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Abstract: Mobile phone data have been increasingly used over the past decade or more as a pretty
reliable indicator of human mobility to measure population movements and the associated changes
in terms of population presence and density at multiple spatial and temporal scales. However, given
the fact mobile phone data are not available everywhere and are generally difficult to access and
share, mostly because of commercial restrictions and privacy concerns, more readily available data
with global coverage, such as night-time light (NTL) imagery, have been alternatively used as a
proxy for population density changes due to population movements. This study further explores
the potential to use NTL brightness as a short-term mobility metric by analysing the relationship
between NTL and smartphone-based Google Aggregated Mobility Research Dataset (GAMRD) data
across twelve African countries over two periods: 2018–2019 and 2020. The data were stratified by
a measure of the degree of urbanisation, whereby the administrative units of each country were
assigned to one of eight classes ranging from low-density rural to high-density urban. Results from
the correlation analysis, between the NTL Sum of Lights (SoL) radiance values and three different
GAMRD-based flow metrics calculated at the administrative unit level, showed significant differences
in NTL-GAMRD correlation values across the eight rural/urban classes. The highest correlations
were typically found in predominantly rural areas, suggesting that the use of NTL data as a mobility
metric may be less reliable in predominantly urban settings. This is likely due to the brightness
saturation and higher brightness stability within the latter, showing less of an effect than in rural or
peri-urban areas of changes in brightness due to people leaving or arriving. Human mobility in 2020
(during COVID-19-related restrictions) was observed to be significantly different than in 2018–2019,
resulting in a reduced NTL-GAMRD correlation strength, especially in urban settings, most probably
because of the monthly NTL SoL radiance values remaining relatively similar in 2018–2019 and 2020
and the human mobility, especially in urban settings, significantly decreasing in 2020 with respect
to the previous considered period. The use of NTL data on its own to assess monthly mobility and
the associated fluctuations in population density was therefore shown to be promising in rural and
peri-urban areas but problematic in urban settings.

Keywords: night-time lights; Google Aggregated Mobility Research Dataset; human mobility; Africa;
rural and urban classification

1. Introduction

The acquisition of data pertaining to human mobility and presence is of critical
importance within numerous fields of research for producing socioeconomic and devel-
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opment indicators, estimating greenhouse gas emissions, mapping urban extents, and
assessing the spread, prevalence, and incidence of various human diseases, among
others, driving a demand to refine the processes by which these mobility metrics
are measured. With rates of human mobility increasing in their volumes and reach
at both global and local scales, methods and datasets for quantifying them, partic-
ularly in data-sparse middle- and low-income settings, are becoming an important
need. Moreover, with seasonal changes in human mobility that drive disease dynamics
(Grenfell et al., 2001; Wesolowski et al., 2012; Wesolowski, Metcalf et al., 2015; Wesolowski,
Qureshi et al., 2015) [1–4] the demand for resources (Steele et al., 2021) [5] and impact
infrastructure planning needs (Strano et al., 2018) [6] can be particularly challenging to
quantify (Lai et al., 2022; Mao et al., 2015; Song et al., 2021; Woods et al., 2022) [7–10].
Since its public distribution in recent decades, satellite-derived night-time light (NTL)
imagery has proved itself a reliable proxy of human presence, where large bright areas
correspond to higher populations compared to dimly lit areas (Bharti and Tatem, 2018;
Bharti et al., 2011; Bustos, 2015) [11–13]. Furthermore, NTL imagery has been used as a
global indicator of anthropogenic activity and development (Elvidge et al., 2012) [14]
and, due to its historical availability and regular acquisition, enables comparative stud-
ies to be made over both short and long time periods (Doll et al., 2000; Ebener et al.,
2005) [15,16]. As the technology has matured, so has the quality and availability of the
NTL data for the scientific and operational communities with the new Visible Infrared
Imaging Radiometer Suite (VIIRS) instrument, aboard the joint National Aeronautics
and Space Administration (NASA) and National Oceanic and Atmospheric Administra-
tion (NOAA) Suomi National Polar-orbiting Partnership (Suomi NPP) and NOAA-20
satellites, offering several refinements compared to the older Defense Meteorological
Satellite Program-Operational Linescan System (DMSP-OLS), such as increased spatial
resolution of both the Ground Instantaneous Field of View (i.e., 0.55 versus 25 km2 at
Nadir) and the corresponding generated global grids (i.e., 15 versus 30 arc-second grid
cell corresponding to ~500 m versus ~1 km at the equator) and temporal resolution (i.e.,
monthly versus annual) of cloud-free composites, as well as the full filtering of data
impacted by stray light (Elvidge et al., 2013) [17].

