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A B S T R A C T

Secondary flows are generated when a lateral variation of the topography, such as streamwise aligned ridges,
is imposed upon a turbulent wall-bounded flow. In this case, the time-averaged flow field is characterized
by streamwise vortices known as Prandtl’s vortices of the second kind (Prandtl, 1952). As demonstrated in
previous experimental and numerical works, the strength and flow organization of these vortices depend on the
ridge shape. In this paper, the effect of the ridge geometry on the generation of secondary flows is investigated
using the linearized RANS-based model proposed by Zampino et al. (2022). The model is derived from the
assumption that the ridges are shallow, with height smaller than any other length scale, e.g. the viscous length
scale. Symmetric channels with rectangular, triangular, elliptical and trapezoidal ridges are studied. The model
predicts that the strength of secondary flows can be scaled with the mean ridge height, regardless of the ridge
shape, when the ridges are narrower than the half channel height and isolated, i.e. when the lateral separation
between the ridges is much larger than the ridge width. Finally, the appearance of tertiary flows and the effect
of the ridge shape on the flow organization is studied in detail for trapezoidal geometries. It is observed that
tertiary flows emerge for ridge configurations where the scaling behaviour does not hold.
. Introduction

The generation of secondary flows, or currents , over a surface
ith heterogeneous attributes, such as a lateral variation of the rough-
ess height or of the wall topography, is largely studied in litera-
ure. Secondary currents are known as Prandtl’s vortices of the sec-
nd kind (Prandtl, 1952) and they consist of counter-rotating, time-
veraged, streamwise-aligned vortices embedded in the primary wall-
ounded flow, e.g. channel flow or boundary layer flow. Since the
irst experiments conducted by Hinze (1967), these structures have
ained increasing importance in industrial applications because sec-
ndary flows alter and modify the performances of fluid dynamics
urfaces such as the transport properties of wall-bounded flows (Volino
t al., 2011; Mejia-Alvarez and Christensen, 2013; Vanderwel and
anapathisubramani, 2015; Hwang and Lee, 2018; Medjnoun et al.,
020; Zampiron et al., 2020), the heat transfer (Stroh et al., 2020)
nd the aerodynamic performances (Jiménez, 2004; Mejia-Alvarez
nd Christensen, 2013). For surfaces with topographical heterogene-
ty, with alternating regions of high/low relative elevation (Hwang
nd Lee, 2018; Medjnoun et al., 2018, 2020; Castro et al., 2021),
he flow organization is characterized by alternating high-momentum
athways (HMPs) and low-momentum pathways (LMPs) corresponding
o a downwash/upwash motion respectively (Barros and Christensen,
014; Willingham et al., 2014). These structures were observed both
xperimentally (Anderson et al., 2015) and numerically (Stroh et al.,
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2016; Chung et al., 2018). It has been shown that the HMPs and LMPS
differ in terms of the production and dissipation rate as a function of
the ridges shape (Medjnoun et al., 2020) but how the geometry affects
the generation mechanism of secondary structures and their strength is
not fully clear. Some authors (Wu and Christensen, 2007; Castro et al.,
2021) observed that, in some cases, secondary flows over different
geometries appear to be similar and this suggests a possible scaling
of the secondary flows with a geometrical property of the surface.
In particular, Castro et al. (2021) concluded that the strength of the
secondary flows developing over rectangular ridges depends on the
ratio between the ridge spacing and width and the flow organization
is independent of the spacing between the ridges when scaled with
the channel height. Other scaling geometrical parameters have been
proposed in the literature, such as the ratio between the wetted area
above and below the ridge mean height by Medjnoun et al. (2020).

In this paper, we consider these aspects by using the model proposed
in our previous work (Zampino et al., 2022). The model is based
on the linearized Reynolds-Averaged Navier–Stokes (RANS) equations,
augmented with the Spalart–Allmaras (SA) turbulence model (Spalart
and Allmaras, 1994) for the closure. The model approximates the re-
sponse of the turbulent wall-bounded flow in the specific regime where
the topography variations of the surface are small, smaller than the
smallest relevant length scale, i.e. the viscous length. From a practical
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Fig. 1. Contour lines of the perturbation streamfunction 𝜓 (1) at 𝑅𝑒𝜏 = 1000 and for elliptical ridges (top panels), rectangular ridges (central panels) and triangular ridges (bottom
panels). Dashed lines are used for negative values. A sketch of the cases studied is reported in panels (a,b,c). The flow organization is shown for the bottom half channels in the
region delimited by the red lines. The colour map of the wall-normal velocity perturbation 𝑢(1)2 is also reported to better display the flow organization above the ridges. The duty
cycle 𝐷𝐶 = 0.5 for all cases while the width varies from 0.25 (left column) 0.5 (central column) and 1 (right column). To help the reader, a simplified representation of the ridges
is reported at the bottom of each plot (bold black lines).
standpoint, this regime corresponds to ‘‘hydraulically smooth ridges’’
well submerged in the viscous sub-layer. With this assumption, the
lateral variation of the topography can be modelled using linearized
boundary conditions (Russo and Luchini, 2016). This results in a rather
simple mathematical model that can be inspected and evaluated very
rapidly to explore a wide range of topographies, and obtain new insight
on the interaction between the topography and the turbulent flow.

In Zampino et al. (2022), the tool was utilized to study the gen-
eration of secondary flows in symmetric channels with harmonic wall
modulations and rectangular ridges. The main contribution of this
paper is to extend the analysis to other commonly studies ridge ge-
ometries, i.e. elliptical, triangular and trapezoidal ridges. The goal is
to examine the role of the ridge geometry in determining the strength
and the topology of secondary currents and identify regions where such
quantities can be scaled with appropriate surface parameters.

A brief description of the modelling procedure proposed in our
previous work is first reported in Section 2. Then, the model is applied
to rectangular, elliptical and triangular ridges in Section 3, followed
by a discussion on the scaling of the strength of secondary flows
with geometric parameters in Sections 4 and 5. The analysis of the
flow organization over trapezoidal ridges and the discussion about the
generation mechanism of the tertiary flows are reported in Section 6.
Finally, conclusions and limitations of the approach are summarized in
Section 7.

