures might show a decreasing and
lagged impact in reducing the spread in communities58,59. We note that
rapid growth in the number of cases caused by a highly contagious
disease would narrow the control window, a time delay where spread
can be contained, and a reminder that the timeliness to implement
these universal NPIs is key. However, the high proportion of asymp-
tomatic infections (88%, IQR 41%–100%) observed during the Omicron
waves highlights the need for strong organizational proficiency and
resource allocation readiness to enable timely interventions and pre-
vent further infections60–62. NPIs may therefore have a limited role in
containing highly transmissible infectious diseases rapidly, and a
mitigation strategymay be the alternative solution63. There are several
limitations to our study. First, we only focused on the role of NPIs in
interrupting the transmission of emerging infectious diseases, which
we assumed have serious health consequences in terms of hospitali-
zation or mortality. This study did not explore the feasibility of these
zero-infection strategies by assessing their direct or indirect socio-
economic costs and health benefits in varying settings. Second,
although national guidelines for COVID-19 responses in China have
been issued and modified according to the changing situations of the
pandemic and the virus64, local governments were relatively indepen-
dent in terms of NPI implementation, rendering challenges in quanti-
fying the intensity and subtle changes of interventions in each study
outbreak. Third, our conclusions resulted from the assumption of
independent effects of NPIs. However, it is important to recognize that
public-health measures with different mechanisms may exhibit
synergistic effects, such as mask wearing and social distancing, or
vaccination with NPIs24. We plan to further explore these synergistic
effects in the future.

Methods
Data sources and processing
Epidemiological data. Data sources for outbreaks included press
releases from local government websites or reports from the local dis-
ease control and prevention agencies at the province, city/prefecture,
and district/county levels, as well as updates from official social media
accounts of governments or health departments (supplementary Sec-
tion A). For each outbreak, we collected the basic information of loca-
tion, start and end dates, strains, and suspected sources, as well as the
daily number of new infections and cases identified among close con-
tacts who had been isolated and quarantined. Based on the case infor-
mation reported from official sources, we defined the onset of an
outbreak as the date when new non-isolated cases started to increase.
The end of an outbreak was defined as the date when zero new cases
were initially reported, followed by a consecutive period of more than
7dayswith nonew infections.When an outbreak displayed twoormore
discernible peaks, with a sustained period of over 5 days between these
peaks characterized by zero new cases, we designated the appearance
of new cases as the beginning of a new wave. To ensure a sufficient
sample size for assessing intervention effects, we ruled out the out-
breaks that had<50cases or lasted less than 7days.Ultimately, a total of
131 outbreaks were employed in the following analyses.

Public-health measures. For each outbreak, we collected the corre-
sponding public-health measures from the websites of local govern-
ments. The collected public-health measures include: (1) stay-at-home
order (SO), (2) business premises closures (BPC), (3) public transpor-
tation closures (PTC), (4) gathering restrictions (GR), (5) workplace
closures (WC), (6) school closures (SC), (7) facial masking (FM), (8)
mass PCR screening (MS), (9) medicine management (MM), and 10)
contact tracing (CT). Nine of the indicators are recorded on an ordinal
scale representing the level of policy stringency. In China, bothMS and
CT were deemed essential approaches for infection detection and
tracing but differ in definition and implementation as follows. Mass
screening was typically conducted for individuals without a clear
exposure history but who were at risk of exposure, such as those
residing in the same community as a confirmed case. Only if a positive
test result was obtained, the individual would be quarantined, and until
then they were allowed to move around. However, close contact tra-
cing refers to the detection and isolation of individuals with a history of
exposure to a case. These individuals were regularly tested for COVID-
19 nucleic acid during the quarantine period. More details on data
processing and synthesis canbe found in the supplementary Section A.

