
Mode mixing and losses in misaligned1

microcavities2

W. J. HUGHES1,* , T. H. DOHERTY1 , J. A. BLACKMORE1 , P. HORAK2
3

AND J. F. GOODWIN1
4

1Department of Physics, University of Oxford, Clarendon Laboratory, Parks Rd, Oxford, OX1 3PU, UK5
2Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK6
*william.hughes@physics.ox.ac.uk7

Abstract: We present a study on the optical losses of Fabry-Pérot cavities subject to realistic8

transverse mirror misalignment. We consider mirrors of the two most prevalent surface forms:9

idealised spherical depressions, and Gaussian profiles generated by laser ablation. We first10

describe the mode mixing phenomena seen in the spherical mirror case and compare to the11

frequently-used clipping model, observing close agreement in the predicted diffraction loss, but12

with the addition of protective mode mixing at transverse degeneracies. We then discuss the13

Gaussian mirror case, detailing how the varying surface curvature across the mirror leads to14

complex variations in round trip loss and mode profile. In light of the severe mode distortion15

and strongly elevated loss predicted for many cavity lengths and transverse alignments when16

using Gaussian mirrors, we suggest that the consequences of mirror surface profile are carefully17

considered when designing cavity experiments.18

© 2023 Optica Publishing Group19

1. Introduction20

Fabry-Pérot optical cavities are a leading platform for enhancing and controlling light-matter21

interactions, enabling coherent interactions between quantised emitters and single photons [1].22

This capability has been used to demonstrate deterministic single-photon production [2], atom-23

photon logic gates [3] and remote entanglement generation [4]. The properties of the cavity24

constitute the core limitation to the success and scalability of many of their applications [5–7]25

and, accordingly, cavity design and fabrication remains an active area of research [8–10]26

Many seminal demonstrations in optical cavity QED used cavities with superpolished mir-27

rors [11–14]. These mirrors are typically highly spherical within the milling diameter [15]28

and continue to be used for leading experiments [6, 16]. However, to improve the strength and29

efficiency of light-matter interfaces, cavities with highly curved mirrors and thus low optical mode30

volume are beneficial [17], and alternative mirror fabrication techniques have been developed to31

produce the tight curvatures required while maintaining high surface quality [18–20].32

One commonly-employed method is laser ablation, during which evaporation and surface33

tension effects produce highly-curved substrates with low roughness [21–23]. This technique34

is often used to place micromirrors on the tips of optical fibres [24]. Cavities constructed in35

this manner have been coupled to many promising emitters for quantum information processing,36

including neutral atoms [9,25,26], ions [27,28], quantum dots [29] and nitrogen vacancies [30–32].37

However, the ablation laser generally imparts its Gaussian transverse intensity distribution into38

the mirror profile [33], manifesting particular consequences for the emitter-photon system that39

are not observed with spherical or parabolic mirrors. Firstly, ellipticity of the addressing40

laser leads to anisotropic profiles and thus geometric birefringence [34], which can introduce41

intracavity polarisation rotation [35] that may frustrate applications such as remote entanglement42

generation [36]. Secondly, the non-spherical mirror surface causes the well-known modes of a43

cavity with spherical mirrors [37] to mix with each other upon reflection [38], forming new cavity44

eigenmodes with distinct transverse profiles that produce significant optical losses for certain45



geometries [39–41]. The issues related to the Gaussian shape of ablated mirrors have encouraged46

the development of more advanced ablation techniques [8,40] or the use of alternative fabrication47

methods [42].48

Mode hybridisation in optical cavities has been well-studied for the idealised scenario of49

perfectly transversely aligned mirrors [43]. However, the mirrors of an optical cavity are50

commonly subject to transverse misalignment, whether induced by the mirror milling process,51

manufacturing tolerances of the mirror substrates, or the alignment and fixing of the mirror52

substrates relative to each other [44,45]. It is therefore important to understand the combined53

impact of mirror profile and transverse misalignment to design optical cavity systems that can54

function reliably under realistic misalignment.55

Here, we use recently developed extensions [46] to the mode mixing method of Kleckner56

et al. [38] to model transverse misalignment with reduced numerical difficulty compared to57

conventional techniques. The paper is organised as follows. In Sec. 2, we summarise the theory58

utilised in our investigation. In Sec. 3, we present results for cavities with finite-diameter spherical59

mirrors, comparing the calculated losses to the classical clipping model. We then analyse cavities60

with Gaussian-shaped mirrors in Sec. 4, exploring how the variable surface curvature yields61

more complicated manifestations of mode-mixing physics. Finally, in Sec. 5, we suggest the62

implications of the results presented on the design of Fabry Pérot microcavities.63

2. Theory summary64

This paper compares the behaviour of both finite-diameter spherical mirrors (henceforth ‘spherical65

cap mirrors’), and Gaussian-shaped mirrors, under transverse misalignment. The analysis66

performed uses first a simple geometric approach for predicting the propagation direction and67

central waists of the resonant cavity modes under mirror misalignment, and then uses the mode68

mixing method [38] to calculate the resonant modes more accurately. A summary of the geometric69

and mode mixing approaches to determining the cavity modes are given below.70

2.1. The geometric picture71

The geometric picture estimates the cavity mode in a simplified manner by restricting itself only72

to fundamental Gaussian beams. Firstly, the mode axis is chosen to be the line that intersects73

both mirrors orthogonal to their surface. Secondly, the transverse structure of a fundamental74

mode is determined by requiring that the wavefront curvature of the predicted mode matches the75

local curvature of the mirror at the intersection of mode and mirror for both mirrors [47]. This76

procedure determines the positions and the waists of the mode in each transverse direction.77

The mode predicted by this method, henceforth known as ‘the geometric prediction’ and78

denoted
���Ψ𝐺

0,0

〉
, is useful to understand the impact of mirror geometry on mode propagation79

direction and central waist. However, this method accounts for the mirror shape only through its80

local gradient and curvature; higher order components in the Taylor expansion of the surface81

profile about the intersection point, which become important to describe the surface profile away82

from the central intersection with the mode, are not accounted for. For spherical cap mirrors,83

the mirror curvature remains constant within the mirror diameter, and therefore, provided the84

mode axis intersects the mirror within the finite diameter, the local curvature at intersection85

remains constant and only the propagation direction changes upon misalignment [48]. However,86

for Gaussian-shaped mirrors, the local curvature varies across the surface, with a reduced and87

elliptical curvature away from the centre. Thus for cavities with misaligned Gaussian mirrors, the88

local curvature takes two principal values, both smaller than the central curvature of the mirror,89

but most strongly reduced in the direction of misalignment. Detailed algebraic and numeric90

results for the case of Gaussian-shaped mirrors may be found in Hughes et al. [46].91



2.2. Mode mixing method92

To understand the impact of the full shape of the mirror, a more complete method that can93

account for the entire surface profile is required. A variety of methods have been developed for94

this purpose, which are also relevant for optical interferometers [49]. These methods include the95

iterative diffraction integral technique to determine lowest loss [50] and higher order modes [51],96

or more recently the discrete linear canonical transform to calculate the effect of a cavity round97

trip in the position basis [52]. This investigation employs the mode mixing method [38], which98

has been used to analyse the outcomes of microcavity experiments [39,53]. At a general level,99

this method describes the action of a mirror through the scattering of input modes to output100

modes in a Hermite-Gauss or Laguerre-Gauss basis, encoding this information as a matrix. A101

brief overview of the principle of the method and the basis functions will be given below.102