2. Linearized RANS model

A pressure-driven channel with streamwise aligned ridges symmet-
rically placed on the lower and upper walls is studied. The streamwise,
wall-normal and spanwise directions, normalized with the channel
half height ℎ, are identified by the Cartesian coordinates (𝑥1, 𝑥2, 𝑥3)
respectively. The coordinate system is centred on the channel mid-
plane. The flow is governed by the continuity and the momentum
equations for the velocity components (𝑢1, 𝑢2, 𝑢3) scaled with the friction
velocity 𝑢𝜏 =

√

𝜏𝑤∕𝜌, with 𝜏𝑤 = ℎ𝛱 the mean wall friction and where𝛱
is the constant pressure gradient. Given these definitions, 𝑅𝑒𝜏 = 𝑢𝜏ℎ∕𝜈
is the friction Reynolds number. The Reynolds decomposition pro-
duces the mean velocity 𝑢 and the fluctuation 𝑢′. The nondimensional
2

𝑖 𝑖
Reynolds-averaged continuity and momentum equations are
𝜕𝑢𝑖
𝜕𝑥𝑖

= 0, (1)

𝑢𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

= − 𝛿𝑖1 +
1
𝑅𝑒𝜏

𝜕2𝑢𝑖
𝜕𝑥2𝑗

−
𝜕𝑢′𝑖𝑢

′
𝑗

𝜕𝑥𝑗
, (2)

where the overbar indicates a time-averaged quantity. Note that,
in these equations and in what follows, the velocity is always scaled
with 𝑢𝜏 , but the superscript (+) is not used to avoid cluttering the
notation. We assume that the mean flow is streamwise independent,
i.e. 𝜕(⋅)∕𝜕𝑥1 ≡ 0, when considering flows that develop over streamwise
aligned ridges. Hence, the mean pressure can be eliminated by em-
ploying a streamwise velocity/streamfunction formulation, where the
streamfunction 𝜓 satisfies ∇2𝜓 = 𝜔1 with

𝜔1 =
𝜕𝑢3
𝜕𝑥2

−
𝜕𝑢2
𝜕𝑥3

(3)

being the time-averaged streamwise vorticity.
A sketch of the ridge geometries considered in this paper is reported

in Fig. 1(a,b,c), where 𝑆 is the spacing between the ridges and 𝑊 is the
ridge width. The duty cycle 𝐷𝐶 is defined as 𝑊 ∕𝑆. These geometries
are described in the model by the zero-mean function 𝑓 (𝑥3), with unit
peak-to-peak amplitude. The lower and upper channel surfaces are
thus symmetrically placed at 𝑥2 = ∓1 ± 𝜖𝑓 (𝑥3), where 𝜖 controls the
peak-to-peak ridge height.

The proposed methodology is based on decomposing the flow field
into a homogeneous flow developing in the flat channel and a flow per-
turbation induced by the ridges. Hence, we expand any time-averaged
flow quantity 𝑞 using a Taylor series in the amplitude 𝜖 as

𝑞(𝑥2, 𝑥3) = 𝑞(0)(𝑥2) + 𝜖𝑞(1)(𝑥2, 𝑥3) + (𝜖2), (4)

where the zero-order term 𝑞(0) is the base flow solution in the flat
channel and the first-order term 𝑞(1) is the flow response per unit
of ridge height. Note that the overbar is dropped in the following
sections to avoid cluttering the notation. Following Russo and Luchini
(2016), we assume that the ridge height is smaller that any other
length scale (𝜖 ≪ 1), i.e. much smaller than the viscous length scale.
From a practical standpoint, this regime corresponds to ‘‘hydraulically
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smooth ridges’’ that are well submerged in the viscous sub-layer. Thus,
in Eq. (4) higher order terms in 𝜖 are neglected. Substituting the Taylor
expansion (4) in the governing equations written using the streamwise
velocity/ streamfunction formulation and considering terms at order
one in 𝜖, we obtain the set of linear RANS equations:

−
𝜕𝜓 (1)

𝜕𝑥3
𝛤 = 1

𝑅𝑒𝜏

(

𝜕2

𝜕𝑥22
+ 𝜕2

𝜕𝑥23

)

𝑢(1)1 +
𝜕𝜏(1)12
𝜕𝑥2

+
𝜕𝜏(1)13
𝜕𝑥3

, (5)

0= 1
𝑅𝑒𝜏

(

𝜕2

𝜕𝑥22
+ 𝜕2

𝜕𝑥23

)2

𝜓 (1)

+ 𝜕2

𝜕𝑥2𝜕𝑥3

(

𝜏(1)33 −𝜏
(1)
22

)

+

(

𝜕2

𝜕𝑥22
− 𝜕2

𝜕𝑥23

)

𝜏(1)23 , (6)

where 𝛤 is the zero-order streamwise velocity wall-normal gradient and
𝜏(1)𝑖𝑗 is the Reynolds stress tensor perturbation.

The tensor 𝜏(1)𝑖𝑗 must be expressed as a function of other mean
quantities. As already discussed in the literature of noncircular ducts
(Perkins, 1970; Bottaro et al., 2006), when the linear Boussinesq’s
hypothesis is used, no secondary flows can be predicted because the
streamwise momentum Eq. (5) and the streamfunction Eq. (6) are
decoupled. Hence, a nonlinear Reynolds stress model is necessary for
the correct prediction of anisotropic stresses that are the source of
the secondary flows. Many approaches have been described in the
literature (Speziale et al., 1991; Speziale, 1991; Chen et al., 1997). In
this work, we used the Quadratic Constitutive Relation (QCR) nonlinear
model introduced in Spalart (2000). The QCR model contains simple
terms proportional to the product of the rotation and the strain tensors.
This model was recently utilized by Spalart et al. (2018) to predict
the high-Reynolds number asymptotic properties of secondary flows
in square and elliptical ducts, providing a good approximation of the
secondary vortical flow topology and of the wall friction coefficient. In
the QCR, the Reynolds stresses become

𝜏𝑖𝑗 = 𝜏𝐿𝑖𝑗 − 𝐶𝑟1
[

𝑂𝑖𝑘𝜏
𝐿
𝑗𝑘 + 𝑂𝑗𝑘𝜏

𝐿
𝑖𝑘

]

, (7)

where 𝑂𝑖𝑘 is the normalized rotation tensor

𝑂𝑖𝑗 =
2𝑊𝑖𝑗

√

𝜕𝑢𝑚
𝜕𝑥𝑛

𝜕𝑢𝑚
𝜕𝑥𝑛

, with 𝑊𝑖𝑗 =
1
2

(

𝜕𝑢𝑖
𝜕𝑥𝑗

−
𝜕𝑢𝑗
𝜕𝑥𝑖

)

(8)

and 𝜏𝐿𝑖𝑗 = 𝜈𝑡𝑆𝑖𝑗 is the linear Reynolds stress tensor from the Boussi-
nesq’s approximation with 𝑆𝑖𝑗 the mean velocity gradient tensor and
𝑡 the eddy viscosity. The constant 𝐶𝑟1 = 0.3 is calibrated to match

the anisotropy in the outer region over wall-bounded turbulent flows
following Spalart (2000).