Control variables. The trajectory of infectious diseases can also be
influenced by some confounders like weather, season, and vaccination
via the effect on viral activity and human behavior. Confounders
considered in this study were daily temperature, humidity, population
density, and vaccination rate. We derived the daily mean temperature
and humidity within each city with data from Google Earth Engine
(GEE) from Global Land Data Assimilation System Version 2 (GLDAS
2.1), a dataset with a combination of model and satellite- and ground-
based observation data65. However, we excluded humidity as a control
variable in our model, due to its high collinearity with air temperature.
Population density obtained from http://www.stats.gov.cn/. Vaccina-
tion data at the province level were collected from http://www.nhc.
gov.cn/. Although inactivated vaccines seem to have low efficacy to
prevent Omicron infections among the population66,67, vaccination
data were processed as a practical vaccination rate, based on the full
vaccination rates and the efficacy of COVID-19 vaccines (see Supple-
mentary Table 2). Please see supplementary Section A.3 for more
details on vaccine data processing.

Ethical approval. Ethical clearance for collecting and using secondary
data in this study was granted by the institutional review board of the
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University of Southampton (No. 61865). All data were supplied and
analyzed in an anonymous format, without access to personal identi-
fying information.

Bayesian inference model
We built a Bayesian model to infer the effects of NPIs on the
reduction in instantaneous reproduction number (Rt) (see Fig. 5).
In this study, Rt was estimated by a Bayesian framework68 (see
supplementary section B for more details). For a robust, localized
estimation, we assumed that the effectiveness of the individual NPI
was relatively stable in each outbreak regarding the same variant
and location. The effectiveness of each NPI was evaluated by esti-
mating howmuch of the variation in NPI intensity could account for
the reduction in Rt . Specifically, a generalized linear relationship
between NPI intensity and the reduction was considered below. The
relationship between each individual NPI and effect on the reduc-
tion of Rt was assumed to be linear. This assumption was incorpo-
rated into a hierarchical model, where varying slopes were used for
each variant. Non-informative priors with a Gamma distribution
were included in the model consistent with methodology employed
by Yong et al. and others20,24,30,69.

Φt,v =R0,v

Yn

i=0

exp �αi,vX i,t,v � βiTi,t,v

� �
+ ε1 ð1Þ

Φt,v ∼ gammaðRt,v,σt,vÞ ð2Þ

Where Xi,t,v indicates each individual NPI i under variant v on day t. n
represents the number of NPIs. Ti,t,v indicates the control variable, i.e.,
air temperature, population density and practical vaccination rate
used in this study. αi,v represents the coefficient of the covariate X

across different variants v. Following the assumption by Flaxman
et al.14, the NPI coefficients are assigned a Gamma distribution with
shape parameter 1/6 and scale parameter 1 and further shifted by log
(1.05)/6 to accommodate for both positive and negative effects, see
supplementary Fig 5. βi represents the coefficient of the control vari-
able. We placed it a Normal prior with a coefficient of Nð0, 0:5Þ, indi-
cating βi might also be associated with the trajectory but remains
constant across all variants. The contribution of other unobserved
confounding factors to the Rt decay is indicated by the residual ε. We
set the prior of the basic reproduction number R0,v to obey a Gamma
distribution with a shape parameter of f and a rate parameter of 0.1,
where f varied with SARS-CoV-2 lineages (see supplementary Table 5).
σt,v indicates the variance ofRt,v, whichwas estimated by the observed
cases data on a daily basis for each study outbreak. Note that each NPI
has been normalized to 0−1. The details of pre-processing NPIs can be
found in supplementary method A.2 and supplementary Equation
Table (https://github.com/wxl1379457192/Zeroing_out_emerging_
contagions/blob/main/Supplementary_equation_table.doc).

