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1. Introduction. Numerical computation underpins almost all of modern scien-
tific and industrial research and development. The impact of a finite computational
budget is that problems whose solutions are high- or infinite-dimensional, such as
differential equations, must be discretized in order to be solved. The result is an
approximation to the object of interest. The declining rate of processor improvement
as physical limits are reached stands in contrast to the surge in complexity of modern
inference problems, and as a result the error incurred by discretization is attracting
increased interest (e.g., [11]).

The use of single-precision arithmetic to permit finer temporal resolution in mod-
ern climate models exemplifies this situation. However, when computing in single
precision, a detailed time discretization can increase total error, due to the increased
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number of single-precision computations, and so in practice some form of trade-off is
sought [37]. It has been argued that statistical considerations can permit principled
error control strategies for such models [39].

Well-designed numerical methods aim to mitigate discretization errors of all forms
[78]. Nonetheless, the introduction of error is unavoidable and it is the role of the
numerical analyst to provide control of this error [72]. The central theoretical results
of numerical analysis have not in general been obtained through statistical consider-
ations. However, the connection of discretization error to statistics was noted as far
back as [40], in which it was argued that round-off error can be modeled using a series
of independent random perturbations to a standard numerical method. Other sources
of numerical error, such as time discretization in the iterative numerical solution of a
differential equation, can be highly structured in a manner that is not easily captured
by a probability model; see [44] and [41, section 2.8]. To address these issues, the
field of probabilistic numerics has emerged with the aim of performing formal uncer-
tainty quantification for the mathematical object, such as the solution of a differential
equation, being approximated.

The foundations of probabilistic numerics were laid in the 1970s and 1980s, when
an important shift in emphasis occurred from the descriptive statistical models of
the 1960s to the use of formal inference modalities that generalize across classes of
numerical tasks. In a remarkable series of papers, [54, 55, 56, 57, 58, 59, 60], Larkin
presented now-classical though then little-known results in probabilistic numerics, in
particular establishing the correspondence between a Gaussian measure on a Hilbert
space and its associated average-case optimal numerical method. Rediscovered and
reemphasized on a number of occasions, the role for statisticians in this new outlook
was clearly captured in [43]. The 1980s culminated in development of Bayesian op-
timization methods [67, 91], as well as the relation of smoothing splines to Bayesian
estimation [50, 23].

The modern notion of a probabilistic numerical method (henceforth PNM) was
described in [39]; these are algorithms whose output is a distribution over possible
values of a deterministic quantity of interest (QoI), such as the value of an integral.
Recent research in this field includes PNMs for numerical linear algebra [38, 15],
numerical solution of ordinary differential equations (ODEs; [83, 17, 14]), numerical
solution of partial differential equations (PDEs; [74, 16]), and numerical integration
[73, 9]. For a more comprehensive list see supplement section SM3.

Open Problems. Despite numerous recent successes and achievements, there is
currently no general statistical foundation for PNMs. For instance, at present it is
not clear under what conditions a PNM is well defined, except for in the standard
conjugate Gaussian framework considered in [58]. This limits the extent to which
domain-specific knowledge, such as boundedness of an integrand or monotonicity of
a solution to a differential equation, can be leveraged in PNMs. In contrast, classical
numerical methods often exploit such information to achieve substantial reduction in
discretization error. For instance, finite element methods for the solution of a PDE
proceed based on a mesh that is designed to be more refined in areas of the domain
in which greater variation of the solution is anticipated [87].

Furthermore, although PNMs have been proposed for many standard numerical
tasks, the lack of common theoretical foundations makes methodological comparisons
difficult. Again taking PDEs as an example, [16] placed a probability distribution
on the solution of the PDE, whereas [17] placed a probability distribution on the
discretization error of a numerical method. The uncertainty modeled in each case is
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fundamentally different, yet at present there is no framework in which to articulate
the relationship between the two approaches. Furthermore, though PNMs are often
reported as being “Bayesian” there is no clear definition of what this ought to entail.

A more profound consequence of the lack of common foundation occurs when we
seek to compose multiple PNMs. For example, multiphysics cardiac models involve
coupled ODEs and PDEs which must each be discretized and approximately solved
to estimate a clinical QoI [69]. The composition of successive discretizations leads to
nontrivial error propagation and accumulation that could be quantified, in a statistical
sense, with PNMs. However, proper composition of multiple PNMs requires that
these PNMs share common statistical foundations to ensure coherence of the overall
statistical output. These foundations remain to be established.

Contributions. This paper aims to establish rigorous foundations for PNMs.
First, we argue for an explicit definition of a Bayesian PNM. Our framework gen-

eralizes the seminal work of [58] and builds on the modern and popular mathematical
framework of [88]. This illuminates subtle distinctions among existing methods and
clarifies the sense in which a non-Bayesian PNM can be considered to approximate a
Bayesian PNM.

Second, we establish when PNMs are well defined outside of the conjugate Gaus-
sian context. For exploration of nonlinear, non-Gaussian models, a numerical ap-
proximation scheme is developed and shown to asymptotically approach the posterior
distribution of interest. Our aim here is not to develop new or more computationally
efficient PNMs, but to understand when such a development can be well defined.

Third, we establish that Bayesian PNMs can be meaningfully composed. This is
a central motivation for probabilistic numerics; in isolation, the error of a numerical
method can often be studied and understood but, when composed into a pipeline,
analysis of the resulting error structure becomes more difficult. The real power of
probabilistic numerics lies in its application to pipelines of numerical methods, where
the probabilistic formulation permits analysis of variance (ANOVA) to understand
the contribution of each discretization to the overall uncertainty in the output. This
paper introduces conditions under which a composition of PNMs can be considered
to provide meaningful output, so that ANOVA can be justified.

Structure of the Paper. In section 2 we argue for an explicit definition of Bayesian
PNMs and establish when such methods are well defined. Section 3 establishes con-
nections to other related fields, in particular in relation to evaluating the performance
of PNMs. In section 4 we develop useful numerical approximations to the output of
Bayesian PNMs. Section 5 develops the theory of composition for Bayesian PNMs.
(This is somewhat technical and readers unfamiliar with graphical models may wish
to omit this section on first reading.) Finally, section 6 presents applications of the
techniques discussed in this paper. All proofs can be found in the supplementary
material.

2. Probabilistic Numerical Methods. The aim of this section is to provide rig-
orous mathematical and statistical foundations for PNMs.

2.1. Notation. For a measurable space (X ,ΣX ), PX denotes the set of all proba-
bility distributions on (X ,ΣX ). For µ, µ′ ∈ PX we write µ� µ′ when µ is absolutely
continuous with respect to µ′. The unit Dirac measure at x ∈ X will be denoted
δ(x) ∈ PX . Let 1[S] denote the indicator function of an event S ∈ ΣX . For a mea-
surable function f : X → R and µ ∈ PX , we will write µ(f) :=

∫
f(x)µ(dx) and

‖f‖∞ := supx∈X |f(x)|. The pointwise product of two functions f and g is denoted
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f · g. For a function T , T# denotes the associated push-forward operator1 that acts
on measures on the domain of T . Let ⊥⊥ denote conditional independence. The sub-
set `p ⊂ R∞ consists of those sequences (ui) for which

∑∞
i=1 |ui|p < ∞. The set of

continuous functions on (0, 1) will be denoted C(0, 1).

2.2. Definition of a PNM. To build intuition, first consider numerical approxi-
mation of the Lebesgue integral

∫
x(t) ν(dt) for some integrable function x : D → R,

with respect to a measure ν on D. Here we may directly interrogate the integrand
x(t) at any t ∈ D, but unless D is finite we cannot evaluate x at all t ∈ D with a
finite computational budget. The role of a numerical method here is to approximate
such integrals based on finite information {x(ti)}ni=1 at some collection of locations
{ti}ni=1 that can be specified.

To see the abstract structure of this problem, assume that x exists in a measurable
space (X ,ΣX ). Information about x is provided through an information operator
A : X → A whose codomain is a measurable space (A,ΣA). Thus, for the Lebesgue
integration problem, the information operator is

(2.1) A(x) = [x(t1), . . . , x(tn)]> = a ∈ A.

The space X , in this case a space of functions, can be high- or infinite-dimensional,
but the space A of information is assumed to be finite-dimensional in accordance with
our finite computational budget. In this paper we make explicit a QoI Q(x), defined
by a map Q : X → Q into a measurable space (Q,ΣQ). This captures the idea that x
itself may not be the object of interest for the numerical problem; for the Lebesgue
integration illustration, the QoI is Q(x) =

∫
x(t) ν(dt).

The standard approach to such computational problems is to construct an al-
gorithm which, when applied, produces some approximation q̂(a) of Q(x), based on
the information a ∈ A, whose theoretical convergence can be studied. A successful
algorithm will often tailor the information operator A to the QoI Q. For example,
classical Gaussian cubature specifies sigma points {ti}ni=1 at which the integrand is
to be evaluated, based on exact integration of polynomial test functions of degree
2n − 1. The probabilistic numerical approach instead begins with the introduction
of a random variable X : Ω → X , formally a ΣX -measurable function on a probabil-
ity space Ω that will henceforth be left implicit. The true state x ∈ X is fixed but
unknown; the random variable X is an abstract device used to represent epistemic
uncertainty about x before the information operator has been evaluated [39]. This is
now formalized.

Definition 2.1 (belief distribution). An element µ ∈ PX is a belief distribution2

for x if it carries the formal semantics of belief about the true, unknown state variable
x.

Thus we may consider µ to be the law of X. The construction of an appropriate
belief distribution µ for a specific numerical task is not the focus of this research and
has been considered in detail in previous work; see section SM2 in the Supplement for
an overview of this material. Rather we consider the problem of how one updates the

1Recall that, for measurable T : X → A, the push-forward T#µ of a distribution µ ∈ PX is
defined as T#µ(A) = µ(T−1(A)) for all A ∈ ΣA.