Previous studies that have utilized linearized RANS equations to
describe the transient growth of secondary flows in turbulent chan-
nels (del Álamo and Jiménez, 2006; Pujals et al., 2009) have used
analytical eddy-viscosity profiles (Cess, 1958; Reynolds and Hussain,
1972). In the present paper, in order to provide the eddy viscos-
ity distribution above the modulated geometry and capture transport
effects, we use the Spalart–Allmaras (SA) eddy viscosity transport
model (Spalart and Allmaras, 1994). In the SA model the eddy viscosity
𝜈𝑡 is related to the modified eddy viscosity �̃� by the formula

𝜈𝑡 = �̃�𝑓𝑣1 (9)

where

𝑓𝑣1 =
𝜒3

𝜒3 + 𝑐3𝑣1
(10)

and 𝜒 = 𝑅𝑒𝜏 �̃�. The linearized transport equation for the perturbation
of the modified eddy viscosity �̃�(1) is

𝜕𝜓 (1) 𝜕�̃�(0) = 1
(

1 + �̃�(0)
)(

𝜕2
2
+ 𝜕2

2

)

�̃�(1) + 1 𝜕2�̃�(0)
2
�̃�(1)
3

𝜕𝑥3 𝜕𝑥2 𝜎 𝑅𝑒𝜏 𝜕𝑥2 𝜕𝑥3 𝜎 𝜕𝑥2 t
+ 1
𝜎
(2 + 2𝑐𝑏2)

𝜕�̃�(0)

𝜕𝑥2
𝜕�̃�(1)

𝜕𝑥2
+ 𝑐𝑏1�̃�(0)̃ (1) + 𝑐𝑏1�̃�(1)̃ (0)

−2 �̃�(0)𝑐𝑤1𝑓
(0)
𝑤
�̃�(1)𝑑(0) − �̃�(0)𝑑(1)

𝑑(0) 3
− 𝑐𝑤1𝑓

(1)
𝑤

(

�̃�(0)

𝑑(0)

)2
. (11)

here �̃� is defined as

̃ =
√

2𝑊𝑖𝑗𝑊𝑖𝑗 +
�̃�

𝑘2𝑑2
𝑓𝑣2 with 𝑓𝑣2 = 1 −

𝜒
1 + 𝜒𝑓𝑣1

. (12)

A detailed description of the other terms in Eq. (11) is reported
in Zampino et al. (2022).

The effect of the ridges is introduced with linearized boundary
conditions (Luchini, 2013; Busse and Sandham, 2012). Expanding the
velocity near the surface in a Taylor series in 𝑥2 and enforcing the
no-slip condition at the physical surface, the streamwise velocity com-
ponent at the lower domain boundary is given by the inhomogeneous
boundary condition

𝑢(1)1
|

|

|𝑥2=−1
+ 𝑓 (𝑥3)

𝜕𝑢(0)1
𝜕𝑥2

|

|

|

|

|

|𝑥2=−1

= 0, (13)

i.e. the perturbation velocity at the boundary of the numerical domain
is proportional to the wall-normal gradient of the streamwise velocity
in the plane channel. When substituting the definition (4) in Eq. (13)
and considering only the terms at order one, the streamwise velocity
perturbation becomes

𝑢(1)1 (𝑥2 = −1) = −𝑓 (𝑥3)
𝜕𝑢(0)

𝜕𝑥2

|

|

|

|𝑥2=−1
= −𝑓 (𝑥3)𝑅𝑒𝜏 , (14)

hile 𝑢(1)3 (𝑥2 = −1) = 0 and 𝑢(1)2 (𝑥2 = −1) = 0. Similarly, inhomogeneous
oundary conditions are derived for the perturbation eddy viscosity 𝜈(1)𝑡
hich vanishes at the physical surface.

The geometry of the wall is modelled by the cosine expansion

(𝑥3) =
∞
∑

𝑛=1
𝑓 𝑛 cos(𝑛𝑘3𝑥3), (15)

here 𝑓 𝑛 is the amplitude of the 𝑛th wavenumber mode and 𝑘3 =
𝜋∕𝑆 is the fundamental wavenumber. The amplitude coefficients are
btained by calculating analytically the Fourier transform of the geome-
ries considered in this work. The coefficient 𝑓0 is always set to zero
or all geometries considered, i.e. only zero-mean modulations of the
hannel walls are considered. In fact, a change in the mean height only
orresponds to a change of the Reynolds number, and has no impact
n the formation of secondary structures.

With a periodic wall, a periodic solution to the linear Eqs. (5), (6)
nd (11) is sought for. Hence, the streamwise velocity, the streamfunc-
ion and the eddy viscosity are expanded in series as

𝑢(1)1 (𝑥2, 𝑥3), �̃�(1)(𝑥2, 𝑥3)
}

=
∞
∑

𝑛=1

{

�̂�1(𝑥2; 𝑛), �̂�(𝑥2; 𝑛)
}

cos (𝑛𝑘3𝑥3), (16)

𝜓 (1)(𝑥2, 𝑥3) =
∞
∑

𝑛=1
�̂�(𝑥2; 𝑛) sin (𝑛𝑘3𝑥3). (17)

Substitution of these expansions into the governing equations re-
ults in one set of three coupled linear partial differential equations
PDEs) in the wall-normal direction for the quantities {�̂�, �̂�, �̂�} at each
avenumber 𝑛 = 1, 2,… separately. These PDEs are then solved using

tandard Chebyshev discretization techniques. The flow response for
ny complex geometry can be obtained by appropriately combining the
esponses obtained at individual spanwise length scales, i.e. following
he superposition principle.

The solution at order zero, consisting of wall-normal profiles of the
treamwise velocity and the eddy viscosity in a flat channel, has been
btained from an in-house code based on the Chebyshev discretization
ethod. The resulting coupled system of nonlinear algebraic equa-
ions, the streamwise momentum equation and the SA eddy viscosity
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transport equation, has been solved with a Jacobian-free Newton–
Krylov technique (Knoll and Keyes, 2004). Other numerical aspects are
described in Zampino et al. (2022).

