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Imogen Siân Stafford 

Inflammatory bowel disease (IBD) is a chronic, complex autoimmune disease characterised by 
relapsing-remitting gastrointestinal tract inflammation. It is considered to arise from interactions 
between an individual’s genetic susceptibility, environmental factors, immune dysregulation, and 
gut microbial dysbiosis. Genetics can make a larger contribution to IBD pathology in some 
patients, and this is thought to be linked to age of diagnosis, with genetic factors having the 
largest effects in very young children. There are two main subtypes of IBD: ulcerative colitis (UC) 
and Crohn’s disease (CD). Within subtypes, there are different disease behaviours and severities. 
One particular disease behaviour of interest is the stricturing endotype, which causes a narrowing 
of the gastrointestinal tract that often requires surgery. 

This thesis first examines oxidative stress in IBD patients, through the use of assay data. Here, 
statistical and machine learning (ML) methods are employed to examine the relationship between 
clinical and genomic characteristics of a set of paediatric patients, and their measured oxidative 
stress and antioxidant potential. In this work, no results suggested that these assay data could be 
used as an indicator for these clinical features, or for pathogenic variation in key oxidative stress 
genes. 

The predominant focus of this thesis is the use of genomic data and ML to stratify IBD patients. 
In order to prepare genomic data for use in ML pipelines, the GenePy algorithm was used. GenePy 
takes in information regarding zygosity, allele frequency, and predicted deleteriousness for every 
variant in a gene. The scores for each variant are summed to create an overall gene score, and 
this becomes are per-gene, per-individual matrix of scores. The two clinical problems analysed 
here were classifying IBD patients according to their subtype, and stratifying CD patients by the 
presence or absence of a stricturing endotype. This was achieved with an ML random forest 
classifier. Optimisation of both the input data and ML algorithm for these classifications was a 
important aspect of this work. Several gene panels were trialled for these classifications, and an 
autoimmune gene panel outperformed an IBD gene panel for determining IBD subtype. Stratifying 
CD patients by their stricturing endotype was subsequently performed with a random survival 



 

 

forest, which combined a random forest with survival analysis methods. This method is better 
suited to the longitudinal nature of stricturing endotype developed. This work demonstrated 
challenges that arise from the sparsity of genomic data, and required the development of a 
pipeline that could reduce the sparsity of the features used by the ML algorithm. 

The patient stratification performed here demonstrated strong evidence for the presence of 
different genomic variation patterns within IBD subtypes, and within the CD stricturing endotype. 
With increased dataset sizes, it may be possible to more clearly detect and cluster patients 
according to their genomic variation. In order to take full advantage of this knowledge, there is an 
additional requirement for deep, varied and longitudinal clinical data. Then, genomic data can 
guide each patient’s clinical pathway, providing individuals with more personalised, life-long care. 
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Chapter 1 Introduction 

Traditionally, inflammatory bowel disease (IBD) has been thought of as a multifactorial 

autoimmune disease that develops through the complex interactions between a person’s genetics 

and the environment. Prior to the 21st century, little was known about the genetics of IBD, the 

major discovery being the NOD2 gene’s causative role [1-3]. In the last 20 years great strides have 

been made in the technologies that can be used to identify genes related to disease. IBD has been 

among those diseases that have benefitted from new genetic technologies. Now, over 200 genes 

are known to have a role in IBD pathology [4]. The subsequent development of high throughput 

sequencing allowed for closer examination of specific changes in the genetic code, and their 

possible links to the development of IBD. Using this sequencing technology a number of patients, 

usually diagnosed in very early childhood, were shown to have disease that is only caused by a 

change in one gene [5, 6], demonstrating that IBD is not always multifactorial.  

Despite the new knowledge obtained through these technologies, there have been few changes 

to the clinical management of IBD patients. In the majority of cases, treatment is still based on 

clinical information gathered during investigation. Aside from the recent introduction of genetic 

sequencing for infants with a potential IBD diagnosis, a genetic investigation is not standard. One 

of the difficulties in implementing genetic investigations is that, although there is knowledge of 

IBD genetics, it is not known how these genes relate to specific patient phenotypes. Another 

obstacle is that these new technologies generate substantial amounts of data that are difficult 

and time-consuming to analyse. For these reasons, new methods are necessary. 

Here, a combination of linear and non-linear methods are explored to facilitate translation of the 

genetic basis for patient’s IBD into the clinic. Both paediatric and adult IBD patients are present in 

the IBD cohort that is utilised in the analysis. The aim is to stratify patients according to their 

observed genetics in order that their treatment and management is personalised. This should lead 

to better long-term outcomes for patients with this life-long disease.  

1.1 Inflammatory bowel disease 

Inflammatory bowel disease (IBD) is a complex autoimmune disease with two subtypes: Crohn’s 

disease (CD) and ulcerative colitis (UC). The aetiology of IBD remains poorly understood, but four 

factors are known to contribute: genetics, environment, immune dysregulation, and gut microbial 

dysbiosis. This condition is characterised by chronic relapsing-remitting gastrointestinal tract 

inflammation, with location and pattern (continuous or discontinuous) of the inflammation 
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differing depending on the IBD subtype [7, 8]. Information gained from histopathological 

investigations are also considered when determining the subtype [7, 8]. The symptoms of IBD are 

diverse, particularly in paediatric (<18 years) cases, and can include: diarrhoea, fever, fatigue, 

vomiting, anaemia, abdominal pain and growth retardation [7]. Extraintestinal manifestations are 

common in both adult and paediatric cases, and affects 25-35% of patients [9]. Accordingly, the 

Porto criteria [7] for paediatric IBD diagnosis, and the British Society of Gastroenterology 

consensus guidelines for adults, [8] utilises endoscopic and histopathological findings for diagnosis 

of CD or UC. If a diagnosis cannot be confirmed, the patient is diagnosed as IBD unclassified 

(IBDU). Individuals will often be diagnosed with CD or UC subsequent to an IBDU diagnosis [7, 8]. 

A correct diagnosis is imperative for patients, in order that they receive the correct treatments 

and interventions. Regardless of age at diagnosis, IBD is a chronic disease which requires lifelong 

monitoring and management by the patient and the clinician.  

1.1.1 Epidemiology  

The incidence of IBD surged during the late twentieth and early twenty-first century, particularly 

in western countries [10, 11]. High prevalence’s of IBD have been reported in Canada [12] and 

Scotland [11] (0.7% and 0.8%, respectively). Approximately 25% of IBD presents during childhood 

[13], and research performed using data from the Wessex region in England explored incidence 

specifically among the paediatric population. A 50% increase in cases was observed from 2002 to 

2012 (6.39/100,000 to 9.37/100,000), driven predominantly by CD cases [13]. The incidence in 

this region had increased to 10.54 per 100,000 by 2017 [14], and over 12 per 100,000 by 2021 

[15]. For the overall IBD population in the United Kingdom, incidence has been estimated at 28.6 

per 100,000 [16]. Although IBD was previously thought to be only predominant in western 

countries, incidence is documented to be rising in Asian and Latin American Countries. In Hong 

Kong, the last 20 years has seen IBD incidence rise from 1 to 3.1 per 100,000, while the highest 

documented incidence in the Asian-Pacific region is in India (9.31/100,000) [17]. The incidence of 

CD in Asia has risen quicker than UC [17]. Worldwide, the prevalence of IBD will only increase, 

compounding the health burden in the future. 

1.1.2 Ulcerative colitis 

Ulcerative colitis has a continuous inflammation pattern of the mucosa [18]. Inflammation is non-

transmural and usually begins at the rectum and extends to some, or all, segments of the colon 

[18]. Patients are classified according to the extent of colonic involvement, and can be diagnosed 

with proctitis, left-sided colitis which involves the sigmoid colon and may or may not involve the 

descending colon, or pancolitis (Figure 1A) [18]. Pancolitis has been observed at a far higher 
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frequency in child-onset versus adult-onset (82.2% versus 47.6%, children and adults 

respectively), and the reverse is true for proctitis (1.4% versus 17.0%, children and adults 

respectively) [19]. The most common symptoms of UC are bloody diarrhoea, rectal bleeding, 

weight loss and abdominal pain [9]. In paediatric cases, UC can be particularly difficult to diagnose 

due to heterogeneity in the UC phenotype [7]. The Porto criteria for paediatric patients describes 

the most reliable feature for UC diagnosis as colonic mucosal inflammation involving the rectum, 

but with no small bowel involvement, and no granulomas on biopsy [7]. There are five atypical UC 

presentations in paediatric disease: upper intestinal tract involvement, rectal sparing, short 

disease duration, left-sided colitis with an area of cecal inflammation, and acute severe UC that 

features more characteristics of CD (for example deep ulcers and transmural inflammation) [7].  

1.1.3 Crohn’s disease 

Where inflammation in UC is restricted to the colon, in CD inflammation can occur along the 

entire gastrointestinal tract, from the mouth to the anus (Figure 1B) [20]. Inflammation is 

transmural and patchy, but is more common in the terminal ileum, colon and ileocolon (47%, 28% 

and 21% respectively) than the upper gastrointestinal tract (3%) [18]. The symptoms of CD can 

often be more general, which results in a longer time to diagnosis [21]. A diagnosis of CD is made 

after considering clinical, radiographic, endoscopic and pathological findings [8]. CRP is a blood 

marker that is an initial indicator of an inflammatory disease, and is also used to monitor disease 

status [7]. Endoscopy can be used to access location of disease, and during this procedure a 

number of biopsies are often obtained for histopathological investigation [7, 8]. The extent of 

disease can be seen through the way in which the mucosa has been affected: from small ulcers in 

mild disease to large deep ulcers in a wavy pattern in severe disease [22]. Common biopsy 

findings in CD are discontinuous chronic inflammation, focal crypt distortion and granulomas [23]. 

CD patients can present with, or develop, complications such as strictures, fistulas and abscesses 

[20]. There can be confusion with UC in cases where inflammation is solely colonic [7]. In addition, 

some paediatric CD cases have been noted to present with isolated oral inflammation, and 

develop gastrointestinal luminal disease during their disease course [7]. It has been observed that 

paediatric CD is more common in male patients, and in adult patients this diagnosis is more 

common in females [19]. Additionally, isolated ileal and isolated colonic CD has been noted as 

more common in adult-onset disease, and paediatric onset CD was more likely to be extensive 

[19]. 
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Figure 1 Locations of inflammation in UC and CD. A) The extent of inflammation in ulcerative 

colitis inflammation varies, and patients are classified accordingly. B) Different 

inflammation patterns in Crohn’s disease. Image adapted from [24]. 

1.1.4 Inflammatory bowel disease unclassified 

Where an individual exhibits phenotypic features of both CD and UC, they are given a diagnosis of 

inflammatory bowel disease unclassified (IBDU) [7, 8]. As previously mentioned there are cases 

where it can be difficult to distinguish between the main subtypes, and a common situation for a 

diagnosis of IBDU is inflammation is exclusive to the colon coinciding with CD presentations such 

as height delay, or other macroscopic and microscopic features [7]. An IBDU diagnosis can also be 

a result of an incomplete clinical investigation [25]. Additionally, paediatric-onset IBD is associated 

with an IBDU diagnosis, with a stronger likelihood of IBDU in infantile and very early onset (<6 

years) patients [26]. A paediatric IBDU diagnosis can resolve to a diagnosis of CD or UC during 

disease course, but the rate of this diagnostic change is unclear. One study reports a diagnosis 

change in 32% of paediatric cohort, with a median follow up time of 5.7 years [25]. Another 

describes a change of diagnosis to UC or CD in 55% (median follow up 6.7 years) of paediatric 

cases [27]. 
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1.1.5 Clinical classification systems 

The complex presentation of the IBD subtypes can render decisions regarding appropriate 

therapies difficult. Treatment regimens are not only based on subtypes, but on disease 

behaviours, and their extent and severity. For these reasons guidelines for classifying patients 

were deemed important, and necessary. A system for classification of IBD sub-phenotypes for CD 

was first introduced in 1991, by The International Working Party in Rome [28]. This Rome 

classification system was based on anatomical distribution, operative history and clinical disease 

behaviour. The classification criteria evolved into the Vienna system in 1998, which was then 

based on age of onset, disease location and disease behaviour [28]. When this was revised into 

the Montreal classification the three criteria as per the Vienna classification remained, but 

adjustments were made within them [28]. The Montreal classification age of onset categories 

were a limitation in paediatric gastroenterology, as they were A1 under 16 years, A2 17-40 years 

and A3 above 40 years. A modification of the Montreal classification for paediatric patients called 

the Paris classification was introduced, which introduced age of onset categories A1a 0 to < 10 

years, and A1b 10 to < 17 years [29]. The Paris classification also introduced amendments to 

categories within disease behaviour and location, and added a Growth category to document 

evidence of growth delay [29].  

Sub-classification of UC was addressed in the Montreal classification and focused on the extent of 

the inflammation, and the severity in UC. These categories were modified in the Paris 

classification, with an additional class in extent of inflammation, and the use of the Paediatric 

Ulcerative Colitis Activity Index (PUCAI) for measuring severity [29]. The PUCAI consists of 6 

categories where points are given based on the patient’s current status: abdominal pain, rectal 

bleeding, stool consistency and number, nocturnal stools and patient activity. Severe disease 

activity is classified as a score above 65 [30]. A similar disease activity index exists for CD severity 

called PCDAI (Paediatric Crohn’s Disease Activity Index). It covers well-being, abdominal pain, 

number of liquid stools, and abdominal mass and complications, as well as including laboratory 

results [31, 32]. 

1.1.6 Treatment strategies 

As IBD is a chronic disease, treatment focusses on inducing and sustaining remission. There are 

therapies specific to these two goals, and not every treatment is suitable for both CD and UC. The 

clinical classification systems in Section 1.1.5 aid decisions regarding treatment strategy. 

Treatment often follows a step-up approach, where aggressive therapies are reserved for disease 

which is resistant to the induction of remission. A summary of available treatments is given in 
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Figure 2. There are further challenges in treatment of paediatric, and more specifically for 

younger IBD patients. Height, weight, and body mass index must be monitored, particularly in CD 

patients, as well as managing puberty and educational needs. 

 
Figure 2 The types of treatment for IBD patients, with the subtype these are suitable for given at 

the bottom right of each section, and the aim of the treatment in the bottom left 

(I=induction, M=maintenance). Treatment is usually escalated up the pyramid, 

starting with safer therapies for milder disease. Sometimes top-down treatment is 

recommended (starting with monoclonal antibodies), which is a more aggressive 

treatment strategy that may benefit some patients. Nutritional support for paediatric 

CD may be given throughout treatment, to address malnutrition and ensure normal 

growth [33]. 

1.1.6.1 Induction of remission 

Induction therapies are primarily targeted at reducing inflammation for patients. Exclusive enteral 

nutrition involves the use of a completely liquid diet and is recommended as an initial treatment 

for CD [33]. It is not recommended for UC patients [33]. Corticosteroids are a treatment 

appropriate for moderate or severe UC and CD cases [33]. Steroidal treatments may be 

administered intravenously for acute, severe colitis cases [33]. Due to many side effects when 

corticosteroids are used long term, it is not recommended for maintaining remission [33]. 

Corticosteroids can be combined with 5-aminosalicyclic acid medications, and are recommended 

as an initial treatment for mild to moderate UC [33].  

Monoclonal therapies are usually reserved for patients who have disease resistant to remission. 

These anti-tumour necrosis factor (anti-TNF) treatments, are suitable for both CD and UC patients 
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[33]. These monoclonal therapies are also known as biologics, and have revolutionised treatment, 

demonstrating efficacy in adults in the ACCENT [34] and PRECISE [35] trials, and in the REACH [36] 

trial (88% response rate, paediatric CD). There is some evidence in adults that the introduction of 

these therapies sooner i.e. a top-down approach starting with the most aggressive treatments, 

may yield better results [37]. The benefits and risk of this approach have to be weighed carefully, 

and is currently only recommended in paediatric patients for individuals who have CD with active 

perianal fistulising disease [38]. 

1.1.6.2 Maintaining remission 

The ultimate aims of maintenance therapies are twofold: clinical remission in order that patients 

experience no symptoms of IBD, and endoscopic remission, where no inflammation can be seen in 

the gastrointestinal tract and mucosal healing can be achieved and sustained [8]. As well as being 

used as an induction therapy, 5-aminosalicyclic acids are used as a maintenance therapy in mild or 

moderate UC [33]. For CD, the first recommended maintenance treatment is immunomodulators, 

and this is also suitable for UC patients unresponsive to 5-aminosalicyclic acids [33]. 

Immunomodulators are slow-acting, so they may be started concordantly with remission-inducing 

therapies [39]. In patients where immunomodulators are ineffective, biologics are prescribed. 

Current evidence demonstrates that these drugs can lead to mucosal healing and prolonged 

remission in paediatric patients [40]. However, these treatments are not an option for every 

patient, as it is estimated that up to 30% of patients are non-responsive to anti-TNF therapies, and 

up to 40% may lose responsiveness over time [41]. Small molecule drugs are emerging as possible 

alternatives that modify specific pathways, such as Janus kinase (JAK) inhibitors. There are 

promising results in adult trials [41], but currently little evidence of their effective application in 

paediatric onset IBD. These types of treatments target the underlying molecular cause of an 

individual’s IBD. A range of small molecule drugs could lead to tailored treatments and less time 

spent administering therapies that patients will be non-responsive to. However, for this approach 

to be effective, investigation into the molecular profile of individual patients will need to become 

the standard. 

1.1.6.3 Surgery 

Patients with CD can develop complicated disease behaviour, which includes the presence of 

strictures, or narrowing, in the intestinal tract, and fistulas, where a connection forms between 

two organs [20]. Relatively common is the perianal fistula, a connection between the anus and 

skin. The 10-year risk of intestinal resection is reported to be 35.6% in paediatric CD [42]. Other 

studies have reported surgery rates of 18-35% after 5-year follow-up in cohorts of paediatric and 

adult-onset CD [43]. Overall surgery rates have declined in CD and UC patients over the past six 



Chapter 1 

8 

decades [44], potentially due to the introduction of disease modifying biologics and other more 

aggressive therapies, and a reduction in time to diagnosis [43]. For some UC patients, a colectomy 

could completely resolve symptoms. However, there is a risk of complications such as intestinal 

obstruction, either immediately or further along the disease course that may require surgery [45]. 

Rates of colectomy are estimated at 10% after 5 years in several cohorts [43].  

1.1.7 Long-term risks 

A diagnosis of IBD carries an increased risk of developing some cancers, in particular colorectal 

cancer, lymphoma, non-melanoma skin cancer [42]. Risk factors are from both the inflammation 

caused by IBD, and the therapies used to treat it. For IBD patients there also appears to be an 

increased risk of small bowel cancer [46]. The relative risk is highest for specific patient 

presentations. In UC, those with pancolitis are at highest risk. For CD paediatric onset, ileal 

disease and stricturing complications in patients increased the relative risk [46]. Some patients 

will experience extraintestinal complications, once again either caused by the disease or the 

treatment. This could include complications involving the nervous system, lungs, eyes and bones 

[47]. As there are complications related to specific treatments, discontinuing therapy during a 

protracted period of remission is trialled when appropriate. However, this can often result in 

disease relapse [40].  

1.1.8 Age of onset 

The presentation of IBD and its prognosis can vary depending on the age of onset. In general, 

infantile onset is defined as diagnosis before 2 years of age [48, 49]. The presentation of infantile 

IBD is not usually aligned with either subtype; research found that 71% of a 62 infant patient 

cohort (<12 months) were diagnosed with IBDU. Of this cohort, 31% required extensive 

immunosuppression, and 29% were given haematopoietic stem-cell transplantation [50]. Stem 

cell transplants have been shown improve colitis and gastrointestinal fistulas in those with IL-10 

signalling defects, and immunedysregulation polyendocrinopathy enteropathy X linked (IPEX) 

syndrome [48]. Presentations of these specific immune deficiencies are IBD-like. IL-10 signalling 

defects manifested as refractory colitis with perianal disease in 100% of patients in a small cohort, 

with abscesses, perianal fistulas and folliculitis being common [51]. IPEX syndrome patients 

frequently have watery diarrhoea and enteropathy, in combination with extraintestinal 

manifestations including type 1 diabetes, neurological and skin conditions [52]. Infantile onset IBD 

falls within the group of very early onset IBD (VEOIBD), defined as presenting before 6 years of 

age. The patient group diagnosed before this age are considered to be enriched for IBD caused by 

a single gene (monogenic), rather than the complex disease of those diagnosed later in childhood, 
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or adulthood [49]. They often have mutations in genes associated with primary 

immunodeficiencies [49]. VEOIBD is thought to be more difficult to manage, and surgery rates in 

this population supports this [49]. A diagnosis of UC is more common in VEOIBD, and CD is more 

common in early onset (<10 years) and paediatric (<17 years) IBD [40].  

When considering how age of onset can affect disease management more generally, it should be 

noted that although an IBD diagnosis during childhood can result in differences in disease course 

in comparison to adults, the histological, endoscopic and clinical features utilised in diagnosis and 

monitoring of remission are the same for all age groups [20]. In clinical settings paediatric and 

adult IBD are not considered to be distinct diseases, aside from in the cases of VEO IBD that 

require specific treatment protocols such as haematopoietic stem-cell transplantation. The 

differences between paediatric and adult IBD lie in disease location likelihood, growth impairment 

and reduced bone density [50], and different tendencies towards severe disease, and 

consequently surgery and further complications [20]. The age at diagnosis for the Southampton 

Genetics of IBD study cohort used in the analysis of future is visualised in Figure 3. 

 

Figure 3 Age at IBD diagnosis for all individuals recruited through the Genetics of IBD study. 

Vertical line included at 18 years to clearly show the proportion of paediatric and 

adult onset individuals. 

Aside from the differences in common disease locations discussed in Sections 1.1.2 and 1.1.3, 

there are other differences in presentation and management between adult and paediatric 

patients. Reports suggest that rates of extraintestinal manifestations are higher in paediatric 

patients than in adults [20, 53]. Paediatric-onset UC is consistently associated with more 

aggressive and extensive disease when assessed through endoscopy and histology [54]. This is 
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exemplified by a higher percentage of emergency admittance for acute severe colitis within 5 

years of diagnosis for paediatric UC patients [54]. In addition, a study by Van Limbergen et al. of a 

cohort over 10 years found a 40% colectomy surgery rate in paediatric UC patients, over double 

that of the adult patients [19]. In general, there is less of a stark difference in disease extent and 

severity when comparing paediatric and adult CD cohorts. For example, analysis suggests that 

prevalence of a stricturing endotype, and the development of fistulas after 5 years is similar in 

paediatric and adult populations [19]. However, there are several clinical presentations indicative 

of poor CD outcomes for paediatric patients. These include: growth impairment, stricturing 

endotype and penetrating disease at onset, and severe perianal disease [20]. One study did find 

significantly more perianal disease (which includes the presence of skin tags, sentinel piles or 

fistulas) at onset in their paediatric cohort, when compared to the adult IBD patients [53]. A 

higher percentage of a paediatric IBD cohort was also found to have required a change of drug 

regime to anti-TNFα therapy during the follow-up period, which was significantly different from 

the adult IBD cohort [53]. In addition, this paediatric IBD cohort was found to experience 

significantly more changes in their drug therapy schedules than the adult IBD cohort [53].  

1.2 The genomics of inflammatory bowel disease 

In Section 1.1, the heterogeneity of inflammatory bowel disease has been described. Patients are 

diagnosed with a specific subtype, and then according to a sub-classification (CD) or extent and 

severity (UC), and disease activity will vary for every patient. Many therapies are available 

depending on the disease course. Successful management is dependent on a prompt and accurate 

diagnosis, followed by effective treatment. Just as there is clinical heterogeneity, genetic 

heterogeneity is also present in IBD. Genetics is thought to make a higher contribution to the 

aetiology of IBD in paediatric patients than in adults [55, 56]. As age of onset increases, the 

genetic burden changes. In the pathology of some individual’s IBD, a genetic profile can be 

established as an underlying cause of their disease. In many case of infantile or VEOIBD a single 

gene can be identified as driving disease manifestation (i.e. monogenic IBD) [57, 58]. In early 

onset IBD, patients may be considered to have a digenic or oligogenic condition, where a small set 

of genes, potentially from the same pathway, are disease causing. Patients diagnosed later on in 

childhood or in adulthood are more likely to have a truly complex condition, where many 

mutations in the genome interacting with environmental components contribute to an IBD 

phenotype (Figure 4). Some of the clinical heterogeneity is driven by the variation in genes 

involved. However, it is not clear exactly how the genomics relates to specific phenotypes, and to 

what extent genomics drives them. It is therefore crucial to understand the genomic landscape of 

inflammatory bowel disease. As technologies have improved, from early linkage studies, to 
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genome wide association studies, and next generation sequencing, it has become easier to 

understand and analyse genomics. 

 
Figure 4 Contributions of genetic and the environmental factors vary depending on age of onset. 

At a younger age, a single or few genes are likely to contribute significantly to IBD 

onset. As age increases, environmental factors have a larger impact and many 

genetic mutations make small contributions to aetiology. 

1.2.1 Early discoveries: families, twins and linkage analysis 

Early research into IBD genetics focussed on family pedigrees and twin studies. In 1988, the first 

twin study showed a higher concordance in monozygotic twins with CD (58.3% concordance) and 

UC (6.3% concordance) than in dizygotic twins (3.6% concordance for twins with CD, 0% for UC) 

[59]. These two trends in concordance in twins, a higher concordance in monozygotic twins and 

higher concordance in those with CD, have been confirmed with further twin studies [60]. In 

1991, one of the first population-based studies it was observed that in comparison to general 

population controls, those with a first degree relative that had IBD had a 10-fold increased risk of 

developing IBD. This was true for both CD and UC patients [61]. This confirms the heritability of 

IBD, and a higher heritability in CD patients. 

Linkage studies were implemented to further the understanding of IBD genetics. Briefly, linkage 

studies rely on alleles that are located close together on a chromosome being inherited together, 

as they are highly unlikely to be separated during meiosis (this is also known as alleles being in 

linkage disequilibrium). Families with individuals that have the trait intended to be studied are 

genotyped for genetically informative markers. If a marker is close enough to a gene that confers 

susceptibility to the trait, that genotyped marker will be inherited by those with the trait, allowing 

researchers to identify regions of chromosomes where causal genes may reside. In IBD linkage 

studies, a total of nine regions were reported as conferring susceptibility on chromosomes 1, 3, 5, 

6, 7, 12, 14, 16 and 19 [1]. Of these linkage studies, the most replicated result was that of the IBD1 

locus on chromosome 16 being associated specifically with CD, and not UC. It was later confirmed 
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that the association was with the NOD2 gene when specific mutations were identified [2, 3]. 

NOD2 (Nucleotide-binding oligomerization domain-containing protein 2) is a gene involved in the 

recognition of bacterial lipopolysaccharides, and triggers an immune response via the activation 

of NF-κB. Many of the loci identified during this time pointed towards the involvement of genes 

that could result in a dysregulated immune system if mutated. The IBD3 locus on chromosome 6 

contained the Major Histocompatibility Complex (MHC), a region involved in the recognition of 

antigens, and the IBD5 locus on chromosome 5 contains genes coding for a number of 

immunoregulatory cytokines [1].  

1.2.2 Genome Wide Association Studies 

GWAS, or genome-wide association studies, have changed the understanding of the genomics of 

many complex diseases. Early association studies tested a small number of genes in a modestly 

sized case and control cohort (unlike linkage studies, individuals in the cohort were unrelated). An 

allele in a gene was said to be associated with the phenotype being investigated if it occurred at a 

significantly different frequency when the cases were compared to the controls. In contrast to 

association-based methods and linkage analyses of a family with a small numbers of markers 

(300-5,000), GWAS probed across the whole genome. In GWAS, sizable cohorts of cases and 

controls are genotyped at genetic markers known as SNPs (single nucleotide polymorphisms), 

with up to half a million SNPs genotyped for each person using commercially available arrays [62]. 

The frequency of the genotypes among cases and controls are compared, to see if a statistically 

significant association between any SNPs and disease can be identified. These studies are 

particularly suited to identifying disease-associated SNPs that are relatively common, and only 

have a modest effect size. The effect of rare variation is not able to be detected this way, as this 

would require huge numbers of participants. Additionally, not every associated SNP can be linked 

with a single gene, if there are a multiple genes in the SNP region or conversely, no genes [62]. 

IBD was a big winner in the GWAS era, and to date over 230 loci have been identified as 

associated with IBD [63-65]. The majority of these loci are not linked to a specific subtype, there 

are 71 exclusive to CD and 30 exclusive to UC [4, 66]. In fact, not only are many loci associated 

generally to IBD, but approximately 70% are also associated with other diseases that have 

underlying autoimmunity or immunodeficiency [4]. These loci are involved in pathways with many 

different functions, including: microbial defence, innate and adaptive immunity regulation, 

reactive oxygen species generation, autophagy and epithelial recovery [67]. A full review of all 

genes associated to IBD uncovered via GWAS is outside the scope of this thesis, but in Section 

1.2.6 some of the key genes and pathways that have been discovered so far are discussed. 

Although GWAS studies have found a large number of SNPs associated with IBD, their findings are 
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estimated to account for approximately 37% of the genetic heritability in CD, and 27% in UC [68]. 

There is potential to uncover some of this missing heritability by identifying variation associated 

with CD and UC that is rare or private to individuals. This can be achieved by through genetic 

sequencing. 

1.2.3 Variation in the human genome 

The human genome contains 3.2x109 nucleotide bases, of which there are four types: adenine (A), 

guanine (G), cytosine (C) and thymine (T). Deoxyribonucleic acid (DNA) is a double-stranded helix 

organised into chromosomes, and within them regions of coding and noncoding sequence. Only 

~1.2% of DNA codes for genes, the sections of sequence that encode the instructions for 

synthesising proteins. Genes have coding and noncoding regions called exons and introns, 

respectively. The sequences between genes are called the intergenic regions. The remaining 

98.8% of DNA is still of import, as it performs regulatory functions [69]. 

Each gene has several exons and introns. In order to synthesise proteins from the gene sequence, 

it is transcribed into messenger ribonucleic acid (mRNA). Then, splicing begins, where the intronic 

regions are removed from the sequence, leaving contiguous exons in a mature mRNA. Ribosomes 

translate the modified mRNA into protein, where three bases called a codon code for one amino 

acid in the protein’s structure. Start and stop codons guide the beginning and end of translation 

by the ribosomes. As the same amino acid can be coded for by more than one codon, there is an 

amount of redundancy in the genetic sequence. Therefore, not all variation in the human genome 

will cause disease. Furthermore, different types of variation can have different consequences 

downstream.  

Variation in the genome can be large or small scale. Large scale, or structural, variation refers to 

copy number variants that cause changes in the sequence longer than 1 kilobase [70]. Small scale 

variation involves a single nucleotide variant (SNV), or a small number of nucleotides. The main 

types of small variation are as follows: 

• Synonymous SNV: one base in the codon is changed, but this does not change the 

downstream amino acid. 

• Non-synonymous SNV: one base in the codon is changed, and this changes the 

downstream amino acid.  

• Stop-gain SNV: a base change converts a codon that codes for an amino acid, to one that 

codes for the termination of protein synthesis. This can occur anywhere upstream of the 

initial stop codon. 
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• Stop-loss SNV: a base change converts a stop codon to one that codes for an amino acid, 

causing protein synthesis to continue. 

• Indel: The insertion or deletion of a small number of bases. Insertions and deletions that 

are multiples of three will not affect downstream amino acids (non-frameshift variant). 

The insertion or deletion of other numbers of bases affects all downstream amino acids as 

it shifts the whole sequence (frameshift variant). 

• Splicing variant: a base change in a region of the sequence that instructs the splicing of 

the gene’s exons and introns. 

Humans carry two sets of chromosomes (diploid), one set of maternal chromosomes, and one set 

of paternal chromosomes. A variant can appear on one or both copies of a gene. This is called a 

heterozygous genotype or homozygous genotype, respectively. Sometimes there can be a 

different variant on each copy of the gene, and this is called compound heterozygosity. When a 

male individual has a variant on their only X chromosome, this is called hemizygosity. When trying 

to determine disease causal variation, it is important to consider the variant genotype as it relates 

to the disease inheritance pattern. A dominant inheritance pattern means an individual needs 

only one copy of a gene with the disease causing variation to inherit the disease, and a recessive 

inheritance pattern requires both gene copies to be affected to cause disease.  

1.2.4 Sanger sequencing 

This first generation sequencing method was developed in 1977. This method amplifies a 

sequence using the chain termination method. Four experiments are performed in parallel, with 

each experiment containing a single strand of the DNA to be amplified, primers to initiate the 

synthesis of DNA fragments, and deoxynucleotide triphosphates (dNTPs) for all four bases. In each 

experiment, dideoxynucleotides triphosphates (ddNTPs) for only one of the four bases are 

included. When a ddNTP is added instead of a dNTP, which will occur by chance during the 

reaction, the DNA fragment is terminated. These fragments of varying length are then separated 

using polyacrylamide gel electrophoresis with a lane for each of the four bases, and the resulting 

sequence can be read off the gel [71]. Contemporary Sanger sequencing uses ddNTPs that have 

been tagged with a fluorescent marker specific for each base, therefore only one experiment is 

performed. The DNA fragments are separated by capillary electrophoresis, and the fluorescent 

intensity for each base of the sequence can now be read by software [71]. This modern equivalent 

of Sanger sequencing is still in use in clinical settings, often to validate variants in the genome 

found during analysis of high throughput sequencing data. 
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1.2.5 Next Generation Sequencing 

The development of second generation sequencing, also known as high throughput sequencing or 

next generation sequencing (NGS), led to genetic data being generated at increasingly rapid rates 

for lower costs. In 2001 it cost $100,000,000 to assemble the first human genome, but 20 years 

later to sequence an individual’s genome costs approximately $1,000 [72] (Figure 5). NGS is also 

called short-read sequencing, as the method involves fragmenting the DNA into segments that 

could range from 50 base pairs to 600, depending on the method. The sequences generated as 

part of NGS are known as reads, and correspond to all, or part of the fragments of DNA. 

 
Figure 5 Decreasing costs of human genome sequencing, compared against Moore’s Law. Moore’s 

Law is the observation that computing power doubles every two years, but cost 

decreases [72].  

1.2.5.1 Genome, exome and targeted sequencing 

There are three main approaches to sequencing an individual: whole genome sequencing, whole 

exome sequencing and targeted sequencing. In whole genome sequencing, a large volume of data 

is generated on an individual, as every base is sequenced. This allows the analysis of the protein 

coding exons, and the introns and intergenic regions that can contain important regulatory 

sequences that influence transcription and splicing. The amount of data generated is dependent 

on the depth to which the genome is sequenced. Here, depth of sequencing refers to the number 

of times each base is included in a sequencing read. A higher depth of sequencing usually gives 

more confidence to individual variant detection, as more reads containing the same variant mean 

the variant is more likely to be true, rather than a sequencing error. However, higher depth comes 

at the cost of bigger file sizes. A genome sequenced at approximately 40x depth will require over 

300GB of storage space, as not only do the raw data files need to be stored, but also files that are 



Chapter 1 

16 

required for analysis of the genome (three file types need to be stored, fastq, binary alignment 

map and variant call format file, discussed in Chapter 3) [73]. Generating these files for analyses is 

computationally and time intensive. The large volume of data generated can also create issues for 

interpretation, as there are roughly 3.7 million variants in every person’s genome [74], and the 

vast majority will not cause or impact disease. Interpreting variation can be particularly 

challenging when analysing the intronic and intergenic regions. Current bioinformatic tools are 

less equipped for non-coding variation, as the connection between mutation and the downstream 

effects on protein production and pathways can be more obscure. 

In comparison to whole genome sequencing, whole exome sequencing produces substantially less 

data. To generate the same files listed for analysis previously, at approximately the same depth 

(50x) would require only 13GB of storage (own data). While only 1.2% of the human genome are 

coding regions [75], it is suggested that up to 85% of disease-causing mutations are contained in 

the exons [76]. Therefore, using exome sequencing can reduce the computation power, the 

computational and analysis time, and still uncover disease causing mutations. There are 

approximately 26,000 variants for each individual’s whole exome sequencing data [77], but 

bioinformatic tools are more equipped to assess the causal nature of these. As only specific 

sections of the genome are being sequenced, due to the sequencing technique, the depth of 

sequencing tapers towards the end of each exon (Figure 6A). This can cause difficulty in 

generating enough data at the ends of exons to confirm variants residing there. Due to this, 

splicing variants and variants in start and stop codons may be missed. It can also be very 

challenging to detect copy number variants with whole exome sequencing, as DNA is usually 

fragmented into smaller pieces during exome sequencing than in genome sequencing. This 

fragmentation also causes a variable depth in the regions sequenced. Reassembling these large 

regions of changed sequence is difficult. 

Targeted sequencing further reduces the DNA sequenced to specific genes or regions that are to 

be analysed in an individual. This method is currently applied for diagnosis of a disease that has a 

well-defined phenotype and an associated panel of genes. Additionally, it can be used to 

sequence a gene or region of interest very deeply. This approach also reduces data analysis time. 

However, if the causal mutation is not found in the initial investigation, multiple rounds of 

sequencing different genes can become more expensive that whole exome sequencing. Targeted 

sequencing also does not have the advantage of being able to apply different gene panels in silico, 

as in whole genome or whole exome sequencing. With the latter two methods, sequencing data 

can be revisited when new evidence of disease specific causal mutations comes to light. For the 

study of IBD genetics, whole exome sequencing is used as the best balance between data 

produced and interpretability for a longitudinal cohort study of a complex disease. 
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1.2.5.2 Whole exome sequencing technology 

Whole exome sequencing (WES) consists of four steps: 1) Library preparation; 2) Amplification; 3) 

Sequencing (Figure 7); and 4) Data Analysis. During library preparation for whole exome 

sequencing the extracted DNA to be sequenced is sheared randomly into fragments, either using 

a mechanical method such as ultrasonication shearing and nebulisation, or enzymatic digestion 

(biological method) [78]. Adaptors are ligated on either end of the produced library fragments. 

Tag sequences are ligated onto one or both fragment ends, depending on whether single-end 

sequencing or paired-end sequencing will take place. During paired-end sequencing, both forward 

and reverse strands are sequenced. By knowing the total DNA fragment length and the length of 

the forward and reverse reads, the distance between the reads is also known (the inner distance) 

(Figure 6B). This makes the process of mapping the reads to the reference sequence more 

accurate and efficient. After adaptors have been attached, DNA or RNA baits, along with 

oligonucleotides that are complementary to the adaptors, are added. These baits hybridise to the 

DNA fragments that are exonic. This allows fragments that are not the target for sequencing (non-

exonic regions) to be washed away, and sequences that are the target to be pulled down for 

sequencing [79]. Targeted sequencing is enabled by capture kits that are designed so that the 

correct sequences are pulled down. In this case the target is the whole exome. These sequences 

will be amplified in the next step.  
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Figure 6 Paired end sequencing. A) The sequencing of fragments is achieved through a forward 

strand read (read 1) and a reverse strand read (read 2). In whole exome sequencing, 

the introns are not sequenced, so at the points where the exon ends there is a 

tapering of reads due to their stepped arrangement. There are fewer reads to 

overlap to get an increased sequencing depth at the ends. B) Reads are sequences 

corresponding to part of the original fragment. There is a known distance between 

the two reads called the inner distance. The read length will vary, for whole exome 

sequencing this would usually be 50-150 base pairs depending on the method used. 

The fragment lengths will also vary but will invariably be longer than the read lengths 

(approximately 150-300 base pairs). 

Illumina is a biotechnology company that currently dominates the global high-throughput 

sequencing market. They perform DNA amplification via cluster generation. During cluster 

generation, the adaptors on the templates hybridise with complimentary oligo primers on the 

surface of a flow cell. A new strand is synthesised by extending the oligo primer to create a strand 

complementary to the DNA fragment. Then the bridge amplification technique is used, where the 

unconnected end of the newly synthesised strand hybridises to another oligo primer, and another 

strand is extended from this primer. Once the two strands are denatured from each other, a 

forward and reverse strand has been synthesised and are attached to primers on the flow cell. 

Clusters are generated by repeating the bridge amplification process thousands of times. Finally, 

the reverse strands that were generated are cleaved off, leaving the forward strands to be 

sequenced. 

The most common method for step three is sequencing by synthesis. This method consists of a 

series of cycles of 1) Incorporation; 2) Imaging; and 3) Cleavage. A mix of the four fluorescently 

tagged nucleotides and DNA polymerase are added to the reaction. One base at a time hybridises 
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to the DNA templates synthesised during cluster generation, as there is a reversible terminator on 

each nucleotide. During imaging the florescent tags are excited, for example by a laser, and the 

emission spectra is captured. In the final step of the cycle the fluorescent tag and reversible 

terminator are cleaved, allowing a new nucleotide to be added for the next cycle. If the 

sequencing is paired end sequencing, strands generating during sequencing are denatured and 

washed away. Another round of cluster generation follows, where the forwards strands are 

cleaved leaving the reverse strands to be sequenced. 

 
Figure 7 Schematic of the whole exome sequencing process 1) Library Preparation: the process of 

shearing DNA into fragments and pulling down fragments that are targets for 

sequencing. 2) Amplification: this process is as described by Illumina where 

thousands of copies of a DNA fragment are synthesised in order to amplify the signal 

during the next step. 3) Sequencing: the sequencing by synthesis method where 

nucleotides with a fluorescent marker and reversible terminator are added one by 

one. The fluorescent marker is excited and emits a frequency specific to the base. 

The marker and terminator are cleaved and the process repeats, giving the sequence. 

1.2.5.2.1 Analysing whole exome sequencing data 

Data from whole exome sequencing is commonly output in the form of a fastq file containing 

quality information alongside each sequencing read. The first step is alignment to the reference 

genome using bioinformatic tools such as the Burrows-Wheeler Aligner [80]. The reference 
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genome has changed over the years since the first assembly during the Human Genome Project, 

with each iteration filling in gaps in the human reference. The current genome build is GRCh38 

(hg38) comprised of 11 individual’s genomic sequences [81]. The most recent builds also have 

multiple alternative sequences in regions that are very diverse, particularly among different 

ancestry backgrounds. After alignment, regions that differ from the reference are identified 

(variant calling), and finally variants are annotated with useful information for their interpretation 

(detailed information regarding exome sequencing data processing methods are given in Chapter 

3). Many databases and bioinformatic scoring systems exist to annotate variants and help identify 

probable causal mutations. GnomAD [82] and the 1000 genomes project [83] databases provide 

information on variant frequencies in a population. PolyPhen-2 [84] and SIFT [85] both score the 

likelihood that nonsynonymous variants are damaging, dbNSFP [86] scores nonsynonymous and 

splicing variants, and GERP [87] scores how conserved each SNV is likely to be. CADD [88] and 

DANN [89] score variants’ deleteriousness using machine learning and deep learning, respectively. 

Both CADD and DANN can score all types of small variation, including synonymous SNVs and 

indels. The databases ClinVar [90] and HGMD [91] collate information from literature regarding 

potential variant pathogenicity, with the former relating this data to recorded clinical phenotypes. 

Once variants have been annotated, the variant frequencies and type are considered. Variants 

that are not rare (>1% population frequency) can be filtered using information from databases 

such as gnomAD [82], and synonymous variants excluded. The next steps depend on the purpose 

of the variant analysis. If the analysis is being performed for clinical diagnostics, then it is likely 

that deep phenotyping has been established. Additionally, a family history may be available so 

that only variants that conform to the likely inheritance patterns will be considered. Literature 

searches can identify a shortlist of genes, as well as the use of Genomics England’s PanelApp, 

which stores virtual gene panels [92]. ClinVar [90], and literature searches can help identify likely 

pathogenic variants. If the variant analysis is being performed for research, then the standard 

candidate gene list may have already been exhausted. For Mendelian diseases, the American 

College of Medical Genetics (ACMG) guidelines can be used to interpret variants of unknown 

significance [93]. In all cases, the aforementioned bioinformatic scoring tools would be used to 

determine a likely causal variant. However, any variant identified this way will need to be 

functionally validated to discover if it does change downstream mechanisms as suggested by the 

variant analysis. A summary of the strategy for analysing sequencing data to find causal variants is 

given in Figure 8. 
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Figure 8 Workflow for processing and analysing sequencing data. Simplified steps are 1) Data 

processing; 2) Variant filtering; 3) Evaluating remaining variants to find probable 

causal variants. This third step varies depending on whether the analysis is for clinical 

diagnostics, or occurring in a research environment. 

All filtering strategies have limitations. Firstly, synonymous variants can be disease causal, in 

particular there is evidence that these variants can impact splicing. The appropriate splicing of 

exons is contingent on specific sections of the exonic sequence signalling to splicing machinery 

[94]. As this process is not fully characterised, some variants that will impact splicing are 

mislabelled as synonymous. This illustrates a key constraint, that the assessment of variation is 

only as good as the bioinformatic tools available. This limitation can be partially mitigated by 

consulting many different databases to obtain a consensus view of whether a variant is likely to 

be damaging. Additionally, compound heterozygotes can be difficult to identify with whole exome 

sequencing data. It cannot be confirmed whether two different variants in the same gene have 
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impacted one, or both copies of the gene. There are also multiple transcripts available for each 

gene, and each transcript will place the variant in a different position. These transcripts are 

supported by different levels of evidence, and a well-defined gene may have more than one 

transcript supported by robust evidence. Multiple transcripts make analysing variants more 

challenging. Many pipelines are not equipped for cases where variants will have different impacts 

on the structure and function of proteins depending on the transcript used. In cases where 

pipelines are equipped, strategies for prioritising different, potentially all well-evidenced, 

transcripts must be developed [95]. This adds to the already time-intensive task of analysing 

whole exome sequencing data. 

1.2.6 Genes and pathways of inflammatory bowel disease 

Genes discovered through GWAS allowed further elucidation of pathways involved in the 

pathology of IBD (Figure 9). These pathways are interlinked, with many proteins contributing to 

the activation of multiple downstream mechanisms. High throughput sequencing enabled 

researchers to gain granularity regarding specific variation within these genes at scale. Further, 

NGS technology has led to an increase in the identification of rare variants specifically associated 

with earlier-onset IBD, either in novel genes, or in those that were already known to be associated 

with the disease.  



Chapter 1 

23 

 
Figure 9 Pathways and mechanisms potentially affected by IBD pathogenesis. a) Microbial sensing 

by phagocytes that triggers pro-inflammatory cytokines; b) Intestinal epithelial 

barrier regulates contact between immune cells, and microbes and antigens; c) 

Adaptive immunity, where T-cells and B-cells facilitate immune response; d) 

Inflammation and fibrosis. e) Cell stress processes causing autophagy and apoptosis; 

f) Cytokine networks; g) Microbial recognition by inflammasome complexes. Image 

adapted from [96]. 

1.2.6.1 Microbial recognition 

The mechanisms that recognise microbial antigens are highly implicated in CD. Immune cells such 

as macrophages and dendritic cells, as well as cells in the intestinal epithelium have the ability to 

sense and recognise these molecules [97]. Pathogen-associated microbial proteins are recognised 

by different types of pathogen-recognition receptors, including toll-like receptors (TLRs) and 

nucleotide-binding oligomerisation domain-like receptors (NLRs) [97]. The NLRs NOD1 and NOD2 

recognise γ-D-glutamyl-meso-diaminopimelic acid and muramyl dipeptide, respectively [97]. This 

can prompt the activation of the NF-κB (nuclear factor- κB), MAPK (mitogen-activated protein 

kinase) and IFN-β (interferon-β) signalling pathways (Figure 10) [97]. NF-κB signals the activation 

and differentiation of cells involved in the innate and adaptive immune response [98], and IFN-β 

signalling mobilises macrophages to resolve bacterial inflammation [99]. NOD2 is the most well 

defined risk gene in CD [2, 3]. NOD2 variants could affect the immune response in different ways. 

Decreased NF-κB signalling caused by impaired NOD2 could reduce the antimicrobial response, 



Chapter 1 

24 

causing a pathogenic microbial invasion [100]. Alternatively, NOD2 variants could cause decreased 

inhibition of TLR2, leading to an excessively upregulated response from adaptive immune cells 

[101]. In addition, a specific insertion (3020insC) has been shown to decrease interleukin-10 (IL-

10) expression, a cytokine that can downregulate the immune response [97]. 

 
Figure 10 Recognition of bacteria by NOD1 and NOD2 proteins triggers the activation of NF-κB, 

MAPK and IFN-β signalling. Image adapted from [102]. 

1.2.6.2 Innate immune response 

The innate immune response is the first defence against pathogens, and is not specific to any 

pathogen. Several components of the innate immune response are implicated in IBD, including 

epithelial barrier function and autophagy [97]. The first layer of defence of the intestinal 

epithelium is the mucosal layer, and mucin genes are an important component of maintaining 

this. In CD, abnormal expression of mucin genes in comparison to controls has been observed, 
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with decreased expression of MUC1 in inflamed ileum, and MUC3, MUC4 and MUC5B in 

uninflamed ileum [97]. The integrity of the epithelial barrier is essential to correctly regulate 

foreign bodies coming into contact with immune cells. The structure is maintained by tight 

junctions, adherens junctions and desmosomes. Increased intestinal permeability is a feature of 

both CD and UC, however many genes from IBD GWAS that code for components or regulators of 

the epithelial barrier have been specifically linked to UC (HNF4A, CDH1, LAMB1 and GNA12) [97]. 

Two genes with a role in autophagy that have been associated with CD are IRGM and ATG16L1 

[97]. Further, ATG16L1 is thought to be closely linked with NOD2; bacterial activation of NOD2 

triggers autophagy, and epithelial and dendritic cells with variants found in CD show antibacterial 

autophagy defects [67]. 

1.2.6.3 Reactive Oxygen Species 

CYBA, CYBB, NCF1, NCF2 and NCF4 are genes implicated in monogenic IBD-like disease, specifically 

chronic granulomatous disease (CGD) [103]. This is a primary immunodeficiency that affects the 

innate immune system, as a significant majority of mutations that cause CGD are loss-of-function 

mutations that result in an absence or reduction of protein subunits that form the NAPDH oxidase 

complex [104]. When the NADPH oxidase complex is activated, reactive oxygen species (ROS) are 

produced as an innate immune response to any combination of the following: microbes, activated 

pattern recognition receptors, and phagocytosis [103]. It is the failure of this mechanism that 

leads CGD patients to be very susceptible to infection [104]. However, an overproduction of ROS 

can activate the generation of pro-inflammatory cytokines such as TNFα (tumour necrosis factor 

α) [103]. ROS influences pro-inflammatory cytokine production through the NF-κB signalling 

pathway, a process that can also be induced by NOD2 [97]. These factors make the genes 

encoding the proteins of the NADPH complex of interest for elucidation of the genetics of IBD.  

There are seven different isoforms of NADPH oxidase (NOX) genes, and in particular NOX1, NOX2, 

NOX3, Duox1 and Duox2 have been reported as being expressed in part(s) of the gastrointestinal 

tract [105]. The genes NOX1, NOX2, NOX3, NOX4, NOX5, DUOX1, DUOX2, CYBA, RAC1, RAC2, 

NOXA1, NOXO1, RAP1A, NCF1, NCF2, NCF4, DUOXA1 and DUOXA2 code for subunits in one or 

more of the NADPH oxidase complex isoforms [105]. In NOX1, a stop-codon mutation has been 

identified in an early onset IBD patient [106], and missense and loss of function mutations have 

been found in VEOIBD patients [107]. Missense mutations in NOX1 and DUOX2 have also been 

found together in a VEOIBD cohort, and associated with Paneth cell metaplasia (specific epithelial 

cells in areas where they do not normally occur) [108]. A splicing mutation in CYBA [109], and 

missense mutations in CYBA, CYBB, NCF1, NCF2 and NCF4 [110], have all been reported 
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specifically in CD patients. A population based study found a significant association between 

perianal disease behaviour and NCF4 mutation [111]. 

1.2.6.4 Adaptive immune response 

The adaptive immune response (secondary immune response) targets specific antigens and 

occurs after the innate immune response. In IBD, dysregulation around adaptive immunity is 

linked to a loss of homeostasis between T regulatory-cells (Treg-cells, regulate the immune 

response) and T helper-cells (TH-cells, involved in activation of a number of immune cells) [67]. It 

is thought that Treg-cells do not sufficiently control TH-cell response in IBD [67]. Increased levels of 

TH17 cells have been found in CD and UC patients [112]. TH17 cells are induced by the IL-6, TGF-β 

and STAT3 expression, and their proliferation stimulated by IL-23 [112]. TH17 cells subsequently 

produce the cytokines IL-17A, IL17F, IL21 and IL-22, the majority of which support pro-

inflammatory actions [112]. STAT3, IL-23R (IL-23 receptor) and JAK2 are some of the genes 

implicated in TH17 dysregulation [67]. Traditionally, TH1 cell responses have been associated with 

CD, and TH2 cells with UC [67]. This is due to the levels of different cytokines in the different 

subgroups: CD patients are reported to have high levels of IL-2 and IFN-γ, and IL-5 and IL-13 are 

present at high levels in UC patients [112]. B regulatory (Breg) cells are also implicated in IBD [67]. 

Defects in these cells can result in a failure to upregulate anti-inflammatory cytokine IL-10. GWAS 

implicated IL10 as a central immune regulation gene in the understanding of IBD [67]. 

1.2.6.5 Monogenic inflammatory bowel disease 

In cases of VEOIBD, it is more likely that the disease is attributable to one gene [113]. Currently, 

94 genes have been reported in the literature and implicated in monogenic IBD, or IBD-like 

conditions (Supplementary Table 1) [57, 92, 114-142]. Many of these genes are associated with a 

primary immunodeficiency, or autoimmunity mechanism. Mechanisms affected by these genes 

include T and B cell production and regulation, phagocyte function and epithelial barrier function. 

The discovery of these genes is an important step towards personalised medicine for VEOIBD, as 

in these cases it is possible to pinpoint the exact mechanism by which IBD or IBD-like disease 

manifests. For example, Mao et al. found that a CARD8 mutation that causes monogenic CD could 

not be treated with anti-TNFα therapy due to the impediment of interactions between NLRP3 and 

CARD8, but that patients were more responsive to IL-1β inhibitors [116]. Further, in a case where 

a young child presented with intractable IBD, whole exome sequencing analysis revealed a 

hemizygous mutation in the XIAP (X-linked inhibitor of apoptosis) gene. The precise diagnosis 

meant the patient received an allogeneic haematopoietic progenitor cell transplant, and following 

the treatment there was no recurrence of gastrointestinal disease [6].  
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1.2.7 Integrating genomic information 

As genomics becomes more commonly used for cancer and rare disease in a clinical setting, 

research focus has shifted towards using genomic data for more complex situations, leveraging it 

to predict prognoses, or in diagnosis for complex disease. GWAS data has been used to devise 

polygenic risk scores, usually a sum of weighted risk loci. Uses for polygenic risk scores include 

selecting the appropriate treatment for individuals and screening a disease susceptible population 

[143]. Polygenic risk scores are limited as, although they can be derived from the whole genome 

or whole exome, they usually select specific variants to contribute to these scores. It also assumes 

a linear relationship between factors. High-throughput sequencing methods go some way to 

mitigating these issues. Polygenic risk scores have been constructed for IBD cohorts. Rarely have 

scores been connected back to a specific clinical phenotype, or the specific genetics driving 

differences in individual’s polygenic risk scores been thoroughly examined. The majority of studies 

focus on case vs control studies. Chen et al. synthesised risk scores for CD and UC patients, and 

controls in a cohort from Australia and New Zealand. In a CD subgroup for which they had 

phenotypic information, they found statistically significantly higher genomic risk scores in those 

that required bowel resection, patients with a younger age of onset, and individuals with more 

ilealic inflammation than colonic [144]. They did not report the genetics driving these differences. 

Vancamelbeke et al. focused on generating risk scores from a subset of genes involved in 

intestinal epithelial barrier dysfunction. They report significantly higher scores in CD and UC when 

each subtype was compared against controls. These differences were driven by MUC19, MUC22, 

TFF1 and PTGER4 in CD, and MUC21, MUC22, GNA12 and HNF4A in UC [145]. Another study from 

Serra et al. conducted analyses on a VEOIBD cohort. They confirm a significantly higher risk score 

for VEOIBD in comparison to controls. They also confirm a polygenic component to VEOIBD, but 

were unable to quantify the contribution of common risk variants due to a lack of monogenic 

diagnoses in the cohort [146]. 

Understanding of the genomics of IBD has improved dramatically in the past two decades, but 

there has been limited translation of this knowledge into clinical settings. Some monogenic 

conditions with IBD-like manifestations are able to be treated specifically, for example stem cell 

treatments for IPEX patients who harbour a mutation in FOXP3 [52]. This kind of personalised care 

must be extended to all IBD patients for better outcomes, and to achieve this there must be an 

understanding of the links between genotypes and phenotypes. Currently, our ability to generate 

patient’s genomic data is much faster than the ability to effectively analyse large volumes of data, 

particularly if the analysis is cohort-based rather than on an individual level. The scale and 

complexity of high-throughput data requires different tools for interpretation.  
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1.3 Machine learning 

Machine learning sits under the umbrella term of artificial intelligence, along with other 

intelligent system methodologies. Machine learning involves the implementation of algorithms to 

perform specific tasks, usually classification or regression. Classification problems can involve two 

or more groups, for example sorting patients according to the treatment they would be 

responsive to, or classifying them by disease subtype. Regression problems seek to predict a 

continuous variable. Examples include predicting the correct treatment dose for patients, and 

estimating the length of a patient’s hospital stay. These algorithms are not instructed, but infer 

patterns from data that are often obscure and non-linear. All artificial intelligence methods are 

unlike traditional statistical analyses, because these algorithms are intended for prediction, rather 

than inference. Machine learning models are built with the intent to focus on one specific 

problem, or patterns in a particular type of data. This is in contrast to other artificial intelligences, 

where the aim may be to develop a system that is capable of handling many tasks. Key to the 

effectiveness of machine learning, particularly if it is to be applied in a medical setting, is the 

ability of a model to be robust and generalisable to new data.  

1.3.1 Supervised and unsupervised learning 

In the field of machine learning, there are two main types: supervised and unsupervised learning 

(Figure 11). During supervised learning, the aim is to train a model to recognise patterns 

associated with a specific outcome. The training data has a number of variables associated with 

each individual data point (n). One of these associated variables is identified as the “outcome” 

variable that machine learning is attempting to predict, and can be a continuous or discrete 

variable. During machine learning training, the outcome variable is visible to the model, and the 

patterns in the data that relate to the outcome variable value for each data point are learned. 

Usually in a supervised machine learning workflow data is unevenly split into training and testing 

data, where the majority of the data goes towards training the model. The model produced by the 

training is applied to the testing data, where the outcome variable is hidden and the model 

predicts the outcome variable for each data point according to the rest of the variables. The 

success of a machine learning model is measured by its performance on the test data, as to be an 

effective model it must generalise well to unseen data. 

Analysis conducted utilising unsupervised learning is more exploratory. Here, there is no outcome 

variable to be predicted, and the model is constructed based on all the data. Unsupervised 

learning methods are based on clustering the data based on the patterns present. Apart from 

discovering new groupings, these methods are also useful if there is no gold standard available, or 
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if the current ground truth could be considered unreliable. This is a disadvantage of the 

supervised method, as generalisability of a model could be undermined by an outcome variable 

that does not accurately reflect the ground truth. However, as unsupervised learning models are 

free to cluster according to any observed pattern, they may be more sensitive to bias in the data, 

for example inherent sex differences in patients, or batch effects in data. 

 
Figure 11 Schematic of the basic principle of supervised and unsupervised approaches. In the 

supervised method, the groups the data belong to (orange and blue) are known, and 

the machine learning sorts the data into these groups according to the variables 

associated with each data point. In the unsupervised approach, groups are not 

known (grey), and so the learning method clusters the data based on the similarities 

within. In both cases, the machine learning models can be applied to new unknown 

data, which is then categorised or clustered accordingly. 

There are other types of machine learning. Semi-supervised learning utilises data with and 

without a labelled outcome variable for training. It can be used when the process to define the 

outcome variable is laborious. Reinforcement learning features an iterative training process that 

relies on a feedback loop recording model success and failure in order to better the model 

performance each time. The review and use of these methods is outside the scope of this work, 

but further information is supplied elsewhere [147]. 
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1.3.2 Machine learning algorithms 

The choice of machine learning algorithm is dependent on three main considerations. First is the 

overall aim of the machine learning: is the analysis intended to be exploratory, or is there a 

specific prediction problem? This question will decide whether supervised or unsupervised 

approaches are the best fit. The second consideration is the data. What is the size of the data and 

what type of data does it contain? Some methods perform better on smaller or larger data sets. 

Additionally, some types of data require specific methods, for example to extract and use critical 

information from free text, the use of natural language processing is key. Another data 

consideration is whether it is expected to contain linear and/or non-linear relationships, and so 

whether a linear or nonlinear method will be better suited. Lastly, which is more important: 

performance or interpretability? As methods become more complicated, the processes that are 

used to attain a high accuracy are more inscrutable. Even if all considerations are made, it is still 

often common practice to trial many different models in order to find the best performing one. In 

some cases model results are combined, where the majority consensus of all models for the 

prediction for each data point is taken as the final result. Table 1 gives an overview of some of the 

different models that can be used to illustrate the breadth of methods currently available for 

machine learning.  

Table 1 Description of supervised and unsupervised machine learning methods [148] 

Method Machine 

Learning Type 

Description 

Linear 

Regression 

Supervised A regression method that attempts to fine a line that will fit 

the most number of data points in the predictor space.  

Logistic 

Regression 

Supervised A version of a regression model that is instead used for 

classification. 

Neural 

Networks 

Supervised and 

Unsupervised 

A group of methods that are loosely based on the structure of 

the brain, with a series of variably weighted, nested, nonlinear 

function that processes data points in order to classify, 

regress or cluster data.  

Random 

Forest 

Supervised An ensemble method that forms a large number of decision 

trees. These trees iteratively divide the predictor space 

through a series of binary questions that will allow data points 
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to be sorted according to the outcome variable. Each tree 

sees a subset of the data and the decisions are aggregated. 

k Nearest 

Neighbours 

Supervised Compares the features of each data point to its (k) nearest 

neighbours, and positions the data point in its according 

cluster related to the outcome variable. 

Support 

Vector 

Machine  

Supervised The method partitions the predictor space into two via a 

decision boundary. Data points fall on either side of the 

boundary according to the outcome variable. This can be 

adapted for regression or multi-class classification problems. 

Hierarchical 

Clustering 

Unsupervised Creates a hierarchy of the number of clusters the data can 

cluster into in a dendrogram format. The number of clusters 

selected takes up the most vertical space in the dendrogram.   

K means 

Clustering 

Unsupervised Clusters the data points into the specified number of (K) 

clusters iteratively until no improvement to the “closeness” of 

the data points in each cluster can be made.  

1.3.3 Feature selection 

Increasingly, machine learning involves the use of very large data sets, for example the use of 

genomic or transcriptomic data sets to understand disease. These types of data sets can be highly 

dimensional, meaning a large number of variables, or features (f), are associated with each data 

point (n), such that the total number of features (F) is much larger than the total data N (F >> N). 

This type of dataset can be very noisy, and include data that may not contribute to the current 

classification or regression task. Including every feature may obfuscate the signals in the data, 

leading to a machine learning model that cannot regress or classify according to the aim. For this 

reason, a number of feature selection methods exist, in order that the maximal amount of 

information is retained for the machine learning task, with the smallest possible number of 

features. 

One of the simplest ways to reduce the dimensionality of the dataset is to remove features where 

the variance is zero, or very low. These features are unlikely to include information that will help 

differentiate the data. Another simple feature selection step is to remove features which are 

highly correlated. One of a pair of features that passes a set correlation threshold can be 

removed, as the information conferred is likely to be very similar. However, as correlation is 
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linear, this method is not suitable for use if there may be useful nonlinear relationships within in 

the data.  

Univariate feature selection is another commonly used technique that considers each feature 

separately. If the association between the outcome variable to be predicted and the feature is 

significant (p-value less than the specified threshold for significance), then the feature is included. 

The disadvantage of this method is a feature may become significant as it relates to other 

features, so there is the potential to lose important prediction information [149]. While 

multivariate approaches are more complex and computationally expensive than univariate 

approaches, it generates a feature set that arguably contains more informative patterns for the 

subsequent machine learning modelling. Forward and backward feature selection are two such 

methods. Forward selection begins with the most informative feature, and iteratively adds the 

feature with the next most information, up to the set number of features. Conversely, backward 

feature selection begins with all features, and iteratively removes the feature with the smallest 

amount of information in relation to all other present features. Both methods are referred to as 

“greedy” methods, because they evaluate one feature at a time [150]. 

LASSO, or Least Absolute Shrinkage and Selection Operator, regularisation is another method of 

feature selection that also regularises data at the same time [148]. The general idea of a 

regularisation method is to shrink the weight associated with features towards zero if they do not 

provide significant information for modelling. An upper bound is set for the total absolute value of 

the model features. This then requires that some features are regularised (shrunk) to meet this 

requirement. Unlike L2 regularisation, where only features shrinking can occur, LASSO 

regularisation will shrink features to zero if the cost of including them is too great, therefore 

excluding them from the future machine learning model. Methods based on machine learning 

algorithms such as linear support vector machines [151] and random forests [152] can also be 

used as feature selection methods. As well as the aforementioned supervised learning methods, 

unsupervised learning can be used to reduce the number of features. Methods such as principle 

component analysis attempt to condense a highly-dimensional set of data into a new set of fewer 

components. Rather than reducing features, this method creates a new set of features in lower 

dimensions that still accurately represents the structure and variation in the original data. 

1.3.4 Overfitting 

Models generated during supervised machine learning cannot be applied successfully in any 

circumstance unless they generalise well to new data. A model that is highly tuned to a specific 

data, for example because of the inclusion of too many features, will perform poorly due to 
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overfitting. In the opposite case, if there is too little information to form a model that can 

sufficiently describe the relationships in the data, this model will not perform well on the training 

or test data, and is called underfitting. This dichotomy of under and overfitting is also known as 

the bias-variance trade-off. A high-bias model will have a high training and testing error due to a 

large gap between what is predicted and the truth. A high-variance model will have a high testing 

error because the model varied greatly in order to closely match the data points in the training 

data. In machine learning, the aim is to use the simplest possible model that performs to the 

standard expected. For example, choosing to use a fourth order polynomial equation that will give 

an accuracy of 0.80 on the training data, instead of a simpler cubic equation that gives an 

accuracy of 0.78, is a poor bias-variance trade-off that will likely result in a lesser performance 

when the model is applied to testing data.  

1.3.5 Cross validation 

As discussed in the previous section, training and testing a machine learning model can reveal 

whether a model has been overfitted to a dataset. A model needs to generalise well to other data 

in order to perform correct predictions. Cross validation is a technique used to subsample data in 

supervised machine learning, and summarised in Figure 12. This process is an extension of the 

basic two-fold split of the full dataset into the training and testing datasets, sometimes known as 

hold-out validation. The dataset is first partitioned into training and testing data, with the testing 

data being set aside and not used until the model is fully trained. This is crucial in order to 

objectively view how generalisable the model is to new data. Then the training data is partitioned 

into N folds of data. Popular splits are 3, 5 and 10-fold cross validation, or a leave-one-out 

approach, where the number of folds is equal to the number of samples in the training data. For 

each iterative round of model training, all but one fold is used to train the model, with the 

remaining fold used to validate the model. Each fold is used as validation data only once, and the 

overall performance of the machine learning model on the training data is the average 

performance over all validation folds. Then the trained model is applied to the testing data. Cross 

validation allows a user to train and validate a model several times over, while leaving the testing 

data completely unseen to the model. This allows an extra opportunity to check the 

generalisability of a model, without increasing the amount of data. Cross validation is more 

computationally intensive than simply splitting the data into training and testing sets. In the 

training of random forests, a similar process to cross validation called out-of-bag sampling is 

conducted, where a subset of the data is used to build different trees that subsequently assemble 

into a random forest model. For this reason, cross validation is not used when building random 

forest-based models. 
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Figure 12 Schematic of the implementation of cross validation in machine learning.  