2Two remarks are in order: First, we have avoided the use of “prior” as this abstract framework
encompasses both Bayesian and non-Bayesian PNMs (to be defined). Second, the use of “belief”
differs from the set-valued belief functions in Dempster–Shafer theory, which do not require that
µ(E) + µ(Ec) = 1 [85].
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belief distribution µ in response to the information A(x) = a. Generic approaches to
updating belief distributions, which generalize Bayesian inference beyond the unique
update demanded by Bayes’ theorem, have been formalized in [6, 19].

Definition 2.2 (probabilistic numerical method). Let (X ,ΣX ), (A,ΣA), and
(Q,ΣQ) be measurable spaces and let A : X → A, Q : X → Q, and B : PX ×A → PQ,
where A and Q are measurable functions. The pair M = (A,B) is called a probabilis-
tic numerical method for estimation of a QoI Q. The map A is called an information
operator, and the map B is called a belief update operator.

The output of a PNM is a distribution B(µ, a) ∈ PQ. This is assigned the formal
status of a belief distribution for the QoI Q(x), based on both the initial belief µ about
the state x and the information a that are input to the PNM. An objection sometimes
raised to this construction is that x itself is not random. This work does not propose
that x should be considered as such; the random variable X is distinguished in the
notation as a formal statistical device used to represent epistemic uncertainty [42, 65].
Thus, there is no distinction from traditional statistics, in which x represents a fixed
but unknown parameter and X encodes epistemic uncertainty about this parameter.

To strengthen intuition we now give specific examples of established PNMs.

Example 2.3 (probabilistic integration). Consider the Lebesgue integration prob-
lem discussed earlier. Take D ⊆ Rd, X a separable Banach space of real-valued func-
tions on D, and ΣX the Borel σ-algebra for X . The space (X ,ΣX ) is endowed with a
Gaussian belief distribution µ ∈ PX . Given information A(x) = a, define µa to be the
restriction of µ to those functions that interpolate x at the points {ti}ni=1; that µa is
again Gaussian follows from linearity of the information operator (see [7] for details).
The QoI remains Q(x) =

∫
x(t) ν(dt).

This problem was first considered in [58]. The belief update operator proposed
therein, and later considered in [22, 73] and others, was B(µ, a) = Q#µ

a. Since
Gaussians are closed under linear projection, the PNM output B(µ, a) is a univariate
Gaussian. Specifically, if µ has mean function m : X → R and covariance function
k : X × X → R, then

B(µ, a) = N(z>K−1(a− m̄), z0 − z>K−1z),

where m̄, z ∈ Rn are defined as m̄i = m(ti), zi =
∫
k(t, ti) ν(dt), K ∈ Rn×n is defined

as Ki,j = k(ti, tj), and z0 =
∫
k(t, t′) (ν×ν)(d(t, t′)) ∈ R. This method was extensively

studied in [9], with a table of ν and k for which z and z0 possess a closed form provided
therein.

Note that the information operator proposed above conceptualizes the integrand
as a black box. This may seem unnatural in situations where an explicit formula
for the integrand is provided. However, the integrand is treated in the same manner
in both the design and the analysis of classical cubature methods, so this part of our
framework is relatively standard [22]. Furthermore, the mean of B(µ, a) can be made to
coincide with classical cubature rules for different choices of µ and A [82, 47, 46]. The
crucial distinction between PNMs and classical numerical methods is the distributional
nature of B(µ, a), which carries the formal semantics of belief about the QoI. The full
distribution B(µ, a) was examined in [9], which established contraction to the exact
value of the integral under smoothness conditions on the covariance function and on
the integrand. See also [45, 48].

To limit scope we have focused on the situation where the information operator A
is prespecified. However, Monte Carlo methods are constructed by sampling the points

D
ow

nl
oa

de
d 

10
/2

1/
21

 to
 1

52
.7

8.
0.

24
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

762 COCKAYNE, OATES, SULLIVAN, AND GIROLAMI

{ti}ni=1 from the underlying distribution ν, rather than specifying a fixed point set. In
the present framework this corresponds to randomly selecting an information operator
from a set of such operators, where the randomness arises from the randomly sampled
evaluation locations.

Example 2.4 (probabilistic meshless method). As a canonical example of a PDE,
take the following elliptic problem with Dirichlet boundary conditions:

−∇ · (κ∇x) = f in D,

x = g on ∂D,(2.2)

where we assume D ⊂ Rd and κ : D → Rd×d is a known coefficient. Let X be a
separable Banach space of appropriately differentiable real-valued functions and take
ΣX to be the Borel σ-algebra for X . In contrast to the first example, the QoI here is
Q(x) = x, as the goal is to make inferences about the solution of the PDE itself.

Such problems were considered in [16], wherein µ was restricted to be a Gaussian
distribution on (X ,ΣX ) with mean function m = 0 and covariance function k : X ×
X → R. The information operator was constructed by choosing finite sets of locations
T1 = {t1,1, . . . , t1,n1

} ⊂ D and T2 = {t2,1, . . . , t2,n2
} ⊂ ∂D at which the system (2.2)

was evaluated, so that

A(x) =




−∇ · (κ(t1,1)∇x(t1,1))
...

−∇ · (κ(t1,n1
)∇x(t1,n1

))
x(t2,1)

...
x(t2,n2)




, a =




f(t1,1)
...

f(t1,n1
)

g(t2,1)
...

g(t2,n2)




.

The belief update operator was chosen to be B(µ, a) = µa, where µa is the restriction
of µ to those functions for which A(x) = a is satisfied. In the setting of a linear
system of PDEs such as that in (2.2), the distribution B(µ, a) is again Gaussian [7].
Full details are provided in [16].

As in the previous example, the mean of B(µ, a) coincides with the numerical
solution to the PDE provided by a classical method ( symmetric collocation; [30]). The
distribution B(µ, a) provides uncertainty quantification for the exact solution and can
again be shown to contract to the exact solution under smoothness conditions [16].
Indeed, the standard deviation of B(µ, a) is closely related to a standard error bound
which can be derived for that method, as shown in Proposition 4.1 of [16]. Specifically it
was shown that |x(t)− x̂(t)| ≤ σ(t) ‖x‖k, where x̂(t) is the mean and σ(t) the standard
deviation of X(t) ∼ B(µ, a), while ‖·‖k is the norm of the reproducing kernel Hilbert
space whose kernel is k. This method was analyzed in detail for a specific choice of
belief distribution µ, in an impressive contribution from [75].

In this example the standard method for approximately solving the PDE is to
first discretize the system using, for example, a finite-element method. For a suffi-
ciently fine discretization the error in the discrete approximation is negligible, and
the dominant error is associated with solving the linear system that arises from the
discretization. Recently PNMs have been developed for solving linear systems (e.g.,
[15] or [38]), and when applied in this setting such methods could provide a viable
approach to quantifying uncertainty in the solution of the discretized PDE.
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2.2.1. Classical Numerical Methods. Many standard numerical methods fit into
the above framework, as can be seen by taking

(2.3) B(µ, a) = δ ◦ b(a)

independent of the distribution µ. Here the function b : A → Q is a classical numerical
method for solving the problem of interest, such as the symmetric collocation method
in Example 2.4. The function δ : Q → PQ maps b(a) ∈ Q to a Dirac measure centered
on b(a), converting the output of this numerical method to a probability measure in
our framework.

Note that not all numerical methods are particular instances of this framework. In
particular, adaptive numerical methods would correspond to a sequence of information
operators based on a filtration; this setting is more general than that we consider in
the present paper.

2.3. Bayesian PNMs. Having defined a PNM, we now state the central definition
of this paper, that is, of a Bayesian PNM (BPNM). Define µa to be the conditional
distribution of the random variable X, given the event A(X) = a. For now we assume
that this can be defined without ambiguity and reserve a more technical treatment of
conditional probabilities for section 2.5.

This work follows [58] and casts the problem of determining x in (2.1) as a prob-
lem of Bayesian inversion, a framework now popular in applied mathematics and
uncertainty quantification [88]. In a standard Bayesian inverse problem the observed
quantity a is typically corrupted with measurement error, which is described by a
likelihood. Inferences are obtained, under mild assumptions, through a suitably gen-
eral version of Bayes’ theorem [88, section 2.2]. For a PNM, however, the information
is not corrupted with measurement error. As a result, the support of the likelihood
is a null set under the prior, making even rather general statements of Bayes’ the-
orem ill-defined when the random variables involved are infinite-dimensional. This
necessitates a new definition.

Definition 2.5 (Bayesian probabilistic numerical method). A probabilistic nu-
merical method M = (A,B) is said to be Bayesian3 for a QoI Q if, for all µ ∈ PX ,
the output

B(µ, a) = Q#µ
a for A#µ-almost all a ∈ A.

That is, a PNM is Bayesian if the output of the PNM is the push-forward of the
conditional distribution µa through Q. This definition is familiar from the examples
in section 2.2, which are both examples of BPNMs.

For BPNMs we adopt the traditional terminology in which µ is the prior for x and
the output Q#µ

a is the posterior for Q(x). Since the information a is noiseless, the
distribution µa is the restriction of the prior to the set of all x ∈ X such that A(x) = a.
The prior thus determines the extent of posterior uncertainty, so it is crucial that the
prior is properly calibrated. The prior is necessarily specific to the problem being
addressed and should, minimally, encode basic mathematical properties of the state
x that are known from numerical analysis, such as smoothness and any symmetries
that may be present. It should also be calibrated so that the truth is expected to lie

3The use of “Bayesian” contrasts with [6], in which all belief update operators represent Bayesian
learning algorithms to some greater or lesser extent. An alternative term could be “lossless,” since
all the information in a is conditioned upon to produce the posterior µa.
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in a high probability region, a calibration that might in part be based upon heuristics
and expert judgment. Selection of the prior is discussed further in section SM2 of the
supplement.