In a Fabry Pérot cavity, Maxwell’s equations are typically simplified by assuming that the103

propagating field is beam-like and directed at small angles to the nominal 𝑧 axis. After this104

assumption, known as the paraxial approximation, the (assumed monochromatic) electric field105

can be described through a simpler scalar field 𝑢± (𝑥, 𝑦, 𝑧) [54] satisfying106

𝑬 (𝑥, 𝑦, 𝑧, 𝑡) = 𝝐𝑢± (𝑥, 𝑦, 𝑧) exp(∓𝑖𝑘𝑧) exp(𝑖𝜔𝑡), (1)

where 𝜔 is the angular frequency, 𝑘 = 𝜔/𝑐 the wavevector, 𝝐 the constant linear polarisation of107

the field, which must lie perpendicular to the 𝑧-axis, and ± denotes propagation towards positive108

or negative 𝑧 respectively. The function 𝑢± (𝑥, 𝑦, 𝑧) must satisfy the paraxial wave equation109

𝜕

𝜕𝑧
𝑢± (𝑥, 𝑦, 𝑧) = ∓ 𝑖

2𝑘

(
𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2

)
𝑢± (𝑥, 𝑦, 𝑧). (2)

110

A particular set of solutions to this equation, which suit the boundary conditions imposed by111

spherical cavity mirrors, are the Hermite-Gauss solutions, which for symmetric cavities narrow112

to a central waist of width 𝑤0 in the plane 𝑧 = 0. The individual solutions are indexed by the 𝑥113

and 𝑦 indices 𝑛𝑥 , 𝑛𝑦 ∈ N respectively and are written114

𝑢
(±)
𝑛𝑥 ,𝑛𝑦

(𝑥, 𝑦, 𝑧) =𝑎(𝑧)𝐻𝑛𝑥

( √
2𝑥

𝑤(𝑧)

)
𝐻𝑛𝑦

( √
2𝑦

𝑤(𝑧)

)
exp

[
−𝑥2 + 𝑦2

𝑤(𝑧)2

]
exp

[
∓𝑖𝑘 𝑥

2 + 𝑦2

2𝑅𝑢 (𝑧)

]
exp

[
±𝑖(𝑛𝑥 + 𝑛𝑦 + 1)Φ𝐺

]
,

(3)

where115

𝑎(𝑧) = 1
𝑤(𝑧)

√︄
2
𝜋

1
2𝑛𝑥+𝑛𝑦𝑛𝑥!𝑛𝑦!

, 𝑤(𝑧) = 𝑤0

√︄
1 +

(
𝑧

𝑧0

)2
,

𝑧0 =
𝜋𝑤2

0
_

, 𝑅𝑢 (𝑧) = 𝑧

(
1 +

(
𝑧0
𝑧

)2
)
, Φ𝐺 (𝑧) = arctan

(
𝑧

𝑧0

)
,

(4)

where the wavelength _ = 2𝜋/𝑘 , 𝐻𝑖 are the Hermite polynomials, and 𝑧0 is the Rayleigh range116

of the beam. The set of solutions containing all 𝑛𝑥 and 𝑛𝑦 is complete and orthonormal for each117

transverse plane separately.118

Mirrors normal to the 𝑧-axis are described through matrices whose elements are scattering119

amplitudes from ingoing modes propagating in one direction to outgoing modes propagating in120

the reverse direction. These matrix elements are conventionally calculated through numerical121

integration, but in this investigation we use a faster operator approach [46].122



Once the mirror matrices (denoted 𝐴 and 𝐵 for the two mirrors respectively) are calculated,123

the round trip matrix124

𝑀 = 𝐵𝐴𝑒−2𝑖𝑘𝐿 (5)

may be found from the sequential action of both mirrors and the accumulated round trip phase.125

The eigenmodes |Ψ𝑖⟩ of the round trip matrix are modes of the cavity. These modes will generally126

not be basis states if the mirrors 𝐴 and 𝐵 themselves scatter amplitude between basis states.127

As discussed earlier in this section, the mode mixing method uses basis modes derived128

under the paraxial approximation, and the propagation of these modes should be modified for129

high divergence angles [55, 56]. In this manuscript, the most divergent mode presented has a130

divergence half angle of 7◦, and most are considerably below this level, so the overall transverse131

mode structure of most modes should be largely accurate for the majority of results, but will132

not be perfectly accurate. In addition, cavities with highly-curved mirrors and sufficient finesse133

may still exhibit resolvable mode splittings from non-paraxial effects even when the mode is not134

highly divergent [57–59]135

In order to parameterise the mirror shapes for comparison, Gaussian-shaped mirrors have a136

depth profile137

𝑓𝐺 (𝑥, 𝑦) = 𝐷

{
1 − exp

(
−𝑥2 + 𝑦2

𝑤2
𝑒

)}
, (6)

taken, by convention, to have a value of zero at the centre of the depression and take more138

positive values towards the edges of the mirrors, where 𝑥, 𝑦 are transverse coordinates on the139

mirror surface, 𝐷 is the depth of the depression, and 𝑤𝑒 is the 1/𝑒-waist of the Gaussian profile.140

The central radius of curvature of such a mirror is 𝑅𝑐 = 𝑤2
𝑒/2𝐷. The mode mixing matrices141

of the Gaussian-shaped mirrors can be calculated through numerical integration, but for this142

investigation are calculated through the techniques detailed in [46].143

The spherical cap mirrors are assumed to have constant curvature inside of their nominal144

diameter 𝐷𝑀 , and be completely non-reflective outside of that diameter. The spherical cap145

mirror matrices are calculated by numerical integration of the overlap elements over the reflective146

region.147

2.3. Overview of data presented148

The studies presented in this paper took two identical concave mirrors, either spherical cap or149

Gaussian-shaped, of a specified central radius of curvature 𝑅𝑐 and calculated the cavity mode as150

a function of length 𝐿, defined as the axial length between the centre of the mirror depressions,151

and the mirror misalignment. For each cavity length, two mirrors were formed on-axis, and152

misalignment was then included by displacing them successively in opposite directions along153

the 𝑥-axis; for this investigation, the translation operator derived in [46] was used. For each154

cavity length, the basis of calculation was chosen to match the theoretical modes for a cavity with155

perfectly-aligned spherical mirrors of the same central curvature as the trial mirrors. For each156

mirror shape, cavity length and misalignment, the mode mixing method produces a set of cavity157

eigenmodes {|Ψ𝑖⟩} with associated round-trip eigenvalues {𝛾𝑖} that determine the round-trip158

losses LRTi = 1 − |𝛾𝑖 |2 of the eigenmodes within the cavity. From these eigenmodes, a mode159

of interest must be selected. We choose the mode of interest to be the one that has the greatest160

overlap with the geometrical prediction
���Ψ𝐺

0,0

〉
, as the geometrically expected mode possesses161

the same simple transverse structure as the fundamental mode of an ideal cavity, which bestows162

advantages in many applications. The choice of this approach is justified further in Supplement 1.163

In our investigation, the overlap with the geometrically expected mode is calculated through the164

matrix rotation methods of [46], but could also be determined by numerical integration of the165

cavity mode function overlap.166



This method of determining the eigenmodes has the additional benefit that it means certain167

basis modes need not be considered by symmetry. As mirror misalignment defines the 𝑥-direction,168

the cavity system remains mirror symmetric in the 𝑦-direction, and therefore cavity eigenmodes169

must have odd or even 𝑦-parity. The geometrical prediction
���Ψ𝐺

0,0

〉
has even 𝑦-parity, and thus the170

mode of interest may only be composed of even 𝑦-parity basis states. This symmetry is exploited171

here to reduce the number of matrix elements that must be calculated.172

In addition to the magnitude, each complex eigenvalue 𝛾𝑖 has a phase, which must be zero173

