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a b s t r a c t

Many low- and middle-income countries (LMICs) continue to
experience substantial inequities in vaccination coverage despite
recent efforts to reach missed communities and reduce zero-dose
prevalence. Geographic inequities in vaccination coverage are
often characterized by a multiplicity of risk factors which should
be operationalized through data integration to inform more
effective and equitable vaccination policies and programmes.
Here, we explore approaches for integrating information from
multiple risk factors to create a zero-dose vulnerability index
to improve the identification and prioritization of vulnerable
communities and understanding of inequities in vaccination cov-
erage. We assembled geolocated data on vaccination coverage
and associated risk factors in six LMICs, focusing on the coverage
of DTP1, DTP3 and MCV1 vaccines as indicators of zero dose
and under-vaccination. Using geospatial modelling techniques
built on a suite of geospatial covariate information, we produced
1 × 1 km and district level maps of the previously unmapped
risk factors and vaccination coverage. We then integrated data
from the maps of the risk factors using different approaches
to construct a zero-dose vulnerability index to classify districts
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within the countries into different vulnerability groups, rang-
ing from the least vulnerable (1) to the most vulnerable (5)
areas. Through integration with population data, we estimated
numbers of children aged under 1 living within the different
vulnerability classes. Our results show substantial variation in
the spatial distribution of the index, revealing the most vulner-
able areas despite little variation in coverage in some cases. We
found that the most distinguishing characteristics of the most
vulnerable areas cut across the different subdomains (health,
socioeconomic, demographic and geographic) of the risk factors
included in our study. We also demonstrated that the index
can be robustly estimated with fewer risk factors and without
linkage to information on vaccination coverage. The index consti-
tutes a practical and effective tool to guide targeted vaccination
strategies in LMICs.

© 2023 The Author(s). Published by Elsevier B.V. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The expansion of routine childhood immunization has been described as one of the most
uccessful public health interventions, as evidenced by marked reductions in childhood mortality
nd morbidity globally (Li et al., 2021; Andre et al., 2008; World Health Organization, 2022)
ollowing the introduction of the Expanded Programme on Immunization by the World Health
rganization (WHO) in 1974 (Keja et al., 1988). In particular, the past decade has witnessed a
emarkable progress in the introduction of new vaccines in low- and middle-income countries
LMICs) such as rotavirus vaccines and those protecting against pneumococcal pneumonia, with
mpressive increases in their coverage. Despite this success, the coverage of basic routine vaccines
till fall short of WHO’s target in many LMICs (WHO, 2021; WHO and UNICEF, 2022) and increasing
he coverage of routine immunization (RI) to reach the last 20% in these countries has been a major
lobal health challenge. Partly occasioned by the COVID-19 pandemic, in 2021 about 25 million
hildren were not fully vaccinated with all three recommended DTP doses, out of which 18 million

ere zero-dose children — operationally defined as children who did not receive any dose of the
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diphtheria, tetanus, pertussis (DTP) containing vaccine. The coverage of DTP1 is often considered an
indicator of access to RI services and a proxy for non-receipt of basic vaccines administered through
the RI programme. Almost all zero-dose children were estimated to be living in LMICs in the African
and South Asian regions, with India, Nigeria, Ethiopia, DRC and Pakistan being among the top 10
countries with the most unprotected children in 2021 (WHO and UNICEF, 2022).

Zero-dose and under-immunized children are often the most marginalized and deprived and are
lso reported to have the highest rates of vaccine-preventable morbidity and mortality (WHO, 2020).
he persistence of these vulnerable populations likely results in continued disease circulation and
ncreased frequency of outbreaks within countries, undermining disease control and elimination
fforts. Recognizing this, the World Health Organization’s Immunization Agenda 2030 has set a
arget of 50% reduction in the number of zero-dose children by 2030, relative to pre-pandemic
evels (WHO, 2020). Reaching zero-dose and missed communities is also critical to achieving health
olicy targets set out within the Sustainable Development Goals (SDGs) (United Nations, 2015) and
avi, the Vaccine Alliance’s 2021–2025 Strategy (Gavi, 2020).
To design and implement effective interventions to reach communities at risk of zero dose and

nder-vaccination, current and reliable evidence is needed to identify where they reside and their
ost defining characteristics. Previous efforts have either focused on producing spatially detailed
stimates of vaccination coverage to uncover inequities, identify areas of low coverage and locate
ulnerabilities within the health system (Mosser et al., 2019; Utazi et al., 2018, 2020; Takahashi
t al., 2017; Local Burden of Disease Vaccine Coverage Collaborators, 2021; Utazi et al., 2019), or
stimating numbers of zero-dose children among key geographically marginalized populations such
s those living in remote-rural, urban slum and conflict-affected areas (Wigley et al., 2022). How-
ver, beyond these key geographic characteristics, inequities in vaccination coverage are potentiated
y many health-related, socioeconomic and demographic factors (Utazi et al., 2022b; Rainey et al.,
011), meaning that substantial proportions of zero-dose children could potentially be found in
ther settings (Wigley et al., 2022). Also, standalone assessments of coverage maps are limiting as
hese do not explore important geographical associations with major contributing factors for non-
nd under-vaccination which can yield actionable insights for vaccination programming. Mapping
accination coverage to identify vulnerable communities is potentially an effective approach when
here are substantial heterogeneities in the spatial distribution of vaccination coverage and when
ccurate, timely and reliable input data are available. However, in settings where coverage is
ub-optimal and has less spatial variation or coverage estimates are of poor quality, accurate
dentification and prioritization of these vulnerable areas can be hampered greatly, necessitating
pproaches that utilize more information and which leverage the bidirectional dependence between
accination coverage and associated risk factors for improved estimation of inequities (areas of
ow coverage are often the result of the combined effect of these risk factors; on the other hand,
he persistence of low coverage areas can exacerbate inequities through increased morbidity and
ortality).
Moreover, considering that household surveys which constitute the major source of data used