It is worth noting that the present linear model cannot predict
changes of the skin friction drag resulting from the modulation of the
wall geometry. To see why this is the case, consider a channel with
infinite span where the wall geometry is given by the wave 𝑓 (𝑥3) =
cos(𝑘3𝑥3) and the lower channel wall is at 𝑥2 = −1 + 𝜖𝑓 (𝑥3), where 𝜖
controls the amplitude of the modulation. One would expect that the
overall drag produced in such a channel does not depend on the sign of
𝜖, since changing the sign of 𝜖 is equivalent to a lateral displacement
of the original geometry by half wavelength. Therefore, the friction
coefficient in such a channel must be an even function of the amplitude
𝜖 and must obey the Taylor expansion 𝐶𝑓 (𝜖) = 𝐶 (0)

𝑓 + 1∕2𝜖2𝐶 (2)
𝑓 + (𝜖4),

i.e. the first order term must be identically zero and terms at order
two and above in 𝜖 need to be calculated. These would depend on
high-order velocity perturbations that the present linear model does not
provide. An equivalent explanation is that the first-order perturbation
of the wall shear stress resulting from the expansion (16) of the pertur-
bation streamwise velocity and computed from the present linear model
has zero average over the span of the channel, for any geometry. In fact,
with linear equations, a geometry modulation at a wave number 𝑛 ≠ 0
only produces velocity perturbations at the same wavenumber and has
no effect on the average friction drag. The full nonlinear equations need
to be solved to capture the 𝑛 = 0 wavenumber change in the streamwise
velocity generated from a 𝑛 ≠ 0 geometry modulation.

3. Linearized predictions of the flow organization

Firstly, secondary flows are predicted over elliptical, rectangular
and triangular ridges at 𝑅𝑒𝜏 = 1000 with duty cycle 𝐷𝐶 = 𝑊 ∕𝑆 = 0.5
and 𝑊 = 0.25 (left panels), 0.5 (central panels) and 1.0 (right panels) in
Fig. 1. Contours of the perturbation streamfunction 𝜓 (1) and the colour
map of the wall-normal velocity perturbation 𝑢(1)2 are also reported
to better display the flow organization. Because symmetric channel
configurations are studied, subjected to a periodic wall modulation,
only the bottom half-channel and a single ridge period is here shown.

In previous work (Zampino et al., 2022), we observed that the
Reynolds number affects only mildly the strength of secondary flows,
with no effect on the flow organization. More specifically, for high
Reynolds numbers, the solution of the present model becomes Reynolds
invariant because of the turbulence model used. In fact, the Spalart–
Allmaras model (Spalart and Allmaras, 1994) is built in order to obtain
a collapse of the eddy viscosity profile in the logarithmic layer for high
Reynolds numbers. As a consequence, the eddy viscosity profile and
the Reynolds stresses are asymptotically Reynolds number independent
when scaled with the friction velocity. For this reason, the results for
𝑅𝑒𝜏 = 1000 are reported here as representative of secondary flows
generated at high Reynolds numbers.

For small spacing (left column), secondary flows predicted for all
three geometries show an upwelling (downwelling) motion above the
ridges (inside the troughs). The secondary currents occupy only about
a quarter of the channel height and they are similar in size and
strength for all three geometries considered. Although some differences
are predicted in the very near-wall region where the ridge geometry
affects the local time-averaged flow structures, these differences are
weak and negligible. For increasing ridge width 𝑊 , the vortices grow
in size and strength until they occupy the entire channel half-height
(central column). Some differences are here evident in the strength of
secondary flows and stronger downwash velocity is predicted at the
gap centre for rectangular ridges. For 𝑊 = 1, very large streamwise
vortices are observed for all geometries (right column). In particular,
for rectangular ridges, the secondary flows are locked at the ridge edge
due to the strong discontinuity introduced by the ridge geometry. The
same feature is also observed for elliptical ridges where the secondary
flows develop in proximity of the ridge edge. By contrast, for triangular
4

ridges, the secondary currents occur at the flank of the ridge. For
this case, weaker and smaller time-averaged vortical structures having
an opposite rotational direction compared to the secondary flows, are
predicted. For specific spacing and widths, these tertiary flows can also
be observed at the centre of the trough for the other geometries when
the gap between the ridges is large enough to allow streamwise vortices
to fully develop. In fact, for large spacing, the secondary flows reach
their maximum size and a further increase of the spacing allows tertiary
flows to emerge. For similar reasons, tertiary flows can be predicted
over the rectangular and elliptical ridges when the ridge width is large
enough. By contrast, no tertiary flows over the ridge are observed for
the triangular shape because the deflection of the spanwise velocity
component induced by the flank of the ridges is weaker.

4. Scaling of the strength of secondary flows

The strength of secondary flows is not uniquely defined and differ-
ent authors use different quantities to characterize it. As in our previous
work (Zampino et al., 2022), we use the kinetic energy density ,
defined as the volume-averaged kinetic energy per unit mass of the
cross-sectional perturbation velocity components:

 = 1
4𝑆 ∫

𝑆

0 ∫

1

−1

[

𝑢(1)2 (𝑥2, 𝑥3)2 + 𝑢
(1)
3 (𝑥2, 𝑥3)2

]

d𝑥2 d𝑥3.

We also use the peak value over the domain of the streamfunction,
.e. the quantity max𝑥2 ,𝑥3 𝜓

(1)(𝑥2, 𝑥3), as an indication of the strength
f the vortical structures. Many experimental and numerical works use
he dispersive stresses

𝑖𝑗 (𝑥2) =
1
𝑆 ∫

𝑆

0
𝑢(1)𝑖 (𝑥2, 𝑥3)𝑢

(1)
𝑗 (𝑥2, 𝑥3)d𝑥3

o study the generation of secondary flows. In order to characterize
heir global strength using a single scalar quantity, we also introduce
he integral quantity

𝑙
𝑖𝑗 = ∫

𝑙

−𝑙
𝜎𝑖𝑗 (𝑥2)d𝑥2, (18)

here we take 𝑙 = 0.9 to discard the contribution in the near-wall region
n the immediate vicinity of the ridges, to only focus on the dispersive
tresses produced by large-scale motions filling the full half-height of
he channel.

Maps of the kinetic energy density  (top panels), of the maximum
f the streamfunction max𝑥2 ,𝑥3 𝜓

(1) (central panels) and the quantity
0.9
12 (bottom panels) are plotted in Fig. 2 for 𝑅𝑒𝜏 = 1000, as a function

of 𝑆 and 𝑊 for the three geometries considered. The maps have been
obtained using 50 samples for both 𝑆 and 𝑊 . In a first approximation,
the three quantities we introduced for the analysis of the strength of the
secondary flows are equivalent and the predictions of the amplification
of the secondary currents are unaffected by the quantity chosen. Thus,
the maps of Fig. 2 only depend on the ridge geometry and, quite
weakly, on the Reynolds number, as discussed previously.