(modulo 2𝜋) for the eigenmode to be resonant. In a spectroscopy experiment, the probe frequency174

would typically be tuned to hit resonance, at which point the mode profile and loss could be175

examined. However, to reduce the computational time and difficulty of interpretation, all cavities176

in this investigation were studied at a single wavelength (1033 nm) under the assumption that the177

mode structure would deform negligibly were the probe frequency tuned to hit resonance. This is178

reasonable for our data (see Supplement 1), but for shorter cavities this may be less valid due to179

the increased frequency tuning required to cover one free spectral range.180

In order to separate the impacts of mode pointing and local curvature variation on the calculated181

mode, after calculation the mode coefficients were expressed in a basis with the same waist size182

and position as the calculation basis, but with direction of propagation matching the calculated183

eigenmode. If the chosen eigenmode propagates at angle 𝜙𝑥 from the 𝑧 axis towards the 𝑥 axis,184

the mode propagates along the unit vector (sin(𝜙𝑥), 0, cos(𝜙𝑥)), and the "co-propagating basis"185

is such that the state
���Ψ𝐶

𝑛𝑥 ,𝑛𝑦

〉
has a corresponding cavity mode function 𝑢

(±)
𝑛𝑥 ,𝑛𝑦

(𝑥𝑚, 𝑦𝑚, 𝑧𝑚),186

where187

𝑥𝑚 = 𝑥 cos(𝜙𝑥) − 𝑧 sin(𝜙𝑥), 𝑦𝑚 = 𝑦, 𝑧𝑚 = 𝑧 cos(𝜙𝑥) + 𝑥 sin(𝜙𝑥) (7)

are the mode coordinates, which are rotated from the standard Cartesian coordinates so that the188

mode propagates along the 𝑧𝑚 axis. Components of the cavity eigenmode can be expressed189

in the co-propagating basis using the rotation matrix methods presented in [46], but could190

equally be found through numerical integration of the overlap between the cavity eigenmode and191

co-propagating basis state. Note that this procedure does not present the cavity eigenmode in the192

basis of the geometrically expected mode, but instead the cavity eigenmode in a basis with the193

same waist as the calculation basis, rotated to match the eigenmode found.194

Cavities with spherical cap mirrors were simulated on a basis of the first 50 modes in the195

𝑥-direction, and, using the 𝑦 mirror symmetry discussed above, the first 25 even modes in the196

𝑦-direction, making a total of 1250 modes. For cavities with Gaussian shaped mirrors, the197

basis contained the first 100 modes in the 𝑥 direction, and the first 50 even modes in the 𝑦198

direction, making a total of 5000 modes. In order to correctly model diffraction losses in the199

numerical method utilised, the calculation of the Gaussian profile initially occurred in a larger200

basis, containing 115 and 65 states in the 𝑥 and 𝑦 directions respectively, before being truncated201

to the calculation size as discussed in [46]. Note that numerical integration techniques do not202

need this truncation step. These basis sizes were verified to produce convergence, and using203

larger bases yielded no significant changes to the results. For the purposes of comparing spherical204

cap and Gaussian-shaped mirror profiles, we use 2𝑤𝑒 of the Gaussian mirror as an analogue for205

the finite diameter 𝐷𝑀 of the spherical cap. This has the convenient implication that for a given206

central radius of curvature 𝑅𝑐 and diameter (either 𝐷𝑀 or 2𝑤𝑒), the spherical cap and Gaussian207

profiles have the same depth. Further details about the algorithm and its implementation are208

given in Supplement 1.209

Finally, it should be noted here that, in this investigation, we study concave-concave cavities,210

which have been employed in many experiments [4,60], and are particularly useful when coupling211

the cavity field to an emitter which must remain distant from the mirror surfaces. However, the212

results presented can also be applied to plano-concave cavities, which have the advantage that213

the mirrors cannot be transversely misaligned from each other, and find application in a variety214



Fig. 1. Round trip loss for cavities with spherical cap mirrors as a function of cavity length and mirror
misalignment. Each pair of mirrors forming the cavities has a central radius of curvature of 200 µm,
with data shown for three different diameters 𝐷𝑀 of the mirrors. The cavities are analysed with a
wavelength of 1033 nm. Data is not calculated for translation-length combinations where the region
inside one waist of the expected mode

���Ψ𝐺
0,0

〉
would not be fully enclosed within the spherical cap,

with this region left white. Losses below 10−12 are not shown, as below this level numerical noise
begins to become significant. In the larger plot, the sharp, low-loss bands are labelled by the integer
ratio 𝑞/𝑝 of transverse mode splitting to free spectral range to which the length corresponds. The red
rectangle indicates the region taken for further analysis in figure 2.

of contexts [61, 62]. By symmetry arguments, the round trip loss of the plano-concave cavity215

with a lossless, infinite planar mirror is half the round trip loss of the concave-concave cavity216

with twice the length for zero transverse misalignment. No further consideration will be given to217

plano-concave designs for the remainder of the manuscript.218

3. Spherical Mirror Cavities219

In the absence of finite diameter effects, cavities with spherical mirrors constitute an ideal case220

in which the behaviour of the cavity mode under transverse misalignment is treated in standard221

theory [37, 63]. Here, the mode angle tilts as the mirrors are misaligned, but the mode retains its222

Gaussian transverse intensity profile due to the uniform mirror curvature. It is expected that finite223

diameter spherical mirrors will follow this behaviour until the mirror misalignment is sufficient224

for a significant proportion of this predicted mode to fall outside of the mirror diameter.225

3.1. Loss structure226

To investigate the behaviour of cavities with spherical cap mirrors under transverse misalignment,227

cavity mirrors of radius of curvature 200 µm were modelled at three diameters and the cavity228

eigenmodes were calculated as a function of cavity length and transverse misalignment of the229

mirrors. The loss structure is presented in Fig. 1, qualitatively agreeing with the suggestion that230

the calculated diffraction loss arises when the mode encounters the finite diameter of the mirror.231

One feature not predicted by the geometric model are the isolated bands of low loss for specific232

length values. These bands result from the resonant mixing of higher-order transverse modes233

with the geometrically-predicted fundamental Gaussian mode and can thus be associated with234



lengths at which particular transverse modes are degenerate. These degeneracies occur at lengths235

𝐿𝑝,𝑞 = 2𝑅


tan2

(
𝜋𝑞

2𝑝

)
1 + tan2

(
𝜋𝑞

2𝑝

)  (8)

for integer 𝑝 and 𝑞, with 𝑞/𝑝 the ratio of the transverse mode splitting to the free spectral range236

(in a cavity with zero diffraction loss and the same mirror curvature) [64]. It should be noted237

though that while these resonances reduce the round trip loss, for cases where the geometrically238

predicted mode remains largely inside the finite diameter, the impact on the mode shape is239

generally minimal.240

The onset of clipping loss and the role of transverse resonances in reducing these losses are241

investigated further in Fig. 2. Firstly, the cavity becomes higher loss as the mode approaches242

the boundary of the spherical mirror. In the mode-mixing description, this loss manifests as a243

cascade of occupation to ever higher order modes (Fig. 2b). Secondly, at the low loss bands, for244

example in Fig. 2d), the higher-order transverse modes hybridise with the fundamental Gaussian245

mode, while there is very little hybridisation away from these resonances (Fig. 2c). The modes246

of
{���Ψ𝐶

𝑛𝑥 ,𝑛𝑦

〉}
that hybridise can be predicted from the resonance label 𝑞/𝑝 and from symmetry247

considerations. First, the resonance label (in the case studied 𝑞/𝑝 = 2/3) determines the higher248

order modes that are resonant with the expected mode. These are the modes for which excitation249

index I = 𝑛𝑥 + 𝑛𝑦 is a multiple of 𝑝. Secondly, symmetry constrains that, at zero misalignment250