o produce maps of vaccination coverage are conducted typically every 5 years in most LMICs,
dentifying a subset of risk factors, which could be potentially obtained from other sources such
s health information systems, censuses, registries and other surveys, and mapped at subnational
cales, could enable more regular mapping of vulnerabilities.
Here, we develop a zero-dose vulnerability index to support efforts towards identifying zero-

ose and missed communities in LMICs and designing effective strategies to reach them. The index
ims to operationalize the multiplicity of factors associated with zero dose and under-immunization
hrough data integration, and to contribute to a better understanding of the role of geography
n these associations through uncovering the most defining characteristics of the most vulnerable
reas. We demonstrate that the index can be effectively used to capture geographic vulnerabilities
hen limited data on the risk factors are available and with or without the availability of infor-
ation on vaccination coverage. Our methodology provides a mechanism to harmonize data from
ultiple spatial scales to produce the index at the district level, usually referred to as the second
dministrative level in most LMICs, which is the target geographic unit for our analysis.
3
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2. Methods

2.1. Vaccination coverage data and associated risk factors

Data on risk factors for zero dose and under-immunization were obtained from the most
ecent household survey conducted in six countries. These were Demographic and Health Surveys
DHS) conducted in the Democratic Republic of Congo (DRC, 2013–14), Ethiopia (2016), India
2015–16), Pakistan (2017–18), Uganda (2016) and the Multiple Indicator Cluster Survey-National
mmunization Coverage Survey (MICS-NICS) conducted in Nigeria in 2021. These countries were
elected due to being the focus of previous work (Utazi et al., 2022b, 2019), having large numbers
f zero-dose children (WHO and UNICEF, 2022) and being high priority countries for Gavi. From
hese surveys, we extracted data on 19 risk factors (see Supplementary Table 1) determined in a
revious study (Utazi et al., 2022b) as top-ranking predictors of zero dose and under-vaccination.
ther variables such as women’s participation in decision-making, malnutrition (underweight), use
f modern contraception and travel time to the nearest health facility were not included in Utazi
t al. (2022b) but were considered to be of interest in this work. Also, conflict was not a top-
anking predictor in Utazi et al. (2022b), but it was included in this work due to current interest
n identifying and reaching populations living in conflict areas within the global immunization
ommunity. We also extracted information on the coverage of DTP1, DTP3 and MCV1 vaccines,
hich were used in previous studies to evaluate the odds of zero dose and under-vaccination,
o help inform the weights assigned to the risk factors when constructing the index using some
pproaches (see Section 2.4) and to estimate coverage levels in areas with differentiated levels
f vulnerabilities. The risk factors and indicators of coverage are shown in Fig. 1, with detailed
efinitions provided in Supplementary Table 1. The definitions of the risk factors were calibrated to
nsure uniformity in the direction of their relationships with vaccination coverage and to highlight
s much as possible areas at greatest risk of zero dose and under-vaccination. Where applicable,
ur analyses relate to women of reproductive age (i.e., those aged between 15 and 49 years) and
hildren aged between 12 and 23 months.
For the DHS-/MICS-NICS-derived risk factors and vaccination coverage, we first extracted and

ummarized information on these variables at the survey cluster level. Also, using the (dis-
laced) geo-coordinates of these clusters, we extracted the cluster-level data values of the risk
actors whose gridded estimates were available prior to our analyses using approaches described
n Perez-Heydrich et al. (2013).

.2. Geospatial covariate data, covariate selection and population data

To produce high resolution maps of the risk factors (where these were not already available)
nd vaccination coverage, we assembled a suite of geospatial socioeconomic, environmental and
hysical covariates. These covariates include nightlight intensity, vegetation index, livestock den-
ity, travel time to urban areas and land surface temperature — see Supplementary Table 3. As
etailed in previous work (Utazi et al., 2018, 2019, 2020, 2021), these covariates were processed
o produce 1 × 1 km input raster data sets and corresponding cluster level data using standard
pproaches (Perez-Heydrich et al., 2013). Following previous work (Utazi et al., 2018, 2019, 2020),
ovariate selection was carried out to determine the best set of covariates for modelling each
utcome/risk factor for each country. The covariate selection process, implemented in a non-
patial modelling framework using binomial regression models, included checking the relationships
etween the covariates and the risk factors and applying the log transformation where necessary
o improve linearity, checking for (multi)collinearity, etc. To avoid circularity in the analyses, we
nsured that the covariates included none of the risk factors for constructing the index.
To facilitate the estimation of the risk factors and vaccination coverage at the district level, we

btained population estimates for children aged under 1 year old from WorldPop (Tatem, 2017) for
ach country corresponding to the year of the survey for the country. These data were also used to
roduce estimates of numbers of children aged under 1 year old living within different vulnerability
lasses — see Section 3.3.
4
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Fig. 1. Risk factors for zero dose and under-vaccination and vaccination coverage indicators considered in the study.

.3. Geospatial modelling, prediction and validation

We fitted geostatistical models with a binomial likelihood to predict the risk factors and
accination coverage at 1 × 1 km resolution. For i = 1, . . . , n, where n is the number of survey
ocations in a given country, let Y (si) denote the number of individuals possessing a given attribute
elating to a risk factor or vaccination coverage at survey location si, and m(si) the number of
ndividuals sampled from the location. The geostatistical model is given by

Y (si)|p(si) ∼ Binomial
(
m(si), p(si)

)
,

logit
(
p(si)

)
= x(si)′β + ω(si) + ϵ(si), (1)

here p(si), (0 ≤ p(si) ≤ 1) is the true prevalence at location si, x(si) is a vector of covariate
nformation and β – the corresponding regression coefficient, ϵ(si) is an independent and identically
istributed (iid) normal error term with variance, σ 2

ϵ , used to model non-spatial residual variation,
nd ω(si) is a Gaussian spatial random effect used to capture residual spatial correlation in the
odel. Further, we assumed that ω =