Note that, for fixed A and µ, the Bayesian choice of belief update operator B (if it
exists) is uniquely defined. It is emphasized that the class of BPNMs is a subclass of
all PNMs. A literature survey of both Bayesian and non-Bayesian PNMs is provided
in section SM3 of the supplement. Our analysis is focused on BPNMs due to their
appealing philosophical interpretation and ease of generalization to pipelines of com-
putation in section 5. For non-Bayesian PNMs, careful definition and analysis of the
belief update operator is necessary to enable proper interpretation of the uncertainty
quantification being provided. In particular, the analysis of non-Bayesian PNMs may
present considerable challenges in the context of computational pipelines, whereas for
BPNMs this is shown in section 5 to be straightforward.

Notably, in both Examples 2.3 and 2.4, certain choices of prior and information
yield posteriors whose modes coincide with a classical numerical method. This is
due to a deep connection between BPNMs and Bayesian decision rules which will
be discussed in more detail in section 3.3. However, correspondence with classical
methods should not be considered a fundamental design criterion for BPNMs and
there exist BPNMs for which this is not the case (e.g., [15, 93]). Equally, BPNMs
have been proposed to tackle problems that have not been well studied in numerical
analysis (e.g., [96]).

2.4. Model Evidence. A cornerstone of the Bayesian framework is the model
evidence, or marginal likelihood [66]. Let A ⊆ Rn be equipped with the Lebesgue
reference measure λ, such that A#µ admits a density pA = dA#µ/dλ. Then the model
evidence pA(a), based on the information that A(x) = a, can be used as the basis
for Bayesian model comparison. Two prior distributions µ and µ̃ can be compared
through the Bayes factor

BF :=
p̃A(a)

pA(a)
=

dA#µ̃

dA#µ
(a),(2.4)

where p̃A = dA#µ̃/dλ. A large Bayes factor means that the prior µ̃ assigns signifi-
cantly more probability to the observed data a than µ, and thus should be preferred.
The second expression is independent of the reference measure λ and so is valid for
more general A.

The model evidence has been explored in connection with the design of BPNMs.
For the integration and linear PDE examples 2.3 and 2.4, the model evidence has a
closed form and was investigated in [9, 16]. Section 6 considers the model evidence in
the context of nonlinear ODEs and PDEs.

2.5. The Disintegration Theorem. The purpose of this section is to formalize
µa and to determine conditions under which it exists and is well defined. From
Definition 2.5, the output of a BPNM is B(µ, a) = Q#µ

a. If µa exists, the push-
forward Q#µ

a exists as Q is assumed to be measurable; thus, in this section, we focus
on the rigorous definition of µa.

Unlike many problems of Bayesian inversion, proceeding by an analogue of Bayes’
theorem is not possible. Let X a = {x ∈ X : A(x) = a}. Then we observe that, if it
is measurable, X a is often a set of zero measure under µ. Standard techniques for
infinite-dimensional generalization of Bayes’ theorem rely on constructing a posterior
distribution based on its Radon–Nikodym derivative with respect to the prior [88].
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However, when µa 6� µ no Radon–Nikodym derivative exists and we must turn to
other approaches to ensure a BPNM is well-defined.

Conditioning on null sets was first formalized in the celebrated construction of
measure-theoretic probability by [53]. The central challenge is to establish uniqueness
of conditional probabilities. For this work we exploit the disintegration theorem to
ensure our constructions are well-defined. The definition below is due to [21, p.78],
and a statistical introduction to disintegration can be found in [13].

Definition 2.6 (disintegration). For µ ∈ PX , a collection {µa}a∈A ⊂ PX is a
disintegration of µ with respect to the (measurable) map A : X → A if:

1. (Concentration:) µa(X \ X a) = 0 for A#µ-almost all a ∈ A;
and, for each measurable f : X → [0,∞),

2. (Measurability:) a 7→ µa(f) is measurable;
3. (Conditioning:) µ(f) =

∫
µa(f)A#µ(da).

The concept of disintegration extends the usual concept of conditioning of ran-
dom variables to the case where X a is a null set, in a way closely related to regular
conditional distributions [53]. Existence is guaranteed under quite weak conditions:

Theorem 2.7 (disintegration theorem [13, Theorem 1]). Let X be a metric space,
let ΣX be its Borel σ-algebra, and consider a Radon distribution µ ∈ PX . Let ΣA be
countably generated and contain the singletons {a} for each a ∈ A. Then there exists
a disintegration {µa}a∈A of µ with respect to A. Moreover, if {νa}a∈A is another
such disintegration, then {a ∈ A : µa 6= νa} is a A#µ-null set.

The requirement that µ is Radon always holds if X is a separable complete metric
space or, more generally, a Radon space. The requirement that ΣA is countably gener-
ated includes the standard case where A = Rn with the Borel σ-algebra. Theorem 2.7
implies that {µa}a∈A exists and is essentially unique for all of the examples consid-
ered in this paper. Thus, under mild conditions, we have established that BPNMs are
well-defined, in that an essentially unique disintegration {µa}a∈A exists. Variational
definition of µa has been offered as an alternative approach for when the existence of
a disintegration is difficult to establish [33, p. 3].

2.6. Prior Construction. The Gaussian distribution is popular as a prior in the
PNM literature for its tractability, in the senses that its finite-dimensional distribu-
tions take a closed form and that an explicit conditioning formula exists. More general
priors, such as Besov priors [18, 61] and Cauchy priors [89], are less easily accessed.
In this section we summarize a common construction for these prior distributions,
designed to ensure that a disintegration will exist.

Let {φi}∞i=0 denote a normalized Schauder basis for X , assumed to be a separable
Banach space in this section. Any x ∈ X can be represented through an expansion

(2.5) x = x0 +

∞∑

i=0

uiφi

for some fixed element x0 ∈ X and a sequence u ∈ R∞. Construction of measures
µ ∈ PX is then reduced to construction of almost-surely convergent measures on R∞
and studying the push-forward of such measures into X . In particular, this will ensure
that µ ∈ PX is Radon as X is a separable complete metric space, a key requirement
for the existence of a disintegration {µa}a∈A.

To this end it is common to split the coefficients ui into stochastic and determin-
istic components; let ξ ∈ R∞ represent an i.i.d. sequence of random variables, and
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766 COCKAYNE, OATES, SULLIVAN, AND GIROLAMI

γ ∈ `p for some p ∈ [1,∞). Then with ui = γiξi, we require that u ∈ `1 almost-
surely for the prior distribution to be well-posed. Different choices of (ξ, γ) give rise
to different distributions on X . For instance, ξi ∼ Uniform(−1, 1), γ ∈ `1 is termed a
uniform prior, and ξi ∼ N (0, 1), γ ∈ `2 gives a Gaussian prior, where γ determines
the regularity of the covariance operator [7]. The choice of ξi ∼ Cauchy(0, 1) gives
a Cauchy prior; here we require γ ∈ `1 ∩ ` log ` for X a separable Banach space, or
γ ∈ `2 for when X is a Hilbert space; see [89].

A range of prior specifications will be explored in section 6, including non-
Gaussian prior distributions for the numerical solution of nonlinear ODEs.

2.7. Relation to Emulation. The characterization of a numerical task as a Bayes-
ian inverse problem was mentioned in section 2.3. In this section emulation [81],
another method bearing some resemblance to PNMs, will be discussed.

An emulator is a regression model that is used to predict black box output, based
on a limited input-output training dataset, at input locations other than those at
which it was trained. In this specific sense, several BPNMs can be regarded as being
based on emulators:

• The PNM proposed in Example 2.3 is mathematically equivalent to a Gaus-
sian process emulator of the integrand, with the uncertainty being pushed
forward onto the value of the integral.

• The PNM proposed in Example 2.4 is mathematically equivalent to a Gaus-
sian process emulator of the gradient field f and boundary field g of the PDE,
with the uncertainty in these fields being pushed forward onto the solution
space of the PDE.

However, the output of a BPNM differs from the traditional sense in which emulation
is used and understood. Indeed, due to disintegration along the information opera-
tor, the output of a BPNM inherits structure and characteristics of the mathematical
problem being solved. In a PDE-constrained inverse problem, for example, emula-
tors are traditionally used to interpolate or extrapolate in parameter space, whereas
BPNMs can be used to quantify the error in the forward problem that is due to
discretization of the PDE.

3. Decision-Theoretic Treatment. Next we assess the performance of PNMs
from a decision-theoretic perspective [5] and explore connections to average-case anal-
ysis of classical numerical methods [79]. Note that the treatment here is agnostic to
whether or not the PNM in question is Bayesian, and also encompasses classical
numerical methods. Throughout, the existence of a disintegration {µa}a∈A will be
assumed.

3.1. Loss and Risk. Consider a generic loss function L : Q×Q → R where L(q†, q)
describes the loss incurred when the true QoI q† = Q(x) is estimated with q ∈ Q.
Integrability of L is assumed. The belief update operator B returns a distribution
over Q which can be cast as a randomized decision rule for estimation of q†. For
randomized decision rules, the risk function r : Q×PQ → R is defined as

r(q†, ν) =

∫
L(q†, q) ν(dq) .

The average risk of the PNM M = (A,B) with respect to µ ∈ PX is defined as

(3.1) R(µ,M) =

∫
r(Q(x), B(µ,A(x)))µ(dx).
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Here a state x ∼ µ is drawn at random and the risk of the PNM output B(µ,A(x))
is computed; the procedure is then averaged. We follow the convention of terming
R(µ,M) the Bayes risk of the PNM, though the usual objection that a frequentist
expectation enters into the definition of the Bayes risk could be raised.