(which is the case presented), only modes with even 𝑛𝑥 and 𝑛𝑦 indices have both the 𝑥 and 𝑦 parity251

required to overlap with
���Ψ𝐶

0,0

〉
. Therefore, at zero misalignment and at the 𝑞/𝑝 = 2/3 resonant252

length,
���Ψ𝐶

0,0

〉
mixes with higher order modes for which I = 𝑛𝑥 + 𝑛𝑦 is a multiple of 6 and253

both 𝑛𝑥 and 𝑛𝑦 are even, as seen in the mode occupation patterns (Fig. 2d). The accompanying254

intensity residual plot confirms that the mode hybridises to become physically more compact on255

the mirror, providing a mechanism for the observed reduced clipping loss.256

3.2. Comparison with classical clipping approximation257

A frequently-used method [65–67] of estimating the losses induced by finite mirror diameter is258

the clipping loss approximation [21]. This method calculates the round-trip loss as the power259

falling outside of the bounds of the mirrors during one round trip, on the assumption that the260

mode shape is unaffected by the power loss [68]. Extending the treatment of [21] to the off-axis261

case as performed in [7], the clipping loss is calculated through262

Lclip = 1 −
(∫

𝑆𝑀

���𝑢 (𝐺) (𝑥, 𝑦, 𝑧)
���2 𝑑𝐴)2

, (9)

where 𝑢 (𝐺) (𝑥, 𝑦, 𝑧) is the cavity mode amplitude predicted by the geometric model, and 𝑆𝑀 is263

the mirror surface such that
∫
𝑆∞

|𝑢 |2 𝑑𝐴 = 1, where 𝑆∞ is the surface of an infinite mirror. The264

squared integral in the expression for Lclip accounts for the two reflections per round trip.265

The round trip losses predicted by the clipping approximation and mode mixing method are266

compared in Fig. 3. Generally, the clipping loss approximation underestimates the cavity loss,267

although the scale of the underestimate remains within an order of magnitude throughout. The268

biggest disparities between the methods occur at the transverse resonances, where the clipping269

loss approximation overestimates the loss because the loss is reduced by transverse mode mixing,270

which the clipping approximation cannot invoke. For particular configurations the difference can271

surpass a factor of 10. Overall, the clipping loss approximation is sufficient to estimate the round272

trip loss within an order of magnitude, with the exception of configurations of significant mixing,273

for which the clipping loss estimate is conservative.274



Fig. 2. Example round trip loss and cavity eigenmode data from cavities with spherical cap mirrors
of diameter 𝐷𝑀 = 75 µm. a): The round trip loss for different cavity configurations, marking on 3
configurations of interest explored further in the corresponding panels. b) c) and d): breakdowns of
the occupations of the cavity mode in the co-propagating basis {

���Ψ𝐶
𝑛𝑥 ,𝑛𝑦

〉
} at the configurations of

interest, with insets depicting the mode in the plane of the mirror at positive 𝑧. For b) and c), the mode
intensity is plotted, and for d) the difference in intensity compared to the geometric prediction

���Ψ𝐺
0,0

〉
is shown. The circle imposed on these insets depicts the mirror boundary. b): The high-loss mode
formed as the light begins to impinge on the flats of the mirror. c): The mode in a non-misaligned
case away from sharp dips in losses d): The mode in a non-misaligned case at a resonant reduction in
losses. The intensity residuals indicate the mode on the mirror is more compact than the geometrical
expectation

���Ψ𝐺
0,0

〉
.

4. Gaussian Mirror Cavities275

We now discuss mode hybridisation in cavities with misaligned Gaussian-shaped mirrors. Due to276

the differences between Gaussian and spherical cap mirror profiles, the concepts and terminology277

used to understand spherical cap mirrors in Sec. 3 must be adapted. Firstly, while a spherical278

cap profile has a single fixed curvature within its finite diameter, a Gaussian-shaped mirror has279

a variable curvature across its surface, introducing a distinction between the central radius of280

curvature on the axis of the mirror, and the local radius of curvature where the mode intersects281

the mirror. The expected mode
���Ψ𝐺

0,0

〉
for the Gaussian case must account for the local curvature282

of the mirror, and therefore, at finite misalignment, the expected mode differs between spherical283

cap and Gaussian-shaped mirrors of the same central radius of curvature, though it remains a284

fundamental Gaussian beam. Secondly, while the spherical cap mirror profile becomes abruptly285

non-concave at the finite diameter, the concavity of the Gaussian profile gradually reduces away286

from the centre. Nevertheless, in the Gaussian-shaped case, there remains a boundary outside of287

which the mirror is not concave.288

The continuously-varying curvature of the Gaussian profile leads to more complicated structures289



Fig. 3. Comparison of the round trip loss of cavities with spherical cap mirrors of
diameter 𝐷𝑀 = 50 µm predicted through both the mode mixing method and classical
clipping approximation. a) The round-trip loss as a function of cavity length and
misalignment for mode mixing calculations and b) classical clipping calculations. c)
The ratio of the classical clipping loss to the mode mixing loss on a log scale. Red
indicates that clipping loss exceeds that calculated by mode mixing, blue indicates the
opposite, and white that the methods agree. Data is not shown for the case where the
loss determined by either method is below 10−12, as these results are vulnerable to
numerical noise.



Fig. 4. Round trip loss for cavities with Gaussian mirrors as a function of cavity length and
mirror misalignment. Each pair of mirrors forming the cavities has a central radius of curvature of
𝑅𝑐 = 200 µm, but three different Gaussian widths (as marked on the plots) and thus depths are shown.
The cavities are analysed with a wavelength of 1033 nm. Data is not shown for cases where the region
inside one waist of the expected mode

���Ψ𝐺
0,0

〉
would not be fully enclosed within the positive curvature

region of the Gaussian mirror, with this region left white. Losses below 10−12 are not shown, as below
this level numerical noise begins to become significant. The solid (dashed) red boxes in a) indicate
regions of interest that will be explored in figures 8 and 10.

in the dependence of round trip loss on cavity configuration, as exemplified in Fig. 4. The most290

striking visual element are bands of high loss, increasing in prevalence as the mirror diameter is291

reduced.292

It is easiest to understand the physics behind these features in the 2𝑤𝑒 = 200 µm case, depicted293

in Fig. 5, where the mirror has a relatively large Gaussian width and thus deviates minimally from294

the spherical profile for a large region about its centre. As observed in [39,69], occupation of295

higher order transverse modes is associated with mode distortion and elevated loss, and typically296

occurs at degeneracies between the high order modes and the fundamental. In a perfect spherical297

cavity, mode degeneracy conditions are determined by the sum of transverse indices 𝑛𝑥 and 𝑛𝑦 ,298

and therefore we categorise the mode intensity in the co-propagating basis {
���Ψ𝐶

𝑛𝑥 ,𝑛𝑦

〉
} according299

to ‘transverse excitation’ I = 𝑛𝑥 + 𝑛𝑦 , finding that resonances are often dominated by a particular300

