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Abstract
The tritium breeding ratio (TBR) is an essential quantity for the design of modern and
next-generation D-T fueled nuclear fusion reactors. Representing the ratio between tritium fuel
generated in breeding blankets and fuel consumed during reactor runtime, the TBR depends on
reactor geometry and material properties in a complex manner. In this work, we explored the
training of surrogate models to produce a cheap but high-quality approximation for a Monte Carlo
(MC) TBR model in use at the UK Atomic Energy Authority. We investigated possibilities for
dimensional reduction of its feature space, reviewed 9 families of surrogate models for potential
applicability, and performed hyperparameter optimization. Here we present the performance and
scaling properties of these models, the fastest of which, an artificial neural network,
demonstrated R2 = 0.985 and a mean prediction time of 0.898 µs, representing a relative speedup
of 8× 106 with respect to the expensive MC model. We further present a novel adaptive sampling
algorithm, Quality-Adaptive Surrogate Sampling, capable of interfacing with any of the
individually studied surrogates. Our preliminary testing on a toy TBR theory has demonstrated the
efficacy of this algorithm for accelerating the surrogate modelling process.

1. Introduction

Surrogate models were developed to resolve computational limitations in the analysis of massive datasets by
replacing a resource-expensive procedure with a much cheaper approximation [1]. They are especially useful
in applications where numerous evaluations of an expensive procedure are required over the same or similar
domains, e.g. in the parameter optimization of a theoretical model. The term ‘metamodel’ proves especially
meaningful in this case, when the surrogate model approximates a computational process which is itself a
model for a (perhaps unknown) physical process [2]. There exists a spectrum between ‘physical’ surrogates
which are constructed with some contextual knowledge in hand, and ‘empirical’ surrogates which are derived
purely from samples of the underlying expensive model.

In this work, we develop a family of empirical surrogate models for the tritium breeding ratio (TBR) in
an inertial confinement fusion (ICF) reactor. The expensive model that our surrogate model approximates is
a Monte Carlo (MC) neutronics simulation, Paramak [3], which returns a prediction of the TBR for a given
configuration of a spherical ICF reactor. Although more expensive 3D parametric models exist, we chose the
Paramak simulation for its preferable speed in dataset generation in order to most fully demonstrate our
methods. We quantify the success of several of our best-performing surrogate models by studying their
accuracy and prediction time. We further propose an adaptive sampling algorithm (QASS) suitable for
reducing the quantity of expensive samples needed to train our surrogate models.

Paramak facilitates simulation via an OpenMC neutronics workflow that is enclosed in a portable Docker
container, which conveniently exposes an HTTP API using the Python 3 flask package. Within this setup,
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Figure 1. Diagram of the simple sphere geometry (not to scale) where the blanket is , the first wall is and the neutron

point source is . Blanket and first wall thickness, as well as their material and structural properties, are adjustable parameters
of the simulation that are later optimized (see table 1 for complete parameter listing).

we employ a Muir energy distribution [4]4 around 14.06 MeV to approximate a deuterium-tritium (D-T)
plasma neutron source. As illustrated in figure 1, the simulated reactor geometry was made adjustable in
order to study its influence on the TBR. Nuclear data for simulation were extracted from the following
sources, in order of preference: FENDL 3.1d [5]; JEFF 3.3 [6]; and ENDF/B-VII.1 [7]. To maintain a
model-agnostic approach, variance reduction (VR) techniques were not used to accelerate the MC
neutronics simulation [8]. It should be noted that depending on application, VR may constitute a viable
alternative to the presented work.

For the remainder of section 1, we will define the TBR and further motivate our research. In section 2 we
will present our methodologies for the comparison testing of a wide variety of surrogate modelling
techniques, as well as defining an add-on adaptive sampling procedure QASS. After delivering the results of
these approaches in section 3, we will give our final conclusions and recommendations in section 4.