1.3.6 Evaluation metrics 

When evaluating the performance of a machine learning model, there are several metrics that can 

be employed. Two of the key metrics that give an overview of model performance are the area 

under the receiver-operator curve (AUC), and the F-score. The F-score, sometimes called the F1-

score or F-measure, is a weighted average of two metrics, precision and recall (sensitivity). AUC 

combines sensitivity and specificity. The AUC metric is unaffected by imbalanced data, which is 

common in machine learning. The F-score can be affected by skews in the number of data points 

associated with each outcome variable. However, there is evidence that the same AUC can 

produce different precision-recall curves, which supports a need to look at several evaluation 

metrics when evaluating model performance [153]. Many of the popular evaluation metrics are 

defined in Table 2. 
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Table 2 Definitions of commonly used evaluation metrics in machine learning. 

Metric Definition 

Accuracy Usually given as a percentage, a measurement of the total number 

of correct predictions made by a model. 

Area under the receiver-

operator curve (AUC) 

Reported as a percentage or number between 0 or 1, this metric is 

calculated using the model sensitivity/recall and specificity  

Balanced Accuracy Usually a percentage, and should be used for imbalanced datasets. 

The total number of correct predictions in each class is weighted 

according to the proportion of data available in each class. 

F-Score A model performance measure (between 0 and 1 or a percentage) 

calculated using the recall and precision metrics.  

Out-of-bag Error A metric (between 0 and 1) exclusive to random forest-based 

methodologies, measuring the test error of an assembled model.  

Precision A measure also known as the positive predictive value, the number 

of true positives as a fraction of the total given a “positive” label 

(given either as a percentage or a number between 0 and 1). 

Recall This metric is also known as sensitivity. 

R2 Measurement of the variation in the data explained by a 

regression model. 

Sensitivity Given either as a percentage or a number between 0 and 1, this 

measures the number of correctly identified true positives. 

Specificity Given either as a percentage or a number between 0 and 1, this 

measures the number of correctly identified true negatives. 

1.4 Thesis outline and aims 

In this thesis I present work detailing the application of bioinformatic, statistical and 

computational methods with the aim of classifying or stratifying IBD patients, in order to further 

progress towards the ultimate aim of personalised medicine for individuals with this chronic, 
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complex disease. This thesis first assesses the state of the field through a systematic review of ML 

applications to autoimmune disease. This topic is later revisited to gauge how this area of 

research as change, specifically for IBD. Using oxidative stress and antioxidant potential assay 

data, the connections between these markers, clinical data and genomic variation are elucidated. 

The main focus of the thesis is to develop optimal strategies to utilise genomic data alongside ML 

to classify IBD patients by their disease subtype, and CD patients by the presence or absence of a 

stricturing endotype. This included deducing the best way to prepare WES data to be used as 

input in ML algorithms and improving on feature selection processes. This was with the 

overarching aim of using ML techniques to bridge the gap between generating genomic data on 

patients with life-long clinical needs, and enabling this data to inform clinical management of 

these patients.  
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Chapter 2 Systematic review of the applications of 

artificial intelligence and machine learning for 

autoimmune disease 

Chapter summary – the systematic review in this chapter uses a straightforward search strategy 

to assess artificial intelligence and machine learning (ML) applications to some of the most 

common autoimmune diseases (search performed December 2018). The aim was to evaluate 

the popular research questions for ML, which algorithms were most frequently used, and what 

types of data were common. A summary of these questions for each autoimmune disease is 

provided, alongside statistics such as the median sample size. The remainder of the results 

section is organised according to the research question (for example diagnosis, or autoimmune 

disease management). This work gave a broad overview of the current research in this 

interdisciplinary field. 

 

Chapter contributions – systematic search performed by Imogen Stafford. Imogen Stafford and 

Melina Kellermann were first and second reviewers, respectively, for the assessment of study 

abstracts. Enrico Mossotto also assisted with study inclusion and exclusion in cases where this 

decision was challenging. Imogen Stafford gathered data from all papers and performed all 

further analysis. 

2.1 Introduction 

2.1.1 Autoimmune disease 

Autoimmune diseases are chronic and complex, whereby genetics, the environment, and immune 

system dysregulation all contribute to their development (Figure 13). Due to the heterogeneity of 

onset and progression, diagnosis and prognosis for autoimmune diseases is unpredictable. The 

prevalence of autoimmune disease is difficult to estimate as diseases are variably represented 

across studies and no definitive list exists [154-156]. The approximate prevalence is evaluated to 

be between 4.5% [155] and 9.4% [154]. 
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Figure 13 Three factors that contribute to autoimmune disease development. I: Genetic 

predisposition is often conferred by a combination of genes that may include human 

leukocyte antigen (HLA) genes in the major histocompatibility complex (MHC). These 

directly or indirectly affect immune system regulation. II: examples of potential 

environmental events that trigger or contribute to dysregulation of the immune 

system. III: autoantibody production by itself will not always result in development of 

autoimmune disease, other dysregulation such as self-antigen production and 

unnecessary escalation of immune response mechanisms is often required [157] 

The contribution of genetics towards autoimmune disease development has been illustrated with 

monozygotic and dizygotic twin studies. For example, the concordance of multiple sclerosis was 

estimated to be 25-31% in monozygotic twins, and 3-5% in dizygotic twins [158]. However, the 

range of autoimmune disease concordance in monozygotic twins was wide, 12-15% for 

rheumatoid arthritis in comparison to 75-83% for coeliac disease [158], indicating that the extent 

that genetics contributes varies considerably. Additionally, HLA-DQ genetic markers have been 

associated with multiple autoimmune diseases [159]. This paints a complex picture of genetic 

involvement in autoimmune disease, without considering other contributory factors. 

Genetics often contributes to autoimmune disease by predisposing individuals to autoimmunity 

[160]. Resultant specific autoantibodies from loss of self-tolerance have been detected in patients 

before clinical onset in many autoimmune diseases [161]. Autoimmune disease will only manifest 

after further dysregulation in both the innate and adaptive immune system [162]. Microbial 

antigens, foreign antigens and cytokine dysregulation, can cause induction of self-reactive 

lymphocytes [157]. Hyper-activation of T and B cells may occur, along with a change in the 

duration and quality of their response which further disrupts the homeostasis of the immune 

system [162]. 

Gene-environment interactions can also contribute to autoimmune disease, through epigenetic 

mechanisms. Many environmental factors, including infections, ultraviolet light, environmental 

pollutants, smoking and diet, can induce epigenetic changes [163]. This can modify gene 

expression and also contribute to loss of tolerance [164]. Specific DNA methylation and histone 
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modifications have already been identified for a number of more prevalent autoimmune diseases 

[165]. 

2.1.2 Personalised medicine 

Personalised medicine is an area generating increasing interest, given its success transforming 

cancer treatment for some patients [166]. Application of these kinds of strategies are becoming 

achievable given current technologies. These approaches may be of particular value for complex 

diseases, such as autoimmune diseases. There is distinct variability within disorders [167], and a 

proportion of patients have additional autoimmune diseases (Table 3) due to shared 

developmental mechanisms [168]. Arguably, a ‘one-size-fits-all’ approach to treatment is not 

appropriate for this heterogeneity within diseases coupled with autoimmune co-morbidities. The 

realisation of personalised healthcare would lead to treatment of the causal molecular 

mechanism, resulting in better patient outcomes.  

Table 3 Number of patients with one or more additional autoimmune diseases. These studies 

perform their analysis by first identifying a cohort with one autoimmune disease (left 

column), and subsequently reviewing the presence of other autoimmune diseases in 

the cohort.  

Autoimmune disease Patients with additional autoimmune disease(s) (%) 

Rheumatoid Arthritis 24.3 [168] 

Myasthenia gravis 15 [169] 

Hashimoto’s Thyroiditis 29.4 [170] 

Vitiligo 19.8 [171] 

Standard patient care generates a diversity of clinical data types, and these data are often 

accumulated longitudinally over the disease course. Examples include: images obtain during 

colonoscopies and magnetic resonance imaging (MRI), laboratory test results from blood or 

urinary samples, symptoms at diagnosis, successful and unsuccessful treatments, and time 

between flare-ups of a relapsing-remitting disease. Along with demographic data, this information 

is increasingly stored in electronic medical records (EMRs) [172], establishing these records as a 

rich data source.  

In addition to a wealth of clinical data, ‘omic data is becoming widely available. ‘Omic data sets 

are large, as molecular measurements are made on a genome-wide scale [173]. It is sizeable 
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enough that computational power and capacity remain a limitation [174], along with the expense 

of data storage and operation of these technologies, despite their high-throughput nature [175]. 

The advent of high throughput technologies has allowed quick analysis of many ‘omic data types, 

including the genome, transcriptome and proteome. Layering multiple sets of ‘omic data may give 

a fuller picture of the molecular status of individual’s autoimmune disease, leading to novel 

insights that could evolve into treatment strategies.  

This wide variety of data types has limited clinical utility without methods for interpretation. 

There is a clear need for automated, intelligent systems, and computational tools that can 

uncover obscure, clinically relevant patterns within the wealth of data. Artificial intelligence and 

machine learning methods have the capacity to fulfil this purpose [176]. The ability to stratify 

patient’s using these data has implications for their care, from estimation of autoimmune disease 

risk, diagnosis and prognosis to management, monitoring and treatment response. 

This systematic review aims to appraise the current applications of artificial intelligence and 

machine learning methods to autoimmune disease for improved patient care. The study identifies 

the most common models, data and application types. Potential areas for improvement in this 

area of exciting interdisciplinary research are established, and promising future possibilities 

discussed.  

2.2 Methods  

2.2.1 Autoimmune disease selection 

The autoimmune diseases selected for the systematic review were based on prevalence estimates 

[154], choosing those that were most likely to have sufficient data for analysis using machine 

learning. These included: Addison disease, alopecia, Coeliac disease, Crohn’s disease, ulcerative 

colitis, type 1 diabetes, autoimmune liver diseases, hyper- and hypo-thyroidism, multiple 

sclerosis, myasthenia gravis, polymyalgia rheumatica, psoriasis, psoriatic arthritis, rheumatoid 

arthritis, Sjӧgren syndrome, systemic sclerosis, systemic lupus erythematosus, systemic vasculitis, 

uveitis and vitiligo. 

2.2.2 Systematic literature search  

Literature searches were performed electronically with OvidSP on the MEDLINE from 1946, and 

EMBASE from 1974 databases. An additional search on the Computers & Applied Sciences 

Complete database, available on EBSCO, was performed. This was to ensure the capture of all 

relevant studies, those aiming to solve medical problems, and those focusing on algorithm 
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development that may use medical data. The literature search was completed in December 2018, 

last search 17/12/2018. Autoimmune diseases were searched for separately, using a search 

structure of the worlds “machine learning” or “artificial intelligence” combined with the selected 

search terms for that autoimmune disease. The diseases and their corresponding search terms are 

listed in Table 4. Boolean operators OR and AND were used to combine search terms 

systematically. In both databases, the search terms needed to be present in the title, abstract, or 

subject terms/keyword headings assigned by the study’s authors. 

Table 4 Search terms used in OvidSP and EBSCO for each autoimmune disease. 

Autoimmune Disease Disease Search Term(s) Used  

Addison’s Disease  Addison* 

Alopecia Alopecia 

Celiac Disease Celiac, Coeliac 

Inflammatory Bowel Disease  Inflammatory Bowel Disease, Crohn* Disease, Ulcerative 

Colitis 

Type 1 Diabetes Type 1 Diabetes, Insulin?dependent Diabetes 

Autoimmune Hepatitis Autoimmune Hepatitis, Chronic Active Hepatitis, Primary 

Biliary Cirrhosis, Primary Sclerosing Cholangitis 

Thyroid Disease Autoimmune thyroiditis, Hashimoto* Thyroiditis, Hashimoto* 

Disease, Grave* Disease, Hyperthyroid*, Hypothyroid* 

Multiple Sclerosis Multiple Sclerosis 

Myasthenia Gravis Myasthenia Gravis 

Polymyalgia rheumatica  Polymyalgia rheumatica  

Psoriasis Psoriasis 

Psoriatic arthritis Psoriatic arthritis 

Rheumatoid Arthritis  Rheumatoid Arthritis  
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Sjӧgren syndrome Sjogren syndrome 

Systemic sclerosis Systemic sclerosis 

Systemic Lupus Erythematosus Lupus 

Systemic Vasculitis Polyarteritis nodosa, microscopic polyangiitis, granulomatosis 

with polyangiitis, eosinophilic granulomatosis with 

polyangiitis. 

Uveitis (iridocyclitis) Uvetitis, iridocyclitis 

Vitiligo Vitiligo 

2.2.3 Inclusion and exclusion criteria 

Studies that applied machine learning methods to any autoimmune disease listed above, or to 

complications arising from autoimmune disease were included. Studies that applied machine 

learning to a non-autoimmune disease comorbidity in patients with autoimmune disease were 

excluded. Other applied exclusion criteria were: studies not written in English, a publication date 

before 2001, machine learning not trained on real, human patient data, articles that were not 

peer-reviewed, and review articles. This systematic review conforms to the Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses (PRISMA) standards [177]. 

2.2.4 Data Visualisation 

Studies were assigned an ML type according to the ML method used. Studies were counted 

multiple times if there was more than one ML method recorded. The ML type and the 

corresponding autoimmune disease this was applied to, and the IBD clinical applications ML was 

applied to, was plotted in R [178] using ggplot2 [179]. 

2.3 Results 

2.3.1 Summary of results 

A total of 702 papers were identified in database searches, of which 169 met the criteria for 

inclusion in analysis. 227 duplicate records were removed, 273 records were excluded after 

reading the abstract, and 33 excluded after a full text read (Figure 14). Information on the 
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included studies is summarised in Table 5, and a more detailed breakdown of the contents of each 

study is given in Supplementary Table 2. Of the autoimmune diseases included in searches, six did 

not return any study that met criteria for analysis: Addison disease, myasthenia gravis, 

polymyalgia rheumatica, Sjӧgren syndrome, systemic vasculitis, and uveitis. 

 

 
Figure 14 Flowchart recording number of papers reviewed in each stage. During the screening and 

eligibility stages the inclusion and exclusion criteria are applied, first to the title and 

abstract, and subsequently to the full text. For some records at the screening step, 

inclusion or exclusion could not be established based on abstract only, and so a full 

read of the record was completed at the eligibility stage. Two reviewers screened 

records independently. If consensus on the record could not be established, a third 

reviewer assessed the article and determine whether it was included or excluded.
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Table 5 Artificial intelligence and machine learning applications to autoimmune diseases. Study information is recorded per autoimmune diseases and includes: study 

count, year range studies were published in, popular applications and methods, and all data types used. Median (range) sample size is included rather than 

the mean, due to the inclusion of a minority of studies that had very large cohorts, usually analysing genome wide association study data, or electronic 

medical records. 

Disease Number of 

Studies 

Years Most Popular 

Classification/Prediction 

Application(s) 

Most Popular Machine Learning 

Method(s) 

Median Sample 

Size (min, max) 

Data Types Used  

Multiple 

Sclerosis 

41 [180-220] 2008-

2019 

Diagnosis, Prognosis, 

Disease Subtype  

Type of Regression, Random Forest,  

Support Vector Machine  

99 (12, 12566) Clinical, Survey, Genetic, MRI, Lipid 

Markers, SNPs, Gait Data, Immune 

repertoire, Gene Expression 

Rheumatoid 

Arthritis  

32 [221-252] 2003-

2018 

Risk, Diagnosis, Early 

Diagnosis, Identify Patients  

Support Vector Machine, Variations 

of Random Forest, Neural Network 

and Decision Tree 

338 (22, 922199) Medical Database, Immunoassay, 

Metagenomic, Microbiome, GWAS/SNP, 

Clinical, Movement Data, Amino acid 

analytes, Transcriptomic, EMRs, 

Ultrasound images, Proteomic, Laser 

images  

Inflammatory 

Bowel Disease 

30 [253-282] 2007-

2018 

Diagnosis,  Random Forest, Support Vector 

Machine  

273 (50, 53279) Clinical, Colonoscopy Images, 

Metagenomic, Gene Expression, 
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Response to Treatment, 

Disease Risk, Disease 

Severity  

GWAS, Microbiota, miRNA Expression, 

EMRs, Exome, MRI 

Type 1 Diabetes 17 [283-299] 2009-

2018 

Disease Management Novel Methods/Hybrid Models, 

Neural Network, Support Vector 

Regression 

23 (10, 10579) Clinical, Red Blood Cell Images, VOCs, 

GWAS/SNPs  

Systemic Lupus 

Erythematosus 

14 [300-313] 2009-

2018 

Variations of prognosis, 

Diagnosis  

Logistic Regression, Neural Network, 

Random Forest  

Decision Tree 

318 (14, 17057) Clinical, Electronic Health Records, Drug 

Treatment, SNPs, MRI, Exome, Gene 

Expression, Proteomic, Urine Biomarkers  

Psoriasis  11 [314-324] 2007-

2018 

Diagnosis, Disease Severity Support Vector Machine 540 (80, 22181) Digital Image, GWAS, Proteomic, RNA 

Biomarkers 

Coeliac Disease 7 [325-331] 2011-

2018 

Diagnosis Random Forest, Logistic Regression, 

Bayesian Classifier, Support Vector 

Machine, Logistic Model, Natural 

Language Processing, Combined 

Fuzzy Cognitive Map and 

465 (47, 1498) VOCs, Clinical, Peptide, EMRs 
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Possibilistic Fuzzy c-means 

clustering. 

Thyroid 

Diseases  

6 [332-337] 2008-

2018 

Diagnosis Hybrid Models 215 (215, 7200) Clinical 

Autoimmune 

Liver Diseases 

5 [338-342] 2009-

2018 

Prognosis Variations on Random Forest  288 (64, 787) Clinical, Clinical Trial, Microbiome  

Systemic 

Sclerosis 

4 [343-346] 2016-

2018 

Diagnosis, Treatment, 

Prognosis 

Support Vector Machine, Random 

Forest  

119 (37, 991) Gene Expression, Nailfold capillaroscopy 

images, Peripheral Blood Mononuclear 

cell data (flow cytometry, DNA, mRNA) 

Alopecia 1 [347] 2013 Comorbidity Analysis Natural Language Processing 3568 Patient Data Repository 

Vitiligo 1 [348] 2013 Comorbidity Analysis Natural Language Processing 3280 Patient Data Repository 
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The diseases where machine learning and artificial intelligence techniques were most prevalent 

were multiple sclerosis (MS), rheumatoid arthritis (RA) and inflammatory bowel disease (IBD). 

These models used the highest variety of data. In addition, only models of these diseases used 

two data types (13/169 studies, clinical data was always one data type). Support vector machines 

and random forests were the most common machine learning methods, through all types of 

application and autoimmune diseases (Figure 15). The highest variety of machine learning types 

were applied to RA, followed closely by IBD. For every autoimmune disease clinical data was used 

in creating models, and for the majority of diseases a type of genetic data. The heterogeneity of 

machine learning methods and the pipelines they reside in, applications and data, as well as 

validation and evaluation of different approaches (Supplementary Table 2) renders a meta-

analysis inappropriate. 

 

Figure 15 Stacked bar chart of types of machine learning found in the systematic review, grouped 

according to the main autoimmune disease they were used for. The other category 

includes uncommon methods, and novel ML pipelines. 

The applications of machine learning to autoimmune disease can be categorised into six broad 

areas: risk prediction, patient identification, diagnosis, classifying disease subtypes, progression 

and outcome, and monitoring and management. 
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2.3.2 Identifying and assessing autoimmune disease risk 

The two main applications in this category were disease risk prediction [211, 221, 238, 266, 275, 

276, 282, 287, 291, 292] and identification of novel risk factors using feature selection [234, 240, 

248, 259, 313] for IBD, type 1 diabetes (T1D), RA, systemic lupus erythematosus (SLE) and MS. 

Random forest, support vector machine and logistic regression were popular machine learning 

model types. A form of genetic data was utilised in fifteen studies, using sequencing arrays 

(GWAS), exome data (9 studies), gene expression data [211, 259], individual SNPs [291] within the 

HLA regions [191, 287], or from pre-selected genes [240]. Two studies combined a type of genetic 

data with clinical data [191, 211], and one used clinical data only [221].  

2.3.3 Patient identification 

The focus of this group of studies was to identify patients with autoimmune diseases from their 

electronic medical records using natural language processing [230-232, 301, 309, 329, 330]. 

Gronsbell et al. focused on increasing the efficiency of these types of models [245, 250]. The 

intention was for algorithms such as these tor replace International Classification of Diseases 

billing codes, which have reported error rates of 17.1-76.9% because of the inconsistent 

terminology used [301]. These algorithms also identify a cohort for further analysis, whether that 

be with machine learning or other methods. Natural language processing was also used in the two 

identified comorbidity studies for alopecia and vitiligo. Both diseases had similar autoimmune 

comorbidities [347, 348].  

2.3.4 Diagnosis 

Patient diagnosis was the most frequent application of machine learning, and used for all 

diseases. Support vector machines and random forests were the most frequently utilised model 

types for this area. Twenty-seven studies focussed on classifying cases and controls. This model 

type could have applicability in specific cases, for example where patients are asymptomatic. 

However, distinguishing cases from controls may not be as clinically useful as the other models in 

these studies, such as those using patients with a different autoimmune disease as controls [241-

243, 308], exploring the classification of multiple autoimmune diseases [272, 341], or 

distinguishing diseases with similar presentations [209, 214, 236, 320, 326, 346, 349], for example 

coeliac disease and irritable bowel syndrome. Early diagnosis was specified as important for the 

degenerative conditions MS and RA, and so seven studies developed models for that aim [190, 

192, 227, 243, 244, 249, 252]. More diagnostic applications included stratifying those with coeliac 
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disease from an at risk group [325, 327], and distinguishing those likely to develop T1D 

complications [285, 295]. 

2.3.5 Classifying disease subtypes 

Machine learning classified RA (one study), IBD (two studies) and MS (six studies) disease 

subtypes. These methods differentiated between CD and UC in the case of IBD, and two or more 

of the four MS subtypes: relapsing remitting MS, primary progressive MS, secondary progressive 

MS and progressive relapsing MS. Despite unsupervised methods being utilised infrequently, this 

area featured the use of three different unsupervised clustering algorithms: hierarchical clustering 

for identifying novel IBD subtypes [254]; consensus clustering to identify high, low and mixed 

levels of inflammation in RA [226]; and agglomerative hierarchical clustering to cluster MS by 

genetic signature [188]. Two of the previous studies also employed the supervised method 

support vector machines [226, 254]. There was a wide variety of data types considering the small 

number of studies: clinical (particularly MRI), genetic, RNA sequencing and gene expression data 

were all utilised. 

2.3.6 Disease progression and outcome 

Aside from diagnosis, predicting aspects of prognosis was the most prevalent area for model 

development. Twenty-seven studies focused on disease progression and patient outcomes. Other 

study emphases were disease severity [233, 265, 315, 316, 318, 321, 331] in psoriasis, RA, IBD and 

coeliac disease; treatment response [228, 239, 251, 258, 260, 261, 268, 273, 338] in IBD, RA and 

primary biliary cirrhosis (PBC); and survival prediction [247, 306, 342] in PBC, RA and SLE.  Other 

models focused on improved image segmentation to aid prognoses [207, 213, 216, 280, 281, 312] 

for IBD and MS. Commonly used methods were support vector machines, random forests and 

neural networks. Few studies utilised ‘omic data [224, 256, 273, 324], with the majority using 

clinical data as a machine learning input.  

2.3.7 Monitoring and management 

Machine learning was used for the monitoring and management of T1D, MS and RA. Of the ten 

studies in T1D, four were for blood glucose predicted, four focused on predicting or identifying 

hypoglycaemic events and two used machine learning to support decision making using decision 

support systems or case-based reasoning. The majority of these models used clinical data. The 

other models were developed for monitoring movement in MS (three studies) and RA (one study) 
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using activity measurements. Support vector regression was the most frequently used method 

[189, 199, 289, 290, 297]. 

2.3.8 Inflammatory Bowel Disease 

As the research conducted in subsequent chapters centres IBD specifically, it was thought 

appropriate to summarise the systematic review findings in relation to this disease. While 11 

different ML types were used in modelling for IBD, a large proportion of studies employed 

Random Forests (55%) [253, 256, 258, 261, 262, 268, 272-274, 280, 281] and Support Vector 

Machines (40%) [254, 255, 262, 264, 265, 267, 276, 278]. The clinical task types that ML was 

applied to for IBD are visualised in Figure 16. Another factor of interest was the composition of 

the cohorts used for these studies. Some studies had cohorts of CD [256, 263, 265, 271, 273, 275, 

279-282]and UC [255, 257, 260, 261, 270] patients (33.3% and 16.7%, respectively), and others 

treated IBD as a singular disease group (20%) [253, 258, 262, 267, 268, 276]. The remaining 

studies made note of the CD and UC subgroups within their cohort for analysis. Finally, it was 

noted that there were 5 studies that utilised genetic data [266, 275, 276, 279, 282], and this data 

type usually comprised genetic array-based data or the inclusion of selected SNPs. Two studies 

had WES data available [275, 282], of which one used this data to impute genotypes [282].  

 

Figure 16 Number of studies per each prediction or classification task that ML was applied to for 

IBD. 
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2.3.9 Validation and independent testing 

Of the 169 studies evaluated, 11 did not use any cross-validation method, so in these cases model 

robustness and applicability is uncertain. Not including research that used random forest models 

(where it is unnecessary to use cross-validation), or neural networks (where a cross-validation 

process can be too computationally intensive), 18/169 models only used hold-out validation. 

These models may be of clinical use, but unless the dataset is very large these methods have not 

been as robustly validated in comparison to those that use k-fold cross validation, a leave-one-out 

approach, or the combination of cross-validation methods and application of the method to an 

independent data set. A minority of studies (14/169) did use the latter combination for evaluating 

their models. This research did not have any machine learning algorithm types or applications in 

common, and the studies were for many different autoimmune diseases. The most common input 

data was clinical and genetic data. 

2.4 Discussion 

The variety of the machine learning models used and the pipelines that contain them reflects the 

heterogeneity of the autoimmune diseases the methods were utilised for. This makes it 

challenging to determine the methods that would be most effective, carried forward to further 

validation, and ultimately clinical application. Alternatively, instead of choosing one model, many 

could be combined with the aim of gaining consensus for the specific machine learning task. 

Modelling utilised an assortment of ‘omic data, including proteomic, metagenomics and genomic 

data. More common were sequencing array (SNP/GWAS) data, especially when the focus was 

predicting disease risk. Undoubtedly the most prevalent data type was clinical and laboratory 

data.  

Data accessibility is critical for incorporating machine learning models into everyday clinical 

practice, and EMRs provide this for clinical and laboratory data. Some initiatives have moved to 

storing other data types in these systems, which will be essential for incorporating of multiple 

datatypes at a large scale. The eMERGE (electronic medical records and genomics) network 

integrates the genomic and EMR data repositories [350]. The SPOKE (Scalable Precision Medicine 

Oriented Knowledge Engine) study aims create an intelligent system that integrates data types in 

the storage platform, whilst analysing the connection between GWAS, gene ontology, pathways 

and drug data and EMRs using unsupervised machine learning [351]. Understanding the 

relationships between these and other data is key to implementing personalised medicine. 

Personalised medicine approaches have already revolutionised cancer prognoses, improving 

patient outcomes and quality of life, accompanied by economic benefits to treatment providers. 
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Precision treatment has been propelled by the identification of cancer-specific driver mutations 

[352], allowing the identification of molecular diagnosis that subsequently influences the 

treatment strategy. Using targeted therapies, for example monoclonal antibodies and small 

molecule inhibitors has transformed the treatment of some cancers, or improved survival times 

[166]. Both cancer classification [353, 354] and pathway discovery has been achieved using 

machine learning. Classical treatment of autoimmune disease has usually involved a broad-brush 

approach to treatment. By utilising machine learning in conjunction with ‘big’ data, patients could 

be stratified into groups, and the appropriate treatment identified: the approach that has been 

effective in cancer. Currently, some studies have already exhibited this approach by using 

machine learning to investigate IBD subtypes [254], and stratifying inflammation status in an RA 

patient cohort [226]. 

Of the many models that were created for autoimmune disease diagnosis, usually classifying 

patients and controls, the majority achieved good classifier performance (where a combination of 

metrics are over the following thresholds: accuracy > 81%, AUC > 0.95, Sensitivity > 82, 

Specificity > 84). Although these classification tasks were somewhat simple, they illustrated 

machine learning’s utility in diagnostics. 

With respect to research specific to IBD, this systematic review identified some underexplored 

areas in the field. WES data was determined to be a rare data type to use [275, 282], and while 

there were 5 studies total utilising a form of genetic data, no study using this data type employed 

a Random Forest algorithm, which was very common in general for ML applications to IBD. As an 

algorithm that can leverage data containing non-linear relationships, Random Forest could allow 

the extraction of non-linear gene-gene interactions in genomic data for the benefit of IBD clinical 

classification tasks. Further, the majority of studies either considered IBD as a single disease class, 

or their cohort consisted of only CD, or only UC patients. This combined with only 2 studies 

building classifiers based on IBD subtype, suggests that a further look at using ML to analyse 

subtype differences could be beneficial to the field. 

Six of 169 models from the literature returned more than one of the following metrics as either 1 

or 100%: AUC, accuracy, precision and recall, sensitivity and specificity [186, 249, 285, 295, 317, 

343]. A perfect performance indicates that a machine learning model may not be necessary, as 

the some variable(s) in the dataset classify the groups with no error. Alternatively, this 

performance may indicate overfitting without robust evaluation, or the poor implementation of 

cross-validation techniques. 

When researchers reported machine learning results, the metrics used varied considerably, but 

often included accuracy, AUC, sensitivity and specificity. For the majority of machine learning 
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tasks accuracy is an inferior measure to AUC, particularly when the dataset is imbalanced [355]. 

The AUC measure is not affected by an imbalanced dataset, but precision-recall curves may more 

accurately reflect the performance of a model [153]. In the case of creating and evaluating any 

model, it is important to decide the metrics that are most important to its evaluation. That is, 

whether to minimise the false positives or false negatives. Scully et al. illustrated this with their 

lesion segmentation model for SLE, which achieved a high specificity (99.9%) by labelling all tissue 

as non-lesion [312].  

A small proportion of the studies combined cross validation with a separate testing set for more 

robust model evaluation, and the importance of this was demonstrated with Ahmed et al’s [227] 

machine learning model. In their study the AUC dropped by 0.25 using an independent dataset, 

indicating a decreased model performance on new data, and the importance of an independent 

dataset to assess the generalisability of a model. 

The literature reviewed here demonstrated that artificial intelligence and machine learning 

methods can provide useful insight, and potentially improve patient outcomes, despite the 

heterogeneity of autoimmune disease presentation, diagnosis, and prognosis. The diversity in 

data used, machine learning models, and in particular model evaluation, is a preventative barrier 

to transferring the knowledge obtained with these models to the clinical practice. Further, the 

focus of the systematic search was restricted to a chosen list of autoimmune diseases, which may 

have not fully captured all literature using machine learning for autoimmune diseases.  

From consideration of the studies included here, it appears appropriate to advocate for the 

standardisation of model evaluation, a combination of cross validation and independent test data 

for model validation. Results should be reported using the full spectrum of evaluation metrics, 

including AUC, sensitivity, specificity and F1 score. Increased confidence in model results may 

allow for more complex model creation, through layering data types, or combining models. These 

methods could then by applied to tasks that mirror the complexity of autoimmune diseases. 

Through these improvements, artificial intelligence and machine learning brings the reality of 

personalised medicine closer for, not only patients with autoimmune disease, but those with any 

common, complex disease. 
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Chapter 3 Methods and method development 

Chapter summary – this chapter discusses the methods used for the processing and 

transformation of the WES data used throughout this thesis. This includes the alignment, variant 

calling and annotation of individuals alongside the quality control of WES batches. In addition, 

the processing of this data as a cohort – variant joint calling, filtering for a high quality callset 

and subsequent annotation – is also outlined. The transformation of WES data into a matrix of 

per-gene, per-patient scores (called GenePy scoring) is detailed. Over the course of my PhD 

project, it was necessary to implement bioinformatic pipeline upgrades for the joint calling 

process, annotation and transformation of data into GenePy scores. Bioinformatic pipeline 

upgrades are a mainstay of genomic informatics, and this represented a substantial component 

of research time. For this reason, both the original (used in Chapter 4) and upgraded pipelines 

(used in Chapter 5 and onwards) are described. Methods that are specific to each chapter are 

discussed within their respective chapter. 

 

Chapter contributions – initial pipelines for alignment, variant calling and annotation of WES 

data for individuals and the IBD cohort were run by Imogen Stafford. Quality control was 

performed by Imogen Stafford on three batches of WES data, with other batches quality 

controlled prior to this thesis, and quality control of the 2020 batch of adult IBD data performed 

by Guo Cheng. Guo Cheng and Imogen Stafford aligned and called individuals for the updated 

pipeline, Guo Cheng performed the joint calling of all individuals. Imogen Stafford developed, 

implemented and documented new annotation and GenePy scoring processes. 

 

Supplementary files can be found at https://doi.org/10.5258/SOTON/D2655. Throughout the 

Chapter relevant files and scripts are referenced to ensure reproducibility of whole exome 

sequencing data processing. Static versions of GitHub repositories where joint calling pipelines 

and GenePy scoring pipelines are detailed in full are included in Supplementary files. 

3.1 Introduction 

Raw data generated by high-throughput sequencing need to undergo a series of processes to 

extract clinically significant information. Generating files ready for analysis consists of three stages 

(Figure 17): alignment of data to the reference genome; calling for sites where the sample data 

differs from the reference genome (variant calling); and annotation, where additional information 

regarding each variant, such as allele frequencies and predicted deleteriousness metrics, are 
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added. Some of the files created during variant calling and annotation are used for quality control. 

Quality control is essential to 1) check that data of sufficient depth has been received; 2) ensure 

that identifiers associated with the sequencing data are correct and have not been swapped, and 

3) to check for contamination, either from another sample, or outside sources. Probands in each 

batch are checked to ensure sufficient depth of coverage, the BAM (binary alignment map) file 

size is correct, and that the clinically recorded sex matches with the genetics. Checking the 

percentage of shared variants between individuals in the batch is used to cross-check the number 

of related individuals (this can indicate contamination from other DNA). A selection of 24 SNPs for 

each proband are also tested separately [356], and the genotypes of these sites cross-checked 

with the sequencing data. Sequencing data can be processed for each individual, or the data can 

be analysed as a cohort, through creation of a multi-call variant call format (VCF) file at stage two, 

followed by annotation.  

The traditional annotated VCF file created from sequencing data is not ideal as an input for 

machine learning. The number of variants per patient would lead to a highly-dimensional dataset, 

increasing in size as very rare and private variants are added with each patient sample. 

Furthermore, the standard VCF file does not benefit from additional information such as variant 

deleteriousness metrics and allele frequencies that can add biological and clinical meaning to 

sequencing output. For this reason, a key method for further analysis in this thesis was the 

generation of a GenePy matrix. GenePy [357] is a tool that creates a per gene, per individual score 

based on the number of variants a patient has per gene, integrating the zygosity, minor allele 

frequencies and predicted deleteriousness of those variants. This gene-level scoring approach is 

particularly valuable for complex diseases such as IBD. The causes of such diseases may be 

compound heterozygous variants, or the additive effect of many variants across one or more 

genes. The GenePy matrix forms a standardised input suitable for integrating with other data sets 

and machine learning. The three main pipelines for data processing are summarised in Figure 17. 
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Figure 17 Three main exome sequencing data processing pipelines. I) Processing of individual’s 

exome data. This is typically done as batches are sequenced, and files created during 

the process are used to assess quality. The annotated VCF is used to assess potential 

causal variants on an individual basis. II) Variant calling and genotyping VCFs to 

create a cohort file (joint calling) that can be annotated to analyse variants on a 

cohort basis. III) Steps for the creation of a GenePy matrix, based on a cohort VCF. 

These scores can be used in different types of analysis, for example machine learning. 

3.2 Programming and bioinformatic resources 

3.2.1 Iridis 5 

Iridis 5 is the latest generation of the University of Southampton’s high performance computing 

cluster, and all exome sequencing data processing was completed with the use of this system. 

Iridis 5 is four times more powerful than the previous system: it has 464 computing nodes with 40 
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CPUs and 192GB of memory per node. Additionally, there are four high-memory nodes with 64 

cores, 768GB of memory and 9TB of local temporary storage space. Over 20,000 processors 

provide 1,305 TFlops peak. Supercomputers like Iridis 5 are important to facilitate fast and 

efficient processing of increasingly large volumes of sequencing data. Processing data is executed 

using the bash command line which is based on the Unix architecture. 

3.2.2 Burrows-Wheeler Aligner 

The Burrows-Wheeler Alignment tool (BWA) implements the Burrows-Wheeler Transform (BWT) 

algorithm for the alignment of sequencing reads [80, 358]. BWT was originally developed for the 

compression of text string data, with a key factor being that additional data does not need to be 

stored to reverse compression. In genomics, BWA uses this compression for quick alignment, as 

each read is essentially a text string that often contains many repeats [80]. The BWA software has 

three different aligners: BWA-backtrack, BWA-MEM and BWA-SW. The former is designed for 

shorter reads (less than 100 base pairs), and latter two can align reads ranging from 70 base pairs 

to over a megabase. BWA-MEM is the faster and more accurate of the two, and so is the tool 

utilised in the bioinformatic pipelines in this chapter. In comparison to other aligners currently 

available, BWA-MEM is not as accurate as Novoalign, however it is much faster [358]. When the 

alignment of large genomic datasets is required, BWA-MEM represents the best trade-off 

between accuracy and speed. 

3.2.3 Genome Analysis Toolkit 

Developed by the Broad Institute, the Genome Analysis Toolkit (GATK) is a software package that 

can implement a number of tools for processing sequencing data [359]. GATK is used in the 

bioinformatic pipelines detailed below to complete two key processes: variant calling and variant 

quality score recalibration. Variant calling in diploid organisms is completed using 

HaplotypeCaller. This software is very popular because variant calling can be scaled up to include 

more samples without losing accuracy or sensitivity [360]. During variant calling, when 

HaplotypeCaller encounters a region with variation, it ignores the existing alignment and 

reassembles the reads in that region. This process means increased accuracy, particularly in 

regions with a lot of variation, and an increase in the calling of insertions and deletions [359]. By 

design, HaplotypeCaller is very sensitive in order to achieve the maximum number of variant calls. 

For users who want to filter the variants called for an overall higher quality call set with fewer 

false positives, GATK implements variant recalibration (VariantRecalibrator, ApplyRecalibration). 

The first step uses machine learning to assign a probability score of a variant being a true positive, 
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and the second filters the call set according to the sensitivity required of the call set (i.e. the 

balance between missing true variants and including false positives [359]. 

3.2.4 ANNOVAR 

The software package ANNOVAR is used to annotate variants to interpret their consequences 

[361]. ANNOVAR only requires the VCF file and text files of any supported database to annotate 

variants. The three main types of annotation are gene-based, filter-based and region-based 

annotation. Gene-based annotation provides information regarding a variant’s position in the 

genome (e.g. exonic, intronic, close to a splicing site), and if the variant is exonic, what type of 

variant it is (e.g. nonsynonymous SNV, frameshift deletion). In filter-based annotation, the specific 

variant is searched for in the chosen annotation databases. This type of annotation can provide 

information about the frequency of a variant in a population, and its likely deleteriousness. 

Region-based annotation will not search for the specific variant but instead a region which can 

include one or more bases (e.g. chromosome 1:1000-1000, chromosome 3:2000-2050). The 

nucleotide change is not important in region-based annotation. 

3.2.5 Ensembl Variant Effect Predictor 

The Ensembl Variant Effect Predictor (Ensembl-VEP), is another annotation tool similar to 

ANNOVAR, which is available through the Ensembl website, or to download for offline use [362]. 

Input files can be in many formats, including a white space separated file of variants, and a VCF 

file format, and can be output as a tab-delimited, VCF, or JSON (JavaScript Object Notation) 

format. A file can be annotated based on Plugins, or a custom annotation. Plugins are supported 

by Ensembl-VEP, and they are downloaded, along with the related reference database, in order to 

annotate the file. Ensembl-VEP’s custom annotation system means that any file can be used to 

annotate the input, including BED files and VCF files. Ensembl-VEP has a more granular annotation 

of variant consequences when compared to ANNOVAR. For example, where all splicing variants 

would be labelled as “splicing” by ANNOVAR, Ensembl-VEP categorises these into “splice donor” 

(splice variant at the 5’ end), “splice acceptor” (splice variant at the 3’ end) and “splice region” 

variants. Further, the transcripts used for annotation can be specified (for example the canonical 

transcript), and multiple annotations per variant (based on multiple transcripts) can be reported. 

3.2.6 CADD 

The Combined Annotation-Dependent Depletion (CADD) score is a measure of variant 

deleteriousness that is able to score single nucleotide variants and short insertions and deletions 
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[88]. CADD does not use any prior knowledge of variant pathogenicity in its scoring. Instead, it 

employs machine learning to predict pathogenicity. The early versions of CADD employed a 

support vector machine, but versions 1.4 and 1.5 use a logistic regression model. The model is 

trained on millions of variants split into two groups: real “proxy-neutral” variants that have 

become fixed in the genome and therefore are mostly benign and simulated “proxy-deleterious” 

variants that are de novo and free of selective pressure. A variant that appears closer to the 

simulated scenario is then presumed to be likely deleterious, as this variant would not become 

fixated. The advantage of this approach is that all variants can be scored (approximately 9 billion 

potential single nucleotide variants) [88]. The most recent version of CADD, version 1.6 or CADD-

Splice [363], also incorporates information from the bioinformatic tools for scoring splicing 

variants, MMSplice [364] and SpliceAI [365]. 

3.2.7 Genome Aggregation Database 

The Genome Aggregation Database (gnomAD) version 2 is a database containing 125,748 exomes 

and 15,708 genomes assembled by the Broad Institute, mapped to the GRCh37 reference 

sequence [82]. The sequences are derived from individuals with 6 global and 8 sub-continental 

ancestries. The database is an excellent source of information for the expected frequencies of 

variants in a population. After data processing, 14.9 million and 229.9 million high-quality variants 

were identified in the exome and genome datasets, respectively. The more recent version 3 

consists of 76,156 whole genomes mapped to GRCh38, however, this database is not as powered 

for annotating coding variation as version 2, and as such it is still recommended to use the version 

2 databases lifted over onto GRCh38 if analysis only involves the exonic regions. 

3.2.8 GenePy 

GenePy is a gene pathogenicity scoring system which assigns one score to each gene that reflects 

the pathogenicity conferred by all variants present in that gene [357]. Each GenePy score is 

calculated with the following equation 

𝑆𝑆𝑔𝑔ℎ = �𝐷𝐷𝑖𝑖

𝑘𝑘

𝑖𝑖=1

𝑙𝑙𝑜𝑜𝑔𝑔10(𝑓𝑓𝑖𝑖1 ⋅ 𝑓𝑓𝑖𝑖2) 

Where the score S is calculated for each gene g, and individual h. The frequency of both alleles at 

each locus i are represented by fi1 and fi2. This is multiplied by the deleteriousness metric D for 

every locus. Although any allele frequency database and deleteriousness metric can be employed 

to construct GenePy scores, here the aforementioned gnomAD [82] and CADD [88, 363] were 

utilised. This enables the generation of a gene-by-individual matrix. There were two main reasons 
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for using this scoring system. Firstly, an annotated VCF file of all variants present in a cohort 

would be highly-dimensional, and the consequent data sparsity means it is more difficult to 

produce informative ML models in downstream analysis. Processing the data so it is at the gene 

level, rather than the variant level therefore reduces the dimensionality of the dataset. Secondly, 

in initial studies GenePy score distributions were found to be significantly different in cases and 

controls for an IBD dataset, and a Parkinson’s disease dataset (examples of GenePy score 

distributions for the IBD cohort utilised in this research are shown in Figure 18) [357]. These 

distribution differences between groups can be leveraged through ML. Of particular value in the 

calculation of GenePy scores is its ability to summarise rare and common variation in an 

individual, ideal for a cohort of IBD patients, as the genetic makeup of individual’s disease may 

range from monogenic to polygenic, as described in Section 1.2. 

 

Figure 18 Examples of GenePy score distributions within the IBD cohort, which highlights varied 

distributions and ranges of GenePy scores. A) ATG16L1, a gene associated with 

susceptibility to CD [366, 367]; B) NOD2, a gene associated with monogenic forms of 

CD [5], and CD susceptibility [2, 3]; C) XIAP, identified as a monogenic IBD gene [57]; 

D) OR10H5, a gene part of the family of olfactory receptors, known for being highly 

polymorphic [368]. 
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3.3 Methods 

3.3.1 Recruitment and data collection 

Patients with inflammatory bowel disease were recruited through the Southampton Genetics of 

IBD study at Southampton General Hospital (REC: 09/H0504/125). This study has been recruiting 

patients since 2012, and is still recruiting patients. As such, the number of patients in the cohort is 

continuously growing. Both paediatric and adult IBD patients were recruited for the study in their 

respective clinics. Patients under the age of 18 years were diagnosed according to the modified 

Porto criteria [369], and adult patients were diagnosed according to the guidelines detailed in 

[370]. DNA for whole exome sequencing was obtained from peripheral venous blood samples 

collected in EDTA by the salting out method [371]. The Qubit 2.0 Flurometer was used to estimate 

DNA concentration, and the 260:280 ratio was calculated with a nanodrop spectrophotometer (if 

the DNA concentration is too low, it may not be possible to sequence the sample). Concurrently, 

blood for the plasma used for reactive oxygen species assays was taken. This blood was frozen 

until antioxidant potential and oxidative stress assays were performed. Participant’s blood is 

usually taken at several time points as part of monitoring each patient’s condition. Common 

laboratory tests on blood are performed, such as creatinine, albumin and C-reactive protein. 

Further details on the clinical data available and their extraction from University Hospital of 

Southampton systems are included in Chapter 5.  

3.3.2 Exome data processing 

Approximately 20μg of DNA was extracted from each sample and sent for WES externally. Using 

1μg genomic DNA per sample, this was fragmented and enriched with Agilent SureSelect All Exon 

capture kit (version 4, 5 or 6). Libraries were subsequently sequenced on Illumina platforms. 

Samples were sequenced using paired-end sequencing, with reads varying in length depending on 

the sequencing batch (100, 125 and 150 base pair reads). The pipeline for exome sequencing data 

processing is detailed in Figure 19. After sequencing, exome data are provided as fastq files that 

contain the genetic sequence, where each base is paired with an ASCII (American Standard Code 

for Information Interchange) character that represents sequence quality (Figure 20A). Quality 

coded in ASCII ranges from “!” representing the worst quality, to “~” representing the best quality 

(Figure 20B). The quality score represents the error probability i.e. for each sequenced base, what 

is the probability that the base is incorrect.  

The bioinformatic pipeline began with concatenation of fastq files if there were multiple lanes 

sequenced. The paired-end exome sequencing data was aligned to the human genome assembly 
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GRCh38, using the Burrow-Wheeler Aligner, BWA-MEM [80]. The default recommended 

parameters for mapping indels were used with BWA-MEM (open gap penalty=6, extension 

penalty=1). Samtools [372] was used to convert the sam (sequence alignment map) into its 

corresponding binary version, a BAM (binary alignment map) file. After these steps, Picard [373] 

sorts the BAM file by base pair coordinate (SortSam), flags duplicates (MarkDuplicates) for 

downstream tool GATK’s HaplotypeCaller, and verifies forward and reverse strands match 

(FixMateInformation), correcting this if they do not. GATK 4.0 [374] then recalibrates base quality, 

adjusting under- and over-estimations of sequencing quality due to systematic technical errors. 

Firstly, the recalibration table to accomplish this is built by BaseRecalibrator, then implemented 

with ApplyBQSR. The recalibrated BAM file is then ready for variant calling.  

 

Figure 19 The pipeline for processing an individual’s exome sequencing data. This details the 

bioinformatic tools for each of the three main processing steps, 1) alignment to the 
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reference sequence; 2) variant calling to establish sequence differences between the 

individual and the reference sequence; and 3) annotation for variant interpretation. 

 

Figure 20 Fastq file format and ASCII quality. (A) Example of the fastq information format for one 

read. Sequence identifier and description provides information including the 

instrument name and run number, lane number, and if the read passed or not. (B) 

Lists the sequence of ASCII quality characters, with quality increasing from left to 

right. 

During variant calling with GATK 3.8’s HaplotypeCaller [359], single nucleotide polymorphisms, 

inserts and deletions were identified, and in these regions the reads were re-assembled. Soft-

clipped bases were not used during variant calling. Soft-clipping refers to the bases at the 5’ and 

3’ ends of reads in cases where these ends have not been aligned to the reference sequence. This 

soft-clipping can be an indication of larger insertions and deletions in the exome sequence. By 

excluding these bases, some calls relating to larger indels will be missed, but it excludes many 

more false positive variants calls. This created an intermediate genotyped variant call format 

(GVCF) file with ERC (emitting reference confidence scores) GVCF formatting. This formatting 

results in a smaller GVCF file, as sections of the GVCF where there are no alternative alleles are 

condensed into non-variant blocks that represent genomic intervals. This GVCF was then input 

into GATK 3.8’s GenotypeGVCFs [359], where at points of variation in the GVCF, genotype 

likelihoods were calculated, and the variants genotyped and annotated. This creates a VCF file for 

annotation.  

Finally, annotation provides additional information on the called variants. After converting the 

VCF file to an ANNOVAR [361] format (convert2annovar, ANNOVAR script), gene-based and filter-

based databases were added to the file (table_annovar, ANNOVAR script). These were refGene 

[375], gnomAD exome v2.1.1 [82], dbnsfp35c (no annotations for synonymous variants) [86, 376] 
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and HGMD2018 (Human Genetic Mutation Database) [91] (Table 6), adding the gene the variant 

resides in, allele frequencies, deleteriousness and conservation metrics, and previously reported 

disease(s) associated with the variant, respectively. It was also useful to include the 

deleteriousness metric CADD [88], but the version that annotates insertions and deletions (v.1.5) 

was not available using the ANNOVAR software, therefore the VCF file was annotated separately 

with CADD Phred scores, and merged with the annotated file. An individual’s annotated file could 

now be filtered to find potential disease-causing variants. These annotation steps can also be 

completed using a VCF file that contains multiple probands, for example a cohort VCF file.  

Table 6 Key databases for variant interpretation. Lists the annotation database and corresponding 

contents. 

Database Contents 

refGene [375] FASTA sequences for all annotated transcripts in RefSeq Gene 

GnomAD 

exome v.2.1.1 

[82] 

Allele frequencies for all variants documented in the database. This includes 

the overall allele frequency of the population included in the database, as well 

as the allele frequency in specific subpopulations (male and female allele 

frequencies, allele frequencies in different ethnic groups). 

dbnsfp35c [86] Annotation of non-synonymous SNPs. This includes: 

• Tools that score based on whether a variant is likely to be damaging: 

whole-exome SIFT score, PolyPhen2 (HVAR database for Mendelian 

disease, HDIV for rare variants in complex disease), MutationTaster, 

MutationAssessor, FATHMM, PROVEAN. 

• Tools that score variants based on how conserved the genomic site is: 

GERP++, fitCons, PhyloP and SiPhy (latter two scores from previous 

version dbnsfp33a). 

• Tools that incorporate machine learning into their prediction of variant 

deleteriousness: CADD (v1.3), DANN, MetaSVM, MetaLR, VEST, M-CAP, 

fathmm-MKL, Eigen, and GenoCanyon. 

HGMD2018 

[91] 

Published information of gene variants responsible for human inherited 

diseases 

CADD [88] Raw score and Phred score. The Phred score is more informative for the 

interpretation of variant deleteriousness.  
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3.3.3 Quality control 

Quality control was completed on individual batches as sequencing was completed. One method 

by which samples can be checked for contamination is by calculating the number of shared 

variants between every pair of samples in each batch. A higher number of shared variants among 

individuals that are not known to be related indicates that either one sample has been cross-

contaminated with another, or the individuals are related and this is currently unreported in the 

available clinical information. A lower number of shared variants could indicate contamination 

from another substance (not another sample’s DNA). The number of shared variants between 

those in the batch were calculated using sample annotated VCF files, and a sample-by-sample 

matrix created. From the output of the script, unrelated individuals are expected to share 

between 60 and 65% of their variants. First degree relatives are expected to share 80-85% of their 

variants, and for pairs of samples where the ancestry is different for each individual it is expected 

that there will be fewer shared variants (approximately 55-60%). The software VerifyBamID [377] 

was used as an additional check for sample contamination, it outputs a p-value indicating the 

probability of contamination based on the sample’s recalibrated BAM file.  

The coverage of every sample was also checked using the BAM file. Both the mean coverage over 

the sample, and the read depth percentage was assessed. Each sample should have at least 20x 

read depth over 80% of the targeted regions. If this were not the case then the sample would 

have to be re-sequenced as there is not the required depth of information for downstream 

analyses. The annotated VCF files were used to check the percentage of heterozygous X 

chromosome calls, and match the sex indicated by the variant calls to the clinically recorded sex. 

If the percentage of heterozygous X chromosome calls were not as expected from the clinical 

information (55-65% in females, 10-20% in males), this could indicate bias or error in the 

sequencing, the sex had been misreported in the clinic, or a potential sample swap. The final 

check to the sequencing was using SNP fingerprinting. For every sample 24 SNPs were genotyped 

[356] and these genotypes were compared to the genotype called from the whole exome 

sequencing data. This SNP panel was designed such that it could be utilised with a number of 

capture kits, including Agilent capture kits [356]. This is primarily a check to ensure that the IDs of 

samples have not been switched, but a lack of concordance between the SNP genotypes and 

sequencing genotypes could also indicate contamination.  

3.3.4 Joint calling and filtering for a high-quality cohort VCF file 

To collate samples into one cohort VCF file, joint calling must be performed (Figure 22A). After 

alignment and variant calling of individual samples (as in Section 3.2.2, this was performed with 
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the ALIGN.sh and the CALL.sh scripts), all samples must be genotyped together. By calling all 

samples together genotype calls are given for every site across the entire cohort, so it is possible 

to determine whether a site is homozygous for the reference allele, or if the data is missing (this 

would not be possible if sites were not called together). First, GVCFs were combined into small 

batches of approximately 20 files using GATK [359] CombineGVCFs (performed with combiner.sh 

script). Batches were subsequently genotyped together with GATK [359] GenotypeGVCFs, by 

genotyping a single chromosome for all batches, and concatenating the chromosomes with GATK 

CatVariants (performed with gtyper.sh and catvars.sh scripts). This creates the multi-call VCF file. 

GATK v.3.8.1 was used throughout to multithread this computationally intensive process without 

changing the pipeline [359]. At this stage of processing, the multi-call VCF file is not restricted to a 

BED (Browser Extensible Data) file. As a minimum, each line of a BED file contains the 

chromosome number, and the start and end points of a section of that chromosome. Each line 

can also contain additional information, such as the number of exons within the section, and their 

sizes. Every capture kit used prior to exome sequencing has a corresponding BED file that contains 

the genomic coordinates of the regions that were targeted by the capture kit. As multiple capture 

kit versions were used in sequencing individuals in the cohort, bedtools intersectBed was used to 

create a BED file of the intersection of version 4, 5 and 6 capture kits [378]. The multi-call VCF file 

was subsequently restricted to this BED file using GATK SelectVariants.  

It is important to impose some restrictions on minimal data quality to the multi-call VCF file 

created in the steps above, since errors occur during sequencing, and these are particularly 

prevalent in genomic regions with low coverage. Retaining erroneous calls could bias outputs 

derived from the multi-call VCF file, and downstream analyses. To improve the quality of the 

multi-call VCF, the methods described by Carson et al. [379] were implemented (Figure 22B). The 

genotypes of variants with a sequencing depth less than 8 and genotype quality (GQ, confidence 

that the genotype is correct) less than 20 are replaced with the missing genotype (./.) using 

vcftools [380], as these are poor quality variants. A filter requiring the mean GQ for each variant 

across all included samples to be greater than 35 was also applied, followed by a missingness filter 

to ensure that each variant was genotyped in a minimum of 88% of the samples in the VCF, 

achieved using vcftools [380]. These filtering steps were performed using Filtering.sh.  

New quality scores based on the likelihood of a variant being true versus being a sequencing 

artefact were calculated by GATKs [359] VariantRecalibrator, which uses a Gaussian mixture 

model to evaluate each variant. The model parameters created are applied using 

ApplyRecalibration, which annotates the files with new quality scores, and flags those that do not 

meet the required quality threshold (Figure 21). These two steps combined complete the Variant 

Quality Score Recalibration (VQSR) process. In this case, the quality threshold was tranche 0.99, 
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which requires 99% of the variants in the VCF to be included. This process was performed twice so 

that SNVs and Indels were evaluated separately. In the case of the Gaussian mixture model for 

Indels there were fewer variants, so the maximum number of Gaussians was set to four. This 

lowers the number of clusters in the Gaussian mixture model so that there are enough variants 

per cluster to satisfy modelling requirements, but this comes at the expense of resolution, i.e. 

reduced ability to identify sequencing artefacts (recalibration stages performed using 

Recalibrate.sh). Vcftools [380]was used to remove the flagged variants, creating a high-quality 

multi-call VCF that can be used to create GenePy scores.  

 

Figure 21 Example of plots generated by running GATKs Variant Recalibration and Apply 

Recalibration for a cohort (n=491). The transition/transversion ratio is a good proxy 

for the true positive/false positive trade-off. Transitions are a base changing to 

another base that has the same chemical structure, transversions are a base 

changing to another base with a different chemical structure. (A) Breakdown of true 

positives and false positives per tranche. Inclusion of all variants (tranche 100) would 

lead to false positive variants (assigned the label false positive by the Gaussian 

Mixture Model) remaining in the call set. (B) Specificity decreases (novel 
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transition/transversion ratio) as the sensitivity (tranche) increases. The tranche is 

chosen to optimise the trade-off between these two metrics. 

3.3.5 Annotation and generation of GenePy matrix 

The algorithm that creates GenePy scores requires that only bi-allelic variants are present in the 

VCF, so these were removed with vcftools [380]. Only using bi-allelic variants is a limitation, 

caused primarily by data availability. To include tri-allelic and quad-allelic variants another 

database would need to be used to obtain allele frequencies, as the gnomAD database only 

reports the major alternative allele frequency [82]. The genome browser Ensembl [381] reports 

multiple alternative alleles, but integrating this primarily online data source into current pipelines 

is difficult. Most importantly, Ensembl’s data is not as complete as data from the gnomAD 

database. If future updates to gnomAD include reporting of minor alternative alleles, GenePy 

could be modified to include all variants.  

ANNOVAR [361] was used to create an annotated VCF file that included the gene name for each 

variant (refGene database [375]) and the allele frequency in the general population 

(gnomad_exome, all individuals [82]). If the variant is novel to the gnomAD database, it will be 

assigned a frequency of 1/282,912 for the purposes of calculating a GenePy score. The 

denominator is twice the number of exomes and genomes in the gnomAD database, because 

there are two opportunities (i.e. two alleles) for the variant to appear in every person included in 

the database. ANNOVAR does not currently support the most recent version of CADD, so the 

CADD scores for each variant were generated separately. Required columns from the annotated 

VCF and the file containing CADD [88] scores were merged together (merging performed with 

cross-annotate-cadd.py). The file was then filtered to retain the type of variant required, for 

example exonic and splicing. Subsequently the GenePy script was run for the genes that scores 

were required for, either for all available genes from the RefSeq database [375], or a specific list. 

This script creates files with GenePy scores for the cohort for each gene that are subsequently 

merged into a matrix containing one score per patient per gene. Steps for creating the GenePy 

matrix are summarised in Figure 22C. Several scripts were utilised to generate the GenePy scores: 

subber.sh, GenePy_1.3.sh, make scores_mat_6.py, generate_final_matrix.py, and 

MatrixMaker.sh. Full instructions for generating this matrix are found in the Supplementary Files.  
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Figure 22 Three stages for GenePy matrix creation. (A) Variant calling and genotyping samples 

together to create a multi-call VCF file. (B) Filtering and recalibration to improve the 

quality of the cohort VCF. (C) ANNOVAR and CADD annotation to provide necessary 

information for GenePy scoring (frequency, deleteriousness), subsequent creation of 

GenePy scores and collation into a patient by gene matrix.  

3.4 Pipeline developments for cohort analysis 

In 2020, WES data became available for a large batch of adults with IBD recruited as part of the 

Genomics of IBD study. The sequencing of this batch was performed as  part of the National 

Institute of Health Research’s BioResource [382].This led to the number of individuals for which 

WES data was available approximately doubling, as previously fewer than 500 paediatric patients 
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with WES data were present in the cohort. Additionally, all paediatric DNA samples that had been 

previously sequenced with version 4 of the Agilent SureSelect Human All Exon capture kit were re-

sequenced using version 6 of this capture kit. Substantial discrepancies existed between the exon 

coverage of version 4, and versions 5 and 6 (Figure 23). This was therefore a desirable 

improvement to the exome capture efficiency. These changes resulted in a larger and more 

uniform dataset. Therefore all whole exome sequencing in the cohort had been performed with 

SureSelect version 5 or 6 capture kits. While this increase in data was welcome, it was also 

recognised that this would increase the time required to process the data significantly. The 

decision was made to update the exome processing pipeline to utilise the latest version of GATK 

(v.4.1.2) during the joint calling process (GATK v.3.8 was previously used), utilising a new joint 

calling workflow that would uplift called variants [383, 384]. The annotation process was also 

revamped by replacing ANNOVAR [361]with Ensembl-VEP [362]. The new pipeline, intended to 

align, joint call and annotate to enable the transformation of WES data into a cohort GenePy 

matrix, is described in the next sections. 
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Figure 23 Intersection of features in SureSelect version 4 (SSV4), version 5 (SSV5) and version 6 

(SSV6) capture kit (CK). Feature counts determined with Python’s Pybedtools [385], 

plotted using R’s UpSetR [386]. Plot shows a large overlap between all three capture 

kits, but there are more features in the BED file that are 1) unique to SSV6; and 2) 

present in SSV5 and SSV6 that are absent in SSV4, demonstrating the desirability of 

resequencing where this was performed with SSV4. 

3.4.1 Alignment and joint calling 

Alignment proceeded as detailed within Section 3.3.2 and Figure 19A, with two differences. 

Firstly, for the new pipeline an updated GRCh38 reference sequence was employed which 

included HLA decoy sequences. Secondly, for the use of GATK v.4.1.2 [383, 384]in downstream 

joint calling, there was a requirement to use a specific version of Java, OpenJDK, for generating a 

BAM file from the fastq files. The GATK version utilise for BaseRecalibrator and ApplyBSQR had 

already been updated from v.3 to v.4, so this portion of the script remained the same (alignment 

was achieved with the preprocess.sh script).  

To begin the joint calling process, first each BAM file created during alignment had to be 

individually called. This was achieved as described in Section 3.3.2 and Figure 19B, except with the 

GATK version 4.1.2 [383, 384]. Briefly, HaplotypeCaller converts the BAM file into a GVCF file, and 

then these files are converted to VCF with GenotypeGVCFs. Additionally, an interval list was given 
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to HaplotypeCaller in order to speed up joint calling downstream. The interval list was based on 

the union of the SureSelect V5 and V6 capture kits, with 150bp padding on these intervals 

(individual calling accomplished with caller.sh). 

The main change to variant calling is in the joint calling stage (performed with joint_calling.sh 

script). Previously, CombineGVCFs was utilised to transform many VCF files into a single file. With 

the new GATK version 4 [383, 384], GenomicsDB performs the same function using a different 

method, which improves on the time required to joint call many samples. GenomicsDB is 

essentially a database for the variant call information. This data is stored in a 2D TileDB array, 

where the rows represent a sample in the cohort, and the columns represent a genomic position, 

which includes chromosome and base position. Therefore, each cell contains that sample’s 

information at that genomic position. GenomicsDB can take many arguments which means joint 

calling can be customised according to the user’s processing power. It also has an important 

variation on the GenomicsDB command, called GenomicsDBImport, which allows samples to be 

added to an existing database. This enables samples to be read into the database in batches. For 

joint calling this cohort, GenomicsDBImport was used, and batches of 30 samples were read in to 

the database. It is also required to provide a list mapping every sample name to its file location. 

The previously described interval list was split into 97 smaller interval lists using Picard, so that a 

different database for each of these regions, for all samples, was generated. In order to speed up 

this process, the option to import data between the intervals was used (merge-input-intervals), as 

this is recommended for WES data, where there are many intervals. Multithreading was used for 

opening batches of VCF files, also to improve the processing time.  

These 97 genomics databases, each containing all samples, were then joint called with GATK v4 

[383, 384] GenotypeGVCFs. Performing the joint calling in this way is an improvement on doing so 

in small batches of 30, as was done previously. This is because when joint calling is performed on 

increasingly large numbers of samples, there is an increased opportunity to identify genotypes 

where there is low confidence in a variant in one sample but many other samples have the variant 

with high confidence, which confirms the likelihood of a variant in that location. Here, joint calling 

has increased from 30 samples at a time in the previous pipeline, to over 1000, resulting in an 

increased opportunity to identify variants. For joint calling, the associated interval list is again 

provided. The option to load data in between intervals is included again, but this is combined with 

the option to only output calls that start in the given intervals. These two options together allow 

the process to be quicker, while restricting the intervals and so reducing file sizes. In addition, 

common sites from dbSNP v.151 are provided to the caller, which provides sequence quality 

calibration for these common alleles, and common alleles are called more reliably if this resource 

is provided. Picard’s [373] MergeVcfs was then used to combine the 97 joint called VCF files. 
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3.4.2 Filtering, annotation, and GenePy matrix construction 

After generating the joint called VCF file, VQSR was performed as before, utilising GATK v.4.1.2’s 

[383, 384] VariantRecalibrator and ApplyRecalibration for SNVs and indels separately. Previously, 

the maximum number of Gaussians had to be set to 4 for indels to reduce the model’s resolution. 

Due to the increase in sample size, it was no longer necessary to reduce model resolution, and 

therefore VariantRecalibrator’s ability to identify sequencing artefacts was improved compared to 

previous VCF file processing. The other change to the workflow for VQSR was utilising the option 

called “trust-all-polymorphic” for both stages, and SNV and indel models. This option assumes 

that all variants are polymorphic, in other words that one or more alternative alleles are present 

at each site. This option improves processing time considerably, according to GATK’s 

documentation. In this pipeline, performing VQSR prior to other quality-based filtration is a 

deviation from the workflow set out by Carson et al. [379]. A comparison of the number of 

variants present when performing VQSR before or after the other quality filters showed that the 

order of these steps did not impact the number of variants (these recalibration steps were 

performed with the vqsr.sh script).  

Next, the VCF was restricted to the BED file of the intersection of the Agilent SureSelect V5 and V6 

capture kits [378]. The file was then filtered using VCFtools [380] with all quality thresholds 

related to depth, GQ, mean GQ and missingness previously outlined in Section 3.3.4. As before, 

the VCF file was restricted to biallelic variants only. Then, the VCF file with only biallelic variants 

was annotated using Ensembl-VEP. This was a computationally intensive process and thus the file 

was split into chunks by chromosome, before annotation. The longest chromosome, chromosome 

1, took approximately 24 hours to annotate. Ensembl-VEP [362] became a more desirable 

annotator than ANNOVAR [361] for two reasons. First, it is maintained better than ANNOVAR, as 

it has frequent version updates, and these are accompanied by updates to the latest versions of in 

silico tools alongside adding new tools. Secondly, Ensembl-VEP has CADD v1.6 [363] as a Plugin, 

enabling easier VCF file annotation with this important metric. In addition to annotating the 

cohort VCF file with CADD v.1.6 with Ensembl-VEP (v.103), annotations from the gnomAD v.2.1.1 

database were included. Instead of RefSeq, Ensembl-VEP utilises its own sequence database. The 

annotator was run with the option pick allele, which means each allele will be annotated with 

information associated with only one gene transcript. The default order for choosing the 

transcript was used, where the canonical transcript was utilised if it was available (annotation 

performed with the vep.sh and vep_x.sh scripts). After annotation, the individual chromosome 

VCF files were concatenated together into one VCF file. 
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Separately, the input VCF was annotated by ANNOVAR [361] with the gnomAD random forest flag, 

from gnomAD v.3.1.1. This method was designed by the Broad Institute as a flag-based quality 

filter for their gnomAD database [82]. Briefly, a random forest machine learning model takes in 

information from resources such as the 1000 Genomes high-quality site dataset, and classifies 

variants as being true polymorphisms, or sequencing artefacts. This sequencing artefact category 

is additionally broken down into other categories based on the variant characteristic(s) that 

flagged it as dataset noise. This flag can be one, or a combination of AC0; AS_VQSR, and 

InbreedingCoeff. Variants classified as AC0 had no alleles after filtering out low-quality calls 

(based on depth, GQ and allele balance); AS_VQSR variants failed allele-specific GATK VQSR, and 

the InbreedingCoeff flag indicates excess heterozygosity at the variant site. 