I. The various behaviour seen in Fig. 5 can largely be understood through mode degeneracy and301

symmetry, as for the spherical cap case, with the more complex behaviour a consequence of the302

variable curvature across the Gaussian mirror. In the subsequent sections, the individual aspects303

of the loss structures are discussed in turn.304

4.1. Mode degeneracy shifts305

In analogy to the low loss bands observed with spherical mirrors, the high loss bands in Fig. 4 can306

be attributed to degeneracy of the fundamental and higher-order transverse modes. For spherical307

cap mirrors, the cavity lengths at which mixing features occurred were precisely the lengths of308

transverse mode degeneracies in an ideal spherical mirror cavity. However, for Gaussian mirrors,309

loss bands are generally shifted to greater cavity length values than expected, both with and310

without mirror misalignment. This is due to the distributed intensity of the mode across the311



Fig. 5. Occupation of different excitation indices I of the cavity mode in the co-propagating basis{���Ψ𝐶
𝑛𝑥 ,𝑛𝑦

〉}
over the length-misalignment map for Gaussian mirrors of 2𝑤𝑒 = 200 µm and central

radius of curvature 200 µm. Each panel corresponds to the labelled excitation index I, with the
lengths of resonance of each excitation index with the

���Ψ𝐶
0,0

〉
marked by vertical lines with the rational

ratio 𝑞/𝑝 labelled. For each I, the proportion of its occupation out of all not in the
���Ψ𝐶

0,0

〉
is plotted.

As the mirror misalignment increases these resonances move to longer lengths and split into multiplets.

mirror, which means that the mode experiences an effective curvature that is some weighting of312

the local curvatures it encounters across the mirror. As the maximum local curvature is found at313

the centre of the mirror, the effective radius of curvature is always bigger than the nominal, central314

radius of curvature, and thus transverse resonances are shifted to longer lengths. As the mode315

order increases, a larger region of the mirror is explored by the mode, and the resonance length316

shift is greater, as seen in Fig. 6. This contrasts with the degeneracy observed with spherical317

mirrors, where by example I = 3, I = 6 and I = 9 are coincident for 𝑞/𝑝 = 1/3. Similarly, as318

the diameter of the Gaussian mirror is expanded, the cavity mode addresses a region that can be319

better approximated as spherical, shifting the loss bands back to their expected length value, as320

shown in Fig. 7.321

4.2. Ellipticity322

The resonances associated with high loss appear to both curve to higher cavity lengths and323

to split into multiplets as the mirrors are misaligned. These aspects can again be understood324

from changes in effective radius of curvature experienced by the mode upon reflection from325

the Gaussian mirrors. As summarised in Sec. 2 and discussed in more detail in [46], the local326

curvature of the mirror at the intersection with the centre of the expected mode decreases as327

the mirror is misaligned, with the decrease much stronger in the direction of misalignment (𝑥).328

The decrease in curvature pushes all transverse resonances to longer lengths as misalignment329

increases, rather than remaining at constant length as for the resonant features of the spherical cap330

mirror. At non-zero misalignment, the difference in radius of curvature in the 𝑥 and 𝑦 directions331

splits the resonant features into multiplets; within a given I, the components with higher 𝑛𝑥332



Fig. 6. Example of the resonance shift dependence on excitation index I. Fraction of the non-00
occupation of {

���Ψ𝐶
𝑛𝑥 ,𝑛𝑦

〉
} in a) I = 6 and b) I = 9 as a function of cavity length and mirror

misalignment for cavities with Gaussian-shaped mirrors of 1/𝑒-diameter 2𝑤𝑒 = 75 µm. The strongest
occupation of I = 6 tends to occur at lower lengths than for I = 9, as can be judged using the guide
lines (white, dotted), which are in the same position on each plot

Fig. 7. Example of the resonance shift and its dependence on the Gaussian mirror width. The non-00
probability proportion in I = 5 of {

���Ψ𝐶
𝑛𝑥 ,𝑛𝑦

〉
} is shown for a cavity with Gaussian mirrors of central

radius of curvature 𝑅𝑐 = 200 µm and 1/𝑒-diameter 2𝑤𝑒 of a) 100 µm and b) 200 µm. Focusing
particularly on the resonant mixing around 𝑝/𝑞 = 3/5, it is seen that the shift of this resonance to
longer lengths than for cavities with spherical mirrors is much more pronounced for the mirror with
the smaller 𝑤𝑒 (panel a).



Fig. 8. Study of a resonance feature with modes of I = 7 for the 2𝑤𝑒 = 75 µm mirrors. a) Cavity
round-trip loss as a function of length and mirror misalignment and b) fraction of the non-

���Ψ𝐶
0,0

〉
occupation in I = 7, showing that the multiplet has strong occupation in this excitation class. On
a) and b), four example points, corresponding to panels (c-f) respectively, are marked. (c-f): Mode
compositions and profiles of the configurations shown in panels (a) (b). The main axis shows the
occupation of the

{���Ψ𝐶
𝑛𝑥 ,𝑛𝑦

〉}
basis, with the inset showing the mode intensity on of one of the cavity

mirrors. On each figure, the basis state with the largest non-
���Ψ𝐶

0,0

〉
occupation is ringed and labelled

according to (𝑛𝑥 , 𝑛𝑦), with this 𝑛𝑥 increasing across the multiplet in the direction of increasing length.

index are resonant at longer lengths. The multiplicity of the multiplets can thus be predicted. For333

example, for the I = 6 resonance, there are 7 states in the Hermite-Gauss basis, but the symmetry334

of the system about the 𝑦-axis dictates that the geometrically expected mode
���Ψ𝐺

0,0

〉
will only335

couple with the modes with even 𝑛𝑦-indices. Thus this resonance splits to a quadruplet, and the336

I = 5 peak should be a triplet, as seen in Fig 5. Finally, it should be noted that the different337

effective curvatures in the 𝑥 and 𝑦 directions will also introduce a geometric birefringence [34],338

but this phenomenon is beyond the scope of the scalar mode mixing theory.339

To exemplify this physics, an I = 7 multiplet is studied in Fig. 8. As the misalignment340

increases, the feature splits into a quadruplet, determined by the number of even-𝑛𝑦 states within341

I = 7. The mode composition of points in each of the four arms of the quadruplet was analysed.342

The (𝑛𝑥 , 𝑛𝑦) indices of the dominant non-00 component in
{���Ψ𝐶

𝑛𝑥 ,𝑛𝑦

〉}
for each point was, in343

order of increasing resonant length at a given misalignment, (1, 6), (3, 4), (5, 2), and (7, 0). As344

expected, the resonances with higher 𝑛𝑥 occur at longer lengths, as these higher-order modes345

are most affected by the strong reduction in curvature in the direction of misalignment. Despite346

all features belonging to the I = 7 resonance, each peak presents a dramatically different mode347

shape, as the higher order mode that mixes most strongly changes between the peaks of the348

multiplet.349

4.3. Parity350

Some of the loss bands seen in Fig. 4 emerge only at non-zero misalignment. As most easily seen in351

Fig. 5, these bands correspond to odd values ofI, and the phenomenon is consequently understood352

through symmetry. Mode mixing occurs when the mirror mixes the
���Ψ𝐶

0,0

〉
mode (which has353



even-parity in both Cartesian directions) with a higher order mode. At zero misalignment, the354