(
ω(s1), . . . , ω(sn)

)′
∼ N(0, Σω), where Σω follows the Matérn

ovariance function (Matérn, 1986) given by Σω(si, sj) =
σ2

2ν−1Γ (ν)
(κ∥si − sj∥)νKν(κ∥si − sj∥). The

otation ∥.∥ denotes the Euclidean distance between the cluster locations si and sj, σ 2 > 0 is the
arginal variance of the spatial process, κ is the scaling parameter related to the range r (r =

√
8ν
κ

)
the distance at which spatial correlation is close to 0.1, and Kν is the modified Bessel function of

he second kind and order ν > 0. For identifiability reasons, the smoothing parameter, ν, was set
qual to unity — see Lindgren et al. (2011).
We assigned a N(0, 103I) prior to the regression parameter, β. We placed a penalized complexity

PC) prior (Simpson et al., 2017) on σϵ such that p(σϵ > 3) = 0.01. Similarly, following Fuglstad
t al. (2019), a joint PC prior was placed on the covariance parameters of the spatial random effect,
. These were: p(r < r0) = 0.01 and p(σ > 3) = 0.01, with r0 chosen to be 5% of the extent of
ach country in either the north-south or east–west direction.
For each modelled risk factor and indicator of vaccination coverage, the model described

n Eq. (1) was fitted in a Bayesian framework using the integrated nested Laplace approximation
stochastic partial differential equation (INLA-SPDE) approach (Rue et al., 2009; Lindgren et al.,
5
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2011). Using the fitted models, we obtained predictions of the modelled indicators at 1 × 1 km
esolution and the district level. The district level estimates were obtained as population-weighted
verages taken over the 1 × 1 km grid cells falling within each district. That is, for i = 1, . . . , nA,

pr (Ai) =

∫
Ai

pr (s) × q(s)ds ≈

mi∑
j=1

pr (sj) × q(sj), (2)

heremi is the number of grid cells with centroids in area Ai, q(s) is the proportion of the population
f district Ai at grid location s and nA is the number of districts in each country. We note that if the
th grid cell lies at the boundary of the district, q(sj) could also be possibly obtained as the proportion
f the district population living within the area of intersection. The accuracy of the modelled
stimates was assessed using cross-validation techniques described in previous work (Utazi et al.,
018, 2020, 2022a). We note that both change of support problems (COSPs) (Gotway and Young,
002) involved in our methodology, i.e., the creation of 1 × 1 km modelled surfaces of some risk
actors using model (1) (point-to-point COSP) and aggregation of grid level estimates to the district
evel (point-to-area COSP, see Eq. (2)) were dealt with using common approaches (Local Burden of
isease Vaccine Coverage Collaborators, 2021; Mosser et al., 2019; Utazi et al., 2021).

.4. Constructing the vulnerability index

Here, we seek to create a zero-dose vulnerability index to summarize patterns in vulnerabilities
o zero dose and under-vaccination across multiple risk factors and to enable spatial prioritization
nd a more compact and comparable equity assessment using these factors. The vulnerability
ndex was constructed using five methods which are an adaptation of approaches used in similar
ontexts (OECD, 2008; Macharia et al., 2020). The distinction among these methods lies in how
he risk factors were weighted to construct the index. The methods were selected to enable us to
valuate the robustness and sensitivity of the index (i) when using only data on the risk factors
o create the index, (ii) when drawing insights from information on vaccination coverage and (iii)
hen using a limited number of the risk factors.
To construct the index, we first rescaled or normalized the risk factors to a common scale ranging

rom 0 (lowest risk) to 100 (highest risk) using the formula: ṽ(s) =
(
v(s)−v0

min(s)/(v
0
max(s)−v0

min(s))
)

100, where ṽ(s) is the rescaled value, v(s) – the value to be rescaled, vo
min(s) – the minimum value

n the old scale and vo
max(s) is the maximum value on the old scale. Let ṽ1(s), ṽ2(s), . . . , ṽk(s) denote

he k rescaled risk factors. In our analysis, k ranges from 17 risk factors in Nigeria and Pakistan to
9 risk factors in other countries (Supplementary Table 2). The five approaches for constructing the
ndex are described as follows.

Direct weighting: This approach combines information on all the risk factors to construct the
ndex, independent of vaccination coverage. Here, the risk factors can be combined using expert-
erived weights (from health practitioners, policy-makers or researchers) or other predetermined
eights, hence offering some flexibility as to how information is integrated to create the index. The
omposite index derived through this method is given by:

VIdirect (s) =

∑k
i=1 wiṽi(s)∑k

i=1 wi
. (3)

n the simplest case in which no prior or locally-derived expert information is available on the
elative importance of the risk factors, equal weights can be used, e.g., wi = 1 ∀i such that

k
i=1 wi = k. This is the option adopted when using this approach in our work.
Group-based weighting: This approach ensures a more balanced structure in the index, but it

s also constructed independent of information on vaccination coverage. The risk factors were first
rouped into three subdomains, namely health-related (8 risk factors), socioeconomic (3 risk factors)
nd demographic/geographic (7) risk factors — see Supplementary Table 1. The indicators within
ach group were then weighted and averaged using predetermined weights. Finally, the resulting
cores from each group were averaged to obtain the index as given below:

VIgroup =
VISE + VIH + VIDG

, (4)

3
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where

VIH =

∑r
i=1 w1

i ṽi(s)∑r
i=1 w1

i
; VISE =

∑s
i=1 w2

i ṽi(s)∑s
i=1 w2

i
; and VIDG =

∑t
i=1 w3

i ṽi(s)∑t
i=1 w3

i

.

n Eq. (4), r , s, and t denote the numbers of health-related, socioeconomic and demographic/
eographic risk factors, respectively, while w1

1, . . . , w
1
r , w

2
1, . . . , w

2
s , w

3
1, . . . , w

3
t denote the respec-

tive weights applied to the risk factors within their subdomains. As in the direct weighting approach,
we adopted equal weights within the groups, setting these equal to one in each case.