Although using Ensembl-VEP [362] to annotate CADD [363]scores improved processing time, the 

annotator was unfortunately unable to annotate all sites. To fill in the annotation gaps, these sites 

were extracted from the annotated VCF file, and uploaded to the CADD website. The scores from 

the CADD website were re-inserted into the original data using a Python (v.3.7) script 

(genepy_combine_annotations.py). Next, all relevant columns were compiled together before 

final filtering: chromosome, variant start position, reference allele, alternative allele, variant 

consequence, gene symbol, gnomAD allele frequency, CADD Rawscore, and gnomAD random 

forest flag. Variants that had failed the random forest flag were excluded from the file. Finally, 

only exonic variants were retained for the generation of a GenePy score matrix. As Ensembl-VEP’s 

variant consequence field was more granular than ANNOVAR, the following variants were defined 

as exonic: 

• Coding sequence variant 

• Downstream gene variant 

• Frameshift variant 

• Inframe deletion 

• Inframe insertion 

• Missense variant 

• Protein altering variant 

• Splice acceptor variant 

• Splice donor variant 

• Start loss 

• Stop gained 

• Stop lost 

• Stop retained variant 

• Synonymous variant 
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• Upstream gene variant 

It should be noted that some variants can be annotated with multiple consequences, but as long 

as one of the consequences listed above was present, that variant would be included in GenePy 

scoring. After this the GenePy matrix was generated. The matrix was generated with the following 

scripts: subber.sh, GenePy_1.3.sh, make scores_mat_6.py, generate_final_matrix.py, and 

MatrixMaker.sh. More information on specific file manipulation required for VCF file preparation 

for GenePy, and the usage of scripts in matrix generation is detailed in the research group’s 

Github, and a static version of these instructions is available in the Supplementary Files. The new 

pipeline is shown in Figure 24.

https://github.com/UoS-HGIG/GenePy-1.4
https://github.com/UoS-HGIG/GenePy-1.4
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Figure 24 Pipeline for updated joint calling and annotation for the generation of GenePy scores. A) 

Variant calling and quality control. This pipeline starts at the variant calling stage, as 

the alignment stage is already detailed in Figure 19. Variants are called for every 

individual, and then joint called. Subsequent filtering steps lead to a high-quality 

cohort VCF file. B) Annotation and GenePy score generation. Ensembl-VEP and 

ANNOVAR annotate the cohort VCF file, and then file manipulations are performed in 

order to ensure relevant information is complete and columns ordered. Final filtering 

based on annotated variant quality and variant consequence is the last step before 

generating the GenePy scores.  
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3.5 Research outputs from the processing of whole exome sequencing 

data 

Throughout my candidature, exome data was processed and multiple GenePy matrices generated 

as more patients were recruited to the Genetics of IBD study. In addition to the use of GenePy 

matrices throughout this thesis, this data processing also contributed significantly to other 

research outputs. 

In a study led by James Ashton, I assisted with the processing of WES data. This research focussed 

on variant-level data, and sought to identify paediatric patients within the IBD cohort where their 

disease could be considered to have a monogenic cause [5]. This analysis led to the discovery of 

patients with “pathogenic” or “likely pathogenic” variants (according to American College of 

Medical Genetics guidelines) in several genes, including TRIM22, WAS, and NOD2. Often, these 

patients had variants which were compound heterozygous, and this was later confirmed through 

segregation analysis. Additionally, patients thought to have an autosomal recessive NOD2-related 

disease were more likely to have a stricturing (narrowing of the gastrointestinal tract) phenotype. 

For another study that utilised genomic data and targeted RNA-sequencing data obtained from 

ileal biopsies in treatment-naïve paediatric patients, I processed WES data, and generated GenePy 

matrices. This research found that high GenePy scores in several genes across the NOD-signalling 

pathway, including NOD2, were associated with reduced transcription of the NF-κB pathway 

[387]. Another study led by James Ashton used the GenePy scores of NOD2 generated by myself 

to attempt to stratify patients into several risk groups based on the presence or absence of the CD 

stricturing endotype (narrowing of the gastrointestinal tract) [388]. The presence of the stricturing 

endotype in the highest risk group was over 50%, compared to approximately 20% of patients 

with a stricturing endotype in the lowest risk group. 

A GenePy matrix I generated was also used for a study by Enrico Mossotto and Joanna Boberska, 

which also utilised metabolomic data [389]. They sought to establish links between paediatric 

patient’s active inflammation, their metabonomic profiles, and their genomic variation in the 

form of GenePy scores. This was accomplished by using machine learning to identify key nuclear 

magnetic resonance (NMR) peaks, correlating these peaks with GenePy scores, and finally 

performing gene enrichment analysis. 

I provided WES data, or GenePy matrices for two studies led by Tracy Coelho. One study focused 

on periostin, a matricellular protein implicated in tissue fibrosis, and its potential use for assessing 

disease activity and surgical outcomes. As such the GenePy scores of a gene network functionally 

connected to periostin was examined. They found no significant differences in mutational burden 
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in these periostin-connected genes between patients who did and did not undergo surgery [390]. 

The second study, which researched the immunological profile of paediatric IBD patients, looked 

at muramyl di-peptide (a peptidoglycan motif on several types of Gram-positive and Gram-

negative bacteria)immune response in the context of NOD2 variants [391]. 
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Chapter 4 Reactive oxygen species and inflammatory 

bowel disease 

Chapter summary – in this chapter, data from oxidative stress and antioxidant potential assays 

are analysed. The relationship between these assays and patient characteristics were assessed. 

This included observing any relationship between these assays and age, IBD diagnosis, and the 

commonly used blood marker for general inflammation C-reactive protein. Additionally, there 

was an interest in understanding how the patient’s assay results related to their genetics. This 

was assessed by using GenePy scores of genes involved in reactive oxygen species pathways, 

combined with linear regression, and then machine learning. The machine learning pipeline 

tested several different algorithms to find the method that could best differentiate between 

high and low assay results (for each assay), according to the GenePy scores for key selected 

genes. 

 

Chapter contributions – the FRAP (ferric reducing ability of plasma), TBARS (thiobarbituric acid 

reactive substances), and TFT (total free thiol) assays were performed by Magda Minnion, 

Bernadette Fernandez, and Monika Mikus-Lelinska. Martin Feelisch assisted with the 

interpretation of raw data from these assays. Enrico Mossotto assisted with the processing of 

WES data. All analysis performed by Imogen Stafford. 

 

Supplementary files can be found at https://doi.org/10.5258/SOTON/D2655.  

4.1 Introduction 

As discussed in Section 1.2.6.3, the production of reactive oxygen species (ROS) is of interest to 

IBD research due to dysregulation of their production potentially leading to intestinal 

inflammation [103, 110]. Although ROS are important signalling molecules (redox signalling) for 

downstream immunological pathways, excessive ROS production can cause cellular oxidative 

stress. Oxidative stress can cause oxidative damage to biomolecules including lipids, protein and 

DNA. To counteract excessive ROS production, antioxidant molecules can be released that 

scavenge ROS in order to prevent oxidation of molecules, decreasing oxidative stress [392]. In 

order to gain insight into the impact of ROS in disease, both oxidative stress and the ability, or 

potential, to produce antioxidants must be measured.  
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4.1.1 Assays for oxidative stress and antioxidant potential  

Just as the blood marker C-reactive protein (CRP) is used as an indication of inflammation levels in 

a patient, measurements of oxidative stress in patients could also be indicative of inflammation. 

Markers of inflammation can indicate whether disease is active or in remission. The ferric 

reducing ability of plasma (FRAP) assay measures the total antioxidant capacity, and thus can 

measure its capability to handle future oxidative stress events. The thiobarbituric acid reactive 

substances (TBARS) assay measures the oxidative degradation of lipids (lipid peroxidation) by ROS. 

Lipid peroxides are highly unstable, and their metabolism generates TBARS, including 

malondialdehyde. The Total free thiol (TFT) assay is a more general measure of oxidative stress 

that assesses the total thiol status of the plasma, and describes the plasma antioxidant status in 

the body. Through measuring the thiol antioxidants, the assay is a proxy for current oxidative 

stress. These assays are all performed using plasma, which makes using them as a marker 

relatively accessible in clinical settings because blood is all that is required from the patient.  

4.1.2 Measuring oxidative stress and antioxidant potential in autoimmune disease 

Reactive oxygen species are known to be involved in chronic granulomatous disease, but are also 

implicated in the pathogenesis of a number of autoimmune diseases. Mateen et al. confirmed an 

increase in production of ROS along with increased lipid peroxidation in rheumatoid arthritis (RA) 

in comparison to healthy controls. In comparison to controls RA patients also had a reduced 

capacity to defend against oxidative stress with antioxidant production (FRAP assay) [393]. Lower 

antioxidant potential has also been observed in patients with juvenile idiopathic arthritis in 

comparison to healthy controls, although the difference only trended towards significance [394]. 

This decreased antioxidant potential in comparison to controls was also found in another group of 

children diagnosed with type 1 diabetes [395]. Juybari et al. also observed significantly higher lipid 

peroxidation and reduced antioxidant capacity in relapsing remitting multiple sclerosis patients in 

comparison to healthy controls [396]. Significantly higher lipid peroxidation in comparison to 

healthy controls has also been identified in coeliac disease [397]. These case-control studies do 

provide more evidence of ROS involvement in these diseases, but do not progress the question of 

whether they can be used in clinical management. There are fewer studies that examine the 

heterogeneity of ROS production and antioxidant response within autoimmune diseases and how 

this relates to disease course. Ademoglu et al.’s study of Grave’s disease patients established 

differences in lipid peroxidation depending on disease course. Patients who experienced a relapse 
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after treatment had significantly higher levels of lipid peroxidation in comparison to patients in 

remission [398].  

It is known that variation in NADPH oxidase genes is directly linked to chronic granulomatous 

disease (CGD) aetiology. The disease results in patient’s susceptibility to severe bacterial and 

fungal infections, but disease can also manifest with a number of inflammatory conditions, 

including intestinal inflammation phenotypically similar to CD. This susceptibility to infection is 

caused by deficiencies in NADPH oxidase that results in decreased production in ROS. This 

appears to be at odds with the apparent conclusion that the contribution of ROS to autoimmune 

disease is through overproduction of these molecules. However, it is now thought that a hyper 

inflammatory immune response is due to autophagy dysregulation caused by ROS deficiency. ROS 

are necessary to facilitate autophagy, and if this does not occur then there is an increased 

production of interleukin 1β, an inflammatory cytokine [399]. This cytokine is known to contribute 

to IBD pathogenesis, contributing to CD-like disease in CGD patients. Currently, there is very 

limited research into lipid peroxidation and antioxidant capacity in CGD. It is therefore unknown 

whether the same trends in increased lipid peroxidation and decreased antioxidant capacity (in 

comparison to healthy controls) in other autoimmune diseases would be observed in CGD 

patients. This type of research could provide some evidence as to whether underlying ROS 

mechanisms in CGD are similar or different to other autoimmune diseases such as rheumatoid 

arthritis, multiple sclerosis and type 1 diabetes. 

4.1.3 Measuring oxidative stress and antioxidant potential in inflammatory bowel disease 

Of the three assays described in Section 4.1.1, the majority of prior research has used either the 

FRAP or TBARS assays, with little evidence that the TFT assay has ever been used for an IBD 

cohort. The FRAP assay has been used to evaluate differences in antioxidant status of both serum 

and saliva in those with active and inactive CD. The CD group with active disease had decreased 

antioxidant capacity in comparison to patients with inactive CD, where the measure of activity 

was the CD activity index [400]. Szczeklik et al. also investigated serum and saliva antioxidant 

potential differences between CD and UC, finding a significantly lower antioxidant capacity in CD 

patients [401]. Both studies were conducted with smaller cohorts of 58 and 31 IBD patients, 

respectively. A study by Luceri et al. used both the FRAP and TBARS assays to evaluate oxidative 

stress and antioxidant potential in the serum of adults patients with severe CD requiring surgery. 

In this, they identified significantly higher lipid peroxidation in the CD group in comparison to 

controls, but no differences in the FRAP assay. This was also a relatively small study, with 54 CD 

patients and 17 controls [402]. Statistical significance between CD and controls in TBARS assays 
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was corroborated by Langenberg et al. [403]. Maor et al. also confirmed significantly higher lipid 

peroxidation levels in CD than controls, and also in those with active disease in comparison to 

inactive disease, according to the CD activity index [404]. Levels of lipid peroxidation levels in UC 

have not been shown to be significantly higher than controls [405]. These studies in small groups 

of patients all show the same trend of increased lipid peroxidation and decreased antioxidant 

capacity as observed in other autoimmune diseases. No study analysed an exclusively paediatric 

IBD cohort, including few, if any, paediatric cases. As stated earlier, there were differences in 

results from juvenile idiopathic arthritis patients in comparison to an RA study. This could be due 

to the patient’s ages, or differences in disease aetiology.  

There are currently no biomarkers that are specific to IBD or any subtype, either for diagnosis or 

monitoring disease activity. As previously mentioned, CRP levels can be used as an indication of 

disease status in the patient. Other nonspecific blood markers, such as erythrocyte sedimentation 

rate, platelet count and mean platelet volume can be used as an indicator of whether disease is in 

remission or active. These methods are only used to guide further investigation, and cannot be 

used diagnostically, or to confirm remission. For subtype diagnosis, the best biomarkers are 

thought to be a combination of anti-Saccharomyces cervisiae antibodies (ASCA) and atypical 

perinuclear antineutrophil cytoplasmic antibodies (pANCA). Used together they had a specificity 

above 90% and sensitivity of approximately 55% when differentiating UC from CD, however 

sensitivity is much lower for colonic UC versus CD (approximately 35%) [406]. Faecal calprotectin 

is a marker currently in use for differentiating between IBD and irritable bowel syndrome, and for 

indicating intestinal inflammation [407]. 

The aim of the following research was to better understand the mechanisms through which ROS 

production affects IBD using the FRAP, TBARS and TFT assays. Additionally to assess whether 

oxidative stress or antioxidant potential were viable markers of IBD or its subtypes. To this end 

the relationships between: 1) the antioxidant potential and oxidative stress assay data; 2) the 

three assays and clinical and demographic characteristics of paediatric IBD patients, and 3) the 

three assays and genomic data converted into GenePy scores were explored.  
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4.2 Methods 

4.2.1 Genomic data 

Paediatric patients were recruited and blood for DNA and plasma collected as described in Section 

3.3.1. WES data processing, including alignment, joint calling, annotation and GenePy score 

generation was performed as in Section 3.3. 

4.2.2 Antioxidant potential and oxidative stress assays 

The metabolomic assays analysing oxidative stress and antioxidant potential were performed over 

three days, across 11 (FRAP and TBARS assays) or 17 (TFT assay) plates, using previously frozen 

plasma samples. All three assays are based on spectrophotometric methods and performed in 

duplicate (FRAP and TBARS assays) or triplicate (TFT assay and protein content). 

4.2.3 Ferric Reducing Ability of Plasma assay  

The protocol for the FRAP assay is based on the method by Benzie and Stain [408]. In brief, the 

FRAP reagent was prepared, which mixes 25 ml acetate buffer, 2.5ml tripyridyltriazine solution, 

and 2.5ml iron (III) chloride solution. Calibration was performed with iron (II) solutions of known 

concentrations between 100 and 1000 µmol/L. 300 µL of the FRAP reagent was incubated at 370C 

for 30 minutes. After a reagent blank reading was taken with the FRAP reagent at 593nm on a 

spectrofluorometer, 10µL of centrifuged plasma, which was thawed as required, was added to the 

FRAP reagent alongside 30 µL of H2O. The absorbance of the resulting blue colour from the 

reduction of ferric ions to ferrous ions measured at 593nm on a spectrofluorometer. 

4.2.4 Thiobarbituric acid Reactive Substances assay  

The TBARS assay usually requires a larger volume of plasma, but due to plasma availability this 

assay was miniaturised [409]. In brief, the TBARS reagent was prepared by dissolving 7.5g 

trichloroacetic acid, 1.035ml hydrochloric acid, and 0.1875g 2-thiobarbituric acid in 50ml of 

milliQ-water. Additionally the Butylated hydroxytoluene (BHT) solution was prepared by 

dissolving 0.2g of BHT in 10 ml ethanol. Next, 65µL of plasma and 65µL of methanol were 

centrifuged, and the recovered volume (approximately 90µL) was added to a 1:1 mix of TBARS 

and BHT reagents. This mixture was transferred to glass inserts inside microcentrifuge tubes with 

500 µL water inside, and incubated at 900C for half an hour. At this high temperature the 
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malondialdehyde-thiobarbituric acid adduct forms. Stainless steel balls covered the glass inserts 

to prevent sample evaporation, but allow the escape of excess gas. After cooling on ice for 10 

minutes, and being centrifuged for 15 minutes, 50µL of each of the samples was added to 

microplate wells, and the fluorescence intensity read at 532nm and 750nm on a 

spectrofluorometer (the latter reading was used for spectral background correction). 

4.2.5 Total Free Thiol assay  

The plasma sample was centrifuged for 10 minutes, and 75µL of the plasma extracted and mixed 

with a Tris pH 8.2 buffer. 90µL of prepared standard solution and plasma was added to the wells 

of the flat bottom well plate. The absorbance of this mix is measured at 412nm and 630nm, which 

is called absorbance pre-incubation. Then 20µL of DTNB (dithionitrobenzoic acid) was added to 

each well on the plate, put on the plate shaker and incubated at room temperature for 20 

minutes, after which the absorbance of the samples is measured at 412nm and 630nm 

(absorbance post incubation). The assay was normalised by dividing by the protein content of 

each sample, measured using the Coomassie (Bradford) protein assay kit.  

4.2.6 Statistical and regression analyses 

The statistical testing and stepwise linear regression used in the analysis of assay data were 

performed using R (v.3.6.0) [178]. The Shapiro-Wilk test evaluates whether a random data sample 

forms a normal distribution. A significant result indicates a skewed distribution. The one-way 

analysis of variance (ANOVA) test indicates whether a significant difference exists in a continuous 

variable in two or more groups. The Kruskal-Wallis test is the non-parametric version of the one-

way ANOVA. Regressions were performed with one or more variables. When more than one 

variable was included, the stepwise regression method was used. This combines the forward and 

backward selection of variables. When each new variable is added, all other current variables are 

examined. If any current variable is now non-significant, it is removed. 

4.2.7 Supervised machine learning  

For further analysis of antioxidant potential and reactive oxygen species assay results, supervised 

machine learning was used to classify extreme high and low assay results, using GenePy scores as 

prediction features. The genes chosen for inclusion as features in machine learning were based on 

NADPH oxidase gene literature [410]. The machine learning workflow is illustrated in Figure 25. 

The data set of each assay was separated into the top quartile (“high”), the bottom quartile 
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(“low”) and remaining results classified as “medium”. Any results labelled as “medium” were 

removed from the data set. This created a balanced, binary classification problem, and it was 

expected that any machine learning algorithm would more easily distinguish between these two 

classes. This data set was split into training and testing data, in the ratio 80/20. Pre-processing of 

the data by centring and scaling (z-score) the GenePy scores was conducted on the training data 

and test data independently.  

 
Figure 25 Machine learning workflow for classifying extreme (high and low) assay data values 

using GenePy scores. The workflow was repeated for each assay. 

All machine learning training and testing was accomplished using the caret package (v.6.0-84) 

[411]in R (v.3.6.0) [178]. Five machine learning algorithms were tuned, and their performance 

evaluated. These were two support vector machine algorithms, one with a linear kernel and one 

with a radial kernel, gradient boosting machines, random forest and logistic model trees. During 

training of each model, the data was resampled 5 times, and 10-fold cross validation was used. 
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The training process was repeated for each potential hyperparameter value in order to optimise 

each method. The support vector machine with radial kernel, and gradient boosting machines, 

had two tuning parameters, while the other three algorithms had one. The model with the 

highest AUC on the training data was chosen to classify the testing set. This was repeated for each 

assay independently (see Supplementary Files for machine learning scripts). 

4.3 Results 

The cohort for this study consisted of 331 patients, as this was the subset of patients from the 

Southampton Genetics of IBD study for which plasma samples were available for analysis (clinical 

characteristics available in Table 7). FRAP and TFT assay results are available for all probands, 

while the TBARS assay failed for four probands, and no duplicate is available for 25 probands. The 

TBARS assay failures are due to the miniaturisation of the assay, and the high temperature the 

samples were heated to, causing some samples to evaporate. The protein content measurement 

for the normalisation of the TFT assay was repeated for one proband due to a high variation 

between the triplicate samples (coefficient of variation 17.12%, median coefficient of variation 

over all samples 3.72%). 

Table 7 Clinical characteristics of a paediatric cohort for which plasma samples were available, 

split by sex.  

 Female Male Total 

N 123 208 331 

Median age at diagnosis (SD) 12 (3.25) 13 (3.44) 12 (3.36) 

Range of age at diagnosis 2-16 1-17 1-17 

Diagnosis CD 73 155 228 

UC 42 41 83 

IBDU 3 6 9 

No IBD 5 6 11 

 

To gain an initial understanding of these data produced by FRAP, TBARS and TFT assays, summary 

statistics are calculated (Table 8). The distribution of these data is visualised in Figure 26, and the 
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Shapiro-Wilk test was used to determine if the data of each assay deviates from a normal 

distribution. The TFT assay before and after normalisation have a normal distribution. However, 

there is significant evidence that the FRAP and TBARS assay results distributions deviate from 

normality (p=1.215e-14, p=4.824e-11, respectively). Therefore, non-parametric statistical tests 

were required for subsequent analyses of these data. 

Table 8 Basic statistics describing results from TFT, FRAP and TBARS assays.  

 FRAP TBARS TFT TFT (Normalised) 

N 331 327 331 331 

Mean 1012.039 7.325 375.389 6.147 

Median 961.000 6.910 375.268 6.130 

Standard Deviation 262.189 2.919 71.537 0.998 

Range 1949.000 22.600 441.372 5.940 

Minimum 506.000 1.600 191.764 3.420 

Maximum 2455.000 24.200 633.136 9.360 
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Figure 26 FRAP, TBARS, TFT before normalisation and TFT after normalisation assay results 

distribution. FRAP and TBARS assay results have a (positively) skewed distribution, 

confirmed by the Shapiro-Wilks test for normality. TFT assay results before and after 

normalisation has a normal distribution. 

4.3.1 Plate analysis and correction 

The distribution of the assay data was tested to determine if assay results were in any way 

influenced by batch effects. Kruskal Wallis test for the FRAP and TBARS assays and one-way 

ANOVA test for the TFT assay were used to assess differences between result distributions across 

plates, and across days. The associated p-values indicated significant differences in plates for all 

assays, and significant differences in days for TFT and FRAP (Figure 27), indicating that some 

correction needed to be applied to the data to prevent bias in subsequent results due to batch 

effects. The FRAP assay plate in particular displayed a strong trend of the median result on a plate 

increasing in each subsequent plate. This trend is present for all three days the FRAP assay was 

conducted. The results from testing the distribution on the TBARS plates and days informed how 

the correction should be implemented. In this case the differences between plates were masked 

when the data for the overall day was observed. This demonstrated that any correction must be 

done in reference to plates, rather than days.  
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Figure 27 FRAP, TBARS and TFT assay concentrations by day (left) and by plate (right). Kruskal-

Wallis test (FRAP, TBARS) and one-way ANOVA (TFT) p-values noted on each plot for 

differences in assay concentrations per day and per plate.  

As oxidative stress can increase as the body ages, a potential cause of significant batch effects 

would be that some plates were enriched for patients of younger or older age. Kruskal-Wallis and 

one-way ANOVA tests revealed no significant differences in the age distribution on each plate 

(Table 9). Given the cause of significant batch effects could not be determined, the raw assay 

results were transformed into z-scores within batches. This conserved the extreme values 

observed within each assay (Figure 28). 
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Table 9 Results for determining whether a significant difference exists in the ages of the samples 

on each plate. 

 N Test p value 

TFT plate vs Age at blood draw 331 One-way ANOVA 0.200 

FRAP plate vs Age at blood draw 331 Kruskal-Wallis 0.798 

TBARS plate vs Age at blood draw 327 Kruskal-Wallis 0.775 

 

 
Figure 28 Boxplots of FRAP, TBARS and TBARS assays after z-score conversions. Kruskal-Wallis test 

(FRAP, TBARS) and one-way ANOVA (TFT) p-values included. 

4.3.2 Correlation between oxidative stress assays  

It was hypothesised that patients with lower z-scores in the FRAP (antioxidant potential) assay 

would be ill-equipped to effectively deal with increased oxidative stress, resulting in higher z-

scores in the TBARS and TFT assay. A linear regression was performed between TBARS and FRAP 

assay results and TFT and FRAP assay results (Figure 29). A significant linear correlation assists 
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between FRAP and TFT assays, although it accounts for very little of the variation in the data 

(adjusted R2=0.0284). The direction of this correlation does not support the hypothesis. The same 

analysis conducted only on those cases with CD (n=225) results in a slight increase in R2 for the 

significant regression of TFT versus FRAP (adjusted R2=0.0295, p=0.005912). Additionally, when 

this regression is performed on only UC data (n=81), this relationship does not persist. This is 

either due to fewer cases of UC in the dataset, or because the biological connection between 

reactive oxygen species and UC is weaker, or not at all present. 

 
Figure 29 TBARS assay z-score vs FRAP assay z-score, and TFT assay z-score vs FRAP assay z-score, 

with details of the linear regressions in the top-right of each figure. The regression 

line is shown where the adjusted R2 generated from the linear regression is 

significant.  

4.3.3 Oxidative stress assay results and inflammatory bowel disease diagnoses 

The oxidative stress assay profile across patients with different diagnoses of IBD was examined 

(Figure 30). No significant differences between the assay results of different diagnostic groups 

were found using the Kruskal-Wallis (FRAP, TBARS) and one-way ANOVA (TFT) statistical tests.  
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Figure 30 FRAP, TBARS and TFT assay distributions, grouped by diagnosis. 

4.3.4 Assays and age 

To assess whether a linear relationship exists between assays and age of diagnosis, and between 

assays and age at blood draw, linear regressions between these variables was calculated. These 

results are shown in Figure 31, which also allows the comparison of the distributions of the data. 

When this analysis is conducted on the CD data (n=224), the same adjusted R2 are obtained. This 

suggests this relationship between age and assay result is driven by the CD cases. To determine 

whether age at diagnosis was significantly associated with assay results, or simply related to 

patient age at blood draw, a stepwise linear regression was used. It was thought that by using this 

method the more significant age variable could be determined. The results of this are shown in 

Table 10. The TFT assay has no significant correlation with either age variable. FRAP and TBARS 

assays both have significant relationships with age variables. The regression for the TBARS assay 

indicates that both age at blood draw and age at diagnosis are significant, although the 

corresponding adjusted R2 for this regression is very small. Therefore, from these results it is more 

likely the age at blood draw is the influential variable. 
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Figure 31 Plots of assays versus age at diagnosis, and age at blood draw. Details of the results of 

the linear regression are displayed in the top-left corner. Where the R2 generated 

was significant, the corresponding regression line is shown in the figure.  
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Table 10 Results of the stepwise linear regression for assay and age variables. 

Assay Variable Coefficient (p value) Adjusted R2 (p value) 

FRAP Age at blood draw  0.09306 (0.00244) 0.1101 (4.862x10-9) 

 Age at diagnosis  0.02519 (0.34514) 

TBARS Age at blood draw  0.09872 (0.00219) 0.02354 (0.009085) 

 Age at diagnosis -0.06971 (0.01316) 

TFT Age at blood draw  0.02239 (0.486) 0.0009588 (0.3179) 

 Age at diagnosis -0.03844 (0.172) 

4.3.5 Oxidative stress assays and C-reactive protein  

C-reactive protein (CRP) is a commonly tested marker of inflammation, which can be used to 

monitor disease [406]. The majority of available data on CRP concentration was from probands 

with CD (CD=145, UC=11, IBDU=2). To compare inflammation and oxidative stress, a linear 

regression model was used where each assay’s z-score was regressed against the CRP results 

(Figure 32). It was expected that patients with a high CRP result would also have high assay 

results. A significant linear relationship with CRP exists for those assays that measure oxidative 

stress, TFT and TBARS. This relationship was not what was expected. Instead, those patients with 

high CRP concentrations have lower results in the oxidative stress assays. 



Chapter 4 

97 

 
Figure 32 FRAP, TBARS and TFT assay z-scores plotted against CRP concentration. Where the p 

value of the adjusted R2 was significant, the regression line representing the linear 

model is shown.  

4.3.6 GenePy scores 

GenePy scores were generated for 15 NADPH oxidase genes, and 3 genes of interest thought to 

have a role in oxidative stress or inflammation. For one potentially important NADPH oxidase 

gene, NCF1, as there was no coverage of that gene in version 4 of the sequencing library. As 83 

probands were sequenced with this version, a large proportion of patients would not be included 

in the analysis if the GenePy scores were generated using only the data from later versions of the 

sequencing library. Therefore, this gene was omitted. Although GenePy scores were generated, 

there were no exonic variants in the gene RAC1, resulting in all zero GenePy scores, as these were 

based on exonic variants present in the gene. Coverage and function of each gene and potential 

relationships to IBD are contained in Table 11. 
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Table 11 Coverage of genes used in analysis (Agilent SureSelect Human All Exon v 4, 5 and 6). Information on gene function and any literature evidence of contributions 

to IBD development caused by these genes. Tier 1 genes have variants that have been implicated in IBD, tier 2 genes have not been implicated in IBD, but 

are NADPH oxidase genes. Some tier 2 genes code for proteins that form complexes with proteins encoded by genes in tier 1.  

Gene Coverage Gene Function Relation to IBD 

V4 V5 V6 

Tier 1 

NOX1 0.615 0.620 0.528 The complex is responsible for one-electron transfer of oxygen to 

generate superoxide. 

Loss-of-function variants in NOX1 can be 

context-specific disease modifiers [412]. 

CYBA 0.311 0.283 0.256 Part of the NOX1, NOX2 and NOX3 enzyme complexes These genes are implicated in CD. Linked 

to a higher likelihood of perianal disease 

and stricturing disease [110]. 
CYBB/NOX2 0.621 0.643 0.538 Part of the NOX4 enzyme complex 

NCF1 0 0.499 0.455 Forms NOX2 enzyme complex, with NCF2, NCF4, RAC2 and RAP1A. 

NCF2 0.498 0.511 0.445 Forms NOX2 enzyme complex, with NCF1, NCF4, RAC2 and RAP1A. 

NCF4 0.626 0.565 0.483 Forms NOX2 enzyme complex, with NCF1, NCF2, RAC2 and RAP1A. 
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DUOX2 0.563 0.613 0.549 Protein encoded forms similar enzyme complex to the NADPH 

oxidase complexes, but the end product is hydrogen peroxide.  

Missense variants identified in VEOIBD 

patients, showing reduced ROS production 

[108] 

REG3A 0.702 0.661 0.548 Associated with cell proliferation or differentiation, anti-

inflammatory. Part of the REG gene family (REG1, REG2A, REG2B, 

REG3A, REG4). Mediates killing of gram-positive bacteria. Regulates 

keratinocyte proliferation and differentiation after skin injury. 

Increased expression in IBD [413]. In-house 

machine learning analysis suggested 

REG3A as a gene of interest 

HMOX1 0.737 0.697 0.647 HMOX1 is a component of antioxidant defence against oxidative 

stress [414]. 

In-house variant analysis implicated this 

gene in CD 

NOD2 0.720 0.664 0.609 Recognises bacterial lipopolysaccharides, activates NF-κB and IFN-β 

pathways [102]. 

A monogenic CD gene, and also causes CD 

in combination with other genes [5, 415]. 

Tier 2 

NOXA1 0.514 0.546 0.475 Activation of NADPH oxidases  

NOXO1 0.748 0.671 0.674 Activation of NADPH oxidases   

RAC1 0.543 0.557 0.541 Present in NOX1 enzyme complex  
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RAC2 0.445 0.419 0.373 Present in NOX2 enzyme complex  Potential association with CD [416]. 

DUOXA1 0.808 0.781 0.636 Gene encodes maturation factor for DUOX1 function  

DUOXA2 0.708 0.718 0.659 Gene encodes maturation factor for DUOX2 function  

DUOX1 0.524 0.596 0.469 Similar enzyme complex to DUOX2, found in different tissues/cells.  

NOX3 

0.622 0.683 0.535 

Similar enzyme complex to NOX1/NOX2, found in different 

tissues/cells. 

 

NOX4 

0.407 0.503 0.444 

Similar enzyme complex to NOX1/NOX2 found in different 

tissues/cells. 

 

NOX5 

0.693 0.720 0.593 

Similar enzyme complex to NOX1/NOX2, found in different 

tissues/cells. 
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4.3.7 Stepwise linear regression 

A stepwise linear regression was used to determine to what extent a linear relationship existed 

between antioxidant potential and oxidative stress assay results and genes identified as 

potentially related to reactive oxygen species production and oxidative stress. Six models were 

created, two per assay, with one using all available data, and another only using data from 

probands diagnosed with CD, following on from previous results indicating these relationships 

may be more important in these patients. Seventeen GenePy scores were used as predictor 

variables. The stepwise regression used both forwards and backward feature selection, to obtain 

the best combination of GenePy scores for assay result prediction (Table 12). 

Table 12 Stepwise linear regression results for FRAP, TBARS and TFT, for two datasets. 

Assay Data (n) Variable Coefficient p value Adjusted R2 

(p value) 

p value 

FRAP All Data (314) CYBA -0.541 0.094 0.0099 0.078 

NOX5 0.418 0.142 

CD data only (224) DUOXA1 -0.725 0.148 0.0088 0.139 

NOX5 0.577 0.118 

TBARS All data (314) RAC2 1.022 0.013 0.03296 0.0062 

REG3A 1.457 0.152 

DUOXA1 -0.892 0.045 

DUOXA2 1.026 0.122 

CD data only (224) REG3A 1.468 0.136 0.03537 0.012 

DUOXA1 -0.939 0.040 

DUOXA2 1.606 0.021 

TFT All data (314) HMOX1 -0.674 0.052 0.07958 5.65x10-6 

NOXA1 -0.905 0.001 

DUOX1 -1.138 1.07x10-4 
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NOX5 0.430 0.123 

CD data only (224) HMOX1 -0.915 0.018 0.08161 7.33x10-5 

NOXA1 -0.942 0.005 

DUOX1 -0.914 0.007 

There is no significant adjusted R2 for the regression with either FRAP assay dataset, but there are 

significant regressions for TBARS and TFT assay data (TBARS adjusted R2 0.03296 (all data), 

0.03537 (CD data only), TFT adjusted R2 0.07958 (all data), 0.08161 (CD data only)). Where the 

adjusted R2 was significant, an increase in this statistic is observed when only CD data is used. 

These linear relationships do not account for much of the variation in the data, indicating that 

more complex methods may produce better predictions.  

4.3.8 Machine learning for predicting assay results 

All identified NADPH oxidase genes, where GenePy scores were available and not invariant were 

included as features (n=15): NOX1, CYBB, CYBA, NCF2, NCF4, RAC2, DUOX2, NOXA1, NOXO1, 

DUOXA1, DUOXA2, DUOX1, NOX3, NOX4, and NOX5. The five machine learning algorithms: 

gradient boosting machines (GBM), logistic model trees (LMT), random forest (RF) and support 

vector machines with radial and linear kernels (SVM (R) and SVM (L), respectively) were run 

separately for each assay’s training data (n=128 per assay dataset). Training involved optimising 

each method on the training data. Details of the hyperparameters, the values of the 

hyperparameters trialled, and the optimum parameter values for each assay are given in Table 13. 

The AUC values produced during training are visualised in Figure 33A-C. With FRAP and TBARS 

assay training data, SVM (R) was the best performing model with the highest AUC. For the TFT 

assay training data, the GBM model had the highest AUC (Table 14).  
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Table 13 Description of the tuning parameters for each model and optimal parameter values in 

training for the prediction of the extreme assay results in each assay’s data set.  

Model Hyperparameter Hyperparameter 

Description 

Hyperparameter 

Values Tried 

Optimal Parameter 

Value 

FRAP 

data 

TBARS 

data 

TFT 

data 

GBM interaction.depth Maximum tree 

depth 

1,3,5,7,9 5 3 9 

n.trees Number of 

boosting 

iterations 

50-1,500 in 

intervals of 50 

400 1200 50 

LMT iter  Number of 

iterations 

1, 20, 40, 60, 80, 

100, 150, 200, 

250, 300, 400, 500 

100 400 60 

RF mtry Number of 

randomly selected 

features 

2, 8, 15 15 2 2 

SVM 

(L) 

C Cost 0.75, 0.9, 1, 1.1, 

1.25, 1.5, 1.75 

0.9 1.1 1.25 

SVM 

(R) 

sigma Sigma 0.01, 0.015, 0.2, 

0.25 

0.25 0.25 0.2 

C Cost  0.75, 0.9, 1, 1.1, 

1.25 

0.75 0.9 0.75 
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Table 14 AUC achieved by each model for each assay training dataset. 

 AUC, Training Data 

FRAP assay  TBARS assay TFT assay 

GBM 0.4659410 0.5352494 0.5730952 

LMT 0.4889116 0.5601984 0.5390306 

RF 0.3563039 0.5644501 0.5517857 

SVM (R) 0.6224830 0.6075624 0.5314399 

SVM (L) 0.4661565 0.5435601 0.5121995 

These machine learning models, each with hyperparameters selected for to maximise AUC, were 

used on the testing data (n=32 for FRAP and TFT assay data, n=30 for TBARS assay data). When 

applied to the test data sets, the models for TBARS and TFT failed to predict high and low assay 

results (TBARS accuracy=0.33, sensitivity=0.40, specificity=0.27; TFT accuracy=0.41, 

sensitivity=0.40, specificity=0.27). The SVM (R) for the FRAP assay data was a reasonable predictor 

and was better at identifying the assay results in the upper quartile (sensitivity=0.69, 

specificity=0.56). However, there were very wide confidence intervals for the accuracy of this 

model: accuracy=0.63, 95% CI 0.44 – 0.79. AUCs for each assay’s testing data are visualised in 

Figure 33D-F.  
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Figure 33 Training and testing machine learning models for differentiating patients with extreme 

assay results using GenePy scores. A-C: Five models trained on a balanced two class 

datasets (n=128) for each assay: SVM (R), SVM (L), GBM, RF and LMT.  Boxplots 

sorted by performance (top to bottom).  D-F: Best performing model on the training 

data applied to the test data, prediction performance demonstrated with AUCs. 
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4.4 Discussion 

Here, data from the oxidative stress assays TFT and TBARS, and the antioxidant potential assay 

FRAP were explored to first understand these data, then understand potential relationships 

between assays and IBD, and finally the relationships between assays and genetic variation (using 

GenePy scores). Linear regressions between FRAP and TBARS, and FRAP and TFT assays revealed 

little overlap between oxidative stress and antioxidant potential assays, illustrated by low 

adjusted R2 values (although this was significant for the FRAP and TBARS regression). There was a 

negative correlation between TFT and FRAP that was unexpected. In a “healthy” control 

population this negative relationship would be expected, an increased antioxidant potential 

leading to lower general oxidative stress. Therefore, it was expected that in the IBD cohort there 

may be some perturbation from this. As there was no control cohort, it may be that the 

relationship observed is milder than that present in a control cohort, indicating some 

dysregulation. 

There were statistically significant differences observed between the assay results on different 

plates for the FRAP and TBARS assays. This was corrected by transforming results into z-scores 

within each plate. For the FRAP assay in particular there appeared to be an upward trend in 

results for each plate, and these upwards trends were observed for each day, with assay results 

appearing to return to lower values at the start of each day. After consultation with the team that 

performed the lab work, the time of day was thought to be a factor, potentially combined with 

temperature. One person performed the FRAP assay for each plate sequentially over the 3 days, 

and temperature may have been a factor as the FRAP assay protocol states that plasma samples 

were thawed when necessary. Samples thawed later in the day may have been brought up to 

temperature more quickly due to a higher ambient temperature. For the TBARS assay, there is 

less of a clear trend. The significant differences between plates are no longer significant after 

observing results obtained per day. However, this assay was miniaturised, which led to a protocol 

that was more difficult to execute, which may account for inconsistencies in results.  

No statistically significant differences were observed when assay results were compared across 

diagnosis groups, However, there were outliers in the data, particularly in the TBARS assay data 

for CD and UC, and in the FRAP assay data for CD. It is not expected that all patients within either 

disease subtype have the same aetiology. There may be a small subset of patients that have a 

distinctive ROS assay profile that is indicative of oxidative stress being the primary contributor to 

disease aetiology. Further investigation of outliers may consist of an analysis of genetic variation 

that could underpin these comparatively extreme assay results.  
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The investigation of associations between the FRAP assay and age revealed that these observed 

differences were likely to be driven by the patient’s age when the blood was taken. This is as 

opposed to the age at diagnosis, as the plasma for assays were not necessarily taken on or near 

the day of diagnosis. Although there is limited evidence, one paper suggests that an increase in 

antioxidant potential may be standard in a paediatric cohort. In an analysis of antioxidant capacity 

in children with childhood caries, the whole cohort was used to plot the total antioxidant capacity 

in saliva against age [417]. This produced a positive linear regression that was close to significant, 

similar to the significant one viewed in this analysis. This regression could have perhaps been 

significant with a larger cohort, or a wider age range, as 100 children were included between 3 

and 5 years of age. This leads to a tentative suggestion that antioxidant potential may naturally 

increase as children age, and their bodies become more capable of handling oxidative stress. 

When considering the TBARS assay and age, the correlation between age at blood draw and lipid 

peroxidation was negative, while the correlation between age at diagnosis and lipid peroxidation 

was negative. While these correlations, and the adjusted R2 were significant, the contradictory 

directions of these correlations mean the evidence is not conclusive, especially when also 

considering the other measure of oxidative stress (TFT) had no significant correlations with age. 

For all assays, the results indicate that these measures cannot be used as an indicator for early 

onset IBD.  

No significant correlation between CRP and FRAP was observed. There were small but significant 

correlations for the TBARS and TFT assays. In these cases, an increased CRP was associated with 

decreased oxidative stress assay results. This was contrary to expectations, as it was thought that 

an increase in reactive oxygen species production, leading to oxidative stress would result in 

higher inflammation. The results here appear more in line with the pathology of Chronic 

Granulomatous Disease, where loss of function variants cause a decreased production of reactive 

oxygen species [104]. 

There was very limited evidence that accrued pathogenic variation in genes that might impact 

proteins in oxidative stress pathways, were correlated with oxidative stress assays. The highest 

correlation (R2=0.082) was between GenePy scores and TFT assay on the CD patient subset. The 

GenePy scores for the genes HMOX1, NOXA1 and DUOX1 were the factors identified that 

explained some of the variance in the TFT assay data. HMOX1 is a component of antioxidant 

defence against oxidative stress [414]. NOXA1 is an activator of NOX1, and DUOX1 is a component 

of an NADPH oxidase complex that is known to be expressed in the colon [105]. Instead of the 

genetic burden existing in one gene, variation in a combination of genes involved across this 

pathway could be contributing to the function of downstream complexes, reflected in the 

oxidative stress assays. Sensitivity to detect a relationship between mutations in genes encoding 
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proteins critical to ROS and anti-oxidant potential may be improved by also including the sum of 

GenePy scores that are part of one complex. For example summing all scores of genes that code 

for proteins in the NOX1 complex. This has been shown as a promising approach in analyses of 

GenePy scores and transcriptomic data (unpublished data). This method takes into account 

potential interactions between complexes that may, in combination, cause an effect such as 

dysregulation of reactive oxygen species production. There was no significant relationship 

between GenePy scores and the FRAP assay in the regression analysis. This is in contrast to the 

machine learning results, where the FRAP assay classifier performed the best. This could be 

indicative of nonlinear relationships between GenePy scores for all assays that cannot be 

identified through regression analysis.  

Machine learning was applied to attempt to differentiate between high and low assay results 

using GenePy scores. The prediction problem was adjusted from a regression to a two-class 

classification, and results in quartiles one and four of each assay distribution were retained to 

make these categories (high and low) more distinct. Despite this, the machine learning models for 

the TBARS and TFT assays performed poorly, and the model for FRAP assay results was only 

modestly good. Although the genes used as features were selected using biological knowledge, 

the feature set was small for each of the three models (n=15). Additionally, not all features had 

been implicated in IBD. The machine learning may have benefitted from an initial feature 

selection step, and maybe expanding the genes included to other, related pathways upstream or 

downstream of ROS production. However, it is not unreasonable to suggest that the ability for 

machine learning to predict assay results from the GenePy scores is weak. Many factors may 

affect the connection between the features and the outcome variable, including transcriptomic, 

diet and environmental factors. The machine learning classifier for the FRAP assay did indicate 

that these results are more strongly derived from genetics. Future work here may include 

incorporating these assay results as a feature, along with other clinical features such as blood test 

results in a potential model for CD. This could address disease activity monitoring, or 

complications of CD. The current volume of assay data for CD is however quite small (n=224), and 

may not be adequate to train and test a machine learning model once the data is split according 

to the particular outcome variable.  

There are a few limitations in the assay data used here. The first is that the data did have to be 

transformed into z-scores due to inconsistencies across the different plates. Although z-scores 

preserve the extreme results within the new range, it is possible that potentially useful 

information was lost during this process. Secondly, it is not known how much the results of these 

assays for each patient would vary over time, and what could cause this variation. The individual’s 
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diet and environment could affect these results, as could the treatment they are on, and the 

activity of disease. The data are a cross-sectional snapshot, and not longitudinal. Finally, these 

data were generated from blood plasma. It is not clear whether an under or overproduction of 

reactive oxygen species in the gut would be reflected in the plasma.  

Although the analyses in this chapter have not revealed any assay to be a biomarker for IBD, it 

adds further evidence to current biological knowledge. A consistent theme across the analyses 

was that the results showed a stronger tendency towards significance when the analysis was 

restricted to Crohn’s Disease patients. This was demonstrated in linear regressions between 

assays and age, and when stepwise linear regression was used for predicting assay results from 

GenePy scores. These findings are in line with Jahanshahi et al.’s results using the TBARS assay 

[405], but corroboration with other literature is limited by research often focusing on cases versus 

healthy controls. These relationships are likely only prevalent in a subgroup of CD patients where 

dysfunction in reactive oxygen species activation pathway contributes to pathology. Further 

stratification of the CD subgroup may be necessary. 

As was described in Section 1.2.6.3, pathways involving NOD2 signalling are somewhat interlinked 

with reactive oxygen species production by NADPH oxidase complexes. Variants in NOX1 and 

CYBA were identified in a patient with VEOIBD, and functional assay analysis confirmed the 

protein encoded by CYBA (p22phox) did interact with NOD2 [418]. Mouse models have also 

identified that deficiency of NOD2 together with CYBB causes intestinal inflammation like the type 

and pattern of CD [419]. Evidence of interactions between NOD2 and NADPH oxidase genes, 

combined with the observed relationships between the assay results and CD further evidences 

that reactive oxygen species and NADPH oxidase analysis will be most profitable using a CD 

subtype cohort. 
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Chapter 5 Random forest classification of inflammatory 

bowel disease subtypes and the Crohn’s 

disease stricturing endotype  

Chapter summary – this chapter is the first of three chapters dedicated to stratifying IBD 

patients into clinical groups, using genomic data and ML. Initial random forest model results are 

obtained for two clinical tasks: classifying IBD patients into CD and UC, and classifying CD 

patients into stricturing and not-stricturing groups. These classification tasks are performed 

using three different gene panels. Additionally, two different forms of the GenePy matrix were 

investigated, along with an additional pre-processing step, to see if the performance of the 

random forest could be improved with changes to the input genomic data.  

 

Chapter contributions – Whole exome sequencing data was joint called by Guo Cheng, with all 

subsequent processing, and transformation into GenePy scores, performed by Imogen Stafford. 

The IBD gene panel was curated by Guo Cheng and James Ashton. Extraction of clinical data 

from University Hospital Southampton records was performed by Florina Borca and Hang Phan. 

Clinical stricturing status was assessed by Melina Kellerman, Imogen Stafford and James Ashton. 

Fuentes false positive gene list remapping was performed by Ellie Seaby and Imogen Stafford. 

Ellie Seaby also assisted with quality control checks. ML pipeline was generated by Enrico 

Mossotto and Imogen Stafford.  

 

Supplementary files can be found at https://doi.org/10.5258/SOTON/D2655. 

5.1 Introduction 

Early diagnosis is important for many chronic diseases, including inflammatory bowel disease. 

Diagnosing individuals with the correct subtype is crucial, in order that the patient receives 

treatment for the induction and maintenance of remission specific to that subtype. Furthermore, 

a delayed subtype diagnosis can result in an increased risk of complications that can require 

surgery [420, 421]. In paediatric cases, a delay of over 8.8 months was shown to be independently 
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associated with impaired growth that persisted one year after diagnosis [21]. In particular, studies 

have found that it takes longer to obtain a diagnosis of CD for both paediatric and adult cases [21, 

420]. The median diagnosis time in a paediatric cohort was 2.4 months for UC/IBDU (combined in 

study analysis) and 6.8 months for CD [21], and there were similar median diagnostic times in an 

adult cohort (CD 5 months, UC 1 month) [420]. It has been hypothesised this is due to many CD 

symptoms overlapping with other diseases, whereas specific UC symptoms, such as bloody 

diarrhoea, have been shown to decrease the likelihood of diagnostic delay [21]. In addition, some 

delays in diagnosis are caused by a lag between primary care referrals and an appointment with a 

specialist clinician [422]. One cohort study also found that a previous diagnosis of Inflammatory 

Bowel Syndrome or depression resulted in an increased wait for referral to a specialist [422]. In 

the UK, the National Institute for Health and Care Excellence states that no patient should wait 

more than four weeks to be seen by a specialist [423]. Aside from this, there is very limited clinical 

guidance regarding timelines for diagnosis. There are no recommendations for time to complete 

each diagnostic assessment by in the revised Porto criteria for paediatric patients [7]. In the 

British Society of Gastroenterology consensus guidelines, which govern adult IBD diagnosis and 

management [8], there is only a recommendation that a full ileocolonoscopy be conducted within 

the first year, to definitively confirm subtype diagnosis, and assess disease extent and severity. 

Some clinical investigations are conducted in order to eliminate other diseases a patient may 

have, for example coeliac disease testing, primary sclerosing cholangitis, and functional gut 

disorders [424, 425]. Details of common clinical investigations to diagnose IBD, and more 

specifically CD and UC, are given in Figure 34. In cases where symptoms are general like CD, using 

different patient information such as genomic and immunologic data to diagnose may be 

beneficial for reducing diagnosis times. 
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Figure 34 Potential investigations conducted in order to diagnose IBD, and then CD and UC [424-

427]. Investigations are colour coded according to whether they are performed for 

both subtypes, or one subtype. A) Initial physical exams often involve listening to, 

and feeling the abdomen; B) Clinical tests including blood and stool tests consisting 

of general inflammatory markers such as platelet count and C-reactive protein, and 

other tests which can differentiate IBD from other diseases (faecal calprotectin, 

coeliac disease testing); C) Further physical exams consist of endoscopies where 

biopsies are taken for histological confirmation of CD or UC. As CD can cause 

inflammation anywhere in the GI tract, further tests such as enteroscopies are used 

to investigate disease extent.  

Perhaps even more important than an initial diagnosis of CD or UC is an understanding of 

individual patient’s disease courses. Traditional treatment of IBD involves a step-up approach, 

reserving the use of more aggressive therapies, for example biologic agents, for severe disease 

courses, or patients with disease resistant to remission (Section 1.1.6) [428]. An alternative, which 
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is currently being explored, is a top-down approach to treatment. A concise “workflow” for top-

down treatment is not currently available, but it broadly suggests that treatments should be given 

in the inverse order, beginning with biologics, followed by immunomodulators, steroids and lastly 

5-ASAs [429]. Few studies have interrogated the alternative top-down approach, although early 

evidence suggests this is a plausible strategy, and that early administration of a combination of 

immunosuppressants and biologics were effective at reducing the risks of complications requiring 

surgery, and increasing time in remission [37]. In a literature review of the efficacy of top-down 

therapy for Crohn’s disease, the majority of studies were randomised control trials and 

retrospective cohort studies. The application of the top down therapy was a blanket approach for 

a subset of a cohort, not a targeted approach [429]. A concern of the top-down approach is the 

increased risk of adverse reactions in patients when using these more aggressive treatments 

[429]. The development of methods that can stratify patients based on the severity of disease 

course could help decide whether a top-down or step-up approach is the most effective form of 

treatment strategy on a case by case basis. 

There are complications specifically associated with CD that can cause irreversible bowel damage, 

including strictures, fistulas and abscesses [37]. Strictures, or narrowing, can occur in any section 

of the luminal gastrointestinal tract [430]. They are not uncommon, with around a third of CD 

patients developing stricture(s) in the first 10 years of their disease course [431]. Studies have 

demonstrated that patients in early stages of their disease course (less than 2 years) have less 

bowel damage, and that bowel damage at diagnosis is associated with an increased risk of surgery 

[37]. This highlights a need to quickly identify cases of CD and treat appropriately to avoid 

complications and irreversible damage. Therefore, the focus of this chapter is both on IBD 

subtype diagnosis, and identification of patients who are susceptible to stricturing endotype for 

early intervention. 

Supervised machine learning is an ideal tool for stratification in these cases. There have been 

several attempts to predict aspects of IBD prognosis, including hospitalisation [253], response to 

treatment and remission [261, 432], and likelihood of surgical intervention [433]. These types of 

models almost exclusively use clinical and laboratory data. If these data have to be collected over 

an extended period of time, it could potentially slow down the rate at which an intervention can 

be made. Additionally, clinical data such as C-reactive protein and platelet count, which are 

general measures of inflammation, can be affected by patient co-morbidities, treatments, 

surgery, and other factors unrelated to a patient’s IBD. This is in contrast to genomic data, which 



Chapter 5 

115 

 

is unaffected by these aforementioned factors. In addition, genomic data remains the same, 

regardless of the amount of time that has passed since diagnosis, or a patient’s current disease 

status. 

Of the recent literature that has sought to combine genetic data and machine learning for IBD, 

some researchers combined clinical data with specific gene polymorphisms to model early 

intestinal resection, and extra-intestinal manifestations [434, 435]. Other analysis utilised 

immunochip genotyping data to classify individuals as CD or controls [436, 437], UC or controls 

[436], and to assemble a CD risk model that also incorporated clinical information [438]. Earlier 

work that utilised WES data was published as a response to the Critical Assessment of Genome 

Interpretation (CAGI) challenge, for classification of CD patients and controls [439]. The datasets 

associated with the challenge were relatively small, and two of the three datasets had batch 

effect issues. Many challenge participants chose to select SNVs as features for this challenge. 

More recently, WES data has been summarised into gene mutational burden scores for 

classification of CD patients and controls: Wang et al. utilising predicted variant consequence 

(indel, missense etc.) and zygosity to construct scores [440], and Raimondi et al. used variant 

consequence, and weighted genes according to their number of appearances in publications 

where that gene was associated with IBD [441]. A thorough search of the literature reveals no 

research paper that employs whole exome sequencing in conjunction with machine learning to 

distinguish between IBD subtypes, or to answer any prognostic questions. 

In this chapter, a random forest machine learning algorithm is used for two classification tasks: 

firstly, to classify patients as the IBD subtype CD, or UC; secondly to determine whether CD 

patients will develop a stricturing endotype; and thirdly to investigate the impact of age of onset 

on the genomic basis of IBD. For each classification task three gene panels are used: 1) all genes 

where GenePy scores are available; 2) an autoimmune gene panel; and 3) an IBD gene panel. 

Additionally, two different GenePy matrices are used to determine whether an additional filter 

based on predicted gene pathogenicity is advantageous. Finally, a remapped false positive gene 

list from [442] is tested as an additional filter for genes included in the random forest model to 

determine if this additional GenePy matrix pre-processing step improved modelling.  
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5.2 Methods 

5.2.1 Patient phenotype data extraction and characterisation 

Patients were recruited according to Section 3.3.1. Diagnoses of IBD subtypes CD, UC and IBDU 

were made according to British Society of Gastroenterology guidelines for adults [8], and the 

modified Porto criteria for paediatric patients [369]. Adult IBD subtype diagnosis data was 

updated as part of preparation of the clinical data. Patients can be diagnosed with IBDU on 

recruitment, and later their diagnosis is updated to one of the subtypes. Similarly, patients can be 

mis-diagnosed with UC if their inflammation is only colonic when presenting at clinic, and 

subsequently inflammation spreads to other areas of the gastrointestinal tract. To confirm each 

patient’s IBD subtype manually, clinical questionnaire information was extracted. If the latest 

records showed patients had a Harvey Bradshaw Index score on record, the patient was recorded 

as having CD. If a patient had a recorded Ulcerative Colitis Disease Activity Index, then they were a 

confirmed UC patient. 

Current NHS databases are not automated to provide flags for specific CD endotypes such as 

stricturing. Additionally, there is no questionnaire or score associated with this endotype. This 

makes extracting deep phenotyping data more challenging. For paediatric IBD patients, this data 

had been curated by searching through individual clinic letters. This process was time consuming. 

Additionally, the increase in sample size comes from patients that are all adults, so on average 

these patients have more clinical history to search through. In order to extract the adult patient’s 

stricturing endotype status more smoothly to use as an outcome in machine learning, 

collaborators at the National Institute of Health Research Southampton Biomedical Research 

Centre assisted in gathering this data. Relevant radiology reports for recruited IBD patients were 

extracted. These were: endoscopy, small bowel MRI, MR Enterography, abdominal ultrasound, 

and computerised tomography abdomen scan. To facilitate identification of these endotypes, 

each report was flagged for presence (1) or absence (0) of keywords related to a stricturing 

endotype: “strictur”, “fibrosis”, “fibrotic”, “narrowing”, “narrowed”, “dilatation”, “dilati", 

“stenotic”, and “diameter”. The searches were not case sensitive.  

To assess how accurate the flags were, reports for a subset of patients were given to a medical 

student, with the flags removed. Without knowledge of the flag, the opinion of the medical 

student and the keywords were assessed for concordance. The flag and the medical student 

agreed 81% of the time (34/42). In this initial test many false positives were found, as it was 
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common to find endoscopy reports where clinicians had commented “no sign of stricturing”, and 

these were flagged as positive for the stricturing endotype. In order to assess the instance of false 

negatives, a second subset of patients for which all reports were flagged 0 in all categories were 

reviewed blindly by the medical student. In this case, 100% of those reports flagged 0 were 

confirmed by the medical student as not stricturing. From this analysis, it was concluded that 

records flagged 0 did not need to be assessed manually and these could be automatically 

classified as not stricturing. However, due to the number of false positives, all records flagged 1 in 

any category needed to be manually reviewed. In these initial tests, some reports referred to 

earlier patient tests which were not present in the dataset. As a result of this, the initial report 

extraction was widened to ensure reports from all Southampton hospitals were in the dataset. Of 

2,398 reports extracted for 506 adult IBD patients, 1,545 were not flagged as 1 for stricturing, 

leaving 853 reports to review manually. As well as recording the presence of a stricturing 

endotype, the date of the medical exam when this was first referenced was recorded as the date 

of the endotype occurrence so that time to stricturing could be calculated for use in further 

analysis (see Chapter 7). 

5.2.2 Additional patient data curation  

The patient dataset includes the outcome data for the machine learning tasks (disease subtype, 

stricturing endotype), but it also contains other important patient information, some of which is 

used in pre-processing prior to random forest classification. Collating this data involves using the 

Peddy software [443] and extracting data from BC|INSIGHT. Peddy generates relatedness, IBS0, 

heterozygosity, sex and ancestry information from a ped file and approximately 25,000 sites of a 

cohort VCF file. It also compares the content of the ped and VCF files to look for sex mismatches. 

BC|INSIGHT is the repository for the clinical information collected as part of the Southampton 

Genetics of IBD study. Deep longitudinal information is collected as part of the study and includes: 

i) Demographic information such as sex and date of birth.  

ii) Diagnostic information such as date of diagnosis, diagnostic subtype (UC, CD, IBDU), 

and Paris classification information including age category, extent and severity of 

each patient’s disease. 

iii) Colonoscopy and Gastroscopy: detailed breakdown of the status of areas visualised in 

colonoscopy and gastroscopy. The reason (for example initial investigation or 

surveillance) and date of each procedure is recorded. 
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iv) Details of both autoimmune and non-autoimmune comorbidities. 

v) Longitudinal blood test results including reported values for C-reactive protein, 

platelet count, white blood count and calprotectin.  

vi) Surgery information, including surgery type and priority. 

vii) Pharmacy data regarding drugs administered, and their dose and frequency.  

viii) Anthropometric Data. 

5.2.3 Whole exome sequencing data processing 

WES data was quality controlled and processed according to Sections 3.3.3 and 3.4, respectively. 

Two versions of the GenePy matrix were created. The first followed the process according to 

Section 3.4.2. The second employed an additional filter on the variants included in the GenePy 

matrix. Only variants that were annotated with a Phred-scaled CADD score ≥ 15 were included in 

this matrix. Variants with a score of 15 or above would be in the top 3% (approx.) of all possible 

variation in terms of potential pathogenicity. This threshold has previously been used in the 

filtering of variants to identify possible disease-causing variation [444, 445]. Therefore, there was 

a GenePy matrix with all variants included, referred to throughout as GenePy (all variants); and a 

matrix with variants that had a Phred-scaled CADD score ≥ 15, referred to as GenePy (CADD cut-

off). 

5.2.4 GenePy score pre-processing 

GenePy scores with no variation were excluded using scikit-learn’s [446] VarianceThreshold 

(threshold=0). The remaining scores were scaled by the maximum score of each gene 

(MaxAbsScaler, disease subtype classifier), or to between 0 and 1 (MinMaxScaler, stricturing 

endotype classifier) to ensure no bias in downstream machine learning caused by different 

scoring scales across genes. A further pre-processing step was trialled in order to see if machine 

learning modelling results could be improved through its implementation. In 2012, Fuentes 

Fajardo et al. assembled a list of genes which were thought to give a false positive signal in in-

silico genomic diagnostics [442]. Reasons for inclusion on this list (hereafter referred to as the 

Fuentes false positive gene list), were highly polymorphic genes, or characteristics that suggested 

that variants within these genes were miscalls due to technical noise during sequencing. It was 

discovered that many of the gene symbols listed in the paper were outdated, therefore the gene 

list was re-mapped. This was achieved by employing the following tools and databases: Multi-
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Symbol-Checker from the HUGO Gene Nomenclature Committee (HGNC) [447], g:Profiler [448], 

Genecards [449, 450], and the NCBI gene database [451, 452]. Once the gene list was remapped, 

genes in the GenePy matrix that were also present on the Fuentes false positive gene list were 

filtered out. This additional filter was present for one machine learning modelling pass of the 

disease subtype and stricturing endotype classifiers, so its effect on the results of machine 

learning could be assessed.  

5.2.5 Patient data pre-processing 

Identified by Peddy [443], the most frequent ethnicity was European, so only these cases were 

included. Only one ethnicity was included to reduce bias in the machine learning modelling. 

Additionally, there had to be sufficient confidence in the assigned ethnicity, therefore only 

patients with a probability greater than 90% that the predicted ethnicity was correct were 

included. Related patients were also removed. For every pair of related individuals, the patient 

with the younger age of diagnosis was retained for the analysis. The younger patient was included 

as genetics was more likely to substantially contribute to their IBD aetiology. 

5.2.6 Random forest classification 

A random forest algorithm was used to perform binary classification tasks for IBD subtypes and 

the stricturing endotype in Python (v.3.7) using scikit-learn [446]. The model was applied to three 

different gene panels: 1) all genes with GenePy scores; 2) an autoimmune gene panel curated by 

HTEdgeSeq; 3) an IBD gene panel that included genes identified in IBD GWAS, and genes 

associated with monogenic forms of IBD. After genomic, and clinical data pre-processing, the 

dataset was split into training and testing datasets in an 80:20 ratio, where the split calculation 

was based on the minority class (UC, patients with stricturing behaviour). Feature selection was 

performed using a linear support vector classifier (SVC) with L1 penalisation (C=1) using the 

training data. Cross-validation was used with this feature selection, and the number of folds 

varied according to the sample size of the training dataset: 10-fold cross-validation for the disease 

subtype classification, and 5-fold cross-validation was used for the stricturing endotype classifier. 

Genes not chosen by the classifier in any cross-validation fold of the SVC were excluded. L1, or 

LASSO, was chosen for feature selection as this method shrinks feature coefficients to zero, 

essentially removing those features from the dataset. This is in contrast to L2, or ridge 
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penalisation, which retains the features, and makes their associated coefficient very small. LASSO 

penalisation is ideal for reducing dataset dimensionality, which is necessary for this dataset. 

The random forest classifier was trained on the training data using the selected genes. All random 

forest hyperparameters were set to the default value, aside from the number of estimators 

(trees), which was set to 10,000. Out-of-bag-error measured the random forest performance on 

the training data. The random forest ML model was applied to the test set, and its performance 

evaluated using precision, recall, specificity, F1 score and AUC. Another output was the list of 

genes chosen in model training ranked by their relative importance to the classifier. The machine 

learning pipeline can be viewed in Figure 35 (see Supplementary Files for machine learning 

scripts). 

After the most appropriate GenePy matrix and pre-processing steps had been determined, the ML 

pipeline from Figure 35 was utilised to determine whether differences existed in the genomic 

basis of IBD depending on the age of onset. To achieve this the IBD dataset was split into each 

subtype, and the RF classifier attempted to classify CD patients based on whether their disease 

was paediatric onset (<18 years of age at diagnosis) or adult onset (18 years and over at 

diagnosis), and then repeated this for the UC patients. Training and testing data for the CD data 

and UC data were split in an 80:20 ratio, where the split calculation was based on the minority 

class (adult-onset IBD for both CD and UC data) The same three gene sets were utilised: 1) all 

genes with GenePy scores; 2) an autoimmune gene panel curated by HTEdgeSeq; 3) an IBD gene 

panel that included genes identified in IBD GWAS, and genes associated with monogenic forms of 

IBD.  
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Figure 35 ML pipeline for classifying IBD subtypes and the CD stricturing endotype. The steps 

marked with an asterisk (*) indicate the two places where different data or 

processing was implemented. ML results with and without these changes were 

analysed to see how this affected the ML model performance. 

5.2.7 Analysis of selected features 

After obtaining model results from best performing subtype and stricturing endotype 

classification ML models, SHAP values were used to gain further insights into how genes 

contributed to these classifications. SHapley Additive exPLanations, or SHAP values, are an 

explainable AI tool based on the mathematical concept of the Shapley value, which measures the 
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average marginal contribution of each variable [453]. This analysis was performed in Python using 

the SHAP package, specifically the SHAP tree explainer tool. 

Pathway enrichment analysis was generated for the model with the highest AUC for both the 

disease subtype and stricturing endotype classifiers. Genes selected by the Linear SVC feature 

selection during operation of the machine learning pipeline were input into the Enrichr [454]. The 

maximum number of genes was included in all instances of analysis (there is a maximum 

threshold of top relevant genes to include in analysis of 500). Significantly enriched pathways 

were determined using the KEGG [455] 2021 Human database. Pathways were determined to be 

enriched according to the Fisher exact test p-value < 0.05, adjusted using the Benjamini-Hochberg 

multiple hypotheses testing correction (as is standard for the Enrichr software).  

5.3 Results 

The IBD cohort includes 1,087 recruited individuals that have been whole exome sequenced. Of 

these, 502 patients were recruited in the paediatric clinic, and 506 were recruited in the adult 

clinic. The remaining 79 were parents or relatives of the proband that was initially recruited, some 

of whom also have an IBD diagnosis. Table 15 characterises the cohort further. It is important to 

note that some patients recruited through the adult IBD clinic may have been diagnosed as 

children. 
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Table 15 Clinical characteristics of the IBD cohort, split by paediatric and adult IBD diagnosis. 