Previous research has highlighted the potential of multi-temporal NTL imagery for
measuring changes in population presence and density over time as a result of mobility.
This has included seasonal labour migration into towns and cities in the Sahel region of
Africa (Lai, Farnham et al., 2019) [18] and its impact on infectious disease dynamics (Bharti
et al., 2011) [12], net migration at NUTS III level in Europe (Chen 2020) [19], seasonal
flows of tourists (Stathakis and Baltas, 2018; Tselios and Stathakis, 2020) [20,21], COVID-19
lockdown in global megacities (Xu, et al., 2021) [22], and induced displacement (Lu et al.,
2016) [23].

In each case, while the evidence is clear on NTL data capturing aspects of population
presence and density changes induced by mobility, there are often other factors, such as
disaster- or conflict-induced power outages (Montoya-Rincon et al., 2022) [24], that can be
hard to disentangle, and thus, translation into quantitative direct measures of mobility can
be challenging. Moreover, the saturation of brightness values in highly urbanised settings
can also affect the relationship between changes in brightness, or lack thereof, and mobility.
To improve our understanding of the value of NTL data for assessing human mobility and
the associated changes in population presence and density, comparisons with alternative
datasets are required.

Data on the aggregated movements of mobile phones over time have often been
shown to be a reliable and accurate source of quantitative estimates of human movement
patterns from subnational to global scales (Lai, Farnham et al., 2019; Lai, zu Erbach-
Schoenberg et al., 2019; Ruktanonchai et al., 2018) [18,25,26]. Such data are typically
obtained and derived either from Call Detail Records (CDRs), whereby anonymized and
aggregated billing records of communications routed through cell towers are measured
(Bengtsson et al., 2011; Buckee et al., 2013; Ruktanonchai et al., 2016) [27–29], or from
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aggregations of smartphone-derived GPS location data (Lai, zu Erbach-Schoenberg et al.,
2019; Ruktanonchai et al., 2018) [25,26]. Each has their own set of biases and uncertainties,
which impact the accuracy and reliability of the assessed human mobility patterns (Lai, zu
Erbach-Schoenberg et al., 2019) [25]. The Google Aggregated Mobility Research Dataset
(GAMRD) data, providing a measurement of human movements as quantized flow metrics,
are principally derived from smartphones and represent the result of anonymous and
aggregated phone locations for users who have opted into Google’s Location History
feature, which is off by default (Ruktanonchai et al., 2018) [26]. Previous research has
indicated that there is a strong nonlinear relationship between GAMRD and NTL data
(Dickinson et al., 2020) [30]. However, these studies only obtained and analysed mobility
data for a short time period (e.g., 6–12 months) in a single country. The degree to which
this relationship varies across locations and degrees of urbanisation has not been explored,
particularly in low- and middle-income settings and at the monthly timescale. Based
on multiple-year (2018–2020) and large-scale mobility data and NTL data at fine spatial
resolution across 12 African countries, the current study seeks to address this through
(i) examining the NTL-GAMRD relationship across Africa for two time periods (i.e., 2018/19
and 2020) and (ii) determining how the degree of urbanisation affects the correlations.

2. Materials and Methods

The GAMRD data contain anonymized mobility flows aggregated over users who
have turned on their Location History setting that is off by default. The dataset aggregates
flows between S2 cells which are here further aggregated by the level 2 administrative unit
of origin and destination within and between 12 African countries (Figure 1).
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Figure 1. The 12 African countries selected for the current study and grouped according to the United
Nations Geoscheme for Africa.

To produce this dataset, machine learning is applied to log data to automatically
segment it into semantic “trips” (Bassolas et al., 2019) [31]. To provide strong privacy guar-
antees, all trips are anonymized and aggregated using a differentially private mechanism
(Wilson et al., 2020) [32] to aggregate flows over time (Google, n.d.) [33]. This research
was carried out on the resulting heavily aggregated and differentially private data. No
individual user data was ever manually inspected; only heavily aggregated flows of large
populations were handled.

All anonymized trips are processed in aggregate to extract their origin and destination
location and time. For example, if users travelled from location A to location B within
time interval t, the corresponding cell (A, B, t) in the tensor would be n∓err, where err
is Laplacian noise. The automated Laplace mechanism adds random noise drawn from
a zero-mean Laplace distribution and yields a (
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(A, B), the number of unique users who took a trip from location A to location B during
week W is calculated. To each of these metrics, Laplace noise from a zero-mean distribution
of scale 1/0.66 is added. All metrics for which the noisy number of users is lower than
100 are removed, following the process described in (Wilson et al., 2020) [32], and the rest
are published. This yields that each published metric satisfies (
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The GAMRD dataset used in this study covered the years 2018, 2019, and 2020 and
initially contained weekly data representing relative population flows which were subse-
quently aggregated to a monthly timescale to allow direct comparison with the monthly
VIIRS NTL data. The GAMRD data for 2020 were initially supplied in S2 Geometry
(S2 Geometry, 2018) [34] and were then converted to the GCS-WGS84 coordinate system.
Based on the origin and destination coordinates of the trips and using shapefiles rep-
resenting level 2 administrative units, the relative flows were aggregated into 3 unique
GAMRD-based flow metrics (i.e., internal flow, inward flow, and outward flow) as de-
scribed in Table 1. Therefore, for every level 2 administrative unit of each country of interest,
three distinct GAMRD-based flow metrics were available for each month over the study
period (i.e., 2018–2020).

