
1

Communication-Assisted Multi-Agent Reinforcement Learning Improves
Task-Offloading in UAV-Aided Edge-Computing Networks

Siyang Tan, Binqiang Chen, Dong Liu, Jianglong Zhang and Lajos Hanzo

Abstract—Equipping unmanned aerial vehicles (UAVs) with
computing servers allows the ground-users to offload complex
tasks to the UAVs, but the trajectory optimization of UAVs is
critical for fully exploiting their maneuverability. Existing studies
either employ a centralized controller having prohibitive com-
munication overhead, or fail to glean the benefits of interaction
and coordination among agents. To circumvent this impediment,
we propose to intelligently exchange critical information among
agents for assisting their decision-making. We first formulate a
problem for maximizing the number of offloaded tasks and the
offloading fairness by optimizing the trajectory of UAVs. We
then conceive a multi-agent deep reinforcement learning (DRL)
framework by harnessing communication among agents, and
design a communication-assisted decentralized trajectory control
algorithm based on value-decomposition networks (VDN) for
fully exploiting the benefits of messages exchange among agents.
Simulation results demonstrate the superiority of the proposed
algorithm over the state-of-the-art DRL-based algorithms.

Index Terms—Multi-agent reinforcement learning, UAV, tra-
jectory planning

I. INTRODUCTION

Mobile edge computing (MEC) is a key technique of
improving the quality of experience (QoE) of mobile users by
offloading the computation tasks from users [1, 2]. Typically,
MEC servers are deployed at fixed locations near the wireless
edge, limiting their capability of providing flexible services.

Given their maneuverability, high-end unmanned aerial ve-
hicles (UAVs), having unexploited computing and storage
hardware, might be harnessed as the flexible servers for
mobile users [3–5]. Jeong et al. [6] optimized both the
resource allocation and the UAV’s trajectory for minimizing
the overall energy consumption by utilizing a successive
convex approximation-based algorithm. To tackle the resource
allocation problem, Lyu et al. [7] propose a quantized dynamic
programming algorithm for offloading delay-sensitive tasks in
MEC. To reduce the complexity, Wu and Zhang [8] designed
a UAV trajectory discretization method, and formulated a
tractable problem for optimizing the consecutive UAV loca-
tions. However, due to the limited coverage range of UAVs
and non-existence of a centralized control node, the UAV-
aided MEC system environment is only partially observable
for each UAV. Moreover, neither the model nor the dynamics
of the environment are known a priori. Thus, it is difficult
to formulate tractable problems for complex environments.

S. Tan is with Chinese Aeronautical Establishment, Beijing 100029, China.
B. Chen, D. Liu and J. Zhang are with Beihang University, Beijing 100191,
China. L. Hanzo is with the University of Southampton, Southampton SO17
1BJ, U.K. This work was supported in part by the National Natural Science
Foundation of China (NSFC) under Grant 62001509 and 62301015, in part
by the Youth Top Talent Support Program of Beihang University under
Grant YWF-22-L-1269, and in part by the CAAC Key laboratory of General
Aviation Operation under Grant CAMICKFJJ-2020-4. L. Hanzo would like to
acknowledge the financial support of the Engineering and Physical Sciences
Research Council projects EP/W016605/1, EP/X01228X/1 and EP/Y026721/1
as well as of the European Research Council’s Advanced Fellow Grant
QuantCom (Grant No. 789028) (Corresponding author: Dong Liu)

Additionally, the computational complexity usually grows ex-
ponentially with the number of time slots considered in MEC
settings, especially in multi-UAV scenarios.