Some categories do not sum to 1,087 because of incomplete data.  

 Paediatric IBD (<18 

years) 

Adult IBD (≥18 

years) 

Total 

Age at diagnosis Median years (N, 

range) 

13 (577, 1-17) 32 (496, 18-84) 1,073 

Subtype diagnosis CD 379 297 676 

UC 176 190 366 

IBDU 20 6 26 

Stricturing Endotype (CD 

Only) 

Yes 77 103 180 

No 480 324 804 

Sex Male 328 226 554 

Female 249 270 519 

Ancestry (Peddy) African (AFR) 3 4 7 

American (AMR) 8 1 9 

East Asian (EAS) 0 1 1 

European (EUR) 545 471 1,016 

South Asian (SAS) 13 13 26 

Unknown 8 5 13 

As detailed in Section 3.3.3, quality control was performed on the WES data of this IBD cohort. 

One sample, which had already been sent for sequencing previously, was found to mismatch with 

the SNP fingerprinting performed. That sample was excluded, but it did not impact the overall 

number of individuals in the cohort as it was a duplicate. Aside from this, the checks performed 

showed no other mismatches or contaminations, and as such all other samples passed quality 

control checks (see Supplementary Files). The characteristics of the cohorts used for 1) the IBD 
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subtype classifier, and 2) the stricturing endotype classifier, after patient data pre-processing 

steps regarding ancestry prediction and relatedness were completed, are found in Table 16 and 

Table 17, respectively. 

Table 16 Clinical characteristics of individuals included in the IBD subtype classifier models, after 

patient data pre-processing. Age at diagnosis information was unavailable for three 

individuals. 

 Paediatric IBD (< 18 yrs) Adult IBD (≥18 yrs) 

N 491 412 

Median age at diagnosis (range) 13 (1-17) 32 (18-82) 

IBD Subtype  CD 334 263 

UC 157 149 

Sex Male 286 191 

Female 205 221 

Table 17 Clinical characteristics of individuals included in the CD stricturing endotype models, 

after patient data pre-processing. Age at diagnosis information was unavailable for 

two individuals. 

 Paediatric IBD (< 18 yrs) Adult IBD (≥18 yrs) 

N 332 255 

Median age at diagnosis (range) 13 (1-17) 31 (18-82) 

Stricturing 

Endotype  

Yes 71 98 

No 261 157 

Sex Male 206 113 

Female 126 142 

5.3.1 Impact of different GenePy matrix formulations on random forest modelling 

In total, 335,978 exonic variants were input into the GenePy (all variants) matrix. For the GenePy 

(CADD cut-off) matrix 135,867 exonic variants had a Phred-scaled CADD score ≥ 15. An increased 

number of variants does give more power to detect causal variants in each patient, but raises a 
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potential concern when integrating this information into a GenePy score. The GenePy score for 

some genes may become artificially inflated because of the summation of many variants with 

minimal effect. It is for this reason that the GenePy (CADD cut-off) matrix was generated, where 

fewer variants with a larger potential effect size would be included in each score. 

The machine learning pipeline process was repeated three times for the two GenePy score 

datasets. Each pipeline run uses a different gene panel: 1) all available genes; 2) an autoimmune 

gene panel curated by HTGEdgeSeq; 3) an IBD gene panel curated in house, including genes 

implicated in GWAS and genes reported as causing monogenic forms of IBD (see Supplementary 

files for gene panels). Whether a GenePy score is available for a gene is dependent on two factors: 

if that gene can be annotated by Ensembl-VEP [456], and if there are variants in the cohort in that 

gene that met the rigorous quality filters. A breakdown of the number of genes included in 

downstream machine learning after each pre-processing stage is detailed in Table 18. The 

comparison of the two GenePy score matrices was completed with two classification tasks 1) the 

disease subtype classifier discriminating CD and UC, and 2) the stricturing endotype classifier on 

CD patients only. A breakdown of the training and testing datasets for each classification task is 

detailed in Table 19.  
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Table 18 Number of genes with GenePy scores for the GenePy (all variants) matrix, and GenePy 

(CADD-cut-off) matrix before and after selecting genes with GenePy score variance. 

This breakdown is shown for every gene panel, and for both the disease subtype 

classifier, and the stricturing endotype classifier.  

   Total genes with 

GenePy scores 

Genes with GenePy 

score variance (% of 

total) 

Subtype 

Classifier (n=906) 

GenePy (all 

variants) 

All genes 
16,794 16,657 (99.2%) 

Autoimmune 

gene panel 

1,721 1,706 (99.1%) 

IBD gene panel 
526 523 (99.4%) 

GenePy 

(CADD cut-

off) 

All genes 
15,669 15,341 (97.9%) 

Autoimmune 

gene panel 

1,598 1,552 (97.1%) 

IBD gene panel 
499 494 (99.0%) 

Stricturing 

Classifier (n=589) 

GenePy (all 

variants) 

All genes 
16,794 16,465 (98.0%) 

Autoimmune 

gene panel 

1,721 1,692 (98.3%) 

IBD gene panel 
526 518 (98.5%) 

GenePy 

(CADD cut-

off) 

All genes 
15,669 14,742 (94.1%) 

Autoimmune 

gene panel 

1,598 1,493 (93.4%) 

IBD gene panel 
499 472 (94.6%) 
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Table 19 Training and testing dataset sizes for the disease subtype classifier and the stricturing 

subtype classifier 

 Training Dataset  Testing Dataset  Total 

 CD UC CD UC 

Disease Subtype 

Classifier 

244 244 356 62 906 

 Stricturing  Not Stricturing Stricturing Not Stricturing  

Stricturing Subtype 

Classifier 

136 136 34 283 589 

The results of the disease subtype classifier on the test dataset for both GenePy datasets are 

contained in Table 20. Regardless of the gene panel used as input for machine learning, using the 

GenePy matrix with the CADD cut-off produces higher AUC and F1 scores for classifying CD and 

UC on the test data. This gives some evidence that the CADD cut-off is beneficial, as it may reduce 

the noise in patients GenePy scores caused by many low-effect size variants. Instead the GenePy 

scores for each gene sum together fewer variants with a larger predicted pathogenic effect. When 

analysing the results from models using the GenePy matrix with the CADD cut-off, the best model 

uses the autoimmune gene panel, achieving an AUC of 0.67. In comparison to the other two 

models, an uplift in sensitivity to UC cases is observed (sensitivity 0.58 versus 0.53 and 0.52). For 

every gene panel, and the different GenePy matrices, NOD2 is present as the strongest genetic 

signal for all random forest models. This is not surprising, given the known potential impact of 

NOD2 variants on the development of CD. It is reassuring to see the machine learning model 

identify this gene as the strongest discriminant. Aside from NOD2, two genes remain constant to 

the top 10 for the all genes classifiers, and three genes for the autoimmune and IBD panels. These 

are: ASPM and EPB41L4A for the all genes classifier; DNAH12, TNS1 and HTT for the autoimmune 

gene panel; and NFATC1, ERAP1 and DOCK8 for the IBD gene panel.  

A comparison of the distribution of NOD2 GenePy scores can be viewed in Figure 36, where the 

results from the best model using the GenePy with all variants, and GenePy matrix using the 

CADD cut-off, are compared. There is a strong difference in NOD2 distribution depending on 

which matrix is used, as NOD2 is more important in the classifier where the CADD cut-off is used 

than where all variants were used. Many of the other gene distributions were similar when 
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comparing the CD and UC classes, even when utilising the GenePy matrix with CADD cut-off. Often 

one of the disease subtype classes will have a longer tail to the distribution, i.e. a few individuals 

are present in the subtype class with a high GenePy score. 
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Table 20 Random forest classifier of UC and CD. Machine learning metrics on the test set for both versions of GenePy scores, and three different feature sets 

GenePy (all variants) – all genes GenePy (all variants) – autoimmune gene panel GenePy (all variants) – IBD gene panel 

No. Features 1,240 No. Features 826 No. Features 459 

  Precision Recall Specificity F1   Precision Recall Specificity F1   Precision Recall Specificity F1 

CD  0.87 0.53 0.53 0.66 CD 0.88 0.54 0.58 0.67 CD  0.87 0.57 0.52 0.69 

UC 0.17 0.53 0.53 0.25 UC 0.18 0.58 0.54 0.28 UC 0.17 0.52 0.57 0.26 

Average 0.76 0.53 0.53 0.60 Average 0.78 0.55 0.58 0.61 Average 0.77 0.56 0.52 0.63 

AUC 0.53 AUC 0.64 AUC 0.57 

Top 10 Genes NOD2, ASPM, TAPBPL, BOD1L1, 
SPTBN5, USP40, EPB41L4A, GRIN2B, 

POMT2, SYNE1 

Top 10 Genes NOD2, MEFV, CX3CR1, DNAH12, TNS1, 
NCOR2, P2RX7, HTT, TSHR, ERAP1 

Top 10 Genes NOD2, MEFV, NFATC1, PER3, ERAP1, 
TNFRSF6B, DOCK8, ADA2, BANK1, TAF8 

GenePy (CADD cut-off) – all genes  GenePy (CADD cut-off) – autoimmune gene panel GenePy (CADD cut-off) – IBD gene panel 

No. Features 1,213 No. Features 733 No. Features 403 

  Precision Recall Specificity F1   Precision Recall Specificity F1   Precision Recall Specificity F1 

CD  0.88 0.63 0.50 0.73 CD  0.91 0.62 0.66 0.74 CD  0.87 0.58 0.52 0.70 

UC 0.19 0.50 0.63 0.27 UC  0.23 0.66 0.62 0.34 UC  0.18 0.52 0.58 0.26 

Average 0.78 0.61 0.52 0.66 Average 0.81 0.62 0.65 0.68 Average 0.77 0.57 0.53 0.63 

AUC 0.59 AUC 0.67 AUC 0.59 

Top 10 Genes NOD2, GC, EPB41L4A, ASPM, LAMA1, 
VWDE, COL4A3, TUBB3, DNAH17, 

SVEP1 

Top 10 Genes NOD2, TTN, TG, DNAH12, TNS1, P2RX7, 
WDFY4, TNC, SPATS2L, HTT 

Top 10 Genes NOD2, GC, DOCK8, NPC1, GALC, 
ERAP1, NFATC1, CELSR3, TEP1, CD6 
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Figure 36 Comparison of the best disease subtype model produced using a GenePy matrix 

generated with all variants (A-C) and GenePy with variants that meet the CADD cut-

off (D-F). In both cases the random forest model performed best with the 

autoimmune gene panel. A) AUC on the test set for GenePy (all variants); B) Top 10 

most discriminate genes and their relative importance in the GenePy (all variants) 

random forest; C) Violin plots of the top 10 most discriminant genes (CD=blue, 
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UC=orange) for GenePy (all variants); D) AUC on the test set for GenePy (CADD cut-

off); E) Top 10 most discriminate genes and their relative importance in the GenePy 

(CADD cut-off) random forest; C) Violin plots of the top 10 most discriminant genes 

(CD=blue, UC=orange) for GenePy (CADD cut-off). 

The results for the stricturing endotype classifier on the test data can be viewed in Table 21. In 

this case it is also seen that the classification results are the same or better across the gene panels 

when utilising the GenePy matrix with the CADD cut-off. In particular, the random forest 

classifiers that used all genes, and the IBD panel, saw an AUC increase of 0.1 after implementation 

of the CADD cut-off. This is reflected in a complete change in the 10 most important genes to 

classification for the ML model that used all genes, and only the genes CNTRL and GC are present 

in both classifiers that use the IBD panel. For the two classifiers that use the autoimmune gene 

panel, the top 10 genes in both are completely different, but this is not surprising for a ML model 

where the performance is no better than random (AUC 0.5 for both versions of the classifier). A 

comparison of the results of the best ML model (all genes, AUC 0.59) for the GenePy matrix with 

all variants, and the GenePy matrix with the CADD cut-off is presented in Figure 37. There is very 

little difference between the GenePy score distributions of the top 10 genes for the stricturing 

and not-stricturing classes, in both ML models shown in Figure 37. Of surprise here is an absence 

of NOD2 in all top 10 gene lists apart from the classifier that used the IBD gene panel. NOD2 is 

also implicated in the formation of strictures, and variation in this gene has been shown to be a 

risk factor in the development of this endotype [5]. Overall, these results provide evidence that 

utilising the CADD cut-off when generating the GenePy matrix is beneficial for downstream 

machine learning modelling. 
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Table 21 Random forest classifier of stricturing (S) vs not-stricturing (NS) in CD patients. Machine learning metrics on the test set for both versions of GenePy scores, and 

three different feature sets 

GenePy (all variants) – all genes GenePy (all variants) – autoimmune gene panel GenePy (all variants) – IBD gene panel 

No. Features 570 No. Features 467 No. Features 317 

  Precision Recall Specificity F1   Precision Recall Specificity F1   Precision Recall Specificity F1 

NS  0.90 0.46 0.59 0.61 NS 0.9 0.50 0.56 0.65 NS  0.86 0.44 0.41 0.58 

S 0.11 0.59 0.46 0.19 S 0.12 0.56 0.50 0.20 S 0.08 0.41 0.44 0.14 

Average 0.82 0.47 0.57 0.56 Average 0.82 0.51 0.55 0.60 Average 0.78 0.44 0.41 0.54 

AUC 0.488 AUC 0.50 AUC 0.44 

Top 10 Genes FABP2, EPN3, SEC16A, HECW1, 
TOMM34, PTPRQ, ABCC6, C4orf50, 

TNN, THSD7B 

Top 10 Genes TPO, SEC16A, FABP2, PADI4, CARD14, 
GPR35, NOTCH1, NCOR2, KSR1, ANK3 

Top 10 Genes SEC16A, CNTRL, GPR35, NOTCH1, KSR1, 
BANK1, FAM171B, GC, IRF2BP2, 

RPS6KA2 

GenePy (CADD cut-off) – all genes  GenePy (CADD cut-off) – autoimmune gene panel GenePy (CADD cut-off) – IBD gene panel 

No. Features 520 No. Features 418 No. Features 292 

  Precision Recall Specificity F1   Precision Recall Specificity F1   Precision Recall Specificity F1 

NS  0.92 0.57 0.59 0.70 NS  0.88 0.53 0.41 0.66 NS  0.89 0.47 0.53 0.61 

S 0.14 0.59 0.57 0.23 S  0.09 0.41 0.53 0.15 S  0.11 0.53 0.47 0.18 

Average 0.84 0.57 0.59 0.65 Average 0.80 0.51 0.42 0.61 Average 0.81 0.47 0.52 0.57 

AUC 0.59 AUC 0.50 AUC 0.54 

Top 10 Genes PREX1, CNTRL, MAPT, SVEP1, TTN, 
FAT4, OR5M1, PKD1L3, PLCE1, PTPRQ 

Top 10 Genes TG, TTN, TNS1, P2RX7, TNC, LOXL2, 
SPATS2L, BAZ2B, DNAH12, FLT4 

Top 10 Genes GC, CNTRL, DOCK8, UTP20, TEP1, NPC1, 
F5, GALC, GSDMA, NOD2 



Chapter 5 

133 

 

 

Figure 37 Comparison of the stricturing endotype random forest model produced using a GenePy 

matrix with all variants (A-C) and a GenePy matrix utilising the CADD cut-off (D-F), 

using the all genes where GenePy scores were available. A) AUC on the test set for 

GenePy (all variants); B) Top 10 most discriminate genes and their relative 

importance in the GenePy (all variants) random forest; C) Violin plots of the top 10 

most discriminant genes (stricturing=blue, not-stricturing=orange) for GenePy (all 



Chapter 5 

 

134 

variants); D) AUC on the test set for GenePy (CADD cut-off); E) Top 10 most 

discriminate genes and their relative importance in the GenePy (CADD cut-off) 

random forest; F) Violin plots of the top 10 most discriminant genes (stricturing=blue, 

not-stricturing=orange) for GenePy (CADD cut-off). 

5.3.2 Impact of Fuentes false positive list on machine learning classifier results 

The comparison of the random forest classifiers concluded that for these data, using the GenePy 

matrices constructed with variants with a CADD score ≥ 15 is the best strategy. However, one 

gene observed in the top 10 genes for the stricturing versus not stricturing classifier raised 

concerns. In the all genes and autoimmune gene panel stricturing endotype classifier, and the 

autoimmune gene panel disease subtype panel that used the GenePy (CADD cut-off) matrix, TTN 

is in the top 5 most discriminant genes. This is the longest human gene and as such can accrue 

many mutations (and therefore a high GenePy score) without this necessarily contributing to 

disease. 

In order to potentially exclude genes such as TTN, which are highly mutable, but also highly 

unlikely to cause disease, the Fuentes false positive gene list was implemented as an additional 

GenePy score pre-processing step. However, during initial investigations of the Fuentes false 

positive gene list, of 2,213 genes in the list, 1,644 were found to not be present in GenePy. It was 

subsequently determined that many of the gene symbols on the list needed to remapped. Using 

Multi-Symbol-Checker from HGNC [447], or g:Profiler [448] – where an Ensembl gene ID was 

identified and then converted to a gene symbol – remapping, or confirmation that the original 

gene symbol was correct, was performed for 1,564 genes. Two genes were identified as being 

withdrawn from databases.  

For the remaining 649 genes, the Genecards database [449, 450] was searched to identify 

alternative aliases. Additionally, any gene symbols starting with “LOC” were searched without the 

prefix to find if these genes had been identified. It was established through the NCBI gene 

database [451, 452] that three groups of unidentified genes (prefixes FLJ, DKFZp, and MGC) were 

clones of another gene symbol. An additional three withdrawn genes were identified through 

these database checks. After these searches, another 578 gene symbols had been remapped. In 

total, 2,141 genes were remapped, or their gene symbol was confirmed. However, there were 

many duplicates, and after these were removed 1,298 genes remained on the Fuentes false 
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positive gene list. The remapped gene list can be found in the supplementary files. In Table 22, 

the number of genes present after each GenePy score pre-processing stage can be viewed. 

Table 22 Number of genes with GenePy scores in the GenePy (CADD cut-off) matrix at each stage 

of pre-processing the data prior to machine learning. Also includes the percentage 

change between the genes with GenePy scores, and the number of genes included 

after implementation of both pre-processing stages.  

  Total genes 

with GenePy 

scores 

Genes after 

exclusion using 

false positive list  

Genes with 

GenePy score 

variance 

% 

Change  

Subtype 

Classifier 

(n=906) 

All genes 
15,669 15,242 14,922 4.8 

Autoimmune 

gene panel 

1,598 1,586 1,540 3.6 

IBD gene panel 
499 494 489 2.0 

Stricturing 

Classifier 

(n=589) 

All genes 
15,669 15,242 14,342 8.5 

Autoimmune 

gene panel 

1,598 1,586 1,484 7.1 

IBD gene panel 
499 494 467 6.4 

 

The results for disease subtype, and stricturing endotype machine learning classifiers that exclude 

genes on the Fuentes false positive list, are collated in Table 23. For the disease subtype classifier 

there were very minor changes in the AUC in comparison to the classifier which did not use the 

Fuentes false positive gene list. After employing this additional filter, the AUC for the classifier 

that uses all genes reduced by 0.02, with one change in the top 10 important genes (SVEP1 in 

previous ML results is replaced by MYO18B). The number of genes chosen by feature selection 

increased by 3, to 1,216. The TTN and TG genes were replaced with E2F4 and NFATC1 for the 

classifier that began with the autoimmune gene panel, with no change in the AUC, and 6 fewer 

genes selected during feature selection. The performance of the model that uses the IBD gene 



Chapter 5 

 

136 

panel improves slightly with this additional gene filter, achieving an AUC of 0.6. As with the 

autoimmune panel classifier, 6 fewer genes are chosen during feature selection. TEP1 is replaced 

by GSDMA in the top 10 most important genes. Overall, random forest performance is not better 

or worse for the disease subtype classifier with the use of the Fuentes false positive gene list as a 

filter. However, it does remove a gene signal from ML modelling that is known to be erroneous. 

The best ML model results, using the autoimmune gene panel, with the Fuentes filter, are shown 

in Figure 38. 
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Table 23 Fuentes results on the test set for both the disease subtype classifier and the stricturing classifier 

CD vs UC– ALL GENES CD vs UC – AUTOIMMUNE PANEL GENES CD vs UC – IBD PANEL GENES 

No. Features 1,216 No. Features 739 No. Features 397 

  Precision Recall Specificity F1   Precision Recall Specificity F1   Precision Recall Specificity F1 

CD  0.88 0.62 0.53 0.73 CD 0.90 0.61 0.63 0.73 CD  0.87 0.56 0.52 0.68 

UC 0.20 0.53 0.62 0.59 UC 0.22 0.63 0.61 0.33 UC 0.17 0.52 0.56 0.25 

Average 0.78 0.61 0.54 0.66 Average 0.80 0.61 0.63 0.67 Average 0.77 0.55 0.56 0.62 

AUC 0.57 AUC 0.67 AUC 0.60 

Top 10 Genes NOD2, GC, EPB41L4A, ASPM, 
LAMA1, VWDE, COL4A3, TUBB3, 

MYO18B, DNAH17 

Top 10 Genes NOD2, DNAH12, TNS1, WDFY4, P2RX7, SPATS2L, TNC, 
HTT, E2F4, NFATC1 

Top 10 Genes NOD2, GC, DOCK8, NPC1, GALC, ERAP1, 
NFATC1, CELSR3, GSDMA, CD6 

STRICTURING VS NOT-STRICTURING– ALL GENES STRICTURING VS NOT-STRICTURING – AUTOIMMUNE PANEL GENES STRICTURING VS NOT-STRICTURING – IBD PANEL GENES 

No. Features 534 No. Features 411 No. Features 284 

  Precision Recall Specificity F1   Precision Recall Specificity F1   Precision Recall Specificity F1 

NS  0.92 0.54 0.59 0.68 NS  0.90 0.51 0.53 0.65 NS  0.89 0.45 0.56 0.60 

S 0.13 0.59 0.54 0.22 S  0.12 0.53 0.51 0.19 S  0.11 0.56 0.45 0.18 

Average 0.83 0.54 0.58 0.63 Average 0.82 0.51 0.53 0.60 Average 0.81 0.46 0.55 0.55 

AUC 0.63 AUC 0.52 AUC 0.55 

Top 10 Genes PREX1, CNTRL, MAPT, FAT4, GC, 
AKR7L, PLCE1, PKD1L3, ACACB, 

PTPRQ 

Top 10 Genes TNS1, P2RX7, SPATS2L, LOXL2, BAZ2B, DNAH12, ANK3, 
FLT4, SORBS1, WDFY4 

Top 10 Genes GC, CNTRL, DOCK8, UTP20, NPC1, GALC, 
GSDMA, NOD2, ERAP1, CD6 
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Figure 38 IBD subtype random forest model using the Fuentes false positive gene list as an 

additional filter, and the GenePy matrix with the CADD cut-off.  A) Test dataset AUC; 

B) Normalised confusion matrix on test dataset. C) Top 10 most discriminate genes 

and their relative importance for the random forest; D) Violin plots of the top 10 

most discriminant genes (CD=blue, UC=orange). 

A further examination of the contributions that different genes made to classification of IBD 

subtypes by the random forest model was conducted by producing SHAP values (Figure 39A). 

SHAP values revealed that, in general, a low GenePy score contributed to UC classification (a 

negative SHAP value), and a high GenePy score contributed to CD classification (a positive SHAP 

value). The genes for which this trend did not apply were NFATC1, LRR1, IL31RA, NRP1, PYGL and 

LRP1. There was also an extended look at the feature importances, as shown in previous figures 

such as Figure 38C. In Figure 39B, the feature importance value of the top 50 genes (739 genes 

were selected in total by feature selection, as documented in Table 23) are shown. As the feature 

importances of all 739 genes sum to 1, and this visualises the ever decreasing contribution that 

each feature makes to classification. 
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Figure 39 Further analysis of gene contributions to the best subtype classifier, using the GenePy 

(CADD cut-off) matrix, and the Fuentes filter. A) SHAP values for top discriminatory 

genes, where a high feature value is equivalent to a high GenePy score and vice 

versa. A positive SHAP value indicates the feature makes a contribution to the 

positive class, which was coding as CD. B) Feature importance as in Figure 38C, but 

extended to the top 50 genes. 



Chapter 5 

 

140 

In addition, pathway enrichment analysis was performed using Enrichr [454] and the KEGG [455] 

2021 Human database, with the genes selected during feature selection for the best performing 

IBD subtype model, which used the autoimmune gene panel. This produced 289 pathways, of 

which 162 were significant after adjusting the p-value for multiple hypotheses testing (adjusted p-

value < 0.05). Table 24 lists the top 20 most significant pathways according to the combined score 

produced by Enrichr, which takes into account p-value and the z-score for the deviation from the 

expected rank. This revealed several immune pathways that were enriched in this gene set, some 

of which are already know to contribute to IBD aetiology such as the JAK-STAT signalling pathway 

[457] and the NF-κB signalling pathway [98, 387]. However, there was concern with this approach 

that the reason these pathways were enriched was due to how the autoimmune gene panel was 

constructed, as it is naturally enriched for immune pathways. This issue was exacerbated by the 

number of genes chosen during feature selection, as this meant 48% of the genes present in the 

autoimmune gene panel (post gene-filtering steps) were input into random forest modelling. 

Pathway enrichment analysis was performed using the 1,540 autoimmune genes in the panel 

prior to any feature selection. This produced 303 pathways, of which 204 had a significant 

adjusted p-value. Aside from two pathways (other glycan degradation, ABC transporters), all 

significant pathways from the enrichment analysis of genes selected for subtype classification 

overlapped with significant pathways contained within the whole autoimmune gene panel. This 

led to the thought that observing which pathways had been removed during feature selection 

would be more appropriate. Here, it was found that 44 pathways were no longer significant. Of 

particular interest was the exclusion of the terms type 1 diabetes mellitus, and autoimmune 

thyroid disease. The full list of pathways omitted by feature selection can be viewed in 

Supplementary Table 3. 

Table 24 Pathways identified by Enrichr as significant (according to an adjusted p-value < 0.05) 

from the features selected during subtype classifier modelling. Top 20 of 162, 

ordered by combined score. 

Term  Overlap P-value Adjusted P-

value 

Odds 

Ratio 

Combined 

Score 

PPAR signalling pathway 28/74 1.87E-21 1.35E-19 16.45 785.13 

JAK-STAT signalling pathway 46/162 3.84E-28 3.70E-26 10.96 691.58 

Th1 and Th2 cell differentiation 29/92 1.32E-19 5.46E-18 12.45 541.05 
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Term  Overlap P-value Adjusted P-

value 

Odds 

Ratio 

Combined 

Score 

Cytokine-cytokine receptor 

interaction 

61/295 1.37E-28 1.98E-26 7.32 469.35 

Adipocytokine signalling pathway 22/69 2.58E-15 3.74E-14 12.54 421.33 

Th17 cell differentiation 29/107 1.35E-17 3.25E-16 10.04 390.19 

Pathways in cancer 85/531 6.02E-31 1.74E-28 5.48 381.53 

PD-L1 expression and PD-1 

checkpoint pathway in cancer 

25/89 9.33E-16 1.50E-14 10.50 363.47 

AGE-RAGE signalling pathway in 

diabetic complications 

27/100 1.99E-16 4.41E-15 9.97 360.38 

C-type lectin receptor signalling 

pathway 

27/104 5.87E-16 1.07E-14 9.45 331.36 

NF-κB signalling pathway 27/104 5.87E-16 1.07E-14 9.45 331.36 

Tuberculosis 39/180 1.95E-19 7.05E-18 7.56 325.47 

Coronavirus disease 46/232 5.05E-21 2.92E-19 6.81 318.14 

Hepatitis B 36/162 2.02E-18 5.30E-17 7.78 316.86 

Type II diabetes mellitus 15/46 5.00E-11 3.21E-10 12.85 304.84 

Hematopoietic cell lineage 25/99 1.43E-14 1.76E-13 9.08 289.43 

FoxO signalling pathway 30/131 5.95E-16 1.07E-14 8.03 281.41 

Lipid and atherosclerosis 42/215 4.78E-19 1.54E-17 6.65 280.46 

Insulin resistance 26/108 1.46E-14 1.76E-13 8.53 271.69 

Osteoclast differentiation 29/127 1.98E-15 3.01E-14 7.99 270.40 

For the stricturing endotype ML models that employed the Fuentes false positive gene list filter 

(results Table 23), the AUC improved regardless of the gene panel utilised. For the classifier using 

all genes the AUC improved by 0.04, and for the autoimmune panel and IBD panel AUC increased 

by 0.02 and 0.01, respectively (Figure 40). There were small changes to the number of genes 
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chosen in feature selection: 14 fewer for the all genes classifier, 7 fewer when using the 

autoimmune panel, and 8 fewer genes for the IBD panel. For the top 10 genes in the all genes ML 

model, SVEP1, TTN and OR5M1 are replaced by GC, AKR7L and ACACB after utilising the false 

positive gene list. Three genes are also replaced for the autoimmune gene panel random forest: 

TG, TTN and TNC are changed to ANK3, SORBS1 and WDFY4. Only two genes change between 

classifiers for the IBD panel: TEP1 and F5 are replaced by ERAP1 and CD6. When comparing the 

most discriminant genes for the disease subtype classifier and the stricturing endotype classifier, 

there are some commonalities. For the all genes classifiers, only GC is common to both top 10. 

However, for the autoimmune gene panel there were five shared genes between the two 

classification tasks (DNAH12, TNS1, WDFY4, P2RX7, and SPATS2L), and for the IBD gene panel 

there were seven (NOD2, GC, DOCK8, NPC1, GALC, GSDMA, and CD6). This suggests that CD-

associated genes are driving the disease subtype classifier. 

 

Figure 40 Stricturing endotype random forest model using the Fuentes false positive gene list as 

an additional filter, and the GenePy matrix with the CADD cut-off. A) Test dataset 

AUC; B) Normalised confusion matrix on test dataset. C) Top 10 most discriminate 
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genes and their relative importance for the random forest; D) Violin plots of the top 

10 most discriminant genes (stricturing=blue, not-stricturing=orange). 

A further examination of the contributions that different genes made to classification of CD 

patients by stricturing endotype by the random forest model was conducted by producing SHAP 

values (Figure 41A). SHAP values revealed that, of the genes visualised, a small majority showed 

high GenePy scores corresponding to negative SHAP values, indicating that mutations in these 

selected genes have the possibility of protecting against the formation of strictures (for example 

MAPT, CNTRL and PREX1). The remaining eight genes showed high GenePy scores conveying risk 

of stricture, including AKR7L, RASAL1 and UTP20. There was also an extended look at the feature 

importances, as shown in previous figures such as Figure 40C. In Figure 41B, the feature 

importance value of the top 50 genes (534 genes were selected in total by feature selection, as 

documented in Table 23) are shown. The feature importances of all 534 genes sum to 1, and this 

visualises the small contributions each gene makes to classification. Unlike the subtype classifier, 

where NOD2’s feature importance was much higher that all other features, there is no stand-out 

gene or genes that makes a comparatively higher contribution to classification than the rest of the 

selected genes. 
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Figure 41 Further analysis of gene contributions to the best stricturing endotype classifier, using 

the GenePy (CADD cut-off) matrix, and the Fuentes filter. A) SHAP values for top 

discriminatory genes, where a high feature value is equivalent to a high GenePy score 

and vice versa. A positive SHAP value indicates the feature makes a contribution to 

the positive class, which was coding as presence of a stricture. B) Feature importance 

as in Figure 40C, but extended to the top 50 genes. 
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As performed for the subtype classifier, pathway enrichment analysis for the highest performing 

stricturing endotype classifier model was achieved with Enrichr [454] and the KEGG [455]2021 

Human database. As the best performing classifier used all genes, the issue of a gene panel 

artificially enriching the pathways that corresponded to genes picked during feature selection was 

not present. Enrichr displayed 260 pathway terms associated with the stricturing endotype gene 

list. Of these, none were found to be significant after adjusting for multiple hypotheses testing 

(adjusted p-value < 0.05). 

5.3.3 Classifying CD and UC cohorts by age of onset 

In order to determine whether the underlying genomics was significantly different depending on 

age of onset, the RF pipeline was utilised, with the genomic data filtering which had been 

determined to give the best results (GenePy (CADD cut-off) matrix, Fuentes false positive gene 

list). This ML modelling was done for each subtype separately, such that genomic differences 

between CD and UC did not influence or overshadow differences between paediatric and adult 

onset. Here, paediatric onset IBD was defined as a receiving a diagnosis prior to 18, and all 

individuals receiving a diagnosis at 18 or over were defined as adult-onset IBD. As before, three 

gene sets were employed, 1) all available genes; 2) the autoimmune gene panel; 3) the IBD gene 

panel. In Table 25, the number of genes after each pre-processing filtration step are recorded for 

the CD age of onset classifier and the UC age of onset classifier. In Table 26 the training and 

testing datasets for both classifiers are recorded.
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Table 25 Number of genes with GenePy scores in the GenePy (CADD cut-off) matrix at each stage 

of pre-processing the data prior to machine learning for age of onset classifiers. Also 

includes the percentage change between the genes with GenePy scores.  

  Total genes 

with GenePy 

scores 

Genes after 

exclusion using false 

positive list  

Genes with 

GenePy score 

variance 

% 

Change  

CD data 

(n=600) 

All genes 
15,669 15,242 14,375 8.3% 

Autoimmune 

gene panel 

1,598 1,586 1,486 7.0% 

IBD gene panel 
499 494 468 6.2% 

UC data 

(n=306) 

All genes 
15,669 15,242 13,153 16.1% 

Autoimmune 

gene panel 

1,598 1,586 1,327 17.0% 

IBD gene panel 
499 494 422 15.4% 
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Table 26 Training and testing dataset sizes for the CD age of onset classifier and the UC age of 

onset classifier 

 Training Dataset  Testing Dataset  Total 

 Paediatric 

onset 

Adult onset Paediatric onset Adult onset 

CD age of onset 

classifier 

212 212 122 54 600 

 Paediatric 

onset 

Adult onset Paediatric onset Adult onset  

UC age of onset 

classifier 

119 119 38 30 306 

The ML metrics on the testing dataset for each of the classifiers are documented in Table 27. The 

all genes classifier for both CD age of onset and UC age of onset classifiers achieved very high 

AUCs (0.92 and 0.96, respectively). These classifiers both had the same top 3 genes, MAPT, 

APOL5, PRKRA, and these genes had the highest feature importances observed throughout ML 

modelling in Section 5.3. There was no overlap between the top 10 genes selected by the IBD 

subtype classifier utilising all genes, and the CD and UC age of onset classifiers using this same 

gene set. The classifiers utilising the autoimmune gene panel achieved good AUCs (0.68 for CD 

age of onset, 0.67 for UC age of onset). There was an overlap of three genes in the top 10 for the 

IBD disease subtype classifier and the CD age of onset classifier: TNC, DNAH12, and P2RX7. In 

addition there was an overlap of two genes in the top 10 for the IBD disease subtype classifier and 

the UC age of onset classifier: TNS1 and DNAH12. Six of the top 10 genes overlapped for all three 

classifiers (IBD subtype classifier, CD age of onset classifier, UC age of onset classifier) when 

utilising the IBD panel: GC, DOCK8, GALC, ERAP1, CD6, NPC1. However, where the CD age of onset 

classifier obtained a moderately good AUC (0.65), the UC classifier AUC performed poorly (0.44). 

Feature importances and violin plots of top features for the CD age of onset classifier, for all gene 

sets, are visualised in Figure 42. The feature importances and violin plots of top features for the 

CD age of onset classifier, for all gene sets, are visualised in Figure 43. 
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Table 27 Random forest classifier of CD age of onset and UC age of onset classifiers (P=paediatric-onset, A=adult onset). Machine learning metrics on the test set for both 

for the three different feature sets 

CD– ALL GENES CD– AUTOIMMUNE PANEL GENES CD– IBD PANEL GENES 
No. Features 605 No. Features 607 No. Features 376 

  Precision Recall Specificity F1   Precision Recall Specificity F1   Precision Recall Specificity F1 

A 0.78 0.93 0.89 0.85 A 0.42 0.57 0.65  A 0.42 0.63 0.62 0.51 

P 0.96 0.89 0.93 0.92 P 0.77 0.65 0.57 0.71 P 0.79 0.62 0.63 0.70. 

Average 0.91 0.90 0.91 0.90 Average 0.67 0.62 0.60 0.64 Average 0.68 0.62 0.63 0.64 

AUC 0.92 AUC 0.68 AUC 0.65 

Top 10 Genes MAPT, APOL5, PRKRA, SERPINF2, PHF1, 
CHIT1, MAMDC2, ZNF681, FAT4, CELA1 

Top 10 Genes SERPINF2, TNC, WNK1, TEK, P2RX7, PLCL1, 
LOXL2, TET2, ERAP1, DNAH12 

Top 10 Genes GC, DOCK8, PLCL1, ERAP1, TET2, GALC, 
NPC1, CNTRL, CD6, ITLN1 

UC– ALL GENES UC – AUTOIMMUNE PANEL GENES UC – IBD PANEL GENES 
No. Features 393 No. Features 371 No. Features 309 

  Precision Recall Specificity F1   Precision Recall Specificity F1   Precision Recall Specificity F1 

A 0.97 0.93 0.97 0.95 A 0.56 0.47 0.71 0.51 A 0.33 0.33 0.47 0.33 

P 0.95 0.97 0.93 0.96 P 0.63 0.71 0.47 0.67 P 0.47 0.47 0.33 0.47 

Average 0.96 0.96 0.95 0.96 Average 0.60 0.60 0.57 0.60 Average 0.41 0.41 0.40 0.41 

AUC 0.96 AUC 0.67 AUC 0.44 

Top 10 Genes MAPT, APOL5, PRKRA, CHIT1, WDR81, CYFIP1, 
PHF1, DNAH3, EPS8L1, PLCE1 

Top 10 Genes SERPINF2, BMP8A, TNS1, ADAMTS5, SALL2, 
NR1H3, GALC, VWF, NCOR2, DNAH12 

Top 10 Genes GC, DOCK8, GALC, ERAP1, CARMIL2, TET2, 
CD6, NPC1, PLCL1, UBASH3A 
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Figure 42 Feature importance and violin plots for the CD age of onset classifier for each gene set 

(P=paediatric onset, A= adult onset). A) Feature importances for the CD age of onset 

classifier which utilises all genes; B) Violin plots for the CD age of onset classifier 

which utilises all genes; C) Feature importances for the CD age of onset classifier 

which utilises the autoimmune gene panel; D) Violin plots for the CD age of onset 

classifier which utilises the autoimmune gene panel. E) Feature importances for the 

CD age of onset classifier which utilises the IBD gene panel; F) Violin plots for the CD 

age of onset classifier which utilises the IBD gene panel. 
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Figure 43 Feature importance and violin plots for the UC age of onset classifier for each gene set 

(P=paediatric onset, A= adult onset). A) Feature importances for the UC age of onset 

classifier which utilises all genes; B) Violin plots for the UC age of onset classifier 

which utilises all genes; C) Feature importances for the UC age of onset classifier 

which utilises the autoimmune gene panel; D) Violin plots for the UC age of onset 

classifier which utilises the autoimmune gene panel. E) Feature importances for the 

UC age of onset classifier which utilises the IBD gene panel; F) Violin plots for the UC 

age of onset classifier which utilises the IBD gene panel. 
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5.4 Discussion  

Here, random forest algorithms were applied to IBD subtype determination, and classifying 

stricturing endotype status. In addition, through these two classification tasks, it was determined 

that the GenePy (CADD cut-off) matrix, and the Fuentes false positive gene lists were two 

beneficial genomic data processing and filtering changes. Their implementation either led to an 

improvement in model AUC for both tasks, or to no change, and removed genes that were known 

to not include pathogenic variation (for example, TTN). The number of variants included in the 

GenePy (CADD cut-off) matrix was roughly a third of the total variants available for inclusion in 

GenePy scores. The threshold employed here may have been too stringent. Further work could 

explore introducing a threshold of a Phred-scaled score ≥ 10, to see if this is a better balance 

between excluding trivial variants and removing variants that do contribute to a pathogenicity 

burden already present due to other, more damaging variants. TTN is also the longest gene, and 

this raises the question of whether gene length could affect GenePy scores, and therefore affect 

ML classifier results. However, as these classifiers are determining the differences between two 

classes, the length of the gene is constant across classes. As in, there is no comparison between 

the scores achieved by different genes, only the gene scores per class. Therefore, highly 

polymorphic genes known to be unrelated to disease were the concern, and using the Fuentes 

false positive gene list as a filter made excluding these genes straightforward. However, the gene 

remapping that had to be performed in order to utilise it did highlight the age of the original 

study. There is a need to re-perform analysis as performed by Fuentes Fajardo et al. [442], in light 

of improved high-throughput sequencing methods and bioinformatic tools, as well as availability 

of the GRCh38 genome build. A new list of genes that are highly likely to contain false positive 

pathogenic variants would be helpful for many genomic modelling approaches, and for genetic 

diagnostics. 

In all cases of ML modelling, it is important to look at the composition of input data, as it is well 

known that biased inputs can affect algorithm training, and result in biased outcome predictions. 

One limitation of the modelling is that it only included those with European ancestry, and 

therefore the RF algorithm is biased towards predicting according to patterns established for that 

ancestral group. Restricting to one ancestry group was performed to reduce bias, to avoid 

genomic differences related to ancestry affecting subtype and stricturing endotype classifications. 

The advantage of the ML pipeline is that once a GenePy matrix has been produced a new model 

could be trained for groups with different genetic ancestries, given a sufficiently large cohort. 

Another notable bias within the clinical characteristics of the cohort was the percentage of male 
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paediatric CD patients. It is consistently reported that rates of CD diagnosis are higher in 

paediatric males [14, 19], with one cohort containing 59.4% paediatric male CD patients [19]. In 

the IBD cohort utilised here 57% of individuals with paediatric CD were male, and when restricting 

to individuals who were included in the subtype model (after patient data filtering, Table 16) 58% 

of paediatric CD cases were male. Therefore, the male/female differences in CD paediatric 

diagnosis observed could be considered to be representative of patient populations observed in 

clinics. There is a possibility that there are some individuals within the dataset that have been 

diagnosed with the incorrect subtype. Where misclassification occurs, this is likely to be a CD 

patient misclassified as a UC patient [8]. Therefore, it is highly unlikely that the stricturing 

endotype classifier would be affected by subtype misclassification. When considering the subtype 

classifier, 26 patients that were included had minimal follow-up time of less than year. Of these, 

15 patients had a UC diagnosis. In this group of 26 patients, there were no cases of infantile or 

VEO IBD, which can be the cases most prone to misclassification [7]. It is unlikely that subtype 

misclassification has biased RF algorithm predictions, but this cannot be dismissed as a possibility.  

In the full IBD cohort (Table 15) 57% of those with a stricturing endotype were adult-onset CD. 

When considering only those included in the stricturing endotype classifier (after patient filtering 

by ancestry prediction and relatedness), the adult-onset stricturing endotype patients are 58% of 

the total. Stricturing endotype rates have been found to be similar in paediatric and adult 

populations after 5 years of follow up [19]. Therefore, this discrepancy is more likely due to more 

active and recent recruitment to the Genetics of IBD study in paediatric clinics, leading to a 

greater proportion of paediatric onset patients at an early stage in their disease course. Of those 

included in the stricturing endotype classifier, 41% of paediatric-onset CD have less than 5 years 

follow-up, in comparison to 6% of adult-onset CD patients. 

For the disease subtype classification model, the best result was obtained using the autoimmune 

gene panel (AUC 0.67). Regardless of the gene panel utilised in ML modelling, NOD2 was always 

ranked as the most important gene. This was particularly impressive for the ML model that used 

all genes. This random forest had no prior gene filtering based on biological knowledge, and still 

singled out NOD2 as an important genetic discriminant of the two IBD subtypes. The different 

AUCs achieved through the use of each gene panel highlight a difficult balance when using 

biological knowledge as feature selection. Including all possible genes creates problems for ML 

modelling, as it increases the dimensionality of the dataset with little to no advantage; many 

genes that are highly unlikely to be associated with IBD pathogenesis are included, with the 

upside that a few undiscovered genes will also be included. On the other hand, the panel which 

solely focuses on genes implicated in IBD does not perform as well as the autoimmune gene 
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panel. Clearly, a gene panel that is too restrictive risks missing important genes for classification, 

and also important gene-gene linear or non-linear interactions.  

Aside from NOD2 being selected as the most discriminant gene in random forest modelling, 

another gene present in the NOD-signalling pathway, P2RX7, was also in the top 10 important 

genes. This is a key innate immune pathway highly implicated in CD aetiology [102, 458]. Other 

genes of note in the top 10 most discriminant genes are WDFY4, TNC and NFATC1. Interestingly, 

WDFY4 has previously been reported as a gene associated with systemic lupus erythematosus, 

and not CD or UC in a GWAS meta-analysis of risk loci associated with autoimmune diseases [459]. 

However, in the violin plots, there is a clear tail to the GenePy score distribution in the CD group. 

This suggest some rare variation that has a high CADD score is present in a subset of these 

patients, potentially rare enough to not be detected in GWAS. WDFY4 is thought to be involved in 

autophagy [460]. When levels of the glycoprotein product of TNC, Tenascin-C, were measured in 

IBD patients, they were found to have elevated levels in comparison to controls [461]. The gene’s 

glycoprotein is involved in arresting T-cell activation and intestinal barrier function. More recently 

TNC was associated with IBD during a GWAS performed with an African American IBD cohort 

[462]. It is possible that variation in this gene is present in individuals with European ancestry, but 

it is rarer in that cohort than in those with African ancestry, again meaning GWAS on a European 

cohort would not detect this. Finally, NFATC1 plays a role in T-cell activation, in particular in the 

induction of IL-2 and IL-4 [463]. It was also present in the top 10 important genes in the classifier 

that used the IBD gene panel. 

Further investigation into the contribution of genes to subtype classification involved producing 

SHAP values and visualising the feature importances of an increased number of genes. A trend 

which emerged in the SHAP values was that a higher GenePy score (feature value) was associated 

with a positive SHAP value, meaning those values contributed to discriminating individuals as CD. 

For a few genes, such as IL31RA, NRP1 and LRP1, high GenePy scores were associated with UC 

classification, but far more common was a low GenePy score (minimal-to-no variation in that 

gene) contributing to discriminating UC cases. This is reflective of current biological knowledge, 

whereby the percentage of genetic heritability that has been accounted for is higher for CD than 

UC [68]. Through SHAP values and feature importance plots, NOD2 cements itself as the strongest 

predictor, with very clear delineation between positive and negative SHAP values. Plotting the 

feature importances of the top 50 genes emphasises, after NOD2, how small a contribution each 

gene makes to discriminating between each subtype class. This is one reason why a network 

analysis approach such as STRING [464] was considered inappropriate. This visualisation of SHAP 
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values and feature importances does not reveal any subset within the 739 features selected that 

were more important to classification. Therefore, a cutoff cannot be established for a gene 

subset, and a very large gene network would be minimally informative. Further, the autoimmune 

gene panel is already enriched for genes that are related to similar mechanisms, and finding that 

these genes interact would be expected. This is a disadvantage in using panels, as although it 

decreases the dimensionality of the input data, the gene choices are predicated on biological 

knowledge, and therefore these genes will often be part of related pathways.  

A traditional pathway enrichment analysis approach was revealed to be inappropriate for the 

data, as the initial autoimmune gene panel was already enriched for key immune pathways, 

hence artificially enriching the pathways of the genes selected. After this, the pathways which 

were no longer significant were deemed to be more informative. An interesting result from this 

pathway enrichment analysis approach was the exclusion of pathways associated with type I 

diabetes mellitus, and autoimmune thyroid disease. It has been established that many 

autoimmune diseases co-occur [168-170], and this is thought to be due to underlying immune 

dysfunction manifesting as more than one autoimmune disease. It is therefore interesting, and 

potentially useful for exclusion of genes from further investigation. Whether autoimmune thyroid 

diseases and type 1 diabetes co-occur with IBD at lower rates than other autoimmune diseases 

could also be a subject for further investigation. However, when performing further investigations 

into gene associations it is important to remember that the relationship between the genes 

chosen (or not chosen) during feature selection and the chosen modelling outcome is only as 

strong as the testing AUC achieved. This is because the testing AUC is representative of the 

generalisability, and reliability of the results. The testing AUC achieved, in combination with small 

SHAP values and feature importances for genes aside from NOD2, combine to give very limited 

confidence in any predictions that could be made with related genes and pathways. 

For the stricturing endotype classifier, the best performance was achieved with the random forest 

that utilised all available genes (AUC 0.63). It was surprising to see the mediocre performance of 

the more targeted autoimmune and IBD panels, where the AUCs were only slightly better than 

random. Many factors could be at play here for this classifier to produce a worse performance 

than the disease subtype classifier. Firstly, while the patient groups for CD and UC are 

approximately as imbalanced as the stricturing endotype groups (1:2 UC:CD, 1:2.5 stricturing:not-

stricturing), the stricturing classifier is performed on only CD patients, and as such this training 

data is approximately half the size of the disease subtype classifier’s training data. Additionally, 

the gene panels used here were geared towards IBD, and there was no stricturing endotype 

specific panel. As established for the disease subtype classifier, the gene panel does play an 
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important role. Therefore, a more bespoke panel may produce better results. Further, the not-

stricturing clinical group is not as certain as the stricturing group. Patients within the not-

stricturing group may stricture in the future. The ML model may have predicted some individuals 

as stricturing when they are in the not-stricturing group, and thus this is an incorrect classification 

currently, but the algorithm’s prediction may be proved correct in the future. It is therefore 

reassuring that the ML model was better at identifying individuals in the stricturing class, than the 

not-stricturing class (sensitivity 0.59 vs 0.54).  

Of the genes selected as the most discriminant by the stricturing endotype classifier utilising all 

genes, PREX1, GC, and PLCE1 are of note as having connections to inflammation and the immune 

system, or IBD pathogenesis. PREX1 is associated with innate and adaptive immunity and is a 

potential target of microRNAs that were found to be overexpressed in CD and UC patients [465]. 

GC is also known as the Vitamin D Binding Protein (VDBP). Studies have shown lower levels of 

VDBP in paediatric IBD patients than healthy controls [466], and higher VDBP concentrations were 

associated with an increased risk of disease flare in adult CD patients [467]. SNPs in PLCE1 have 

been reported as associated with colorectal cancer [468], and the gene is associated with MAPK 

signalling, which can initiate inflammatory processes [469]. 

When observing the SHAP values produced from the stricturing endotype classifier utilising all 

genes, there are some genes where a higher GenePy score (feature value) have a negative SHAP 

value, therefore contributing to a not-stricturing classification and implying variation in those 

genes is protective. For other genes, the more expected relationship between stricturing 

endotype (positive SHAP value) and high GenePy scores is observed. Of note is that for CNTRL, 

TEKT5, and PFAS, there are data points for low or lower GenePy scores (feature values), which 

correspond to both positive and negative SHAP values. This arguably indicates that this model 

isn’t a strong discriminator of the two classes in comparison to the subtype classifier. The 

extended feature importance plot of the top 50 genes emphasises the small contribution each of 

the 534 features makes to the discriminating stricturing and not-stricturing statuses. Pathway 

analysis did not reveal any significantly enriched pathways. As no panel was used, this was an 

agnostic approach, where the feature selection had the potential to choose genes that belong to 

pathways previously not associated with the stricturing endotype. No significantly enriched 

pathways suggests that the highly dimensional nature of the dataset, where the number of genes 

(features) greatly exceeds the number of individuals (samples) has led to challenges in feature 

selection.  
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An analysis of the potential differences in the underlying genomics of IBD patients depending on 

age of onset was performed using the random forest ML pipeline. This problem was transformed 

into a binary classifier of paediatric (< 18 years of age at diagnosis) and adult onset (18 years and 

over at diagnosis). When using all genes, the CD age of onset classifier, and the UC age of onset 

classifier attained very high testing AUCs of above 0.9. The top three genes were the same for 

both classifiers: MAPT, a gene encoding microtubules that is differentially expressed in the 

nervous system [470]; APOL5, a gene encoding a cytoplasm protein that may affect lipid 

movement [471]; and PRKRA, a protein kinase that mediates the effects of interferon in response 

to viral infection [472]. None of the top 10 genes in these age of onset classifiers were selected in 

the IBD subtype classifier. The combined feature importances of the aforementioned genes sum 

to 0.18 for the CD age of onset classifier, and 0.20 for the UC age of onset classifier. This goes 

against the trend observed in IBD subtype classifiers and stricturing endotype classifiers of small 

feature importances attributed to each gene. Given this different trend in gene importances; that 

genes are not related to any pathways or functions known to contribute to IBD development; and 

that there are no top genes in common between the age of onset classifiers and the IBD subtype 

classifier, this classifier was thought to be unreliable, with the high AUC observed potentially the 

result of data artifacts. Regardless of cause, these differences in genes do not appear to impact 

the IBD subtype classifier. For the autoimmune gene panel classifiers there were 2 overlapping 

genes (TNS1 and DNAH12)  in the top 10 of the CD and UC age of onset classifiers, and the IBD 

subtype classifiers. For the IBD gene classifiers 6 genes overlapped between the three classifiers 

(GC, DOCK8, GALC, ERAP1, CD6, and NPC1), although the UC age of onset classifier was unable to 

discriminate paediatric and adult IBD (AUC 0.44). Observing the violin plots for all classifiers 

produced leads to the possible hypothesis that rare variation, (long tails on the GenePy score 

distributions) drive these classifications. This is similar to what was observed for the IBD subtype 

classifier. In general, genes appear to have similar distributions with more extreme scores 

appearing in both paediatric and adult onset groups, depending on the gene. These more extreme 

scores may then go on to drive the IBD subtype classifier, regardless of which age of onset group 

is more likely to have these higher GenePy scores. 

During identification of adult IBD patient’s stricturing endotype status, the number of clinical 

records required to review was reduced by using keyword flags. However, over 1,000 records 

were still reviewed manually. The process was time-consuming, and error-prone. The record fields 

searched were free-text fields, and as such some records could be more ambiguous than others. 

This meant additional checks were required by a clinician in order to verify stricturing endotype 

status where it was not clear. This adds to the time required to gather this patient information. 
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Another challenge of collecting this data, is its potential to change quickly. Unlike a subtype 

diagnosis, CD patients are monitored regularly, and have the potential to develop stricturing 

behaviour at any time. The stricturing endotype data collection could therefore become out of 

data very quickly. There is a requirement to streamline records for patients in order that 

complications like stricturing can be easily identified. Other endotypes could also be investigated 

if clinical records were more automated. An example of this is the fistulating endotype, where a 

tunnel can form connecting one portion of the bowel to another section, or to the outside of the 

body. ML models for these specific prognostic questions cannot be generated unless there is a 

quick, reliable way to gather this clinical data.  

The random forest ML performed here produced a good AUC for the disease subtype classifier, 

and a modest AUC for the stricturing endotype classifier. These results present the real potential 

of utilising genomic data and ML for IBD. However, there are additional measures that could be 

implemented to potentially improve the algorithm’s performance. Aside from including more 

trees (estimators = 10,000) in the random forest, all other hyperparameters were set to the 

default for random forest. Optimisation of these hyperparameters, which dictate the rules of the 

random forest algorithm, could lead to improved classification results. It is unfortunate that the 

stricturing endotype classifier did not perform as well as the disease subtype classifier. Being able 

to predict a patient’s disease course, and whether they are susceptible to the development of 

specific endotypes and complications would have more impact on patient management and their 

quality of life than the prediction of their disease subtype. As discussed above, the use of another 

gene panel for the stricturing endotype classifier could lead to better random forest performance, 

which would be a step towards personalised medicine.  
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Chapter 6 Optimisation of machine learning for 

inflammatory bowel disease subtypes and the 

Crohn’s disease stricturing endotype  

Chapter summary – this chapter focusses on optimising the modelling performed in Chapter 5, 

for IBD subtypes, and the CD stricturing endotype. Two hyperparameter tuning methods were 

investigated, and their results compared for the different clinical tasks. In addition, for the 

stricturing endotype additional optimisation of the genomic and patient input data was 

performed.  

 

Chapter contributions – Whole exome sequencing data was joint-called by Guo Cheng, with all 

subsequent processing, and transformation into GenePy scores performed by Imogen Stafford. 

The IBD gene panel was generated through literature searches performed by Guo Cheng and 

James Ashton. Stricturing gene panel literature search was performed by Imogen Stafford. 

Clinical stricturing status and follow-up were assessed by Imogen Stafford and James Ashton. 

Modelling and optimisation were performed by Imogen Stafford, with guidance from Mahesan 

Niranjan. 

 

Supplementary files can be found at https://doi.org/10.5258/SOTON/D2655. 

6.1 Introduction 

6.1.1 Hyperparameter tuning 

When optimising a machine learning (ML) model to obtain the best results, there are two aspects 

of the algorithm to consider: the parameters and the hyperparameters. Parameter optimisation 

occurs during the training of a model. These parameters will be defined in relation to the 

prediction task and the input data. The parameters of the model will determine how the data is 

classified. The input data and prediction task are also used for hyperparameter tuning, but in this 

case what is determined are the constraints on how the algorithm can operate to subsequently 

classify the data (descriptions of random forest hyperparameters are included in Table 28). For 
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example, if data is very noisy, then to classify the data with a random forest it could be beneficial 

to set the hyperparameters such that the model does not become too complex. This could be 

achieved by reducing the maximum depth of each tree, so that there are few data splits per tree, 

or the number of samples required to make a tree split could be increased to prevent many splits 

resulting in end nodes with one sample in each. However, it is difficult to know intuitively what 

the best hyperparameters could be for the best classification result. 

There are several approaches that can be taken in order to obtain the optimal hyperparameters 

for a model. An exhaustive grid search will work through all possible combinations of 

hyperparameters, training a model for each in order to determine the optimal set. While 

thorough, this approach can be very time intensive. The random search method will select a 

hyperparameter combination at random and train a model with these hyperparameters. A second 

set of hyperparameters will be selected, model trained, and these results are compared. The 

algorithm then retains the better hyperparameter combination. This will continue for the number 

of hyperparameter trials selected by the user. In both these methods, there are no assumptions 

about the potential best hyperparameter, and every trial of a hyperparameter combination is 

independent. A downside of the random search method is that, while the algorithm tries to 

minimise the cost function, i.e. create the most accurate model, it can find, and subsequently be 

trapped, in a local minima. Then, the random search will select a combination of hyperparameters 

that will give a good machine learning model result, but not the best that could have been 

achieved, if the search had found the global minimum. An alternative to these is a Bayesian 

approach. A Bayesian optimisation search will use the performance of the previous 

hyperparameter combination to inform the choice of the next hyperparameter combination. 

Similar to random search, the number of hyperparameter combinations trialled is selected prior 

to tuning. In addition, the Bayesian approach samples points across the cost function to identify 

possible minima. It is this combination of trialling all possible minima, and prior knowledge, that 

means this approach is almost certain to arrive at the global minimum and give the optimal 

hyperparameter combination for the creation of the best model.  
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Table 28 Description of the function of the random forest hyperparameters optimised in this 

chapter.  

Hyperparameter 

Name 

Python Variable 

Name 

Definition 

Number of estimators n_estimators The random forest model is an ensemble 

classifier that outputs its classification results 

based on many decision trees. This parameter 

determines the number of trees generated 

during the modelling. 

Maximum Tree Depth max_depth The maximum number of times that the data is 

split (a decision) in each tree. 

Minimum samples per 

split 

min_samples_split The minimum number of samples required at a 

tree node to split the data. 

Minimum samples per 

leaf 

min_samples_leaf The minimum number of samples required in a 

leaf node (a node which classifies the data 

present at that node into a category). 

Maximum Features per 

split 

max_features The maximum number of features in the dataset 

to consider for each tree split. 

 

6.1.2 Nested Cross-validation 

The principle of cross-validation was introduced in Section 1.3.5, and for hyperparameter 

optimisation using cross-validation gives a more generalised and robust estimate of the 

performance of each hyperparameter combination. However, a potential issue when using a 

simple cross-validation scheme to optimise a model’s hyperparameters, is that during this process 

both the parameters determined from the data, and the hyperparameters of the model will be 

decided upon. It is therefore possible that information leaks through from the hyperparameter 

tuning to decisions regarding model parameters. As a result, the estimated performance of the 

tuned model can be inflated. One approach to minimising information leakage is to use a nested 

cross-validation scheme illustrated in Figure 44. An inner cross-validation is performed using the 
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training data of the outer cross-validation. Therefore, a separate combination of data is used to 

determine the optimum hyperparameters. The ML algorithm, and its parameters, is subsequently 

trained and tested on the outer cross-validation data.  

 

Figure 44 Example of a nested cross-validation scheme that uses 5-fold outer cross-validation and 

3-fold inner cross-validation. 

This chapter begins with the machine learning pipeline established in Chapter 5, applied to two 

classification problems: 1) IBD subtypes; and 2) CD stricturing endotype. For both clinical tasks, 

hyperparameter tuning is performed in three different ways: I) individually, to observe each 

hyperparameter’s behaviour, II) using the Grid Search method, and III) using Bayes optimisation. 

By selecting the best combination of hyperparameters, the machine learning models become 

more tailored to the idiosyncrasies of the genomic data, and by extension the individual clinical 

classification problem. For the stricturing endotype classifier, multiple gene panels were trialled to 

try and arrive at an optimal gene set that best classified the patients. In addition, a filtered patient 

dataset was used in some modelling to observe if requiring a specific number of years of clinical 

follow-up in the ‘not stricturing’ group would enable a model to better distinguish between the 

stricturing and not-stricturing groups. 
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6.2 Methods 

In Chapter 5, two main GenePy score processing steps were tested: a CADD Phred filter that only 

included likely pathogenic variants were included in GenePy scores, and the Fuentes false positive 

gene list [442] so that genes with a high pathogenicity burden, but have been identified as not 

disease causal, would not be included in modelling. These measures were intended to reduce 

noise in the dataset, giving the random forest modelling clearer genomic signals to detect. As 

these steps were successful, they were implemented on the GenePy score matrix before 

hyperparameter tuning. Other standard pre-processing of the GenePy score matrix and patient 

data was performed as in Section 5.2.4 and Section 5.2.5. To begin optimisation of the modelling, 

the gene panel representing the genomic data input was determined. For the disease subtype 

classification task, this was the autoimmune gene panel, as this data input gave the best random 

forest modelling results in Section 5.3.2. For the stricturing endotype classifier, during previous 

modelling no one gene set was determined as the optimal one. Therefore, as part of model 

optimisation discussed herein, several gene panels were evaluated: 

I) All genes: the genes that GenePy scores could be generated on.  

II) Autoimmune panel: the HTG EdgeSeq panel 

III) IBD panel: the in-house IBD panel that includes genes associated with IBD-like 

monogenic illness, and genes identified through assessment and analysis of IBD 

GWAS (unpublished data) 

IV) Extended NOD signalling pathway: comprises genes included in the 

KEGG:hsa04621 and REACT:R-HSA-168638 pathways. 

V) Stricturing panel (inclusive): includes genes from a literature search of genes 

associated with the stricturing endotype, and all genes from (II) and (III). 

VI) Stricturing panel (exclusive): only includes genes from the stricturing endotype 

literature search and does not include genes from (II) and (III) unless they were 

identified in the literature search. 

As stated above, a literature search was performed to collate a comprehensive list of genes 

implicated in the development of a stricturing endotype. A Boolean literature search was 

performed in PubMed. There was a low threshold for including genes in the stricturing panel, to 

try and assemble an inclusive list. The search was as follows: (Crohn’s disease OR Crohn disease) 

AND (stricture OR stricturing OR fibrotic OR fibrosis) AND (gene OR genetic). Papers from 2016 to 
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the present (search performed 20th September 2021) were assessed. Genes were included in the 

stricturing panel if they were implicated as a causal or a protective gene.  

In addition, the patient data included in the stricturing endotype model was also considered. The 

follow up period in the IBD cohort is highly varied. The study that recruits patients to this cohort is 

ongoing, so patients recruited in recent months and years will have little or no follow-up data, and 

in most cases not enough time will have passed for these patients to develop strictures. This 

means there may be some patients that are currently classified as not-stricturing who may 

develop a stricturing endotype in the future. Therefore, two patient datasets were used: one 

which included all patients, and one that set a follow-up threshold in the not-stricturing group to 

exclude patients where their future stricturing endotype status is uncertain. The duration of a 

patient’s follow-up time was determined by the date of most recent clinical contact, which was 

defined as either pathology results, an outpatient appointment or an admission to hospital. 

Feature selection for reduction of the number of genes used in modelling was performed with a 

support vector classifier as in the previous chapter. Next, three different hyperparameter tuning 

processes were completed: 

• Individual hyperparameter tuning: five random forest classifier hyperparameters 

(max_features, n_estimators, min_samples_split, min_samples_leaf, and max_features) 

were tuned utilising the GridSearchCV algorithm, contained within the Python (v.3.7) 

package scikit-learn [446]. A non-nested cross-validation approach, with 7 folds was used, 

as measuring the generalisability of these models was not required. 

• Grid Search hyperparameter tuning: GridSearchCV was used to tune all five 

hyperparameters simultaneously, given a limited number of values that each 

hyperparameter could take. This was done within a nested scheme, with 7-folds in the 

outer cross-validation, and 5-folds in the inner cross-validation. 

• Bayes Search hyperparameter tuning: BayesSearchCV from the Python (v.3.7) package 

scikit-optimize was used to perform the tuning of the five hyperparameters 

simultaneously. The range of values that each hyperparameter could take was wider than 

for the Grid Search, as the number of iterations of hyperparameter tuning is less that the 

former, exhaustive method. This was done within a nested scheme, with 7-folds in the 

outer cross-validation, and 5-folds in the inner cross-validation. 

For each hyperparameter tuning process, the model performance was assessed using balanced 

accuracy. The aim with individual hyperparameter tuning was to observe how each 

https://github.com/scikit-optimize/scikit-optimize
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hyperparameter could impact modelling, and to what extent (i.e. the change in balanced 

accuracy). For the Grid Search and Bayes Search tuning, the chosen hyperparameter combination 

was used in the downstream modelling in order to understand how this changed the 

characteristics of the model, and its performance. The hyperparameter tuning described here was 

performed separately for both the disease subtype and stricturing endotype classifiers. 

The set of tuned hyperparameters from the Grid Search and Bayes Search was then applied to the 

whole training set to get a final random forest model, and this model was applied to the test set, 

which had not been used for any tuning or training. This resulted in the generation and 

assessment of three random forest models: an untuned model, a model tuned using 

GridSearchCV, and a model tuned using BayesSearchCV. The random forest model test set 

performance was assessed as before using the area under the curve, as well as other output 

metrics (precision, sensitivity, specificity and F1 score). Genes that contributed to the model were 

analysed. SHAP values [453] were produced for the disease subtype and stricturing endotype 

classifiers that had been hyperparameter tuned, as in Section 5.2.7. Pathway analysis with Enrichr 

[454] was performed for a hyperparameter tuned stricturing endotype classifier, as in Section 

5.2.7. The full pipeline for these methods is illustrated in Figure 45 (see Supplementary Files for 

machine learning scripts).  
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Figure 45 Machine learning pipeline with the addition of hyperparameter tuning. The 

hyperparameter optimisation step is always performed using random forest as the 

base algorithm, with nested cross-validation, but the method of tuning is either Grid 

Search or Bayesian Optimisation, depending on the approach being trialled. This 

pipeline was performed for both the subtype classifier and the stricturing endotype 

classifier. 
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6.3  Results 

6.3.1 Disease subtype classifier 

This classifier includes CD and UC patient data. After pre-processing using ancestry and 

relatedness information (full details in Section 5.2.5), 600 CD, and 306 UC patients are included in 

the modelling. The clinical characteristics of these individuals are as detailed in Section 5.3. The 

training dataset consists of 244 CD, and 244 UC patients (80% of patients, according to the 

minority class), and the testing dataset includes 356 CD, and 62 UC patients. 

6.3.1.1 Hyperparameter tuning 

In Table 29, the values that were trialled for each hyperparameter in each tuning method 

(individual hyperparameter tuning, Grid Search, Bayes Search) are given. These are given in a list 

format, as unlike other classifiers, such as support vector machine, where the hyperparameter 

tuning space is continuous, each hyperparameter for random forest expects an integer as input. 