Hereinafter, more general considerations are reported for all cases
studied. The linear model predicts i) a region of high amplification
at (𝑆,𝑊 ) ≈ (1.25, 0.67) where the strength of the secondary flows is
maximum for all quantities considered (small difference in the position
of the amplification geometry are observed as a function of the ridge
shape), and (ii) high amplification along a line at constant 𝑊 ≈ 0.67
for increasing spacing. However, the peak values across the three
cases are different (stronger for rectangular ridges), confirming that
the strength of secondary currents depends on the ridge geometry. For
large spacing 𝑆 or width 𝑊 , all quantities considered for rectangular
ridges also displays a second amplification peak not visible for the other
geometries and corresponding to the maximum strength of the tertiary
flows developing at the ridge centre (or trough centre). This suggests
that tertiary flows are generated in different configurations in terms
of 𝑆 and 𝑊 , depending on the ridge shape. A complete analysis of

the generation of tertiary flows as a function of the ridge shape and
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Fig. 2. Maps of the kinetic energy density  (top panels), the maximum of the streamfunction max𝑥2 ,𝑥3 𝜓
(1) (central panels) and dispersive stress �̂�0.9

12 (bottom panels) are reported
as a function of the ridge spacing 𝑆 and ridge width 𝑊 for 𝑅𝑒𝜏 = 1000 for elliptical ridges (left column), rectangular ridges (central column) and triangular ridges (right column).
The maps have been obtained using 50 samples for both 𝑆 and 𝑊 .
the effect of the ridge shape is reported in Section 6 where the flow
organization is plotted for more complex shapes.

Despite the difference in the strength of the response, the flow
organization observed for the narrow ridge case 𝑊 = 0.25 shown in
Fig. 1 is similar for all geometries, although the intensity of the cross-
stream motion depends on the geometry. This fact suggest that the
cross-stream velocities and, therefore, all derived quantities, might be
scaled using an appropriate geometrical parameter. In this particular
regime, when ridges are narrow and isolated one from the other, it
can be argued that the surface perturbation generating the secondary
currents is localized in a narrow region, and the strength of the surface
perturbation is proportional to the ridge cross-sectional area, but not its
geometry. For this reason, we introduce the mean ridge height, defined
as

𝐻 =
𝐴𝑟
𝑆
,

i.e., the ratio between the ridge cross-sectional area 𝐴𝑟 and the spacing
𝑆 and use this quantity to scale the perturbation velocity field.

The maps of the scaled kinetic energy ̂ (top panels), the scaled
maximum of the streamfunction max𝑥2 ,𝑥3 �̂�

(1) (central panels) and the
scaled integral of the dispersive stress �̂�0.9

12 (bottom panels) are reported
in Fig. 3. The velocity profiles and the streamfunction are scaled with
𝐻 while the kinetic energy, as well as the quantity 𝑅0.9

12 , is divided by
the square of the mean ridge height 𝐻 since it is given by the integral
of a velocity squared. Explicitly, ̂ is given by ∕𝐻

2
, �̂�0.9

12 is equal to
𝑅0.9
12 ∕𝐻

2
and the maximum of the streamfunction scaled max𝑥2 ,𝑥3 �̂�

(1)

is equal to max𝑥2 ,𝑥3 𝜓
(1)∕𝐻 . Note that, when scaling the strength of the

secondary flows with the mean ridge height 𝐻 , the effective height of
the ridges is constant and it is unitary for all cases studied. These maps
show strong similarities for the region characterized by low ratio 𝑊 ∕𝑆
and small 𝑊 . We define these two areas of the parameter space, as
summarized in Fig. 4, as the ‘‘isolated ridge’’ regime, where 𝑊 ≪ 𝑆
and ridges are small in width compared to the distance between one
another (blue area), and the ‘‘narrow ridge’’ regime, where 𝑊 ≪ 1
and the ridges are narrow compared to the channel half-height (yellow
area). The combination of these two regimes is displayed as a red area
and it is defined in the following as the scaling region.
5

To better visualize this behaviour, we introduce the quantity

𝛥�̂�0.9
12 % =

max �̂�0.9
12 − min �̂�0.9

12

mean �̂�0.9
12

⋅ 100, (19)

where the function ‘‘max" is the maximum value obtained across the
three geometries for a fixed configuration (𝑆,𝑊 ). Similarly, we define
the functions ‘‘min" and ‘‘mean" as the minimum and the mean value,
respectively. The quantity 𝛥�̂�0.9

12 % can be interpreted as the difference in
secondary flows strength across the three geometries for the same width
and spacing. This quantity is plotted in Fig. 5. We can observe that the
relative difference in scaled strength is small if the ridges are narrow
and isolated. If this condition is not met, for configurations where the
ridges are wide or tightly packed, the difference in the scaled dispersive
stresses across the three geometries increases. These differences in
the strength of secondary flows observed for elliptical, rectangular
and triangular ridges can be easily explained as a consequence of the
differences in the flow structures predicted for wide ridges. As observed
for the flow topology in Fig. 1, tertiary flows emerge for the given 𝑆
and 𝑊 only for triangular ridges when the available space between the
secondary flows is large enough.

5. Scaling of the velocity profiles

For a better characterization of the scaling of the secondary flows,
the profiles of the velocity component divided by 𝐻 , for elliptical,
triangular and rectangular ridges are reported in Fig. 6. Three cases are
here considered for a constant spacing 𝑆 = 1.25 and varying width in
order to display the scaling behaviour for narrow and isolated ridges for
𝑊 = 0.2 (left column), and the scaling breakdown for 𝑊 = 0.67 (central
column), corresponding to the maximum amplification configuration,
and for 𝑊 = 1.0 (right column), corresponding to wide ridges.

The wall-normal velocity profiles for the three geometries at the
ridge centre and at the centre of the trough are reported in the top
and central panels, respectively. The spanwise velocity component at
the ridge edge is also provided in the bottom panels. The wall-normal
velocity 𝑢(1)2 ∕𝐻 at the ridge centre (top panels) collapses in the far-wall
region only for 𝑊 = 0.2 whereas for increasing ridge width the scaled
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Fig. 3. Maps of the scaled kinetic energy density ̂ (top panels), the scaled maximum of the streamfunction max𝑥2 ,𝑥3 �̂�
(1) (central panels) and dispersive stress scaled �̂�0.9