Regression rank-based weighting I and II: Here, the relationships between the risk factors and
vaccination coverage indicators were exploited to generate the weights used to construct the index;
hence, ensuring that more important risk factors contribute more towards the index. We first ranked
the risk factors using their predictive R2 statistics by fitting simple binomial regression models to
cluster-level data using coverage indicators characterizing the likelihood of zero dose and under-
vaccination (i.e., DTP1, DTP3 and MCV1 coverage) as outcome variables. These simple binomial
regression models are reduced versions of model (1) including only a single covariate and excluding
the spatial and iid random effects. We calculated the predictive R2 statistics in each case following
a Monte Carlo cross-validation exercise in which 80% of the data were used for model-fitting and
the remaining 20% used for validation. We note that other cross-validation schemes are possible.

With regression rank-based weighting I, the ranks obtained for each risk factor were averaged
over all three outcome variables to obtain the weight applied to the risk factor when constructing
the index. The index under this approach is given by

VIRBI (s) =

∑k
i=1 wr1

i ṽi(s)∑k
i=1 wr1

i

, (5)

where wr1
i represents the regression rank-based weights.

With regression rank-based weighting II, the risk factors were grouped into four classes based
on the quartiles of their predictive R2 statistics for each outcome variable. Ranks ranging from 1
(the bottom 25% of the risk factors) to 4 (the top 25% of the risk factors) were then assigned to the
classes accordingly. These ranks were averaged over all three outcome variables for each risk factor
to derive the corresponding weight used to construct the index. The index obtained by using this
approach is given by

VIRBII (s) =

∑k
i=1 wr2

i ṽi(s)∑k
i=1 wr2

i

, (6)

here wr2
i represents the regression rank-based weights produced using the quartiles of predictive

R2 statistics of the risk factors. The weights derived by analysing cluster-level data using both
approaches were extrapolated to the gridded values of the risk factors to calculate the index at
1 × 1 km resolution.

Factor analysis approach: This approach is particularly effective for dimension reduction (i.e., to
explore the possibility of using a smaller number of risk factors to create the index to encourage
parsimony) and to minimize the effect of (multi)collinearity among the risk factors (OECD, 2008;
Johnson and Wichern, 2002). The risk factors were first modelled as linear combinations of latent
variables, known as factors, plus error terms. Letting p denote the number of common latent factors,
the factor model can be expressed in matrix notation as:

V = αF + ϵ

where V is a k × n observation matrix containing the values of the risk factors at the cluster level
scaled to have zero mean and unit variance, α is a k × p matrix of factor loadings, F is a p × n
atrix of uncorrelated common factors each with zero mean and unit variance, and ϵ is a k × n
atrix of zero-mean iid error terms. We employed the principal components analysis approach to
xtract the factors, the scree plot approach (OECD, 2008; Johnson and Wichern, 2002) to choose
he number of factors necessary to represent the data, and varimax rotation to facilitate a clear
7
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pattern of factor loadings, all of which are common choices for factor analysis (OECD, 2008). Post
model-fitting, the factor loadings were squared and scaled to sum to unity. Among the G factors
etained, only variables whose squared and scaled factor loadings were greater than 10% were used
n the analysis. These factors were treated as individual subdomains or groups of the risk factors
nd the (squared and scaled) loadings used to weight the retained variables, as in the group-based
eighting approach, to obtain an index VI fg (g = 1, . . . ,G) for each group. The composite index was
hen constructed as a weighted average of the group-based indices, with the weights w

f
1, . . . , w

f
G

eing the proportion of the total variance explained by the factors. This is given by

VIfactor =

∑G
g=1 w

f
gVI

f
g∑G

g=1 w
f
g

. (7)

s in the regression-based approaches, the within-group weights for the selected variables and the
eights for the factors/groups were also extrapolated to the rescaled gridded values of the risk

actors to calculate the index at 1 × 1 km resolution.
In each case, we rescaled the indices produced through using these methods to range between

and 100, and obtained their district level estimates as population-weighted averages taken over
he 1 × 1 km grid cells falling within each district, as before. We then defined a five-level gradient
f vulnerability ranging from 1 (least vulnerable) to 5 (most vulnerable) using the quantiles of
he district level estimates of each index. We quantified the similarities/differences between the
patial distributions of the indices (on the continuous scale) produced using these approaches at
he district level for each country using the Pearson correlation coefficient and the Manhattan

istance metric given by D(VIa, VIb) =

∑nA
i=1|VIai −VIbi |

nA
, where VIai and VIbi are the vulnerability index

estimates for district i when using methods a and b, respectively, and nA is the number of districts
n the country. When determined for all plausible pairs of methods, we chose the method that
ad the lowest average Manhattan distance (VIRBI and VIRBII were individually compared with
ther methods) as the most representative of all the methods investigated. We also computed the
orrelations between the district level estimates of vaccination coverage (DTP1, DTP3 and MCV1)
nd the vulnerability indices to understand the similarities/differences between the vaccination
overage maps and the vulnerability indices explored here with respect to identifying areas at risk
f non- and under-vaccination.