1.1. Problem description
Nuclear fusion technology relies on the production and containment of an extremely hot and dense plasma
containing enriched Hydrogen isotopes. The current frontier generation of fusion reactors, such as the Joint
European Torus and the under-construction ITER, make use of both tritium and deuterium fuel. While at
least one deuterium atom occurs for every 5000 molecules of naturally-sourced water, and may be easily
distilled, tritium is extremely rare in nature. Tritium may be produced indirectly through irradiation of heavy
water (D2O) during nuclear fission, but only at very low rates which could never sustain industrial-scale
fusion power.

Modern D-T reactors rely on tritium breeding blankets, specialized layers of material which partially line
the reactor and produce tritium upon neutron bombardment, e.g. by:

1
0n+

6
3 Li−→3

1 T+4
2 He (1)

1
0n+

7
3 Li−→3

1 T+4
2 He+

1
0 n. (2)

The TBR is defined as the ratio of tritium produced per source neutron, whose description in Paramak is
facilitated by two classes of parameters (exhaustively listed in table 1). While the geometry of a given reactor
is described by continuous parameters, material selections are specified by discrete categorical parameters.
For all parameters, we have attempted to cover the full theoretical range of values even where those values are
practically infeasible with current technology (e.g. packing fractions close to 1). Simulating broadly around

4 A bug in the Muir distribution involving erroneous normal sampling was recently uncovered (see https://github.com/openmc-dev/
openmc/pull/1670), but is disregarded in the present methods-focused work.
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Table 1. Input parameters supplied to Paramak and surrogates in alphabetical order. Groups of fractions marked†‡ are independently
required to sum to 1.

Parameter name (abbreviation) Domain

Blanket Breeder fraction† [0,1]
Breeder 6Li enrichment fraction [0,1]
Breeder material (BBM) {Li2TiO3,Li4SiO4}
Breeder packing fraction [0,1]
Coolant fraction† [0,1]
Coolant material (BCM) {D2O,H2O,He}
Multiplier fraction† [0,1]
Multiplier material (BMM) {Be,Be12Ti}
Multiplier packing fraction [0,1]
Structural fraction† [0,1]
Structural material (BSM) {SiC,eurofer}
Thickness [0,500]cm

First wall Armour fraction‡ [0,1]
Coolant fraction‡ [0,1]
Coolant material (FCM) {D2O,H2O,He}
Structural fraction‡ [0,1]
Structural material (FSM) {SiC,eurofer}
Thickness [0,20]cm

typical values of parameters also improves the accuracy of the model nearer to typical values, and further
aids in demonstrating the robustness of constructed models.

In our work, we set out to produce a fast TBR surrogate model, which takes the same input parameters as
the MC model used in Paramak and approximates its output with the greatest achievable regression
performance, while also minimizing the required quantity of expensive-model samples needed for training.
This represents a significant step forward in computational fusion-reactor design, as speed-ups achieved in
TBR evaluation can lead to a speed-up in numerical optimization of reactor parameters, although such
optimization is beyond the scope of the present work.

2. Methodology

Labeling the expensive Paramak model f (x), a surrogate model is a function f̂(x) such that f (x) and f̂(x)
minimize a selected dissimilarity metric. In order to be considered viable, f̂(x) is required to achieve an
expected evaluation time lower than that of f (x). In this work, we consider two methods of producing viable
surrogates: (a) a conventional decoupled approach, which evaluates f (x) on a set of uniformly-random
samples and trains surrogates in a supervised scheme, and (b) an adaptive approach, which attempts to
compensate for localized regression performance insufficiencies by interleaving multiple epochs of sampling
and training. Several high-accuracy and deployment-ready surrogate models are developed using the
decoupled approach, and their performance characterized numerically, while the adaptive approach is
studied exclusively as a proof-of-concept.

We selected several state-of-the-art regression algorithms to perform surrogate training on sampled point
sets. Listed in table 2, these implementations define nine surrogate families which are detailed in section 3.
We note that each presented algorithm defines hyperparameters that may influence its performance. Their
problem-specific optimal values are searched within the scope of this work, in particular in Experiments 1
& 2 that are outlined in section 2.1.