Table 1. The three Google Location History Flow Metrics created for the current study based on the
direction and nature of movement within and between level 2 administrative units.

GAMRD Flow Metric Description

Internal Flow

The internal flow within the same
administrative unit (as this value increases,
population total is unchanged but is more
mobile)

Inward Flow

The external flow to the administrative units
from others either within the same country or
abroad (as this value increases, population
within this admin unit increases)

Outward Flow The external flow increases, population within
this admin unit decreases)

Although it would have been preferable to combine GAMRD data from all years (i.e.,
2018, 2019, and 2020), this was not possible due to the different spatial aggregation methods
used to produce them, and so the study results were necessarily split into two time-periods:
2018/19 and 2020. The 2018/19 data represented flows originally calculated between S2
cells whilst the 2020 data were originally provided based on 1 km cells in WGS84. Although
both groups were later reformatted to represent flows between level 2 administrative units
in GCS-WGS84, the machine learning-based algorithm used to calculate the raw flows
produced two unique datasets that can be justifiably compared to each other and to other
data (namely, the VIIRS-NTL data in this study) but cannot be directly combined. Finally,
the data referring to December 2019 were removed due to quality issues.

A Python script (Py v3.6) was created to download and extract VIIRS-NTL imagery
for each country of interest and thereafter apply postprocessing stages in preparation for
zonal statistics. The NTL data were provided by the Colorado School of Mines as monthly
composites in geotiff format with the globe divided into 6 tiles (Elvidge et al., 2017) [35].
Monthly composites were filtered to exclude data impacted by stray light, lightning, lunar
illumination, and cloud-cover where the monthly series is run globally using two different
configurations. The first excludes any data impacted by stray light. The second includes
these data if the radiance values have undergone the stray-light correction procedure.
These two configurations, one of which includes the stray-light corrected data, will have
more data coverage toward the poles, but will be of reduced quality with the decision of
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which configuration to use being dependent on the context. For each of the months from
2012–2020, for the monthly non-tiled versions, the annual masks for each year were applied
to all the months for that year. For example, the 2020 lit mask was applied on all the months
of 2020 (Mills et al., 2013) [36]. According to Elvidge et al. (2013) [17], in contrast to the
DMSP overpass time which is near 7.30 pm, the SNPP overpass time is near 1.30 am and
peak lighting is prior to 10 pm (after which there is some decline in the quantity of outdoor
lighting, but we also agree with Eldvige et al. (2013) [17] that VIIRS data strongly indicate
that there is still plenty of lighting being detected after midnight which may or may not
only link to public infrastructure lights). After using the annual composites for removing
ephemeral lights (unrelated to electric lighting) and background (non-lights) from monthly
composites which were already processed for removing persistent gas flares, as well as the
impact of sunlit, moonlit, stray lights, lightening, high energy particle, overglow, and cloud-
cover, the monthly composites should only include electric lights, which may or may not
be related to population presence and thus be affected by human mobility in various ways
in different contexts (i.e., urban, peri-urban, vs. rural). At the time of the study design and
data analysis (mid-2019), VIIRS annual composite data were not available for all three years
of 2018–2020, and only the data that were available up until 2016 had been postprocessed
to remove ephemeral lights, such as volcanic activity, fires, and atmospheric noise (Elvidge
et al., 2017) [35]. However, the version 1 series of the monthly composites were not filtered
to screen out lights from aurora, fires, boats, and other non-residential lights, thus requiring
additional postprocessing (Li et al., 2013; Wang et al., 2017) [37,38]. The downloaded files
were composed of a primary radiance raster (*rade9.tif) containing floating-point radiance
values with units in nanoWatts/cm2/sr and a corresponding coverage raster (*cvg.tif) of
integer values representing the number of observations made on each pixel in each month
to be used for quality control.