. Results

.1. 1 × 1 km modelled estimates of zero-dose and vaccination coverage indicators

Modelled estimates of some of the risk factors and vaccination coverage indicators are shown in
ig. 2 for DRC at 1 × 1 km resolution. The associated uncertainties are shown in Supplementary Fig-
re 1. For other countries (and other risk factors for DRC), these maps are shown in Supplementary
igures 2-25 (only the point estimates are shown).
For DRC, these maps reveal strong heterogeneities in the spatial distributions of most of the risk

actors and vaccination coverage. There were also strong similarities in the spatial distributions of
ll three coverage indicators, with the lowest coverage levels and greatest heterogeneities estimated
or DTP3 coverage, indicating a lack of health system continuity (compared to DTP1) and potentially
ffective vaccination campaigns to boost MCV1 coverage. Furthermore, there were similarities
etween the spatial distributions of some of the risk factors – particularly the health-related factors
uch as skilled birth attendance, antenatal care attendance and travel time to the nearest health
acility – and the coverage estimates. However, there were also remarkable differences between
hese, demonstrating the importance of data integration to identify areas at risk of zero dose and
nder-vaccination. For example, the Kongo-Central province is shown to have higher coverage
evels, but it also had among the highest levels of malnutrition and lack of postnatal care attendance,
oth of which were prevalent in many parts of the country. Some risk factors such as lack of
ealth insurance, lack of post-natal care attendance and non-use of modern contraception generally

ad high prevalence and little variation across the country. There was also a concentration of
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Fig. 2. 1 × 1 km modelled estimates of some risk factors for zero dose and under-vaccination and the coverage of DTP1,
DTP3 and MCV1 vaccines in DRC. Corresponding uncertainty estimates are shown in supplementary Figure 1.

conflict-affected areas (according to the definition used here) in the eastern half of the country.
Moderate to substantial geographical inequities were observed in all other risk factors as shown in
supplementary Figures 2–5.

When considering other countries, we observed substantial heterogeneities in the spatial distri-
utions of vaccination coverage in Ethiopia, Nigeria and Pakistan (supplementary Figures 26–30).
owever, the coverage maps for Uganda and (to a lesser extent) India showed relatively less spatial
eterogeneities (see supplementary Figures 27 and 30). Despite this, we estimated substantial
eterogeneities in most of the associated risk factors in all five countries including Uganda, as in
RC — supplementary Figures 2–25.
9
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3.2. 1 × 1 km and district level estimates of the zero-dose vulnerability index and decomposition of
associated risk factors

In the regression-based weighting methods, the top-ranking risk factors which were assigned
igher weights in the construction of VIRBI and VIRBII were: lack of antenatal care attendance, lack
f skilled birth attendance, non-receipt of tetanus toxoid vaccination before birth, poor maternal
iteracy level and lack of use of modern contraception. These risk factors were selected in the top 5
ariables in at least 4 of the 6 countries (supplementary Tables 4–9). Other less frequent top-ranking
isk factors were ethnicity, religion, large household sizes, poor households and malaria prevalence.

With the factor analysis approach, between 2 and 4 factors were used to represent the data in
he study countries, with the number of risk factors with sizeable loadings (≥ 10%) in the estimated
actors having a mode of 3. Factor loadings were all positive, indicating positive associations among
he risk factors. In all, the numbers of risk factors used to construct the index using this approach
anged between 6 (DRC) and 11 (Uganda) (supplementary Tables 10–16). Lack of antenatal care
ttendance, lack of skilled birth attendance and poor households were selected to construct the
ndex in all six countries. Non-receipt of tetanus toxoid vaccination and poor maternal literacy level
ere each selected in five countries. Ethnicity, large household sizes and religion were each selected

n four countries while malaria prevalence and use of modern contraception were each selected in
hree countries. Other selected variables using this method which occurred in one or two countries
ncluded non-participation in decision making, lack of post-natal care, higher travel times to the
earest health facility, lack of insurance and being born to younger/older mothers.
The average Manhattan distances for the indices (supplementary Tables 18–23) show that VIdirect

as the most representative index for India and Uganda, while VIRBII was the most representative
ndex for DRC, Ethiopia, Pakistan and Nigeria, likely reflecting the stronger relationships between
accination and some of the indicators in the latter case. We also observed that the vulnerability
ndices created using the various approaches were most similar for Ethiopia (average Manhattan
istance ranged between 2.44 and 3.06) and Pakistan (average Manhattan distance ranged between
.04 and 6.52). In all, the average Manhattan distances obtained for each country showed that
he approaches produced reasonably similar vulnerability index estimates, despite being based on
ifferent weighting schemes and utilizing different numbers of risk factors (in the case of factor
nalysis). This is also corroborated by the very high correlations between the index surfaces shown
n the plots in supplementary Figure 27. These plots reveal that while the index surfaces generally
end to be highly correlated, there were also high but less strong correlations between these and
aps of vaccination coverage indicators, suggesting some differences in their spatial distributions.
hese differences between the index and the coverage maps were more pronounced in Uganda
nd India (to a lesser extent) and Nigeria (DTP3 only), where we had estimated relatively less
eterogeneities in vaccination coverage in some cases (see Section 3.3 and supplementary Figure
8). However, the strong correlations estimated between the indices and vaccination coverage in
RC, Ethiopia, Pakistan and Nigeria demonstrate that these risk factors could be sufficiently used
o capture inequities in the risk of non- and under-vaccination independent of and in combination
ith information on vaccination coverage.
The vulnerability index surfaces produced using all five methods are displayed in Fig. 3 for DRC

nd supplementary Figures 32–36 for other countries. In each of these countries, these figures
how that the index surfaces produced using the methods are very similar, although some minor
ifferences exist. These strong similarities among the index surfaces at 1 × 1 km resolution
urther corroborate that the index can be created without recourse to data on vaccination coverage,
ith fewer risk factors and without more complicated index measures. For example, for Ethiopia,
ll the index surfaces captured the east–west divide in vulnerabilities to zero dose and under-
mmunization, but the factor analysis approach appeared to have produced the strongest evidence
f areas of high vulnerability in the eastern part of the country.
In Fig. 4, we explore the patterns in the index surfaces at the district level across all six

ountries. Shown are the index classes corresponding to the method that is most representative
f other methods for each country as noted previously. These maps reveal strong spatial patterns

n the distribution of vulnerabilities within each country. In DRC, the most vulnerable districts

10
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Fig. 3. 1 × 1 km zero-dose vulnerability index maps for DRC produced using the different approaches investigated.