Finally, we estimated the effectiveness of each NPI group under
each variant using Markov Chain Monte Carlo methods with
Rstan70. We ran 5 parallel chains for 10,000 iterations with 5000
iterations for warmup and a thinning factor of two to obtain 12,500
posterior samples. And the effect of NPIs can be computed by
1� expð�Pn

i αi,vX i,t,vÞ, which Xi,t,v represents the median intensity
of each individual NPI Xi for variant v. n represents the number of
NPIs in each category. The median value of NPI intensity was cal-
culated based on the normalized NPI. The NPIs effect was defined as
the percentage reduction of Rt relative to R0 with its highest value
of 1, representing the outbreak has been fully contained. The leave-
one-out cross validation method was used to validate our model

Daily new cases for 131
outbreaks

from March 2020 to May 2022

The instantaneous basic
reproduction number Rt

Xi,t

Contact tracing (CT)

Facial masking (FM)

Air temperature

Pratical vaccination rate

Lockdown (L)

Public
transportation
closure (PTC)

Business premises
closure (BPC)

School closure
(SC)

Workplace closure
(WC)

Gathering
restriction (GR)

Social distancing
measures (SD)

Medicine
management (MM)

Mass screening
(MS)

PCR testing (PCR)

Observed real world effectiveness of
NPIs (SD, PCR, CT, FM)

Simulated real world effectiveness of
NPIs (SD, PCR, CT, FM)

Estimation of model parameters

Impact of NPI timing
and intensity

Strategies for
containing future

emerging contagions

NPIs

Control variables Ti,t

Model 2

Model 3 Model 4

Model 1

Bayesian inference model ISEIRV model

Population density

Fig. 5 | Schematic flowchart of data and models for this study. A prior on the
basic reproduction number R0,v was used for each outbreak, with a hyperprior
varying by SARS-CoV-2 lineages (see Supplementary Table 5). Then, we estimated
the instantaneous reproduction number (Rt) based on the observed daily new
cases. By comparing observed Rt with R0,v in a Bayesian inference model, we esti-
mated the coefficients of variables to assess their effects on curbing COVID-19. Ten
NPIs were divided into four categories: social distancing measures (yellow),

polymerase chain reaction screening (red), contact tracing (green), and facial
masking (blue). Finally, an Infectious-Intervention-SEIR-Vaccination (ISEIRV) model
was built to simulate the timing and intensity of NPI implementation and elimina-
tion strategies under diverse transmission scenarios. The prior information for
parameter estimationwithin the ISEIRVmodelwas informed by the effectiveness of
each NPI category.
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(see supplementary Section B). We also performed a sensitivity
analysis to assess the robustness of model parameter assumptions
(see supplementary Section E).

Reconstructing and simulating transmission under varying
scenarios
Compartmental model. The classic SEIR model divides the whole
population into four components, including the susceptible (S)
population which can be infected, the exposed (E) population which
has been infected but not yet be infectious, the infectious (I) popula-
tion who can infect the susceptible, and the recovered or removed (R)
population which cannot be infected or spread pathogens to other
people. We modified the classic SEIR model into Intervention-SEIR-
vaccination model (ISEIRV) to account for the impact of NPIs imple-
mentation and large-scale vaccination:

N = Sð0Þ+ Eð0Þ+ Ið0Þ+Rð0Þ ð3Þ

Sðt + 1Þ= SðtÞ � βðtÞð1� cðtÞÞIðtÞSðtÞ
N

� vðtÞSðtÞ ð4Þ

Eðt + 1Þ= EðtÞ+ βðtÞð1� cðtÞÞIðtÞSðtÞ
N

� λEðtÞ ð5Þ

Iðt + 1Þ= IðtÞ+ λEðtÞ � rðtÞIðtÞ ð6Þ

Rðt + 1Þ=RðtÞ+ rðtÞIðtÞ+ vðtÞSðtÞ ð7Þ
As vaccines have been used to mitigate COVID-19 transmission in

the middle of our study time period, we added an additional term
vðtÞSðtÞ in the dynamics of the susceptible population, where vðtÞ is the
daily practical vaccination rate transferring the susceptible population
to the virtually recovered population with vaccine-introduced immu-
nity. Given the short period of simulations for each outbreak, the
overall low efficacy of vaccines to prevent infections, and the fact that
the majority of populations have not been infected, the decline in
immunity during the outbreaks was not considered. λ is the inverse of
the latent period representing the transfer rate from the exposed
population to the infectious population, i.e., the time lag between
being infected and being infectious.