To tackle the challenges of partial observations, unknown
model and computational complexity, some authors harnessed
reinforcement learning (RL) for UAV-aided MEC [9–13]. In
[9], Zhang et al. proposed to minimize the energy consumption
and computation latency by optimizing both the UAV trajec-
tory control and task scheduling policy, by applying deep Q-
network (DQN) methods for single-UAV scenarios. Wang et
al. [10] optimized the user association, resource allocation and
trajectory of UAVs for minimizing the energy consumption
of all UEs. In order to maximize the energy efficiency while
ensuring wide coverage by the UAVs, Liu et al. [11] proposed
DRL-based methods for controlling the UAVs’ trajectory.
However, both [10] and [11] rely on a centralized controller
for information processing and decisions for all UAVs, which
would have an excessive overhead.

In order to obtain a decentralized policy, Hernandez-Leal
et al. [12] and Yu et al. [2] employed a distributed learner
for each MEC agent, which however may result in a non-
stationary problem [12, 14]. To tackle this problem, Wang et
al. in [13] resorted to a centralized training and decentralized
execution (CTDE) framework to control a UAV’s trajectory,
aiming at maximizing the offloading fairness, while mini-
mizing the overall energy consumption. Nonetheless, in both
independent learner and CTDE methods, each agent chooses
its action independently, unaware of the status and intentions
of others, which hinders the cooperation among agents.

Against the above background and inspired by the observa-
tion that leveraging communications between the agents can
provide critical information for decision making [14, 15], we
conceive a novel communication assisted learning framework
to deal with the aforementioned challenges in UAV trajectory
control supporting MEC networks. Our major contributions
can be summarized as follows:

• We formulate a new multi-agent RL (MARL) problem to
optimize the trajectory of each UAV, aiming for maximiz-
ing both the number of offloaded tasks and the fairness.

• We propose a communication-assisted value decomposi-
tion network (CAVDN). By allowing agents to exchange
the messages learned, each agent can take into account
both its local observations and messages from others.

• Our simulation results show the superiority of CAVDN
over state-of-the-art DRL-based UAV control algorithms.

II. SYSTEM MODEL

In this section, we describe the UAV-aided MEC system. Let
K = {k|k = 1, 2, ...,K} denote the IoT user equipment (UE)
set. Due to the limited computing capability of IoT devices,
their tasks have to be offloaded to UAVs for execution, where
N rotary-wing UAVs with on-board MEC servers fly over the

2

target area to provide computation services. Let N ≜ {n|n =
1, 2, ..., N} represent the UAV set. We assume that all UAVs
can be charged by the stations positioned on the roof tops
before ruining out of battery as in [13] or laser-charged as in
[16]. Thus, the energy consumption of UAVs is not considered.

The system is operated in discrete time steps (TSs), each
with a duration of τ . In TS t, the coordinates of the nth UAV
and the kth user are denoted by duav

n,t = [dxn,t, d
y
n,t, d

z
n,t] and

due
k,t = [dxk,t, d

y
k,t, 0], respectively.

A. UAV Motion and Offloading Decision
Let us denote the heading and normalized speed of the nth

UAV at TS t by ϕn,t ∈ [0, 2π], and υn,t ∈ [0, 1], respectively.
Consequently, the position of UAV n at TS t+ 1 is

duav
n+1,t = duav

n,t + (vn,tVmax +wn,t)τ, (1)

where vn,t = [υn,t cos(ϕn,t), υn,t sin(ϕn,t), 0], Vmax is the
maximal speed of the UAVs, and wn,t is a random variable
reflecting the uncertainty of the environment, e.g., wind.

We consider the “full buffer” scenario, where each UE
always has local tasks for offloading. If there is at least one
UAV in the coverage of the UE, the UE will forward its local
task to the nearest UAV. Otherwise, the UE will execute its task
locally. Moreover, we assume that the computational capability
of the UAV is powerful enough to complete each offloaded task
in a single TS. The offloading decision of the kth UE for the
nth UAV at TS t is denoted as xk,n,t. Specifically, xk,n,t = 1
represents that UE k offloads its task to UAV n at TS t, where∑N

n=1 xk,n,t ≤ 1, and xk,n,t = 0 otherwise.