re concentrated within Tanganyika, Sankuru, Tshuapa, Sud-Ubangu and Nord-Ubangi provinces. In
thiopia, there is a clear east–west divide in vulnerabilities with the most vulnerable areas located
ithin the eastern regions of Somali and Afar, although there are ‘more vulnerable’ (class 4) areas

n the eastern regions. For India, the most vulnerable areas are located mostly in the northeastern
egion and northern parts of the central and eastern regions. There are also some districts in the
orthern region which had the highest vulnerability level.
In Nigeria, there is an apparent north-south divide in vulnerability, with the most vulnerable

istricts concentrated in the northeastern and northwestern parts of the country, but there are also
ore vulnerable and vulnerable areas (class 3) in other regions. For Pakistan, the most vulnerable
istricts are concentrated in the Balochistan region, although a few of these are in other regions.
or Uganda, clusters of the most vulnerable districts can be found mostly in the northern, eastern
nd western regions.
Characterizations of the zero-dose vulnerability classes in terms of their most defining risk

actors are explored in Fig. 5 and supplementary Figures 37–41. The most defining risk factors
or the vulnerability classes were identified as the risk factors which had clear downward trends
hen moving from the most vulnerable to the least vulnerable areas and/or which had considerably
igher values for the most vulnerable areas relative to other areas, as provided in Table 1. We
lso determined the most distinguishing factors for the most vulnerable areas as those which
ad considerably higher values for these areas relative to other areas. These plots and Table 1
urther affirm the multiplicity of factors that contribute to differentiating between the levels of
ulnerability, cutting across the health, socioeconomic and demographic/geographic subdomains
nvestigated here. For Nigeria, Fig. 4 and Table 1 show that there was a total of 11 risk factors
hat most defined the vulnerability classes. Out of these, higher prevalence of lack of antenatal care
ttendance, low maternal literacy level, large household sizes, Hausa/Fulani/Kanuri ethnic group

nd Islamic religion were the most distinguishing factors for the most vulnerable areas. The factors

11
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Fig. 4. District level estimates of the vulnerability index grouped into 5 classes ranging from the least vulnerable (class
) to the most vulnerable (class 5) areas for all six study countries.

hat contributed the least to defining the vulnerability classes were lack of health insurance, non-
eceipt of tetanus toxoid vaccination and lack of postnatal care attendance — the values of these
actors were very similar across the different vulnerability classes.

The highest numbers of the most defining risk factors for all vulnerability classes were observed
n Ethiopia (15 factors) and India (16 factors) (see Table 1), indicating greater capacity of the
isk factors to discriminate between the different levels of vulnerabilities and to identify these
ost vulnerable areas in both countries. Other countries had between 10 and 11 risk factors.
he most frequent risk factors (occurring in at least four countries) among the most defining risk
actors were lack of antenatal care attendance, lack of skilled birth attendance, non-receipt of
etanus toxoid vaccination, travel time to the nearest health facility, poor households, low maternal
iteracy level, birth quarter, lack of use of modern contraception, ethnicity and higher proportion of
ural population. Out of these, the most frequent risk factors (occurring in at least four countries)
istinguishing the most vulnerable areas were lack of antenatal care attendance, travel time to the
earest health facility and ethnicity.
Interestingly, some of the factors exhibited negative trends, meaning that the highest values of

hese were seen in the least vulnerable areas. These were lack of use of modern contraception, lack
f postnatal care attendance in DRC and being born to younger/older mothers in Nigeria.

.3. Exploration of the distribution of under 1s and inequities in vaccination coverage among the
ulnerability groups

We estimated wide variations in vaccination coverage among the different vulnerability classes,
hich were more pronounced in DRC, Ethiopia, Nigeria and Pakistan (Fig. 6 and supplementary
able 24), reflecting substantial heterogeneities in the spatial distribution of coverage in these
ountries. As expected, the highest coverage levels were estimated for the least vulnerable areas,
hich appeared to reduce gradually (India and Uganda) or substantially when progressing through
12
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Fig. 5. Distributions of risk factors for zero dose and under-immunization according to different levels of vulnerabilities
at the district level estimated through using the zero-dose vulnerability index for Nigeria.

other classes to the most vulnerable areas for which the lowest coverage levels were estimated.
In DRC, the differences in coverage between the least and most vulnerable areas (i.e., 20% most
privileged and 20% most disadvantaged districts) were 80%, 61% and 64% for DTP1, DTP3 and
MCV1, respectively. This implies that the most vulnerable areas will need to experience dramatic
improvements in coverage to attain the coverage levels estimated in the least vulnerable areas. For
India where the variability in coverage among the vulnerability classes was relatively lower, 45%,
44% and 41% increases in coverage, respectively, were needed in the most vulnerable areas to reach
the coverage levels in the least vulnerable areas.

For other countries, the respective increases in DTP1, DTP3 and MCV1 coverage needed to bridge
the gaps between the least and most vulnerable areas were: Ethiopia — 45%, 34%, 49%; Nigeria —
78%, 70% and 67%; Pakistan — 45%, 42% and 62%; and Uganda — 40%, 32% and 49%. The downward
trends in coverage observed in most cases in Uganda and India, despite both countries having
relatively less spatial variation in coverage are also an indication that the index maps accurately
identified the vulnerability patterns in both countries. We further explored the differences in
vulnerability classification between the index maps and vaccination coverage in supplementary
Figures 42–47, which show the most mismatches for Uganda and India.