The transmission rate β between the susceptible and the infec-
tious populations was designed as a function of time to reflect the
impact of NPI implementation. That is,

βðtÞ=b0expð�b1x1ðtÞÞ*ð1� 0:25x2ðtÞÞ ð8Þ

where b0 is the baseline of the transmission rate without any inter-
ventions, x1 is the integrated measure of the strengths for the contact
reduction aimed NPIs, and x2 is the fraction of the population that
complied with the requirement to wear a mask. Efficiency of facial
masking for preventing indoor transmission was set as 25%71. The
generalmeasure of contact reductionwas calculated byNPIs including
(1) stay-at-home order, (2) business premises closure, (3) public
transportation closure, (4) gathering restriction, (5)workplace closure,
and (6) school closure. The intensity of the general contact-reduction
measure was then defined by the linear combination of the intensities
of relevant NPIs on a daily basis:

x1 =
X6

i= 1

wi*Xi ð9Þ

wi =
eiP6
i= 1ei

ð10Þ

where the weights wi for each NPI Xi was proportionally deter-
mined by its empirical ei of reducing Rt assessed by the Bayesian
inference model. Next, the dynamic transmission rate was further
adjusted by the contact tracing rate cðtÞ, which measures the daily
ratio of cases identified among close contacts in isolation to all
cases reported.

The detection and quarantine of infectious populations could
reduce the probability of transmission. Therefore, we also modified
the recovery/removed rate r, to account for the implementation of
mass testing, which moves infectious people into the compartment R.
In specific, r was modeled as

rðtÞ= 1=ðr0expð�r1x3ðtÞÞÞ
1 + expð�r2ðt � r3ÞÞ

11

where r0 is the infectious period for omicron72, and x3 is the intensity
ofmass screening. For pre-Delta andDelta periods, we adjusted r0 as 7
and 6, respectively. The term, 1=ðr0expð�r1x3ðtÞÞÞ, indicates the
expectation of the virtual recovery rate. Considering the policy lag
and process of large-scale mass screening, the recovery rate was
adjusted in the shape of logistic function by dividing
1 + expð�r2ðt � r3ÞÞ. r1,r2 and r3 are underestimated model coeffi-
cients. More details on parameter calibration andmodel validation for
ISEIRV can be found in the supplementary method.

Scenario analysis of zeroing strategies. To reveal the effects and
challenges of NPIs and intervention timings on zeroing out emerging
contagions under different scenarios, we further simulate the spread
of emerging respiratory viral infections in cities with varying popula-
tion sizes (<5 million, 5–10 million, and over 10 million residents) (See
supplementary Table 7). We simulated the epidemiological trajectory
of the spread of the virus within each city using ISEIRV model in
MATLAB version R2022a, under 1800 scenarios (4 NPIs × 10 inten-
sities × 5 time-points × 9 epidemiological parameter schemes) includ-
ing nine combined transmission settings (set R0 = 3, 8, 13, and
incubation period (It) = 1, 4, 7 days, respectively). The simulations
focus on the time-point and the intensity to implement NPIs, including
social distancing measures (SD), facial masking (FM), PCR screening
(PCR), and Contact tracing (CT). Effects of the implementation of
independent and combined NPI were also assessed (see our supple-
mentary SectionD for details). For each transmissionparameterization
scenario, we simulated infection curves with zero-implementation as
benchmark.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the data used in this study are publicly available online at: https://
github.com/wxl1379457192/Zeroing_out_emerging_contagions.

Code availability
The modeling codes for this study are available online at Zenodo:
https://doi.org/10.5281/zenodo.8195369. The code for processing cli-
mate data on GEE (Google Earth Engine) can be found via https://code.
earthengine.google.com/81f7cd2ef122d3f7f597a63cc603196d.
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