To compare the quality of the produced surrogates, we define a variety of metrics listed in table 3. For
regression performance analysis, we include a selection of absolute metrics (MAE, S) to assess the models’
approximation capability and to set practical bounds on the expected uncertainty of their predictions. In
addition, we also track relative measures (R2, R2

adj.) that are better-suited for comparison between this work
and others, as they are invariant with respect to the selected domain and image space. For analysis of
computational complexity, surrogates are assessed in terms of wall time (captured by the Python 3 time
package). This is motivated by common practical use-cases of our work, where surrogate models are trained
as replacements for Paramak. All times reported (training, test, evaluation) are normalized by the
corresponding dataset size, i.e. correspond to ‘time to process a single datapoint.’

Even though some surrogates support acceleration by means of parallelization, we used non-parallelized
implementations. The only exception to this is the ANN family, which requires a considerable amount of
processing power for training on conventional CPU architectures. Lastly, to prevent undesirable bias by
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Table 2. Considered surrogate model families, their selected abbreviations and implementations.H denotes the set of hyperparameters,
family-dependent priors that control the learning process, and are tuned separately. Families with fewer hyperparameter represent a
smaller surrogate domain to explore.

Surrogate family Abbr. Impl. |H|

Support vector machines [9] SVM SciKit [10] 3
Gradient boosted trees [11–13] GBT SciKit 11
Extremely randomized trees [14] ERT SciKit 7
AdaBoosted decision treesa [15] ABT SciKit 3
Gaussian process regression [16] GPR SciKit 2
k nearest neighbours KNN SciKit 3
Artificial neural networks ANN Keras [17] 2
Inverse distance weighing [18] IDW SMT [19] 1
Radial basis functions RBF SMT 3
a Note that ABTs can be viewed as a subclass of GBTs.

Table 3.Metrics recorded in experiments. In formulations, we work with a training set of size N0 and a test set of size N, values

y(i) = f(x(i)) and ŷ(i) = f̂(x(i)) denote images of the ith testing sample in Paramak and the surrogate respectively. The mean
y= N−1

∑N
i=1 y

(i) and P is the number of input features.

Regression performance metrics Notation Mathematical formulation

Mean absolute error MAE N−1∑N
i=1 |y

(i) − ŷ(i)|
Standard deviation of error S StdDevN

i=1

{
|y(i) − ŷ(i)|

}
Coefficient of determination R2 1−

∑N
i=1

(
y(i) − ŷ(i)

)2
[∑N

i=1

(
y(i) − y

)2
]−1

Adjusted R2 R2
adj. 1− (1−R2)(N− 1)(N− P− 1)−1

Computational complexity metrics

Mean training time ttrn. (wall training time of f̂(x))N−1
0

Mean prediction time tpred. (wall prediction time of f̂(x))N−1

Relative speedup ω (wall evaluationa time of f (x)) (Ntpred.)
−1

a This corresponds to evaluation of Paramak on all points of the test set. In surrogates, the equivalent time

period is referred to as the “prediction time.”

training set selection, all reported metrics are obtained via five-fold cross-validation. In this setting, a sample
set is uniformly divided into five disjoint folds, each of which is used as a test set for models trained on the
remaining four. Having repeated the same experiment for each division, the overall value of individual
metrics is reported in terms of their mean and standard deviation over all folds.

2.1. Decoupled approach
Experiments related to the decoupled approach are organized in four parts, further described in this section.
In summary, we aim to optimize the hyperparameters of each surrogate family separately, and later compare
the best results between families.

The objective of Experiment 1 is to simplify the regression task for surrogates prone to suboptimal
performance in discrete spaces. To this end, training points are filtered to a single selected discrete feature
assignment, and surrogates are trained only on the remaining continuous features. This is repeated several
times to explore variances in behavior, particularly in four distinct assignments that are obtained by setting
blanket and first wall coolant materials to one of: {H2O,He}. Experiment 2 conventionally measures
surrogate performance on the full feature space without any parameter restrictions. In both experiments,
hyperparameter tuning is facilitated by Bayesian optimization [20], where we select the hyperparameter
configuration that produces the model that maximizes R2. The process is terminated after 1000 iterations or
2 days, whichever condition is satisfied first. The results of Experiments 1 & 2 are depicted in figures 3 and 4
respectively, and described in section 3.1.1.