B. Communication Channel and Task Offloading Process
Given the high probability of line-of-sight (LoS) connec-

tions between the UEs and UAVs, we only consider LOS
channels. The channel gain between UE m and UAV n in
TS t is hk,n,t = d−α

k,n,tµ, where α is the path loss exponent,
and µ denotes the reference channel’s power gain at one meter.

We assume that all UEs share the same bandwidth W to
communicate with the UAVs, and the ground-to-air links are
scheduled using TDMA. Then, the offloading data rate from
the kth UE to the nth UAV at TS t can be written as

Rk,n,t =
W∑K

k=1

∑N
n=1 xk,n,t

log2

(
1 +

Phk,n,t

σ2

)
, (2)

where P is the transmit power of the UE, and σ2 is the additive
white Gaussian noise power.

If UE k offloads its local task to UAV n at TS t, the
duration of offloading the data is ∆k,n,t = S(k)/Rk,n,t, where
S(k) is the task size of UE k. If the offloading requires
more than one time slot, i.e., ∆k,n,t ≥ τ , the UAV will
refrain from maneuvering in the next TS for completing the
offloading process. Let x̃k,n,t represent the task offloading
status. Specifically, if the task sent from UE k to UAV n is
finished at TS t, we have x̃k,n,t = 1. Otherwise, x̃k,n,t = 0.

C. Performance Metric and Problem Formulation
Our primary objective is to maximize the average ratio of

completed offloading tasks, where the ratio is expressed as

et =

K∑
k=1

N∑
n=1

x̃k,n,t

K
. (3)

To balance the load among UAVs, we consider the fairness
among each UAV’s load as another objective to guide the
optimization. We define yn,t =

∑K
k=1 xk,n,t/K as the relative

load of UAV n at TS t. Then, by applying Jain’s fairness index,
the UAV’s fairness index fuav

t can be expressed as

fuav
t =

(
∑N

n=1

∑t
t′=1 yn,t′)

2

K
∑N

n=1(
∑t

t′=1 yn,t′)
2
, (4)

which approaches 1 when the number of served tasks for all
UAVs at each TS is similar.

Meanwhile, we also consider the fairness between UEs,
which is defined similarly by

fue
t =

(
∑K

k=1

∑t
t′=1

∑N
n=1 xk,n,t′)

2

K
∑K

k=1(
∑t

t′=1

∑N
n=1 xk,n,t′)2

, (5)

which approaches 1 if the number of offloaded tasks for all
UEs at each TS is similar.

In contrast to metrics like data rate, the offloading fairness
indices have no explicit threshold regarding their impact on
the QoE of users. Thus, we include them into the objective
function as in [13]. By jointly considering the number of
offloaded tasks and the fairness indices, we formulate the
trajectory control problem as follows

min
ϕn,t,υn,t

E

[
−

T∑
t=1

(et + λfuav
t + βfue

t)

]
s.t. ϕn,t ∈ [0, 2π], υn,t ∈ [0, 1],

(6)

where λ and β are hyper-parameters used for adjusting the
relative importance of the terms in the optimization objective
function of (6). The expectation is taken over all random
variables, including the UAV locations and fading channels
in each TS.

At the initial TS, both the position of UEs and the random-
ness factor of UAV mobility are all unknown. Additionally,
the objective function involving the derivation of x̃k,n,t is
not tractable. Therefore, traditional optimization methods are
unsuitable, and we apply MARL to solve the problem in the
following.