Next, we consider a sequence A(n) of information operators indexed such that
A(n)(x) is n-dimensional (i.e., n pieces of information are provided about x).

Definition 3.1 (contraction). A sequence M (n) = (A(n), B(n)) of PNMs is said
to contract at a rate rn under a belief distribution µ if R(µ,M (n)) = O(rn).

This definition allows for the comparison of both classical and probabilistic nu-
merical methods [43, 22]. In each case an important goal is to determine methods
M (n) that contract as quickly as possible for a given distribution µ that defines the
Bayes risk. This is the approach taken in average-case analysis [79] and will be dis-
cussed in section 3.3. For Examples 2.3 and 2.4 of BPNMs, [9] and [16] established
rates of contraction for particular prior distributions µ; we refer the reader to those
papers for more detail.

3.2. Bayes Decision Rules. A (possibly randomized) decision rule is said to be
a Bayes rule if it achieves the minimum Bayes risk among all decision rules. In the
context of PNMs, let

B(A) = arg inf
B

R(µ, (A,B)).

That is, for fixed A, B(A) is the set of all belief update operators that achieve mini-
mum Bayes risk.

This raises the natural question of which belief update operators yield Bayes
rules. Although the definition of a Bayes rule applies generically to both probabilistic
and deterministic numerical methods, it can be shown4 that, if B(A) is nonempty,
there exists a B ∈ B(A) which takes the form of a classical numerical method, as
expressed in (2.3). Thus, in general, BPNMs do not constitute Bayes rules, as the
extra uncertainty inflates the Bayes risk. Nonetheless, there is a natural connection
between BPNMs and Bayes rules, as exposed in [43].

Theorem 3.2. Let M = (A,B) be a BPNM for the QoI Q. Let (Q, 〈·, ·〉Q) be
an inner product space and let the loss function L have the form L(q†, q) = ‖q† −
q‖2Q, where ‖ · ‖Q is the norm induced by the inner product. Then the mean of the
distribution B(µ, a) is a Bayes rule for estimation of q†.

This well-known fact from Bayesian decision theory5 is interesting in light of re-
cent research in constructing PNMs whose mean functions correspond to classical
numerical methods [83, 38, 82, 90, 84]. Theorem 3.2 explains the results in Exam-
ples 2.3 and 2.4, in which both instances of BPNMs were demonstrated to be centered
on an established classical method.

3.2.1. Optimal Information. The previous section considered selection of the
belief update operator B, but not the information operator A. The choice of A
determines the Bayes risk for a PNM, which leads to a problem of experimental
design to minimize that risk. The theoretical study of optimal information for classical
methods is the focus of the information-based complexity literature [70, 92, 94]. Here
we characterize optimal information for BPNMs.

4The proof is included in supplementary section SM4.1.
5This is the fact that “the Bayes act is the posterior mean under squared-error loss” [5].
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768 COCKAYNE, OATES, SULLIVAN, AND GIROLAMI

Consider the choice of A from a fixed set Λ of candidate information operators.
For example, for the task of numerical integration, Λ could represent all possible
choices of locations {ti}ni=1 where the integrand is to be evaluated. For BPNMs, one
can ask for optimal information,

Aµ ∈ arg inf
A∈Λ

{R(µ,M) : M = (A,B), B(µ, a) = Q#µ
a} ,

where we have made explicit the fact that the optimal information depends on the
choice of prior µ.

3.3. Conditional Connection to Average-Case Analysis. The decision theo-
retic framework in section 3.1 is somewhat related to the average-case analysis (ACA)
of classical numerical methods [79]. In ACA the performance of a classical numerical
method b : A → Q is studied in terms of the Bayes risk R(µ,M) given in (3.1), for
the PNM M = (A,B) with belief operator B(µ, a) = δ ◦ b(a) as in (2.3). ACA is
concerned with the study of optimal information:

A∗µ ∈ arg inf
A∈Λ

{
inf
b
R(µ,M) : M = (A,B), B(µ, a) = δ ◦ b(a)

}
.

In general there is no reason to expect Aµ and A∗µ to coincide, since BPNMs are
not Bayes rules.6 Indeed, an explicit example where Aµ 6= A∗µ is presented in sec-
tion SM4.2 of the supplement. However, we can establish sufficient conditions under
which optimal information for a BPNM is the same as optimal information according
to ACA.

Theorem 3.3. Let (Q, 〈·, ·〉Q) be an inner product space and the loss function L
have the form L(q†, q) = ‖q† − q‖2Q, where ‖ · ‖Q is the norm induced by the inner
product. Then the optimal information Aµ for a BPNM and A∗µ for ACA are identical.

It is emphasized that this result is not a trivial consequence of the correspondence
between Bayes rules and worst-case optimal methods exposed in [43], as evidenced
by the counterexample in section SM4.2. To the best of our knowledge, information-
based complexity research has studied A∗µ but not Aµ. Theorem 3.3 establishes that,
for the squared-norm loss, we can use results on optimal information from the ACA
literature to construct optimal BPNMs. An example where optimal information for
integration is derived based on Theorem 3.3 is included in section SM4.3.

This completes our performance assessment for PNMs; next we turn to compu-
tational matters.

4. Numerical Disintegration. In this section we describe a numerical method
to access the output from a BPNM. The approach that we describe is based on con-
structing an approximation to µa that can be sampled using potentially sophisticated
Monte Carlo methods.

Constructive approximation of µa is not trivial. The approach considered in this
work is based on sampling from an approximate distribution µaδ which converges in an
appropriate sense to µa as δ → 0; this is in a similar spirit to the approach of [1]. We
note, however, that because Monte Carlo sampling incurs a high computational cost,
the method introduced in this section should not be considered a practical approach
in general. Rather, it is presented to demonstrate that numerical methods for ap-
proximating the output of BPNMs can be constructed, and to provide a benchmark
for future, more expedient numerical methods that may be developed.

6The distribution Q#µ
a will in general not be supported on the set of Bayes acts.
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4.1. Sequential Approximation of a Disintegration. Suppose that A = Rn and
endow A with the structure of a Hilbert space. Let φ : R+ → R+ denote a decreasing
function that is continuous at 0, with φ(0) = 1 and limr→∞ φ(r) = 0. Consider, for
δ > 0,

µaδ (dx) :=
1

Zaδ
φ

(‖A(x)− a‖A
δ

)
µ(dx), Zaδ :=

∫

A
φ

(‖ã− a‖A
δ

)
pA(ã) dã,

where the normalization constant Zaδ is nonzero as pA is bounded away from 0 on a
neighborhood of a ∈ A, and φ is bounded away from 0 on a sufficiently small interval
[0, γ]. Our aim is to approximate µa with µaδ for small bandwidth parameter δ. The
construction, which generalizes approximate Bayesian computation [20] and is similar
in spirit to [27], ensures that µaδ � µ. The role of φ is to admit states x ∈ X for which
A(x) is close to, but not necessarily equal to, a, and it is assumed to be sufficiently
regular.

Assumption 4.1. For each α > 0 we have that Cαφ :=
∫
rα+n−1φ(r) dr <∞.

We also require a regularity assumption on A#µ.

Assumption 4.2. The distribution A#µ ∈ PA admits a Lipschitz density pA with
respect to Lebesgue measure on A, with the property that pA(a) > 0 for all a ∈ A.

To discuss the convergence of µaδ to µa we must first specify a mode of convergence
in PX . Let (F , ‖ · ‖F ) be a normed space of (measurable) functions f : X → R. Let

dF (ν, ν′) := sup
‖f‖F≤1

|ν(f)− ν′(f)| for ν, ν′ ∈ PX .

Many common probability metrics such as the total variation and Wasserstein dis-
tances arise in this way [68]. However, not all spaces of functions F lead to useful
theory. In particular, the total variation distance between µa and µa

′
for a 6= a′ will

be 1 in general. Furthermore, depending on the choice of F , dF may not be a metric.
Sufficient conditions for weak convergence with respect to F are now established.

Assumption 4.3. The map a 7→ µa is almost everywhere α-Hölder continuous in
dF for some α > 0, i.e., dF (µa, µa

′
) ≤ Cαµ ‖a − a′‖αA for some constant Cαµ > 0 and

for A#µ-almost all a, a′ ∈ A.

Theorem 4.4. Let C̄αφ := Cαφ /C
0
φ. Then, for each fixed a we have that, for δ > 0

sufficiently small,

dF (µaδ , µ
a) ≤ Cαµ (1 + C̄αφ )δα.

This result justifies the approximation of µa by µaδ whenever the QoI can be well
approximated using integrals with respect to F . This result is stronger than that
of earlier work, such as [77], in that it holds for infinite-dimensional X , though it
also relies upon the stronger Hölder continuity assumption. The work of [1] estab-
lishes convergence of similar approximating distributions to the disintegration, but
the Hölder continuity assumption allows the distributional error to be bounded. The
impact of φ on convergence rates is discussed in section SM5 of the supplementary
material.

4.2. Monte Carlo Methods. The previous section established a sequence of well-
defined distributions µaδ that converge, in a weak sense, to the exact disintegration
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µa. By construction, µaδ � µa, which is sufficient to allow standard Monte Carlo
methods to be used. The construction of Monte Carlo methods is decoupled from the
core material in the main text and the main methodological considerations are well
documented [35].

For the experiments reported in subsequent sections two approaches were ex-
plored; a sequential Monte Carlo (SMC) method [26] and a parallel tempering method
[34]. This provided a transparent sampling scheme, whose nonasymptotic approxi-
mation error can be theoretically understood. In particular, such tempering schemes
provide robust estimators of model evidence that can be used for Bayesian model
comparison. Full details of the Monte Carlo methods used, along with associated
theoretical analysis for the SMC method, are contained in section SM5.1 of the sup-
plementary material.