Estimates of numbers of children aged under 1 (under 1s) living in areas with different levels
of vulnerability were fairly evenly distributed among these areas in DRC, India, Nigeria and Uganda
(Fig. 6(b) and (c)). Notably, for Nigeria and India, the highest proportions of under 1s were estimated
to be living in the more and most vulnerable areas. However, for Ethiopia, both the least and most
vulnerable areas had the lowest estimates of the proportions of under 1s, and for Pakistan, the
lowest proportion of under 1s was estimated in the most vulnerable areas (with a steady decline
in proportion from class 2 to class 5), suggesting sparse population distributions in these cases.
Furthermore, Fig. 6(c) also revealed that the numbers of children aged under 1 living in the most
vulnerable areas were 665 805, 279 222, 4 495 184, 1 700 172, 232 234 and 272 446 for DRC,
13
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Table 1
A summary of the most defining risk factors for the vulnerability classes in the study countries at the district level. The
most defining risk factors for the most vulnerable areas are written in bold letters.
Country Most defining risk factors Number of risk factors

DRC Antenatal care, malaria prevalence, skilled birth attendance,
tetanus toxoid vaccination, travel time, household wealth,
maternal education, birth quarter, ethnicity and proportion
living in rural areas

10

Ethiopia Antenatal care, health insurance, modern contraception,
postnatal care, skilled birth attendance, tetanus toxoid
vaccination, travel time, household wealth, maternal
education, birth quarter, ethnicity, household size, religion,
conflict and proportion living in rural areas

15

India Antenatal care, health insurance, malaria prevalence, modern
contraception, postnatal care, skilled birth attendance,
tetanus toxoid vaccination, travel time, household wealth,
maternal education, birth quarter, ethnicity, maternal age,
religion, conflict and proportion living in rural areas

16

Nigeria Antenatal care, modern contraception, skilled birth
attendance, travel time, household wealth, maternal
education, birth quarter, ethnicity, household size, religion
and proportion living in rural areas

11

Pakistan Antenatal care, malaria prevalence, modern contraception,
postnatal care, skilled birth attendance, tetanus toxoid
vaccination, travel time, household wealth, maternal
education, maternal age and conflict

11

Uganda Antenatal care, decision making, malaria prevalence,
malnutrition (underweight), modern contraception, skilled
birth attendance, travel time, household wealth, maternal
education, ethnicity, and proportion living in rural areas

11

Ethiopia, India, Nigeria, Pakistan and Uganda, respectively (see supplementary Table 25); while the
respective numbers living in the more vulnerable areas were 643 499, 1 050 513, 5 423 568, 1
790 904, 926 932 and 271 600. When combined, the populations living in the more and most
vulnerable areas constituted 39%, 40%, 42%, 48%, 21% and 36% of all children aged under 1 in
these countries, respectively. Lastly, combining the distributions of under 1s with information on
vaccination coverage, on average, about 524 936, 126 828, 2 062 143, 1 327 731, 105 315 and 162
478 children aged under 1 will need to be vaccinated with DTP1 in the most vulnerable areas in
the respective countries to achieve the coverage levels seen in the least vulnerable areas. Similar
figures can also be obtained for DTP3 and MCV1.

4. Discussion

Reaching zero-dose children and missed communities to improve coverage levels, reduce in-
quities in coverage and accelerate progress towards the goal of ‘leaving no one behind’ is currently
critical priority within the global immunization community. The design and implementation
f intervention programmes targeting these vulnerable populations should be guided by opera-
ionally relevant and spatially detailed data identifying where they reside and their most defining
haracteristics. Vulnerabilities to zero dose and under-immunization are characterized by multiple
isk factors which often exhibit substantial geographical variation within countries. The zero-dose
ulnerability index developed in our work operationalized this notion by integrating data on a wide
ange of top-ranking risk factors for zero dose and under-immunization to characterize inequities
n vulnerabilities and highlight priority areas (districts) for interventions in priority LMICs.

Our results indicate that the index is a potentially more useful metric for identifying and
rioritizing zero-dose and missed communities, particularly in instances where there is little or no

eterogeneity in vaccination coverage. This is evidenced in Uganda where we found relatively less

14
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Fig. 6. (a) Differences in the coverage of DTP1, DTP3 and MCV1 vaccines among areas with different levels of vulnerability
n the study countries. (b–c) Estimates of the proportions and numbers of children aged under 1 year living in these areas.

eographical variation in DTP1 and DTP3 coverage but stronger geographical disparities in most of
he associated risk factors and the ((un)scaled) index — supplementary Figures 14–17 and 49. These
tronger disparities in the index surfaces resulted in weaker correlations between the index and
accination coverage in Uganda. This implies that relying only on estimates of vaccination coverage
or geographical prioritization and identifying zero-dose and missed communities in instances
here there is little variation in the coverage estimates may not be a highly effective approach.
The five methods for constructing the zero-dose vulnerability index produced nearly identical

esults in all six study countries, demonstrating that the index can produce robust vulnerability
lassifications and serve as a reliable prioritization tool when constructed independent of data
n vaccination coverage and using limited data on the risk factors. We recall that the regression-
ased approaches were the only approaches that utilized information on vaccination coverage to
erive the weights used to create the index, while the direct weighting, group-based and factor
nalysis approaches utilized information on the risk factors only. Furthermore, the factor analysis
pproach utilized between 6 (DRC) and 11 (Uganda) risk factors to construct the index out of
t least 17 variables in each case. The most important risk factors identified using the factor
nalysis approach were: lack of antenatal care attendance, lack of skilled birth attendance, poor
ouseholds, non-receipt of tetanus toxoid vaccination, poor maternal literacy level, large household
izes, ethnicity and religion, all of which were selected to construct the index in at least four of the
ix countries. These results have important implications for geographical prioritization in data-poor
15
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settings where up-to-date or reliable data on vaccination coverage may not be readily available.
In such circumstances, the index can be constructed if information on these risk factors can be
obtained from other sources as highlighted previously, and the classifications produced can be
used to strengthen the capacity of immunization programmes to vaccinate priority populations,
which is critical to reducing zero-dose prevalence and reaching missed communities. Due to ease of
implementation and interpretability and given the similar results we obtained when using various
approaches to construct the index, the direct approach may be most practical approach in these
settings.