After the NTL rasters were downloaded, the postprocessing steps illustrated in
Figure 2 were implemented following the recommendations set out in previous stud-
ies using VIIRS-NTL data (Li et al., 2013; Wang et al., 2017) [37,38]: firstly, the respective
radiance and coverage rasters were clipped to the extent of each country of interest then
buffered to 100 km to allow the preservation of pixels when projecting from WGS84 to
UTM. Radiance pixels were then converted to zero if their values were either negative or
zero in the 2016 annual composite raster. In cases where the coverage raster indicated that
no observations were made in a particular pixel, the corresponding radiance pixel was
converted to no data.
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To remove any signals created by non-residential lights (such as gas flares), the maxi-
mum pixel value in the capital city region of each country for each month was determined.
Working under the assumption that no residential lights would be brighter than these
radiance values outside of the capital city, any pixels outside of the capital region greater
than these values were converted to the mean of the surrounding pixels. The final step was
to remove background noise from the data by removing all values lower than 0.2 nWcm−2

(between 50 degrees north and south) (Elvidge et al., 2017) [35]. All rasters were then
projected to UTM Albers and clipped using country shapefiles. The postprocessed and
smoothed radiance rasters were labelled with an appropriate suffix (*smth.tif) ready for
zonal statistics. Shapefiles representing level 2 administrative units, as provided by the
GADM v3.6 (Warmerdam, 2008) [39], were used in conjunction with the postprocessed
radiance rasters for zonal statistics. The “Sum” metric was used to determine the total
radiance (Sum of Lights or SoL) per month within each level 2 administrative unit, with
results eventually exported to a CSV file for further analysis.

Whilst the current study would ideally include all African countries, the geographical
and temporal range was limited by the availability of the GAMRD data. The criteria by
which countries were determined to have sufficient GAMRD data were that the data should
have an average spatial coverage per country of more than 85% and that less than 10% of
all administrative regions of each country have no data. By following these criteria, twelve
countries for 2018, 2019, and 2020 were selected for a correlative analysis between the three
GAMRD flow metrics and the corresponding NTL SoL values calculated for each level 2
administrative unit. In addition, a previous global study (Dickinson et al., 2020) [30] found
that in different parts of the world, the relationship between mobility and light production
differed considerably, and analyses should account for such regional variations. The twelve
selected countries spanned a broad geographic range across the African continent and
provided a convenient means for grouping for subsequent analysis according to the United
Nations Geoscheme for Africa (UN Statistics Division, 2022) [40] which separates African
countries according to cardinal direction as shown in Figure 1.

To allow collective analysis over multiple countries, each level 2 administrative unit
within each country was categorised according to its degree of urbanisation. By grouping
administrative units in this manner, it was possible to demonstrate how NTL and GAMRD
correlations vary according to the degree of urbanisation, such as highly populated urban
areas vs. sparsely populated rural areas. The GHS Settlement Model (GHS-SMOD) raster
provides a classification raster of global coverage that gives for every 1 km2 raster pixel
a value corresponding to one of eight possible rural/urban classifications (Florczyk et al.,
2019) [41] as illustrated in Figure 3.
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As the GHS-SMOD raster provides rural/urban classifications at the 1 km2 pixel
level, an aggregation procedure is required to determine the “overall” degree of urban-
isation of each level 2 administrative unit. An R-Script (R v4.0.3) was created for this
purpose and took as input: the GHS-SMOD raster as provided by the GHSL-SMOD Project
(Florczyk et al., 2019) [41], the 2020 Population Raster as provided by WorldPop (WorldPop-
School of Geography and Environmental Science, University of Southampton; Department
of Geography and Geosciences, University of Louisville; Departement de Geographie, Uni-
versite de Namur; and the Center for International Earth Science Information, n.d.) [42] and
the level 2 administrative unit shapefiles for the country of interest. The GHS-SMOD raster
was extracted into eight separate rasters for each rural/urban classification and converted
to binary format (i.e., 0.1). The WorldPop population raster was then multiplied for each of
the eight binary rural/urban classification rasters. The resultant product rasters therefore
contained the population count in each rural/urban classification, with the corresponding
final level 2 administrative unit values obtained through summation via Zonal Statistics.
The eight rural/urban classifications were combined into 3 groups: Group 1 (Classes 10,
11, 12, 13), Group 2 (Classes 21, 22, 23), and Group 3 (Class 30). The final classification
was then determined via a nested hierarchy and majority approach whereby each unit was
assigned to: Group 1 if Group 1 > 50% total country population, Group 2 if Group 1 < 50%
and Group 3 < 50% total country population, or Group 3 if Group 3 > 50% total country
population. Within the highest group, the individual highest classification value provided
the final rural/urban classification for each administrative unit. A simplified illustration of
the procedure using Kenya as an example is shown in Figure 4.
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Figure 4. Visual overview of the process to determine urban classification at the administrative unit
level: The GHSL-SMOD raster (A) is multiplied by the corresponding population raster (B) which is
ran through zonal statistics to obtain the majority urban classification for the admin units of each
country’s level 2 shapefile (C).

For each administrative unit during the study period 2018–2019 and 2020, NTL data
were used to calculate the SoL value per month, while the GAMRD data provided the
anonymized and aggregated flows per month. To determine the relationship between
GAMRD and NTL data, their monthly values were used as input for a correlation test using
the Spearman’s product-moment correlation coefficient (ρ) and its corresponding p-value.
By grouping administrative units together according to the rural/urban classification, a
high sample size was available for the correlation tests.