5. Computational Pipelines and PNMs. The last theoretical development in
this paper concerns how multiple PNMs can be combined. These results represent
an important contribution, as composition has been repeatedly cited as an important
motivation for PNMs [39, 17, 14, 16], but how this ought to be accomplished has not
yet been addressed. Nevertheless, this material is rather technical and the reader may
wish to omit this section on first reading.

Contemporary applications typically rely on the composition of several numerical
methods, but the question of when PNMs can be composed, and when the output of
such a composition is meaningful, has not yet been addressed. It has been shown that
accumulated discretization error can have a highly nontrivial impact on computational
output [80, 3, 4], and that the richer, structured output provided by PNMs may help
to better describe this impact. The authors of [39] also highlighted using composed
PNMs for an analysis of variance, to determine the dominant sources of discretization
error. If these applications are to be pursued, then it is vital that the output of
composed PNMs is meaningful.

Composed PNMs have appeared before in the literature. In recent work, [14], [17],
and [16] used PNMs within a broader statistical procedure to estimate parameters in
systems of ODEs and PDEs. The probabilistic description of discretization error was
incorporated into the data-likelihood, resulting in posterior distributions for param-
eters with inflated uncertainty to account for the inferential impact of discretization
error. However, beyond these limited works, no examination of the composition of
PNMs has been performed.

This section defines a pipeline as an abstract graphical object that may be com-
bined with a collection of compatible PNMs. It is proved that when compatible BP-
NMs are employed in the pipeline, the distributional output of the pipeline carries a
Bayesian interpretation under an explicit conditional independence condition on the
prior µ.

To build intuition, for the simple case where two BPNMs are composed in se-
ries, our results provide conditions for when, informally, the output B2(B1(µ, a1), a2)
corresponds to a single Bayesian procedure B(µ, (a1, a2)). To reduce the notational
and technical burden, in this section we will not provide rigorous measure theoretic
details, but these details broadly follow the same pattern as in section 2.5.

5.1. Computational Pipelines. To analyze pipelines of PNMs, we consider n
such methods M1, . . . ,Mn, where each method Mi = (Ai, Bi) is defined on a common7

7This is without loss of generality, since X can be taken as the union of all state spaces required
by the individual methods.
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state space X and targets a QoI Qi ∈ Qi. A pipeline will be represented as a directed
graphical model, wherein the QoIs Qi from parent methods constitute information
operators for child methods. It may be the case that a method will take quantities
from multiple parents as input. To allow for this, we suppose that the information
operator Ai : X → Ai can be decomposed into components Ai,j : X → Ai,j such that
Ai = (Ai,1, . . . , Ai,m(i)) and Ai = Ai,1×· · ·×Ai,m(i). Thus, each component Ai,j can
be thought of as the QoI output by one of the parents of the method Mi.

Without loss of generality we designate the nth QoI Qn to be the principal QoI.
That is, the purpose of the computational pipeline is to estimate Qn(x). The case of
multiple principal QoI is a simple extension and will not be described. Nodes with
no children are called terminal nodes, while nodes with no parents are called source
nodes. We denote by A the set of all source nodes.

Definition 5.1 (pipeline). A pipeline P is a directed acyclic graph such that:
• Nodes are of two kinds: Information nodes are depicted by �, and method

nodes are depicted by �.
• The graph is bipartite, so that edges connect a method node to an information

node or vice versa; that is, edges are of the form �→ � or �→ �.
• There are n method nodes, each with a unique label in {1, . . . , n}.
• The method node labeled i has m(i) parents and one child. Its in-edges are

assigned a unique label in {1, . . . ,m(i)}.
• There is a unique terminal node and it is the child of method node n. This

represents the principal QoI Qn.

Example 5.2 (distributed integration). As a thought experiment, consider par-
titioning the domain of integration for a simple one-dimensional integral:

(5.1)

∫ 1

0

x(t) dt

︸ ︷︷ ︸
(c)

=

∫ 0.5

0

x(t) dt

︸ ︷︷ ︸
(a)

+

∫ 1

0.5

x(t) dt

︸ ︷︷ ︸
(b)

.

To keep the presentation simple we consider an integral over [0, 1] with information
obtained at 2m + 1 equidistant knots ti = i/2m. Let M1 be a BPNM for estimating
Q1(x) = (a) and M2 be a BPNM for estimating Q2(x) = (b).

In terms of our notational convention, we divide the information operator into
four components: Ai,j for i, j ∈ {1, 2}. A1,1 and A2,2 contain the information unique
to M1 and M2. Specifically,

A1,1(x) =




x(t1)
...

x(tm−1)


 , A2,2(x) =



x(tm+1)

...
x(t2m)


 .

A1,2 and A2,1 contain the information that is shared between the two methods; that
is, A1,2 = A2,1 = {x(tm)}. To complete the specification we need a third PNM for
estimation of Q3(x) = (c), which we denote M3 and which combines the outputs of
M1 and M2 by simply adding them together. Formally this has information operator
A3(x) = (A3,1(x), A3,2(x)), where A3,1(x) = (a) and A3,2(x) = (b). Its belief update
operator is given by B3(µ, (a3,1, a3,2)) = δ(a3,1 + a3,2). Figure 1 shows an intuitive
graphical representation of this set-up. The pipeline P itself, which is identical to
Figure 1 but with specific node and edge labels, is shown in Figure 2(a).
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x(t1), . . . , x(tm−1)

x(tm)

x(tm+1), . . . , x(t2m)

B1(µ, ·)

B2(µ, ·)

∫ 0.5

0
x(t)dt

∫ 1

0.5
x(t)dt

B3(µ, ·) ∫ 1

0
x(t)dt

Fig. 1 An intuitive representation of Example 5.2.

1

2

3

1

2

1

2

1

2

(a) Pipeline

1

2

3

4

5

6

(b) Dependence Graph

Fig. 2 Computation as a graphical model. (a) The pipeline P corresponding to Figure 1. (b)
Dependence graph G(P ) corresponding to the pipeline P . The nodes are indexed with a
topological ordering.

In general, the method node labeled i is taken to represent the method Mi. The
in-edge to this node labeled j is taken to represent the information provided by the
relationship Ai,j(x) = ai,j . Here ai,j can be either deterministic information provided
to the pipeline, or statistical information derived from the output of another PNM.
To make this formal and to “match the input-output spaces” we next define what
it means for the collection of methods Mi to be compatible with the pipeline P .
Informally, this describes the conditions that must be satisfied for method nodes in a
pipeline to be able to connect to each other.

Definition 5.3 (compatible). The collection (M1, . . . ,Mn) of PNMs is compat-
ible with the pipeline P if the following two requirements are satisfied:

(i) For a motif

i j
i′ j′

we have that Ai,i′ = Aj,j′ and Ai,i′ = Aj,j′ .
(ii) For a motif

i j
j′

we have that Qi = Aj,j′ .
Note that we do not require the converse of (i) at this stage; that is, the same

information can be represented by more than one node in the pipeline. This permits
the existence of redundant nodes in the pipeline, meaning that information is not re-
cycled. It will transpire that pipelines with such redundancy do not admit a Bayesian
treatment.

The role of the pipeline P is to specify the order in which information, either
deterministic or statistical, is propagated through the collection of PNMs. This is
illustrated next.
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Example 5.4 (propagation of information). For the pipeline in Figure 2(a), the
propagation of information proceeds as follows:

1. The source nodes, representing A(x) = {A1,1(x), A1,2(x) = A2,1(x), A2,2(x)},
are evaluated as {a1,1, a1,2 = a2,1, a2,2}. This represents all the information
on x that is provided.

2. The distributions µ(1) := B1(µ, (a1,1, a1,2)) and µ(2) := B2(µ, (a2,1, a2,2)) are
computed.

3. The push-forward distribution µ(3) := (B3)#(µ, µ(1) × µ(2)) is computed.
Here µ(1) × µ(2) is defined on the Cartesian product ΣA3,1 × ΣA3,2 with independent

components µ(1) and µ(2). The notation (B3)# refers to the push-forward of the
function B3(µ, ·) through its second argument. The distribution µ(3) is the output of
the pipeline and represents belief about the principal QoI Q3(x).

The procedure in Example 5.4 can be formalized, but to keep the presentation
and notation succinct, we leave this implicit.

Definition 5.5 (computation). For a collection (M1, . . . ,Mn) of PNMs that are
compatible with a pipeline P , the computation P (M1, . . . ,Mn) is defined as the PNM
with information operator A and belief update operator B that takes µ and A(x) = a
as input and returns the distribution µ(n) as its output B(µ, a), obtained through the
procedure outlined in Example 5.4.

That is, the computation P (M1, . . . ,Mn) is itself a PNM for the principal QoI
Qn. Note that this definition includes a classical numerical work-flow just as a PNM
encompasses a standard numerical method.

5.2. Bayesian Computational Pipelines. Since P (M1, . . . ,Mn) is itself a PNM,
there is a natural definition for when such a computation can be called Bayesian.

Definition 5.6 (Bayesian computation). Denote by (A,B) the information and
belief update operators associated with the computation P (M1, . . . ,Mn) and consider
a disintegration {µa}a∈A of µ with respect to the information operator A. The com-
putation P (M1, . . . ,Mn) is said to be Bayesian for the QoI Qn if B(µ, a) = (Qn)#µ

a

for A#µ-almost all a ∈ A.

This is clearly an appealing property; the output of a Bayesian computation can
be interpreted as a posterior distribution over the QoI Qn(x) given the prior µ and
the information A(x). Or, more informally, the “pipeline is lossless with information.”
However, at face value it seems difficult to verify whether or not a given computation
P (M1, . . . ,Mn) is Bayesian, since it depends on both the individual PNMs Mi and the
pipeline P through which they are combined. Our next task is to establish verifiable
sufficient conditions, for which we require another definition.