Our analysis revealed dramatic differences in coverage between the least vulnerable areas and
ther areas, particularly in DRC, Ethiopia, Nigeria and Pakistan, where coverage was found to
e more heterogeneous, further validating the discriminatory power of the index. The dramatic
ecreases in coverage observed when moving from the least vulnerable areas to other areas in these
our countries potentially demonstrate that efforts geared towards improving coverage levels should
eek to address the much poorer coverage levels in all other vulnerability classes, although zero-
ose and missed communities are more likely to be concentrated in areas with higher vulnerability
evels. Furthermore, an analysis of the distribution of under 1s among areas with different levels
f vulnerability revealed that targeting the most vulnerable areas is likely to yield some impact in
RC, India, Nigeria and Uganda. The sparse population distributions in the most vulnerable areas
n Ethiopia and Pakistan mean that better use of resources and greater impact will be achieved in
oth countries by prioritizing both the more and most vulnerable areas.
By further decomposing the vulnerability classes into their major contributory factors, our

nalyses produced richer actionable insights than studies determining vulnerabilities using vacci-
ation coverage alone (Utazi et al., 2018; Takahashi et al., 2017; Local Burden of Disease Vaccine
overage Collaborators, 2021; Utazi et al., 2020) or in combination with key community charac-
eristics only (Wigley et al., 2022). The major contributory factors in differentiating between the
ulnerability classes were shown to cut across the different subdomains (health, socioeconomic,
emographic/geographic) of the risk factors, indicating their combined discriminatory power and
orroborating the multiplicity of factors that define inequities in vaccination coverage (Rainey et al.,
011; Utazi et al., 2022b; Santos et al., 2021). Common (occurring in at least four countries) health-
elated risk factors characterizing the most vulnerable areas were: lack of antenatal care, lack
f skilled birth attendance, higher travel time to the nearest health facility, non-use of modern
ontraception and non-receipt of tetanus toxoid vaccination. For the socioeconomic factors, these
ere: low maternal literacy level and poor households; for demographic factors — ethnicity and
irth quarter; for geographic factors — higher proportions of rural populations. Among these, the
ost frequent (occurring in at least four countries) risk factors distinguishing the most vulnerable
reas were lack of antenatal care attendance, higher travel time to the nearest health facility
nd ethnicity. Although previous studies utilizing national or subnational individual level data
ave established associations between these risk factors and vaccination coverage as highlighted
reviously (Acharya et al., 2018; Aheto et al., 2022; Okello et al., 2022; Utazi et al., 2022b), our
ork makes the additional contribution of establishing some of these (Table 1) as being more

nfluential in the most vulnerable areas. These findings highlight the need for strategies that focus
n providing integrated primary health care services, as well as programmes which address the
ocio-economic/demographic/geographic barriers, to reduce the general inequities seen in these
ost vulnerable areas.
Further analyses are required to test which subsets of the risk factors (either those identified

hrough the factor analysis approach or through the decomposition of the vulnerability classes
nto their major contributory factors), particularly those with already available gridded estimates
uch as travel time to the nearest health facility and malaria prevalence, can be used to create
lausible estimates of the index in limited data settings. We have used data obtained mostly from
ousehold surveys in our work. We will also explore using routine information sources to better
nderstand spatio-temporal patterns in the index, although we note that this will likely constrain
he analysis to the district level entirely and the outputs produced may be subject to changes in
dministrative boundaries. It is also possible to explore the vulnerability classes produced by the
arious subdomains of the risk factors we investigated, particularly when using the group-based
16
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approach to construct the index. Such analysis of the most vulnerable areas for each subdomain
of the risk factors could yield additional insights for vaccination programming (see, e.g., Macharia
et al., 2020).

Our work is subject to some limitations. First, we did not consider many supply-side factors
e.g., vaccine stock-outs, non-availability of vaccination staff, long waiting times at vaccination
entres Mahachi et al., 2022) and other data (e.g., routine data on the locations and frequencies
f disease outbreaks) that could provide additional information on the performance of the health
ystems within these countries to further refine the vulnerability classification. Secondly, uncer-
ainty estimates were only available for the risk factors whose modelled surfaces were created as
art of our analyses; hence, we utilized only the point estimates of the risk factors to construct the
ndex as the associated uncertainties cannot be fully accounted for and were also not of immediate
nterest. We, however, note that statistically, obtaining uncertainty estimates for the index from
he corresponding uncertainty estimates of the modelled indicators is straightforward. For example,
ith the direct method, the variance of VIdirect can be easily calculated as: VIdirect (s) =

∑k
i=1 w2

i Var(ṽi(s))

(
∑k

i=1 wi)2
.

his is a straightforward way to propagate the uncertainties in the (modelled) risk factors to the
ndex. Thirdly, our analyses are tied to the respective survey years in the study countries which
ay be a concern in contexts where the survey data are a bit dated. A potential approach that
ould be used to rescale or normalize the risk factors is standardization using z-scores (OECD, 2008).
e did not test the sensitivity of our methodology to different rescaling approaches, although we

onsidered the approach we used suitable as it improves the contribution of risk factors lying within
small interval to the index, which is desirable. In our implementation of the INLA-SPDE approach,
e did not undertake any sensitivity analyses to investigate the effect of choice of mesh parameters
sed in our prediction models on our analyses. Finally, our analyses leveraged the associations
etween the risk factors and vaccination coverage and did not determine any causal relationships
etween these variables as our data were not suitable for such analyses.
Reducing inequities in vaccination coverage through reaching zero-dose children and missed

ommunities calls for greater geographical precision in the estimation of their spatial distribution
nd better understanding of their most defining characteristics. The zero-dose vulnerability index
eveloped in our work presents a tool that can be used by governments and global health
ractitioners to plan and implement appropriate interventions targeting moderately vulnerable
o the most vulnerable populations. The heterogeneities in the spatial distributions of the index
uggest a need for timely prioritization of these vulnerable populations to facilitate progress towards
lobal immunization goals.
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Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.
pasta.2023.100772.
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