Due to the computational and time costs of Grid Search, fewer hyperparameters values are 

included for this tuning process. 
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Table 29 Hyperparameter default values, and values tested during individual, grid search and 

Bayes hyperparameter tuning for the disease subtype classifier 

Hyperparameter 

Name 

Default Values Tested – 

Individual 

Hyperparameter 

Tuning 

Values Tested – 

Grid Search 

Values Tested - Bayes 

n_estimators 100 100, 250, 500, 750, 

1000, 2000, 3000, 

4000, 5000, 6000, 

7000, 8000, 9000, 

10000 

500, 750, 1000, 

5000 

100, 250, 500, 750, 

1000, 2000, 3000, 

4000, 5000, 6000, 

7000, 8000, 9000, 

10000 

max_depth None 1 - 30, None 5, 10, 20, 30, 

None 

1 - 30, None 

min_samples_split 2 2, 3, 4, 5, 6, 7 ,8, 9, 10 2, 3, 4, 5 2, 3, 4, 5, 6 

min_samples_leaf 1 1, 2, 3, 4, 5, 6, 7, 8, 9, 

10 

1, 2, 3, 4, 5 1, 2, 3, 4, 5, 6 

max_features sqrt sqrt(n_features), 

log2(n_features) 

None 

sqrt(n_features), 

log2(n_features) 

None 

sqrt(n_features), 

log2(n_features) 

None 

 

Each hyperparameter was tuned individually to gauge the potential impact each one could have 

on the performance of the random forest model (Figure 46). Overall, changing individual 

hyperparameter values resulted in only small changes to the cross-validated balanced accuracy 

achieved by the models. Minimum and maximum balanced accuracies attained by specific 

hyperparameter values were often within 0.1 of each other. The balanced accuracy range was 

particularly small for the minimum samples per leaf, and maximum depth hyperparameters. 

Hyperparameter tuning for the number of estimators had the expected trend of the balanced 

accuracy increasing sharply as the number of estimators increased, before reaching a plateau 

(Figure 46B). The minimum samples per leaf hyperparameter also exhibited a trend towards 

poorer model performance as the number of samples required at a leaf increased (Figure 46D). In 
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contrast, the minimum samples per split hyperparameter did not have a clear trend that indicated 

an optimal value, or range of values (Figure 46A). The most successful hyperparameter, by CV 

balanced accuracy, was the maximum feature number. Setting this to “None” achieved a balanced 

accuracy of 0.6 (Figure 46C). 

 

Figure 46 Average balanced accuracy score across the 7 cross-validation (CV) folds for individually 

tuned hyperparameters (disease subtype classifier). 

Using an exhaustive Grid Search, a set of values for each hyperparameter was tuned together 

with nested cross-validation. Chosen hyperparameters for each inner cross-validation fold and the 
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corresponding average balanced accuracy across five folds, and the balanced accuracy in each of 

the outer cross-validation folds can be viewed in Table 30. The average balanced accuracy across 

all 7 outer folds was 0.489 (standard deviation 0.087). There was variation in the 

hyperparameters chosen, particularly for the minimum number of samples per leaf 

hyperparameter, and the number of estimators hyperparameter. The optimal hyperparameters 

were chosen according to the balanced accuracy of the corresponding outer cross-validation fold. 

Here, the best outer fold had a balanced accuracy of 0.643 (fold 5), and the following 

hyperparameters were selected: maximum depth = 5, maximum features = none, minimum 

samples per leaf = 1, minimum samples per split = 5, and number of estimators = 1000.  

Table 30 Hyperparameters selected by nested grid search and corresponding balanced accuracy in 

inner and outer cross-validation folds for the disease subtype classifier. 

Fold Outer Fold 

Balanced 

Accuracy 

Inner CV 

Balanced 

Accuracy 

Optimal Hyperparameters 

Max 

Depth 

Max 

Features 

Minimum 

Samples per 

Leaf 

Minimum 

Samples per 

Split 

Number of 

Estimators 

1 0.500 0.533 5 log2 5 2 1000 

2 0.452 0.706 5 None 5 2 5000 

3 0.500 0.500 5 log2 4 2 500 

4 0.500 0.560 10 log2 1 5 1000 

5 0.643 0.525 5 None 1 5 1000 

6 0.325 0.639 5 None 1 2 750 

7 0.500 0.562 5 None 4 2 750 

 

Next, the Bayes Search method with 60 iterations was used to optimise the hyperparameters. The 

same nested cross-validation scheme of 5-folds in the inner cross-validation, and 7-folds in the 

outer cross-validation was used. The results of this optimisation, with the best inner cross-

validation balanced accuracy and corresponding hyperparameters, and the balanced accuracy 

when applying these hyperparameters to the outer fold test set, can be viewed in Table 31. All 
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hyperparameters, except the maximum number of features, varied widely across the different 

outer folds. The average balanced accuracy across the outer folds was 0.569 (standard deviation 

0.034). The best balanced accuracy in the outer fold was 0.610 in fold 5. Therefore the chosen 

hyperparameter values from Bayes optimisation were: maximum depth = 27, maximum number 

of features = None, minimum samples per leaf = 1, minimum samples per split = 4, and 250 

estimators.  

Table 31 Bayes search nested CV results for the disease subtype classifier, with balanced accuracy 

in inner and outer folds for each fold’s selected hyperparameter combination. 

Fold Outer Fold 

Balanced 

Accuracy 

Inner CV 

Balanced 

Accuracy 

Optimal Hyperparameters 

Max 

Depth 

Max 

Features 

Minimum 

Samples per 

Leaf 

Minimum 

Samples per 

Split 

Number of 

Estimators 

1 0.538 0.603 6 None 5 6 250 

2 0.523 0.628 28 None 4 3 8000 

3 0.548 0.611 22 None 2 3 750 

4 0.585 0.578 13 None 3 2 250 

5 0.610 0.604 27 None 1 4 250 

6 0.559 0.624 24 None 6 6 100 

7 0.619 0.571 11 Sqrt 1 5 5000 

 

6.3.1.2 Application of optimal hyperparameters to random forest modelling 

After the optimal hyperparameters were selected by Grid Search and Bayes Search methods, the 

random forest was trained with these hyperparameters on the whole training set. A comparison 

of untuned and tuned random forest model results on the test set is recorded in Table 32. The 

only hyperparameter value that remains consistent across all three models is 

minimum_samples_leaf=1. Both tuned models selected maximum features to be none, meaning 

there is no limit on the size of the feature subsample in each estimator. Therefore, the algorithm 

is free to include any number of genes in each split of a tree in the random forest. 
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Neither the Grid Search tuned, nor the Bayes Search tuned models result in an improvement in 

the AUC achieved. The Grid Search tuned model has a reduction in sensitivity to identifying the 

Crohn’s Disease class, in comparison to the untuned model (0.61 untuned recall versus 0.50 grid 

search recall). However, the grid search model is much more sensitive to the ulcerative colitis 

class (0.63 versus 0.74). Interestingly, this coincides with an almost tenfold increase in the feature 

importance of NOD2, when comparing the untuned model to the Grid Search tuned model (Figure 

47A and Figure 47B). This trend in the sensitivity at which the model can identify each class is 

similar in the Bayes Model, but to a lesser extent. This coincides with a fivefold increase in the 

importance of NOD2 (Figure 47A and Figure 47C). Of the top 10 most important genes, three in 

the untuned model do not appear in the tuned models: TNS1, TNC, HTT. The top 10 important 

genes stay the same for the tuned models (although the order changes), except for WDFY4 in the 

Grid Search tuned model, which is replaced by P2RX7 in the Bayes Search tuned model.  
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Table 32 Disease subtype classifier results on the test data for the untuned ML model, the tuned with Grid Search ML model ,and the tuned with Bayes Search ML model 

(features = 739). 

UNTUNED TUNED WITH GRID SEARCH TUNED WITH BAYES SEARCH 

Hyperparameters Selected Hyperparameters Selected Hyperparameters Selected 

Max Depth None Max Depth 5 Max Depth 27 

Max Features sqrt(n_features) Max Features None Max Features None 

N Estimators  10,000 N Estimators  1000 N Estimators  250 

Min Samples Leaf 1 Min Samples Leaf 1 Min Samples Leaf 1 

Min Samples Split 2 Min Samples Split 5 Min Samples Split 4 

Machine Learning Results Machine Learning Results Machine Learning Results 

 Precision Recall Specificity F1  Precision Recall Specificity F1  Precision Recall Specificity F1 

CD 0.90 0.61 0.63 0.73 CD 0.92 0.50 0.74 0.64 CD 0.92 0.57 0.71 0.70 

UC 0.22 0.63 0.61 0.33 UC 0.20 0.74 0.50 0.32 UC 0.22 0.71 0.57 0.34 

Average 0.80 0.61 0.63 0.67 Average 0.81 0.53 0.71 0.60 Average 0.81 0.59 0.69 0.65 

AUC 0.67 AUC 0.652 AUC 0.656 

Top 10 
Genes 

NOD2, DNAH12, TNS1, WDFY4, P2RX7, 
SPATS2L, TNC, HTT, E2F4, NFATC1 

Top 10 
Genes 

NOD2, GZMA, NFATC1, E2F4, HHAT, GALC, 
ATM, SPATS2L, DNAH12, WDFY4 

Top 10 
Genes 

NOD2, E2F4, SPATS2L, DNAH12, NFATC1, 
GALC, GZMA, ATM, HHAT, P2RX7 
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Figure 47 The relative feature importances of the trained random forest using the autoimmune 

gene panel for the A) untuned model, B) model with hyperparameters tuned by Grid 

Search, C) model with hyperparameters tuned by Bayes Search 

A comparison of the SHAP values of the untuned subtype classifier and the Bayes Search tuned 

classifier, both utilising the autoimmune gene panel, is shown in Figure 48. Genes determined to 

have SHAP values that impacted subtype discrimination remained the same, with the exception of 

ABCA1, IL31RA and TRIM63. In the model tuned using Bayes Search, there are considerably higher 

SHAP values for NOD2, both for the long tail of higher GenePy scores with positive SHAP values 

contributing to CD classification, and the negative SHAP value cluster which contributes to UC 

classification.  
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Figure 48 SHAP values for top discriminatory genes, for the disease subtype classifier utilising the autoimmune gene panel. A) Untuned model as shown in Chapter 5; B) 

after hyperparameter tuning performed using Bayes Search. A high feature value is equivalent to a high CADD score and vice versa. A positive SHAP value 

indicates the feature makes a contribution to the positive class, which was coding as presence of a stricture. 
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6.3.2 Stricturing endotype classifier 

6.3.2.1 Optimal gene set and patient data to include  

The literature search identified 1,023 genes for inclusion in the stricturing gene panel. Some 

studies listed specific genes that contained implicated variants, such as NOX4 being identified as 

protective of fibrotic disease [473], and mouse models showing mutations in IL33 and ST2 

promoted intestinal fibrosis [474]. Other studies suggested full pathways as implicated in the 

development of a stricturing endotype; these included the JAK-STAT, NOD and Nfr2-ARE signalling 

pathways. The full list of identified genes and their source(s) are detailed in the Supplementary 

Files. This supplementary information also documents where genes were implicated in stricturing 

by multiple sources. 

A clinical follow-up threshold for the not-stricturing group of Crohn’s disease patients was 

required for one of the patient datasets. There is an absence of clear clinical guidance on how 

many years of follow-up would be required in order to determine that a patient would not 

develop the stricturing endotype. This threshold was arbitrarily set to maximise the follow-up 

time in the not-stricturing group, while not reducing the sample size. This dataset is imbalanced, 

with stricturing being the minority class. Due to this, an 8-year follow-up threshold could be set 

for the not-stricturing group while retaining the same sample size for the balanced training data 

as in Chapter 5 (136 stricturing, 136 not-stricturing). Roughly equal numbers of stricturing and 

not-stricturing patients were included in the testing data. The distribution of clinical follow-up 

time for the stricturing and not-stricturing patient groups is visualised in Figure 49, annotated 

with the 8-year follow-up threshold. 
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Figure 49 Histogram of years of clinical follow-up for the stricturing and not-stricturing patient 

groups (n=553, as some CD patients did not have follow-up time data available). 

An important aspect to take into account when considering sub-setting the patient data that goes 

into the stricturing endotype model, is how this might affect the distribution of the data with 

regards to age of diagnosis. As paediatric patients have, in general, had less time to develop 

stricturing disease behaviour, the data could potentially be skewed towards the patients with an 

adult age of onset, who have had more time to develop the endotype. Further, these patients 

may have been diagnosed in a time prior to the change in treatment approach towards earlier use 

of biologic therapies, which have been suggested to delay disease progression to stricturing in 

paediatric patients [475]. In Table 33, the breakdown of the number of patients with a paediatric 

age of onset, in each class, for the two different datasets, is shown. The follow-up time filter for 

the not-stricturing class means the percentage of patients with paediatric onset in the stricturing 

and not-stricturing classes is even. Further clinical detail for the dataset with all data, and the 

dataset filtered by follow-up time are shown in Table 34.
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Table 33 Numbers of patients in each class and the percentage of paediatric onset CD (< 18 yo) 

per classifier category, depending on the patient set used. 

Dataset Stricturing Class  

(% paediatric 

onset) 

Not-stricturing 

Class 

(% paediatric 

onset) 

Total Data  

(% paediatric 

onset) 

All Data 170 (42%) 419 (61%) 589 (55%) 

Filtered Data (not-stricturing class > 8 yrs 

clinical follow-up) 

170 (42%) 193 (44%) 363 (43%) 

 

Table 34 Clinical characteristics of the full dataset (as used in Chapter 5), and the filtered data, 

which imposes an 8 year follow-up requirement on individuals in the not-stricturing 

endotype category. Age at diagnosis information was unavailable for two patients in 

the full data, and one patient in the filtered data.  

 All Data  Filtered Data (not-stricturing 

class > 8 yrs clinical follow-

up) 

Paediatric IBD  

(< 18 yrs) 

Adult IBD  

(≥18 yrs) 

Paediatric IBD  

(< 18 yrs) 

Adult IBD  

(≥18 yrs) 

N 332 255 157 205 

Median age at diagnosis (range) 13 (1-17) 31 (18-82) 13 (1-17) 30 (18-82) 

Stricturing 

Endotype  

Yes 71 98 71 98 

No 261 157 86 107 

Sex Male 206 113 90 87 

Female 126 142 67 118 

Six different gene panels were used in modelling for the two different patient datasets: I) all 

genes, II) the autoimmune gene panel, III) the IBD gene panel, IV) the extended NOD-signalling 
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pathway panel, V) the stricturing (inclusive) panel, which also includes panels (III) and (IV), and VI) 

the stricturing (exclusive) panel, which only includes genes identified in the literature search 

described above. The gene panels are available in the Supplementary Files. The overlap between 

gene panels are shown in Figure 50. Not all genes listed in each panel could be included in the 

modelling, as the generation of GenePy scores is based on a reference database which is not 

exhaustive. In addition, the genetic data pre-processing steps, in particular removal of genes with 

invariant GenePy scores, mean that the genes included are also dependent on the patient data 

included. In Table 35, the number of genes in each panel, for both patient datasets documented 

in Table 34, is recorded. 

 

Figure 50 Venn diagram displaying the overlap between the stricturing exclusive panel, the 

autoimmune gene panel, the IBD gene panel, and the extended NOD-signalling 

pathway (as labelled from left to right on the diagram. The stricturing (inclusive) 

panel is not included for clear visualisation, as this includes the genes from the first 

three panels listed. As the extended NOD-signalling pathway panel contains no genes 

unique to this panel, the stricturing (inclusive) panel also contains within it the NOD-

signalling pathway gene panel. 
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Table 35 Number of Genes in each of the six gene panels used for random forest modelling of the 

stricturing endotype. Records total panel genes, genes for which GenePy scores were 

available, genes after pre-processing for all patient data (n=589), and genes after pre-

processing for the patient data where not-stricturing patients are only included if 

they have over 8 years of follow-up (n=363). 

Gene Panel Total 

Genes 

Genes with 

GenePy 

Scores 

Genes after pre-

processing (all 

patient data) 

N after pre-processing 

(patient data with 

follow-up cut-off) 

All genes 15,669 15,669 14,342 13,490 

Autoimmune gene 

panel 

2,017 1,598 1,484 1,397 

IBD gene panel 821 499 467 439 

Extended NOD 

signalling pathway 

panel 

180 144 132 121 

Stricturing (inclusive) 

panel  

3,155 2,368 2,207 2,085 

Stricturing 

(exclusive) panel  

1,023 847 795 754 

After patient data pre-processing, 589 CD patients were included in modelling, with 272 patients 

(136 stricturing, 136 not-stricturing) in the training dataset, and 317 patients (34 stricturing, 283 

not-stricturing) in the testing dataset. In Table 36, the test set results of the random forest 

classifier for the six different gene panels are detailed. For these experiments, the classifier with 

the highest performance was the model using all available genes (AUC 0.63), and the second-best 

performing classifier used the NOD signalling pathway genes (AUC 0.58). The classifier that 

utilised all genes was more accurate in positively identifying patients in the stricturing class 

(sensitivity 0.59), in comparison to the not-stricturing class (sensitivity 0.54). This was the 

opposite for the classifier using the NOD signalling pathway panel, which had the highest 

sensitivity for the not-stricturing class (0.60). There was little overlap in the top 10 genes of each 

model, which was particularly surprising when considering the autoimmune panel, IBD panel, and 
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stricturing panel (inclusive), as the former two gene panels are included in the latter. The most 

overlap in the top 10 genes occurred between the two stricturing panels, with three of the 

overlapping genes belonging to the collagen family. In total, eight genes appear in the top 10 

genes of two classifiers, including NOD2, DOCK8 and CNTRL. Only two genes appeared in the top 

10 genes of three classifiers: P2RX7 and GC. 
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Table 36 Random forest results for the classification of CD patients by stricturing endotype using different gene panels. All metrics from algorithm performance on the 

testing dataset (NFS = number of features selected, NS = not-stricturing class, S = stricturing class) 

All genes Autoimmune gene panel IBD gene panel 

No. Features 534 No. Features 411 No. Features 284 

  Precision Recall Specificity F1   Precision Recall Specificity F1   Precision Recall Specificity F1 

NS  0.92 0.54 0.59 0.68 NS  0.9 0.51 0.53 0.65 NS  0.89 0.45 0.56 0.60 

S 0.13 0.59 0.54 0.22 S 0.12 0.53 0.51 0.19 S 0.11 0.56 0.45 0.18 

Average 0.83 0.54 0.58 0.63 Average 0.82 0.51 0.53 0.60 Average 0.81 0.46 0.55 0.55 

AUC 0.627 AUC 0.518 AUC 0.551 

Top 10 Genes PREX1, CNTRL, MAPT, FAT4, GC, AKR7L, PLCE1, 
PKD1L3, ACACB, PTPRQ 

Top 10 Genes TNS1, P2RX7, SPATS2L, LOXL2, BAZ2B, 
DNAH12, ANK3, FLT4, SORBS1, WDFY4 

Top 10 Genes GC, CNTRL, DOCK8, UTP20, NPC1, GALC, GSDMA, 
NOD2, ERAP1, CD6 

NOD-signalling pathway gene panel Stricturing gene panel (inclusive) Stricturing gene panel (exclusive) 

No. Features 103 No. Features 462 No. Features 349 

  Precision Recall Specificity F1   Precision Recall Specificity F1   Precision Recall Specificity F1 

NS  0.92 0.60 0.56 0.73 NS  0.90 0.53 0.53 0.67 NS  0.87 0.52 0.32 0.65 

S 0.15 0.56 0.60 0.23 S  0.12 0.53 0.53 0.19 S  0.08 0.32 0.52 0.12 

Average 0.84 0.60 0.56 0.68 Average 0.82 0.53 0.53 0.61 Average 0.78 0.50 0.34 0.60 

AUC 0.578 AUC 0.536 AUC 0.396 

Top 10 Genes P2RX7, NLRP3, NOD2, TP53BP1, PLCB3, NOD1, 
GPRC6A, RNASEL, IRAK2, MAPK12 

Top 10 Genes CNTRL, FAT4, GC, TNS1, COL6A2, DOCK8, 
COL4A4, BMP1, P2RX7, COL27A1 

Top 10 Genes FAT4, COL6A2, COL4A4, COL27A1, P2RX7, BMP1, 
COL15A1, LAMC3, TNC, DNAH17 
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In Table 37, the ML results of these same gene panels are detailed, but using the patient data with 

a follow-up threshold of 8 years in the not-stricturing group. The training dataset included 272 CD 

patients (136 stricturing, 136 not-stricturing), and the testing dataset included 91 CD patients (34 

stricturing, 57 not-stricturing). Here, the best performing classifier used the IBD gene panel (AUC 

0.63), while the next best performing classifier used the stricturing panel (inclusive), which does 

contain the IBD gene panel (AUC 0.60). Classifiers using gene panels specifically aimed at 

identifying the stricturing endotype (both the inclusive and exclusive panels) had the highest 

sensitivity for identifying not-stricturing patients, although these classifiers had a comparatively 

poorer performance overall. There was more overlap in the top 10 genes across classifiers in this 

analysis. The all-genes classifier was the only classifier in this analysis section where no gene from 

the top 10 was featured in another classifier. Apart from the all-genes classifier, NOD2 appeared 

in every other classifier as an important gene. Another gene common to four classifiers was the 

NOD-signalling pathway gene P2RX7. There were 11 genes in total that appear in at least two 

classifiers, and every gene in the top 10 of the stricturing panel (inclusive) appeared in another 

classifier. There is slightly more consistency in the top genes selected here, in comparison to the 

analysis that used all patient data. Overall, 26 genes appear in both Table 36 and Table 37.  

When choosing the patient data and gene panel which gave the best model, the overall AUC, as 

well as the sensitivity with which each class could be identified was considered. Some models had 

better sensitivity for detecting the stricturing class: all genes using all patient data had a sensitivity 

of 0.59, as did the autoimmune panel with restricted follow up patient data. Different models 

were better able to detect the not-stricturing class: the stricturing panel (exclusive) and stricturing 

panel (inclusive) both with the restricted follow-up patient data identifying the not-stricturing 

class with a sensitivity of 0.67 and 0.65, respectively. The classifier using all genes and all patient 

data, and the classifier using the IBD panel with restricted follow-up patient data had the highest 

AUC scores, and these scores were very similar, at 0.627 and 0.630, respectively. As the IBD panel 

classifier was better at identifying both the stricturing and not-stricturing class, this panel with the 

restricted follow-up data was taken forward to hyperparameter optimisation.
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Table 37 Random forest results for the classification of CD patients by stricturing endotype, with patient follow up in not-stricturing group > 8 years, using different 

gene panels. All metrics from algorithm performance on the testing dataset (NS = not-stricturing class, S = stricturing class). 

All genes Autoimmune gene panel IBD gene panel 

No. Features 554 No. Features 411 No. Features 277 

  Precision Recall Specificity F1   Precision Recall Specificity F1   Precision Recall Specificity F1 

NS  0.63 0.47 0.53 0.54 NS  0.70 0.56 0.59 0.62 NS  0.69 0.58 0.56 0.63 

S 0.38 0.53 0.47 0.44 S 0.44 0.59 0.56 0.51 S 0.44 0.56 0.58 0.49 

Average 0.53 0.49 0.51 0.50 Average 0.60 0.57 0.58 0.58 Average 0.60 0.57 0.57 0.58 

AUC 0.554 AUC 0.560 AUC 0.630 

Top 10 Genes DPYD, PREX1, CSMD3, PTPRQ, ALG12, PKD1L3, 
PATJ, THOC6, SERPINB11, USP53 

Top 10 Genes TNS1, ACIN1, BAZ2B, NOD2, P2RX7, IFIH1, 
MAP4, TNNI2, PCSK5, SPATS2L 

Top 10 Genes GC, DOCK8, NOD2, TTC7A, IFIH1, NPC1, ERAP1, CD6, 
CNTRL, UTP20 

NOD-signalling pathway gene panel Stricturing gene panel (inclusive) Stricturing gene panel (exclusive) 

No. Features 105 No. Features 460 No. Features 358 

  Precision Recall Specificity F1   Precision Recall Specificity F1   Precision Recall Specificity F1 

NS  0.62 0.54 0.44 0.58 NS  0.70 0.65 0.53 0.67 NS  0.66 0.67 0.41 0.66 

S 0.37 0.44 0.54 0.40 S  0.47 0.53 0.65 0.50 S  0.42 0.41 0.67 0.42 

Average 0.53 0.51 0.48 0.51 Average 0.61 0.60 0.57 0.61 Average 0.57 0.57 0.51 0.57 

AUC 0.538 AUC 0.596 AUC 0.547 

Top 10 Genes P2RX7, NLRP3, NOD2, NOD1, GPRC6A, TP53BP1, 
PLCB3, RNASEL, ERBIN, GBP3 

Top 10 Genes TNS1, LAMC3, ACIN1, BAZ2B, BMP1, P2RX7, 
COL6A2, DOCK8, NOD2, COL23A1 

Top 10 Genes LAMC3, BMP1, FAT4, P2RX7, NOD2, COL6A2, 
DNAH17, COL6A6, COL23A1, FKBP10 
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6.3.2.2 Hyperparameter tuning 

As for the disease subtype classifier tuning, Table 38 details the values that were trialled for each 

hyperparameter in each tuning method (individual hyperparameter tuning, Grid Search, Bayes 

Search). Different values were selected for the Grid Search tuning, informed by the results of 

individual hyperparameter tuning.  

Table 38 Hyperparameter default values, and values tested during individual, grid search and 

Bayes hyperparameter tuning for the stricturing endotype classifier 

Hyperparameter 

Name 

Default Values Tested – 

Individual 

Hyperparameter 

Tuning 

Values Tested – 

Grid Search 

Values Tested - Bayes 

n_estimators 100 100, 250, 500, 750, 

1000, 2000, 3000, 

4000, 5000, 6000, 

7000, 8000, 9000, 

10000 

2000 100, 250, 500, 750, 1000, 

2000, 3000, 4000, 5000, 

6000, 7000, 8000, 9000, 

10000 

max_depth None 1-30, None 

 

5, 7, 11, 12, 15, 

None 

1 - 30, None 

 

min_samples_split 2 2, 3, 4, 5, 6,7 8, 9, 

10 

2,4,5,6 2, 3, 4, 5, 6 

min_samples_leaf 1 1, 2, 3, 4, 5, 6, 7, 8, 

9, 10 

1,2,3,4 1, 2, 3, 4, 5, 6 

max_features sqrt sqrt(n_features), 

log2(n_features), 

None 

sqrt(n_features), 

log2(n_features), 

None 

sqrt(n_features), 

log2(n_features), None 

 

As in Section 6.3.1.1, each hyperparameter was individually tuned (Figure 51). Similar to results 

for the disease subtype classifier, differences between the minimum and maximum values 
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attained by hyperparameter values were within 0.1 of each other. Maximum cross-validated 

balanced accuracies rarely surpassed 0.55 when changing hyperparameter values, with the best 

single hyperparameter change being max_depth=12 (Figure 51E). The number of estimators does 

exhibit the expected trend of increase followed by plateau, however there is a dip when the 

number of estimators is between 1,000 and 4,000 (Figure 51B). The cross-validated balanced 

accuracy score for the number of estimators also has a particularly narrow range in comparison to 

the other hyperparameters. The balanced accuracy increases as the minimum number of samples 

per split increases (Figure 51A). A similar trend is not seen for the minimum samples per leaf 

hyperparameter (Figure 51D). 
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Figure 51 Average balanced accuracy score across the 7 cross-validation (CV) folds for individually 

tuned hyperparameters (stricturing endotype classifier). 

The grid search to tune all hyperparameters simultaneously was performed in a nested cross-

validation scheme, using 5-fold inner cross-validation and 7-fold outer cross-validation. Originally, 
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the number of estimators was also going to be optimised. However, with the chosen values of 

2000, 6000, 8000, and 10,000 estimators, this became too time intensive, as it comparatively 

takes much longer to train a random forest with 10,000 trees than one with 100. The time taken 

to complete the model fitting with the first combinations of hyperparameters was monitored and 

extrapolating this time out for all hyperparameter combinations indicated that completion of the 

grid search would take upwards of 84 hours. Therefore, the number of estimators was set to 

2000. The chosen hyperparameters for each inner cross-validation fold and the corresponding 

average balanced accuracy across five folds, and the balanced accuracy in each of the outer cross-

validation folds can be viewed in Table 39. The average balanced accuracy across all 7 outer folds 

was 0.450 (standard deviation 0.060). There was minimal variation in the hyperparameters 

chosen, with only two values chosen for every hyperparameter apart from minimum samples per 

leaf (3 chosen). The optimal hyperparameters were chosen according to the balanced accuracy of 

the corresponding outer cross-validation fold. Here, folds 1, 3 and 7 achieved a joint highest 

balanced accuracy of 0.500 in the outer fold. Therefore, hyperparameters were chosen based on 

the average inner cross-validation balanced accuracy, although some hyperparameters were the 

same across these three folds. The hyperparameters chosen were: maximum depth = 5, maximum 

features = sqrt, minimum samples per leaf = 1, minimum samples per split = 2, and number of 

estimators = 2000.  
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Table 39 Hyperparameter tuning with nested Grid Search for the stricturing endotype classifier. 

The optimal hyperparameters and corresponding balanced accuracy in the inner 

cross-validation is given, and the corresponding outer fold balanced accuracy for 

those hyperparameters to indicate how generalisable these hyperparameters are. 

Fold Outer Fold 

Balanced 

Accuracy 

Inner CV 

Balanced 

Accuracy 

Optimal Hyperparameters 

Max 

Depth 

Max 

Features 

Minimum 

Samples per 

Leaf 

Minimum 

Samples per 

Split 

1 0.500 0.517 5 Sqrt 1 5 

2 0.364 0.572 7 None 1 2 

3 0.500 0.491 5 sqrt 4 2 

4 0.357 0.507 5 None 1 2 

5 0.488 0.511 5 None 3 2 

6 0.444 0.578 5 None 1 2 

7 0.500 0.526 5 Sqrt 1 2 

 

The Bayes Search method with the number of iterations set to 60 was then used to optimise the 

hyperparameters. The same nested cross-validation scheme of 5-folds in the inner cross-

validation, and 7-folds in the outer cross-validation was used. The results of this optimisation, 

with the best inner cross-validation balanced accuracy and corresponding hyperparameters, and 

the balanced accuracy when applying these hyperparameters to the outer fold test set, can be 

viewed in Table 40. The only hyperparameter where the value changed for every fold was the 

number of estimators. The average balanced accuracy across the outer folds was 0.465 (standard 

deviation 0.050). The best balanced accuracy in the outer fold was 0.521 in fold 6. Therefore, the 

chosen hyperparameters from Bayes optimisation were: maximum depth = 2, maximum number 

of features = log2, minimum samples per leaf = 1, minimum samples per split = 4, and 3000 

estimators.  
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Table 40 Bayes Search with nested CV for stricturing endotype classifier. The optimal 

hyperparameters and corresponding balanced accuracy in the inner cross-validation 

is given, and the corresponding outer fold balanced accuracy for those 

hyperparameters to indicate how generalisable these hyperparameters are. 

Fold Outer Fold 

Balanced 

Accuracy 

Inner CV 

Balanced 

Accuracy 

Optimal Hyperparameters 

Max 

Depth 

Max 

Features 

Minimum 

Samples per 

Leaf 

Minimum 

Samples 

per Split 

Number of 

Estimators 

1 0.50000 0.5100636 2 log2 5 2 1000 

2 0.50000 0.5104078 2 log2 1 2 750 

3 0.440579 0.5098666 2 None 4 6 5000 

4 0.3599439 0.5292156 5 log2 2 2 500 

5 0.4722222 0.5238714 13 None 1 4 4000 

6 0.5217391 0.5227108 2 log2 1 4 3000 

7 0.4637681 0.526412 4 None 1 4 100 

 

6.3.2.3 Application of optimal hyperparameters to random forest modelling 

Upon selection of optimal hyperparameter values by Grid Search and Bayes Search methods, the 

random forest was trained with these two hyperparameter sets using the whole training set. A 

comparison of untuned and tuned random forest model results on the test set is recorded in 

Table 41. The only hyperparameter value that remained constant across all three model iterations 

was min_samples_leaf=1. The model using Grid Search tuned hyperparameter values also had the 

same values as the untuned model for the maximum features, and minimum samples per split 

hyperparameters. Aside from the minimum samples per leaf, there were no shared 

hyperparameter values between the Grid Search and Bayes Search tuned models. Both the Grid 

Search and Bayes Search tuned models make modest improvements on the untuned AUC of 0.63 

(0.65 and 0.66 AUC, respectively). The Grid Search tuned model showed no improvement in 

sensitivity to the not-stricturing class, but does make a modest improvement on stricturing class 
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sensitivity (improves from 0.56 in untuned, to 0.59). The Bayes Search tuned model shows this 

same stricturing class sensitivity improvement, but also improves on the sensitivity to the not-

stricturing class by a greater margin (0.58 in untuned model, improved to 0.65). In both tuned 

models, the feature importances of the top 10 genes has decreased (Figure 52). This suggests 

more genes are being valued as of equal importance in these models, in comparison to the 

untuned model. The gene importances decrease to a greater extent for the Bayes Search tuned 

model (Figure 52C). All three models feature the same 4 genes in the top 5 genes by importance: 

GC, TTC7A, NOD2 and IFIH1, although their order varies. Additionally, UTP20 also features in every 

model. The genes ERAP1 and CNTRL are unique to the untuned model, and the Grid and Bayes 

Search tuned model have 8 genes in common, with NPC1 and CD6 in the Grid Search tuned model 

being replaced by MEI1 and THBS3 (the latter two genes being unique to the Bayes Search tuned 

model). 
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Table 41 Stricturing classifier results on the test data for the untuned ML model, the tuned with Grid Search ML model ,and the tuned with Bayes Search ML model 

(features = 277). Uses the IBD gene panel, and patient data where the not-stricturing group has > 8 years follow-up. 

UNTUNED TUNED WITH GRID SEARCH TUNED WITH BAYES SEARCH 

Hyperparameters Selected Hyperparameters Selected Hyperparameters Selected 

Max Depth None Max Depth 5 Max Depth 2 

Max Features sqrt(n_features) Max Features sqrt(n_features) Max Features log2(n_features) 

N Estimators  10,000 N Estimators  2,000 N Estimators  3,000 

Min Samples Leaf 1 Min Samples Leaf 1 Min Samples Leaf 1 

Min Samples Split 2 Min Samples Split 2 Min Samples Split 4 

Machine Learning Results Machine Learning Results Machine Learning Results 

 Precision Recall Specificity F1  Precision Recall Specificity F1  Precision Recall Specificity F1 

NS 0.69 0.58 0.56 0.63 NS 0.70 0.58 0.59 0.63 NS 0.73 0.65 0.59 0.69 

S 0.44 0.56 0.58 0.49 S 0.45 0.59 0.58 0.51 S 0.50 0.59 0.65 0.54 

Average 0.60 0.57 0.57 0.58 Average 0.61 0.58 0.58 0.59 Average 0.64 0.63 0.61 0.63 

AUC 0.630 AUC 0.649 AUC 0.660 

Top 10 
Genes 

GC, DOCK8, NOD2, TTC7A, IFIH1, NPC1, 
ERAP1, CD6, CNTRL, UTP20 

Top 10 
Genes 

TTC7A, NOD2, GC, IFIH1, DOCK8, UTP20, 
KPNA7, NPC1, CCNL2, CD6 

Top 10 
Genes 

TTC7A, IFIH1, KPNA7, NOD2, GC, UTP20, 
MEI1, CCNL2, THBS3, DOCK8 
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Figure 52 The relative feature importances of the trained random forest using the IBD gene panel 

with 8-year follow-up on not-stricturing patients for the A) untuned model, B) model 

with hyperparameters tuned by Grid Search, C) model with hyperparameters tuned 

by Bayes Search 

The SHAP values of the Bayes Search tuned stricturing endotype classifier, utilising the IBD gene 

panel, are shown in Figure 53. The magnitude of SHAP values observed was small. Variation in 

some genes appeared to be protective against the development of stricturing endotype (high 

GenePy scores correlating with a negative SHAP value), for example for TTC7A, UTP20 and IFIH1. 

Higher GenePy scores in other genes, such as NOD2, CCNL2, and TGFB1 led to positive SHAP 

values, indicating variation in these genes contributes to formation of a stricturing endotype. In 

general it appears that many genes had clusters of low GenePy scores, with only a few datapoints 

with high GenePy scores. In general, the feature values in Figure 53 appear to result in a less 

continuous distribution of SHAP values in comparison to the SHAP values achieved in the disease 

subtype ML modelling.  
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Figure 53 SHAP values for top discriminatory genes, for the stricturing endotype classifier utilising 

the IBD panel, with hyperparameter tuning performed using Bayes Search. A high 

feature value is equivalent to a high CADD score and vice versa. A positive SHAP value 

indicates the feature makes a contribution to the positive class, which was coded as 

the presence of a stricture.  

A pathway analysis was conducted for features chosen by the stricturing endotype classifier when 

using the IBD gene panel. As in the pathway analysis performed on the chosen features for the 

subtype classifier which used the autoimmune gene panel, it was known that the starting gene 

panel for the stricturing endotype classifier was already enriched with pathways related to the 

immune system and IBD. From 277 genes selected during stricturing endotype classification, 124 

pathways were significantly enriched (adjusted p-value < 0.05), and of these 110 were also 

enriched in the pathway analysis of all the genes included in the IBD gene panel, according to the 

adjusted p-value. More useful information was determined to be those pathways which were no 

longer enriched after feature selection, shown in Table 42. Pathways no longer enriched included 

the TGF-β signalling pathway, and IL-17 signalling pathway. 
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Table 42 Pathways excluded from the stricturing endotype classifier that utilises the IBD gene 

panel, and was tuned with Bayes Search. Pathways listed here were enriched in the 

Enrichr pathway analysis of the IBD panel genes after pre-processing prior to feature 

selection, but were not enriched in the Enrichr pathway analysis of the gene selected 

during feature selection for the stricturing endotype ML model. 

Pathway term Overlap  P-value Adjusted 

P-value 

Odds 

Ratio 

Combine

d Score 

TGF-β signalling pathway 8/94 1.08E-03 3.95E-03 4.20 28.70 

Colorectal cancer 7/86 2.83E-03 9.31E-03 4.00 23.44 

Maturity onset diabetes of the young 3/26 1.88E-02 4.20E-02 5.85 23.23 

Long-term depression 5/60 1.01E-02 2.61E-02 4.09 18.77 

Hippo signalling pathway 10/163 3.28E-03 1.06E-02 2.96 16.91 

Intestinal immune network for IgA 

production 

4/48 2.08E-02 4.58E-02 4.08 15.79 

ErbB signalling pathway 6/85 1.10E-02 2.76E-02 3.42 15.41 

GnRH signalling pathway 6/93 1.66E-02 3.87E-02 3.10 12.71 

Apelin signalling pathway 8/137 1.08E-02 2.74E-02 2.80 12.65 

Estrogen signalling pathway 8/137 1.08E-02 2.74E-02 2.80 12.65 

IL-17 signalling pathway 6/94 1.74E-02 3.96E-02 3.07 12.42 

Wnt signalling pathway 9/166 1.12E-02 2.79E-02 2.59 11.61 

AMPK signalling pathway 7/120 1.67E-02 3.87E-02 2.79 11.41 

Progesterone-mediated oocyte maturation 6/100 2.29E-02 4.91E-02 2.87 10.84 

6.4 Discussion 

This chapter sought to improve upon the initial modelling results of Chapter 5, where a random 

forest modelling approach was applied to two clinical classification tasks: predicting whether IBD 

patients were diagnosed with either CD or UC, and predicting which CD patients had developed 

stricturing disease behaviour. Optimisation of the modelling consisted of tuning the random 
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forest hyperparameters using two different hyperparameter methods: GridSearchCV and 

BayesSearchCV implemented in Python. Hyperparameter tuning was only performed using the 

chosen optimal gene set for the disease subtype classifier, and the stricturing endotype classifier. 

There can be risks with overfitting when hyperparameter tuning, as throughout the tuning 

process the model is exposed to the whole training dataset. This can result in data leakage from 

the hyperparameter tuning into the construction of the subtype or stricturing endotype classifier, 

and the parameters chosen. This leakage can cause overfitting. By utilising a nested cross 

validation approach, this data leakage does not occur, and overfitting from the hyperparameter 

tuning process is minimised. Combinations of hyperparameter values selected by each method 

were implemented and the performance evaluated. In addition, for the stricturing endotype 

classification task, optimisation was conducted regarding model input data. Several gene panels 

were compared, and a clinical follow-up cut-off of 8 years was implemented for the not-stricturing 

patient group, to be more confident that this was the true clinical status of these patients. 

Overall, optimised classifiers for the disease subtype model did not perform better than the 

untuned model but did provide useful insight into how optimisation changed the way the random 

forest model classified the data. Modelling of the stricturing data after gene and patient data 

optimisation, and hyperparameter tuning, saw an improvement in model AUCs. These 

improvements made the stricturing endotype classifier on a par with the disease subtype classifier 

(0.66 AUC and 0.67 AUC, respectively). 

6.4.1 Technical considerations 

For both subtype and stricturing classifiers, a Bayes Search method delivered a higher model 

accuracy in the hyperparameter tuning, and a better AUC when the random forest model was 

trained and tested using the selected hyperparameters. Generally, Bayes search achieved a higher 

average balanced accuracy across all folds, with a smaller standard deviation, than the grid search 

method. In addition, when comparing the inner and outer fold balanced accuracies achieved 

when tuning, the Bayes Search hyperparameters selected in each inner fold generalised better to 

their respective outer fold in comparison to the Grid Search. It is possible this is due to different 

data being present in each fold, as the same data split was not used for both Grid Search and 

Bayes Search. However, Bayes Search’s generalisability to the outer fold is duplicated for the 

results of both the subtype and stricturing classifier, which does indicate a trend towards the 

Bayes Search being a better method. To assess this further, the nested cross-validation could be 

repeated for different sampling of the training set, randomising the data in each fold to give a 

clearer picture of which hyperparameter tuning method is more robust. However, nested cross-
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validation is a computational and time intensive process. With Grid Searches taking between 35 

and 84 hours to fit all possible models, repeating this process would be impractical. Even though 

Bayes Search is less time-consuming, at 8 hours to tune hyperparameters, repetitions of this are 

still time intensive. In future, this could be implemented by transferring the machine learning 

pipeline to Iridis 5 and running nested cross-validation processes in parallel.  

In the machine learning experiments where there was an attempt to try and assess the 

importance of NOD2 to the classifier, it was apparent that in the tuned models where NOD2 took 

on a larger proportion of importance, that the AUC was impacted to a greater extent in the tuned 

model when it was removed as a feature. This highlighted the interconnectedness of the feature 

selection and hyperparameter tuning for model performance. It is possible that a different feature 

set as input into the hyperparameter optimisation and subsequent random forest model training 

would result in different model performance. Although, as there were only modest AUC 

improvements from the hyperparameter optimisation, it is unlikely that a better performance 

could have been achieved with a different feature set. A possible solution to this would be to 

perform feature selection and hyperparameter optimisation concurrently. The downside of this 

pipeline would be an increase in the computational capacity and time required for optimisation. 

6.4.2 Disease subtype classifier 

The model optimisation by Grid Search of all the hyperparameters, revealed a tendency towards 

the construction of less complex individual estimators. The maximum depth was set to 5, as was 

the minimum samples per split in the Grid Search tuning. This led to a relatively shallow tree. This 

was somewhat offset by there being no limit to the number of features that could be included for 

each decision (max_features=None). The Bayes Search tuning created a deeper tree, with 

maximum depth set to 27. The other hyperparameter values of minimum samples per leaf and 

split, were set to similar values to the Grid Search (1 and 4, respectively). Bayes Search favoured a 

smaller forest of 250 estimators versus Grid Search’s 1000. Overall, the generalisation between 

inner cross-validation and outer cross-validation was good for both these methods, aside from 

two folds in tuning using Grid Search, which could be due to the limited hyperparameter options 

for this method.  

Although AUCs were very similar for both tuned models, the sensitivity with which these models 

could identify the different subtypes varied. Classifier sensitivity to individuals with UC is slightly 

better in the untuned model, and amplified by hyperparameter tuning using either method. In the 

Grid Search tuned classifier this excellent identification of UC patients came at the expense of the 
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CD patients, where their detection was no better than chance. The loss in identification of CD 

patients in the Bayes Search tuned model was minor by comparison. This high sensitivity for UC 

patients came with a large increase in the importance of NOD2, which was more pronounced for 

Grid Search tuned model. When observing the differences between SHAP values produced from 

the untuned IBD subtype classifier versus the Bayes Search tuned subtype classifier, the increase 

in SHAP value for NOD2 is striking (approximately 0.08 in the untuned classifier, approximately 

0.27 in the Bayes Search tuned classifier). Although the hyperparameter tuning does not improve 

the testing AUC, it does cement NOD2 as a highly discriminant gene for the subtype classifier. A 

possible theory for why the signal is so strong for NOD2 is that this is due to NOD2’s implication in 

both monogenic [5] and polygenic [2, 3] CD. 

This combination of the high NOD2 SHAP and feature importance, combined with an increased UC 

sensitivity, led to an interesting and unexpected finding. This combination was unexpected due to 

NOD2’s strong association with CD. This combination of results suggests that during model 

training the presence of a genetic signal in NOD2, indicating a pathogenicity burden, does not 

mean the model is more likely to classify a patient as having been diagnosed with CD. Rather, that 

the absence of a genetic signal in NOD2 results in a UC diagnosis being considered as more likely 

by the random forest algorithm. This is reflective of standard CD pathology, as not all CD patients 

will have deleterious variation in the NOD2 gene. 

6.4.3 Stricturing endotype classifier 

A literature review was conducted to attempt to assemble a comprehensive list of genes with the 

potential to be associated with the development of a stricturing endotype. Therefore, there was a 

low threshold of evidence for a gene’s inclusion, such that as many genes that have the potential 

to cause stricturing as possible were included. Nevertheless, as is the nature with any literature 

review, it is possible that there are hitherto undiscovered genes that contribute to the 

development of a stricture in CD patients which will not be included. However, as Figure 50’s 

Venn diagram illustrates, 560 genes that had not previously been included in any other ML model 

gene panel were present in the stricturing (exclusive) panel, which is a large uplift in genes that 

could be potentially connected to development of a stricturing endotype.  

While there was significant overlap in the 6 gene panels utilised in modelling, there were several 

reasons for their inclusion. Firstly, while in Chapter 5 the best AUC was achieved through an 

agnostic approach (including all genes), the subsequent Enrichr [454] pathway analysis resulted in 

no significantly enriched pathways. Therefore there was a need to investigate different gene 
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panels, and whether a filtered patient dataset could result in a better performing model. The two 

panels previously used in Chapter 5: the autoimmune gene panel, and the IBD gene panel, were 

used for consistency, as a new patient dataset where a clinical follow-up cut-off of 8 years was 

implemented for the not-stricturing patient group was trialled. Therefore inclusion of these 

panels allowed for a comparison in results achieved during Chapter 5, and results with the filtered 

patient data. Secondly, the stricturing (exclusive panel) was utilised to assess if model 

performance could be improved using a gene panel tailored to this specific endotype. The 

stricturing (inclusive) panel was generated to incorporate three gene panels together: the 

stricturing genes, the IBD gene panel, and the autoimmune gene panel. This was the largest panel, 

and as such there were some concerns about the highly-dimensional nature of this dataset 

(where the number of features exceeds the number of samples). This was another reason to use 

both the stricturing (inclusive) and stricturing (exclusive) panels. Opposite to this, was the use of 

the NOD-signalling gene pathway panel, which contained a small number of genes, and as such 

was not a highly-dimensional dataset. This pathway had the potential to be an influence on the 

development of a stricturing endotype, given the already known involvement of NOD2 in its 

aetiology [5, 388]. 

When random forest modelling was performed using several gene panels in combination with the 

patient data where the clinical follow-up threshold was used, some of these results echoed the 

relationship observed in the previous classifier between NOD2 and UC. Results from gene panels 

with a more general basis – the autoimmune panel and the IBD panel – exhibited similar 

sensitivities for both stricturing and not-stricturing groups. The two stricturing panels did not 

produce the best model, but they were both more sensitive to the not-stricturing class in 

comparison to the rest of the panels (especially in the case of the stricturing exclusive panel). As 

before, this suggests the absence of a pathogenicity signal from these genes is more beneficial for 

classifying not-stricturing patients, and not the presence of a signal confirming the stricturing 

endotype. This suggests the presence of genomic heterogeneity in both the disease subtype and 

stricturing endotype classifications. The IBD disease subtypes are thought to have subgroups 

within them based on the different molecular mechanisms causing immune dysregulation. These 

results suggest this may also be the case for the CD stricturing endotype. 

The SHAP values for the Bayes Search stricturing endotype classifier, utilising the IBD gene panel, 

are sparser than those produced by the stricturing classifier utilising all genes in Chapter 5. This is 

to be expected given the reduced patient dataset utilised in ML modelling. There was an observed 

stronger delineation between extremes of GenePy scores, and these extremes were associated 
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with either a positive or negative SHAP value. This was not the case for stricturing endotype 

modelling in Chapter 5, where lower GenePy scores appeared to be associated with both positive 

and negative SHAP values for some genes. There appears to be small clusters of high feature 

values with larger SHAP values (either positive or negative). This may indicate small groups of 

patients driving discrimination of stricturing and not-stricturing endotypes. This is potentially 

indicative of genetic heterogeneity within these two classes. From the SHAP values, variation in 

some genes appears to be protective against stricturing (TTC7A, UTP20, and IFIH1), and other 

genetic variation appears to contribute to development of a stricturing endotype (NOD2, LAT, and 

CCNL2). Unlike the IBD subtype classifier, where the size of SHAP values for some genes increased 

with tuning, the SHAP values observed here remained of the same magnitude as the stricturing 

endotype modelling conducted in Chapter 5. The pathway analysis revealed some immune 

signalling pathways key in IBD were excluded by feature selection from the stricturing endotype 

classifier: TGF- β signalling pathway, and IL-17 signalling pathway. TGF- β is an 

immunosuppressive cytokine, and TGF- β signalling impairment has been shown to cause 

spontaneous colitis in mouse models [476]. However, literature does not concord with the ML 

model, as TGF- β1 expression has been recorded as higher in CD patients with strictures [477, 

478]. In fact, TGFB1 is present on the SHAP value plot. This contradictory analysis highlights the 

caution that must be taken when attempting to construct definitive relationships between genes 

and the ML modelling outcome. 

For hyperparameter tuning by both Bayes Search and Grid Search methods, inner cross-validation 

balanced accuracies were only slightly better than random chance, and some of these generalised 

very poorly to the outer fold, resulting in model performances worse than random. This indicates 

that the sample size in each of the cross-validation folds is too small for the models to learn the 

data patterns. This is potentially due to combining the small sample with genomic complexity. In 

this case, it may have been more beneficial to concede the assessment of generalisability that a 

nested cross-validation approach gives, in favour of increasing the sample size in each fold. Both 

hyperparameter tuning approaches favoured a shallow tree, with a maximum depth of 5 and 2 

selected by Grid Search and Bayes Search, respectively. The maximum features hyperparameter 

value of log2(number of features) also means the estimators created by the Bayes Search tuning 

are less complex. 

This simpler approach to the construction of random forest estimators yielded the best results, 

with the Bayes Search model improving most upon the untuned model results. This model once 

again features a higher sensitivity to the not-stricturing class. The generation of simple estimators 

only leads to a good performance, and it may be the case that without estimators of equivalent 
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complexity to the dataset, there is a limit to the AUC that can be achieved in this modelling. A 

potential way to improve the modelling here would be to more fully incorporate the longitudinal 

data present in the dataset. This could be done with survival analysis models, or methods that 

combine machine learning and survival analysis. Then the full dataset could be utilised, as a 

clinical follow-up cut-off would not be necessary, and it would be more flexible to the inclusion of 

new and updated data, as follow-up time increases, or new patients are recruited. 

These results suggest that the development of prognostic classifiers for an endotype such as 

stricturing disease may be more challenging than first thought. Narrowing the modelling scope to 

a more specific endotype has probably eliminated some of the genetic complexity behind the 

groups the model is trying to classify patients into, in contrast to the disease subtype model. This 

reduction in complexity is partially mitigated by a reduction in sample size, due to the 

performance of modelling on CD patients only, the not-stricturing patient data being limited by a 

clinical follow-up threshold of 8 years, and the imbalanced nature of the classification problem. It 

is likely that within this relatively small dataset, there exists many combinations of genetic 

variation that could lead to a stricturing endotype. A larger dataset may allow a model to make 

the connection between patient’s genomics and their endotype, as there would be more 

examples for each group of patients with a similar genomic signal. 

Both the disease subtype classifiers and stricturing endotype classifiers have highlighted genes 

that were influential in classification. A limitation here is that these models did not exhibit 

excellent performance through their testing AUCs. Therefore, these models would not be 

expected to generalise across all datasets, and be representative of all patient populations. This 

makes deciphering a strong link between a model outcome and the set of input genes extremely 

challenging. The small feature importances observed in both types of classifiers (aside from 

NOD2), and the hundreds of genes selected as input for these ML models, combines with the 

testing AUCs to suggest it would be unwise to draw conclusions from the genes selected during 

feature selection for either the IBD subtype classifier, or the stricturing endotype classifier. 

Instead, a potential conclusion is that these classifiers behave in a similar way to IBD: they are 

polygenic, with each gene (feature) making a small contribution to discriminating one class from 

the other.  
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Chapter 7 Random survival forest for stratification of 

Crohn’s disease patients by stricturing 

endotype 

Chapter summary – in this chapter, a new pipeline for the stratification of Crohn’s disease 

patients by stricturing endotype is constructed and improved. Cox Proportional Hazards 

modelling and Principal Component analysis is used as feature selection. Machine learning 

modelling is performed using three gene panels. Random survival forest models were chosen for 

stratification to incorporate clinical follow up times into stricturing endotype modelling. These 

models were optimised using Bayesian hyperparameter tuning.  

 

Chapter contributions – Whole exome sequencing data was joint-called by Guo Cheng. All 

subsequent processing, and transformation into GenePy scores were performed by Imogen 

Stafford. The IBD gene panel was curated by Guo Cheng and James Ashton. Other gene panels 

were curated by Imogen Stafford. Clinical stricturing status and follow-up were assessed by 

Imogen Stafford and James Ashton. Modelling was performed by Imogen Stafford. 

 

Supplementary files can be found at https://doi.org/10.5258/SOTON/D2655 

7.1 Introduction 

In Chapter 5, stratifying patients by stricturing endotype was approached as a straightforward 

classification task with a random forest. In Chapter 6, the patient data included in the machine 

learning classification was changed, and patients were only included in the not-stricturing group if 

they had at least 8 years of clinical follow-up. This was to account for the time it can take patients 

to develop a stricturing complication. Here, this idea is taken to its natural conclusion, by 

transforming this machine learning problem from a classification problem, into a regression 

problem, and integrating survival analysis techniques into the ML prediction.  

The simple way of estimating survival (or time to event in general) is to use a Kaplan Meier 

estimate, which can be plotted as Kaplan Meier curves. This assesses the differences in survival 
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for a categorical variable, for example treatment type, with a log-rank test measuring the 

statistical significance. The multivariate version of this modelling is Cox Proportional Hazards 

(CPH) modelling. With this method, the effect of each independent variable on the event 

occurrence is assessed, by observing how these variables impact the hazard ratio [479]. Here, the 

variables in the dataset are assessed for their impact on the ratio between the baseline hazard, 

and a patient’s (or group of patients) own hazard score. As with machine learning methods, a CPH 

model is usually fitted to a dataset, and then tested on a new dataset. To assess the success of the 

model, a modified form of AUC is used, called Harrell’s concordance index, or the C-index. This 

metric calculates the proportion of all possible pairs of patients in the data where the CPH model 

prediction is concordant with outcome. For each pair, at least one patient must have experienced 

the event. A successful prediction for this clinical problem is defined by whether the model 

predicted patient 1 would stricture before or after patient 2, and if this matches the outcome in 

the test data [480]. CPH models are assessed in this way due to the censored data present for all 

survival problems. The AUC over time can also be used to assess the model, as for a specific time 

point the problem effectively becomes a classification problem again. 

The principles of CPH modelling have also been combined with machine learning algorithms. 

LASSO and ridge regression penalties have been combined with CPH models to effectively provide 

feature selection within the model [481]. Support vector machines have included survival analysis 

principles through uncertainty and weighting. The model is still a binary classification problem, 

but the classification of samples comes with a weight which includes follow-up time, and 

represents how likely it is that the event occurred for an individual [482]. In addition, neural 

networks have been developed that incorporate CPH modelling, such as Cox-nnet. This algorithm 

uses two layers of a neural network, where the first hidden layer transforms the data in order to 

model its complex patterns (and as such can be interrogated to determine the important 

features), and the second layer performs a Cox regression [483]. Random survival forests (RSF) are 

a regression-based variation of standard random forests used in Chapters 5 and 6. The key 

difference between a random forest regression and an RSF is the metric that the algorithm takes 

into account when determining each split in a tree. For a regression, a tree split would be chosen 

in order to minimise the residual sum of squares. In RSF, a split is chosen to maximise the log-rank 

test, ensuring the maximal difference in survival between the two daughter nodes [484].  

A highly relevant paper to the clinical problem discussed here is the 2021 study by Ungaro et al. 

[485] of possible blood proteomic markers in paediatric IBD patients. They utilise RSF as a feature 
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selection method, to identify possible blood proteomic markers associated with stricturing and 

penetrating endotypes. They use a RSF as both feature selection, and to produce a final model. 

Their model, utilising four protein markers, achieved an AUC of 0.68 (5-fold cross validation with 

200 bootstrapped repetitions on one dataset). This highlights the potential a RSF algorithm may 

have for stratifying patients by this endotype.  

This chapter aimed to create a machine learning pipeline that could utilise the time-to-event 

patient data for the stricturing endotype. The genomic data of paediatric and adult CD patients in 

the form of GenePy scores is utilised as the input data for stratification. RSF was chosen as the 

machine learning algorithm because it could make full use of the clinical follow-up data to best 

exploit the comparatively modest sample size. A neural network-based model would require a 

larger cohort. Additionally, it is a non-linear method, and therefore is equipped to model the non-

linear gene-to-gene interactions thought to be present in genomic data. Several feature selection 

methods were trialled, first with a focus on utilising follow-up data in feature selection, and later 

focussing on reducing genomic dataset dimensionality and sparsity. Different gene panels were 

tested as an input for machine learning as in previous chapters. Model performance was always 

assessed on a test dataset, to observe how generalisable these types of models were, and assess 

potential applicability in clinical practice. 

7.2 Methods 

The whole exome sequencing data was aligned, joint-called, annotated, and GenePy scores 

generated as in Section 3.4. Clinical follow-up data to determine stricturing status, and time to 

stricture were collected as described in Section 5.2.1. All downstream modelling was performed in 

Python (v.3.7). 

7.2.1 Initial random survival forest pipeline 

Pre-processing of patient data and GenePy scores was performed (CADD Phred cut-off of 15 used, 

see Chapters 5 and 6). Genes on the remapped Fuentes list of false positive genes and those with 

no variance in their GenePy scores were removed. Modelling was performed using the extended 

NOD signalling pathway gene panel (KEGG:hsa04621 and REACT:R-HSA-168638 pathways). 

Unrelated patients with highly confident European ancestry prediction (confidence > 0.9) were 

included, as determined by Peddy [443]. Additionally, each patient must have a record of the 
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number of years of clinical follow-up. This last filter caused a modest reduction in the overall 

dataset in comparison to the dataset used in the classification problems of Chapter 5 and 6.  

For the feature selection method that was chosen in this pipeline, the input matrix needed to 

have linearly independent columns, i.e. 

G = �

g11 g12 ⋯ g1n
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gm1 … … gmn
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where G represents a GenePy matrix with m rows and n columns, and v1,v2, …, vn are the set of 

vectors representing each gene’s set of GenePy scores. G has n linearly independent columns if 

and only if the solution to the equation, 

𝑏𝑏1𝒗𝒗1 + 𝑏𝑏2𝒗𝒗2 + ⋯+ 𝑏𝑏𝑚𝑚𝒗𝒗𝑛𝑛 = 0,      bn ∈ ℝ 

is trivial,  

𝑏𝑏1 = 𝑏𝑏2 = ⋯ = 𝑏𝑏𝑚𝑚 = 0 

where b1, b2, …, bn are a set of constants. 

In a GenePy matrix, linearly dependent columns are unlikely to present as one column being a 

multiple of another, as the makeup of GenePy scores across genes is very different. Rather, this 

occurs if a gene is invariant, and two or more vectors (GenePy score gene columns) are null. While 

in pre-processing these invariant genes are removed, they can re-occur after the data has been 

split into training and testing datasets, especially if the GenePy matrix is sparse. 

In order to ensure that any training dataset (any k), for any value of n, contained only linearly 

independent columns, the binomial probability mass function was used: 

𝑃𝑃(𝑥𝑥) = �
𝑘𝑘
𝑥𝑥
� 𝑝𝑝𝑚𝑚(1− 𝑝𝑝)𝑘𝑘−𝑚𝑚 

where k is the size of the training set, the probability p is the probability of success, and x is the 

number of successes. This calculation is carried out for each gene column. Success is defined as 

the selection of an individual into the training set with a GenePy score greater than zero. The 
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probability of success is therefore the proportion of individuals for that gene who have a GenePy 

score greater than zero. However, for a linearly independent column it is not required that all 

individuals selected have a GenePy score greater than zero; only one individual must have a non-

zero score. Therefore, the binomial probability equation becomes,  

1 −  𝑃𝑃(𝑥𝑥 = 0) 

that is, success is 1 minus the probability that every individual selected has a GenePy score of zero 

(zero successes). This is the equation for one gene, but this selection process needs to generate a 

dataset where all columns are linearly independent. The equation then becomes: 

��1  −  𝑃𝑃(𝑥𝑥 = 0)� , for    𝐯𝐯𝑚𝑚

𝑚𝑚

𝑖𝑖=1

∈ 𝐺𝐺 

In practice, this equation is used to reduce the dataset. If the probability of the above equation is 

less than 0.95, then the algorithm will remove the column for which p is smallest. Then the 

equation will be re-evaluated for those n-1 columns. The process repeats until the equation result 

is above the 95% confidence threshold. A complication of this process was how the training set 

was generated. The training set is not just 75% of the full dataset, but 75% of the minority class 

(stricturing in this case), with the same number of samples selected from the majority class. This 

means that p is different for each class. Now the equation becomes, 
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0
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where 𝑝𝑝𝑠𝑠  is the proportion of individuals classified as stricturing with a GenePy score greater than 

0, and 𝑝𝑝𝑚𝑚𝑠𝑠 is the same for the not-stricturing class. As before, the equation was evaluated, and a 

column removed, until the result was a 95% or above confidence that a dataset of linearly 

independent columns was chosen. In each cycle, the column for which p is smallest is removed, 

where 

𝑝𝑝 =  𝑝𝑝𝑠𝑠  +  𝑝𝑝𝑚𝑚𝑠𝑠 

This gene filtering approach has a distinct function, in comparison to more widely used feature 

selection processes, such as L1 (LASSO) and L2 (ridge) regularisation techniques. These 

regularisation methods operate in relation to the machine learning loss function, that is the 

square of the difference between the predicted outcome, and the true outcome. In contrast, this 
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binomial probability filtering method only uses information regarding how many non-zero values 

are present per column (gene), in each class, and does not try to infer any prediction from this 

information. This also means that information leakage is unlikely.  

After the dataset was reduced into a subset of linearly independent columns (genes), the dataset 

was split into training and testing data in a 75:25 ratio, where the split calculation was based on 

the number of individuals in the minority class (patients with stricturing behaviour). Then the 

training dataset was scaled using MaxAbsScaler, and this scaling applied to the testing dataset. 

The feature selection process first involved constructing individual CPH models for every gene on 

the training dataset using the CoxPHSurvivalAnalysis tool from scikit-survival. The genes were 

then ranked by their CPH C-index score. Next, BayesSearchCV, from scikit-optimise was used to 

determine how many features were included in downstream modelling. The Bayes Search did not 

evaluate the different combinations of features, instead determining a “top F” number of features 

to include as per the rankings established by individual gene CPH model C-index. The number of 

Bayes Search iterations depended on the number of genes that were input into the feature 

selection. These features were then used in training the random survival forest (RSF), 

implemented through scikit survival. The model was evaluated on the test dataset, using a time 

dependent AUC, average AUC over time, and C-index. Feature weights were obtained using 

PermutationImportance from the ELI5 package, which includes functions for debugging, and the 

explanation of machine learning predictions. This pipeline is illustrated in Figure 54 (see 

Supplementary files for machine learning scripts). 

https://github.com/sebp/scikit-survival
https://github.com/scikit-optimize/scikit-optimize
https://github.com/TeamHG-Memex/eli5
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Figure 54 Initial pipeline for random survival forest modelling. Genomic and patient data is pre-

processed according to ancestry, relatedness and gene invariance prior to the novel 

gene filtering method described above, necessary for the feature selection step. 

Training data is scaled, and this scaling is applied to the test data. Feature selection 

by ranking CPH model C-index is performed, and the top k features selected by 

BayesSearchCV. Finally, the RSF algorithm is trained and tested.  

7.2.2 Pipeline refinement and final pipeline 

Through the implementation of the modelling pipeline in Figure 54, some instabilities were 

discovered in the modelling, primarily due to the feature selection process. Performing feature 

selection on a different 90% of the training dataset many times resulted in a different number of 

“top F” features genes being chosen by BayesSearchCV, due to variations in each gene’s CPH C-

index. To confirm that this was not due to BayesSearchCV, the process was repeated using 

GridSearchCV from sci-kit learn [446], which would trial all possible “top F” features. 
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To stabilise the CPH C-indices that each gene achieved, 90% of the training dataset was subset, 

and a CPH model for each gene built on this subset. This process was performed 50 times, and the 

median C-index after different numbers of iterations calculated. The C-indices achieved after 

different numbers of iterations were assessed, to judge how many were necessary before the C-

index for each gene settled to a consistent value (this experiment was performed using the NOD-

signalling gene panel). The median C-index was then used to select “top F” features as before. 

Instead of using BayesSearchCV to accomplish this, a package called kneed was used, which 

utilises the kneedle algorithm [486]. It determines the point of maximum curvature of a set of 

points, in this case the median C-index from each gene’s CPH models. This process is similar to the 

use of the elbow method when determining the optimal number of clusters in unsupervised 

modelling. The knee determined by the algorithm would be the “top F” features for use in the 

RSF.  

In addition, to see if this pipeline could be improved upon, principal component analysis (PCA) 

was trialled as a potential alternative to CPH modelling. This process involved experiments which 

used either PCA alone, or in combination with the linearly independent data subset method 

described above (this was not required to run the PCA, as it was with CPH modelling), and/or the 

kneed method, for selecting the top principal components (PCs) for inclusion in the RSF.  

After feature selection was finalised (for both CPH model, and PCA methods), hyperparameter 

tuning was performed using the features selected by these methods, in order to produce the 

optimal model. The hyperparameters tuned in this process were the same as those in the 

standard random forest: number of estimators, minimum samples per leaf, minimum samples per 

split, maximum features, and maximum depth (see Section 6.1.1). Tuning was performed using 

BayesSearchCV in a nested cross-validation scheme (3-fold inner, and 5-fold outer cross-

validation) that used the C-index to assess model performance for different sets of 

hyperparameter values. This, combined with two different feature selection methods, results in 

two final pipelines that utilise the RSF algorithm to stratify patients by stricturing endotype 

(Figure 55). 

https://github.com/arvkevi/kneed
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Figure 55 The final RSF machine learning pipeline. Added to the pipeline, in comparison to Figure 

54, was hyperparameter tuning using Bayesian Optimisation, and two feature 

selection methods: CPH model gene ranking with subsampling and selection with the 

kneedle method, and dimensionality reduction with PCA. 