III. COMMUNICATION-ASSISTED VALUE DECOMPOSITION
NETWORK ALGORITHM

In this section, we first introduce some basic notions of
MARL. Then, we reformulate Problem (6) in the form of
MARL by designing the observation, action and reward. Fi-
nally, we introduce the communication-assisted MARL frame-
work and its solution.
A. MARL Problem Formulation

In MARL settings, usually the multi-agent decentralized
partially observable Markov decision process (Dec-POMDP)
is employed [17, 18]. Specifically, a Dec-POMDP can be
represented by the state space S, the action space A, and the
observation space O for each agent [14]. At the beginning
of each TS t, the nth agent receives its local observation
on,t ∈ O, which is a part of the state st. Then, it chooses an
action an,t ∈ A, according to its local observation on,t based
on policy πn. After all agents’ actions are executed, agent n

3

obtains reward rn,t, which depends on the actions of all agents
{an,t|1 ≤ n ≤ N}. At the end of TS t, the current state
st evolves into the next state st+1. For cooperative tasks, all
agents have the same objective of maximizing the team reward
E
[∑T

t=1

∑M
n=1 γ

t−1rn,t

]
, where γ is the discount factor.

To employ RL methods for solving Problem (6), we firstly
define the local observation, as well as the action and reward
function for each agent at TS t as follows.

1) Observation on,t: Since both the offloading decision and
offloading data rate depend on the distance between UAVs
and users, we include their coordinates into the observation
vector. Additionally, we include the accumulated number of
tasks offloaded for UEs and the accumulated load of UAVs,
which determine the fairness among UEs and among UAVs,
respectively. Since the UAVs have limited reception range, we
only take the information of the nearest Mue

d users and the
nearest Muav

d UAVs into account. Then, the observation vector
of UAV n can be formulated as

on,t =

[
due
1,t, ...,d

ue
Mue

d ,t,

t∑
t′=1

N∑
n=1

x1,n,t′ , ...,

t∑
t′=1

N∑
n=1

xMue
d ,n,t′ ,

duav
1,t , ...,duav

Muav
d ,t, y1,t, ..., yMuav

d ,t

]
. (7)

2) Action an,t: The action of each UAV agent includes its
heading and speed, i.e. an,t = [ϕn,t, υn,t].

3) Reward rn,t: Since we consider cooperative tasks, the
team reward

rn,t = et + λfuav
t + βfue

t −
N∑

n=1

ccoln

N
, (8)

is shared among all agents, where ccoln is a penalty term
introduced for avoiding collisions between UAVs. Specifically,
ccoln = 1 when UAV n collides with others, otherwise ccoln = 0.

Then, the goal of each agent is to cooperatively minimize
the loss function expressed by

min
πn,1≤n≤N

J = E

[
− 1

N

T∑
t=1

N∑
n=1

γt−1rn,t

]
. (9)

B. Communication Assisted Decentralized Reinforcement
Learning Framework

Existing RL-based papers on wireless MEC networks tend
to implicitly assume conditional independence of actions from
different agents [12, 13]. Consequently, each agent chooses its
action purely based on its local observation during execution,
while neglecting any interactions among agents. By contrast,
we allow each agent to exchange its local information with
the agents within its communication range during both training
and execution, and more importantly, to learn what information
should be exchanged for promoting cooperation among agents
for better informed decision making.

Specifically, we introduce the communication-assisted
value-based (CAVB) MARL framework of Fig. 1(a). Each
agent stores and trains an agent network locally to esti-
mate the local state-action value function of Qn(on,an) ≜
E[
∑T

i=t γ
i−trn,t|on,t = on,an,t = an]. Based on this,

Agent
Network 1

o1

(a) CAVB Framework

Forward feeding

Back propogation

Agent
Network N

oN

Mixing Network

Co
m

m
un

ic
at

io
n

Ch
an

ne
l

Message share

Encoding
Module

RNN

Combining Module

on

Co
m

m
un

ic
at

io
n

Ch
an

ne
l

Training

n

Execution Execution

Intention
Module

(,)n n no aQ

hnnm

(,)N N No aQ1 1 1(,)o aQ

(,)tot o aQ

(b) Structure of Agent Net n

FNN

RNN

FNN

Fig. 1. CAVB framework and agent network structure.