Furthermore, we examined the relationship between GAMRD and NTL data in a
Gaussian Regression model-based framework to understand the amount of variation in
the GAMRD data that could be explained by the NTL data. Both variables were log-
transformed to improve the relationship between them and to improve normality. Two
models were fitted: (i) a full model that includes NTL and degree of urbanisation as covari-
ates and also accounts for temporal correlation and random variation between countries,
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and (ii) a reduced model that includes NTL as the only covariate. The reduced model was
fitted in a frequentist framework while the full model was fitted in a Bayesian framework
using the INLA package in R (Lindgren and Rue, 2015) [43]. The predictive ability of both
models was evaluated using a hold-out cross-validation exercise in which we used 80% of
the data for model fitting and 20% for validation. The Pearson’s correlation coefficient and
the R-squared statistic were then computed using the observed and predicted values. Both
the full and reduced models were fitted for each GAMRD-based flow metric (i.e., internal
flow, inward flow, and outward flow) separately.

3. Results
3.1. Correlation over Combined Countries

To gain a broad overview of how the NTL SoL values correlate with the three GAMRD
flow metrics, all twelve selected African countries were included for the two time periods (i.e.,
2018–2019 and 2020). Correlation strength definitions based on the Spearman’s correlation
coefficient (ρ) were taken from Akoglu (Akoglu, 2018) [44]. These are ρ (0.1–0.3) = weak
correlation, ρ (0.4–0.6) = moderate correlation, and ρ (0.7–0.9) = strong correlation. An
example of a typical correlation plot of NTL SoL radiance values ~ GAMRD Inward Flows is
shown in Figure 5.
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Figure 5. A sample of a correlation plot between the NTL SoL radiance values and GAMRD Inward
Flows for the low-density rural class (12 in Figure 3) across all twelve selected African countries
during the 2018–2019 period.

The GAMRD Internal Flow metric for 2018–2019 showed moderate to strong positive
correlations in the rural group (11, 12, 13 in Figure 3) and dense-urban class (23 in Figure 3),
with weak to moderate correlations in the urban (30 in Figure 3) and peri-urban (21 in
Figure 3) classes. For 2020, the correlations were marginally higher in the rural group (11,
12, 13 in Figure 3) and marginally lower in the urban group (21, 23, 30 in Figure 3).

The GAMRD Inward Flow metric for 2018–2019 showed moderate positive correlations
in the rural group (11, 12, 13 in Figure 3) and dense-urban class (23 in Figure 3) with weak
to moderate correlations in the urban (30 in Figure 3) and peri-urban (21 in Figure 3) classes.
For 2020, the correlations were considerably lower in the very-low-density rural (11 in
Figure 3) class, marginally less in the rural (12, 13 in Figure 3) group and considerably less
in the urban group (21, 23, 30 in Figure 3).
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The GAMRD Outward Flow metric for 2018–2019 showed moderate negative correla-
tions in the rural group (11, 12, 13 in Figure 3) and dense-urban (23 in Figure 3) class with
weak to moderate correlations in the urban (30 in Figure 3) and peri-urban (21 in Figure 3)
classes. For 2020, the correlations were considerably less in the very-low-density rural (11
in Figure 3) class, marginally less in the rural group (12, 13 in Figure 3) and considerably
less in the urban group (21, 23, 30 in Figure 3). The Spearman’s correlation coefficients for
each rural/urban classification were placed on a bar chart with the relative proportions of
each rural/urban classification included for reference as shown in Figure 6.
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Figure 6. The proportion of rural/urban classifications for all level 2 administrative units within the
12 selected Africa countries (top left). The Spearman’s correlation coefficients for each rural/urban
classification for the NTL SoL radiance values and GLH flow metrics. All values p < 0.0001 except
those indicated by an asterisk *.

The results indicated that the rural groups (11, 12, 13 in Figure 3) and dense-urban
class (23 in Figure 3) have the highest correlation between the NTL SoL radiance values
and GAMRD flow metrics, with the urban group (21, 30 in Figure 3) having the lowest
correlations. The differences in correlations between the two time periods were consider-
able, with 2020 having far smaller correlations coefficients across almost all rural/urban
classifications compared to those of 2018–2019.