12 (bottom
panels) are reported as a function of the ridge spacing 𝑆 and ridge width 𝑊 for 𝑅𝑒𝜏 = 1000 for elliptical ridges (left column), rectangular ridges (central column) and triangular
ridges (right column).
Fig. 4. Diagram showing qualitatively the regions in parameter space defining ‘‘nar-
row’’ ridges (yellow area), ‘‘isolated’’ ridges (blue area), and the scaling region where
the ridges are both ‘‘narrow’’ and ‘‘isolated’’ (red area). The boundaries of these regions
are arbitrary, here we take 𝑊 < 0.2 for narrow ridges and 𝑊 ∕𝑆 < 0.15 for isolated
ridges. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

profiles differ and no collapsing is observed. Close to the wall (panel
a), the velocity profiles show a peak value that depend on the ridge
geometry. This is due to the proximity to the ridge that locally modify
the flow field. For increasing width (panel b and c), the velocity profiles
differ. The ridge geometry affects the peak value (higher for triangular
ridges). For increasing 𝑊 , the strength of the vortices decreases, too.
Similarly, the wall-normal velocity at the centre of the trough is plotted
in panels (d,e,f) of Fig. 6. These velocity profiles collapse for the entire
channel height only for the isolated ridge configuration (𝑊 = 0.2).
To explain the collapse of the profiles at the centre of the trough for
narrow and isolated ridges, one can observe that the secondary flows
at the centre of the trough are not affected by the ridge geometry,
6

Fig. 5. Map of the quantity is 𝛥�̂�0.9
12 %. The black contours are plotted for 𝛥�̂�0.9

12 % =
5, 15, 25, 50, 125 and 200%. The white straight lines are obtained for a constant duty
cycle 𝐷𝐶 = 0.1, 0.2, 0.3, 0.4, 0.5 and 0.8, moving from the bottom to the upper line. The
region defining ‘‘narrow" and ‘‘isolated" ridges is also reported in the figure.

since the distance from the nearest ridge is large compared with 𝑊 .
The peak value slightly changes for 𝑊 = 0.67. For 𝑊 = 1.0 where
the gap is reduced, the velocity profiles are strongly dependent on the
ridge geometry and its effect is not negligible when moving towards the
centre of the channel. However, a collapse of the curves is still observed
in the near wall region where the influence of the ridges is weak. For
all three geometries and for 𝑊 = 0.2, the spanwise velocity profiles
in the bottom panels collapse along the entire wall-normal direction.
A negative peak is predicted at the wall over the ridge edge where
the Reynolds stresses are stronger. Except for the case 𝑊 = 0.2, the
peak value depends on the ridge geometry. Moving towards the channel
centre, the velocity decreases in magnitude. For increasing width, the
scaling breaks down and some differences can be observed across the
three geometries.
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Fig. 6. Scaled profiles of the wall-normal velocity component at the centre of the ridge (top panels) and at the centre of the gap (central panels). The spanwise velocity component
is obtained at the ridge edge (bottom panels). The spacing is 𝑆 = 1.25 and the ridge width 𝑊 = 0.2 (left column), 0.67 (central column) and 1.0 (right column). The profiles are
obtained for the elliptical ‘‘Ellip’’, triangular ‘‘Tri’’ and rectangular ‘‘Rect’’ ridges for 𝑅𝑒𝜏 = 1000.
e
d

. Tertiary flows over trapezoidal ridges

In the previous sections, we investigated simple geometries and the
low structure and strength as a function of the geometrical parameters

and 𝑊 . We observed that secondary flows develop on the ridge
dge where there is a strong discontinuity in the ridge shape. This is
articularly true for both elliptical and rectangular ridges while for
riangular ridges, secondary flows always develop at the ridge crest.
ertiary flows were only observed for the triangular ridges at the given
onfiguration 𝐷𝐶 = 0.5 and 𝑊 = 1 as shown in Fig. 1. This configu-
ation is characterized by wide and sparse ridges and lies outside the
arameter space where the scaling of the strength of the secondary
lows has been properly observed. We can define this region of the
arameter space as the scaling region and it involves the configurations
haracterized by narrow and isolated ridges. Thus, we can conclude
hat the scaling behaviour does not hold when tertiary flows appear.
rapezoidal ridges are here studied because they combine the main
roperties of both rectangular and triangular ridges. This allows to
etter understand how the combination of the shape properties affects
he generation of the secondary and tertiary flows. It is worth noting
hat for the ridge shapes showing a strong discontinuity, the secondary
lows are locked at a ridge edge.

For this purpose, in addition to the spacing 𝑆 and the ridge width
, we introduce a third geometrical parameter 𝛼 as the ratio between

he minor and major bases of the ridges. A sketch of the ridges con-
idered is shown in Fig. 7 on the left-hand side of the corresponding
low topology. Note that triangular and rectangular ridges are the two
imit cases corresponding to 𝛼 = 0 and 𝛼 = 1, respectively. The flow
rganization as a function of 𝛼 is reported in Fig. 7 for 𝑆 = 1.25 and

= 0.65 at 𝑅𝑒𝜏 = 1000 (see the sketches on the left). Starting from
riangular ridges, tertiary flows develop at the centre of the troughs
hile the secondary flows develop over the flank of the ridge. When
increases, the secondary currents slightly moves towards the ridge
7

dges and the tertiary flows decrease in size and strength, until they
isappear at 𝛼 = 0.95. In particular, tertiary flows emerge when the

space between the secondary flows is large enough. This also explains
why for a fixed configuration, characterized by large spacing and width,
different shapes show different flow topologies.

The strength of secondary flows is then obtained for the trapezoidal
ridges at varying 𝛼. The kinetic energy density  is reported in Fig. 8
where the contours of  for 𝛼 = 0.25, 0.5 and 0.8 are superimposed
to the colour map of  for the rectangular ridges (see the caption for
the figure for more details). The peak amplification changes slightly
with 𝛼. For 𝛼 = 0.25, the peak amplification occurs for a slightly higher
𝑊 than the rectangular ridges (black lines). In addition, the second
amplification peak observed for a constant width changes slightly. It is
worth noting that for trapezoidal ridges we predict a secondary peak
for large width that is not observed for triangular ridges.

7. Conclusions

The model proposed in Zampino et al. (2022) is utilized in this
paper to predict the structure of secondary flows produced by elliptical,
triangular, rectangular and trapezoidal ridges. The time-averaged flow
field over such surfaces is decomposed into a base flow developing in
the flat channel, and a flow perturbation induced by the ridges. In the
limit of shallow ridges, linearized equations are obtained for the pertur-
bation streamwise velocity and the perturbation streamfunction. These
equations are complemented by inhomogeneous boundary conditions
at the wall that capture the effect of the ridge. Since the equations
are linear, the superposition principle is applied to reconstruct the flow
field over complex geometries. The model is computationally cheap and
allows a rapid evaluation of a variety of ridge configurations.