Definition 5.7 (dependence graph). The dependence graph of a pipeline P is
the directed acyclic graph G(P ) obtained by taking the pipeline P , removing the method
nodes, and replacing all �→ �→ � motifs with direct edges �→ �.

The dependency graph for Example 5.2 is shown in Figure 2(b).
For a computation P (M1, . . . ,Mn), each of the J distinct nodes in G(P ) can

be associated with a random variable Yj where either Yj = Ak,l(X) for some k, l,
when the node is a source, or otherwise Yj = Qk(X) for some k. Randomness here
is understood to be due to X ∼ µ, so that the distribution of the {Yj}Jj=1 is a
consequence of µ. The convention used here is that the Yj are indexed according to
a topological ordering on G(P ), which has the properties that (i) the source nodes
correspond to indices 1, . . . , I, and (ii) the final random variable is YJ = Qn(X).
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Definition 5.8 (coherence). Consider a computation P (M1, . . . ,Mn). Denote
by π(j) ⊆ {1, . . . , j− 1} the parent set of node j in the dependence graph G(P ). Then
we say that µ ∈ PX is coherent for the computation P (M1, . . . ,Mn) if the implied
joint distribution of the random variables Y1, . . . , YJ satisfies, for each j = I+1, . . . , J ,
the conditional independence relation

Yj ⊥⊥ Y{1,...,j−1}\π(j) | Yπ(j).

Note that this is weaker than the Markov condition for directed acyclic graphs
(see [62]), since we do not insist that the variables represented by the source nodes
are independent. It is emphasized that, for a given µ ∈ PX , the coherence condition
can in general be verified.

The following result provides verifiable sufficient conditions which ensure that a
computation composed of individual BPNMs is a Bayesian computation.

Theorem 5.9. Let M1, . . . ,Mn be BPNMs and let µ ∈ PX be coherent for the
computation P (M1, . . . ,Mn). Then the computation P (M1, . . . ,Mn) is Bayesian for
the QoI Qn.

Conversely, if non-Bayesian PNMs are combined, then the computation P (M1, . . . ,
Mn) need not be Bayesian. An ancestral sampling method for sampling from the out-
put of a pipeline of PNMs is described in section SM5.8 of the supplement.

Example 5.10 (Example 5.2, continued). The random variables Yi in this ex-

ample are Y1 = {X(ti)}m−1
i=1 , Y2 = X(tm), Y3 = {X(ti)}2mi=m+1, Y4 =

∫ 0.5

0
X(t) dt,

Y5 =
∫ 1

0.5
X(t) dt. From G(P ) in Figure 2(b), the coherence condition in Defini-

tion 5.8 requires that the nontrivial conditional independences Y4 ⊥⊥ Y3 | {Y1, Y2} and
Y5 ⊥⊥ Y1 | {Y2, Y3} hold. Thus, the distribution µ is coherent for the computation
P (M1,M2,M3) if and only if, for X ∼ µ, the associated information variables satisfy

∫ 0.5

0

X(t) dt ⊥⊥ {X(ti)}2mi=m+1

∣∣ {X(ti)}mi=1,

∫ 1

0.5

X(t) dt ⊥⊥ {X(ti)}m−1
i=1

∣∣ {X(ti)}2mi=m.

The distribution µ induced by the Weiner process on x satisfies these conditions,
since under µ the stochastic process {x(t) : t > tm} is conditionally independent of
its history {x(t) : t < tm} given the current state x(tm). Thus, for this choice of µ,
Theorem 5.9 affirms that P (M1,M2,M3) is a Bayesian computation and parallel com-
putation of (a) and (b) in (5.1) can be justified from a Bayesian standpoint. However,
for the alternative belief distribution induced by the Weiner process on ∂sx, s ≥ 1, this
condition is not satisfied and the computation P (M1,M2,M3) is not Bayesian. To
turn this into a Bayesian procedure for these alternative belief distributions it would
be required that A1,2(x) provides information about all the derivatives ∂kx(tm), k ≤ s.

Thus, we have established locally verifiable conditions that guarantee that the
propagation of uncertainty through a computational pipeline is meaningful. This
concludes our theoretical development.

6. Numerical Experiments. In this final section of the paper we present three
numerical experiments. The first is a linear PDE, the second is a nonlinear ODE, and
the third is an application to a problem in industrial process monitoring, described by
a pipeline of PNMs. In each case we experiment with non-Gaussian prior distributions
and, in doing so, go beyond previous work.
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(a) Model solution
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(b) Gaussian prior
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(c) Cauchy prior

Fig. 3 (a) Model solution x(t), t = (t1, t2), generated by application of a finite element method
based on a triangular mesh of 50 × 50 elements. (b), (c) Posterior means for the solution
x of the Poisson equation, with n = 16 and different choices of prior distribution. Design
points for the interior, Dirichlet, and Neumann boundary conditions are indicated by green
dots, green squares, and green crosses, respectively.

6.1. Poisson Equation. Our first illustration is an instance of the Poisson equa-
tion, a linear PDE with mixed Dirichlet–Neumann boundary conditions:

−∇2x(t) = 0, t ∈ (0, 1)2,(6.1)

x(t) = t1, t1 ∈ [0, 1], t2 = 0,(6.2)

x(t) = 1− t1, t1 ∈ [0, 1], t2 = 1,(6.3)

∂x/∂t2 = 0, t2 ∈ (0, 1), t1 ∈ {0, 1}.(6.4)

Figure 3(a) shows a model solution to this system, generated with a finite element
Galerkin method on a fine mesh. While this is a relatively simple linear PDE, it is a
useful illustrative example. A detailed theoretical treatment of such problems under
a Gaussian prior can be found in [16].

Tensor products of orthogonal polynomials were used for prior specification:

φi(t) = Cj(2t1 − 1)Ck(2t2 − 1),

i+j ≤ Nc. The polynomials Ci were chosen to be normalized Chebyshev polynomials
of the first kind. Prior specification then follows the formulation given in section 2.6,
where the remaining parameters were chosen to be x0 ≡ 1 and γi = (i + 1)−2. The
random variables ξi were taken to be either Gaussian or Cauchy and the polynomial
basis was truncated to N = 45 terms, corresponding to a maximum polynomial
degree of NC = 8. Note that closed-form expressions are available for analysis under
the Gaussian prior [16] but, to demonstrate the numerical disintegration approach
from section 4, these were not exploited.

The information operator was defined by a set of locations ti ∈ [0, 1]2, i =
0, . . . , Nt, where either the interior condition or one of the boundary conditions was
enforced. Denote by

{
tI,i
}

the set of interior points, by
{
tD,j

}
the set of Dirich-

let boundary points, and by
{
tN,k

}
the set of Neumann boundary points, where

i = 1, . . . , NI , j = 1, . . . , ND, and k = 1, . . . , NN , with n = NI +ND +NN . Then the
information operator is given by the concatenation of the conditions defined above:

A(x) = [AI(x)>, AD(x)>, AN (x)>]>,

AI(x) =



−∇2x(tI,1)

...
−∇2x(tI,NI )


 , AD(x) =



x(tD,1)

...
x(tD,ND )


 , AN (x) =




∂
∂t1
x(tN,1)

...
∂
∂t1
x(tN,NN )


 .
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Fig. 4 Posterior distributions for the first four coefficients of the spectrum for the solution x of the
Poisson equation, obtained with Monte Carlo methods and numerical disintegration, based
on δ = 0.0008, n = 16. The Gaussian prior was used.

The BPNM output was approximated by numerical disintegration and sampled
with a Monte Carlo method whose implementation is reported in section SM5.6 of
the supplementary material. Figures 3(b) and 3(c) show the mean of the posterior
distribution for Gaussian and Cauchy priors with n = 16, with little qualitative
difference observed. The mean functions match closely the model solution as given in
Figure 3(a).

The posterior distribution of the spectrum {ui} was also investigated. Figure 4
shows the posterior distribution of these coefficients and it is seen that the correlation
structure between coefficients (e.g., u0 and u3) is nontrivial.

Figure 5(a) shows that the posterior variance is lowest near the Dirichlet bound-
aries where the solution is known, and it peaks where the Neumann condition is
imposed. This is to be expected, as evaluations of the Neumann boundary condition
provide less information about the solution itself. The remainder of Figure 5 shows
convergence of the posterior distribution as the number of design points is varied, for
n = 16, 25, 36. In each case a Gaussian prior was used. As expected, the standard
deviation in the posterior distribution is seen to decrease as the number of design
points is increased. At n = 36, the shape of the region of highest uncertainty changes
markedly, with the most uncertain region lying between the Dirichlet boundary and
the first evaluation points on the Neumann boundary. This is likely due to the fact
that the number of evaluation points is approaching the size of the polynomial basis;
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(a) n = 16
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(b) n = 25

0.0 0.2 0.4 0.6 0.8 1.0
t1

0.0

0.2

0.4

0.6

0.8

1.0

t 2

0.000

0.005

0.010

0.015

0.020

0.025

(c) n = 36

Fig. 5 Heat map of the pointwise standard deviation for the solution x to the Poisson equation as
the number n of design points is varied. In each case a Gaussian prior has been used.

when the number of points equals the size of the basis, the system is completely de-
termined. Thus, we need N � n in order for the discretization error to be properly
quantified.

6.2. The Painlevé ODE. In this section a BPNM is developed to solve a nonlinear
ODE based on Painlevé’s first transcendental,

x′′ = x2 − t, t ∈ [0,∞),

x(0) = 0,

t−1/2x(t)→ 1 as t→∞ .