In Experiment 3, the twenty best-performing hyperparameter configurations for each model family are
used to train surrogates on sets of various sizes to investigate their scaling properties. In particular, we track
the metrics from table 3 as functions of training set size (1, 2, 5, 10, 12, 15 and 20 thousands of samples)
individually for each family. This allows their comparison based on observed trends, and estimation of
optimal training set sizes. The results of this experiment are shown in figure 5 and discussed in section 3.1.2.
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Figure 2. Schematic of QASS algorithm.

Finally, Experiment 4 aims to produce surrogates suitable for practical use by retraining selected
well-scaling instances on large training sets. The results of this process are displayed in figure 6 and in table 5,
and summarized in section 3.1.3.

2.2. Adaptive approach
Adaptive sampling techniques appear frequently in the literature and have been specialized for surrogate
modelling, where precision is implicitly limited by the quantity of training samples which are available from
the expensive model. Garud’s [21] ‘Smart Sampling Algorithm’ achieved notable success by incorporating
surrogate quality and crowding distance scoring to identify optimal new samples, but was only tested on a
single-parameter domain. We theorized that a nondeterministic sample generation approach, built around
Markov Chain Monte Carlo methods (MCMC), would fare better for high-dimensional models by more
thoroughly exploring all local optima in the feature space. MCMC produces each sample point according to
a jump step drawn from a shared proposal distribution. These sample points will converge to a desired
posterior distribution, so long as the acceptance probability meets certain statistical criteria (see [22] for a
review).

Many researchers have embedded surrogate methods into MCMC strategies for parameter
optimization [23, 24], in particular the ASMO-PODE algorithm [25] which makes use of MCMC-based
adaptive sampling. Our approach draws inspiration from ASMO-PODE, but instead uses MCMC to generate
samples which increase surrogate precision throughout the entire parameter space.

We designed the quality-adaptive surrogate sampling algorithm (QASS, figure 2) to iteratively increment
the training/test set with sample points which maximize surrogate error and minimize a crowding distance
metric (CDM) [26] in feature space. Error maximization is desirable for these sample points because it
identifies regions of parameter space where the surrogate most needs to be improved. On each iteration
following an initial training of the surrogate on N uniformly random samples, the surrogate was trained and
absolute error calculated. MCMC was then performed to sample the error function generated by performing
nearest-neighbor interpolation on these test error points. The resultant samples were culled by 50%

5
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according to the CDM, and then the n highest-error candidates were selected for reintegration with the
training/test set, beginning another training epoch. Validation was also performed during each iteration on
independent, uniformly-random sample sets.

3. Results

3.1. Decoupled approach
3.1.1. Hyperparameter tuning
The results displayed in figure 3 indicate that in the first, simplified case GBTs clearly appear to be the most
accurate as well as the fastest surrogate family in terms of mean prediction time. Following that, we note that
ERTs, SVMs and ANNs also achieved satisfactory results with respect to both examined metrics. In addition,
prediction times of GBTs and SVMs show relatively lower variance than those of ERTs and ANNs. Even
though the remainder of tested surrogate families do not exhibit prohibitive complexity, their regression
performance fall below the average.

Comparing these results with those of the second, unrestricted experiment (shown in figure 4), we
observe that many surrogate families consistently underperform. The least affected models appear to be
GBTs, ANNs and ERTs, which are known to be capable of capturing relationships involving mixed feature
types that were deliberately withheld in the first experiment. With only negligible differences, the first two of
these families appear to be tied for the best performance as well as the shortest prediction time. We observe
that ERTs and RBFs also demonstrated satisfactory results, clearly outperforming the remaining surrogates in
terms of regression performance, and in some cases also prediction time.

Following both hyperparameter tuning experiments, we conclude that while domain restrictions
employed in the first case have proven effective in improving the regression performance of some methods,
their performance fluctuates considerably depending on the selected slices. For instance, the variance in SVM
performance in slice 1 is much lower than in slices 2–3, and both KNNs and ABTs perform much better in
slices 1–2 than in slice 3. Furthermore, in all instances the best results are achieved by families of surrogates
that do not benefit from this restriction (GBTs, ANNs, ERTs).