the optimal action of agent n can be determined as an =
argmaxa′

n
Qn(on,a

′
n). In contrast to the existing MARL

frameworks, where each agent only estimates the local state-
action value based on its own local observation, we allow each
agent to transfer messages based on its local observation be-
tween nearby agents. In this way, the observation gleaned from
nearby agents can also be taken into account at a moderate
overhead, when estimating the local state-action value. As a
benefit, the local state-action can be estimated more accurately.
Then, a mixing network combines the output of all agents’ net-
works for approximating the global state-action value function
of Qtot(o,a) ≜ E[

∑T
i=t γ

i−trn,t|ot = o,at = a], where we
have o = {o1,o2, ...,oN}, and a = {a1,a2, ...,aN}. For
instance, Qtot(o,a) can be the summation of all the individual
action value functions in the value decomposition network
(VDN) [18], yielding Qtot(o,a) =

∑N
n=1 Qn(on,an).

C. Agent Network Structure and Training Algorithm

In the following, we first design the agent network and then
formulate the above-mentioned algorithm for training the agent
network.

Each agent network contains three modules: encoding mod-
ule, intention module, and combining module, as shown in
Fig. 1(b). To mitigate the model’s complexity and accelerate
the training process, the same values of θ are shared among
all agents’ network. Therefore, in the following, we consider
agent n as an example for characterizing the agent network.

(1) The encoding module takes the local observation on as
its input and outputs the encoded message mn. It consists of a
recurrent neural network (RNN) followed by a fully-connected
neural network (FNN). This recurrent structure can integrate
the previous observations into the encoded messages that are
transferred between agents.

(2) The intention module also takes the observation on as its
input, and outputs the intention hn that indicates the agent’s
behavior without considering others. It shares the same RNN
with the encoding module. The motivation for introducing the
intention module is to accelerate the learning process. At the
beginning of the training phase, the messages from others may
be noisy due to the randomly initialized neural networks, and
hence they may negatively affect the decision making. The
intention is used for compensating such an effect and helps
learn local policies more quickly.

4

(3) The combining module is a FNN, which takes both the
local intention hn and the messages arriving from the nearest
Muav

d agents (denoted as Mn, including local message mn),
and outputs the estimated local action-value function.

The training and execution process is shown in Fig. 2. The
training process includes sample collection and agent network
updates. During the sampling process, we harness the ϵ-greedy
policy to determine each agent’s action. In particular, the agent
chooses an = argmaxa′

n
Qn(on,a

′
n) with a probability of

1 − ϵ, and opts for a random action with probability ϵ. The
interactions of all agents with the environment, including the
messages received by each agent, are collected and stored in an
experience replay buffer D. Each sample is denoted by a five-
tuple (ot, Mt, at, rt, ot+1), where Mt = {M1,t, ...,MN,t}
represents the received messages of all agents.

Training
Executing

Environment

O
bs

er
va

ti
on Mixing

Net

Target
Agent Net

Target
Mixing

Net

Experience Repaly Buffer

Sample a batch

Loss in (10)
r

Agent Net
Update

Mixing Net update

Agent
Net

A
ct

io
n

(, , , ,o a r o'n,t n,t n,t n,t n,t）
Transaction of agent n

o'n

Com
m

. Channel

n, t

mn, t

totQ
totQ'

Transactions of other agents

, ,o an n n

, , , ,o a o'（ ） r

nQ' -nQ'

nQ -nQ

Fig. 2. The training and execution process of the nth UAV agent.

The agent networks are trained as shown in Fig. 2 via
updating the parameters θ by minimizing the following loss
function via gradient descent,

L(θ) = E(o,M,a,r,o′)∼D[(Qtot(o,a;θ)− y)2], (10)

where y = r+ γmaxa′ Q′
tot(o

′,a′; θ̂) and θ̂ is the parameter
of the target network, which has the same architecture as
the agent network, but have different parameter values. It is
updated via θ̂ ← τθ+(1−τ)θ̂ using a small value of τ . This
soft update helps reduce the correlations between Qtot(o,a;θ)
and the target value y, hence stabilizing learning. The detailed
procedures are provided in Algorithm 1.