7.3 Results 

Of the 681 patients diagnosed with CD in the IBD cohort, 600 were of European ancestry with high 

probability, and unrelated to any individuals in the cohort. Patients were also required to have a 

confirmed stricturing or not-stricturing endotype, and a recorded clinical follow-up time. After 

excluding patients that were missing this information, 553 CD patients were included in the model 

(cohort characteristics detailed in Table 43). The number of patients in the training and testing 

datasets for RSF modelling is included in Table 44. Fewer patients have a stricturing outcome in 

the cohort. Therefore, the training set was manually balanced to include an equal number of 

patients with and without stricturing behaviour, such that both outcomes could be learnt from 

equally during training. 
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Table 43 Clinical characteristics of the CD cohort used in RSF modelling , split by paediatric and 

adult IBD diagnosis. 

 Paediatric IBD (<18) Adult IBD (≥18) Total 

N 314 239 553 

Median age at diagnosis, years (range) 13 (1-17) 31 (18-82) NA 

Stricturing Endotype  Yes 68 95 163 

No 246 144 390 

Sex Male 195 102 297 

Female 119 137 256 

Median follow-up time, years (range) 6 (0.1-54.8) 13 (2.4-49.8) NA 

 

Table 44 Training and Testing Data sample size by patient endotype 

 Training Data Testing Data Total 

Stricturing 122 41 163 

Not-Stricturing 122 268 390 

Total 244 309 553 

 

7.3.1 Preliminary results: NOD-signalling pathway gene panel  

The extended NOD-signalling pathway gene panel comprised 180 genes and was sourced from the 

Comparative Toxicogenomics Database, and combined the KEGG:hsa04621 and REACT:R-HSA-

168638 signalling pathways (see Supplementary Files). After pre-processing, where invariant 

genes were removed, 130 genes remained. The gene set was reduced, such that there was a 95% 

probability that a random selection of individuals for the training set gave linearly independent 

columns (variables). This resulted in 44 genes as input into feature selection. Feature selection 

ranked these genes by their Cox Proportional Hazard (CPH) Model C-index (Table 45). The top 5 
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features were selected by BayesSearchCV, and these were fed in to the RSF model. On the 

training dataset the RSF achieved a C-index of 0.827, and on the testing dataset the C-index was 

0.546. The average AUC for the training data was 0.876, and on testing set it was 0.559. The 

testing set AUC increased for patients with longer follow-up (Figure 56). 

Table 45 Genes included in feature selection ranked by CPH model C-index 

Gene 

CPH Model C-

index Gene 

CPH Model C-

index Gene 

CPH Model C-

index 

CTSB 0.566788 TRPM7 0.521089 ITPR2 0.502453 

PLCB3 0.561486 NLRP3 0.520772 IRAK2 0.501899 

GBP3 0.554048 RIPK2 0.518557 NLRP12 0.499763 

TRPV2 0.553889 ITPR1 0.517014 RIPK3 0.499011 

MAPK12 0.551357 PLCB2 0.514521 P2RX7 0.498892 

CYBA 0.550684 NOX1 0.513017 NOX3 0.498615 

XIAP 0.539804 BIRC2 0.512978 CASR 0.496756 

NOD2 0.539804 NLRX1 0.51274 CASP8 0.496637 

ITPR3 0.533354 TNFAIP3 0.511118 RNF31 0.494302 

IFI16 0.528488 GPRC6A 0.510881 SHARPIN 0.491849 

CHUK 0.527222 MFN2 0.508982 CARD6 0.48362 

TRPM2 0.526074 NOD1 0.507874 NFKBIB 0.480573 

DHX33 0.525837 CASP5 0.507043 RNASEL 0.480454 

TYK2 0.523859 GBP1 0.50641 ERBIN 0.477131 

MAVS 0.522672 TP53BP1 0.506014   
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Figure 56 AUC over time for preliminary results on the NOD-signalling pathway gene panel. 

Average AUC for the RSF model on the training and testing data 

Due to the relatively small sample sizes, particularly with respect to the number of stricturing 

endotype patients, there was a potential question surrounding how stable the results achieved 

with the NOD-signalling panel were. Therefore, the pipeline was run again, with a different initial 

seed that split the training and testing data, leading to a different set of patients being included in 

each dataset. The features selected, and subsequent performance of the RSF differed from the 

first set of results in Table 45 and Figure 56. With different patients in the training dataset, 15 

genes were selected for inclusion in the RSF model, and of the features selected, only 2 of 5 were 

included in both models. The RSF model achieved a C-index of 0.957 on the training set, and 0.534 

on the testing set (a 15% and 2% difference compared to previous results, respectively). The 

average AUC was 0.962 on the training set, and 0.509 on the testing set (a 9.8% difference for 

both training and testing AUCs). In light of these results, and in particular the discrepancies 

between the genes selected, the next stage was to look at how to stabilise the feature selection 

process. 
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7.3.2 Feature selection stability  

In order to assess the feature selection stability, the 90% of the training data was subsampled 

randomly for a total of 50 trials. For each trial, the top number of features selected by 

BayesSearchCV (30 iterations) was recorded. While it would be impractical to exhaustively search 

larger gene panels, as these trials were performed on the NOD-signalling gene panel (n=44), the 

GridSearchCV method was also explored as a potential alternative to selecting the top number of 

features for modelling. This was to eliminate the possibility that variability in the number of genes 

chosen by the Bayes Search so far was due to the algorithm not finding the optimum number of 

features. The number of features selected varied widely for each trial (Figure 57), with some trials 

choosing only 2 or 3 features, while others selected all features. Furthermore, the ordering of the 

features by CPH model C-index in each trial was different. This meant that even if the same 

number of features was chosen over multiple trials, due to the different C-indices for each 

feature, different genes would be present in this top k features (see Supplementary files). Bayes 

Search and Grid Search were broadly concordant (36/50, 72%), which provided confidence that 

either method would be suitable for determining the top k features. 

 

Figure 57 Number of features selected according to feature ranking in 50 trials. Two methods 

were used to choose the number of top features to input into the RSF model: Bayes 

Search and Grid Search. This selection was performed after ranking of genes by CPH 

model C-index. The random seed controls the samples that are including in the 90% 

subsample prior to gene ranking. 
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To mitigate the discovered variability in feature selection, the median value of the C-index of 

individual gene CPH models was tested. The median was used so that any C-index scores that 

were outliers would be less influential. As before, a random 90% of the training data was input 

into generating these CPH models. It was unknown how many iterations would be necessary 

before the C-index of each gene’s model was stabilised, so the median score after 10, 20, 30, 40 

and 50 iterations was graphed (Figure 58). Some genes exhibited very stable C-indices after only 

10 iterations, such as CYBA, ERBIN and PLCB2. Others, such as NOD2 and P2RX7 required over 30 

iterations of this feature selection process before the C-index scores became constant. After 

monitoring the changes in CPH C-index, taking the median after 50 iterations was judged to give a 

reasonably accurate representation of each gene’s score, that was independent of the individual 

patients present in the training dataset. 
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Figure 58 Median C-index of individual gene CPH models for 10, 20, 30, 40 and 50 iterations of feature selection on a random 90% of the training data (NOD-signalling 

panel, n=44). Genes were grouped alphabetically.
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Once the feature rankings according to the median of 50 CPH model C-indices had been 

calculated, four experiments with different genes used in the RSF model were conducted to test if 

feature selection was actually impacting model performance: 1) the top 10 genes; 2) the bottom 

10 genes; 3) 10 random genes; and 4) all 44 genes used. The best performing RSF was the one 

that utilised the top 10 genes, with a training and testing C-index of 0.959 and 0582, respectively, 

and similar values for average AUC (0.984 and 0.561). There were small margins between the 

other three models in terms of test C-indices and average AUCs over time. The next best RSF 

model used all 44 genes (C-index 0.538, average AUC 0.511 on the test dataset), followed by the 

model that used 10 random genes (test data C-index 0.518, average AUC 0.505), and lastly the 

model that used the bottom 10 genes (C-index 0.507, average AUC 0.502). This is the order of 

best performing to worst performing ML model that would be expected if the feature selection 

has a meaningful impact on the accuracy of the RSF. All models exhibit overfitting to some extent 

(Figure 59). The model that appears to be impacted the least by overfitting is the RSF where all 44 

genes are included.  

 

Figure 59 Random survival forest AUC over time for the training and testing dataset. A) top 10 

features in the NOD-signalling panel, B) bottom 10 features in the NOD-signalling 

panel, C) 10 random genes from the NOD-signalling panel, D) all 44 features in the 

NOD-signalling panel 
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The feature weights for the RSF models using the top 10, bottom 10, and random 10 genes are 

listed in Table 46. For all models, the feature weights are small, with relatively little difference in 

their values when comparing the weights across the included genes. Further, many of the 

confidence intervals for each gene’s weight have large confidence intervals, in some cases larger 

than the feature weight. It is difficult therefore, to determine with certainty whether each gene 

has either a protective effect against stricturing, or contributes to the phenotype. NOD2 is notable 

for its inclusion in the top 10 features list, as this was one of the top 10 most important genes in 

several of the stricturing classifiers in Chapter 6, where different gene panels were trialled. It is 

surprising to see P2RX7 in the bottom 10 features list, as this was also in the top 10 most 

important genes in several classifiers in Chapter 6. 

Table 46 Feature weights for the RSF that includes the 1) top 10 features; 2) the bottom 10 

features; and 3) 10 random features 

Top 10 Features Bottom 10 Features Random 10 Features 

Gene Weight Gene Weight Gene Weight 

CHUK 0.0367 ± 0.0640 NOD1 0.0378 ± 0.0401 SHARPIN 0.0249 ± 0.0573 

CTSB 0.0332 ± 0.0260 GBP1 0.0218 ± 0.0287 DHX33 0.0070 ± 0.0440 

MAPK12 0.0307 ± 0.0407 ERBIN 0.0200 ± 0.0555 NLRX1 0.0061 ± 0.0211 

GBP3 0.0304 ± 0.0816 NFKBIB 0.0141 ± 0.0375 TNFAIP3 0.0055 ± 0.0121 

IFI16 0.0293 ± 0.0493 CARD6 0.0137 ± 0.0307 NOD1 0.0028 ± 0.0386 

CYBA 0.0259 ± 0.0581 NOX1 0.0121 ± 0.0185 CASR -0.0181 ± 0.0378 

TRPV2 0.0187 ± 0.0346 RNF31 0.0121 ± 0.0185 TRPM7 -0.0186 ± 0.0259 

NOD2 0.0120 ± 0.0353 ITPR2 0.0103 ± 0.0218 RNASEL -0.0206 ± 0.0482 

XIAP 0.0051 ± 0.0521 P2RX7 0.0031 ± 0.0687 CASP8 -0.0263 ± 0.0480 

PLCB3 0.0009 ± 0.0306 RIPK3 -0.0104 ± 0.0220 GPRC6A -0.0279 ± 0.0464 

 

It had now been determined that this feature selection method of taking the median C-index of 

several iterations of CPH models, was successful for generating a better performing RSF model 
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downstream. However, in the tests on the NOD-signalling pathway gene panel an arbitrary cut-off 

of 10 was used. The kneed package was used to find the knee of the ranked median CPH C-

indices. After the knee point, the inclusion of additional genes is expected to result in minimal 

gains to RSF performance. The final pipeline for obtaining RSF model results on three different 

gene panels was therefore as follows (Figure 55, Section 7.2.2): 

• Initial gene panel reduced to a set of genes where every column (gene) is linearly 

independent. This was done with binomial probability. 

• Feature selection on a random 90% of the dataset for 50 iterations (NOD-signalling gene 

panel) or 100 iterations (stricturing (inclusive) gene panel, and IBD gene panel, as these 

were larger panels). Each feature iteration produced a CPH model C-index for each gene. 

• The knee of the median C-index after 50 or 100 iterations (depending on panel) was 

found. 

• Hyperparameter tuning using Bayes Search in a nested cross-validation scheme was 

performed, using the selected features (hyperparameter values, Table 47). 

• Optimal hyperparameter values were used in the RSF, along with the selected features, 

and the model performance assessed on the testing dataset. 

Table 47 Hyperparameter default values, and values tested during individual, grid search and 

Bayes hyperparameter tuning for the stricturing endotype classifier 

Hyperparameter 

Name 

Default Values Included for Bayes Hyperparameter Tuning 

n_estimators 100 100, 250, 500, 750, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 

8000, 9000, 10000 

max_depth None 1 - 30, None 

min_samples_split 2 2, 3, 4, 5, 6 

min_samples_leaf 1 1, 2, 3, 4, 5, 6 

max_features sqrt sqrt(n_features), log2(n_features), None 

7.3.3 NOD-signalling panel random survival forest 

As previously discussed, the NOD-signalling pathway’s gene panel was reduced from 180 genes to 

44 genes after all GenePy score matrix data processing steps. The knee of the median C-index 

scores after 50 iterations of feature selections was found to be at 9, and therefore 10 genes were 
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chosen as input into the RSF (python indices start at 0), shown in Figure 60. This was 

coincidentally the same number of genes that was arbitrarily chosen in the previous section. 

 

Figure 60 Median C-index for each gene in the NOD-signalling gene panel after 50 iterations of 

feature selection. Dotted line shows the knee in the dataset.  

Bayes Search hyperparameter tuning (60 iterations) was performed in a nested cross validation 

scheme, with 3 folds in the inner cross validation, and 5 folds in the outer. Each outer fold had an 

equal number of stricturing and not-stricturing patients. Table 48 contains the results of the 

hyperparameter tuning. The hyperparameter values for maximum depth were small (1, 2, or 3), 

and the hyperparameter values for the minimum samples per split were relatively large across 

folds. The average C-index across the outer folds was 0.587 (standard deviation 0.072). The best 

C-index in the outer fold was 0.669 in fold 5. The chosen hyperparameters for the final RSF model 

were therefore: maximum depth = 2, maximum number of features = log2, minimum samples per 

leaf = 1, minimum samples per split = 6, and 750 estimators.
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Table 48 BayesSearchCV hyperparameter tuning (CV folds, 1-3 n=48; 4 and 5 n=50), on the NOD-

signalling gene panel after feature selection (n=10). Nested scheme with 3-fold inner 

cross validation (CV), 5-fold outer CV, 60 iterations. 

Fold Outer Fold 

C-Index 

Inner CV 

C-index 

Optimal Hyperparameters 

Max 

Depth 

Max 

Features 

Minimum 

Samples per 

Leaf 

Minimum 

Samples per 

Split 

Number of 

Estimators 

1 0.6311 0.5411 1 Sqrt 1 6 500 

2 0.62107 0.6007 1 Sqrt 1 5 3000 

3 0.4660 0.6266 3 None 5 5 4000 

4 0.5492 0.6156 1 Log2 5 4 100 

5 0.6687 0.5527 2 Log2 1 6 750 

 

The performance of the RSF model using the NOD-signalling gene panel, and the corresponding 

feature weights can be viewed in Figure 61. This model performs less well than the one in Section 

7.3.2, without hyperparameter tuning, with a C-index of 0.682 on the training data, and 0.514 on 

the testing data. However, in comparison to Figure 59A, this model’s time-dependent AUC shows 

less overfitting on the training data. These results may therefore be a more accurate reflection of 

how an RSF model will perform on this data, and the model constructed will be more 

generalisable. The testing data’s AUC for patients with relatively little clinical follow up data is 

very high (AUC > 0.9), perhaps indicating the model has detected some genomic signal from 

patients who stricture relatively early in their disease course. As in previous results, the weights of 

each gene are small, and have very large confidence intervals. Many genes with positive weights 

in Table 46, now have negative weights in this model, caused by the change in hyperparameters.  
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Figure 61 AUC over time of the RSF model on the training and testing datasets, with the feature 

weights of each gene included in the model (NOD-signalling gene panel). 

7.3.4 Stricturing panel random survival forest 

This panel, referred to as the stricturing (inclusive) gene panel, was selected to use as an input as 

it includes three gene panels: 1) the autoimmune gene panel; 2) the IBD gene panel; and 3) the 

stricturing gene panel from the literature search in Chapter 6. In total, this panel contains 3,155 

genes, which following pre-processing steps of removing false positive, and invariant genes, left 

2,192 genes. After processing the data so all columns (gene’s GenePy scores) were linearly 

independent, there were 666 genes for input into feature selection. As this gene panel was the 

largest used in this modelling pipeline, the dataset was naturally sparser in comparison. 

Therefore, the binomial probability for producing a linearly independent dataset had to be 

increased to 99%, in order for downstream nested cross validation during hyperparameter tuning 

to be performed. The knee of the median C-indices after 100 subsamples was found to be at 38, 

shown in Figure 62, therefore 39 genes were included in downstream modelling (python indices 

start at 0). 
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Figure 62 Median C-index for each gene in the stricturing (inclusive) gene panel after 100 

iterations of feature selection. Dotted line shows the knee in the dataset.  

Bayes Search hyperparameter tuning (60 iterations) was performed in the same nested cross 

validation scheme as for NOD-signalling gene panel. The stricturing and not-stricturing classes 

were balanced in each fold. The results of the hyperparameter tuning can be viewed in Table 49. 

The hyperparameter value for the number of estimators selected was either a few hundred trees, 

or several thousand. Number of samples required per leaf and split were relatively high, and max 

features was small (log2(39 genes) ≈ 5). The average C-index across the outer folds was 0.687 

(standard deviation 0.037). The best C-index in the outer fold was 0.736 in fold 2. The chosen 

hyperparameters for the final RSF model were therefore: maximum depth = 7, maximum number 

of features = log2, minimum samples per leaf = 4, minimum samples per split = 3, and 4000 

estimators.
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Table 49 BayesSearchCV hyperparameter tuning (CV folds, 1-3 n=48; 4 and 5 n=50), on the 

stricturing (inclusive) gene panel after feature selection (n=39). Nested scheme with 

3-fold inner cross validation (CV), 5-fold outer CV, 60 iterations. 

Fold Outer 

Fold C-

Index 

Inner CV 

C-index 

Optimal Hyperparameters 

Max 

Depth 

Max 

Features 

Minimum 

Samples per 

Leaf 

Minimum 

Samples per 

Split 

Number of 

Estimators 

1 0.7016 0.6894 29 Log2 1 6 250 

2 0.7357 0.6651 7 Log2 4 3 4000 

3 0.6577 0.6978 6 Log2 2 5 6000 

4 0.6331 0.7243 23 Sqrt2 2 3 250 

5 0.7053 0.6802 19 Log2 3 6 250 

 

The RSF model performance, and corresponding feature weights for the stricturing (inclusive) 

gene panel is shown in Figure 63. This ML model had a C-index of 0.914 on the training data, and 

0.457 on the testing data. The C-index and average AUC is affected by the model’s poor prediction 

for patients with over 45 years of clinical follow up. As in the NOD-signalling gene panel model, 

there is an uptick in performance for patients with very little follow up (AUC≈0.6), although to a 

lesser extent. This model shows clear signs of overfitting on the training data, with an AUC 

continuously very close to 1.0. The gene COL6A2 has one of the largest weights seen in RSF 

modelling so far. It also has a confidence interval which confirms that a high GenePy score (high 

pathogenicity burden) in this gene would always be expected to contribute to stratification of 

patients into the stricturing group. 
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Figure 63 AUC over time of the RSF model on the training and testing datasets, with the feature 

weights of each gene included in the model (stricturing (inclusive) gene panel). 

7.3.5 IBD panel random survival forest 

This panel was selected, as in Section 6.3.2 it was shown to deliver the best performing random 

forest classifier for stricturing endotype classification. This panel contains 821 genes, which 

following pre-processing steps of removing false positive, and invariant genes, left 465 genes. 

After filtering the data so all columns (gene’s GenePy scores) were linearly independent, there 

were 159 genes for input into feature selection. The knee of the median C-indices after 100 

subsamples was found to be at 26, shown in Figure 64, therefore 27 genes were included in 

downstream modelling (python indices start at 0). 
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Figure 64 Median C-index for each gene in the IBD gene panel after 100 iterations of feature 

selection. Dotted line shows the knee in the dataset. 

Bayes Search hyperparameter tuning (60 iterations) was performed in the same nested cross 

validation scheme as the previous two models. The stricturing and not-stricturing classes were 

balanced in each fold. The results of the hyperparameter tuning can be viewed in Table 50. The 

hyperparameter value for the number of estimators selected was consistently large. The number 

of samples required per split was consistently relatively high. The maximum depth was small 

across all folds, as was the maximum features per split (log2(27 genes) ≈ 5). The average C-index 

across the outer folds was 0.660 (standard deviation 0.053). The best C-index in the outer fold 

was 0.736 in fold 5. The chosen hyperparameters for the final RSF model were therefore: 

maximum depth = 4, maximum number of features = log2, minimum samples per leaf = 4, 

minimum samples per split = 4, and 8000 estimators.
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Table 50 BayesSearchCV hyperparameter tuning (CV folds, 1-3 n=48; 4 and 5 n=50), on the IBD 

gene panel after feature selection (n=27). Nested scheme with 3-fold inner cross 

validation (CV), 5-fold outer CV, 60 iterations. 

Fold Outer 

Fold C-

Index 

Inner CV 

C-index 

Optimal Hyperparameters 

Max 

Depth 

Max 

Features 

Minimum 

Samples per 

Leaf 

Minimum 

Samples per 

Split 

Number of 

Estimators 

1 0.6094 0.6823 1 Log2 1 5 4000 

2 0.7006 0.6226 3 Log2 1 4 1000 

3 0.5959 0.6435 1 Log2 1 4 9000 

4 0.6595 0.6504 2 Log2 1 5 9000 

5 0.7358 0.6049 4 Log2 4 4 8000 

 

RSF time-dependent AUC and input gene weights are shown in Figure 65. This model does show 

less overfitting on the training dataset than the stricturing (inclusive) panel model. Unfortunately, 

a relatively more generalisable model does not translate to better testing performances, with a 

poor test set C-index, at 0.438 (training dataset C-index 0.826). The testing AUC is poor (less than 

0.5) regardless of the number of years of clinical follow up. Despite the IBD gene panel generating 

best performing classifier for the stricturing endotype in Section 6.3.2, of the three gene panels 

tested with RSF, this panel produced the poorest model. The trends of small gene weights and 

large confidence intervals are present here as in the previous two models. The two genes with the 

largest weights have small enough confidence intervals that their effects can be confirmed as 

positive or negative. NOD2 has the largest positive weight towards stricturing, and TRIM22 has 

the largest weight against the stricturing endotype.  
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Figure 65 AUC over time of the RSF model on the training and testing datasets, with the feature 

weights of each gene included in the model (IBD gene panel). 

7.3.6 NOD2 only random survival forest 

Due to recent survival modelling results that used only NOD2 GenePy scores to stratify patients 

into multiple stricturing endotype risk groups (unpublished data), there was interest in how an 

RSF model would perform if the only feature present was NOD2. Therefore the RSF was 

hyperparameter tuned, as in previous sections, with only NOD2 as the input. The results of this 

hyperparameter tuning can be viewed in Table 51. All hyperparameters took on many values, with 

no strong trends across cross validation folds. Of all models hyperparameter tuned in this chapter, 

this model had the lowest average C-index across folds (0.506, standard deviation 0.064). The 

best C-index in the outer fold was 0.610 in fold 1. The chosen hyperparameters for the final RSF 

model were therefore: maximum depth = 5, minimum samples per leaf = 2, minimum samples per 

split = 5, and 250 estimators.
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Table 51 BayesSearchCV hyperparameter tuning (CV folds, 1-3 n=48; 4 and 5 n=50), when 

including only NOD2. Nested scheme with 3-fold inner cross validation (CV), 5-fold 

outer CV, 60 iterations. 

Fold Outer Fold 

C-Index 

Inner CV C-

index 

Optimal Hyperparameters 

Max 

Depth 

Minimum 

Samples per Leaf 

Minimum 

Samples per Split 

Number of 

Estimators 

1 0.6085 0.5484 5 2 5 250 

2 0.4815 0.5904 2 1 3 4000 

3 0.4598 0.5807 4 4 4 250 

4 0.5480 0.5105 2 5 6 100 

5 0.4319 0.5483 7 2 3 100 

 

The RSF model utilising NOD2 only achieves a C-index of 0.623 on the training dataset, and 0.454 

on the testing dataset (AUC over time, Figure 66). As expected, there is less overfitting present, 

due to there being only one feature. Model prediction is particularly poor for patients with less 

than 5 years of clinical follow up, and patients with over 46 years of follow up. This model’s 

performance is on a par with the models generated using the stricturing (inclusive) panel, and the 

IBD gene panel, but is outperformed by the NOD-signalling pathway gene panel. 
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Figure 66 AUC over time for RSF model on the training and testing datasets, with only NOD2 as a 

feature.  

7.3.7 PCA as an alternative to CPH model feature selection  

The use of CPH models as a feature selection method was advantageous for this type of 

longitudinal time-to-stricture modelling. However, it was also thought that a method for 

dimensionality reduction, PCA, may be better equipped to deal with the sparse genomic data. 

Four different feature selection experiments were conducted. These combined PCA with other 

methods that had been used in the previous pipeline. These experiments and the results on the 

RSF model are summarised in Table 52. 

Table 52 The testing and training C-indices from the RSF model for the four feature selection 

experiments (NOD-signalling gene panel) 

Feature Selection Method Training 

Dataset  

C-index 

Testing 

Dataset  

C-index 

PCA followed up selection of top PCs using knee method 0.965 0.464 

PCA only 0.961 0.498 

Dataset reduction using binomial probability followed by PCA 0.963 0.595 

Dataset reduction using binomial probability followed by PCA, 

then knee method PC selection. 

0.967 0.535 
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The NOD-signalling pathway genes were pre-processed as before (false positive, and invariant 

genes removed), leaving 130 genes to be reduced into principal components (PCs). These genes 

were transformed into 73 PCs that explained 95% of the variance in the data. In the first 

experiment, the knee of these PCs was located using the kneed package as before. This method 

selected the top 12 PCs for inclusion into further modelling. These chosen PCs accounted for 

49.2% of the variance in the data. With these PCs as input for the RSF model, the testing data C-

index was 0.464. One of the potential causes of this performance was that each PC explained only 

a fraction of the data; the first PC only accounted for 8.1% of the data variance. Therefore, for the 

second experiment all 73 PCs were included in the RSF model. This performed better than the first 

model, but still poorly (testing data C-index 0.498).  

While with the implementation of PCA for dimensionality reduction, sub-setting the data to 

contain linearly independent columns was not necessary, this technique was trialled to see how it 

would affect the results. Hence, 44 linearly independent genes were transformed into 34 PCs that 

represented 95% of the variance. Every PC was input into an RSF model, generating the best 

performing model in this third experiment (test C-index 0.595). Finally, the knee of the 34 PCs was 

found, as in the first experiment. This resulted in the first 9 PCs (explains 59.0% of the variance) 

being input into the RSF model. The performance of the model subsequently decreased, with a 

test C-index of 0.535. It is worth noting that the RSF models generated in all four experiments 

showed clear signs of overfitting. 

7.3.7.1 Final model: NOD-signalling gene panel, and dimensionality reduction with 

principal component analysis  

To find if the best performing model from the previous experiments (dataset reduction to a 

linearly independent subset, followed by PCA) could be improved, hyperparameter tuning was 

performed with this feature set, before generating a final RSF model. Bayes Search optimisation 

with 60 iterations was used, with the same cross validation scheme as all previous modelling. The 

results of the hyperparameter tuning can be viewed in Table 53. A wide range of estimator values 

were chosen across folds, from 250, to 9000. The values chosen for maximum depth were very 

small. The average C-index across the outer folds was 0.520 (standard deviation 0.075). The best 

C-index in the outer fold was 0.610 in fold 4. The chosen hyperparameters for the final RSF model 

were therefore: maximum depth = 2, maximum number of features = sqrt, minimum samples per 

leaf = 6, minimum samples per split = 2, and 5000 estimators. This combination of 

hyperparameters means that the required minimum number of samples per leaf will override the 

selected hyperparameter value for the minimum number of samples per split.  
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Table 53 BayesSearchCV hyperparameter tuning (CV folds, 1-3 n=48; 4 and 5 n=50), using 34 

principal components. Nested scheme with 3-fold inner cross validation (CV), 5-fold 

outer CV, 60 iterations. 

Fold Outer 

Fold C-

Index 

Inner CV 

C-index 

Optimal Hyperparameters 

Max 

Depth 

Max 

Features 

Minimum 

Samples per 

Leaf 

Minimum 

Samples per 

Split 

Number of 

Estimators 

1 0.4684 0.5328 1 sqrt 1 3 1000 

2 0.5527 0.5279 1 None 4 4 750 

3 0.4000 0.5848 3 Sqrt 1 6 250 

4 0.6091 0.5214 2 Sqrt 6 2 5000 

5 0.5691 0.5194 2 None 1 5 9000 

 

The RSF model achieves a C-index of 0.774 on the training data, and a C-index of 0.576 on the test 

dataset (AUC over time, and model feature weights shown in Figure 67). Although the tuned 

model sees a slight drop in performance on the test dataset, the training data AUC suggests this 

model has less signs of overfitting than the untuned model. Therefore, this model is the best RSF 

in this chapter, as it combines generalisability with a good test dataset C-index. There are small 

features weights with large confidence intervals as in all previous modelling. PC5 and PC13 have 

the largest positive weights, while PC12 and PC33 have the largest negative weights. PC5 is 

characterised by a positive SHARPIN loading, and negative loadings from CASP5, GPRC6A, and 

RNASEL. PC13 has many comparatively large loadings in positive and negative directions: CTSB, 

GBP1, ITPR1, ITPR2 and RNF31 are all positive loadings, and GBP3, ITPR3 and PLCB2 provide 

negative loadings. In PC12, BIRC2 and TRPM2 are positive loadings, while CTSB and P2RX7 give 

negative loadings. The strongest positive loading in PC33 is NOX3, with a value double the next-

largest loading. NOD2 and MFN2 are the largest negative loadings in PC33. Of all the genes 

mentioned as present in the PCs with the largest weightings, only CTSB, NOD2 and GBP3 were 

present in the previous modelling that utilised the NOD-signalling gene panel (Section 7.3.3). 
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Figure 67 AUC over time of the RSF model on the training and testing datasets, with the feature 

weights of each principal component included in the model, based on the NOD-

signalling pathway gene panel. 

7.4 Discussion  

In this chapter, five RSF models were fully tuned and trained for stratifying patients by stricturing 

endotype (Figure 68). Three gene panels were employed in RSF modelling: the NOD-signalling 

pathway gene panel, the IBD gene panel, and the stricturing (inclusive) gene panel. Gene panels 

were chosen for both biological and computation reasons. The NOD-signalling pathway gene 

panel was deemed as a good panel for initial testing, firstly for NOD2’s suggested significance to 

the development of stricturing disease [5, 388], and secondly as the number of genes included in 

the panel was relatively small (n=180). For all RSF modelling there was a concern regarding highly 

dimensional data (number of genes being greater than the number of features) affecting the 

ability of an RSF to correctly predict a stricturing endotype. This could be of particular concern 

here as the dataset size was the smallest in comparison to the stricturing and subtype classifiers 

of previous Chapters, and the RSF approach is a form of regression problem, which is naturally 

more complex than a binary classifier. The IBD gene panel was chosen in modelling as this 

achieved the best classification in Section 6.3.2, providing a useful comparison. Finally, the 

stricturing (inclusive) panel was used for modelling because, even though there could be some 

concerns about highly dimensional data (n=3,155), there was an interest in how the RSF model 

would perform with a gene panel that specifically considered the stricturing endotype, rather 

than IBD more generally. The construction and limitations of this gene panel have been previously 

discussed in Section 6.4. 
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Figure 68 Summary of the five trained and tuned RSF model results. C-index score for training and 

testing for each of the gene panels used, for the two different feature selection 

approaches. 

Three of the RSF models used CPH models during feature selection, starting with one of three 

different gene panels (NOD-signalling, IBD and stricturing (inclusive) panels), the fourth only used 

NOD2 as a feature, and the fifth used the NOD-signalling pathway gene panel and PCA. This 

straightforward dimensionality reduction technique was more successful than the use of CPH 

models, which were originally chosen so that time-to-event data could be incorporated into the 

feature selection, as well as the machine learning method. Feature selection was shown to be 

beneficial, even with the CPH models, after experiments with the NOD-signalling panel revealed a 

better performing RSF using the top 10 genes, in comparison to all genes, a random 10 genes, and 

the bottom 10 genes. In addition, after modelling using only NOD2, which had been previously 

shown to be able to stratify stricturing patients, it was confirmed that including many genes in RSF 

models was beneficial, resulting in an increases in the testing C-index. Approaching the machine 

learning problem in this way was always going to be challenging, as a survival regression 

algorithm has to make predictions on a continuous scale, rather than a binary classification. 

Nevertheless, a modestly good model that achieved a testing C-index of 0.58 was generated using 

the NOD-signalling gene panel and PCA. 
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A new method for GenePy score matrix processing was employed for this chapter: reducing the 

data to a set of linearly independent columns (genes). It could be the case that through this 

method a gene is removed, in which a patient has a rare, highly scoring variant, and this results in 

a causal genomic signal being lost. However, the aim of the machine learning here is not to 

diagnose individuals, but rather to try and detect patterns present within groups in the cohort. 

Therefore, the trade-off that a few potential causal genes for single patients could be removed 

was seen as an acceptable loss in order to use the feature selection. In later modelling using PCA, 

the reduction in data sparsity that occurred using this method also proved beneficial for 

increasing the C-index and average AUC on the test dataset. 

Unfortunately, the initial feature selection method of individual gene CPH models became a much 

more complex procedure than originally intended, with the many iterations that were required to 

establish a stable C-index for each gene. The necessity of this was discovered from initial 

modelling with the NOD-signalling gene pathway panel. When a different random seed was 

utilised, resulting in different individuals being included in the training data, the result was a 

different model in terms of the number of genes selected, which genes were selected for 

inclusion into RSF modelling, and a different testing AUC and C-index. This illustrated a key 

characteristic of the dataset, that the GenePy score distributions varied according to the patients 

included in the training data. This highlighted a limitation of the dataset, that any selected 

training dataset could not be relied upon to be representative enough of the population as a 

whole. Establishing a stable C-index through iterating CPH modelling on a subset of the training 

dataset attempted to increase the generalisability of the modelling, but it cannot be assumed that 

this wholly mitigated the genomic variability in the dataset.  

In contrast, a simple PCA gave a better result for the tuned models. The downside to both the CPH 

modelling and PCA methods is that they are both relatively simple approaches. Ranking by C-

index does not consider interactions between features, and PCA only produces linear 

combinations of genes, not allowing for complex non-linear interactions between these features. 

An alternative to PCA could be the use of t-distributed Stochastic Neighbour Embedding (t-SNE), 

which can reduce dimensionality while representing non-linear relationships in the data. 

However, this method is far less interpretable than PCA, as no associated loadings matrix exists, 

and therefore no direct link to the genes that drive the ML algorithm. 

During evaluation of RSF model results, feature weights were shown and discussed. These 

features often had very small weights. This is not concerning if taken in isolation. However, the 

combination of small weights, minimal differences between the weights of each gene, and large 

confidence intervals meant that interpreting which genes were most important became very 
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difficult. This is in sharp contrast to the classification modelling in Chapter 6, where NOD2 could 

be determined as the most important in comparison to other genes for the disease subtype 

classifier. Using a method such as SHAP [453] to further elucidate the impact of each gene on 

modelling decisions would have been beneficial. However, the SHAP python package as it is 

currently constructed has limited compatibility with survival ML models, and can only provide this 

information for a specified time point. Given the sparse nature of the data, that is that there are 

few individuals present at each time-point, especially when broken down by stricturing endotype 

status, this analysis was inappropriate for a cohort of this size.  

Throughout the tuning of the RSF models, there was a trend for the Bayes Search algorithm to 

choose hyperparameter values that would simplify the tree models created. This meant that 

maximum depth was small to create shallow trees, and minimum samples per leaf and split values 

were relatively large. The outer fold C-indices achieved were often better than random, and 

reached values of 0.6 or greater. There was better generalisation from the inner fold to the outer 

fold of the nested cross validation than observed for the stricturing endotype classification in 

chapter 6. This is potentially because the cross-validation schemes changed to boost the sample 

size of each fold (chapter 6 used 7-fold outer CV and 5-fold inner CV, whereas here 5-fold outer 

CV and 3-fold inner CV was used). Therefore, sample size was unlikely to be directly responsible 

for the creation of these simplified RSF models. Instead, the complexity of the data may have 

resulted in a need to simplify the modelling using the hyperparameters. This is supported by the 

reduction of overfitting (shown in the training AUC over time) in hyperparameter tuned models.  

The feature selection method utilised in this chapter highlighted one of the main limitations of 

genetic data, even when collapsed into a GenePy matrix, the sparsity of the data. The CPH 

modelling required linearly independent columns, but even with this condition fulfilled the model 

struggled to converge on a solution with a very sparse dataset. The format of GenePy as a per-

gene score is undoubtedly better than representing each variant, as this data would be even more 

sparse. However, the implementation of the CADD Phred cut-off (variants with a CADD Phred 

score less than 15 removed from the dataset) does then make the GenePy matrix sparser, while 

admittedly reducing dataset noise. Genomic data processing is a balancing act of ensuring that 

false variant calls and benign variation is not overtaking true pathogenic variation, while not 

having too many hard filters in place such that some of that pathogenic variation is excluded. A 

possible solution to the data sparsity issue would be to add GenePy scores together in a 

biologically sensible manner. This could be done by adding GenePy scores together if the genes 

associated proteins form a complex [387], or addition of GenePy scores across sections of 
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pathways. Another possible alternative is to utilise network analysis to identify which scores 

should be added together. In any method which adds GenePy scores, a normalisation method 

needs to be used, so that GenePy scores with a small range are not overshadowed by longer 

genes that accrue more variation. A downside of adding many GenePy scores together is a loss in 

granularity with regard to the specific genes that drive patient stratification. 

The issues of data sparsity, oversimplified algorithms, and modest performance could be solved 

by increases in dataset size. Almost all RSF models generated in this chapter showed signs of 

overfitting on the training dataset, suggesting that sufficient data was not present to create 

models that were generalisable. Research programs such as Gut reactions [382] and UK BioBank 

[487] are rich sources of genomic data. UK BioBank in particular is very large, and a recent data 

release contained the sequencing data of approximately 450,000 individuals, of which 4,614 have 

an IBD diagnosis (2,907 with CD). It is almost certain that with an increase in dataset size, the RSF 

algorithm would have more power to detect genomic signals, boosting performance. In addition, 

larger datasets open up opportunities to employ the previously mentioned Cox-nnet [483], and 

other deep learning survival analysis methods like SurvNet [488] and DeepHit [489]. With more 

power, it is also more probable that the hyperparameters chosen during tuning will create more 

complex ML models. A larger dataset has the potential to be less sparse, as there is an increased 

likelihood of a higher proportion of individuals in the cohort exhibiting rare variation that will 

meet the CADD cut-off. However, it is also likely that more de novo variants will be observed, 

which will increase sparsity. It is therefore difficult to say how much a larger dataset would 

mitigate GenePy matrix sparsity. 

In this chapter, a method utilising binomial probabilities was developed that could be used to 

reduce the sparsity of the dataset. This method can be applied to any future modelling where 

GenePy scores are utilised. Its application can also extend beyond GenePy matrices, and be used 

as a filtering step for any dataset where sparsity is a limiting factor in computational modelling. 

This issue is likely to become ever more prevalent as ‘big data’ is more commonly leveraged. 

While the NOD-signalling pathway gene panel gave the highest average testing AUC and C-index 

from all the RSF models constructed, because these performance metrics are only modestly good, 

it is difficult to draw conclusions regarding an association between the genes selected and the 

aetiology of the stricturing endotype. Confidence in the relationships between the genes selected 

and the outcome is only as strong as the testing performance achieved by these models. As the 

genes contained within the NOD-signalling pathway gene panel are also included in the IBD gene 

panel, the results here do provide some corroboration with the results in Chapter 6, where the 

IBD gene panel was found to produce the best performing stricturing endotype classifier. The best 

performing gene panel here was the smallest one, and not the IBD panel, and this is potentially a 
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reflection of the difficulties surrounding modelling when the number of features exceeds the 

number of genes, especially when using an ML pipeline that utilises a regression-based algorithm. 

It is difficult to know whether this model performed more poorly than the stricturing classifier in 

Chapter 6 because of the construction of the ML problem (binary classifier versus regression), or 

because of the increased number of genes included in the stricturing endotype classifier that 

utilised the IBD panel providing more information for classification. In order to make confident 

predictions regarding a set of genes contributing to a stricturing endotype, the RSF model must 

achieve better testing metrics. Having relatively few patients per follow-up timepoint (see Figure 

49), has an impact on the RSF model’s ability to spot patterns and be generalisable to new 

datasets. A limitation common to many other studies, restricted follow-up time, was not present 

here. Rather, there is a need for more patients at already existing timepoints. This need was 

highlighted with the aforementioned RSF model instability, where the data included in the 

training dataset was varied in the initial modelling, and changes in the make-up of the training 

data changed the model features, and the performance on testing data. Although there was a 

trend in testing AUC increasing over time in the initial modelling in Section 7.3.1, this trend was 

not consistently replicated. These different trends in testing AUC over time for each RSF model 

also indicate a lack of generalisability of RSF models to different datasets. Finally, the small 

feature weights in all RSF models produced here follows a trend observed for the subtype 

classifier in Chapter 5, and the stricturing endotype classifier in Chapter 6, that there is no subset 

of genes chosen through feature selection in the ML pipelines that can be used to infer any strong 

relationships between a gene subset and the modelling outcome. In this way, the feature 

selection seen throughout is reminiscent of the current biological understanding of IBD, that this 

is a complex, polygenic disease.  

The results of this chapter, combined with the RSF results on clinical data achieved by Ungaro et 

al. [485], show that there is potential in creating a survival model for the stricturing endotype. Key 

to the future development of this modelling will be a larger cohort, and the integration of clinical 

and ‘omic data. These types of survival methods can be more interpretable for clinicians, as the 

results of RSF modelling can be plotted as Kaplan-Meier curves for individual patients. This makes 

the RSF a good fit as a decision support tool, because the predicted risk is straightforward to 

interpret. 
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Chapter 8 Systematic review of artificial intelligence and 

machine learning for inflammatory bowel 

disease: a reassessment of the field 

Chapter summary – the systematic review in this chapter follows a similar search strategy as the 

review in chapter 2, but has been updated (search performed May 2021) and focuses on 

inflammatory bowel disease. Once again, the aim was to evaluate the popular research 

questions for ML, which algorithms were most frequently used, and what types of data were 

common. In addition, comparisons are made between the popular approaches discovered in 

chapter 2’s systematic review, and the popular methods that have emerged since. There is also 

a focus on how assessment and construction of machine learning pipelines has changed after 

approximately 30 months. 

 

Chapter contributions – systematic search performed by Imogen Stafford. Imogen Stafford and 

Enrico Mossotto were first and second reviewers, respectively, for the assessment of study 

abstracts. Imogen Stafford and Enrico Mossotto gathered data from papers (each did full read 

throughs of 50% of the total papers to be reviewed). All further analysis and data synthesisation 

performed by Imogen Stafford. Sunburst plot generated with the assistance of Mark Gosink. 

8.1 Introduction 

Since the original systematic review search in Chapter 2, which focused on AI and ML applications 

for some of the most common autoimmune diseases [490], interest in AI for personalised 

medicine has only continued to grow. Among other initiatives in this field, the digital healthcare 

branch of the National Health Service (NHSX) announced the first round of recipients for the AI in 

Health and Care Award in September 2020 [491]. The investment of £140 million into this scheme 

highlights this continued interest. In light of this, the application of AI and ML to IBD was re-

evaluated. There have been other, more recent systematic reviews in this area, namely Nguyen et 

al.’s review of ML for IBD diagnosis and prognosis [492], and Tontini et al.’s evaluation of artificial 

intelligence uses for gastrointestinal endoscopy [493]. The aim of this systematic review was to 

re-evaluate the common data types, applications and methods used ML for IBD, and compare 
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these results to the original data gathered in Chapter 2. In addition, this review is intended to 

place the results of the previous chapters into context with other research being conducted in this 

field, with emphasis on the most recent research (studies published after Chapter 2’s systematic 

review). In this review, the systematic search is broad, so that trends in ML for IBD can be 

assessed. There is a need to identify the strengths and weaknesses of this interdisciplinary field, 

and the emerging approaches that could be beneficial for IBD patients.  

8.2 Methods 

8.2.1 Literature search 

An electronic literature search was performed using two databases available through OvidSP: 

MEDLINE(R) and Epub Ahead of Print, In-Process, In-Data-Review & Other Non-Indexed Citations 

and Daily 1946, and Embase 1974. In the previous systematic review, the Computers & Applied 

Sciences Complete database on EBSCO was also used to attempt to capture computational 

sciences studies that may be geared more towards method development, but still use clinical 

data. However, many of these research studies were also captured by the OvidSP databases, and 

they often used synthetic data. Due to this previous experience, it was judged that a search of 

MEDLINE(R) and Embase would be sufficient. A similar search strategy was followed to that in 

Chapter 2, with search terms being combined with Boolean operators. This search was completed 

on the 6th of May 2021, constructed as follows: (“machine learning” OR “artificial intelligence”) 

AND (“Crohn* Disease” OR “Ulcerative Colitis” OR “Inflammatory Bowel Disease”). Any research 

paper with these terms contained in the title, abstract and/or subject headings would be captured 

in the list of records. 

8.2.2 Inclusion and exclusion criteria 

As with the literature search structure, the same inclusion and exclusion criteria was applied to 

this review as used in Chapter 2. The only exception to this is the disease-specific criteria: studies 

that applied ML to IBD, or an IBD subtype, were included (as opposed to the broader scope of 

autoimmune disease in earlier work). Studies that utilised ML for analysis of non-IBD 

complications on an IBD cohort were also included. Usually these types of studies centre around 

comorbidities that IBD patients could be more susceptible to, for example osteoporosis [494]. 

Studies not written in English, or that were published before 2001 were excluded. Research had 

to be performed using human patient data to be included. Additionally, records that were not 
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peer reviewed, or were not original research articles were excluded, leading to no assessment of 

the following publication types during screening (as categorised by OvidSP): conference abstracts, 

conference review, editorial, erratum, journal article comment, journal article review, letter, 

letter comment, note and review. After these initial exclusions, two reviewers independently 

assessed each record’s abstract to determine if it should be included or excluded. Where 

consensus could not be reached based on the abstract, the full text was read by both reviewers to 

decide on its inclusion. This systematic review conforms to the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) standards [177].  

8.2.3 Data collection and visualisation 

The following data items were collected for each study that met the criteria: the clinical task for 

which ML was applied; the type of ML (supervised or unsupervised); all ML algorithms trialled by 

the researchers; the best performing ML algorithm; sample size; cohort type (IBD, UC or CD); data 

type; the best results achieved; whether a training and testing split was used; if other cross-

validation was used; if the model was applied to independent test data, and the year of 

publication. Where the e-publication date was superseded by a print date, the e-publication date 

was used. 

Summaries of sample sizes for each ML method, and the popularity of ML methods over time, 

were visualised using ggplot2 in R [178, 179]. For the sample size graphic, an ML method was 

counted as being used if it was recorded as a method in the research paper, even if that ML 

method did not generate the model with the best performance. For clarity, ML methods were 

sorted into groups. For example, ridge regression and logistic regression were both included in 

the regression group. If multiple methods from the same ML group were used in a paper, the 

method group was only counted once to avoid skewing the data. Some papers investigated 

multiple IBD research questions with different sample sizes. In these cases, each task that applied 

ML was counted as a separate entry. All ML method groups where sufficient data was present for 

a boxplot (n ≥ 5) were included. The same ML groups were used for the visualisation of the use of 

different ML groups over time.  



Chapter 8 

244 

8.3 Results 

Through conducting the systematic search, 409 records were identified. Of these, 135 records 

were identified as duplicates and subsequently removed. Through application of the study 

inclusion and exclusion criteria that specified article type, publication year and language, 153 

records were removed. Then, the abstracts of 121 articles were screened, and 33 were 

subsequently excluded. A further 9 research papers were excluded after a reading the full text 

(Figure 69). The focus of this review was to present summary statistics for the 78 studies, detailing 

the most popular ML methods, applications and data types used, sample sizes, and the frequency 

of the implementation of cross-validation. The chosen ML models and data for each type of 

clinical ML task are detailed in Table 54.
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Figure 69 PRISMA flowchart of the number of records found, reviewed and excluded at each 

stage. Records were first identified through database searches, and the unique 

records from these searches assembled. After applying the initial exclusion criteria 

(record type, English only, year of publication), the remaining studies were screened 

by reading the abstract. Research that could be identified from the abstract as not 

meeting inclusion criteria was excluded. After a full text read, some reports were 

excluded (with reasons). 
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Table 54 Summary of ML models chosen as most optimal for the clinical task, and the types of data used (ML models and data types sorted alphabetically).  

Task Number of 
Studies 

Chosen ML Models Data Types Used  

Disease Course 22 Bayes Network, Boosting, Decision Tree, Hierarchical Clustering, Neural Network, Partial 
Least Squares Discriminant Analysis, Random Forest, Regression, Support Vector Machine 

Clinical, Gene Expression, Genetic, Imaging, 
Metabolomic, Metatranscriptomic, Microbiome 

Diagnosis 18 Boosting, Hierarchical Clustering, Neural Network, Random Forest, Regression, Support 
Vector Machine 

Gene Expression, Genetic, Imaging, Metabolomic, 
Microbiome 

Disease Severity 16 Bayes Network, Boosting, Decision Tree, Hierarchical Clustering, Intelligent Monitoring, 
Neural Network, Regression, Support Vector Machine 

Clinical, Gene Expression, Genetic, Imaging, Protein 
Biomarkers  

Disease Subtype 8 Boosting, Hierarchical Clustering, Random Forest, Similarity Network Fusion Clustering, 
Support Vector Machine 

Clinical, Gene Expression, Metabolomic, Microbiome 

Treatment 
Response 

7 Neural Network, Random Forest Clinical, Gene Expression, Microbiome 

Risk of Disease 6 Ensemble Model, Random Forest, Regression Clinical, Gene Expression, Genetic 

Patient Clustering 4 Gaussian Mixture Model, Hierarchical Clustering, Latent Dirichlet Allocation, Neural Network Immunoassay, Metagenomic, Online Posts, 
Questionnaire 

Medication 
Adherence 

1 Support Vector Machine Clinical 

Metabolite 
Abundance 

1 Sparse Neural Encoder-Decoder Network Metabolomic, Microbiome 

Identification of 
Patients 

1 Natural Language Processing Clinical 
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The majority of included studies employed supervised ML, with four papers using unsupervised 

methods [391, 495-497], and five utilising both ML types [254, 498-501]. Many studies compared 

multiple ML algorithms before selecting the optimal method, and some researchers investigated 

using ML for multiple clinical problems. Three main areas of investigation using ML methods were 

identified: diagnosis (23%) [262, 272, 437, 440, 441, 498, 502-513], disease course (28%) [432, 

433, 435, 498, 509, 514-530] and disease severity (21%) [255, 271, 434, 485, 501, 531-541]. 

Diagnosis was defined for this review as classification of IBD patients (or a subtype) and controls. 

ML for disease course involved applications of algorithms to remission, relapse and surgery. 

Studies on IBD activity, or predicting the development of complications, were included in the 

disease severity category. The most prevalent ML method was random forest (47%); regressions, 

neural networks and support vector machines were also utilised often (31%, 28% and 27%, 

respectively, Figure 70). Other tree-based methods were trialled in 22% of research papers (13% 

tree-based boosting, 9% decision trees). Percentages here sum to over 100% because multiple 

methods were tested per study. 

 

Figure 70 Sunburst of machine learning methods and the classification tasks used in conjunction 

with them. Categories labelled with black text have one paper associated with them.  
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In terms of data types, the most commonly used were clinical (41%) and microbiome (23%) 

datasets. The median sample size of data used for training and testing, which excludes datasets 

that were used for additional validation, was 263 (range 12 – 7,4000,000). Figure 71 details 

sample sizes for each ML method group. Only 5% of studies utilised validation datasets in addition 

to using the expected training and testing datasets [496, 511, 518, 542]. Separately, seven studies 

chose to train ML algorithms with cross-validation on one dataset, and then test the trained 

model on an external, independent validation dataset [440, 505, 522, 532, 534, 538, 543]. Not all 

studies investigated the same type of cohort: 27 had a dataset of only CD patients [271, 433, 435, 

437-441, 485, 496, 500, 501, 508, 511, 514-516, 518, 521, 524, 525, 533, 536, 544-547], 15 used 

only UC data [255, 260, 507, 517, 519, 523, 526, 529, 532, 534, 535, 537, 540, 541, 548], and the 

remaining 36 used a mix of CD and UC data, either labelled as their subtype or as IBD [254, 262, 

272, 391, 432, 434, 436, 495, 497-499, 502-506, 509, 510, 512, 513, 520, 522, 527, 528, 530, 531, 

538, 539, 542, 543, 549-554]. Half of the research on UC only data focussed on the prediction of 

disease activity from endoscopy data, but for CD data the applications of ML were more varied. 

More summary information about each paper included in the systematic review can be found in 

Supplementary Table 4.  

 

Figure 71 Sample sizes used for each group of machine learning methods. BN = Bayes Network, DT 

= Decision Tree, NN = Neural Network, RF = random forest, SVM = support vector 

machine. Note that 10 outlier entries (sample sizes 20,368-7,400,000) in the Neural 

Network category have been excluded from the visualisation. 
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8.3.1 Comparison with the systematic review of AI for autoimmune disease 

The systematic search for the previous review was completed on the 18th of December 2018. 

Therefore, to assess the changes in the field since, studies published before and during 2018 were 

compared to those published from 2019 to the 6th of May 2021. In the intervening 2.3 years, 53 

research studies have been published (an increase of 68%). One method’s usage has rapidly 

increased in comparison to earlier work: neural networks, the deep learning-based method, were 

used in 21 studies from 2019 onwards, and only in one study prior to this. This method was often 

applied to imaging datasets, and as such this increase in neural network usage coincides with an 

increase in those types of datasets, (4% 2007-2018, 18% 2019- May 2021), particularly 

colonoscopy imaging data. Support vector machines, random forests and regression-based 

methods were all popular in both time periods (ML group method usage by year in Figure 72). The 

studies from 2019 onwards used two data types as variables in their ML pipelines more frequently 

(8% 2007-2018, 17% 2019-May 2021), almost always by using clinical data alongside another data 

type. Since 2018, the median sample size has not increased, as it was 273 prior to 2019, and is 

257.5 for the set of studies published between 2019 and May 2021. In both time periods diagnosis 

was a popular application, but previously treatment response was more popular (24% 2007-2018, 

1.8% 2019-May 2021), and now applications of ML to disease course questions is the most 

popular application (12% 2007-2018, 35.8% 2019-May 2021). 
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Figure 72 Implementation of machine learning methods over time, incomplete data for 2021 

(includes data up to and including May 2021). 

8.4 Discussion 

The explosion of ML usage for IBD detailed here reflects the wider interest in AI for medicine. 

There was a great deal of heterogeneity in the clinical tasks ML was applied to, the data used and 

the ML methods themselves, but there was also heterogeneity beyond what was documented for 

this review. ML pipelines vary hugely. Some used feature selection and some did not, and when 

feature selection methods were used there were a wide array of methods. Additionally, 

hyperparameter tuning was not undertaken in all research papers, which can potentially affect 

model performance. Furthermore, datasets can be processed in different ways prior to ML. This is 

particularly relevant for ‘omics datasets. These factors mean that it is not possible to conclude 

that one approach is superior. In fact, it is probable that the superior approach will be different, 

from one combination of clinical task and data type to another. In future systematic reviews, it 

may be beneficial to document the data transformation, feature selection, and hyperparameter 

tuning methods used alongside the ML method. All three can affect the generalisability and utility 

of ML algorithms. These aspects may also become more pertinent to the translation of models to 

the clinical setting if in the future particular ML methods are shown to be superior for specific 

data types. 
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It is possible that the search strategy used may have led to the exclusion of some studies from the 

review, as only free text searches were performed, and Medical Subject Headings (MeSH) were 

not. However, when the subject heading “machine learning” was exploded, (OvidSP’s term for 

including all terms related to the search term) the only additional sub-heading was “support 

vector machine”. Therefore, exploding out this MeSH term could have biased the search strategy, 

as it would only identify additional papers using this specific method. Another possible approach 

to this search strategy could have been to search for each main ML method separately, alongside 

the broad “artificial intelligence” and “machine learning” terms. However, performing searches 

for “regression” would have produced too many records to assess. No risk of bias assessment was 

performed for each paper here, as there is no clear equivalent of PROBAST (Prediction model Risk 

of Bias Assessment Tool) for the evaluation of ML modelling. The construction of such a tool 

would be useful for the assessment of ML modelling, particularly one geared towards ML 

applications for clinical settings. A discussion of the reduction of bias in ML models shares many 

similarities with the discussion of the generalisability of ML models, as a model that is not 

generalisable would be biased towards the dataset it was created with. Therefore, ways to assess 

generalisability, and overall improvements that could be made to ML pipelines are addressed in 

the remainder of the discussion.  

Tree-based ML methods were abundant in the studies that met the criteria for inclusion: one or 

more of random forests, decision trees, and tree-based boosting were implemented by 55% of 

research papers. Trees can be advantageous for clinical applications, as they are highly 

interpretable. The use of boosting and random forest (which contains many bootstrapped trees), 

exchanges some of this interpretability for an ML model that is less prone to overfitting, and so 

more generalisable. Random forests are also well known as an algorithm that can leverage non-

linear relationships between dataset features. This popularity is not inherently troublesome, but a 

deficit of comparisons of different ML methods to random forest where appropriate, or an 

absence of reporting these comparisons could make developing these ML pipelines for clinical 

applications more challenging. 

Overall a good range of informative metrics regarding the performance of ML algorithms were 

reported in the included studies. This was a much-needed change from the previous review, 

where it was noted that some studies only reported accuracy (although this observation was 

made for all autoimmune disease ML models, not IBD specifically). Reporting metrics such as 

sensitivity, specificity, AUC and F1 was particularly important where data with imbalanced classes 

was used. This is because high accuracy can mask poor prediction for individuals in the minority 
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class, and often for these clinical problems the minority class will be the class with the IBD 

complication, or more severe disease. Some studies attempted to correct imbalanced data 

through algorithm weighting [549], or by oversampling the minority class [433, 537]. However, 

some studies did not explicitly address their imbalanced data. While datasets are often 

imbalanced (because this represents the nature of the patient population) it is always key to 

evaluate if enough samples from each class were present in the training data so that well-

informed predictions could be made by the ML algorithm for both the classes. Another potential 

ML pipeline issue identified in some of the research studies included here was applying feature 

selection to the whole dataset, as opposed to only the training dataset. By doing this, information 

on the characteristics of the features in the test set could leak through to the training set, biasing 

the ML model.  

In comparison to the previous systematic review, the use of independent validation datasets 

alongside training and testing data did not increase. However, other interesting approaches to 

maximise dataset usage were observed. Some studies used a leave-one-dataset-out approach, 

which uses cross-validation principles to utilise many smaller datasets in ML training [508, 551], 

while other studies compensated for relatively small datasets by training an ML algorithm with 

cross-validation on one dataset and testing this model on an external dataset [440, 505, 522, 532, 

534, 538, 543]. The range of total dataset sizes was vast, and some of these small sample sizes 

may not have been sufficient for the chosen ML method. However, it can be difficult to evaluate if 

the sample size is adequate because this varies depending on the ML task, as well as the method, 

and there is no standard power calculation for ML algorithms. Algorithms such as neural networks 

require more data, and as shown in Figure 71, these methods did have the largest datasets. In 

addition, the number of features used will also affect the sample size that is necessary to 

generate a generalisable model. More features will generally result in a more complex model, so 

for the algorithm to accurately detect these patterns larger datasets are necessary. If an ML 

model generalises well from training to testing data (and/or independent data), this is indicative 

that the dataset size was sufficient. However, it is also key to evaluate how representative the 

dataset is of the wider patient population. An ML algorithm may achieve good results on the 

testing data, but upon application to external datasets may perform poorly, because the patterns 

the ML model previously detected are not representative.  

Diagnosis was still a popular application for the period 2019-May 2021. However, the largest 

cluster of papers in this latest time period examined questions surrounding disease course. This is 

encouraging, as there is a move away from the less clinically useful task of classifying patients 

from healthy controls, and a move towards solving questions that will have a larger impact on 

patients’ quality of life. It also suggests a trend towards more comprehensive patient data 
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collection, with deep phenotyping data allowing for the creation of these ML classifiers. It was 

surprising that the median dataset size had not increased in recent years, especially as 

increasingly large datasets are a supposed hallmark of this current era of research. It is potentially 

difficult to gather such data because it requires the linking of many variables, including laboratory, 

clinical and ‘omics data, with the phenotypic outcome it is desirable to predict. It is also 

challenging to link together data from different studies, as different variables can be collected by 

each study. A community effort may be required to accumulate the dataset sizes necessary for 

high-performance, generalisable ML algorithms. Large datasets are also required for further 

validation. Initiatives such as UK BioBank [487] and the Gut Reaction database [382] could be 

instrumental in progressing the creation of new ML pipelines. By utilising these kinds of data, 

along with robust pipelines and generalisable ML models, this advances personalised medicine for 

IBD patients. 
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Chapter 9 Summary and future research 

This thesis has sought to find and utilise novel approaches for the stratification of IBD patients. 

Oxidative stress and antioxidant potential assay data were investigated for correlations with 

patient characteristics and clinical data, and their link to variation in associated genes was also 

analysed. Both classification- and regression-based ML approaches were implemented to stratify 

patients using their whole exome sequencing data, transformed into the pathogenicity burden 

score GenePy. Random forest classified IBD patients by their disease subtype, and CD patients by 

the presence or absence of a stricturing endotype. Random survival forest was subsequently also 

utilised for CD patient stratification by stricturing endotype development. 

During ML modelling of IBD disease subtypes, and subsequent analysis, NOD2 was confirmed as 

the strongest discriminatory gene. NOD2’s effect on classification was amplified after the 

hyperparameters of the subtype model had been tuned. No other gene had the same 

discriminatory power in the subtype ML model, or in any other model. This disease subtype ML 

model achieved the best performance with an autoimmune gene panel. This included a better 

performance than an IBD panel containing genes known to cause monogenic forms of IBD and loci 

discovered through GWAS, which indicates there are potentially new susceptibility genes to 

uncover. A potential hypothesis for the reason NOD2 is a strong predictor is that this is a gene 

known to contribute to CD development in both a monogenic [5] and polygenic [2, 3] way. This 

suggests that all NOD2 variation should be considered for potential clinical investigation, and not 

just the most common and well known polymorphisms. Through the subtype ML modelling and 

subsequent explainability from SHAP values an interesting relationship between pathogenic 

variation and classification was revealed. Despite potentially pathogenic variation conveyed 

through high GenePy scores being associated with discriminating CD cases through SHAP values, 

the subtype model was more sensitive to identifying UC cases. This suggested that lack of 

genomic variation was one of the more useful signals in discriminating between the two subtypes. 

This also provides evidence for the argument that CD is more genetically heterogeneous than first 

thought, with the existence of potential genetic subgroups within this disease subtype. The CD 

subtype could benefit from further stratification. In relation to the stricturing endotype classifier, 

it was thought this would achieve a better performance. It was hypothesised that the stricturing 

endotype could be a genetic subgroup within the CD subtype. In fact, stricturing endotype 

classification turned out to be very challenging, and the stricturing and not-stricturing endotypes 

were indistinct because of shorter follow-up in a proportion of the cohort. It was hoped that 
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further modelling with random survival forest could improve results, as follow-up time became 

integral to the model. However, overfitting and RSF model instability indicated that this modelling 

was limited by the size of the patient data set. Overall, AUCs achieved in the disease subtype and 

stricturing endotype binary classifiers were good (both achieving an AUC of 0.66 after 

hyperparameter tuning in Chapter 6). However, because the testing AUCs produced weren’t high 

enough to have high confidence in generalisability of the models, there was an inability to draw 

any conclusions regarding new genes and pathways that were involved in stricturing endotype or 

disease subtype classification. In order to investigate this in the future, unsupervised learning 

could be employed for gene and pathway investigations, and because this would be agnostic to 

clinical labels, new genetic subgroups could be found in tandem.  

As exemplified in the two systematic reviews included in this thesis, this interdisciplinary field, 

which applies computational methods to big data for patient benefit, is rapidly evolving and 

dynamic. Over the relatively short period of my PhD studentship, the implementation of these 

algorithms has shifted from having straightforward aims of classifying healthy controls and 

individuals with disease, to a focus on disease course and severity. The latter models are more 

likely to provide useful decision support when translated to a clinical setting. In addition, there 

has been a shift towards the use of the deep learning method neural networks for imaging data in 

recent years; many of these ML pipelines were focused on disease severity prediction from 

colonoscopy images in UC patients. There may be an uplift in the performance of ML algorithms 

as datasets grow. In addition, implementation of more ensemble ML algorithms have the 

potential to increase performance [555, 556]. Figure 73 shows AUCs achieved by comparable ML 

models (testing AUC information was available) for subtype classification identified through the 

systematic reviews conducted, alongside the results obtained through this research.  
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Figure 73 Bar plot of IBD subtype machine learning classifiers identified during Chapter 8’s 

systematic review, that could be compared to the subtype classifier constructed in 

the previous chapters. 

Alongside the strides made in methods used, and the more complex clinical research questions, 

there has been an increase in the availability of large genomic datasets. Genomics England data 

has recently become publicly available, and the number of exomes included in UK Biobank 

datasets has been increasingly regularly. The National Institute of Health Research Gut Reaction 

database is an IBD-specific resource that is now available, and provides curated data resources, 

including clinical and genomic data. Locally, on a smaller scale than national-level genomic 

cohorts, the Southampton IBD cohort has more than doubled with the inclusion of over 500 adult 

IBD exomes. This is, in part, due to the decreasing costs of sequencing. In tandem, the 

bioinformatic tools that are available to annotate these data are refined and improved, and novel 

software is introduced into the lexicon. This includes the 2018 update of gnomAD v.2.1, primarily 

used for allele frequency, followed by the gnomAD v.3 release in 2019 which was able to provide 

better allele frequency annotation for whole genome sequencing data than the previous release. 

In addition, CADD has been upgraded three times between 2018 and 2022, with the last update 

incorporating splicing annotations from SpliceAI [363]. There are also new ensemble 

pathogenicity predictors, such as BayesDel [557] and REVEL [558], which may provide more 

precise predictions than CADD [559]. The ability to annotate these large genomic datasets is 

critical to their interpretation, and any subsequent machine learning analysis. The possibilities for 
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the analyses of these datasets, when they are growing constantly, and annotations are becoming 

ever more sophisticated, are incredibly exciting. However, there are also some challenges 

associated with these changes, and improvements that are still outstanding. 

As the number of individuals included in each dataset increases, alignment, joint calling and 

annotation of genomic data becomes increasingly computationally expensive and intensive. As a 

result, new pipelines have been developed, such as Illumina and the Broad Institute’s DRAGEN-

GATK, which can be run utilising cloud computing. The commercial version of DRAGEN-GATK is 

purported to be a fast joint-caller for samples [560, 561]. One of the main advantages of cloud 

computing is its scalability: the amount of computational resources available can be increased to 

meet the demand of each processing step. Then, once processing has been completed, resources 

are no longer required. Therefore, many processes can be performed in parallel. Cloud computing 

is now necessary for some processing of big genomic data [562]. Currently, the processing and 

storage of genomic data is more expensive than the initial sequencing cost. With recent releases 

of UK Biobank data (the final release in July 2022 containing 470,000 individuals, of which over 

4,600 are diagnosed with IBD), there has been a shift from being able to download this data, to it 

now being stored in its own research environment (UK Biobank research analysis platform) that 

researchers can apply to access [563]. This will save research groups the storage cost of 

maintaining local copies of datasets. However, this also comes with the challenge of maintaining a 

research environment such that tools for processing and analysing genomic data are maintained, 

and new bioinformatic tools can be installed and tested in the research environment.  

In order to make full use of different genomic data sets as training and validation data sets for ML 

algorithms, it will be important to understand how technical differences in genomic data 

collection impacts the variants called. In order to combine two or more datasets as one training 

dataset for an algorithm, it is necessary to understand how differences in factors such as 

sequencing read lengths and capture kits will impact downstream data. This may result in 

patterns being detected by ML algorithms that are the result of technical, rather than biological 

differences. In addition, if two datasets, used for training and validation respectively, contain 

technical differences, it will be important to assess if an ML model’s generalisability across 

datasets is impacted by these differences.  