Two distinct solutions are known, illustrated in Figure 6(a). These model solutions
were obtained using the deflation technique described in [29]. To permit computation,
the right-boundary condition was relaxed by truncating the domain to [0, 10] and using
the modified condition x(10) =

√
10. Such systems for which multiple solutions exist

have been studied before in the context of PNMs, in both [14] and [16]. It was noted
in both papers that existence of multiple solutions can present a substantial challenge
to classical numerical methods. Existing techniques for this include the deflation
method of [29]. While these still have a substantially lower cost than the numerical
disintegration method applied here, the manner in which PNMs can place mass on
multiple possible solutions is philosophically appealing.

The spectrum plot in Figure 6(b) shows the coefficients {ui} obtained when each
solution is represented in a basis of L2-orthonormal Chebyshev polynomials. By
L2-orthonormality and Parseval’s identity, the slower decay for the negative solution
compared to the positive solution is equivalent to the negative solution having a larger
L2 norm. This explains the general preference that optimization-based numerical
solvers—and the results now presented—have for the positive solution.

To build a BPNM, a prior µ was defined using a series expansion as in (2.5). The
basis functions were φi(t) = Ci(

1
2 (t − 5)), where the Ci were normalized Chebyshev

polynomials of the first kind. Both Gaussian and Cauchy priors were considered
by taking ui := γiξi, where the ξi were taken to be either standard Gaussian or
standard Cauchy and the polynomial basis truncated to N = 40 terms. In each
case, x0(t) ≡ 0. In accordance with the exponential convergence rate for spectral
methods when the solution to the system is a smooth function, the sequence of scale
parameters was set to γi = αβ−i, where α = 8 and β = 1.5. These values were chosen
by inspection of the true spectra to ensure that both solutions were in the support of
the prior.
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Fig. 6 (a) Two distinct solutions for the Painlevé ODE. (b) The true coefficients {ui}, as deter-
mined by a model solver (the MATLAB package chebfun). (c) Negative log-likelihoods for
the point estimates of coefficients for the positive and negative solutions given by chebfun,
as the truncation level N is varied.

The information operator A is defined by the choice of locations {tj}mj=1 at which
the posterior will be constrained. Experiments for several values of m were performed.
In each case t1 = 0, tm = 10, and the remaining tj were equispaced on [0, 10]. To be
explicit, the information operator was

A(x) =




x′′(t1)− (x(t1))2

...
x′′(tm)− (x(tm))2

x(0)
x(10)




with the last two elements enforcing the boundary conditions. Thus, the information
was a = [−t1, . . . ,−tm, 0,

√
10], which is n = m+ 2 dimensional. The BPNM output

B(µ, a) was approximated via numerical disintegration and sampled with Monte Carlo
methods, the details of which are provided in section SM5.7 of the supplementary
material.

Results for a selection of bandwidths δ, with n = 17, are shown in Figure 7. Note
that a strong preference for the positive solution is expressed at the smallest δ, with
mass around both solutions at larger δ. For the Gaussian prior, some mass remained
around the negative solution at the smallest δ, while this was not so for the Cauchy
prior. This reflects the fact that, for a collection of independent univariate Cauchy
random variables, one element is likely to be significantly larger in magnitude than
the others, which favors faster decay for the remaining elements.

Using the method of thermodynamic integration described in section SM5.4,
model evidence was estimated with Monte Carlo for both the Gaussian and the Cauchy
priors at n = 15. The Bayes factor for the Cauchy, compared to the Gaussian, prior
was approximately 20.3, which constitutes strong evidence in favor of a Cauchy prior
for this problem at the given level of discretization.

Figure 8 shows the posterior distributions for first six coefficients ui at n = 17
and δ = 1. Strong multimodality is clear, as well as skewed correlation structure
between the coefficients. Illustration of such posteriors for smaller δ is difficult as the
posteriors become extremely peaked.

Figure 9 shows convergence of the posterior distribution as n is increased. Of
particular interest is that for n = 12, the posterior based on a Gaussian prior becomes
trimodal. For each prior, the posterior mass settles on the positive solution to the
system at n = 22, in accordance with this solution having smaller L2 norm. This
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(a) Gaussian Prior

(b) Cauchy Prior.

Fig. 7 Posterior samples for the Painlevé system for n = 17. Blue and green dashed lines show the
positive and negative solutions determined with chebfun. Gray lines are samples from an
approximation to the posterior provided by numerical disintegration (bandwidth parameter
δ).

perhaps reflects the fact that, while in the limiting case both solutions should have
an equal likelihood, the curvature of the likelihood at each mode may differ. Prior
truncation may also be influential; in Figure 6(c) the log-likelihood of the negative
solution increases at a slower rate than that of the positive solution. Thus, while in
the setting of an infinite prior series neither solution should be preferred, in practice
truncation might bias one solution over the other. Last, it is clear that the parameters
α and β may also have a significant effect on which solution is preferred. Further
theoretical work will be required to understand many of these phenomena.

Of particular interest is how a preference for the negative solution could be en-
coded into a PNM. Owing to the flexible specification of the information operator,
there is considerable choice in this matter. An elegant approach is the introduction of
additional, inequality-based information x′(0) ≤ 0. Such information can be difficult
to incorporate in standard numerical algorithms, but is of interest in many physi-
cal problems [51]. For BPNMs we can extend the information operator to include
1[x′(0) ≤ 0]. Posterior distributions obtained in this way for the Gaussian prior at
n = 17 are shown in Figure 10. Note that all posterior mass has now settled close to
the negative solution. This highlights the simplicity with which BPNMs can encode
a preference for a particular solution when multiple solutions exist.

6.3. Application to Industrial Process Monitoring. This final experiment illus-
trates how statistical models for discretization error can be propagated through a
pipeline of computation to model how these errors are accumulated.

Hydrocyclones are machines used to separate solid particles from a liquid in which
they are suspended, or two liquids of different densities, using centrifugal forces. High
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Fig. 8 Posterior distributions for the first four coefficients obtained with numerical disintegration
(bandwidth δ = 1) at n = 17. Dashed lines show the coefficient values for the positive (blue)
and negative (green) solutions determined with chebfun. The Gaussian prior was used.
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Fig. 9 Convergence for the numerical disintegration scheme as n is increased. Top: Gaussian prior.
Bottom: Cauchy prior. In all cases δ = 10−4.
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Fig. 10 Posterior distribution at n = 17, based on a Gaussian prior, with the negative boundary
condition enforced. Left: δ = 0.99. Right: δ = 0.0001.

pressure fluid is injected into the top of a tank to create a vortex. The induced
centrifugal force causes denser material to move to the wall of the tank, while lighter
material concentrates in the center, from where it can be extracted. They have
widespread applications, including in areas such as environmental engineering and
the petrochemical industry [86]. For safe operation and to ensure that the materials
are well separated, the hydrocyclone must be monitored to allow adjustment of the
input flow rate [8]. However, direct monitoring is impossible owing to the opaque
walls of the equipment and high interior pressure. Electrical impedance tomography
(EIT) has been proposed to allow monitoring of the contents [36].

EIT is a technique that allows recovery of an interior conductivity field based
upon measurements of voltage obtained from applying a stimulating current on the
boundary. It is suited to this problem, since the two materials in the hydrocyclone will
generally be of different conductivities. In its simplified form [10], EIT is described
by a linear PDE with boundary conditions that incorporate the stimulating currents
and measured voltages:

−∇ · (a(t)∇x(t)) = 0, t ∈ D,

a(t)
∂x

∂n
(t) =

{
ce,
0,

t = te,

t ∈ ∂D \ {te}Nee=1,
(6.5)

where D denotes the domain, modeling the hydrocyclone tank, e indexes the stimu-
lating electrodes, te ∈ ∂D are the corresponding locations of the electrodes on ∂D,
a is the unknown conductivity field to be determined, and ∂

∂n denotes the derivative
with respect to the outward pointing normal vector. The electrode t1 is referred to as
the reference electrode. The vector c = (c1, . . . , cNe) denotes the stimulation current
pattern. Several stimulation patterns were considered, denoted cj , j = 1, . . . , Nj .

The experimental data described in [95] were considered. In the experiment, a
cylindrical perspex tank was used with a single ring of eight electrodes. Translation
invariance in the vertical direction means that the contents are effectively a single two-
dimensional region and electrical conductivity can be modeled as a two-dimensional
field. At the start of the experiment, a mixing impeller created a rotational flow,
was then removed, and, after a few seconds, concentrated potassium chloride solution
was carefully injected into the water initially filling the tank. Data, denoted yτ ,
were collected at regular time intervals by application of several stimulation patterns
c1, . . . , cNj .

To formulate the statistical problem, consider parameterizing the conductivity
field as a(τ, t), where τ ∈ [0, T ] is a temporal index while t ∈ D is the spatial coordinate
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. . . τ . . .

dπτ−1

dπ0

dπτ
dπ0

yτ

1

2

Fig. 11 Pipeline for hydrocyclone application: The method node (black) represents the use of a
probabilistic numerical PDE solver, which is incorporated into the likelihood for evolving
the particles according to a Markov transition kernel.

and D is the circular domain representing the perspex tank in the experiment. A log-
Gaussian prior was placed over the conductivity field so that log a is a Gaussian process
with separable covariance function ka((τ, t), (τ ′, t′)) := λmin(τ, τ ′) exp(− 1

2`
−2‖t −

t′‖2), where ` is a length-scale parameter representing the anticipated spatial variation
of the conductivity field and λ is a parameter controlling the amplitude of the field.
Here ` was fixed to ` = 0.3, while λ = 10−3. The problem of estimating a based on
data can be well-posed in the Bayesian framework [28]. Full details of this experiment
can be found in the accompanying report [71].