3.1.2. Scaling benchmark
The results shown in figure 5 suggest that in terms of regression performance the most accurate families from
the previous experiments consistently maintain their relative advantage over others, even as more training
points are introduced. While such families achieve nearly comparable performance on the largest dataset, in
the opposite case tree-based ensemble approaches clearly outperform ANNs. For instance, GBTs achieve
MAE= 0.107, nearly half of the MAE= 0.186 achieved by ANNs, representing a clear benefit given vastly
disparate training and prediction times. This trend continues for set sizes up to 6000.

Consistent with our expectations, the shortest training times were achieved by instance-based learning
methods (KNN, IDW) that are trained trivially at the expense of increased lookup complexity later during
prediction. Furthermore, we observe that the majority of tree-based ensemble algorithms also perform and
scale well, unlike RBFs and GPR which appear to behave superlinearly. We note that ANNs, which are the
only family to utilize parallelization during training, show an inverse scaling characteristic. We suspect that
this effect may be caused by a constant multi-threading overhead that dominates the training process on
relatively small sets.

Finally, all tested families with the exception of previously mentioned instance-based models offered
desirable prediction times. Analogous to previous experiments, GBTs, ABTs and ANNs appeared to be tied,
as they not only exhibited comparable times but also similar scaling slopes. After those, we note a clear
hierarchy of ERTs, SVMs, GPR and RBFs, trailed by IDW and KNNs.

3.1.3. Model comparison
In Experiment 4, we aim to create models that yield: (a) the best regression performance regardless of other
features, (b) acceptable performance with the shortest mean prediction time, or (c) acceptable performance
with the smallest training set. To this end, we trained 8 surrogates that are presented in figure 6 and table 5.
We compared these surrogates with the baseline represented by Paramak per-sample evaluation time
teval. = 7.777049573054314± 2.8103592103930337s, which was measured earlier on a set of 500 000
samples.

Having selected ANNs, GBTs, ERTs, RBFs and SVMs based on the results of Experiments 2 & 3, we
utilized the best-performing hyperparameters. In pursuit of goal (a), the best approximator (Model 1, ANN)
achieved R2 = 0.998 and mean prediction time tpred. = 1.124 µs. These correspond to a standard

6
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Table 4. Slices 1–4 of the domain space (discrete parameter assignments) explored in Experiment 1. Columns correspond to abbreviated
parameter names listed in table 1.

BBM BCM BMM BSM FCM FSM

Li4SiO4 H2O Be12Ti eurofer H2O eurofer
Li4SiO4 He Be12Ti eurofer H2O eurofer
Li4SiO4 H2O Be12Ti eurofer He eurofer
Li4SiO4 He Be12Ti eurofer He eurofer

Figure 3. Experiment 1 results. 20 best surrogates per each considered family, plotted in terms of tpred. and R2 with 3 selected slices
out of 4 (defined in table 4).
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Figure 4. Experiment 2 results, plotted analogously to figure 3.

error S= 0.013 and a relative speedup ω = 6.92× 106 with respect to Paramak. Satisfying goal (b), the fastest
model (Model 2, ANN) achieved R2 = 0.985, tpred. = 0.898 µs, S= 0.033 and ω = 8.66× 106. While these
surrogates were trained on the entire available set of 500 000 datapoints, to satisfy goal (c) we also trained a
more simplified model (Model 4, GBT) that achieved R2 = 0.913, tpred. = 6.125 µs, S= 0.072 and
ω = 1.27× 106 with a set of size only 10 000.

Overall we found that due to their superior performance, boosted tree-based approaches seem to be
advantageous for fast surrogate modelling on relatively small training sets (up to the order of 104).
Conversely, while neural networks perform poorly in such a setting, they dominate on larger training sets (at
least of the order of 105) both in terms of regression performance and mean prediction time.