Using the Gaussian regression model for each time period (i.e., 2018–2019 and 2020),
significant positive relationships were observed between the GAMRD flow metrics and
NTL SoL radiance values for both internal and inward flows, and significant negative
relationships for outward flows. Moreover, significant differences were found between the
“urban centre” class and all other rural/urban classifications. The fitted full models showed
good predictive power based on the cross-validation exercise results which are shown in
Table 2. For 2018–2019, the out-of-sample R2 values of the fitted models were 0.29, 0.28,
and 0.27 for the internal, inward, and outward flows, while the corresponding correlations
were 0.54, 0.53, and 0.52, respectively. This means that models were able to explain at
least 27% of the total variation in the GAMRD flows using NTL SoL as a covariate, whilst
adjusting for the other sources of variation in the data. However, with the reduced model,
this predictive power reduces to at most 9%, highlighting the importance of accounting for
the degree of urbanisation and other sources of variation in the data in the analysis. For
2020, similar results were obtained, although the predictive powers of both the full models
(≤26%) and the reduced models (4%) were lower. This can be explained by the fact that
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while NTL SoL radiance values remained relatively stable throughout all the years (2018,
2019, and 2020), the GAMRD flows significantly decreased.

Table 2. Out-of-sample validation NTL-GAMRD statistics based on hold-out cross-validation exercise.

Year GAMRD Metric
Correlation R2

Full Model Reduced Model Full Model Reduced Model

2018–2019
Internal 0.54 0.31 0.29 0.09

Inward 0.53 0.28 0.28 0.08

Outward 0.52 0.28 0.27 0.08

2020
Internal 0.48 0.21 0.23 0.04

Inward 0.51 0.20 0.26 0.04

Outward 0.47 0.19 0.23 0.04

3.2. Annual Correlation Variation

To gain a deeper insight into why the correlation coefficients for NTL-GAMRD were
so different between the two time periods of 2018/19 and 2020, the data were split monthly
to analyse any change in correlation during the year, as illustrated in Figure 7. During 2018,
the Spearman’s correlation coefficient (ρ) remained relatively stable throughout most of the
year for all three GAMRD flow metrics except during April, when the values decreased
substantially for the rural group (11, 12, 13 in Figure 3) and “urban centre” class (30 in
Figure 3) and increased slightly for the “peri-urban” and “dense urban cluster” classes. Dur-
ing 2019, the Spearman’s correlation coefficient (ρ) remained relatively stable throughout
the year across all the rural/urban classifications with the only noticeable perturbation in
values during October. During 2020, two large perturbations in the Spearman’s correlation
coefficient (ρ) were observed centred around the months of April and September.
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3.3. Sum of Lights and GAMRD Annual Value Variation

To determine the possible source of the inter-annual variation of the correlation, the
NTL SoL radiance and GAMRD flow totals were analysed separately across each year of
2018, 2019, and 2020. For each year, a combined NTL SoL metric was calculated by grouping
all administrative units according to their degree of urbanisation across all countries and
then summing the corresponding NTL SoL radiance values for each month, as shown in
Figure 8. Whilst the individual values themselves were not analysed, the degree to which
this metric varied through the year may highlight months of particularly high variance of
the NTL SoL radiance. The variation of the combined NTL SoL metric was most noticeable
within the administrative units classified as “urban centres” (30 in Figure 3), whilst for all
other rural/urban classifications, the metric was relatively stable throughout all the years
2018, 2019, and 2020.
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Figure 8. The combined NTL SoL metric for all administrative units in each month in 2018, 2019, and
2020 across all twelve selected African countries.

Similarly, for each of the three GAMRD flow metrics (i.e., internal flow, inward
flow, and outward flow), administrative units were grouped according to their degree
of urbanisation across all countries, and the corresponding flow values for each month
were summed together as shown in Figure 9. As with the combined NTL SoL metric, the
total flow values were not directly analysed, but rather their variation throughout the
year was used as an indicator of periods of potentially unusual human mobility. During
2018 and 2019, the GAMRD flow totals remained relatively stable for all the rural/urban
classifications except the “urban centre” class (30 in Figure 3). During 2020, the “urban
centre” class (30 in Figure 3) showed drastic variations across a large range for most months,
with two particularly large shifts in April and September, whilst the remaining rural/urban
classes remained relatively stable throughout the year.
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3.4. Correlation over Country Groups