Gaussian mirror has mirror symmetry in both transverse directions about the point where the355

mode intercepts the mirror, and therefore mixing can only occur with modes of even parity in356

both 𝑥 and 𝑦 directions. Such modes exist only for even I. Therefore, features corresponding to357

mixing with odd I cannot extend to zero misalignment. At non-zero misalignment, the mode358

intersects the mirror away from its nominal centre. In the direction of the misalignment, the359

mirror is no longer symmetric about the intersection of the mode on the mirror due to the varying360

radius of curvature on either side of this intersection point. This means that
���Ψ𝐶

0,0

〉
can couple361

into modes with both odd and even parity in the direction of misalignment, allowing for coupling362

into states with odd I. In this way, the resonant features can be classed according to odd or even363

symmetry in the direction of misalignment. The variable curvature of Gaussian mirrors renders364

the cavity mode vulnerable to odd-symmetry resonant features should the mirrors suffer residual365

transverse misalignment.366

4.4. Mode distortion367

The mode of interest was selected by finding the cavity eigenmode with the greatest overlap with368

the geometrically expected mode
���Ψ𝐺

0,0

〉
. This method was chosen on the assumption that there369

would usually exist a cavity eigenmode that was a perturbation of the geometrically expected370

mode, which retains the transverse structure of a fundamental Gaussian beam. However, as371

shown in Fig. 9, while such a cavity eigenmode can typically be found, there are configurations372

where the chosen eigenmode has an overlap of approximately 50%, or occasionally even less,373

with the expected mode, even for transversely aligned mirrors. This arises because the expected374

mode can fully hybridise with a higher order mode at transverse degeneracies, as observed in [69],375

meaning that the cavity eigenmode is not a small perturbation of the expected mode.376

To investigate such cases further, in Fig. 10, we study the region around the confocal377

configurations of this system, where there is very strong occupation of I = 4 throughout, but378

with narrower, high loss regions within. Here, the occupation of higher order modes in the379

co-propagating basis is so strong as to make identifying the mode of interest challenging, as the380

geometrically expected mode hybridises very strongly, meaning no mode strongly resembles the381

expectation. The selected mode is still the one which maximises the overlap with the expectation,382

but, where the decision between eigenmodes is finely-balanced, the shape of the selected mode can383

change discontinuously across the length-misalignment space as different mode hybridisations384

are chosen. These highly distorted modes and discontinuous changes in the transverse profile385

can be seen around narrow, high loss features where the mode structure might be expected to386

be complex (Fig. 10 e and f), but also for regions of relatively low loss (Fig. 10 c and d). In387

applications requiring coupling the cavity mode to an emitter or the extraction of photons from388

the cavity to a single-mode fibre, strong mode distortion is, in itself, problematic. Therefore,389

for applications of cavities with Gaussian-shaped mirrors, it is important to consider the mode390

distortion as well as the round trip loss.391

4.5. Loss increase at mode degeneracy392

An obvious point of difference between the two mirrors shapes is that, with spherical cap mirrors,393

mixing at mode degeneracies leads to low loss features, whereas for cavities with Gaussian-shaped394

mirrors, these features have elevated loss. The spherical cap mirror surface can be partitioned395

into one section inside the diameter, which does not mix the co-propagating basis modes, and396

the region outside the mirror diameter, which causes mixing and loss. At mode degeneracies,397

the cavity eigenmode can hybridise to reduce the intensity falling on the lossy region, causing a398

reduction in round trip loss. For the Gaussian mirror case, the same argument cannot be used399

directly, because the mirror cannot be partitioned into mixing and non-mixing areas. While400



Fig. 9. Overlap of the selected cavity eigenmode with geometrically expected mode
���Ψ𝐺

0,0

〉
for cavities

with Gaussian mirrors as a function of cavity length and mirror misalignment. Each pair of mirrors
forming the cavities has a central radius of curvature of 𝑅𝑐 = 200 µm, but the plots show three
different Gaussian widths (as marked on the plots) and thus depths. The cavities are analysed with a
wavelength of 1033 nm. Data is not shown for cases where the region inside one waist of the expected
mode

���Ψ𝐺
0,0

〉
would not be fully enclosed within the positive curvature region of the Gaussian mirror,

with this region left white.

Fig. 10. Study of the confocal configurations of cavities with 2𝑤𝑒 = 75 µm mirrors. a) Round-trip
loss as a function of length and mirror misalignment. b) The fraction of the non-00 occupation of{���Ψ𝐶

𝑛𝑥 ,𝑛𝑦

〉}
with I = 4; showing a very broad peak across the configurations shown. On a) and b),

four example points corresponding to (c-f) respectively, are marked. (c-f): The mode compositions on
the mirror in

{���Ψ𝐶
𝑛𝑥 ,𝑛𝑦

〉}
for the configurations shown in panels (a) (b), with insets showing mode

intensity.



this is not a direct reason that the mixing-induced bands should be high loss for cavities with401

Gaussian-shaped mirrors, it does suggest that the mechanism by which loss was reduced for402

cavities with spherical-cap mirrors does not apply when those mirrors are Gaussian-shaped.403

5. Conclusion404

We have conducted a numerical study into the round trip losses of cavities with spherical cap and405

Gaussian-shaped mirrors under transverse misalignment. The diffraction losses of cavities with406

spherical cap mirrors were found to broadly agree with the frequently-used classical clipping407

approximation. Deviations from the predictions of this approximation are seen as sharp dips408

in the round trip losses at lengths for which higher order transverse modes are degenerate with409

the expected mode. These higher order modes hybridise with the expected mode to reduce410

the intensity falling outside the finite diameter mirror and reduce the losses, but the overall411

deformation of the mode is not significant.412

In the case of Gaussian mirrors, however, the variation in curvature across the mirror introduces413

complicated hybridisation effects that distort the mode and increase the cavity loss, even when the414

expected mode remains well inside the concave region of the mirror. Instead of low loss bands at415

particular resonant lengths, the resonant features are high loss bands which split and curve over to416

longer length as the cavity mirrors are misaligned. This behaviour can be understood through an417

‘effective mirror curvature’ seen by the cavity mode, which tends to be lower for higher order basis418

states, and to reduce away from the central axis (most prominently in the direction of translation,419

but also in the orthogonal direction). These two effects alter the positions of resonance, shifting420

them to higher cavity lengths for zero misalignment and curving to longer lengths with increasing421

misalignment, while splitting into multiplets. The multiplicity of the resonance can be predicted422

by counting the number of symmetry-allowed couplings of the relevant excitation index. These423

resonances possess either odd or even character, with the odd resonances only observable when424

the cavity is misaligned. For particular configurations, the mixing induced by the Gaussian425

mirror may be so strong that no cavity eigenmode resembles a fundamental Gaussian mode.426

With regards to the use of Gaussian shaped mirrors for quantum technologies, our results427

indicate that care must be taken to ensure that the light matter interface would function as428

expected, which is not simply a case of ensuring that the expected mode lies within the confining429

part of the mirror. In contrast to the spherical cap case where the mixing features are beneficial,430

sparse, and do not distort the cavity mode significantly, the Gaussian mirror case has high-loss431

regions littered throughout the length-misalignment landscape. These regions can be broad (for432

example at lengths just exceeding the confocal length), or very sharp, and the cavity length values433

that result in high loss depend strongly on the shape of the mirror and the transverse misalignment.434

Misalignment, in addition to bringing the mode closer to the edge of the confining region of435

the mirror, brings an extra deleterious effect as the mode is also vulnerable to odd-character436

transverse resonances. We anticipate that these observations will find use in the selection of437

cavity construction techniques for future cavity QED experiments, and that the methods and438

techniques presented will advance understanding of losses in cavities with Gaussian-shaped439

mirrors.440

6. Backmatter441

Funding. This work was funded by the UK Engineering and Physical Sciences Research Council Hub442

in Quantum Computing and Simulation (EP/T001062/1) and the European Union Quantum Technology443