IV. SIMULATION RESULTS

In this section, we compare the performance of our CAVDN
algorithm to that of several baseline methods via simulation.
Specifically, the following state-of-the-art DRL-based trajec-
tory plan methods are compared: (1) VDN of [18] (2) multi-
agent deep deterministic policy gradient (MADDPG) of [17];
(3) Double deep Q-network (DQN) of [19]; (4) CommNet
of [15], which directly processes the received messages using
the arithmetic mean; (5) Targeted Multi-Agent Communication
(TarMAC) of [20], which processes the received messages
using the weighted mean via multi-head attention. For methods
that cannot be directly applied to continuous action spaces,
we discretize the action space, where the heading set is
{0, π/4, ..., 7π/4} and the speed set is {0, 0.5, 1}, resulting

Algorithm 1 The CAVDN algorithm

1: Randomly initialize θ and θ̂ following Gaussian distribution. Set
D = ∅.

2: for episode = 1 to max-episode-number do
3: Reset the environment, and obtain the initial local observation

on for n = 1 to N .
4: for t = 1 to T do
5: Get message mn,t = e(on,t; θe) for agent n = 1 to N .
6: Select action an from based on on,t and Mn,t using ϵ-

greedy Qn(on,t,an,t;θ) for agent n = 1 to N .
7: Execute actions {a1,a2, ...,aN}. Then, obtain reward r

and next state observations o′
n for each agent n.

8: Push (o,a,M, r,o′) into replay buffer D and set on ←
o′
n for n = 1 to N .

9: if length of D larger than given length then
10: Randomly generate index set B = {b1, ..., bB}.
11: Obtain the sample batch of B samples

{(oi,ai,Mi, ri,o′i)}i∈B from D.
12: Compute the critic loss as L(θ) = 1

i

∑
i(Qtot(o

i,ai)−
yi)2, where yi = ri + γmaxa Qtot(o

′i, a; θ̂).
13: Update θ by minimizing L(θ).
14: Update target network parameters by θ̂ ← τθ+(1−τ)θ̂.
15: end if
16: end for
17: end for

in an action space of size 24. Moreover, we also compare our
CAVDN algorithm to the random and greedy UAV trajectory
control methods, where each UAV moves randomly or towards
the nearest UE sequentially.

We consider a 200×200 m2 square area containing M = 12
randomly distributed UEs and N = 4 UAVs at the altitude of
100 m. Only the users with a “horizon distance” smaller than
Dth = 20 m can be discovered by and connected to the UAV,
and we set Muav

d = 3 and Mue
d = 6. For the channel model,

we set α = 2, µ = −3 dB as in [21]. The noise power is
σ2 = −100 dBm, and the transmit power is P = 500 mW.
The maximal speed is Vmax = 40 m/s as in [22]. Detailed
settings regarding the neural networks and the training process
can be found at our github repository.1

0 20 40 60 80 100
Episode*200

0

100

200

300

400

500

600

700

Av
er

ag
e

Re
wa

rd

CAVDN
CAVDN_no_int
TarMAC
CommNet
MADDPG
VDN
Double DQN

Fig. 3. Learning curves of CAVDN and other baselines. The reward is
averaged over all UAVs and timesteps in each episode.

In Fig. 3, we compare the average reward versus the number
of episodes in the training phase for different methods. It
can be observed that VDN and MADDPG achieve better

1The code for reproducing the simulation results of this paper is available
at: https://github.com/chenbq/CAVDN.

https://github.com/chenbq/CAVDN

5

performance than Double DQN, because they maintaining a
global value-function or global critic network during training.
Among all methods, CAVDN achieves the highest average re-
ward, due to the extra information received via communication
during both training and testing phases, which provides each
agent with extra information about the others for promoting
cooperation. The performance of CommNet is inferior to that
of CAVDN and that of TarMAC. This is because CommNet
simply uses the arithmetic mean for processing the messages
received, which results in information loss. Moreover, our pro-
posed CAVDN performs slightly better than TarMAC because
we also use RNN for encoding the messages. Besides, com-
pared to CAVDN no int (CAVDN without intention module),
the reward of CAVDN increases more rapidly and converges
earlier, which validates the benefits of the intention module.