3.2. Adaptive approach
In order to test our QASS prototype, several functional toy theories for TBR were developed as alternatives to
the expensive MC model. QASS performance was verified by training an ANN on these theories for varied
quantities of initial, incremental, and MCMC candidate samples. By far the most useful of these was the
following sinusoidal theory, as ANNs trained on this model demonstrated similar performance to those on
the expensive MC model:

TBR= |C|−1
∑
i∈C

[1+ sin(2πn(xi − 1/2))] , (3)

where C denotes the continuous parameter space, and n is an adjustable wavenumber parameter.
An increase in initial samples with increment held constant had a strong impact on final surrogate

precision, an early confirmation of basic functionality. An increase in MCMC candidate samples was seen to
have a positive but very weak effect on final surrogate precision, suggesting that the runtime of MCMC on
each iteration could be limited for increased efficiency. We also found that an optimum increment exists and
is monotonic with initial sample quantity, above or below which models showed slower improvement on
both the training and evaluation sets, and a larger minimum error on the evaluation set. This performance
distinction will be far more significant for an expensive model such as Paramak, where the number of sample
evaluations is the primary computational bottleneck.

A plateau effect in surrogate error on the evaluation set was universal to all configurations, and initially
suspected to be a residual effect of retraining the same ANN instance without adjustment to data
normalization. A ‘Goldilocks scheme’ for checking normalization drift was implemented and tested, but did

8
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Figure 5. Experiment 3 results, displayed as a function of N0. From top to bottom, R2, ttrn., tpred..

not affect QASS performance. Schemes in which the ANN is periodically retrained were also discarded, as the
retention of network weights from one iteration to the next was demonstrated to greatly benefit QASS
efficiency. Further insight came from direct comparison between QASS and a baseline scheme with
uniformly random incremental samples, shown in figure 7.

9
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Figure 6. Regression performance of Models 1–8 (from left to right, top to bottom) in Experiment 4, viewed as true vs. predicted
TBR on a test set of a selected cross-validation fold. Points are colored by density.

Such tests revealed that while QASS has unmatched performance on its own adaptively-sampled training
set, it is outperformed by the baseline scheme on uniformly-random evaluation sets. We inferred that while
QASS excels in learning the most strongly peaked regions of the TBR theory, this comes at the expense of
precision in broader, smoother regions where uniformly random sampling suffices. Therefore a mixed
scheme was implemented, with half MCMC samples and half uniformly-random samples incremented on
each iteration, which is also shown in figure 7. An increase in initial sample size was also observed to improve
precision in these smooth regions of the toy theory, as the initial samples were uniformly-random. As shown
in figure 8, with 100 000 initial samples it was possible to obtain a∼40% decrease in error as compared to the
baseline scheme, from 0.0025 to 0.0015 mean averaged error. Comparing at the point of termination for
QASS, this corresponds to a∼6% decrease in the number of total samples needed to train a surrogate model
while achieving the same error.

10
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Figure 7. Absolute training error for QASS, baseline scheme, and mixed scheme.

Figure 8. Absolute training error for QASS and baseline scheme, with 100 000 initial samples.

4. Conclusion

We employed a broad spectrum of data analysis and machine learning techniques to develop a library of fast
and high-quality surrogate models for the expensive Paramak TBR model. After reviewing 9 surrogate model
families, examining their behaviour on a constrained and unrestricted feature space, and studying their
scaling properties, we retrained the best-performing instances to produce properties desirable for practical
use. The fastest surrogate, an artificial neural network trained on 500 000 datapoints, attained an R2 = 0.985
with mean prediction time of 0.898 µs, representing a relative speedup of 8 · 106 with respect to Paramak.
Furthermore, we demonstrated the possibility of achieving comparable results using only a training set of
size 10 000.

We additionally developed a novel adaptive sampling algorithm, QASS, capable of interfacing with any of
the surrogate models presented in this work. Preliminary testing on a toy theory, qualitatively comparable to
Paramak, demonstrated the effectiveness of QASS and key behavioral trends. With 100 000 initial samples
and 100 incremental samples per iteration, QASS achieved a∼40% decrease in surrogate error compared to a
baseline random sampling scheme. Further optimization over the hyperparameter space has strong potential
to increase this performance by further reduction of necessary expensive samples, in particular by decreasing
the required quantity of initial samples. This will allow for future deployment of QASS on top of any of our
most effective identified TBR surrogate models.

Data availability statement

Relevant source code, model instances and datasets are freely available online as well as a more detailed
technical report [27, 28].
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