Flagship Project AQTION (No. 820495).444

Acknowledgments. The authors would like to acknowledge the use of the University of Oxford Advanced445

Research Computing (ARC) facility in carrying out this work. http://dx.doi.org/10.5281/zenodo.22558446

Disclosures. The authors declare no conflicts of interest.447



Data availability. Data underlying the results presented in this paper are available in Ref. DOI added on448

acceptance. The code that generated the data may be obtained from the authors at reasonable request.449

Supplemental document. See Supplement 1 for supporting content.450

References451

1. H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).452

2. M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with453

controlled waveform in an ion-trap cavity system,” Nature 431, 1075–1078 (2004).454

3. A. Reiserer, N. Kalb, G. Rempe, and S. Ritter, “A quantum gate between a flying optical photon and a single trapped455

atom,” Nature 508, 237–240 (2014).456

4. A. Stute, B. Casabone, P. Schindler, T. Monz, P. Schmidt, B. Brandstätter, T. Northup, and R. Blatt, “Tunable457

ion–photon entanglement in an optical cavity,” Nature 485, 482–485 (2012).458

5. H. Goto, S. Mizukami, Y. Tokunaga, and T. Aoki, “Figure of merit for single-photon generation based on cavity459

quantum electrodynamics,” Phys. Rev. A 99, 053843 (2019).460

6. J. Schupp, V. Krcmarsky, V. Krutyanskiy, M. Meraner, T. Northup, and B. Lanyon, “Interface between trapped-ion461

qubits and traveling photons with close-to-optimal efficiency,” PRX Quantum 2, 020331 (2021).462

7. S. Gao, J. A. Blackmore, W. J. Hughes, T. H. Doherty, and J. F. Goodwin, “Optimization of scalable ion-cavity463

interfaces for quantum photonic networks,” Phys. Rev. Appl. 19, 014033 (2023).464

8. H. Takahashi, J. Morphew, F. Oručević, A. Noguchi, E. Kassa, and M. Keller, “Novel laser machining of optical465

fibers for long cavities with low birefringence,” Opt. Express 22, 31317–31328 (2014).466

9. M. Brekenfeld, D. Niemietz, J. D. Christesen, and G. Rempe, “A quantum network node with crossed optical fibre467

cavities,” Nat. Phys. 16, 647–651 (2020).468

10. A. Pscherer, M. Meierhofer, D. Wang, H. Kelkar, D. Martín-Cano, T. Utikal, S. Götzinger, and V. Sandoghdar,469

“Single-molecule vacuum rabi splitting: Four-wave mixing and optical switching at the single-photon level,” Phys.470

Rev. Lett. 127, 133603 (2021).471

11. R. J. Thompson, G. Rempe, and H. J. Kimble, “Observation of normal-mode splitting for an atom in an optical472

cavity,” Phys. Rev. Lett. 68, 1132–1135 (1992).473

12. H. Mabuchi, Q. A. Turchette, M. S. Chapman, and H. J. Kimble, “Real-time detection of individual atoms falling474

through a high-finesse optical cavity,” Opt. Lett. 21, 1393–1395 (1996).475

13. C. J. Hood, M. S. Chapman, T. W. Lynn, and H. J. Kimble, “Real-time cavity qed with single atoms,” Phys Rev Lett476

80, 4157–4160 (1998).477

14. J. Ye, D. W. Vernooy, and H. J. Kimble, “Trapping of single atoms in cavity qed,” Phys. Rev. Lett. 83, 4987–4990478

(1999).479

15. G. Rempe, R. Thompson, H. J. Kimble, and R. Lalezari, “Measurement of ultralow losses in an optical interferometer,”480

Opt. Lett. 17, 363–365 (1992).481

16. V. Krutyanskiy, M. Galli, V. Krcmarsky, S. Baier, D. A. Fioretto, Y. Pu, A. Mazloom, P. Sekatski, M. Canteri,482

M. Teller, J. Schupp, J. Bate, M. Meraner, N. Sangouard, B. P. Lanyon, and T. E. Northup, “Entanglement of483

trapped-ion qubits separated by 230 meters,” Phys. Rev. Lett. 130, 050803 (2023).484

17. K. Durak, C. H. Nguyen, V. Leong, S. Straupe, and C. Kurtsiefer, “Diffraction-limited fabry–perot cavity in the near485

concentric regime,” New J. Phys. 16, 103002 (2014).486

18. M. Trupke, E. A. Hinds, S. Eriksson, E. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated487

high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87, 211106 (2005).488

19. T. Steinmetz, Y. Colombe, D. Hunger, T. Hänsch, A. Balocchi, R. Warburton, and J. Reichel, “Stable fiber-based489

fabry-pérot cavity,” Appl. Phys. Lett. 89, 111110 (2006).490

20. P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,”491

Opt Lett 35, 3556–3558 (2010).492

21. D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber fabry–perot cavity with493

high finesse,” New J. Phys. 12, 065038 (2010).494

22. F. Rochau, I. Sánchez Arribas, A. Brieussel, S. Stapfner, D. Hunger, and E. M. Weig, “Dynamical backaction in an495

ultrahigh-finesse fiber-based microcavity,” Phys Rev Appl. 16, 014013 (2021).496

23. T. H. Doherty, A. Kuhn, and E. Kassa, “Multi-resonant open-access microcavity arrays for light matter interaction,”497

Opt. Express 31, 6342–6355 (2023).498

24. D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave,499

low-roughness features in silica,” Aip Adv. 2, 012119 (2012).500

25. G. Barontini, L. Hohmann, F. Haas, J. Estève, and J. Reichel, “Deterministic generation of multiparticle entanglement501

by quantum zeno dynamics,” Science 349, 1317–1321 (2015).502

26. T. Macha, E. Uruñuela, W. Alt, M. Ammenwerth, D. Pandey, H. Pfeifer, and D. Meschede, “Nonadiabatic storage of503

short light pulses in an atom-cavity system,” Phys. Rev. A 101, 053406 (2020).504

27. H. Takahashi, E. Kassa, C. Christoforou, and M. Keller, “Strong coupling of a single ion to an optical cavity,” Phys.505

Rev. Lett. 124, 013602 (2020).506

28. P. Kobel, M. Breyer, and M. Köhl, “Deterministic spin-photon entanglement from a trapped ion in a fiber fabry–perot507

cavity,” npj Quantum Inf 7, 6 (2021).508



29. J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoglu, B. Besga, J. Reichel, and J. Estève, “Cavity509

quantum electrodynamics with charge-controlled quantum dots coupled to a fiber fabry–perot cavity,” New J. Phys.510