According to the United Nations Geoscheme for Africa, the twelve study countries
were separated to four cardinal groups (north, south, east, and west) and the NTL-GAMRD
correlation analysis was repeated as illustrated in Figures A1–A4 in Appendix A. The
Northern Africa group had a high degree of urbanisation with 37.43% of administrative
units classified as “urban centres” (30 in Figure 3). Correlation results were generally
higher within the rural group (11, 12, 13 in Figure 3) for both the 2018–2019 and 2020 time
periods, with correlations for most classes noticeably lower for 2020 than for 2018–2019.
The Eastern Africa group had a high degree of rural presence with 66.47% of administrative
units classified as “very low density rural” (11 in Figure 3). Correlation results were highest
within the rural group (11, 12, 13 in Figure 3) and “urban centres” (30 in Figure 3) for both
the 2018–2019 and 2020 time periods, with correlations for most classes noticeably lower
for 2020 than for 2018–2019. Correlations for 2020 were comparable with correlations for
2018–2019 across most classes with both positive and negative variance. The Southern
Africa group had a balanced rural/urban proportion with neither urban nor rural classifi-
cations dominating the administrative units. Correlation results were highest within the
rural group (12, 13 in Figure 3) and urban group (23, 30 in Figure 3) for both the 2018–2019
and 2020 time periods, with correlations for 2020 considerably lower than correlations for
2018–2019 for all classes. The Western Africa group had a high degree of rural presence
with 82.58% of administrative units classified as “very low density rural” (11 in Figure 3).
Correlation results were highest within the urban group (21, 23, 30 in Figure 3) for both
the 2018–2019 and 2020 time periods, with correlations for 2020 noticeably lower than
correlations for 2018–2019 for most classes. Correlations for 2020 were comparable with
correlations for 2018–2019 across most classes with both positive and negative variance.

4. Discussion

NTL has been widely used for population spatial distribution mapping, and a strong
correlation between NTL and GAMRD data has been demonstrated in previous studies
(Dickinson et al., 2020) [30]; however, the variation of this relationship according to the
degree of urbanisation was previously unexplored. The longitudinal Google Aggregated
Mobility Research Dataset (GAMRD) and the VIIR NTL data for Africa in 2018–2020,
according to the degree of urbanisation, provide a good opportunity to improve our
understanding of the value of NTL data for assessing human mobility and the associated
changes in population presence in low- and middle-income countries. The diversity of the
study’s countries in different regions does ensure that this study contains wide variance
in socioeconomic, geographic, and demographic contexts. Our study, conducted from
2019–2021, has demonstrated the high variability in correlations between administrative-
unit-level NTL radiance values and GAMRD flow metrics across a broad geographic range
and within different rural/urban classifications. Administrative units classified as rural
and semi-rural were shown to have on average the highest NTL-GAMRD correlation
whilst administrative units classified as “urban centres” had the lowest (not including
the peri-urban class, which had several low p-values). This is likely due to the saturation
and greater stability of lighting and NTL brightness values within urban centres/areas.
Indeed, large urban centres/areas in Sub-Saharan Africa and elsewhere tend to be more
consistently lit throughout the year and are often bright enough in their core to saturate
NTL brightness values (Zhao et al., 2019) [45]. This means that changes in brightness due to
human mobility and the associated population presence and density changes are less likely
to occur in urban centres/areas than in small towns/rural and peri-urban areas, where
population arrivals may lead to an increase in brightness due to electric lighting or fires in
residential areas (Bharti et al., 2011) [12].

What was most noticeable in the study was the significant difference in correlation
strength between the two time periods of 2018–2019 and 2020. Correlations across most
rural/urban classifications and particularly “urban centres” were considerably lower in
2020 than in 2018–2019. Whilst the variation of the NTL SoL radiance values across all
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urban classes remained relatively stable throughout the year, the GHL flow metrics refer-
ring to 2020 showed that the corresponding flow values were far more erratic than those in
2018–2019, with the months of April and September being most prominent in their devia-
tion, creating a consequential effect for the NTL-GAMRD correlations during these months.
These changes might be attributed to the implementation of lockdown measures during
the COVID-19 pandemic, with the first wave in March–April (Haider et al., 2020) [46] and
the second wave in September–October (Kuehn, 2021) [47]. This has implications for the
reliability of NTL data as a proxy for human mobility during periods of unusual human
activity, such as lockdown periods. In addition, NTL data have several drawbacks such
as delayed access to real-time data, low light detection thresholds, and the requirement
for additional postprocessing; however, these are expected to continue to be addressed
as the technology further develops and novel data sources become available (Zhao et al.,
2019) [45].

In addition, we only found one similar study conducted by Dickinson et al., 2020 [30].
Based on linear regression and random forest models, they used Google’s human mo-
bility data in 2016 to predict VIIRS satellite imagery and then assessed how accurately
this simulated global NTL imagery could be used to predict GDP across regions in
2015–2016. They demonstrated that the relationship between human mobility and VI-
IRS NTL was nonlinear and varied considerably around the globe. The differences across
regions were made clear by the improvement in the model performance when modelling
each region independently rather than constructing a single global model. Our study fur-
ther measured the degree to which this relationship varied across locations with different
levels of urbanisation and development in 2018–2020. However, we found that compared
with urban settings, there was a higher association between NTL data and mobility changes
in rural and peri-urban areas. In addition, a reduced NTL-GAMRD correlation strength
in 2020 was observed, especially in urban settings, most probably because of the monthly
NTL SoL radiance values remaining relatively similar in 2018–2019 and 2020 but the human
mobility significantly decreasing in 2020 with respect to the previous considered period.
Our study provides new insights about changes in mobility and NTL as well as their
association across settings during a global crisis such as the pandemic.