Results for 𝑅𝑒𝜏 = 1000 are reported. Strong similarities in the con-
figuration of the secondary flows are observed for narrow ridges with
small width compared to the spacing. Starting from the narrow ridge
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Fig. 7. Secondary flows generated by trapezoidal ridges at 𝑅𝑒𝜏 = 1000 and for (𝑆,𝑊 ) = (2, 1). The shape parameter 𝛼 varies from 0, corresponding to a triangular ridge in panel
(a), to 0.95, corresponding to a rectangular ridge in panel (f). The value of 𝛼 is reported. For the sake of clarity, a sketch of the ridge shape is also provided for each configuration
studied.
Fig. 8. Maps of the kinetic energy density  of the secondary flows over trapezoidal
ridges as a function of the spacing 𝑆 and width 𝑊 . The colour map corresponds to
the strength of the secondary flows generated by the rectangular ridges. The dark
grey lines corresponds to the contour of the triangular ridges while the light grey
lines are obtained for the trapezoidal ridges with 𝛼 = 0.5. The contour levels are
 = [0.5, 0.6, 1, 1.1, 1.5, 2, 2.5]. The Reynolds number is 𝑅𝑒𝜏 = 1000.

configuration, for a fixed spacing and increasing width, the vortices
grow in strength and size until they occupy the channel half-height.
The flow organization differs between the three geometries for wide
ridges where the secondary structures depend on the ridge geometry.

The similarity in the flow topology for narrow ridges suggest that
the velocity induced can be scaled using an appropriate parameter that
depends on the ridge geometry. Since the ridges are localized at the
wall, the effect of the wall perturbation is assumed to be proportional
to the cross-sectional area of the ridges, not their geometry. For this
reason, the mean ridge height 𝐻 = 𝐴𝑟∕𝑆 is here proposed as the scaling
parameter.

In particular, the maps of the volume averaged dispersive stresses
scaled with 𝐻

2
collapse for ridge configurations with small width 𝑊 ,
8

defining the ‘‘narrow ridge’’ regime, and high ratio 𝑆∕𝑊 , defining the
‘‘isolated ridges’’ regime. For these configurations the effect of the ridge
geometry is negligible or confined to the very near-wall region and
the scaled velocity profiles collapse. In particular, the collapse of the
profiles at the centre of the trough can be explained as the consequence
of the low influence of the nearest ridge. For increasing width, the
scaling behaviour breaks down because the flow topology strongly
depends on the ridge geometry. Finally, the generation mechanism
of the tertiary flows is studied for trapezoidal ridges. The present
paper confirms that tertiary flows emerge when the space between the
secondary flows is large enough. These results extend the conclusions
about the generation of tertiary flows for rectangular ridges by Zampino
et al. (2022) to more general shapes.

Some remarks on the limitations of the model are in order. One of
the key modelling assumptions is that the ridge height is infinitesimal,
i.e. the topography variation is shallower than any other dynamically-
relevant length scale in the flow, e.g. the viscous length scale. Physi-
cally, this regime corresponds to topographies that are fully submerged
in the viscous sub-layer. Such a topography creates a lateral variation of
the origin from which the turbulent wall-bounded flow develops, and
results in spanwise gradients of the Reynolds stresses throughout the
turbulent layer. In turn, these feed into the momentum equations as
source terms, resulting in the generation of secondary currents (Perkins,
1970). For shallow topographies, the flow response is expected to be
linear, in the sense that the perturbation velocities, e.g. the cross-
stream components, are linearly proportional to the amplitude of the
topography (Luchini, 2013; Russo and Luchini, 2016). However, the
vast majority of studies on secondary currents have considered rather
tall ridges that protrude well into the log layer, with a height that is a
non-negligible fraction of the shear flow thickness. Secondary currents
developing over surfaces with prominent ridges are likely not captured
satisfactorily by the present model, because the shallow-topography
assumption does not apply for such geometries. This is especially true
for ridges characterized by highly sloped flanks, e.g. rectangular ridges.
In such cases, a strong interaction between the instantaneous turbulent
fluctuations and the ridge is to be expected, such as the upwards
deflection of the spanwise velocity fluctuations discussed in Hwang and
Lee (2018). In summary, as the ridge height is increased, it is likely
that the flow-ridge interaction transitions through a range of different
flow regimes. Detailed exploration of these regimes has started only
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recently (see e.g. von Deyn et al. (2022)). Effort should be dedicated in
the future to clarify such transitions and capture relevant mechanism
with simple models, to extend the present results to real-world surfaces
with finite-height ridges.

CRediT authorship contribution statement

Gerardo Zampino: Conceptualization, Methodology, Software, Val-
dation, Formal analysis, Investigation, Data curation, Writing – origi-
al draft, Visualization. Davide Lasagna: Conceptualization, Study de-
ign, Formal analysis, Resources, Writing – review & editing, Project ad-
inistration. Bharathram Ganapathisubramani: Conceptualization,

upervision, Editing, Project administration, Funding acquisition.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgment

The authors acknowledge the Engineering and Physical Sciences
esearch Council for the financial support (EP/V00199X/1).

eferences

nderson, W., Barros, J.M., Christensen, K.T., Awasthi, A., 2015. Numerical and
experimental study of mechanisms reponsible for turbulent secondary flows in
boundary layer flows over spanwise heterogeneous roughness. J. Fluid Mech. 768,
316–347.

arros, J.M., Christensen, K.T., 2014. Observation of turbulent secondary flows in a
rough-wall boundary layer. J. Fluid Mech. 748, R1.

ottaro, A., Soueid, H., Galletti, B., 2006. Formation of secondary vortices in turbulent
square-duct flow. AIAA J. 44, 803–811.

usse, A., Sandham, N.D., 2012. Influence of an anisotropic slip-length boundary
condition on turbulent channel flow. Phys. Fluid 24, 055111.

astro, I.P., Kim, J.W., Stroh, A., Lim, H.C., 2021. Channel flow with large longitudinal
ribs. J. Fluid. Mech. 915, A92.

ess, R.D., 1958. A survey of the literature on heat transfer in turbulent tube flow.
Technical Report 8-0529-R24, Westinghouse Research.

hen, W.L., Lien, F.S., Leschziner, M.A., 1997. Non-linear eddy-viscosity modelling of
transitional boundary layers pertinent to turbomachine aerodynamics. Int. J. Heat
Fluid Flow 19, 297–306.

hung, D., Monty, J.P., Hutchins, N., 2018. Similarity and structure of wall turbulence
with lateral wall shear stress variations. J. Fluid Mech. 847, 591–613.

el Álamo, J.C., Jiménez, J., 2006. Linear energy amplification in turbulent channels.
J. Fluid Mech. 559, 205–213.

inze, J.O., 1967. Secondary currents in wall turbulence. Phys. Fluids 10 (9), 122–125.
9

Hwang, H.G., Lee, J.H., 2018. Secondary flows in turbulent boundary layers over
longitudinal surface roughness. Phys. Rev. Fluids 3, 014608.