0 20 40
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

UE
 F

ai
rn

es
s

CAVDN
VDN
Double DQN
Greedy
Random

0 20 40
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

UA
V

Fa
irn

es
s

CAVDN
VDN
Double DQN
Greedy
Random

0 20 40
Time steps

0

20

40

60

80

100

Of
flo

ad
ed

 U
E

No
.

CAVDN
VDN
Double DQN
Greedy
Random

Fig. 4. Comparison of offloading fairness and the number of offloaded tasks.

The UE fairness, UAV fairness, and the number of offloaded
tasks, are further investigated in Fig. 4 after the convergence
of the RL-based methods. During testing, the positions of UEs
are randomly generated and they are different from that used
in the training phase. We can see that both the UE fairness
and UAV fairness of CAVDN are the highest compared to
others methods. Moreover, all learning-based methods achieve
similar performance in terms of the number of offloaded
tasks. It is worth noting that for the Double DQN and greedy
methods, both the UE fairness and UAV fairness first increase
and then decrease. This is because each UAV only has partial
observations, hence some UAVs may have excessive load in
the absence of efficient communication between agents, which
prevents load-balancing.

V. SUMMARY AND CONCLUSIONS

A novel MARL based UAV trajectory planning scheme
was proposed for UAV-aided MEC networks. The objective
is to maximize the number of offloaded tasks and offload-
ing fairness by optimizing the trajectory control policies of
UAVs. To intelligently exchange critical information among
agents to assist decentralized decision making, we conceived
a communication-assisted MARL framework and proposed
the CAVDN algorithm for training each UAV. Our simu-
lation results showed that our proposed CAVDN algorithm
improves the offloading fairness among users and balances
the load among UAVs, compared to both the state-of-the-
art DRL-based and classic greedy methods. This indicates

that the messages learned and exchanged via communication
provide valuable knowledge for each agent to “understand”
the situation and the intention of others, which is critical
for multi-agent cooperation in sophisticated trajectory control
policies. In the future, we will investigate the impact of the
cost introduced by message exchange.

REFERENCES

[1] C. Park and J. Lee, “Mobile edge computing-enabled heterogeneous
networks,” IEEE Trans. Wirel. Commun., vol. 20, no. 2, pp. 1038–1051,
2021.

[2] J. Yu et al., “IRS assisted NOMA aided mobile edge computing
with queue stability: Heterogeneous multi-agent reinforcement learning,”
IEEE Trans. on Wirel. Commun., 2022.

[3] N. H. Motlagh, M. Bagaa, and T. Taleb, “UAV-based IoT platform: A
crowd surveillance use case,” IEEE Commun. Mag., vol. 55, no. 2, pp.
128–134, 2017.

[4] Z. Yang, C. Pan, K. Wang, and M. Shikh-Bahaei, “Energy efficient
resource allocation in UAV-enabled mobile edge computing networks,”
IEEE Trans. Wirel. Commun., vol. 18, no. 9, pp. 4576–4589, 2019.

[5] M. Li et al., “Energy-efficient UAV-assisted mobile edge computing:
Resource allocation and trajectory optimization,” IEEE Trans. Veh.
Technol., vol. 69, no. 3, pp. 3424–3438, 2020.

[6] S. Jeong, O. Simeone, and J. Kang, “Mobile edge computing via a UAV-
mounted cloudlet: Optimization of bit allocation and path planning,”
IEEE Trans. Veh. Technol., vol. 67, no. 3, pp. 2049–2063, 2018.

[7] X. Lyu, H. Tian, W. Ni, Y. Zhang, P. Zhang, and R. P. Liu, “Energy-
efficient admission of delay-sensitive tasks for mobile edge computing,”
IEEE Trans. Commun., vol. 66, no. 6, pp. 2603–2616, 2018.