Machine learning results, particularly those in Chapter 7 using random survival forest, showed 

that data sparsity can be an obstacle to precise prediction when utilising genomic data. This 

exemplifies the necessity of summary scoring systems such as GenePy, which reduce the 

dimensionality of datasets. Sparsity will also potentially increase as the number of individuals 

included increases, with more rare and de novo variation called in data processing. The GenePy 
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algorithm has a key advantage over other previously discussed scoring systems, because it 

synthesises predictors of pathogenicity together with zygosity and allele frequency. In contrast, 

these other methods used only zygosity, variant consequence, and gene associations present in 

literature [440, 441]. However, one of the main disadvantages of GenePy is that it is currently 

formulated to only score bi-allelic variants. As cohort sizes increase, it is inevitable that variant 

sites will increasingly become multiallelic. Therefore, developing GenePy into an algorithm that 

can be utilised for tri-allelic variation and beyond will be paramount. Another limitation of GenePy 

comes from the raw data, as opposed to the construction of its algorithm. With short-read, high-

throughput sequencing data, the phase of called variants cannot be determined. Therefore, 

compound heterozygosity cannot be factored into a summary score. There have been great 

strides in the accuracy of long range sequencing. The size of each read – Oxford Nanopore 

technology averages between 10 and 30 kilo base pairs per read [564] – means that determining 

phase, that is whether two variants are on the same, or different copies of a gene, is possible. 

Phase information is not only helpful for deducing compound heterozygosity, but also for 

assessing how impactful multiple gene variants could be on downstream protein function. With 

phasing information available, it will be possible to more accurately reflect each gene’s 

mutational burden in scoring systems such as GenePy. Where variants that are predicted to be 

pathogenic occur on both chromosomes these scores could be upweighted, and the score 

reduced where these variants occur on only one chromosome. The quality of data used in ML 

pipelines understandably has an effect on the performance and generalisability of the resulting 

ML models. By generating GenePy scores that more accurately reflect each patient’s genomic 

profile, there is potential to better stratify patients with ML algorithms. Looking forward, it will be 

important to consider different pathogenicity predictors to CADD, as described above. In addition, 

new pathogenicity burden score algorithms may be developed. These could either replace GenePy 

entirely, or GenePy could be re-developed by incorporating methods that other scoring 

algorithms utilise. 

The work of this thesis primarily focused on the clinical classification tasks of stratifying patients 

by disease subtype and by stricturing endotype. There are a number of useful clinical 

classifications that were not addressed. One of these could be the prediction of the penetrating 

endotype, where a fistula develops, leading to abnormal connections between passages of the 

gastrointestinal tract, or the gastrointestinal tract and the skin. As with the stricturing endotype, 

this can also require surgery. The main challenge with this type of approach, as discussed in 

Chapter 5, is mining the free text of clinical reports and letters to accurately capture each 

patient’s stricturing or penetrating status to train ML algorithms. A potential alternative is to 
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utilise the standard surgery codes, Operating Procedure Codes Supplement 4 (OPCS-4) 

classification of interventions and procedures, that are implemented by the National Health 

Service. Surgery could then be used as an indicator of severe disease. Alternatively, particular 

surgeries can be a reasonable proxy for an endotype. For example, many patients with a 

stricturing endotype will have undergone a right hemicolectomy. Here, precision of phenotype is 

traded-off for standardised outcome data, which makes validating an ML algorithm on external 

data easier, and more suitable to widespread clinical implementation. 

It should also be acknowledged that utilising a classification framework may not be the best 

approach for fully understanding the aetiology of each patient’s inflammatory bowel disease. 

Work in Chapter 7 using random survival forest revealed that stratification of patients based on 

the more specific stricturing endotype was challenging for a number of reasons. Firstly, 

development of this endotype at any point in a patient’s disease course necessitated a regression-

style approach which results in more complex model construction than a binary classifier. 

Secondly, there was a smaller dataset, and finally the underlying genomic heterogeneity within 

the cohort appeared to be greater than anticipated. Therefore, unsupervised ML algorithms may 

be an approach whereby patients can be grouped according to their shared causal molecular 

mechanisms. This could enable the discovery of IBD patient subgroups that are more accurate to 

disease course than the traditional subgroups of CD and UC. This discovery-based approach is 

potentially more useful for the ultimate aim of personalised medicine, where patients can be 

given treatment that is tailored to their disease mechanism. For example, the small molecule JAK-

inhibitor drugs, which act to inhibit the unnecessary activation of the pro-inflammatory JAK-STAT 

signalling pathway [457]. However, it is less suited to the interim aim of more accurate patient 

care by stratifying patients into groups based on their IBD phenotype, surgery likelihood, or non-

response to specific treatment. Classification based methods are more suited to this stratification, 

and can provide clinicians decision support. Therefore, both types of ML have a role to play in 

understanding IBD, and stratifying patients. 

Key to the future implementation of ML for patients to enable personalised medicine, will be high 

quality patient data. This involves: 1) initial data gathering; 2) updating data; particularly for 

longitudinal analyses; and 3) linking datasets together. The latter is crucial for the incorporation of 

any ‘omic dataset into an ML pipeline for patient stratification. However, data that can be linked 

needs to be secured in federated systems that protect patients, while also enabling researchers to 

make full use of data. A federated network, where multiple datasets can be queried and analysed, 

without that data leaving the node it is stored in, has already been discussed and implemented 

for health data [565, 566]. Alongside this, education for the public needs to be delivered so that 

patients are reassured about the security of data storage. Education and communication with the 
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public and clinicians alike will also be necessary for any widespread implementation of ML 

algorithms as decision support tools. These ML tools will also need to work for multi-ethnic 

societies, and this is a particular problem with genomic datasets, where the majority of recruited 

individuals are of European ancestry. 

Machine learning modelling conducted throughout has established that there are persisting gaps 

in knowledge of the genomics of IBD, and a reliance on clinical phenotypes may impede the ability 

to uncover more detail regarding IBD genomics. The RF modelling results here strongly imply that 

there is considerable genomic variability, not just between CD and UC, and stricturing and not-

stricturing endotype, but also intra-group genomic variability. This provides an argument for 

genomic investigation as standard, as this could lead to the identification of new genes and 

variants connected to specific IBD manifestations, particularly for all paediatric patients who are 

more likely to have an unusual IBD presentation [567]. While some progress towards patient 

stratification h 

as been made here with proof of concept for genomics classifying patients by disease subtype and 

stricturing endotype, more needs to be done to achieve stratification and relate this stratification 

to clinical phenotypes. Given the genomic intra-group variability implied by the analysis here, a 

better approach to stratification may be to focus on individual phenotypic characteristics, for 

example colonic-only inflammation, or presenting with extraintestinal manifestations, and 

associating these with genomic subgroups uncovered through genomic investigations, 

unsupervised machine learning or other computational methods. As this interdisciplinary field 

continues to develop, it will undoubtedly be the case that novel ML algorithms will develop, and 

there may be a shift towards deep learning methods. However, these algorithms will not be able 

to reach their full predictive potential without quality input data, and deep, longitudinal patient 

phenotype data. This means that alongside algorithm development, our interpretation and 

understanding of genomics – and other ‘omic data – must improve, in order that this data can be 

integrated and transformed into formats where patterns can be more easily deduced by 

algorithms. This will enable stratified medicine, and later personalised medicine, for IBD patients, 

and other individuals with complex disease, using big data.  
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Supplementary Material 

Supplementary Table 1 List of genes currently implicated in monogenic IBD, and their 

corresponding phenotype. 

Gene Phenotype 

ADA [57] Severe combined immunodeficiency  

ADA2 [114] Cutaneous findings, neurological involvement, gastrointestinal involvement. 

ADAM17 [57] ADAM17 deficiency  

AICDA [57] Hyper IgM syndrome 

ALP1 [57] IBD 

ANKZF1 [57] Colitis 

ANO1 [92] Infantile enterocolitis and monogenic IBD 

ARPC1B [57] Wiskott Aldrich syndrome-like with intestinal inflammation 

BACH2 [115] Intestinal inflammation (lymphocyte maturation defects causing 

immunoglobulin deficiency) 

BTK [57] Agammaglobulinemia 

CARD8 [116] Crohn’s disease  

CARD9 Familial candidiasis, IBD phenotype 

CARMIL2 [568] IBD-like primary immunodeficiency  

CASP8 [569] IBD with perianal disease, stricturing and fistulising proctocolitis, deep 

ulcerations (T cell dysregulation, reduced B-class switched cells) 

CD3γ [57] Severe combined immunodeficiency 

CD40LG [57] Hyper IgM syndrome 

CD55 [119] Primary intestinal lymphangiectasia  

COL7A1 [57] Dystrophic epidermolysis bullosa 

CTLA4 [120] Crohn’s disease  
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CYBA [57] Chronic granulomatous disease 

CYBB [57] Chronic granulomatous disease 

CYBC1 [121] Chronic granulomatous disease manifesting as colitis (reduced expression of 

NADPH oxidase subunit NOX2) 

DCLRE1C [57] Severe combined immunodeficiency, Omen syndrome (Crohn’s disease-like 

inflammation) 

DKC1 [57] Hoyeraal-Hreidarsson syndrome, colitis 

DOCK2 [122] Combined immunodeficiency 

DOCK8 [57] Combined immunodeficiency, Hyper IgE syndrome 

EPCAM [57] Tufting enteropathy 

FERMT1 [57] Kindler syndrome 

FOXP3 [57] Immunodysregulation polyendocrinopathy enteropathy X-linked syndrome 

G6PC3 [57] Congenital neutropenia (Crohn’s disease-like inflammation) 

GUCY2C [57] T cell lymphopenia 

HPS1 [57] Hermansky Pudlak Syndrome (Crohn’s disease-like inflammation) 

HPS4 [57] Hermansky Pudlak Syndrome (Crohn’s disease-like inflammation) 

HPS6 [57] Hermansky Pudlak Syndrome (Crohn’s disease-like inflammation) 

HSPA1L [57] IBD (features of Crohn’s disease and ulcerative colitis) 

ICOS [57] IBD  

IKBKG [57] X linked ectodermal dysplasia and immunodeficiency 

IL10 [57] IBD 

IL10RA [57] IBD 

IL10RB [57] IBD 

IL21 [57] Common variable immune deficiency, IBD 

IL2RA [57] Combined immunodeficiency, Immunodysregulation polyendocrinopathy 

enteropathy X-linked-like syndrome 
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IL2RG [57] X-linked severe combined immunodeficiency, atypical severe combined 

immunodeficiency 

ITCH [57] Autoimmune disease, multisystem, with facial dysmorphism (ADMFD) 

ITGB2 [57] IBD 

IRF2BP2 [123] Common variable immune deficiency  

LACC1 [124] Crohn’s disease 

LIG4 [57] Severe combined immunodeficiency 

LRBA [57] Combined immunodeficiency and autoimmunity 

MALT1 [125] Intestinal inflammation, persistent cytomegalovirus 

MASP2 [57] IBD 

MEFV [57] Mediterranean Fever, IBD 

MVK [57] IBD 

NCF1 [57] Chronic granulomatous disease 

NCF2 [57] Chronic granulomatous disease 

NCF4 [57] Chronic granulomatous disease 

NFAT5 [126] Autoimmune enterocolopathy 

NLRC4 [127] Enterocolitis with periodic autoinflammation 

NOD2 [5] CD 

NPC1 [128] Niemann-Pick disease type C1 (Crohn’s disease-like) 

ORAI1 [92] Primary immunodeficiency 

OTULIN [92] Infantile enterocolitis, monogenic IBD, primary immunodeficiency 

PIK3CD [57] P13K delta syndrome 

PIK3R1 [57] Agammaglobulinemia, IBD 

PI4KA [139] Neurological disease, with IBD, multiple intestinal atresia and combined 

immunodeficiency. 
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PLA2G4A [129] Cryptogenic multifocal ulcerating stenosing enteritis 

PLCG2 [57] Phospholipase C-y2 defects 

POLA1 [130] X-linked reticulate pigmentary disorder 

PTEN [57] PTEN syndrome 

RAG1 [131] Severe combined immunodeficiency  

RAG2 [57] Severe combined immunodeficiency, Omenn syndrome 

RIPK1 [138] immunodeficiency and chronic enteropathy 

RIPK2 [92] Infantile enterocolitis and monogenic IBD 

RTEL1 [57] Hoyeraal-Hreidarsson syndrome 

SAMD9 [140] Immunodeficiency with prominent gastrointestinal tract involvement 

SIRT1 [132] IBD 

SH2D1A [57] X linked lymphoproliferative syndrome 1 

SKIV2L [57] Trichohepatoenteric syndrome 

SLC26A3 [133] Congenital chloride diarrhoea, epithelial barrier dysfunction 

SLC37A4 [57] IBD 

SLC9A3 [57] Congenital sodium diarrhea 

SLCO2A1 [57] Primary hypertrophic osteoarthropathy 

STAT1 [57] Combined immunodeficiency 

STAT3 [134] Early onset autoimmune disease 

STIM1 [141] Immunodeficiency 10 

STXBP2 [57] Familial hemophagocytic lymphohistiocytosis type 5 

STXBP3 [135] IBD, immunodeficiency, severe bilateral sensorineural hearing loss 

SYK [142] Chronic Colitis 

TGFB1 [136] IBD and central nervous system disease 

TGFBR1 [57] Loeys Dietz syndrome 

TGFBR2 [57] Loeys Dietz syndrome 
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TNFAIP3 [57] Behcet like disorder 

TRIM22 [57] IBD (Granulomatous colitis) 

TRNT1 [57] Colitis 

TTC37 [57] Trichohepatoenteric syndrome 

TTC7A [57] Familial diarrhoea 

TYMP [137] Mitochondrial neurogastrointestinal encephalopathy (Crohn’s disease-like) 

WAS [57] Wiskott Aldrich syndrome -like phenotype with intestinal inflammation 

WIPF1 [92] Primary immunodeficiency 

XIAP [57] X linked lymphoproliferative syndrome 

ZAP70 [57] Combined Immunodeficiency, severe combined immunodeficiency 

ZBTB24 [57] IBD 
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Supplementary Table 2 Detailed information for each study included in the systematic review of artificial intelligence and machine learning applied to autoimmune 

disease. Studies grouped by autoimmune disease. 

AA=Alopecia Areata, ACPA = Anti-Citrullinated Peptide Antibodies, AI = Renal Pathology Acute Index, AID = Autoimmune Disease, AUC = Area under the ROC 

Curve, axSpA = Axial Spondyloarthritis, CeD = Coeliac Disease, CFS = Chronic Fatigue Syndrome, CGM = Continuous Glucose Monitoring, CI = Renal Pathology 

Chronic Index, CIS = Clinically Isolated Syndrome, COPD = Chronic Obstructive Pulmonary Disease, CD = Crohn’s Disease, D-IBS = Diarrhoea-Predominant 

Irritable Bowel Syndrome, EDSS = Expanded Disability Status Scale, EHR = Electronic Health Record, EMR = Electronic Medical Record, FP = False Positive, 

GWAS = Genome Wide Association Study, HC = Healthy Controls, IBD = Inflammatory Bowel Disease, LASSO = Least Absolute Shrinkage and Selection 

Operator, LDA = Linear Discriminant Analysis, LH-PCR = Length Heterogeneity Profile or Fingerprint, ME = Myalgic Encephalomyelitis, MF = Mycosis 

Fungoides, MFI = Motor Function Impaired, MFP = Motor Function Preserved, MLP = Multilayer Perceptron, MRI = Magnetic Resonance Imaging, MS = 

Multiple Sclerosis, OA = Osteoarthritis, OND = Other neurological diseases, P = Psoriasis, PAFS =  Psoriasis and Psoriatic Arthritis Follow-up Study, PAPS = 

Primary Antiphospholipid Syndrome, PPMS = Primary Progressive Multiple Sclerosis, PRMS = Progressive Relapsing Multiple Sclerosis, PsA = Psoriatic 

Arthritis, PsC = Cutaneous-only Psoriasis, PSC = Primary Sclerosing Cholangitis, PsV = Psoriasis Vulgaris, RA = Rheumatoid Arthritis, RBC = Red Blood Cell, RF = 

Random Forest, RSME = Root Mean Square Error, RRMS = Relapsing Remitting Multiple Sclerosis, SLE = Systemic Lupus Erythematosus, SNP = Single 

Nucleotide Polymorphism, SpA = Spondyloarthropathy, SPMS = Secondary Progressive Multiple Sclerosis, SSc = Systemic Sclerosis, SVM = Support Vector 

Machine, T1D = Type 1 Diabetes, T2D = Type 2 Diabetes, UC = Ulcerative Colitis, VOC = Volatile Organic Compound. 

Paper Multiple 
AIDs 
Studied 

Prediction or 
Classification 
Task 

ML Type Machine Learning 
Method 

Study Size (N) Type of Data Best Results (Metrics) Reported from 
validation or cross-validation, and 
where conducted, the test set. 

Cross-
Validation 

Multiple Sclerosis 
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Prediction or 
Classification 
Task 

ML Type Machine Learning 
Method 

Study Size (N) Type of Data Best Results (Metrics) Reported from 
validation or cross-validation, and 
where conducted, the test set. 

Cross-
Validation 

Briggs et al. 
2019 [180] 

No Disease Progression Supervised Multivariable Regression N=1515  Clinical, Survey and  
Genetic Data 

. 10-fold cross-
validation 

Ahmadi et 
al. 2019 
[181] 

No Diagnosis Supervised Neural Network N=12 (n(MS)=5, n(HC)=7) Clinical Data Colour task: Accuracy=91%, Sensitivity=83%, 
Specificity=96%.  
Direction Task: Accuracy=90%, Sensitivity=82%, 
Specificity=96%. 

Leave-one-out 
cross-validation 

Zhang et al. 
2019 [182] 

No Disease Progression Supervised Random Forest  N=84 MRI Data Shape Based: AUC=0·85, Sensitivity=0·94, 
Specificity=0·5.  
Shape based with lesion segmentation tool: 
AUC=0·82, Sensitivity=0·95, Specificity=0·33 

3-fold cross-
validation 

Zurita et al. 
2018 [183] 

No Diagnosis Supervised Support Vector Machine  N=150 (n(RRMS)=104, n(HC)=46) MRI Data RRMS vs HC: Accuracy=87·8%, Precision=89·7%, 
Sensitivity=88%, Specificity=87·6%.  
RRMS (EDSS > 1·5) vs HC: Accuracy=88·6%, 
Precision=91·6%, Sensitivity=87·5%, 
Specificity=89·8%.  

10-fold cross-
validation 

Wang et al. 
2018 [184] 

No Diagnosis  Supervised Neural Network  N=1357 (n(MS)=676, n(HC)=681) 
images.  
N=64 (n(MS)=38, n(HC)=26) patients 

MRI Data Accuracy=98·77, Precision=98·75, 
Sensitivity=98·77%, Specificity=98·76% 

Hold-out validation 

Neeb et al. 
2018 [185] 

No Diagnosis Supervised k Nearest Neighbours N=97 (n(MS)=52, n(HC)=45) MRI Data Data not affected by motion: False prediction 
rate=16·3%.  
All data: False prediction rate=25·5% 

Leave-one-out 
cross-validation 

Lotsch et al. 
2018 [186] 

No Diagnosis Supervised and 
Unsupervised 

Emergent self-organising 
maps, Random Forest  

N=403 (n(MS)=102, n(HC)=301) Lipid Marker Data  ESOM balanced accuracy=98%.  
Random forest: AUC=100%, Area under the 
precision recall curve=98·87%, Balanced 
accuracy=100%, Sensitivity=100%, 
Specificity=100% 

Nested cross-
validation 

Tacchella et 
al. 2017 
[187] 

No Disease Progression Supervised Random Forest/Human 
Rating Hybrid  

N=84 Clinical Data AUC=0·725 (180 days), 0·694 (360 days), 0·696 
(720 days) 

Leave-one-out 
cross-validation 
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Study Size (N) Type of Data Best Results (Metrics) Reported from 
validation or cross-validation, and 
where conducted, the test set. 

Cross-
Validation 

Lopez et al. 
2018 [188] 

No Disease Subtype  Unsupervised Agglomerative 
hierarchical clustering 
algorithm 

N=191 SNP Data Rand Index=0·96 10-fold cross-
validation 

Supratak et 
al. 2018 
[189]  

No  Risk of Disease Supervised Support Vector 
Regression  

N=32 Gait Speed Data R-value=0·98 . (Individual 
models) 

Sacca  et al. 
2018 [190] 

No Early Diagnosis  Supervised Random Forest or Support 
Vector Machine  

N=37 (n(RRMS)=18, n(HC)=19) MRI Data  Accuracy=85·7%, Sensitivity=100%, 
Specificity=66·7% (SVM and RF) 

5-fold cross-
validation 

Mowry et al. 
2018 [191]  

No Risk of Disease Supervised Logistic Regression N=6552 (n(MS)=3276, n(HC)=3276) Clinical/Survey and 
Genetic (HLA) Data 

. 10-fold cross-
validation (tuning 
parameter only) 

Yoo et al. 
2018 [192] 

No Early Diagnosis  Supervised and 
Unsupervised 

Deep Learning, LASSO and 
Random Forest  

N=99 (n(RRMS)=55, n(HC)=44) MRI Data  AUC=88·0% Accuracy=87·9% Sensitivity=87·3%, 
Specificity=88·6% 

11-fold cross-
validation 

Kiiski et al. 
2018 [193] 

No Disease Progression Supervised Machine Learning 
approach with Penalised 
Linear Regression 

N=78 (n(MS)=35 (22 RRMS, 13 
SPMS), n(HC)=43) 

Clinical Data Cognitive functioning: r-value 0·35 (baseline), 0·44 
(13 months).  
Processing Speed and Working Memory: r-value 
0·27 (baseline), 0·39 (13 months) 

10-fold cross 
validation, nested 
cross validation 

Fiorini et al. 
2015 [194] 

No  Disease Subtype Supervised Ordinary Least Squares 
Regression or Regularised 
Least Squares Regression  

N=457 (n(RRMS)=170, n(SPMS)=205, 
n(PPMS)=68, n(PRMS)=8, 
n(Benign)=6) 

Clinical Scales, 
Patient Reported 
Outcomes 
(anthropometric 
and questionnaires) 
Data. 

Accuracy=78·32 (Ordinary least squares), 78·24 
(regularised least squares), F1 score=0·701 
(Ordinary least squares), 0·702 (regularised least 
squares) 

Hold-out validation, 
testing set 

Zhong et al. 
2017 [195] 

No Disease Progression Supervised Support Vector Machine N=72 (n(MFP)=26, n(MFI)=25, 
n(HC)=21) 

MRI Data HC vs MFI: AUC=0·9448, Accuracy=88·34%, 
Sensitivity=96·00%, Specificity=85·71%.  
HC vs MFP: AUC=0·8416, Accuracy=84·16%, 
Sensitivity=88·46%, Specificity=85·71%.  

Leave-one-out 
cross-validation 
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where conducted, the test set. 

Cross-
Validation 

MFP vs MFI: AUC=0·8338, Accuracy=85·61%, 
Sensitivity=92%, Specificity=84·62%. 

Lotsch et al. 
2017 [196]  

No Diagnosis Unsupervised Emergent self-organising 
feature maps  

N=403 (n(MS)=102, n(HC)=301) Clinical (Lipid 
Serum) Data 

Balanced Accuracy=94·6%, Sensitivity=89·2%, 
Specificity=100% 

. 

Karaca et al. 
2017 [197] 

No Disease Subtype  Supervised Convex Infinite Kernel 
Approach (CIKA) 

N=139 (n(MS)=120, n(HC)19) MRI and EDSS Data Accuracy=0·8889 10-fold cross-
validation 

Ostmeyer et 
al. 2017 
[198] 

No Diagnosis Supervised Logistic Regression Model N=125 (n(train)=71 RRMS + 12 OND; 
n(val)=60 RRMS + 42 OND) 

Clinical (Immune 
Repertoire) Data 

Cross-validation: Accuracy=87% 
Independent Test Data: AUC=0·75, Accuracy=72%  

Leave-one-out 
cross-validation, 
independent test 
data 

McGinnis et 
al. 2017 
[199]  

No Disease Progression Supervised Support Vector 
Regression  

N=47  Gait Measurement 
Data 

RMSE 0·14m/s Leave-one-subject-
out cross-validation 

Zhao et al. 
2017 [200]  

No Disease Progression Supervised Support Vector Machine  N=1693 Clinical and MRI 
Data 

G0: Accuracy=0·67, Sensitivity=0·81, 
Specificity=0·59. 
G1: Accuracy=0·68, Sensitivity=0·82, 
Specificity=0·58. 
G2: Accuracy=0·65, Sensitivity=0·80, 
Specificity=0·57. 
G3: Accuracy=0·54, Sensitivity=0·52, 
Specificity=0·55. 

10-fold cross-
validation 

Ion-
Margineanu 
et al. 2017 
[201] 

No Disease Subtype Supervised Linear Discriminant 
Analysis, Random Forest 
or Support Vector 
Machine  

N=105 (n(MS)=87, n(HC)=18) Clinical and MRI 
Data  

CIS vs RR: Balanced accuracy=85%, 
Sensitivity=87%, Specificity=83% (SVM). 
CIS vs RR+SP: Balanced accuracy=92%, 
Sensitivity=93%, Specificity=90% (SVM).  
RR vs PP: Balanced accuracy=81% (SVM and LDA), 
Sensitivity=76%, Specificity=86% (SVM), 
Sensitivity=84%, Specificity=78% (LDA).  
RR vs SP: Balanced accuracy=87%, 
Sensitivity=85%, Specificity=88% (SVM)  

Leave-one-patient-
out cross-validation 
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Cross-
Validation 

Kocevar et 
al. 2016 
[202] 

No Disease Subtype Supervised Support Vector Machine N=90 (n(MS)=64, n(HC)=26) MRI Data HC vs CIS: F-Measure=91·8%, Precision=92%, 
Recall=91·7%.  
CIS vs RR: F-Measure=91·8%, Precision=92%, 
Recall=91·7%.  
RR vs PP: F-Measure=75·6%, Precision=75·6%, 
Recall=75·6%.  
RR vs SP: F-Measure=85·4%, Precision=85·5%, 
Recall=85·4%.  
SP vs PP: F-Measure=66·7%, Precision=67·5, 
Recall=65·9.  
CIS vs RR vs SP: F-Measure=70·6%, 
Precision=71·3%, Recall=70·0% 

10-fold cross-
validation 

Kosa et al. 
2016 [203]  

No Disease Progression  Supervised CombiWISE (algorithm 
combines disability 
scoring systems) 

N=408 Clinical and MRI 
data 

. Hold-out validation 

Baranzini et 
al. 2015 
[204] 

No Disease progression  Supervised Random Forest  N=155 RNA biomarkers, 
Clinical, MRI Data  

Accuracy=0·68, Sensitivity=0·22, Specificity=0·88 Hold-out validation 

Wottschel et 
al. 2015 
[205] 

No Disease Progression Supervised Support Vector Machine N=74 Clinical and MRI 
Data 

1 year follow-up: Accuracy=71·4%, 
Sensitivity=77%, Specificity=66%.  
3 year follow up: Accuracy=68% Sensitivity=60%, 
Specificity=76% 

Leave-one-out 
cross-validation 

Crimi et al 
2014 [206]  

No Disease Progression Supervised and 
Unsupervised 

Spectral clustering and 
Least squares linear 
regression 

N=25 MRI Data R2=0·9 Leave-one-patient 
out cross-validation 

Sweeney et 
al. 2014 
[207] 

No Image 
Segmentation 

Supervised Methods Analysed: 
Logistic Regression, 
Neural Network, Support 
Vector Machine, 
Quadratic Discriminant 

N=98  MRI Data  . Hold-out validation 
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Cross-
Validation 

Analysis, Linear 
Discriminant Analysis, 
Gaussian Mixture Model, 
k Nearest Neighbour, 
Random Forest, Super 
Learner 

Taschler et 
al. 2014 
[208] 

No Disease Subtype  Supervised Bayesian Spatial 
Generalized Linear Mixed 
Model or Log Guassian 
Cox Process 

N=250 MRI Data Bayesian Spatial Generalized Linear Mixed Model: 
Accuracy=0·895 (overall), 0·851 (average over all 
subtypes).  
Log Guassian Cox Process: Accuracy=0·748 
(overall), 0·823 (average over all subtypes) 

Leave-one-out 
cross-validation 

Alaqtash et 
al. 2011 
[209]  

No Diagnosis and 
Disease Severity 

Supervised Nearest Neighbour 
Classifier (k Nearest 
Neighbours) or Artificial 
Neural Network 

N=20 (n(HC)=12, n(spastic diplegic 
cerebral palsy)=4, n(RRMS)=4) 

Clinical (Ground 
Reaction Forces; 
Gait Assessment) 
Data 

Accuracy=95%, Sensitivity=96%, Specificity=95% Leave-one-out 
cross-validation 

Goldstein et 
al. 2010 
[210] 

No  Risk of Disease  Supervised Random Forest N=3362 (n(MS)=931, n(HC)=2431) GWAS Data . Out-of-bag Error  

Corvol et al. 
2008 [211] 

No Risk of Disease  Supervised and 
Unsupervised 

Hierarchical Clustering 
and Support Vector 
Machine  

N=62 (n(CIS)=34, n(HC)=28) Clinical, Microarray 
Data 

Hierarchical Clustering of high-risk group: 
Sensitivity=92%, Specificity=86%. 
Support vector machine on high-risk group: 
Accuracy=86%, Precision=78%, Negative 
Predictive Value=90% 

10-fold cross-
validation 

Briggs et al. 
2010 [212] 

No Risk of Disease Supervised Random Forest  N=12566 (n(test)=1343 MS + 1379 
HC, n(val)=2624 MS + 7220 HC ) 

SNP Data . Independent 
validation dataset 

Commowick 
et al. 2018 
[213] 

No Image 
Segmentation 

Supervised Consensus Model  N=53 MRI Data Dice Score~0·63, F1-score~0·5 Hold-out validation 

Ohanian et 
al. 2016 
[214]  

No Disease 
Classification 

Supervised Decision Tree N=460 Questionnaire Data Accuracy=81·2% (MS & ME or CFS), 84·0% (ME or 
CFS), 79·2% (MS correctly categorised) 

. 
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Cross-
Validation 

Salem et al. 
2018 [215] 

No Diagnosis and 
Disease Monitoring 

Supervised Logistic Regression  N=60 MRI Data Dice similarity coefficient=0·56 (segmentation), 
0·77 (detection), F-score=0·806, 
Sensitivity=74·3%, Specificity=88·14% 

Leave-one-out 
cross-validation 

Cabezas et 
al. 2014 
[216] 

No Disease Progression Supervised BOOST (ensemble 
classifier) 

N=45 (three hospitals)  MRI Data Median Dice Score=0·17 (hospital 1), 0·56 
(hospital 2), 0·52 (hospital 3) 

Leave-one-out 
cross-validation 

Zhang et al. 
2016 [217] 

No Diagnosis Supervised k Nearest Neighbours N=38 and enrolled unspecified 
number of HCs age and gender 
matched  

MRI Data Accuracy=97·94%, Precision=99·09%, 
Sensitivity=96·15%, Specificity=99·32% 

10-fold cross-
validation 

Birenbaum 
et al. 2017 
[218]  

No Diagnosis and 
Disease Monitoring 

Supervised Convolution Neural 
Network  

N=19 (training n=5, test n=14) Clinical (MRI, 
longitudinal) Data 

Cross-validation: Dice Score=0·727 
Test Set: Dice Score=0·627 

Leave-one-out 
cross-validation, 
independent test 
set  

Morrison et 
al. 2016 
[219]. 

No Disease Monitoring  Supervised Customized randomized 
forests and novel 
ensembles of randomized 
support vector machines 

N=1041 videos Movement Tests 
Data 

Dice Score > 80% . 

Liu et al. 
2015 [220]  

No Disease Progression Unsupervised Constraint-based 
clustering  

N=266 Clinical Data . . 

Rheumatoid Arthritis 

Chin et al. 
2018 [221]  

No Risk of Disease  Supervised and 
Unsupervised 

Non-negative Matrix 
Factorisation, Support 
Vector Machine 

N=922,199 (n(RA)=1007, 
n(HC)=921,192) 

Medical Diagnostic 
Database 

Accuracy ~72%, Sensitivity~74%, Specificity~70% 10-fold cross-
validation 

Chocholova 
et al. 2018 
[222] 

No Diagnosis and 
Disease Subtype  

Supervised Artificial Neural Network  N=100 (n(Seropositive RA)=31, 
n(Seronegative RA)=16, n(HC)=53 

Immunoassay 
(Serum Samples) 
Data 

Seropositive RA vs non-RA: AUC=0.96 
Seronegative RA vs non-RA: AUC=0.86 

Hold-out validation, 
testing set 
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Cross-
Validation 

Wu et al. 
2018 [223] 

No Diagnosis Supervised Logistic Regression  N=806 (n(HC)=383, n(T2D)=170, 
n(RA)=130, n(Liver Cirrhosis)=123) 

Microbiome and 
Clinical Data 

AUC=0·96, F1-score=0·92 5-fold cross-
validation 

Joo et al. 
2017 [224] 

No Disease Progression Supervised Support Vector Machine N=773 (n(train and validate)=374, 
n(test)=399) 

GWAS & Clinical 
Data 

Cross-validation: AUC=0·7822, Accuracy=0·7481, 
Sensitivity=0·7644, Specificity=0·7318.  
Independent Test Data: Accuracy=0·6143 

10-fold cross-
validation, 
Independent Test 
Data 

Andreu-
Perez et al. 
2017 [225] 

No Disease Monitoring  Supervised Dichotomous Mapped 
Forest 

N=30 (n(RA)=10, n(HC)=20) Movement Data Accuracy 95%, F-score 81% Leave-one-subject-
out cross-validation 

Orange et al. 
2018 [226]  

No Disease Subtype Both Consensus Clustering and 
Support Vector Machine  

N=129 (n(RA)=123, n(OA)=6) RNA sequence and 
Histology Data 

AUC=0·88 (high inflammatory vs other), 0·71 (low 
inflammatory vs other), 0·59 (mixed subtype vs 
other) 

Leave-one-out 
cross-validation 

Ahmed et al. 
2016 [227] 

No Diagnosis Supervised Random Forest N=172 (n(early OA)=46, n(early 
RA)=45, n(non-RA)=42, n(advanced 
OA)=17, n(advanced RA)=22) 

Plasma amino acid 
analyte Data 

Disease vs HC. Training set Cross-validation: 
AUC=0·99 Sensitivity=0·92, Specificity=0·91. Test 
set Cross-validation: AUC=0·96, Sensitivity=0·89, 
Specificity=0·9. 
 Validation test set: AUC=0·77, Sensitivity=0·73, 
Specificity=0·72. 
 
Early RA classification. Training set Cross-
validation: AUC=0·91, Sensitivity=0·8, 
Specificity=0·78.  
Test set Cross-validation: AUC=0·87, 
Sensitivity=0·77, Specificity=0·76. 
Validation test set: AUC=0·62, Sensitivity=0·6, 
Specificity=0·61. 

5-fold cross-
validation on 
training set and test 
set. 
Independent 
validation test set.  

Miyoshi et 
al. 2016 
[228] 

No Response to 
treatment 

Supervised Multilayer Perceptron  N=180 Clinical Data AUC=0·75, Accuracy=92%, Sensitivity=96·7%, 
Specificity=75% 

Hold-out validation 
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Cross-
Validation 

Yeo et al. 
2016 [229] 

No Early Diagnosis Supervised Multivariate Analysis N=48 (n(Uninflamed Controls)=10, 
n(Resolving Arthritis)=9, n(early 
RA)=17, n(established RA)=12) 

Synovial mRNA 
Data 

Established RA vs Uninflamed: AUC=0·996 Early 
RA vs Resolving RA: AUC=0·764 

. 

Zhou et al. 
2016 [570]  

No Identification of 
Patients 

Supervised Random Forest and C5.0 
Decision Tree 

N=480788 EHR Data Test dataset 1: Accuracy=92·29% 
Sensitivity=86·2%, Specificity=94·6% 
Test dataset 2: Best-case scenario: 
Sensitivity=94%, Specificity=99·9%. Worst-case 
scenario: Sensitivity=83%, Specificity=99% 

Two independent 
testing datasets  

Lin et al. 
2015 [231] 

No Identification of 
Patients 

Supervised Natural Language 
Processing and 
Classification Rules  

N=600 (n(RA with liver toxicity)=170, 
n(RA)=430) 

EMR Data Cross-validation: F1-score=0·847, Precision=0·8, 
Recall=0·899 
Test Set: F1-score=0·829, Precision=0·756, 
Recall=0·919 

10-fold cross 
validation, 
independent test 
set 

Chen et al. 
2013 [232] 

No Identification of 
Patients 

Supervised Active Learning and 
Support Vector Machine 

N=376 (n(RA)=185, n(Controls)=191) EHR Data AUC > 0·95 5-fold cross-
validation 

Lin et al. 
2013 [233]  

No Disease Severity  Supervised Natural Language 
Processing and Support 
Vector Machine 

N=2017 (n(train)=852, n(test set 
1)=821, n(test set 2)=344) 

EMR Data Test set 1 AUC=0·831, F1-score=0·789.  
Test set 2 AUC=0·785, F1 score=0·761 

10-fold cross 
validation on two 
test sets  

Negi et al. 
2013 [234]  

No Risk of Disease Supervised Support Vector Machine  N=3542 (n(train)=706 RA + 761 
Controls, n(test)=927 RA + 1148 
Controls) 

SNP Data AUC=0·93, Accuracy=88·7% Cross validation 
used 

Pratt et al. 
2012 [235]  

No Early Diagnosis Supervised Support Vector Machine N=173 (n(RA)= 47, n(non-RA)=64, 
n(undifferentiated arthritis)=62) 

CD4 T Cell 
Transcriptome Data 

Sensitivity=0·68, Specificity=0·7. 
Removing ACPA-positive subset: Sensitivity=0·85, 
Specificity=0·75 

Hold out validation 

Singh et al. 
2012 [236]  

No Diagnosis Supervised Fuzzy Inference System  N=150 Clinical Data . . 
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Cross-
Validation 

Kruppa et al. 
2012 [237]  

No Risk of Disease  Supervised  Random Forest in 
regression mode (Random 
Jungle) 

N=1445 (n(RA)=707 and n(HC)=738) GWAS Data AUC=0·8925 Hold-out validation 

Liu et al. 
2011 [238] 

No Risk of Disease Supervised Random Forest N=4880 (n(cohort 1)=908 RA + 1260 
controls, n(cohort 2)= 952 RA + 1760 
controls) 

SNP Data Accuracy=70%, Sensitivity=74%, Specificity=66% Out of bag error, 
Independent 
validation cohort  

Nair et al. 
2010 [239] 

No Response to 
treatment 

Supervised Least Squares Kernel-
Conjugate gradient 
algorithm 

N=25 (n(RA)=8, n(OA)=10, n(HC)=7) Electro-myographic 
Gait Data 

Accuracy=91·07%, Sensitivity=81%, 
Specificity=82% 

8-fold cross-
validation 

Briggs et al. 
2010 [240] 

No Risk of Disease Supervised Random Forest and 
Logistic Regression  

N= 4130 SNP Data . Hold-out validation 

Niu et al. 
2010 [241]  

No Diagnosis Supervised Boosted Decision Tree  N=143 (n(RA)=43, n(AID 
Controls)=50, n(HC)=50) 

Mass Spectrometry 
(from serum) 

Accuracy=85·7% (RA), 87·5% (autoimmune 
controls), 88·0% (HC). Sensitivity=85·71%, 
Specificity=87·76% (RA vs controls) 

Hold-out validation 

Geurts et al. 
2005 [242] 

Yes Diagnosis Supervised Decision Trees (RA 
Boosting, IBD Extra-Trees) 

N(RA)=206 (68 RA, 138 controls), 
N(IBD)=480 (240 IBD, 240 controls) 

Mass Spectrometry 
(from serum) 

RA: Sensitivity=83·82%, Specificity=94·93%  
IBD: Sensitivity=88·33%, Specificity= 91·63%  

Leave-one-out 
cross-validation 

de Seny et 
al. 2005 
[243]  

Yes Early Diagnosis Supervised  Decision Tree Boosting N=103 (n(RA)=34, n(inflammatory 
controls)=20 PsA + 9 Asthma + 10 CD, 
n(controls)=14 OA + 16 HC) 

Mass Spectrometry 
(from serum) 

RA vs controls: Sensitivity=85%, Specificity=91% (2 
independent spectra), Sensitivity=94%, 
Specificity=90% (2 combined spectra).  
RA vs PsA: Sensitivity=94%, Specificity=86% (2 
independent spectra), Sensitivity=97%, 
Specificity=76% (2 combined spectra). 

Leave-one-out 
cross validation 

Scheel et al. 
2003 [244] 

No Early Diagnosis  Supervised Neural Network, Method 
in [571]  

N=22 patients, N=72 joints examined Laser Imaging Data Accuracy=86%, Sensitivity=80%, Specificity=89% . 

Gronsbell et 
al. 2018 
[245] 

No Identification of 
Patients  

Supervised and 
Unsupervised 

Unsupervised (clustering 
based) Feature Selection 
and Sparse Regression 

N=435 EMR Data AUC=0·928 Independent 
validation dataset  

Gossec et al. 
2018 [246] 

Yes Disease Monitoring  Supervised Multiclass Selective Naïve 
Bayes Classifier  

N=155 (82 RA, 73 axSpA) Physical Activity 
Data  

Sensitivity=95·7%, Specificity=96·7% Hold-out validation 
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Cross-
Validation 

Lezcano-
Valverde et 
al. 2017 
[247] 

No Mortality Supervised Random Survival Forests N=1741  Demographic & 
Clinical Data 

1 year follow-up: Sensitivity=0·79, Specificity=0·8. 
7 year follow up: Sensitivity=0·43, 
Specificity=0·48. 

Hold-out validation 

Gonzalez-
Recio et al. 
2009 [248] 

No Risk of Disease  Supervised Information gain/entropy 
reduction criteria and 
Bayesian threshold LASSO   

N=2062 (n(cases)=868, 
n(controls)=1194) 

SNPs  . 5-fold cross-
validation 

Heard et al. 
2014 [249]  

No Early Diagnosis  Supervised Artificial Neural Network 
and Decision Tree 

ANN: N=300 (n(HC)=98 n(OA)=101, 
n(RA)=101) 
DT: N=298 (n(HC)= 100, n(OA)=100, 
n(RA)=98)  

Clinical 
(Inflammatory 
cytokine 
expression, serum 
samples) Data 

ANN: Sensitivity=100% (HC), 100% (OA), 100% 
(RA), Specificity=100% (HC), 100% (OA), 100% (RA) 
for all cytokines and significant cytokines.  
DT: Sensitivity=100% (HC), 100% (OA), 95% (RA), 
Specificity=96% (HC), 97% (OA), 100% (RA) for all 
cytokines. 

Hold-out validation, 
independent 
testing set 

Gronsbell et 
al. 2018 
[250]  

Yes Identification of 
Patients  

Semi-
Supervised 

Semi-supervised approach N(RA)=44014 (500 labelled, 43514 
unlabelled), N(MS)=12198 (455 
labelled, 11743 unlabelled) 

EMR Data AUC=94·93 (RA), 93·94 (MS) 10-fold cross-
validation 

Van Looy et 
al. 2006 
[251] 

No Response to 
treatment 

Supervised Multilayer Perceptron or 
Support Vector Machine  

N=511 Clinical Data All Cases: AUC=0·772, Sensitivity=0·95, 
Specificity=0.402 or Sensitivity=0·265, 
Specificity=0·95 (MLP).  
Complete Cases, MLP: AUC=0·854, 
Sensitivity=0.95, Specificity=0·548 or 
Sensitivity=0·462, Specificity=0·95. 
Complete Cases, SVM: AUC=0·863, 
Sensitivity=0·95, Specificity=0·507 or 
Sensitivity=0·308, Specificity=0·95.  
Expectation Maximisation, MLP: AUC=0·813, 
Sensitivity=0·95, Specificity=0·411, or 
Sensitivity=0·412, Specificity=0·95. 
Expectation Maximisation, SVM: AUC=0·804, 
Sensitivity=0·95, Specificity=0·402, or 
Sensitivity=0·412, Specificity=0·95. 

. 
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Validation 

Wyns et al. 
2004 [252]  

No Early Diagnosis  Supervised and 
Unsupervised 

Kohonen Neural Network 
(includes Self Organising 
Maps)  

N=160 (n(RA)=51 RA, n(SpA)=43, 
n(other)=26, n=40 with no definite 
diagnosis) 

Clinical Data Accuracy=62·3%, 65·3% (without undetermined 
samples) 

Hold-out validation 

Inflammatory Bowel Disease  

Waljee et al. 
2018 [253] 

No  Disease Progression Supervised Random Forest  N =20368  Clinical Data Predict Hospitalisation and Corticosteroid 
Prescriptions. IBD: AUC=0·87, Sensitivity=74-80%, 
Specificity=80-82%. UC: AUC=0·84. CD=0·85. 
IC=0·82. 
Predict Corticosteroid Prescription Only, IBD: 
AUC=0·9 
Predict Hospitalisation and Corticosteroid 
Prescriptions (12 month outcome): AUC=0·9 

Hold-out validation 

Mossotto et 
al. 2017 
[254] 

No Disease Subtype  Supervised and 
Unsupervised 

Support Vector Machine, 
Hierarchical Clustering 

N=287 Training and testing: N=210 
(n(CD)=178, n(UC)=80, n(IBDU)=29 
(only reclassified)) 

Clinical Data Cross-validation: AUC=0·87, Accuracy=82·7%, 
Precision=0·91, Recall=0·83, F1-score=0·87.  
Independent test set: Accuracy=83·3%, 
Precision=0·86, Recall=0·83, F1-score=0·84 

5-fold cross 
validation, 
independent test 
set 

Maeda et al. 
2018 [255]  

No Disease Severity  Supervised Support Vector Machine N=187  Endocytoscopic 
Image Data 

Accuracy=91%, Kappa=1, Sensitivity=74%, 
Specificity=97% 

Hold-out validation 

Douglas et 
al. 2018 
[572] 

No Diagnosis and 
Response to 
Treatment  

Supervised Random Forest N=771 (n (test)=40 (n(CD)=20, 
n(HC)=20). n(validation, diagnosis 
only) = 731 (444 CD, 287 control)) 

Metagenomic Data Diagnosis: Accuracy=84·2%.  
Independent Validation (diagnosis): Accuracy 
73·2%. 
Treatment Response: Accuracy 77·8%.  

Out of bag error, 
Leave-one-out 
cross-validation, 
Independent test 
data (diagnosis 
only) 

Jain et al. 
2017 [573] 

No Disease Progression Supervised Decision Tree N=179  Clinical Data Colectomy Prediction: Accuracy=77%, 
Sensitivity=75%, Specificity=80%.  
Steroid Dependence: Accuracy=75%, 
Sensitivity=69%, Specificity=80%. 

Hold-out Validation 
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Cross-
Validation 

Waljee et al. 
2017 [258] 

No Response to 
Treatment 

Supervised Random Forest N=1080 Clinical Data Objective Remission: AUC=0·79, 
Sensitivity=70·6%, Specificity=73·8%.  
Non-adherence: AUC=0·84, Sensitivity=70·6%, 
Specificity=85·0%.  
Shunting: AUC=0·78, Sensitivity=65·2%, 
Specificity=79·0%. 

Out of bag error, 
Hold-out validation 

Isakov et al. 
2017 [259] 

No Risk of Disease Supervised Combined Model (elastic 
net regularised 
generalised linear model, 
extreme gradient 
boosting, support vector 
machine, random forest) 

N = 513 (n(CD)=180, n(UC)=149, 
n(colorectal neoplasms)=94, 
n(normal tissue)=90) 

Gene Expression 
Data  

AUC=0·829, Accuracy=0·808, Sensitivity=0·577, 
Specificity=0·880 

5-fold cross-
validation 

Kang et al. 
2017 [260] 

No Response to 
Treatment 

Supervised Gene Regulatory 
Network-based 
Regularized Artificial 
Neural Network 
(GRRANN) 

N=46  Gene Expression 
Data 

Balanced Accuracy≈0·8 5-fold cross 
validation, Hold-out 
validation 

Waljee et al. 
2018 [261] 

No Response to 
Treatment 

Supervised Random Forest N=491 Clinical Data AUC=0·73, Sensitivity=0·72, Specificity=0·68 Hold-out validation 

Pal et al. 
2017 [282] 

No Risk of Disease Supervised Consensus Method (Naïve 
Bayes, Logistic Regression, 
Random Forest) 

N=111 (n(CD)=64, n(HC)=47) GWAS Data, Exome 
Data to impute 
genotypes. 

AUC=0·72 Hold-out validation  

Eck et al. 
2017 [262] 

No Diagnosis Supervised Support Vector Machine 
or Random Forest  

N=112 (n(IBD)=56, n(HC)=56) Microbiota Data  Accuracy=81%  10-fold cross 
validation 

Menti et al. 
2016 [263] 

No Disease Progression Supervised Bayesian Networks N=152 Clinical Data and 
Selected Genetic 
Data 

AUC=0·95, Accuracy=0·89, Sensitivity=0·78, 
Specificity=0·94 

10-fold cross 
validation 
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Cross-
Validation 

Hubenthal 
et al. 2015 
[264] 

No  Diagnosis Supervised Support Vector Machine N=273 (n(CD)=37, n(UC)=32, 
n(HC)=92, n(COPD)=23, n(MS)=23, 
n(pancreatitis)=35, 
n(sarcoidosis)=32) 

MicroRNA 
Expression Data 

AUC=0·95, Balanced Accuracy=0·95, Sensitivity=1, 
Specificity=0·9 

5-fold cross-
validation 

Niehaus et 
al. 2015 
[265] 

No Disease Severity  Supervised and 
Unsupervised 

Support Vector Machine, 
Hierarchical Clustering 

N=501 Health Records, 
EMR Databases 

Accuracy=68·7%, Sensitivity=59·1%, 
Specificity=78·4% 

5-fold cross 
validation, testing 
dataset 

Wei et al. 
2013 [266] 

No Risk of Disease Supervised Logistic Regression N=53,279 (n(CD)=17,379, 
n(UC)=13,458, n(HC)= 22,442  

GWAS Data Cross Validation: AUC=0·864 (CD) 0·83 (UC). 
Independent Test Set: AUC=0·864 (CD), 0·826 (UC) 

10-fold cross 
validation, 
independent 
testing dataset 

Cui et al. 
2013 [267] 

No Diagnosis Supervised Support Vector Machine N=124 (n(IBD)=25, n(HC)=99) Metagenomic Data Accuracy=88%, Sensitivity=92%, Specificity=84% Leave-one-out 
cross-validation 

Waljee et al. 
2010 [268]  

No Response to 
Treatment 

Supervised Random Forest  N=346 Clinical Data AUC=0·856 (response), 0·813 (non-adherence), 
0·797 (shunting) 

10-fold cross 
validation, 
validation data set 

Firouzi et al 
2007 [269]  

No Disease Progression Supervised  Decision Tree  N=160 (121 UC, 39 CD) Clinical Data  Accuracy=88·2% (UC), 89·8% (CD), 86·5% (IBD), 
Sensitivity=67·6% (UC), 82·8% (CD), 65·7% (IBD), 
Specificity=96·3% (UC), 95·2% (CD), 96·3% (IBD), 
Matthew's Correlation Coefficients=0·69 (UC), 
0·79 (CD), 0·68 (IBD) 

10-fold cross-
validation 

Ozawa et al. 
2018 [270] 

No Disease Severity Supervised Neural Network N= 30,285 images, N=558 patients Colonoscopy 
White-light Image 
Data 

Mayo 0 vs Mayo 1-3: AUC=0·86. 
Mayo 0-1 vs Mayo 2-3: AUC=0·98 

Hold-out validation 

Reddy et al. 
2018 [271]  

No Disease Severity Supervised Gradient Boosting 
Machines 

N=82 EHR Data AUC=92·82% 10-fold cross-
validation 

Forbes et al. 
2018 [272] 

Yes Diagnosis Supervised Random Forest N=102 (n(CD)=20, n(UC)=19, 
n(MS)=19, n(RA)=21, n(HC)=23) 

Microbiota Data Diseased vs HC: AUC=0·93, Balanced 
Accuracy=0·84.  
Breakdown per inflammatory disease found in 
paper  

Out of bag error 
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Cross-
Validation 

Doherty et 
al. 2018 
[273] 

No Response to 
treatment 

Supervised Random Forest N=306 (n(CD treated)=232, n(CD 
untreated)=74) 

Microbial Genome 
Data and Clinical 
Data 

Remission: AUC=0·844, Sensitivity=0·774, 
Specificity=0·831.  
Response: AUC=0·733 Sensitivity=0·684, 
Specificity=0·724  

. 

Han et al. 
2018 [274] 

No Disease subtype Supervised Random Forest N=163 (n(train)=24 CD, 59 UC, 
n(Validation set 1)=5 CD , 7 UC, 
n(Validation set 2)=14 CD, 10 UC, 
n(Validation set 3)=11 CD, 5 UC, 
n(Validation set 4)=13 CD, 15 UC ) 
Biopsy Samples 

Gene Expression 
Data  

Validation set 1: AUC=0·829 
Validation set 2: AUC=0·764 
Validation set 3: AUC=0·836 
Validation set 4: AUC=0·849 

Hold-out validation 

Daneshjou 
et al. 2017 
[275] 

No Risk of Disease Supervised Metaclassifier N=111 (n(CD)=64, n(HC)=47) Exome-sequencing 
data  

AUC=0·78 Cross-validation 
performed 

Giollo et al. 
2017 [276] 

No Risk of Disease Supervised Support Vector Machine 
or Ensemble Classifier 

N=111 (n(cases)=64, n(controls)=47) Genetic Data AUC=0·6 (SVM), 0·66 (Ensemble Classifier) Cross validation 
performed 

Yu et al. 
2017 [277] 

Yes Identification of 
Patients  

Supervised Natural Language 
Processing 

N= 2393 (435 RA, 758 CAD, 600 UC, 
600 CD) 

Electronic Medical 
Records Data 

AUC~0·94 (RA), ~0·95 (CD), ~0·95 (UC) F-score 
~0·71 (RA), ~0·83 (CD), ~0·89 (UC) 

. 

Wisittipanit 
et al. 2015 
[278] 

No Diagnosis Supervised Support Vector Machine N=425 (n(CD)=101, n(UC)=89, 
n(HC)=235 HC) 

LH-PCR 
(Microbiome) Data  

AUC=0·73 (CD), 0·78 (UC), 0·77 (HC), 
Accuracy=78·18% (CD), 79·71% (UC), 75·62% (HC) 

5-fold cross 
validation 

Ahmed et al. 
2017 [279]  

No Diagnosis Supervised Neuro-Fuzzy Automated 
Classifier 

N=387 (n(CD)=144, n(HC)=243) Genetic Data Accuracy=97·67%, Sensitivity=96·07%, 
Specificity=100% 

Hold-out validation, 
testing set  

Mahapatra 
et al. 2016 
[280]  

No Image 
Segmentation 

Semi-
Supervised 

Random Forest-based 
Classifier 

N=70 (CD) MRI Data Dice metric=92·4%, Hausdorff=7mm 5-fold cross 
validation 



 

284 

Paper Multiple 
AIDs 
Studied 

Prediction or 
Classification 
Task 

ML Type Machine Learning 
Method 

Study Size (N) Type of Data Best Results (Metrics) Reported from 
validation or cross-validation, and 
where conducted, the test set. 

Cross-
Validation 

Mahapatra 
et al. 2016 
[281] 

No Image 
Segmentation 

Supervised Random Forest N=50 (CD) MRI Data Dice metric=91·7%, Hausdorff=7.4mm 5-fold cross 
validation 

Type 1 Diabetes   

Stawiski et 
al. 2018 
[283] 

No Diagnosis Supervised Artificial Neural Network  N=315 Clinical Data R2=0·6455 Hold-out validation 

Ben Ali et al. 
2018 [284] 

No Disease 
Management 

Supervised Artificial Neural Network  N=12 patients, N=1344 samples CGM Data Average RMSE=6·43 (mg/dL) Hold-out validation 

Perez-
Gandia et al. 
2018 [299] 

No Disease 
Management 

Supervised  Decision Support System 
with Artificial Neural 
Network  

N= 21 patients, longitudinal analysis Clinical Data . Hold-out validation 

Maulucci et 
al. 2017 
[285] 

No Diagnosis and 
Disease Monitoring 

Supervised Decision Support System  N=26 RBC Image Data Control): Accuracy=1, Precision=1, Recall=1, F1-
score=1.  
T1D: Accuracy=1, Precision=1, Recall=1, F1-
score=1.  
T1D with complications: Accuracy=1, Precision=1, 
Recall=1, F1-score=1.   

Leave-one-person-
out cross-validation 

Siegel et al. 
2017 [286] 

No Disease 
Management 

Supervised Linear Discriminant 
Analysis 

N=52 patients, N=128 samples. VOCs AUC=0·895, Sensitivity=91%, Specificity=84% Leave-one-out 
cross-validation 

Zhao et al. 
2016 [287] 

No Risk of Disease Supervised LASSO (regression)/OOR 
(developed method) 

N=1418 ( n(T1D)=962 T1D, 
n(controls)= 448  

Genetic Data AUC=0·89 Hold-out validation 

Georga et al. 
2015 [288] 

No  Disease 
Management 

Supervised KOS-ELM (online 
sequential extreme 
learning machine kernels) 

N=15, longitudinal analysis Clinical  Data Case 1: RMSE=16·6 (mg/dl) 
Case 2: RMSE=10·9 (mg/dl) 
Case 3: RMSE=8·5 (mg/dl) 

10-fold cross 
validation 

Georga et al. 
2013 [289] 

No Disease 
Management 

Supervised Support Vector 
Regression  

N=15 patients, longitudinal analysis Clinical Data Nocturnal: Sensitivity=0·94, Precision=0·98 (30 
minutes and 60 minutes).  

10-fold cross 
validation 
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Cross-
Validation 

Diurnal: Sensitivity=0·92, Precision=0·93 (30 
minutes), Sensitivity=0·96, Precision=0·97 (60 
minutes) 

Marling et 
al. 2013 
[290] 

No  Disease 
Management 

Supervised Support Vector Machine 
Regression 

N=19 patients, N=262 CGM plots CGM Data Accuracy=90·1%, Sensitivity=97%, 
Specificity=74·1% 

10-fold cross-
validation 

Nguyen et 
al. 2013 
[291]  

No Risk of Disease Supervised RIPPER (decision rules) 
and Logistic Regression 
Method (Predict DQ types 
without DR type 
information) 

N=10579 (n(train)=7405, 
n(test)=3174) 

SNP Data Independent Test Dataset. Predict HLA Types: 
AUC=0·997 Accuracy=99·3%.  
Predict High Risk HLA types AUC=0·995 
Accuracy=99·8%.  
Predict high risk subtype (DRB1*03:01-
DQA1*05:01-DQB1*02:01): AUC=0·998, 
Accuracy=99·8%.  
Predict DQ Types without DR type information: 
AUC=0·98. 

10-fold cross 
validation, 
independent test 
dataset 

Wei et al. 
2009 [292]  

No Risk of Disease Supervised Support Vector Machine N=8438 (n(WTCCC-T1D)=1963 cases 
+ 1480 controls ,n(CHOP/Montreal-
T1D)= 1008 cases + 1000 controls, 
n(GoKinD-T1D)=1529 cases + 1458 
controls) 

GWAS Data WTCCC-T1D dataset: AUC=0·89, Sensitivity=0·87, 
Specificity=0·75. CHOP/Montreal-T1D dataset: 
AUC=0·83, GoKinD-T1D dataset: AUC=0·84 

5-fold cross-
validation 

Jensen et al. 
2014 [293] 

No Disease 
Management 

Unsupervised Pattern Classification 
Algorithm  

N=10 patients, longitudinal 
measurements (20 x sessions with 
Professional CGM) 

CGM Data Sensitivity=78%, Specificity=96%, (All 
hypoglycaemic events detected, 1 false positive) 

. 

Schwartz et 
al. 2008 
[294] 

No Disease 
Management 

Supervised Case-based reasoning N=12 patients, longitudinal 
measurements 

Clinical Data . . 

Cordelli et 
al. 2018 
[295] 

No  Diagnosis and 
Diseases 
Monitoring 

Supervised Support Vector Machine N=27 (n(HC)=8, n(T1D)=10, n(T1D 
with complications)=9 

RBC Images F1 score=1, Precision=1, Recall=1 (for HC, T1D, 
and T1D with complications) 

Leave-one-person-
out cross-validation 
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Cross-
Validation 

Sampath et 
al. 2016 
[296] 

No Disease 
Management 

Supervised Aggregating ranking 
algorithms in machine 
learning  

N=213 (n(DIAdvisor)=34, 
n(ChildrenData)=179) 

Clinical Data Sensitivity=77·03%, Specificity=83·46% Independent 
validation dataset 

Georga et al. 
2015 [297] 

No Disease 
Management 

Supervised Random Forest (feature 
selection), Support Vector 
Regression or Gaussian 
processes 

N=15 patients, longitudinal 
measurements 

Clinical Data 30min prediction horizon: SVR RMSE=5·7, GP 
RMSE=5·6; 60min prediction horizon: SVR 
RMSE=6·4, GP RMSE=6·3 

10-fold cross-
validation 

Ling et al. 
2016 [298] 

No  Disease 
Management 

Supervised Extreme learning 
machine-based neural 
network 

N=16 patients, N=589 samples Clinical Data Gamma value=70·8%, Sensitivity=78%, 
Specificity=60% 

Noted by 
researchers that 
cross-validation is 
not required. 

Systemic Lupus Erythematosus 

Ceccarelli et 
al. 2018 
[300] 

No Disease Progression Supervised Logistic Regression N=120 Clinical Data AUC=0·806 Leave-one-out 
cross-validation 

Turner et al. 
2017 [301]  

No Identification of 
Patients 

Supervised Natural Language 
Processing and Neural 
Network or Random 
Forest 

N=662 (n(SLE)=332, n(HC)=340) EHR Data AUC=0·974 (Neural Network), 0·988 (RF), 
Accuracy=92·1% (Neural Network), 95% (Random 
Forest) 

5-fold cross-
validation 

Ceccarelli et 
al. 2017 
[302] 

No Disease Progression Supervised Recurrent Neural 
Networks  

N=132 (n(develop chronic 
damage)=38, n(no chronic 
damage)=94) 

Clinical Data AUC=0·77, Sensitivity=0·74, Specificity=0·76 8-fold cross-
validation 

Kan et al. 
2016 [303] 

No Disease Progression Unsupervised Cluster Analysis  N=1611 Demographic & 
Drug Treatment 

. Cross-validation not 
recommended for 
cluster analysis 

Wolf et al. 
2016 [304] 

No Treatment 
Response 

Supervised Random Forest  N=140 (n(non-responders)=103, 
n(responders)=37) 

Urine Biomarkers  AUC=0·79, Sensitivity=0·76, Specificity=0·73 Cross-validation not 
required for 
Random Forest 

Guy et al. 
2012 [305] 

No Risk of Disease Supervised Bagged Alternating 
Decision Trees  

N=6728 (1846 SLE + 1825 Controls) SNPs . . 
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Cross-
Validation 

Tang et al. 
2011 [306] 

No Mortality Supervised Logistic Regression N= 3313 Clinical Record Data AUC=0·74 10-fold cross-
validation 

Armananzas  
et al. 2009 
[307] 

Yes Diagnosis Supervised and 
Unsupervised 

Consensus Method  N=14 (n(HC)=6, n(SLE)=3, n(PAPS)=5) Microarray 
Expression Data 

. 10-fold cross-
validation  

Huang et al. 
2009 [308]  

No Diagnosis Supervised Decision Tree N=232 (n(SLE)=64, n(AID 
controls)=85, n(HC)=83)  

Serum Proteome 
Data 

SLE: Accuracy=78·1%, Sensitivity=78·1%, 
Specificity=96·3% 
AID Controls: Accuracy=85·8%, Sensitivity=85·7%, 
Specificity=86·7%  
HC: Accuracy=90%, Sensitivity=90%, 
Specificity=96%. 

Hold-out validation 

Murray et al. 
2018 [309] 

No Identification of 
Patients 

Supervised Logistic Regression N=17057 (n(SLE)=583, 
n(control)=16174, n(potential 
SLE)=150, n(random)=150) 

EHR Data AUC=0·97, Accuracy=0·92, Precision=0·85, 
Recall=0·97 

Hold-out validation 

Reddy et al. 
2018 [310] 

No Disease Progression Supervised Recurrent Neural Network N=9457 EHR Data AUC=0·7, Accuracy=70·54%, Sensitivity=74·49%, 
Specificity=56·61% 

Hold-out validation 

Tang et al. 
2018 [311]  

No Disease Progression Supervised Random Forest and 
Multilinear Regression 

N=173 Clinical Data Random Forest, multi-classifier: Accuracy=53·7% 
(Class II), 56·2% (Class III&IV):56·2%, 40·1% (Class 
V).  
Random Forest, binary classifier: Accuracy=56·2% 
(Class II), 63·7% (Class III&IV), 61% (Class V). 
Multilinear regression: CI prediction: Q2=0·746, 
R2=0·771. AI prediction: Q2=0·516, R2=0·576. 

5-fold cross 
validation 
(Predicting AI and 
CI) 

Scully et al. 
2010 [312] 

No Diagnosis Supervised Naïve Bayesian Classifier 
and Support Vector 
Machine  

N=27  MRI Data Leave-one-out training data: Sensitivity=94·3%, 
Specificity= 93·1% 
Test data: Sensitivity=94·3%, Specificity=93.9% 

Leave one out cross 
validation, Test 
dataset 

Davis et al. 
2013 [313] 

No Risk of Disease Supervised Random Jungle, ReliefF or 
evaporative cooling  

N=404 (n(SLE)=209, n(HC)=195)  Exome Data . . 
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Cross-
Validation 

Psoriasis and Psoriatic Arthritis 

Wang et al. 
2016 [314]  

No Diagnosis Supervised Random Bits Forest 
(Neural Network, 
Boosting, Random Forest) 

N=2723 (n(train)=915 cases + 675 
controls; n(test)=431 cases + 702 
controls) 

GWAS Data Cross-validation: AUC=0·6739, Accuracy=0·639, 
Sensitivity=0·6317, Specificity=0·649. 
Test Dataset: AUC=0·7239, Accuracy=0·692, 
Sensitivity=0·6543, Specificity=0·7151. 

10-fold cross 
validation, 
independent 
testing dataset 

George et al. 
2018 [315] 

No Disease Severity  Supervised and 
Unsupervised  

Unsupervised Feature 
Learning, Random Forest  

N=676 images, N=44 patients Digital Image Data F1-score=0·71 10-fold cross 
validation 

Shrivastava 
et al. 2017 
[316]  

No Disease Severity  Supervised Support Vector Machine N=670 images, N=110 patients Digital Image Data AUC=0·998, Accuracy=99·84%, Sensitivity=99·76%, 
Specificity=99·99% 

10-fold cross 
validation 

Shrivastava 
et al. 2016 
[317] 

No Diagnosis Supervised Support Vector Machine  N=540 (n(HC)=270, n(P)=270) 
images, N=30 patients. 

Digital Image Data AUC=1, Accuracy=100%, Sensitivity=100%, 
Specificity=100% 

10-fold cross 
validation 

Shrivastava 
et al. 2016 
[318] 

No Disease Severity Supervised Support Vector Machine N=848 images, N=65 patients Digital Image Data Accuracy=99·92% 10-fold cross 
validation 

Shrivastava 
et al. 2015 
[319] 

No  Diagnosis Supervised Support Vector Machine  N=540 (n(HC)=270, n(P)=270) 
images, N=30 patients. 

Digital Image Data AUC=0·999, Accuracy=99·94%, Sensitivity=99·93, 
Specificity=99·96% 

10-fold cross 
validation 

Cowen et al. 
2007 [320] 

No Diagnosis Supervised Partial Least Squares 
Regression, Support 
Vector Machine and C5.0 
Decision Tree 

N=148 (n(tumour-stage MF)=45, 
n(psoriasis)=56, n(HC)=47) 

Proteomic Data 
from Serum 

Tumour-Stage MF vs Psoriasis: Sensitivity=78·57%, 
Specificity=93·75% (Ciphergen), Sensitivity=78·57, 
Specificity=86·67% (PrOTOF). 
Psoriasis vs HC: Sensitivity=93·75%, 
Specificity=75% (Ciphergen), Sensitivity=86·67%, 
Specificity=76·92%. (PrOTOF). 