Jiménez, J., 2004. Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36,
173–196.

Knoll, D.A., Keyes, D.E., 2004. Jacobian-free Newton-Krylov methods: a survey of
approaches and applications. J. Comput. Phys. 193, 357–397.

Luchini, P., 2013. Linearized no-slip boundary conditions at rough surface. J. Fluid
Mech. 737, 349–367.

Medjnoun, T., Vanderwel, C., Ganapathisubramani, B., 2018. Characteristics of turbu-
lent boundary layers over smooth surfaces with spanwise heterogeneities. J. Fluid
Mech. 838.

Medjnoun, T., Vanderwel, C., Ganapathisubramani, B., 2020. Effects of heterogeneous
surface geometry on secondary flows in turbulent boundary layers. J. Fluid Mech.
886, A31.

Mejia-Alvarez, R., Christensen, K., 2013. Wall-parallel stereo particle-image velocime-
try measurements in the roughness sublayer of turbulent flow overlying highly
irregular roughness. Phys. Fluids 25, 015106.

Perkins, H.J., 1970. The formation of streamwise vorticity in turbulent flow. J. Fluid
Mech. 44, 721–740.

Prandtl, L., 1952. Essentials of Fluid Dynamics. Hafner.
Pujals, G., Garcìa-Villalba, M., Cossu, C., Depardon, S., 2009. A note on optimal

transient growth in turbulent channel flows. Phys. Fluids 21, 015109.
Reynolds, W.C., Hussain, A.K.M.F., 1972. The mechanism of an organized wave in

turbulent shear flow. Part 3. theoretical models and comparisons with experiments.
J. Fluid Mech. 54, 263–288.

Russo, S., Luchini, P., 2016. The linear response of turbulent flow to a volume force:
comparison between eddy-viscosity model and DNS. J. Fluid Mech. 790, 104–127.

Spalart, P.R., 2000. Strategies for turbulence modelling and simulations. Int. J. Heat
Fluid Flow 21, 252–263.

Spalart, P.R., Allmaras, S.R., 1994. A one-equation turbulence model for aerodynamic
flows. Rech. Aerosp. 1, 5–21.

Spalart, P.R., Garbaruk, A., Stabnikov, A., 2018. On the skin friction due to turbulence
in ducts of various shapes. J. Fluid Mech. 838, 369–378.

Speziale, C.G., 1991. Analytical methods for the development of Reynolds-stress closures
in turbulence. Annu. Rev. Fluid Mech. 23, 107–157.

Speziale, C.G., Sarkar, S., Gatski, T.B., 1991. Modelling the pressure-strain correlation of
turbulence: an invariant dynamical system approach. J. Fluid Mech. 227, 254–272.

Stroh, A., Schäfer, K., Forooghi, P., Frohnapfel, B., 2020. Secondary flow and heat
transfert in turbulent flow over streamwise ridges. Int. J. Heat Fluid Flow 81,
108518.

Stroh, A., Y. Hasegawa, J.K., Frohnapfel, B., 2016. Secondary vortices over surfaces
with spanwise varying drag. J. Turbul. 17, 1142–1158.

Vanderwel, C., Ganapathisubramani, B., 2015. Effects of spanwise spacing on large-scale
secondary flows in rough-wall turbulent boundary layers. J. Fluid Mech. 774, R2.

Volino, R.J., Schultz, M.P., Flack, K.A., 2011. Turbulence structure in boundary layers
over periodic two- and three-dimensional roughness. J. Fluid Mech. 676, 172–190.

von Deyn, L.H., Gatti, D., Frohnapfel, B., 2022. From drag-reducing riblets to drag-
increasing ridges. J. Fluid Mech. 951, A16. http://dx.doi.org/10.1017/jfm.2022.
796.

Willingham, D., Anderson, W., Christensen, K.T., Barros, J.M., 2014. Turbulent bound-
ary layer flow over transverse aerodynamic roughness transitions: induced mixing
and flow characterization. Phys. Fluids 26, 025111.

Wu, Y., Christensen, K.T., 2007. Outer-layer similarity in the presence of a practical
rough-wall topography. Phys. Fluids 19, 085108.

Zampino, G., Lasagna, D., Ganapathisubramani, B., 2022. Linearised Reynolds-
averaged predictions of secondary currents in turbulent channels with topographic
heterogeneity. J. Fluid Mec. 944, A4.

Zampiron, A., Cameron, S., Nikora, V., 2020. Secondary currents and very-large-scale
motions in open-channel flow over streamwise ridges. J. Fluid Mech. 887, A17.

http://refhub.elsevier.com/S0142-727X(23)00047-4/sb1
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb1
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb1
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb1
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb1
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb1
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb1
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb2
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb2
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb2
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb3
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb3
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb3
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb4
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb4
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb4
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb5
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb5
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb5
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb6
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb6
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb6
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb7
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb7
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb7
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb7
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb7
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb8
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb8
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb8
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb9
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb9
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb9
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb10
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb11
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb11
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb11
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb12
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb12
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb12
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb13
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb13
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb13
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb14
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb14
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb14
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb15
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb15
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb15
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb15
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb15
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb16
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb16
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb16
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb16
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb16
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb17
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb17
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb17
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb17
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb17
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb18
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb18
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb18
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb19
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb20
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb20
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb20
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb21
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb21
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb21
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb21
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb21
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb22
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb22
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb22
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb23
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb23
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb23
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb24
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb24
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb24
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb25
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb25
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb25
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb26
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb26
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb26
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb27
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb27
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb27
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb28
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb28
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb28
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb28
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb28
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb29
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb29
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb29
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb30
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb30
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb30
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb31
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb31
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb31
http://dx.doi.org/10.1017/jfm.2022.796
http://dx.doi.org/10.1017/jfm.2022.796
http://dx.doi.org/10.1017/jfm.2022.796
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb33
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb33
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb33
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb33
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb33
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb34
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb34
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb34
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb35
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb35
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb35
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb35
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb35
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb36
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb36
http://refhub.elsevier.com/S0142-727X(23)00047-4/sb36

	Scaling of secondary flows with surface parameters: A linear approach
	Introduction
	Linearized RANS model
	Linearized predictions of the flow organization
	Scaling of the strength of secondary flows
	Scaling of the velocity profiles
	Tertiary flows over trapezoidal ridges
	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgment
	References