Our aim is to use a BPNM to account for the effect of discretization of the PDE
on inferences that are made on the conductivity field. For fixed τ , a Gaussian prior
was posited for x, with covariance kx(t, t′) := exp(− 1

2`
−2
x ‖t − t′‖2), where `x was

fixed to `x = 0.3. The associated BPNM, a probabilistic meshless method (PMM),
was described in Example 2.4. The statistical inference procedure is formulated as a
pipeline in Figure 11. It is assumed that the desired outcome is to monitor the contents
of the tank while the current contents are being mixed. This suggests a particle filter
approach where a PMM Mτ is employed to handle the intractable likelihood p(yτ |aτ )
that involves the exact solution of a PDE. The distribution of aτ given y1, . . . , yτ
is denoted πτ and the computation P (M1, . . . ,Mτ ) is Bayesian provided that the
particle approximation error is overlooked.

To briefly illustrate the method, Figure 12 presents posterior means for the field
a(τ, ·) for each postinjection time point τ = 1, . . . , 8. These are based on a particle
approximation of size P = 200 with method nodes based upon a BPNM, as in Ex-
ample 2.4 with n = 119 design points. The high conductivity region representing the
potassium chloride solution can be seen rotating through the domain in the frames
τ ≥ 2 after injection, with its conductivity reducing as it mixes with the water.

The full posterior distribution over the conductivity field is inflated as a result of
explicitly modeling the discretization error. Figure 13 shows the integrated posterior
standard deviation of the field for τ = 1, . . . , 8 for both the “PN” pipeline, as described
above, and a “non-PN” pipeline in which a symmetric collocation PDE solver8 was
used to approximately solve the PDE. The parameters of the symmetric collocation
solver were identical to those used in the PMM. In the left panel we observe some
structural periodicity, present in both the PN and non-PN pipelines. This may be due
to the rotation of the medium causing the area of high conductivity to periodically

8Recall that the PMM has a corresponding symmetric collocation solution to the PDE as its
mean function.
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Fig. 12 Posterior mean conductivity fields recovered in the hydrocyclone experiment, for the first
eight frames postinjection of the fluid.
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Fig. 13 Left: Integrated standard deviation σ(t) over the domain t ∈ D for the first τ = 1, . . . , 8
frames postinjection, for both the probabilistic (“PN”) and non-probabilistic (“non-PN”)
approaches described in the main text. Right: The difference between these two quantities.

reach an area of the domain, relative to the eight sensors, in which it is particularly
easy to recover. With this periodicity subtracted in the right panel, there was a clear
increase in posterior uncertainty in the PN pipeline compared to the non-PN version.
This suggests that we have quantified and propagated uncertainty due to successive
discretization of the PDE at each time point. See [71] for further analysis of these
results and of the quality of the uncertainty quantification being provided.

7. Discussion. This paper has established statistical foundations for PNMs in
general and investigated the Bayesian case in detail. Through connection to Bayesian
inverse problems [88], we have established when BPNMs can be well-defined and
when the output can be considered meaningful. The presentation touched on several
important issues and a brief discussion of the most salient points follows.

Bayesian vs. Non-Bayesian PNMs. The focus on BPNMs was motivated by the
observation that the output of a pipeline of PNMs can be guaranteed to admit a valid
Bayesian interpretation if the constituent PNMs are individually Bayesian and the
prior distribution is coherent. By Theorem 5.9, prior coherence can be established
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at a local level, essentially via a local Markov condition, so that BPNMs provide an
extensible modeling framework as required to solve more challenging numerical tasks.
These results support a research strategy that focuses on BPNMs, so that uncertainty
can be meaningfully propagated.

On the other hand, there are pragmatic reasons why either approximations to
BPNMs or indeed non-Bayesian PNMs might be useful. The predominant reason
would be to circumvent the computational costs that can be associated with BPNMs,
such as the use of numerical disintegration developed in this work. Recent research
efforts, such as [83, 84] and [49] for the solution of ODEs, have aimed for computational
costs that are competitive with classical methods, at the expense of fully Bayesian
estimation for the solution of the ODE. Such methods are of interest as non-Bayesian
PNMs, but their role in computational pipelines remains unclear. Our contribution
serves to make this explicit.

Computational Cost. The numerical disintegration algorithm proposed in this
paper should not be considered a practical means of implementing BPNMs in general.
Indeed, the results reported required orders of magnitude more computational effort
to generate than model solutions given by a single instance of a classical numerical
method. Thus, there is clearly scope for further methodological work to produce more
practical algorithms for BPNMs. This is the subject of current research.

Prior Elicitation. Throughout this work we assumed that a belief distribution µ
was provided. The question of whose belief is represented in µ has been discussed
by several authors and a chronology is included in section SM2 of the supplementary
material. Of these perspectives we mention in particular [39], wherein µ is the belief of
an agent that “we get to design.” This offers a connection to frequentist statistics, in
that an agent can be designed to ensure favorable frequentist properties hold. In the
context of computational pipelines, the challenge of eliciting a coherent prior is closely
connected to the challenge of eliciting a single unified prior based on the conflicting
input of multiple experts [32, 2].

A robust statistics perspective is also relevant. One such approach would be
to consider a generalized Bayes risk (3.1) wherein the state variable X is assumed
to be drawn from a distribution µ̃ 6= µ. This offers an opportunity to derive BP-
NMs that are robust to certain forms of prior misspecification. This direction was
not considered in the present paper, but has been pursued in the ACA literature
for classical numerical methods [79, Chapter IV, section 4]. However, in general,
the specification of prior distributions for robust inference on an infinite-dimensional
state space can be difficult. The consistency and robustness of Bayesian inference
procedures—particularly with respect to perturbations of the prior such as those aris-
ing from numerical approximations—in such settings is a subtle topic, with both pos-
itive [12, 25, 52, 63] and negative [24, 31, 76] results depending upon fine topological
and geometric detail.

Estimation. This paper has focused on foundations and further methodologi-
cal work will be required to establish sufficient conditions under which B(µ,An(x†))
converges, in an appropriate sense, to an atom on a single element q† = Q(x†) rep-
resenting the data-generating QoI in the limit as the amount of information, n, is
increased. There are three questions here: (i) when is q† identifiable from the given
information, (ii) at what rate does B(µ,An(x†)) concentrate on q†, and (iii) when can
the uncertainty quantification provided be considered to be well calibrated?

D
ow

nl
oa

de
d 

10
/2

1/
21

 to
 1

52
.7

8.
0.

24
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BAYESIAN PROBABILISTIC NUMERICAL METHODS 785

Generalization and Extensions. Two more directions are highlighted as exten-
sions of this work. First, note that in this paper the information operator A : X → A
is treated as a deterministic object. However, in some applications there is auxiliary
randomness in the acquisition of information. For our integration example, nodes ti
might arise as a random sample, or observations x(ti) themselves might occur with
measurement error, for example, due to finite precision arithmetic. Then a more elab-
orate model A : X × Ω → A would be required, where Ω is a probability space that
injects randomness into the information operator. This is the setting of, for instance,
randomized quasi-Monte Carlo methods. Future work will extend the framework of
PNMs to include randomized information operators of this kind.

As a second direction, recall that in an adaptive algorithm the choice of informa-
tion is made iteratively, based on information previously observed. For some tasks,
such as that described in section SM4.3 and its generalizations discussed there, it
can be proven that adaptive algorithms do not outperform nonadaptive algorithms
in average-case error [64]. However, outside this setting adaptation can be beneficial
and should be investigated in the context of BPNMs.

Acknowledgments. The authors are grateful to Amazon for the provision of
AWS credits and to the authors of the C++ library Eigen and the Python library
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[70] E. Novak and H. Woźniakowski, Tractability of Multivariate Problems: Standard Informa-
tion for Functionals, European Mathematical Society, 2010. (Cited on p. 767)

[71] C. J. Oates, J. Cockayne, R. G. Aykroyd, and M. A. Girolami, Bayesian probabilistic nu-
merical methods in time-dependent state estimation for industrial hydrocyclone equipment,
J. Amer. Statist. Assoc., 2019, pp. 1–27. (Cited on pp. 782, 783)

[72] W. L. Oberkampf and C. J. Roy, Verification and Validation in Scientific Computing, Cam-
bridge University Press, Cambridge, 2013. (Cited on p. 758)

[73] A. O’Hagan, Bayes–Hermite quadrature, J. Statist. Plann. Inference, 29 (1991), pp. 245–260,
https://doi.org/10.1016/0378-3758(91)90002-V. (Cited on pp. 758, 761)

[74] H. Owhadi, Bayesian numerical homogenization, Multiscale Model. Simul., 13 (2015), pp. 812–
828, https://doi.org/10.1137/140974596. (Cited on p. 758)

[75] H. Owhadi, Multigrid with rough coefficients and multiresolution operator decomposition from
hierarchical information games, SIAM Rev., 59 (2017), pp. 99–149, https://doi.org/10.
1137/15M1013894. (Cited on p. 762)

[76] H. Owhadi, C. Scovel, and T. J. Sullivan, On the brittleness of Bayesian inference, SIAM
Rev., 57 (2015), pp. 566–582, https://doi.org/10.1137/130938633. (Cited on p. 784)

[77] J. Pfanzagl, Conditional distributions as derivatives, Ann. Probab., 7 (1979), pp. 1046–1050.
(Cited on p. 769)

[78] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes:
The Art of Scientific Computing, 3rd ed., Cambridge University Press, Cambridge, UK,
2007. (Cited on p. 758)

[79] K. Ritter, Average-Case Analysis of Numerical Problems, Lecture Notes in Math. 1733,
Springer-Verlag, Berlin, 2000, https://doi.org/10.1007/BFb0103934. (Cited on pp. 766,
767, 768, 784)

[80] C. Roy, Review of discretization error estimators in scientific computing, in Proceedings of
48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace
Exposition, AIAA, 2010. (Cited on p. 770)

[81] J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, Design and analysis of computer
experiments, Stat. Sci., 4 (1989), pp. 409–423, https://doi.org/10.1214/ss/1177012413.
(Cited on p. 766)
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