[8] Q. Wu and R. Zhang, “Common throughput maximization in UAV-
enabled OFDMA systems with delay consideration,” IEEE Trans. Com-
mun., vol. 66, no. 12, pp. 6614–6627, 2018.

[9] L. Zhang et al., “Task offloading and trajectory control for UAV-
assisted mobile edge computing using deep reinforcement learning,”
IEEE Access, vol. 9, pp. 53 708–53 719, 2021.

[10] L. Wang et al., “Deep reinforcement learning based dynamic trajectory
control for UAV-assisted mobile edge computing,” IEEE Trans. on
Mobile Comput., Early Access.

[11] C. H. Liu, Z. Chen, J. Tang, J. Xu, and C. Piao, “Energy-efficient
UAV control for effective and fair communication coverage: A deep
reinforcement learning approach,” IEEE J. Sel. Areas Commun., vol. 36,
no. 9, pp. 2059–2070, 2018.

[12] F. Khoramnejad and M. Erol-Kantarci, “On joint offloading and resource
allocation: A double deep Q-network approach,” IEEE Trans. Cogn.
Commun. Netw., vol. 7, no. 4, pp. 1126–1141, 2021.

[13] L. Wang, K. Wang, C. Pan, W. Xu, N. Aslam, and L. Hanzo, “Multi-
agent deep reinforcement learning based trajectory planning for multi-
UAV assisted mobile edge computing,” IEEE Trans. on Cognitive
Commun. and Netw., vol. 7, no. 1, pp. 73–84, Mar. 2021.

[14] P. Hernandez-Leal, B. Kartal, and M. E. Taylor, “A survey and critique of
multiagent deep reinforcement learning,” Autonomous Agents and Multi-
Agent Systems, vol. 33, no. 6, pp. 750–797, Oct. 2019.

[15] S. Sukhbaatar, A. Szlam, and R. Fergus, “Learning multiagent commu-
nication with backpropagation,” in NeurIPS, 2016, pp. 2244–2252.

[16] Q. Liu et al., “Charging unplugged: Will distributed laser charging for
mobile wireless power transfer work?” IEEE Veh. Technol. Mag., vol. 11,
no. 4, pp. 36–45, 2016.

[17] L. Ryan et al., “Multi-agent actor-critic for mixed cooperative-
competitive environments,” in NeurIPS, 2017, pp. 6379–6390.

[18] P. Sunehag et al., “Value-decomposition networks for cooperative multi-
agent learning based on team reward,” in AAMAS 2018, Stockholm,
Sweden, July 10-15, 2018, 2018, pp. 2085–2087.

[19] J. Hu et al., “Cooperative internet of UAVs: Distributed trajectory design
by multi-agent deep reinforcement learning,” IEEE Trans. on Commun.,
vol. 68, no. 11, pp. 6807–6821, Nov. 2020.

[20] A. Das et al., “TarMAC: Targeted multi-agent communication,” in ICML,
2019.

[21] Y. Wang, Z. Hu, X. Wen, Z. Lu, J. Miao, and H. Qi, “Three-dimensional
aerial cell partitioning based on optimal transport theory,” in IEEE ICC,
2020.

[22] Y. Zeng, J. Xu, and R. Zhang, “Energy minimization for wireless com-
munication with rotary-wing UAV,” IEEE Trans. on Wirel. Commun.,
vol. 18, no. 4, pp. 2329–2345, Apr. 2019.

	Introduction
	System Model
	UAV Motion and Offloading Decision
	Communication Channel and Task Offloading Process
	Performance Metric and Problem Formulation

	Communication-Assisted Value Decomposition Network Algorithm
	MARL Problem Formulation
	Communication Assisted Decentralized Reinforcement Learning Framework
	Agent Network Structure and Training Algorithm

	Simulation Results
	Summary and Conclusions