15, 045002 (2013).511

30. R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and512

C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center513

coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105, 073113 (2014).514

31. H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H.-C. Chang, H. Fedder, T. W. Hänsch,515

and D. Hunger, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable516

microcavity,” Phys. Rev. Appl. 6, 054010 (2016).517

32. D. Riedel, I. Söllner, B. J. Shields, S. Starosielec, P. Appel, E. Neu, P. Maletinsky, and R. J. Warburton, “Deterministic518

enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond,” Phys. Rev. X 7,519

031040 (2017).520

33. A. Muller, E. B. Flagg, J. R. Lawall, and G. S. Solomon, “Ultrahigh-finesse, low-mode-volume fabry-perot521

microcavity,” Opt Lett 35, 2293–2295 (2010).522

34. M. Uphoff, M. Brekenfeld, G. Rempe, and S. Ritter, “Frequency splitting of polarization eigenmodes in microscopic523

fabry–perot cavities,” New J. Phys. 17, 013053 (2015).524

35. T. D. Barrett, O. Barter, D. Stuart, B. Yuen, and A. Kuhn, “Polarization oscillations in birefringent emitter-cavity525

systems,” Phys. Rev. Lett. 122, 083602 (2019).526

36. E. Kassa, W. Hughes, S. Gao, and J. F. Goodwin, “Effects of cavity birefringence in polarisation-encoded quantum527

networks,” New J. Phys. 25, 013004 (2023).528

37. A. E. Siegman, Lasers (University Science Books, 1986).529

38. D. Kleckner, W. T. M. Irvine, S. S. R. Oemrawsingh, and D. Bouwmeester, “Diffraction-limited high-finesse optical530

cavities,” Phys. Rev. A 81, 043814 (2010).531

39. J. Benedikter, T. Hümmer, M. Mader, B. Schlederer, J. Reichel, T. W. Hänsch, and D. Hunger, “Transverse-mode532

coupling and diffraction loss in tunable fabry–pérot microcavities,” New J. Phys. 17, 053051 (2015).533

40. K. Ott, S. Garcia, R. Kohlhaas, K. Schüppert, P. Rosenbusch, R. Long, and J. Reichel, “Millimeter-long fiber534

fabry-perot cavities,” Opt. Express 24, 9839–9853 (2016).535

41. T. Ruelle, D. Jaeger, F. Fogliano, F. Braakman, and M. Poggio, “A tunable fiber fabry–perot cavity for hybrid536

optomechanics stabilized at 4 k,” Rev. Sci. Instruments 93, 095003 (2022).537

42. J. Hessenauer, K. Weber, J. Benedikter, T. Gissibl, J. Höfer, H. Giessen, and D. Hunger, “Laser written mirror profiles538

for open-access fiber fabry-perot microcavities,” Opt. Express 31, 17380–17388 (2023).539

43. N. Podoliak, H. Takahashi, M. Keller, and P. Horak, “Harnessing the mode mixing in optical fiber-tip cavities,” J.540

Phys. B: At. Mol. Opt. Phys. 50, 085503 (2017).541

44. B. Brandstätter, A. McClung, K. Schüppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel,542

R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev Sci Instrum 84,543

123104-123104-15 (2013).544

45. C. Saavedra, D. Pandey, W. Alt, H. Pfeifer, and D. Meschede, “Tunable fiber fabry-perot cavities with high passive545

stability,” Opt. Express 29, 974–982 (2021).546

46. W. J. Hughes, T. H. Doherty, J. A. Blackmore, P. Horak, and J. F. Goodwin, “Efficient operator method for modelling547

mode mixing in misaligned optical cavities,” arXiv:2306.05929 (2023).548

47. J. L. Blows and G. Forbes, “Mode characteristics of twisted resonators composed of two cylindrical mirrors.” Opt.549

Express 2, 184–190 (1998).550

48. A. Yariv, Quantum Electronics (Wiley, New York, 1991).551

49. C. Bond, D. Brown, A. Freise, and K. A. Strain, “Interferometer techniques for gravitational-wave detection,” Living552

reviews relativity 19, 1–217 (2016).553

50. A. Fox and T. Li, “Modes in a maser interferometer with curved and tilted mirrors,” Proc. IEEE 51, 80–89 (1963).554

51. A. Fox and T. Li, “Computation of optical resonator modes by the method of resonance excitation,” IEEE J. Quantum555

Electron. 4, 460–465 (1968).556

52. A. A. Ciobanu, D. D. Brown, P. J. Veitch, and D. J. Ottaway, “Modeling circulating cavity fields using the discrete557

linear canonical transform,” J. Opt. Soc. Am. A 38, 1293–1303 (2021).558

53. B. T. Walker, B. J. Ash, A. A. P. Trichet, J. M. Smith, and R. A. Nyman, “Bespoke mirror fabrication for quantum559

simulation with light in open-access microcavities,” Opt. Express 29, 10800–10810 (2021).560

54. N. Barré, M. Romanelli, M. Lebental, and M. Brunel, “Waves and rays in plano-concave laser cavities: I. geometric561

modes in the paraxial approximation,” Eur. J. Phys. 38, 034010 (2017).562

55. M. Lax, W. H. Louisell, and W. B. McKnight, “From maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370563

(1975).564

56. P. K. Yu and K. M. Luk, “Field patterns and resonant frequencies of high-order modes in an open resonator (short565

papers),” IEEE Trans. on Microw. Theory Tech. 32, 641–645 (1984).566

57. M. Zeppenfeld and P. Pinkse, “Calculating the fine structure of a fabry-perot resonator using spheroidal wave567

functions,” Opt. Express 18, 9580–9591 (2010).568

58. M. P. van Exter, M. Wubs, E. Hissink, and C. Koks, “Fine structure in fabry-perot microcavity spectra,” Phys. Rev. A569

106, 013501 (2022).570

59. C. Koks, F. B. Baalbergen, and M. P. van Exter, “Observation of microcavity fine structure,” Phys. Rev. A 105,571



063502 (2022).572

60. H. Takahashi, E. Kassa, C. Christoforou, and M. Keller, “Cavity-induced anticorrelated photon-emission rates of a573

single ion,” Phys. Rev. A 96, 023824 (2017).574

61. D. Wang, H. Kelkar, D. Martin-Cano, T. Utikal, S. Götzinger, and V. Sandoghdar, “Coherent coupling of a single575

molecule to a scanning fabry-perot microcavity,” Phys. Rev. X 7, 021014 (2017).576

62. K. Malmir, W. Okell, A. A. Trichet, and J. M. Smith, “Characterization of nanoparticle size distributions using a577

microfluidic device with integrated optical microcavities,” Lab on a Chip 22, 3499–3507 (2022).578

63. G. D. Boyd and J. P. Gordon, “Confocal multimode resonator for millimeter through optical wavelength masers,” The579

Bell Syst. Tech. J. 40, 489–508 (1961).580

64. J. A. Arnaud, “Degenerate optical cavities,” Appl. Opt. 8, 189 (1969).581

65. S. B. van Dam, M. Ruf, and R. Hanson, “Optimal design of diamond-air microcavities for quantum networks using582

an analytical approach,” New J. Phys. 20, 115004 (2018).583

66. S. Flågan, D. Riedel, A. Javadi, T. Jakubczyk, P. Maletinsky, and R. J. Warburton, “A diamond-confined open584

microcavity featuring a high quality-factor and a small mode-volume,” J. Appl. Phys. 131, 113102 (2022).585

67. D. V. Karpov and P. Horak, “Cavities with nonspherical mirrors for enhanced interaction between a quantum emitter586

and cavity photons,” Phys. Rev. A 105, 023515 (2022).587

68. D. Clarke and P. Horak, “Alignment requirements of Fabry-Perot microresonators for ion trap quantum information588

processing (Conference Presentation),” in Quantum Technologies 2018, vol. 10674 J. Stuhler, A. J. Shields, and M. J.589

Padgett, eds., International Society for Optics and Photonics (SPIE, 2018), p. 106740P.590

69. C. Koks and M. P. van Exter, “Observation of mode-mixing in the spatial eigenmodes of an optical microcavity,” Opt.591

Express 30, 700–706 (2022).592