Furthermore, it is important to highlight that GAMRD data present several limi-
tations and potential biases as well. Indeed, such data are limited to mobile internet
coverage and smartphone users who have opted into Google’s Location History feature,
which is off by default, and thus, they may not be representative of the population as
a whole. Similarly, their representativeness may vary by location and be particularly
low in rural areas characterised by low population densities. Additionally, GAMRD
data are still likely to be biased towards educated males living in urban areas (Lai, zu
Erbach-Schoenberg et al., 2019) [25]. Moreover, comparisons across rather than within
locations are only descriptive, since these regions can differ in substantial ways. Another
primary drawback of GAMRD data is the difficulty of obtaining them due to the restric-
tive data sharing policies implemented to protect individual privacy and GAMRD data
being subject to differential privacy algorithms designed to protect user’s anonymity,
which obscure fine details. However, considering potential biases of representativeness
among populations across regions, it is important to include subnational and up-to-
date statistics on smart-device ownership and internet penetration in future research
where possible. Mobile phone subscribers and smartphone adoption are expected to
continue growing in low- and middle-income countries, and surveys for measuring
mobile phone/smartphone penetration and social media coverage may be necessary to
obtain more precise metrics for each country and subnational region (e.g., administrative
unit level 1 or 2). In addition, considering the potential biases of representativeness
among populations, rather than grouping countries together, it may be of interest to
analyse each country separately to avoid generalisations in the future.
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5. Conclusions

Following the global COVID-19 pandemic and the consequent restrictions on human
mobility, importance has risen dramatically for datasets that can successfully explore short-
term and intra-annual human mobility and assess the associated population presence and
density changes. With several proxies available, it is useful to understand the limitations
and accuracy of each dataset that can be used for mobility research, which motivates the
current study. Results have indicated that VIIRS NTL data may be best-suited for the
analysis of human mobility within more rural areas and that during periods of unusual
human activity (such as the lockdown periods in 2020), VIIRS NTL data may not pro-
vide the necessary spatial resolution for detailed study. In addition, as the NTL-GAMRD
correlation was found to be potentially weaker in “urban centres” areas, this highlights
the importance of integrating additional geospatial datasets that are able to capture dif-
ferent scales of variation into a larger multivariate model, instead of our current simple
modelling framework.

As refinements in NTL technology become available and new datasets are released
with higher spatial resolution and enhanced postprocessing, it is hoped that these limi-
tations may be overcome. Despite the demonstrated efficacy of the GAMRD in “urban
centres” areas and during lockdown periods, with NTL data continuing to be publicly
available with wide geographic coverage, its use can remain important as a proxy of human
mobility and the associated population presence and density changes until alternative
datasets, such as mobile phone locations, can be more easily accessed by the scientific and
operational communities.
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Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 19 
 

 

 

Figure A1. The proportion of rural/urban classifications for all level 2 administrative units within 

the Northern African countries listed in Figure 1 (top left). The Spearman’s correlation coefficients 

for each rural/urban classification according to the NTL SoL radiance values and GLH flow metrics. 

All values p < 0.001 except those indicated by an asterisk *. 

 

Figure A2. The proportion of rural/urban classifications for all level 2 administrative units within 

the Eastern African countries listed in Figure 1 (top left). The Spearman’s correlation coefficients for 

each rural/urban classification according to the NTL SoL radiance values and GLH flow metrics. All 

values p < 0.001 except those indicated by an asterisk *. 

Figure A2. The proportion of rural/urban classifications for all level 2 administrative units within
the Eastern African countries listed in Figure 1 (top left). The Spearman’s correlation coefficients for
each rural/urban classification according to the NTL SoL radiance values and GLH flow metrics. All
values p < 0.001 except those indicated by an asterisk *.



Remote Sens. 2023, 15, 4252 16 of 18
Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 19 
 

 

 

Figure A3. The proportion of rural/urban classifications for all level 2 administrative units within 

the Southern Africa countries listed in Figure 1 (top left). The Spearman’s correlation coefficients for 

each rural/urban classification according to the NTL SoL radiance values and GLH flow metrics. All 

values p < 0.001 except those indicated by an asterisk *. 

 

Figure A4. The proportion of rural/urban classifications for all level 2 administrative units within 

the Western Africa countries listed in Figure 1 (top left). The Spearman’s correlation coefficients for 

each rural/urban classification according to the NTL SoL radiance values and GLH flow metrics. All 

values p < 0.001 except those indicated by an asterisk *. 

  

Figure A3. The proportion of rural/urban classifications for all level 2 administrative units within
the Southern Africa countries listed in Figure 1 (top left). The Spearman’s correlation coefficients for
each rural/urban classification according to the NTL SoL radiance values and GLH flow metrics. All
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