10-fold cross 
validation, 
independent 
testing dataset  

Raina et al. 
2016 [321]  

No Disease Severity  Supervised Linear Discriminant 
Analysis  

N=20 patients, N=80 images Digital Image Data Accuracy=48·75%, Kappa=0·4203 Leave-one-out 
cross-validation 

Shrivastava 
et al. 2015 
[322]  

No Diagnosis Supervised Support Vector Machine  N=540 (n(HC)=270, n(P)=270) 
images, N=30 patients. 

Digital Image Data AUC=1, Accuracy=99·81%, Sensitivity=99·26%, 
Specificity=97·04% 

Jack Knife (N fold) 
cross-validation 
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Paper Multiple 
AIDs 
Studied 

Prediction or 
Classification 
Task 

ML Type Machine Learning 
Method 

Study Size (N) Type of Data Best Results (Metrics) Reported from 
validation or cross-validation, and 
where conducted, the test set. 

Cross-
Validation 

Shrivastava 
et al. 2016 
[323] 

No Diagnosis Supervised Support Vector Machine  N=540 (n(HC)=270, n(P)=270) 
images, N=30 patients. 

Digital Image Data AUC=0·99, Accuracy=99·39%, Sensitivity=99·43%, 
Specificity=99·35% 

10-fold cross-
validation 

Patrick et al. 
2018 [324] 

Yes Risk of Disease and 
Disease Progression 

Supervised Conditional Inference 
Forest or Shrinkage 
Discriminant Analysis 

N=22181 (n(PsV)=7855, n(PsA)=2703, 
n(PsC)=2681, n(HC)=8942)  

GWAS Data AUC=0·82 (cross validation and holdout test set) Cross-validation 
performed, test set 

Coeliac Disease   

Hujoel et al. 
2018 [325] 

No Diagnosis Supervised Random Forest or Bagged 
Classification Trees  

N = 408 EMR Data AUC≈0·55 10-fold cross-
validation 

Arasaradna
m et al. 
2014 [326] 

No Diagnosis Supervised Logistic Regression N=47 (n(D-IBS)=20, n(CeD)=27) VOCs Data AUC=0·91, Sensitivity=85%, Specificity=85% Leave-one-out 
cross-validation 

Tenorio et 
al. 2011 
[327]  

No Diagnosis Supervised Bayesian Classifier 
(Average One-
Dependence Estimator) 

N=216 (CeD 46% of records in 
training data, 37% in test data) 

Clinical Data AUC=0·84, Accuracy=80%, Sensitivity=0·78, 
Specificity=0·80 

10-fold cross-
validation 

Choung et 
al. 2018 
[328] 

No Diagnosis and 
Disease Monitoring 

Supervised Random Forest (peptide 
selection), Support Vector 
Machine 

Diagnosis: N= 468 (n(CeD)= 172, 
n(HC)=296).  
Monitoring: N= 465 (n(CeD treated, 
healed)=85, n(CeD treated, 
unhealed)=81, n(CeD, untreated)=82, 
n(HC)=217, n(disease controls)=27). 

Peptide Data Diagnosis: Accuracy=99%, Sensitivity=99%, 
Specificity=100%.  
Monitoring: Accuracy=90%, Sensitivity=84%, 
Specificity=95% 

Hold-out validation 
(diagnosis only) 

Chen et al. 
2016 [329] 

No Diagnosis  Supervised Logistic Model N=1498 (n(CeD)=363, n(FP)=1135) EHR Data AUC=0·94, F1-score=0·92, Kappa=0·78, 
Precision=0·93, Recall=0·92 

10-fold cross-
validation 

Ludvigsson 
et al. 2013 
[330]  

No Diagnosis  Supervised Natural Language 
Processing 

N=496 (n(train)=327, n(test)=169) EMR Data F-measure 84·5%, Sensitivity=72·9%, 
Specificity=89·9% 

Hold-out validation  
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Paper Multiple 
AIDs 
Studied 

Prediction or 
Classification 
Task 

ML Type Machine Learning 
Method 

Study Size (N) Type of Data Best Results (Metrics) Reported from 
validation or cross-validation, and 
where conducted, the test set. 

Cross-
Validation 

Amirkhani et 
al. 2018 
[331] 

No Disease Severity Supervised Combined fuzzy cognitive 
map and possibilistic fuzzy 
c-means clustering 
algorithm 

N=89 Clinical Data Accuracy=91% (A), 90% (B1), 88% (B2) Leave-one-out 
cross-validation 

Thyroid Disease  

Ahmad et al. 
2018 [332] 

No Diagnosis Supervised Hybrid model (linear 
discriminant analysis, k-
nearest neighbour 
weighed preprocessing, 
adaptive neurofuzzy 
inference system) 

N=3163 (n(hypo)=152, 
n(negative)=3011) 

Clinical Data Accuracy=98·5, Sensitivity=94·7%, 
Specificity=99·7% 

10-fold cross 
validation 

Baccour L. et 
al 2018 
[333] 

No Diagnosis Supervised ATOVIC (hybrid multi-
criteria decision making 
method) 

N=7200 Clinical Data Accuracy=92·7%, F-measure=95·3% (Hyper- vs 
Hypo- vs Control). Accuracy=99·81% (Hypo- vs 
Control)  

Hold-out validation 

Morejon et 
al. 2017 
[334]  

No Diagnosis Supervised  Java Agent Framework for 
Health Data Mining  

. Clinical Data . Hold-out validation 

Temurtas et 
al. 2009 
[335]  

No Diagnosis Supervised Probabilistic Neural 
Network 

N=215 (n(normal)=150, n(hypo)=30, 
n(hyper)=35) 

Clinical Data Accuracy=94·81% 10-fold cross 
validation 

Polat et al. 
2007 [336] 

No Diagnosis Supervised Artificial Immune 
Recognition System with 
fuzzy weighted pre-
processing 

N=215 (n(normal)=150, n(hypo)=30, 
n(hyper)=35) 

Clinical Data Accuracy=85% 10-fold cross 
validation 

Keles et al. 
2008 [337] 

No Diagnosis Supervised Expert system for thyroid 
disease diagnosis with 
fuzzy rules  

N=215 (n(normal)=150, n(hypo)=30, 
n(hyper)=35) 

Clinical Data Accuracy=95·33% 10-fold cross 
validation 

Autoimmune Liver Disease 
  

Weiss J et al. 
2015 [338] 

No Response to 
Treatment 

Supervised Boosted Forest  N=288  Clinical Trial Data  . Hold-out validation 
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Paper Multiple 
AIDs 
Studied 

Prediction or 
Classification 
Task 

ML Type Machine Learning 
Method 

Study Size (N) Type of Data Best Results (Metrics) Reported from 
validation or cross-validation, and 
where conducted, the test set. 

Cross-
Validation 

Singh et al. 
2017 [339] 

No Disease Progression Supervised Kullback-Leibler 
Divergence-Least Squares 
Support Vector Machine 

N=276 Clinical Data Accuracy=90·94% Hold-out validation 

Eaton et al. 
2018 [340] 

No Disease Progression Supervised Gradient Boosting N=787  Clinical Data Cross-validation: C-statistic=0·96 
Independent test data: C-statistic=0·9 

5-fold cross 
validation, 
independent test 
dataset 

Iwasawa et 
al. 2018 
[341] 

Yes Diagnosis Supervised Random Forest  N= 64 (n(PSC)=24, n(UC)=16, 
n(HC)=24) 

Microbiome Data Genera: AUC=0·7423 (PSC vs HC), 0·8756 (PSC vs 
UC). 
Species: AUC=0·8756 (PSC vs HC), 0·7626 (PSC vs 
UC)  

10-fold cross-
validation 

Tsujitani et 
al. 2009 
[342] 

No Survival Prediction Supervised Neural Network  N=312 Clinical Data . Delete-one cross-
validation 

Systemic Sclerosis 

Zhu et al 
2018 [343] 

No Diagnosis Supervised and 
Unsupervised 

Hierarchical Clustering 
and Support Vector 
Machine  

N=37 (n(controls)=19, n(SSc)=18) DNA and RNA of 
PBMC 

Accuracy=100%, Sensitivity=100%, 
Specificity=100% 

Hold-on-one-out 
cross-validation  

Taroni et al. 
2017 [344] 

No Response to 
treatment 

Supervised Support Vector Machine  . Gene expression 
Data 

. . 

Huang et al. 
2015 [345]  

No Disease Progression Supervised Random Forest N=119  Clinical and 
peripheral blood 
flow cytometry 
Data 

Accuracy=95% Hold-out cross-
validation 

Berks et al. 
2014 [346] 

No Diagnosis Supervised Random Forest N= 991 (n(train)=80 ; n(validate)=104 
HC + 83 PR + 269 SSc; n(test)=104 HC 
+ 83 PR + 268 SSc) images 

Nailfold 
Capillaroscopy Data 

Accuracy=93·6%, F-measure=71·5%, 
Precision=64·1%, Recall=80·9% 

Hold-out validation, 
testing set 
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Paper Multiple 
AIDs 
Studied 

Prediction or 
Classification 
Task 

ML Type Machine Learning 
Method 

Study Size (N) Type of Data Best Results (Metrics) Reported from 
validation or cross-validation, and 
where conducted, the test set. 

Cross-
Validation 

Alopecia  

Huang et al. 
2013 [347] 

Yes Comorbidity 
analysis 

Supervised Natural Language 
Processing  

N=3568 (n(AA)=2115) and N=416 
(PAFS cohort) 

Patient Data 
Repository 

Validity=93·9% Hold-out validation 

Vitiligo 

Sheth et al. 
2013 [348] 

Yes Comorbidity 
analysis 

Supervised Natural Language 
Processing 

N=3280 Research Patient 
Data Repository 

. . 
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Supplementary Table 3 Pathways excluded from Section 5.3.2’s optimal IBD subtype classifier that utilises the AI gene panel. Pathways listed here were enriched in the 

Enrichr pathway analysis of the AI panel genes after pre-processing prior to feature selection, but were not enriched in the Enrichr pathway analysis of the 

gene selected during feature selection for the IBD subtype ML model.  

Term Overlap 

in AI 

Panel 

P-value Adjusted 

P-value 

Odds 

Ratio 

Combined 

Score 

Genes 

Mitophagy 21/68 2.00E-08 4.40E-08 5.42 96.01 PRKN, JUN, SRC, RRAS2, FOXO3, HIF1A, RELA, MAPK10, MAPK9, MAPK8, NRAS, TBK1, 

SP1, TAX1BP1, E2F1, KRAS, SQSTM1, TP53, ATF4, ATG5, BCL2L1 

Cholinergic synapse 28/113 2.20E-08 4.80E-08 4.00 70.58 CAMK2D, PIK3CD, ADCY3, ITPR3, PIK3R2, PIK3R1, ADCY7, GNAI2, NRAS, AKT2, 

CREB3L2, MAPK1, FYN, PRKACA, JAK2, CAMK2G, KCNJ2, MAPK3, PRKCB, FOS, CREB3, 

CREB1, PIK3CA, BCL2, KRAS, PLCB1, PLCB2, ATF4 

Hippo signaling pathway 35/163 2.23E-08 4.83E-08 3.33 58.68 GSK3B, YWHAB, SERPINE1, TCF7, ITGB2, LEF1, PPP2CB, CCND3, PAK1, CCND1, MYC, 

DVL2, YWHAH, SMAD2, SMAD1, WNT10B, TCF7L2, SMAD4, TGFB2, SMAD3, TGFB1, 

FBXW11, TGFB3, BMP8A, CSNK1D, TGFBR1, SMAD7, TGFBR2, APC, PARD3, ID1, BIRC5, 

CTNNB1, BIRC2, BIRC3 

Endocytosis 44/252 2.43E-07 5.12E-07 2.58 39.31 TSG101, TFRC, SRC, CLTC, AGAP2, CXCR4, CBLB, AP2A1, SNX32, ARRB2, CBL, IL2RG, 

EGFR, PLD2, RAB11FIP1, GRK2, CXCR1, CXCR2, GRK6, PIP5K1B, CCR5, AP2M1, SMAD2, 

PDGFRA, RAB4A, SMAD3, SMURF1, CAV1, HSPA6, STAM, EPS15L1, TGFBR1, TGFBR2, 

DNM3, RAB31, ARPC2, BIN1, HGS, PARD3, TRAF6, IL2RB, MDM2, RAB5A, ARF5 
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Thyroid hormone synthesis 20/75 6.25E-07 1.30E-06 4.40 62.90 ATF2, GPX1, HSPA5, PRKCB, ADCY3, ITPR3, SERPINA7, ADCY7, TSHR, HSP90B1, CREB3, 

TPO, CREB1, CREB3L2, PRKACA, PLCB1, CGA, PLCB2, TSHB, ATF4 

Thermogenesis 40/232 1.18E-06 2.36E-06 2.54 34.64 ATF2, PRKAA1, SMARCD3, KDM1A, UCP1, PRKAG2, ADCY3, ADCY7, NRAS, ATP5F1B, 

CPT2, RPS6KA2, CREB3L2, CYC1, PRKACA, PPARGC1A, CPT1A, ACSL1, ACTL6A, BMP8A, 

ACSL5, TSC2, ACSL4, GCG, ACSL3, SDHA, MAPK14, CPT1B, MAPK12, MTOR, SMARCA4, 

MAPK13, CREB3, MAPK11, CREB1, ADRB3, GRB2, PPARG, KRAS, NDUFAF1 

Oocyte meiosis 27/129 1.49E-06 2.97E-06 3.21 43.09 CAMK2D, YWHAB, CUL1, ADCY3, ITPR3, ADCY7, CDC20, CCNB2, PPP2CB, CCNB1, 

RPS6KA2, MAPK1, PRKACA, BUB1, CAMK2G, SKP1, YWHAH, MAPK3, FBXW11, 

PPP2R5D, MAPK14, MAPK12, MAPK13, MOS, MAPK11, CCNE1, CPEB4 

Dopaminergic synapse 27/132 2.38E-06 4.68E-06 3.12 40.40 ATF2, GSK3B, CAMK2D, ITPR3, ARRB2, GNAI2, MAPK9, PPP2CB, MAPK8, AKT2, 

CREB3L2, PRKACA, CAMK2G, PRKCB, PPP2R5D, FOS, PPP2R3A, MAPK14, MAPK12, 

MAPK13, MAPK10, CREB3, MAPK11, CREB1, PLCB1, PLCB2, ATF4 

Adrenergic signaling in 

cardiomyocytes 

29/150 3.37E-06 6.59E-06 2.91 36.65 ATF2, CAMK2D, CREM, ATP2A2, ADCY3, ADCY7, GNAI2, PPP2CB, RPS6KA5, AKT2, 

CREB3L2, MAPK1, PRKACA, CAMK2G, MAPK3, ATP2B4, PPP2R5D, PPP2R3A, MAPK14, 

AGT, MAPK12, MAPK13, CREB3, MAPK11, CREB1, BCL2, PLCB1, PLCB2, ATF4 

Aldosterone synthesis and 

secretion 

22/98 4.10E-06 7.95E-06 3.51 43.49 ATF1, ATF2, CAMK2D, PRKCB, ATP2B4, ADCY3, ITPR3, ADCY7, AGT, NR4A2, POMC, 

CREB3, CREB1, CREB3L2, ORAI1, PRKD1, PRKACA, PLCB1, PLCB2, CAMK2G, CAMK1G, 

ATF4 

Long-term potentiation 17/67 8.91E-06 1.72E-05 4.11 47.79 CAMK2D, CREBBP, MAP2K2, PRKCB, ITPR3, NRAS, RPS6KA2, EP300, MAPK1, KRAS, 

PRKACA, PLCB1, RAF1, PLCB2, CAMK2G, ATF4, MAPK3 
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Insulin secretion 19/86 2.32E-05 4.39E-05 3.43 36.60 GLP1R, ATF2, SNAP25, CAMK2D, ABCC8, PRKCB, PDX1, ADCY3, ITPR3, GCG, ADCY7, 

CREB3, CREB1, CREB3L2, PRKACA, PLCB1, PLCB2, CAMK2G, ATF4 

Long-term depression 15/60 3.59E-05 6.67E-05 4.03 41.20 LYN, GUCY1B1, MAP2K2, PRKCB, ITPR3, GNAI2, PPP2CB, NRAS, GNA12, MAPK1, KRAS, 

PLCB1, RAF1, PLCB2, MAPK3 

Renin secretion 16/69 5.40E-05 9.91E-05 3.65 35.83 PTGER4, GUCY1B1, ACE, ITPR3, AGT, AQP1, GNAI2, EDNRA, CREB1, ADRB3, ADORA1, 

ORAI1, PRKACA, PLCB1, PLCB2, KCNJ2 

Cortisol synthesis and secretion 15/65 9.71E-05 1.77E-04 3.62 33.46 ATF2, ADCY3, ITPR3, ADCY7, AGT, POMC, CREB3, CREB1, SP1, CREB3L2, ORAI1, 

PRKACA, PLCB1, PLCB2, ATF4 

Autoimmune thyroid disease 13/53 1.45E-04 2.58E-04 3.92 34.66 CD86, IFNA5, IL10, IFNA16, CD80, PRF1, GZMB, TSHR, TPO, CD28, CTLA4, CGA, TSHB 

Viral myocarditis 14/60 1.45E-04 2.58E-04 3.67 32.46 CD86, CD80, CAV1, ITGB2, PRF1, ITGAL, ICAM1, CASP8, CCND1, CASP3, RAC2, ABL1, 

CD28, FYN 

Ubiquitin mediated proteolysis 24/140 1.68E-04 2.95E-04 2.50 21.77 PRKN, MAP3K1, UBA7, FBXW11, AIRE, SMURF1, CUL1, KEAP1, XIAP, CBLB, UBE2L6, 

CBL, PIAS2, PIAS1, CDC20, SOCS3, SOCS1, TRAF6, MDM2, BIRC6, STUB1, BIRC2, SKP1, 

BIRC3 

Circadian rhythm 9/31 3.95E-04 6.88E-04 4.93 38.61 PRKAA1, CREB1, FBXW11, CUL1, RORC, PRKAG2, RORA, CSNK1D, SKP1 

Tight junction 26/169 5.36E-04 9.28E-04 2.20 16.57 ITGB1, PRKAA1, ROCK1, ROCK2, SRC, PRKAG2, CD1D, F11R, CD1C, CD1B, MAPK9, 

PPP2CB, STK11, MAPK8, CCND1, ERBB2, PRKACA, JUN, MAP3K1, MSN, RUNX1, 

MAPK10, ARPC2, CDK4, PARD3, EZR 

Arrhythmogenic right ventricular 

cardiomyopathy 

15/77 6.90E-04 1.18E-03 2.92 21.25 ITGB1, TCF7L2, ITGA4, ITGA2, ITGA2B, LEF1, TCF7, ATP2A2, CDH2, ITGA11, ITGB8, 

CTNNB1, ITGB7, ITGA6, ITGA5 
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Cocaine addiction 11/49 1.03E-03 1.75E-03 3.49 23.98 ATF2, CREB3, JUN, CREB1, BDNF, CREB3L2, PRKACA, RELA, NFKB1, ATF4, GNAI2 

Type I diabetes mellitus 10/43 1.30E-03 2.19E-03 3.65 24.26 CD86, IL1A, CD80, IL1B, ICA1, PRF1, CD28, IL12B, GZMB, IL12A 

Huntington disease 39/306 1.31E-03 2.19E-03 1.77 11.75 HDAC1, CLTC, UCP1, HTT, AP2A1, MAPK9, MAPK8, ACTR1B, ATP5F1B, CASP8, POLR2A, 

ATG101, CASP3, CREB3L2, EP300, CYC1, PPARGC1A, AP2M1, DNAH12, CREBBP, GPX1, 

TBP, BDNF, TRAF2, SDHA, TUBB4A, MTOR, SOD1, MAPK10, CREB3, PSMA3, PSMC5, 

CREB1, SP1, BAX, PPARG, PLCB1, TP53, PLCB2 

Protein processing in 

endoplasmic reticulum 

25/171 1.43E-03 2.37E-03 2.07 13.56 ERO1A, PRKN, SAR1B, CUL1, HSP90B1, MAPK9, MAPK8, UFD1, CAPN1, UBQLN4, SKP1, 

TXNDC5, EDEM3, XBP1, HSP90AA1, HSPA5, HSPA6, TRAF2, MAPK10, BCL2, BAX, 

STUB1, ATF6, ATF4, NFE2L2 

Endocrine and other factor-

regulated calcium reabsorption 

11/53 2.04E-03 3.35E-03 3.15 19.55 DNM3, PRKCB, VDR, CLTC, ATP2B4, AP2A1, PRKACA, PLCB1, PLCB2, ESR1, AP2M1 

Amphetamine addiction 13/69 2.10E-03 3.45E-03 2.80 17.25 ATF2, CAMK2D, JUN, PRKCB, HDAC1, FOS, SIRT1, CREB3, CREB1, CREB3L2, PRKACA, 

CAMK2G, ATF4 

Circadian entrainment 16/97 2.91E-03 4.73E-03 2.38 13.91 CAMK2D, GUCY1B1, PRKCB, ADCY3, ITPR3, FOS, ADCY7, GNAI2, RPS6KA5, CREB1, 

MAPK1, PRKACA, PLCB1, PLCB2, CAMK2G, MAPK3 

Hedgehog signalling pathway 11/56 3.22E-03 5.21E-03 2.94 16.90 GSK3B, HHAT, GRK2, CCND1, FBXW11, SMURF1, CUL1, BCL2, CSNK1D, ARRB2, PRKACA 

Vibrio cholerae infection 10/50 4.26E-03 6.86E-03 3.01 16.43 ERO1A, PLCG2, ADCY3, ATP6V1H, TCIRG1, PLCG1, PRKACA, ATP6V0C, ATP6V0A1, 

ATP6V1C2 

Parkinson disease 31/249 5.47E-03 8.78E-03 1.72 8.95 PRKN, CAMK2D, UBA7, UBE2L6, ITPR3, PARK7, GNAI2, MAPK9, MAPK8, ATP5F1B, 

CASP3, PLCG1, CYC1, PRKACA, CAMK2G, SNCA, XBP1, HSPA5, DUSP1, SDHA, TUBB4A, 

MAPK10, PSMA3, PSMC5, ADORA2A, BAX, ATF6, TP53, ATF4, BCL2L1, NFE2L2 
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Vasopressin-regulated water 

reabsorption 

9/44 5.62E-03 8.96E-03 3.09 16.04 CREB3, CREB1, CREB3L2, ADCY3, AQP4, STX4, AQP2, PRKACA, RAB5A 

Allograft rejection 8/38 7.38E-03 1.17E-02 3.21 15.75 CD86, IL10, CD80, PRF1, CD28, IL12B, GZMB, IL12A 

Asthma 7/31 8.06E-03 1.27E-02 3.51 16.91 IL10, CCL11, FCER1G, IL13, IL9, FCER1A, MS4A2 

Basal cell carcinoma 11/63 8.13E-03 1.27E-02 2.55 12.26 GSK3B, TCF7L2, WNT10B, CDKN1A, APC, LEF1, TCF7, DVL2, BAX, CTNNB1, TP53 

Glutathione metabolism 10/57 1.10E-02 1.70E-02 2.56 11.55 GSTM4, G6PD, GCLC, GPX1, RRM2, GSTO1, GSTP1, IDH1, IDH2, PRDX6 

Serotonergic synapse 16/113 1.28E-02 1.97E-02 1.99 8.66 APP, PRKCB, DUSP1, ALOX15, ITPR3, PTGS2, GNAI2, NRAS, CASP3, MAPK1, KRAS, 

PRKACA, RAF1, PLCB1, PLCB2, MAPK3 

Gastric acid secretion 12/76 1.30E-02 1.98E-02 2.26 9.81 CAMK2D, PRKCB, ADCY3, ITPR3, PRKACA, EZR, PLCB1, PLCB2, ADCY7, CAMK2G, KCNJ2, 

GNAI2 

Graft-versus-host disease 8/42 1.36E-02 2.07E-02 2.83 12.17 CD86, IL1A, IL6, CD80, IL1B, PRF1, CD28, GZMB 

Amyotrophic lateral sclerosis 40/364 1.46E-02 2.21E-02 1.49 6.31 PRKN, ITPR3, TANK, TBK1, ACTR1B, ATP5F1B, ATG101, CASP3, CASP1, CYC1, UBQLN4, 

DNAH12, XBP1, GPX1, HSPA5, NCBP1, NOS2, BAD, TRAF2, SDHA, TNFRSF1B, MAPK14, 

TUBB4A, MAPK12, MTOR, TNFRSF1A, MAPK13, SOD1, MAPK11, PSMA3, PSMC5, 

NRG3, BCL2, BAX, ATF6, TP53, SQSTM1, RAB5A, ATF4, BCL2L1 

Retrograde endocannabinoid 

signalling 

19/148 1.92E-02 2.89E-02 1.78 7.02 PRKCB, ADCY3, ABHD6, ITPR3, PTGS2, MAPK14, ADCY7, MAPK12, GNAI2, MAPK13, 

MAPK10, MAPK9, MAPK11, MAPK8, MAPK1, PRKACA, PLCB1, PLCB2, MAPK3 

Carbohydrate digestion and 

absorption 

8/47 2.58E-02 3.87E-02 2.47 9.02 PIK3CA, PRKCB, AKT2, PIK3CD, PIK3R2, PIK3R1, PLCB1, PLCB2 

Renin-angiotensin system 5/23 2.81E-02 4.20E-02 3.34 11.92 CPA3, ACE, MME, LNPEP, AGT 
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Glycine, serine and threonine 

metabolism 

7/40 3.13E-02 4.65E-02 2.55 8.83 GRHPR, ALAS2, ALAS1, GLDC, SHMT1, PHGDH, DLD 

Supplementary Table 4 Breakdown of machine learning tasks, methods, data types, results, cross validation (CV) usage, type of train test split, use of 

independent/external data and year published for each study that passed the inclusion/exclusion criteria of the systematic review. 

AUC= Area under the curve, CV=cross-validation, IBD = Inflammatory Bowel Disease, CD = Crohn’s Disease, UC = Ulcerative Colitis, HC = Healthy Controls, GI 

= Gastrointestinal, LASSO = Least absolute shrinkage and selection operator, WGS = Whole Genome Sequencing, CAGI = Critical Assessment of Genome 

Interpretation 

Paper Task ML Type ML Method(s) Best ML 

Method 

Study Size Data 

Inc. 

Type of Data Best Results (Metrics) 

Reported from 

validation or cross-

validation, and where 

conducted, the test set 

CV Train/Test 

Split 

External 

Test 

Data 

(Y/N) 

Year 

Firouzi et al. 

[530] 

Disease Course Supervised Decision Tree Decision Tree 160 (121 UC, 

39 CD) 

IBD Clinical Accuracy=88.2% (UC), 89.8% 

(CD), 86.5% (IBD), 

Sensitivity=67.6% (UC), 82.8% 

(CD), 65.7% (IBD), 

Specificity=96.3% (UC), 95.2% 

(CD), 96.3% (IBD), Matthew's 

Correlation Coefficients=0.69 

(UC), 0.79 (CD), 0.68 (IBD) 

10-fold CV No N 2007 
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Paper Task ML Type ML Method(s) Best ML 

Method 

Study Size Data 

Inc. 

Type of Data Best Results (Metrics) 

Reported from 

validation or cross-

validation, and where 

conducted, the test set 

CV Train/Test 

Split 

External 

Test 

Data 

(Y/N) 

Year 

Waljee et 

al.[268] 

Treatment 

Response 

Supervised Random Forest Random Forest 346 IBD Clinical AUC=0.856 (response), 0.813 

(non-adherence), 0.797 

(shunting) 

10-fold CV on 

training data 

Yes (hold out 

validation) 

Y 2009 

Cui et 

al.[513] 

Diagnosis Supervised Support Vector Machine Support Vector 

Machine 

124 (25 IBD, 99 

HC) 

IBD Metagenomic Accuracy=88%, 

Sensitivity=92%, 

Specificity=84% 

Leave-one-out 

CV 

Yes (hold out 

validation) 

N 2013 

Wei et 

al.[436] 

Risk of Disease Supervised Logistic Regression Logistic 

Regression 

53,279 (17,379 

CD, 13,458 UC, 

22,442 HC) 

IBD Genome wide Cross Validation: AUC=0.864 

(CD) 0.83 (UC). Independent 

Test Set: AUC=0.864 (CD), 

0.826 (UC) 

10-fold CV Yes (hold out 

validation) 

N 2013 

Hübenthal et 

al.[512] 

Diagnosis Supervised Support Vector Machine, 

Random Forest 

Random Forest 273 (37 CD, 32 

UC, 92 HC, 113 

other) 

IBD MicroRNA 

Expression 

AUC=0.996 5-fold CV on 

training data 

Yes (hold out 

validation) 

N 2015 

Niehaus et 

al.[501] 

Disease Severity Supervised 

and 

Unsupervised 

Logistic Regression, 

Random Forests, Support 

Vector Machine, 

Hierarchical Clustering 

Support Vector 

Machine, 

Hierarchical 

Clustering 

501 CD Health Records, 

EMR Databases 

Accuracy=68.7%, 

Sensitivity=59.1%, 

Specificity=78.4% 

5-fold CV on 

training data 

Yes (hold out 

validation) 

N 2015 
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Paper Task ML Type ML Method(s) Best ML 

Method 

Study Size Data 

Inc. 

Type of Data Best Results (Metrics) 

Reported from 

validation or cross-

validation, and where 

conducted, the test set 

CV Train/Test 

Split 

External 

Test 

Data 

(Y/N) 

Year 

Menti et 

al.[434] 

Disease Severity 

- Complications 

Supervised Naïve Bayes, Bayesian 

Additive Regression Trees, 

Bayesian Networks 

Bayesian 

Networks 

152 IBD Clinical, Genetic AUC=0.95, Accuracy=0.89, 

Sensitivity=0.78, 

Specificity=0.94 

10-fold CV No N 2016 

Eck et 

al.[262]  

Diagnosis Supervised Support Vector Machine, 

Random Forest, Nearest 

Shrunken Centroids, 

Logistic Regression 

Support Vector 

Machine, 

Random Forest 

112 (56 IBD, 56 

HC) 

IBD Microbiota Accuracy=81% 10-fold CV No N 2017 

Waljee et 

al.[528] 

Disease Course Supervised Logistic Regression, 

Random Forest 

Random Forest 20368 IBD Clinical Predict Hospitalisation and 

Corticosteroid Prescriptions. 

IBD: AUC=0.87, Sensitivity=74-

80%, Specificity=80-82%. UC: 

AUC=0.84. CD=0.85. IC=0·82. 

Predict Corticosteroid 

Prescription Only, IBD: 

AUC=0.9. Predict 

Hospitalisation and 

Corticosteroid Prescriptions 

(12 month outcome): AUC=0.9 

None Yes (hold out 

validation) 

N 2017 
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Paper Task ML Type ML Method(s) Best ML 

Method 

Study Size Data 

Inc. 

Type of Data Best Results (Metrics) 

Reported from 

validation or cross-

validation, and where 

conducted, the test set 

CV Train/Test 

Split 

External 

Test 

Data 

(Y/N) 

Year 

Yu et al.[554] Identification of 

Patients 

Supervised Natural Language 

Processing 

Natural Language 

Processing 

2393 (600 UC, 

600 CD, 1193 

Other) 

IBD Electronic 

Medical Records 

CD AUC~0.95, UC AUC~0.95, 

CD F-score~0.83, UC F-

score~0.89 

None Out of 

sample 

accuracy 

N 2017 

Isakov et 

al.[553] 

Risk of Disease Supervised Random Forest, Support 

Vector Machine, Extreme 

Gradient Boosting, Elastic 

net regularised 

generalised linear model, 

Combined Model (elastic 

net regularised 

generalised linear model, 

extreme gradient 

boosting, SVM, RF) 

Combined Model 

(elastic net 

regularised 

generalised linear 

model, extreme 

gradient 

boosting, SVM, 

RF) 

513 (180 CD, 

149 UC, 94 

colorectal 

neoplasms, 90 

normal tissue) 

IBD Gene Expression AUC=0.829, Accuracy=0.808, 

Sensitivity=0.577, 

Specificity=0.880 

5-fold CV Yes (hold out 

validation) 

N 2017 

Pal et 

al.[545] 

Risk of Disease Supervised Naïve Bayes, Logistic 

Regression, Consensus 

Method (Naïve Bayes, 

Logistic Regression, 

Random Forest) 

Consensus 

Method (Naïve 

Bayes, Logistic 

Regression, 

Random Forest) 

111 (64 CD, 47 

HC) 

CD Genome wide 

association study, 

exome 

sequencing to 

AUC=0.72 None Yes (hold out 

validation) 

N 2017 
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Paper Task ML Type ML Method(s) Best ML 

Method 

Study Size Data 

Inc. 

Type of Data Best Results (Metrics) 

Reported from 

validation or cross-

validation, and where 

conducted, the test set 

CV Train/Test 

Split 

External 

Test 

Data 

(Y/N) 

Year 

impute 

genotypes. 

Daneshjou et 

al.[547] 

Risk of Disease Supervised Metaclassifier Metaclassifier 111 (64 CD, 47 

HC) 

CD Exome 

sequencing data 

AUC=0.78 CV performed Splits 

performed 

N 2017 

Giollo et 

al.[439] 

Risk of Disease Supervised Support Vector Machine, 

Ensemble Classifier 

Ensemble 

Classifier 

111 (64 cases, 

47 controls)   

CD Genetic AUC=0.66 None Yes (hold out 

validation) 

N 2017 

Mossotto et 

al.[254] 

Subtype 

Diagnosis 

Supervised 

and 

Unsupervised 

Support Vector Machine, 

Hierarchical Clustering 

Support Vector 

Machine, 

Hierarchical 

Clustering 

287 (178 CD, 

80 UC, 29 IBDU 

(only 

reclassified)) 

IBD Clinical Cross-validation: AUC=0.87, 

Accuracy=82.7%, 

Precision=0.91, Recall=0.83, 

F1-score=0.87. Test set: 

Accuracy=83.3%, 

Precision=0.86, Recall=0.83, 

F1-score=0.84 

5-fold cross 

validation on 

training data 

Yes (hold out 

validation) 

N 2017 

Waljee et 

al.[552] 

Treatment 

Response 

Supervised Random Forest Random Forest 1080 IBD Clinical Objective Remission: 

AUC=0.79, Sensitivity=70.6%, 

Specificity=73.8%. Non-

adherence: AUC=0.84, 

Sensitivity=70.6%, 

Specificity=85.0%. Shunting: 

Out of bag 

error 

Yes (hold out 

validation) 

N 2017 
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Paper Task ML Type ML Method(s) Best ML 

Method 

Study Size Data 

Inc. 

Type of Data Best Results (Metrics) 

Reported from 

validation or cross-

validation, and where 

conducted, the test set 

CV Train/Test 

Split 

External 

Test 

Data 

(Y/N) 

Year 

AUC=0.78, Sensitivity=65.2%, 

Specificity=79.0%. 

Kang et 

al.[260] 

Treatment 

Response 

Supervised Gene Regulatory 

Network-based 

Regularized Artificial 

Neural Network 

(GRRANN), Group LASSO, 

Regularized Logistic 

Regression, Multilayer 

Perceptron, Support 

Vector Machine 

Gene Regulatory 

Network-based 

Regularized 

Artificial Neural 

Network 

(GRRANN) 

46 UC Gene Expression Balanced Accuracy≈0.8 5-fold CV on 

training data 

Yes (hold out 

validation) 

N 2017 

Forbes et 

al.[272] 

Diagnosis Supervised Random Forest Random Forest 102 (20 CD, 19 

UC, 23 HC, 40 

Other) 

IBD Microbiota Diseased vs HC: AUC=0.93, 

Balanced Accuracy=0.84. 

Breakdown per inflammatory 

disease found in paper. 

Out of bag 

error 

No N 2018 

Douglas et 

al.[511] 

Diagnosis, 

Treatment 

Response 

Supervised Random Forest Random Forest 771. Validation 

data (diagnosis 

only): 731 (444 

CD Metagenomic Diagnosis: Accuracy=84.2%. 

Independent Validation 

(diagnosis): Accuracy 73.2%. 

Out of bag 

error, Leave-

No Y 2018 
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Paper Task ML Type ML Method(s) Best ML 

Method 

Study Size Data 

Inc. 

Type of Data Best Results (Metrics) 

Reported from 

validation or cross-

validation, and where 

conducted, the test set 

CV Train/Test 

Split 

External 

Test 

Data 

(Y/N) 

Year 

CD, 287 

control) 

Treatment Response: 

Accuracy 77.8%. 

one-out cross-

validation 

Jain et 

al.[529] 

Disease Course Supervised Random Forest Random Forest 179 UC Clinical Colectomy Prediction: 

Accuracy=77%, 

Sensitivity=75%, 

Specificity=80%. Steroid 

Dependence: Accuracy=75%, 

Sensitivity=69%, 

Specificity=80%. 

None Yes (hold out 

validation) 

N 2018 

Reddy et 

al.[574] 

Disease Severity 

- Activity 

Supervised Gradient Boost, Logistic 

Regression, Regularised 

Regression 

Gradient Boost 82 CD CD Clinical (EHR) AUC=0.93 to predict disease 

severity using C-reactive 

protein as proxy 

10-fold CV 

replicated 10 

times 

No N 2018 

Maeda et 

al.[575] 

Disease Severity 

- Activity 

Supervised Support Vector Machine Support Vector 

Machine 

187 patients, 

22835 images 

UC Endocytoscopic 

Image 

Accuracy=91%, Kappa=1, 

Sensitivity=74%, 

Specificity=97% 

None Yes (hold out 

validation) 

N 2018 

Han et 

al.[274] 

Subtype 

Diagnosis 

Supervised Random Forest Random Forest 163 (Train: 24 

CD, 59 UC, 

Validation set 

1:5 CD ,7 UC. 

IBD Gene Expression Validation set 1: AUC=0.829. 

Validation set 2: AUC=0.764. 

Validation set 3: AUC=0.836. 

Validation set 4: AUC=0.849 

None Yes (train on 

one 

dataset,test 

Y 2018 
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Paper Task ML Type ML Method(s) Best ML 

Method 

Study Size Data 

Inc. 

Type of Data Best Results (Metrics) 

Reported from 

validation or cross-

validation, and where 

conducted, the test set 

CV Train/Test 

Split 

External 

Test 

Data 

(Y/N) 

Year 

Validation set 

2: 14 CD, 10 

UC. Validation 

set 3: 11 CD, 5 

UC. Validation 

set 4: 13 CD, 15 

UC) 

on four 

externals) 

Waljee et 

al.[548] 

Treatment 

Response 

Supervised Random Forest Random Forest 491 UC Clinical AUC=0.73, Sensitivity=0.72, 

Specificity=0.68 

None Yes (hold out 

validation) 

N 2018 

Doherty et 

al.[546] 

Treatment 

Response 

Supervised Random Forest Random Forest 306 (232 

treated, 74 

untreated) 

CD Microbial 

Genome, Clinical 

Remission: AUC=0.844, 

Sensitivity=0.774, 

Specificity=0.831. Response: 

AUC=0.733 Sensitivity=0.684, 

Specificity=0.724 

None No N 2018 

Romagnoni 

et al.[437] 

Diagnosis Supervised Logistic Regression, 

Gradient Boosted Trees, 

Artificial Neural Network 

Logistic 

Regression 

52277 (18,227 

CD, 34,050 HC) 

CD Genomic 

(Immunochip) 

AUC=0.8 10-fold CV on 

training data 

Yes (hold out 

validation) 

N 2019 
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Paper Task ML Type ML Method(s) Best ML 

Method 

Study Size Data 

Inc. 

Type of Data Best Results (Metrics) 

Reported from 

validation or cross-

validation, and where 

conducted, the test set 

CV Train/Test 

Split 

External 

Test 

Data 

(Y/N) 

Year 

Wang et 

al.[440] 

Diagnosis Supervised Analysis of Variation for 

Association with Disease 

(Support Vector Machine 

Based) 

Analysis of 

Variation for 

Association with 

Disease (Support 

Vector Machine 

Based) 

173 (111 CD, 

62 HC) 

CD Genomic (WES) AUC=0.75 Leave-one-out 

CV on training 

data 

Yes (CV on 

one data set, 

test on 

external) 

Y 2019 

Morell 

Miranda et 

al.[527] 

Disease Course Supervised Random Forest Random Forest 70 patients, 

1084 

metagenomic 

samples, 566 

metatranscript

omic samples 

IBD Metagenomic, 

Metatranscripto

mic 

Micro-averaged AUC=0.96 

(metagenomic data), 

AUC=0.91 

(metatranscriptomic data), 

AUC=0.99 (combined data) 

1000-fold CV 

(combined 

data), 500-fold 

CV (individual 

datasets) 

Yes (hold out 

validation) 

N 2019 

Bottigliengo 

et al.[435] 

Disease Course - 

Extra Intestinal 

Manifestations 

Supervised Naïve Bayes, Bayes 

Network, Bayes additive 

regression trees 

Naïve Bayes, 

Bayes Network, 

Bayes additive 

regression trees 

152 CD Clinical, SNP 

Panel 

AUC=0.75 10-fold CV, 

replicated 10 

times 

No, used 

1000 

bootstrappe

d samples 

N 2019 

Braun et 

al.[525] 

Disease Course - 

Relapse 

Supervised Random Forest Random Forest 45 patients, 

217 samples 

CD Metagenomic, 

Clinical 

Relapsers vs Non-relapsers: 

AUC=0.78. 

Out of Bag 

Error 

No N 2019 
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Paper Task ML Type ML Method(s) Best ML 

Method 

Study Size Data 

Inc. 

Type of Data Best Results (Metrics) 

Reported from 

validation or cross-

validation, and where 

conducted, the test set 

CV Train/Test 

Split 

External 

Test 

Data 

(Y/N) 

Year 

Waljee et 

al.[432] 

Disease Course - 

Remission 

Supervised Random Forest Random Forest 401 IBD IBD Clinical C-reactive protein as marker 

of remission, AUC=0.78 

None Yes, hold out 

replicated 

100 times 

N 2019 

Dong et 

al.[433] 

Disease Course - 

Surgery 

Supervised Random Forest, Logistic 

Regression, Support 

Vector Machine, Decision 

Tree, Artificial Neural 

Network 

Random Forest 239 CD (83 

surgery, 156 no 

surgery) 

CD Clinical Accuracy=0.96, F1=0.77, 

AUC=0.98 

10-fold CV on 

train and test 

data 

Yes (hold out 

validation) 

N 2019 

Biasci et 

al.[538] 

Disease Severity Supervised Elastic Net Elastic Net 118 (66 CD, 52 

UC). External 

Data: 123 (66 

CD 57 UC) 

IBD Expression (qPCR) Accuracy=0.81 Leave-one-out 

CV 

Yes (CV on 

one data set, 

test on 

external) 

Y 2019 

Lerrigo et 

al.[497] 

Patient 

clustering 

Unsupervised Latent Dirichlet Allocation Latent Dirichlet 

Allocation 

51,591 entries IBD Online Posts Identified most common 

emotions with IBD patients. 

NA NA N 2019 

Taylor et 

al.[438] 

Risk of Disease Supervised Elastic net, Random 

Forest 

Random Forest 454 CD (124 

used) 

CD Clinical, 

Genotyping 

AUC=0.87 20 repeats of 

5-fold CV on 

training data 

Yes (hold out 

validation) 

N 2019 
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Paper Task ML Type ML Method(s) Best ML 

Method 

Study Size Data 

Inc. 

Type of Data Best Results (Metrics) 

Reported from 

validation or cross-

validation, and where 

conducted, the test set 

CV Train/Test 

Split 

External 

Test 

Data 

(Y/N) 

Year 

Khorasani et 

al.[507] 

Diagnosis Supervised Support Vector Machine Support Vector 

Machine 

77 in training 

data (39 UC, 38 

controls), 85 in 

active test data 

(74 UC, 11 

controls), 34 in 

inactive test 

data (23 UC, 11 

controls) 

UC Gene Expression Inactive UC vs Controls : 

Precision-recall AUC=0.68. 

Active UC vs Controls : 

Precision-recall AUC 1. 

5-fold CV on 

training data 

Yes (hold out 

validation) 

N 2020 

Raimondi et 

al.[441] 

Diagnosis Supervised Neural Network Neural Network CAGI 2 (42 

cases, 14 

controls), CAGI 

3 (51 cases, 15 

controls), CAGI 

4 (64 cases, 47 

controls) 

CD Whole Exome 

Sequencing 

AUC=82.5, Sensitivity=96.2, 

Specificity=60.0, 

Precision=89.3, Precision-

recall AUC=93.1. 

Leave-one-out 

CV 

Yes (hold out 

validation) 

N 2020 

Jiang et 

al.[508] 

Diagnosis Supervised Random Forest Random Forest 492 (110 CD, 

382 HC) 

CD Metagenomic AUC=0.92-0.95 10-fold CV 

(leave one 

dataset out - 

No N 2020 
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Paper Task ML Type ML Method(s) Best ML 

Method 

Study Size Data 

Inc. 

Type of Data Best Results (Metrics) 

Reported from 

validation or cross-

validation, and where 

conducted, the test set 

CV Train/Test 

Split 

External 

Test 

Data 

(Y/N) 

Year 

pooled many 

datasets) 

Iablokov et 

al.[510] 

Diagnosis Supervised Random Forest Random Forest 654 HC, 274 

CD, 175 UC 

IBD Metagenomic HC vs CD: taxonomy-based 

classifier AUC=0.79-0.95, 

phenotype-based classifier 

AUC=0.76-0.91. HC vs UC: 

taxonomy-based AUC=0.65-

0.92, phenotype-based 

AUC=0.43-0.92 

3-fold leave 

one dataset 

out 

Yes (hold out 

validation) 

N 2020 

Clooney et 

al.[498] 

Diagnosis, 

Disease Course - 

Remission 

Supervised 

and 

Unsupervised 

Gradient boosted trees, 

hierarchical clustering 

Gradient boosted 

trees, 

hierarchical 

clustering 

692 (303 CD, 

228 UC, 161 

controls) 

IBD 16S rRNA (from 

faecal 

microbiota) 

CD vs HC: AUC=0.88, 

Accuracy=84%.  UC vs HC 

AUC=0.88, Accuracy=83%. CD 

vs UC AUC=0.67, 

Accuracy=64%. Inactive vs 

Active CD AUC=0.81, 

Accuracy=81%. Inactive vs 

Active UC AUC=0.73, 

Accuracy=85%. Inactive vs 

Parameter 

optimisation: 

bootstrapping 

with 1000 

iterations and 

5-fold CV. 

Classification: 

leave-one-out 

CV 

No N 2020 
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Paper Task ML Type ML Method(s) Best ML 

Method 

Study Size Data 

Inc. 

Type of Data Best Results (Metrics) 

Reported from 

validation or cross-

validation, and where 

conducted, the test set 

CV Train/Test 

Split 

External 

Test 

Data 

(Y/N) 

Year 

Active IBD AUC=0.91, 

Accuracy=89%. Clustering 

revealed 10 subgroups. 

Shivaji et 

al.[520] 

Disease Course Supervised Logistic Regression Logistic 

Regression 

147 IBD Clinical, 

Demographic 

Used to identify variables 

which are significantly 

predictive of outcomes after 

biologic therapy was 

discontinued. 

CV according 

to CARRoT 

package (R ) 

No N 2020 

Waljee et 

al.[514] 

Disease Course - 

Remission 

Supervised Random Forest, LASSO 

Logistic Regression 

LASSO Logistic 

Regression 

117 CD Clinical Clinical Remission (CD activity 

index): AUC=0.61. Endoscopic 

Remission (Faecal 

calprotectin) AUC=0.6. 

Biological Remission (C-

reactive protein) AUC=0.62. 

CV on training 

data 

Yes (hold out 

validation) 

N 2020 

Sakurai et 

al.[517] 

Disease Course - 

Remission 

Supervised Logistic Regression, Naïve 

Bayes, Neural Network, 

Support Vector Machine, 

AdaBoost, CN2 rule 

inducer, Tree, Random 

Logistic 

Regression, Naïve 

Bayes, Neural 

Network, Support 

Vector Machine 

12 (9 UC, 3 

normal) 

UC Gene Expression For all ML methods listed in 

Best ML method, for normal 

vs relapse at week 0 vs non-

relapse at week 0: AUC=1, 

F1=1, Precision=1, Recall=1. 

10-fold CV No N 2020 
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Paper Task ML Type ML Method(s) Best ML 

Method 

Study Size Data 

Inc. 

Type of Data Best Results (Metrics) 

Reported from 

validation or cross-

validation, and where 

conducted, the test set 

CV Train/Test 

Split 

External 

Test 

Data 

(Y/N) 

Year 

Forest, k-Nearest 

Neighbours 

Taylor et 

al.[521] 

Disease Course - 

Remission 

Supervised Partial Least Squares 

Discriminant Analysis 

Partial Least 

Squares 

Discriminant 

Analysis 

25 patients (11 

low 

calprotectin, 

11 high 

calprotectin) 

CD NMR Spectra R2=0.87 (goodness of fit on 

training data), Q2=0.41 

(goodness of prediction on 

test data). 

Monte Carlo 

CV 

Yes (hold out 

validation) 

N 2020 

Jones et 

al.[524] 

Disease Course - 

Remission 

Supervised Random Forest Random Forest 18 patients, 

139 samples 

CD 16S Microbiome, 

Clinical 

AUC=0.9 Leave-one-out 

CV 

No N 2020 

Takenaka et 

al.[526] 

Disease Course - 

Remission 

Supervised Deep Neural Net Deep Neural Net 40,758 images 

and 6885 

biopsies for 

training, 4187 

images and 

4104 biopsies 

for testing 

UC Endoscopy 

Images, Histology 

Prediction of remission by 

endoscopic and histological 

state looking at endoscopy 

images. Endoscopic remission: 

Accuracy=0.9, k 

coefficient=0.8, Histology 

remission: Accuracy=0.93, k 

coefficient=0.86 

None Yes (hold out 

validation) 

N 2020 
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Paper Task ML Type ML Method(s) Best ML 

Method 

Study Size Data 

Inc. 

Type of Data Best Results (Metrics) 

Reported from 

validation or cross-

validation, and where 

conducted, the test set 

CV Train/Test 

Split 

External 

Test 

Data 

(Y/N) 

Year 

Choi et 

al.[522] 

Disease Course - 

Required 

Treatment 

Supervised Logistic Regression, 

Support Vector Machine, 

Random Forest, XGBoost, 

artificial neural network 

Ensemble (XGB 

and ANN are 

base learners 

here) 

Dataset 1 

(GMC): 1299 

patients (135 

biologic). 

External Data 

(K-CDM): 1987 

(146 biologic) 

IBD Clinical Test data AUC=0.86. K-CDM 

dataset external validation 

AUC=0.81. 

5-fold on 

training data 

Yes (hold out 

validation) 

Y 2020 

Ghoshal et 

al.[523] 

Disease Course - 

Surgery 

Supervised Artificial Neural Network Artificial Neural 

Network 

263 (231 

responders, 28 

non-

responders) 

UC Clinical Accuracy=73% in classifying 

response to medical 

treatment 

None Yes (hold out 

validation) 

N 2020 

Sofo et 

al.[519] 

Disease Course - 

Surgery 

Complications 

Supervised Support Vector Machine Support Vector 

Machine 

32 UC Demographic, 

Clinical 

Predicting infectious minor 

complications: Strike 

rate=84.3%, 

Sensitivity=87.5%, 

Specificity=83.3% 

Leave-one-out 

CV on training 

data, no 

separate test 

data 

No N 2020 

Popa et 

al.[537] 

Disease Severity 

- Activity 

Supervised Neural Network Neural Network 55 UC UC Clinical, 

Endoscopy 

Classify active disease at 1 

year. AUC=0.92 on test and 

AUC=1 on validation (5 

samples). 

10-fold CV on 

training data 

Yes (hold out 

validation) 

N 2020 
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Paper Task ML Type ML Method(s) Best ML 

Method 

Study Size Data 

Inc. 

Type of Data Best Results (Metrics) 

Reported from 

validation or cross-

validation, and where 

conducted, the test set 

CV Train/Test 

Split 

External 

Test 

Data 

(Y/N) 

Year 

Bossuyt et 

al.[541] 

Disease Severity 

- Activity 

Supervised Multiple Regression Multiple 

Regression 

29 UC, 6 HC UC Endoscopy 

Images 

UC vs healthy tissue using the 

red channel. 

None No N 2020 

Yao et 

al.[534] 

Disease Severity 

- Activity 

Supervised Convolutional Neural 

Network 

Convolutional 

Neural Network 

51 videos, 

34,810 frames 

(training data). 

124 videos 

(test data) 

UC Endoscopy Video Mayo endoscopy score 

prediction. 5-fold CV training: 

Accuracy=0.876, 

Sensitivity=0.902, 

Specificity=0.87, AUC=0.961, 

F1=0.834, Precision=0.79, 

Average precision=0.932, 

Independent test data: 

Accuracy=0.844, 

Sensitivity=0.834, 

Specificity=0.851, AUC=0.93, 

F1=0.804, Precision=0.831, 

Average precision=0.91 

5-fold CV Yes (CV on 

one data set, 

test on 

external) 

Y 2020 

Gottlieb et 

al.[535] 

Disease Severity 

- Activity 

Supervised Recurrent Neural Network Recurrent Neural 

Network 

786 videos, 

7,400,000 

frames 

UC Endoscopy Video Quadratic weighted kappa 

(QWK)=0.844 for the outcome 

endoscopic mayo score, 

5-fold CV, hold-

out 

Yes (hold out 

validation) 

N 2020 
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Paper Task ML Type ML Method(s) Best ML 

Method 

Study Size Data 

Inc. 

Type of Data Best Results (Metrics) 

Reported from 

validation or cross-

validation, and where 

conducted, the test set 

CV Train/Test 

Split 

External 

Test 

Data 

(Y/N) 

Year 

QWK=0.855 for the outcome 

UC endoscopic index of 

severity. 

Wang et 

al.[536] 

Disease Severity 

- Complications 

Supervised Decision Tree Decision Tree 67 CD CD Clinical Stricturing vs not-stricturing: 

AUC=0.917 to 

None Yes (hold out 

validation) 

N 2020 

Ungaro et 

al.[485] 

Disease Severity 

- Complications 

Supervised Random Survival Forest Random Survival 

Forest 

265 (98 with 

complications, 

167 no 

complications) 

CD Protein 

Biomarkers, 

Clinical 

Any complication 

AUC=0.69.B2 complications 

(stricturing) AUC=0.70. B3 

complications (penetrating) 

AUC=0.79. 

Out of bag 

performance 

measures, 5-

fold CV, 200 

replication 

No N 2020 

Wang et 

al.[544] 

Medication 

Adherence 

Supervised Back-propagation neural 

network, Support Vector 

Machine, Logistic 

Regression 

Support Vector 

Machine 

446 CD CD Clinical Accuracy=87.7% 10-fold CV No N 2020 

Kieft et 

al.[496] 

Patient 

clustering 

Unsupervised Support Vector Machine, 

Random Forest, Neural 

Network 

Neural Network 102 (49 CD, 53 

HC). External 

Data: 64 (43 

CD, 21 HC) 

CD Metagenomic Identified differentially 

abundant virus and then 

clustered them. Some classes 

of virus more abundant in CD 

NA NA Y 2020 
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Paper Task ML Type ML Method(s) Best ML 

Method 

Study Size Data 

Inc. 

Type of Data Best Results (Metrics) 

Reported from 

validation or cross-

validation, and where 

conducted, the test set 

CV Train/Test 

Split 

External 

Test 

Data 

(Y/N) 

Year 

(Fusobacteria-like and 

Enterobacterales). 

Coelho et 

al.[391] 

Patient 

clustering 

Unsupervised Hierarchical Clustering Hierarchical 

Clustering 

22 IBD Immunoassay Groups identified do not 

correlate with clinical 

phenotypes 

NA NA N 2020 

Le et al.[500] Predict 

metabolite 

abundance from 

microbiome 

Supervised 

and 

Unsupervised 

Sparse Neural Encoder-

Decoder Network 

Sparse Neural 

Encoder-Decoder 

Network 

. CD Microbiome, 

Metabolomic 

Use microbiome to predict 

metabolites abundance, then 

use to cluster and predict: CD 

vs HC ~0.94. 

5-fold CV No N 2020 

Tong et 

al.[549] 

Subtype 

Diagnosis 

Supervised Random Forest, 

Convolutional Neural 

Network 

Random Forest 6399 (5128 UC, 

875 CD, 396 

ITB) 

IBD Clinical UC vs CD Sensitivity=0.89, 

Specificity=0.84, AUC=0.94 

10-fold CV on 

training data 

Yes (hold out 

validation) 

N 2020 

McDonnell 

et al.[550] 

Treatment 

Response 

Supervised Random Forest 

Regression 

Random Forest 

Regression 

94 (54 CD, 36 

UC, 4 IBDU) 

IBD Clinical Mean squared error=1.876. 5-fold CV on 

testing data 

Yes (hold out 

validation) 

N 2020 

Biernacka et 

al.[502] 

Diagnosis Supervised Kohonene Neural 

Network 

Kohonene Neural 

Network 

131 (60 CD, 17 

UC, 26 

IBD Imaging 

(Magnetic 

Identified features associated 

with CD (intended for triaging 

None No N 2021 
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Paper Task ML Type ML Method(s) Best ML 

Method 

Study Size Data 

Inc. 

Type of Data Best Results (Metrics) 

Reported from 

validation or cross-

validation, and where 

conducted, the test set 

CV Train/Test 

Split 

External 

Test 

Data 

(Y/N) 

Year 

suspected, 28 

other 

GI/unknown) 

Resonance 

Enterography) 

unwell patients to more 

invasive assessment). 

Volkova et 

al.[503] 

Diagnosis Supervised Random Forest, eXtreme 

Gradient Boosting 

(XGBoost), Ridge 

Regression, Support 

Vector Machine (radial 

kernel) 

XGBoost 894 16S rRNA, 

578 

Metagenomics 

IBD 16S rRNA 

Sequencing, 

Shotgun 

Metagenomics 

IBD vs HC 16S (species): 

AUC=0.942, F1=0.682.  IBD vs 

HC metagenomics (species): 

AUC=0.950, F1=0.680. 

7-fold-3-times 

CV on training 

data 

Yes (hold out 

validation) 

N 2021 

Sarrabayrous

e et al.[509] 

Diagnosis, 

Disease Course - 

Relapse 

Supervised Random Forest Random Forest 206 ( 86 HC, 89 

CD, 31 UC) 

IBD Metagenomic, 

Clinical 

IBD vs Control AUC=0.84, also 

individual models generated, 

but less performant. 

None Yes (hold out 

validation) 

N 2021 

Nuzzo et 

al.[504] 

Diagnosis, 

Subtype 

Diagnosis 

Supervised Logistic regression, k-

Nearest Neighbours, 

random forest, 3-layer 

neural net, naïve Bayes, 

linear kernel one-vs-rest, 

XGBoost, generalised 

mixed effects random 

forest 

XGBoost 252 (127 CD, 

74 UC, 51 non-

IBD) samples 

IBD Metabolomics Method performance 

assessed with F1 score 

10-fold 

Stratified CV 

on training set 

(XGBoost had 

additional 5-

fold CV for 

hyperparamete

r tuning) 

Yes (hold out 

validation) 

N 2021 
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Paper Task ML Type ML Method(s) Best ML 

Method 

Study Size Data 

Inc. 

Type of Data Best Results (Metrics) 

Reported from 

validation or cross-

validation, and where 

conducted, the test set 

CV Train/Test 

Split 

External 

Test 

Data 

(Y/N) 

Year 

Xu et al.[505] Diagnosis, 

Subtype 

Diagnosis 

Supervised Logistic regression, 

random forest, gradient 

boosting classifier, 

support vector machine, 

LightGBM 

LightCUD (based 

on LightGBM) 

349 samples, 

271 individuals 

(127 UC, 21 CD, 

201 HC). 

Independent 

data: 185 (16 

HC, 169 CD) 

IBD 16S and Whole 

Genome 

Microbial 

Sequencing 

5-fold CV training data results 

(WGS-based modules). IBD vs 

HC: AUC=0.984, Average 

precision=0.947. CD vs UC: 

AUC=0.966, Average 

precision=0.953. Test Set 

results: CD vs HC AUC=0.809, 

Average precision=0.971; CD 

vs UC accuracy=76.9% 

5-fold CV Yes (CV on 

one data set, 

test on 

external) 

Y 2021 

Manandhar 

et al.[506] 

Diagnosis, 

Subtype 

Diagnosis 

Supervised Random forest, Decision 

Tree, Elastic Net, Support 

Vector Machine (radial), 

Neural networks 

Random Forest IBD vs non-IBD: 

1429 (729 IBD, 

700 non-IBD). 

CD vs UC: 585 

(406 CD, 179 

UC) 

IBD Faecal 16S 

Metagenomic 

IBD vs non-IBD: AUC=0.82, 

Accuracy=0.74, 

Sensitivity=0.84, 

Specificity=0.64, 

Precision=0.7, F1=0.76. CD vs 

UC: AUC=0.92, Accuracy=0.83, 

Sensitivity=0.85, 

Specificity=0.80, 

Precision=0.9, F1=0.88. 

10-fold CV on 

training data 

Yes (hold out 

validation) 

N 2021 
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Paper Task ML Type ML Method(s) Best ML 

Method 

Study Size Data 

Inc. 

Type of Data Best Results (Metrics) 

Reported from 

validation or cross-

validation, and where 

conducted, the test set 

CV Train/Test 

Split 

External 

Test 

Data 

(Y/N) 

Year 

Udristoiu et 

al.[516] 

Disease Course - 

Remission 

Supervised Convolutional Neural 

Network, Convolutional 

Neural Networks with 

Long Short-Term Memory 

(Recurrent Neural 

Network) 

Convolutional 

Neural Networks 

with Long Short-

Term Memory 

54 patients 

(active CD 32, 

controls 22 (18 

CD w/ mucosal 

healing, 4 no 

IBD normal 

mucosa). 6205 

images (3672 

active, 2533 no 

inflammation) 

CD Endomicroscopy 

Images 

Normal vs inflamed colonic 

mucosa: Accuracy=95.3%, 

Specificity=92.78%, 

Sensitivity=94.6%, AUC=0.98, 

Precision-Recall AUC=0.93. 

None Yes (hold out 

validation) 

N 2021 

Stidham et 

al.[515] 

Disease Course - 

Surgery 

Supervised LASSO Logistic Regression, 

Random Forest 

LASSO Logistic 

Regression 

2809 patients, 

4950 

observations 

(256 Surgery) 

CD Demographic, 

Clinical 

Average AUC=0.78, 

Sensitivity=0.735, 

Specificity=0.726. 

5-fold CV on 

training data, 

10-fold CV on 

test data 

Yes (hold out 

validation) 

N 2021 

Kang et 

al.[518] 

Disease Course - 

Surgery 

Supervised CatBoost (Tree Based) CatBoost (Tree 

Based) 

337 (46 with 

intestinal 

resection, 291 

controls). 

External data: 

126 (19 

CD Clinical, SNP 

Genotype 

Predicting early intestinal 

resection. Internal validation: 

AUC=0.878, External 

validation: AUC=0.836 

5-fold CV on 

training data 

Yes (hold out 

validation) 

Y 2021 
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Paper Task ML Type ML Method(s) Best ML 

Method 

Study Size Data 

Inc. 

Type of Data Best Results (Metrics) 

Reported from 

validation or cross-

validation, and where 

conducted, the test set 

CV Train/Test 

Split 

External 

Test 

Data 

(Y/N) 

Year 

intestinal 

resection) 

Dorofeyev et 

al.[531] 

Disease Severity Supervised Intelligent Monitoring Intelligent 

Monitoring 

223 (104 CD, 

79 UC, 20 HC, 

20 non-IBD 

controls) 

IBD Clinical Correctly classified 92% of 

points. 

NA NA N 2021 

Mohapatra 

et al.[539] 

Disease Severity Supervised DeepCNN DeepCNN 1000 images IBD Endoscopy 

Images 

Accuracy=0.94, F1=0.94, 

Precision=0.94, Recall=0.94, 

Specificity=0.99 

None Yes (hold out 

validation) 

N 2021 

Gutierrez 

Becker et 

al.[532] 

Disease Severity 

- Activity 

Supervised Convolutional Neural 

Network 

Convolutional 

Neural Network 

4371 training 

frames, 1672 

videos, 1105 

patients (test 

data 1). 778 

still frames 

(test data 2) 

UC Endoscopy Video Mayo clinic endoscopic 

subscore (MCES) prediction on 

5-fold CV training data (each 

are binary classification tasks): 

MCES ⩾ 1 AUC=0.84, 

Precision=0.92, Recall=0.79; 

MCES ⩾ 2 AUC=0.85, 

Precision=0.85, Recall=0.81; 

MCES ⩾ 3 AUC=0.85, 

5-fold CV Yes (CV on 

one data set, 

test on 

external) 

Y 2021 
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Paper Task ML Type ML Method(s) Best ML 

Method 

Study Size Data 

Inc. 

Type of Data Best Results (Metrics) 

Reported from 

validation or cross-

validation, and where 

conducted, the test set 

CV Train/Test 

Split 

External 

Test 

Data 

(Y/N) 

Year 

Precision=0.81, Recall=0.77. 

External test set: MCES ⩾ 2 

AUC=0.82, Precision=0.92, 

Recall=0.73; MCES ⩾ 3 

AUC=0.83, Precision=0.39, 

Recall=0.84. 

Takenaka et 

al.[540] 

Disease Severity 

- Activity 

Supervised Deep Neural Network 

(DNUC) 

Deep Neural 

Network (DNUC) 

875 patients UC Endoscopy 

Images 

Evaluating mucosal healing: 

Sensitivity=92.0%, Specificity 

91.3%, Positive predictive 

value=86.2%, Negative 

predictive value=95.1% 

NA NA NA 2021 

Li et al.[533] Disease Severity 

- Complications 

Supervised Radiomic model (Logistic 

regression) 

Radiomic model 167 patients, 

212 lesions 

CD Computed-

Tomography 

Enterography 

Imaging 

Moderate-severe vs none-

mild intestinal fibrosis. Test 

cohort performance in 3 

referral centres AUC=0.816, 

AUC=0.724, AUC=0.750. 

Leave-one-out 

CV on training 

data 

Yes (multiple 

hold out 

sets) 

N 2021 

Liu et 

al.[495] 

Patient 

clustering 

Unsupervised Guassian Mixture Model Guassian Mixture 

Model 

1961 (843 UC, 

1118 CD) 

IBD Questionnaire Identified two clusters, 

performed genome-wide 

association study on these 

groups. 

NA NA N 2021 
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Paper Task ML Type ML Method(s) Best ML 

Method 

Study Size Data 

Inc. 

Type of Data Best Results (Metrics) 

Reported from 

validation or cross-

validation, and where 

conducted, the test set 

CV Train/Test 

Split 

External 

Test 

Data 

(Y/N) 

Year 

Dhaliwal et 

al.[499] 

Subtype 

Diagnosis 

Supervised 

and 

Unsupervised 

Random Forest, Similarity 

Network Fusion Clustering 

Random Forest, 

Similarity 

Network Fusion 

Clustering 

58 colonic IBD 

(41 UC, 17 CD) 

in training 

data, 15 IBD in 

testing data 

IBD Clinical Accuracy=97% in CV training. 

Accuracy=100% in hold-out 

test set. Unsupervised 

clustering identified two 

groups: group 1 55 patients 

(98% UC), group 2 18 patients 

(94% colonic CD). Two 

samples misclassified (as in RF 

modelling) 

Leave-one-out 

CV 

Yes (hold out 

validation) 

N 2021 

Jiang et 

al.[551] 

Subtype 

Diagnosis 

Supervised Random Forest Random Forest 763 Cases (CD, 

UC, Colorectal 

Cancer), 632 

HC 

IBD Metagenomic Multivariate analysis to 

identify a set of metagenomic 

markers, then use markers to 

build multiclass: AUC=0.75-

0.9; Case-control classifier 

AUC=0.88. 

10-fold CV 

replicated 10 

times and 

leave one 

dataset out for 

validation 

No N 2021 
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