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Inflammatory bowel disease (IBD) is a chronic, complex autoimmune disease characterised by
relapsing-remitting gastrointestinal tract inflammation. It is considered to arise from interactions
between an individual’s genetic susceptibility, environmental factors, immune dysregulation, and
gut microbial dysbiosis. Genetics can make a larger contribution to IBD pathology in some
patients, and this is thought to be linked to age of diagnosis, with genetic factors having the
largest effects in very young children. There are two main subtypes of IBD: ulcerative colitis (UC)
and Crohn’s disease (CD). Within subtypes, there are different disease behaviours and severities.
One particular disease behaviour of interest is the stricturing endotype, which causes a narrowing
of the gastrointestinal tract that often requires surgery.

This thesis first examines oxidative stress in IBD patients, through the use of assay data. Here,
statistical and machine learning (ML) methods are employed to examine the relationship between
clinical and genomic characteristics of a set of paediatric patients, and their measured oxidative
stress and antioxidant potential. In this work, no results suggested that these assay data could be
used as an indicator for these clinical features, or for pathogenic variation in key oxidative stress
genes.

The predominant focus of this thesis is the use of genomic data and ML to stratify IBD patients.
In order to prepare genomic data for use in ML pipelines, the GenePy algorithm was used. GenePy
takes in information regarding zygosity, allele frequency, and predicted deleteriousness for every
variant in a gene. The scores for each variant are summed to create an overall gene score, and
this becomes are per-gene, per-individual matrix of scores. The two clinical problems analysed
here were classifying IBD patients according to their subtype, and stratifying CD patients by the
presence or absence of a stricturing endotype. This was achieved with an ML random forest
classifier. Optimisation of both the input data and ML algorithm for these classifications was a
important aspect of this work. Several gene panels were trialled for these classifications, and an
autoimmune gene panel outperformed an IBD gene panel for determining IBD subtype. Stratifying
CD patients by their stricturing endotype was subsequently performed with a random survival



forest, which combined a random forest with survival analysis methods. This method is better
suited to the longitudinal nature of stricturing endotype developed. This work demonstrated
challenges that arise from the sparsity of genomic data, and required the development of a
pipeline that could reduce the sparsity of the features used by the ML algorithm.

The patient stratification performed here demonstrated strong evidence for the presence of
different genomic variation patterns within IBD subtypes, and within the CD stricturing endotype.
With increased dataset sizes, it may be possible to more clearly detect and cluster patients
according to their genomic variation. In order to take full advantage of this knowledge, there is an
additional requirement for deep, varied and longitudinal clinical data. Then, genomic data can
guide each patient’s clinical pathway, providing individuals with more personalised, life-long care.
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Chapter 1

Chapter 1 Introduction

Traditionally, inflammatory bowel disease (IBD) has been thought of as a multifactorial
autoimmune disease that develops through the complex interactions between a person’s genetics
and the environment. Prior to the 215 century, little was known about the genetics of IBD, the
major discovery being the NOD2 gene’s causative role [1-3]. In the last 20 years great strides have
been made in the technologies that can be used to identify genes related to disease. IBD has been
among those diseases that have benefitted from new genetic technologies. Now, over 200 genes
are known to have a role in IBD pathology [4]. The subsequent development of high throughput
sequencing allowed for closer examination of specific changes in the genetic code, and their
possible links to the development of IBD. Using this sequencing technology a number of patients,
usually diagnosed in very early childhood, were shown to have disease that is only caused by a

change in one gene [5, 6], demonstrating that IBD is not always multifactorial.

Despite the new knowledge obtained through these technologies, there have been few changes
to the clinical management of IBD patients. In the majority of cases, treatment is still based on
clinical information gathered during investigation. Aside from the recent introduction of genetic
sequencing for infants with a potential IBD diagnosis, a genetic investigation is not standard. One
of the difficulties in implementing genetic investigations is that, although there is knowledge of
IBD genetics, it is not known how these genes relate to specific patient phenotypes. Another
obstacle is that these new technologies generate substantial amounts of data that are difficult

and time-consuming to analyse. For these reasons, new methods are necessary.

Here, a combination of linear and non-linear methods are explored to facilitate translation of the
genetic basis for patient’s IBD into the clinic. Both paediatric and adult IBD patients are present in
the IBD cohort that is utilised in the analysis. The aim is to stratify patients according to their
observed genetics in order that their treatment and management is personalised. This should lead

to better long-term outcomes for patients with this life-long disease.

1.1 Inflammatory bowel disease

Inflammatory bowel disease (IBD) is a complex autoimmune disease with two subtypes: Crohn’s
disease (CD) and ulcerative colitis (UC). The aetiology of IBD remains poorly understood, but four
factors are known to contribute: genetics, environment, immune dysregulation, and gut microbial
dysbiosis. This condition is characterised by chronic relapsing-remitting gastrointestinal tract

inflammation, with location and pattern (continuous or discontinuous) of the inflammation
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differing depending on the IBD subtype [7, 8]. Information gained from histopathological
investigations are also considered when determining the subtype [7, 8]. The symptoms of IBD are
diverse, particularly in paediatric (<18 years) cases, and can include: diarrhoea, fever, fatigue,
vomiting, anaemia, abdominal pain and growth retardation [7]. Extraintestinal manifestations are
common in both adult and paediatric cases, and affects 25-35% of patients [9]. Accordingly, the
Porto criteria [7] for paediatric IBD diagnosis, and the British Society of Gastroenterology
consensus guidelines for adults, [8] utilises endoscopic and histopathological findings for diagnosis
of CD or UC. If a diagnosis cannot be confirmed, the patient is diagnosed as IBD unclassified
(IBDU). Individuals will often be diagnosed with CD or UC subsequent to an IBDU diagnosis [7, 8].
A correct diagnosis is imperative for patients, in order that they receive the correct treatments
and interventions. Regardless of age at diagnosis, IBD is a chronic disease which requires lifelong

monitoring and management by the patient and the clinician.

1.1.1 Epidemiology

The incidence of IBD surged during the late twentieth and early twenty-first century, particularly
in western countries [10, 11]. High prevalence’s of IBD have been reported in Canada [12] and
Scotland [11] (0.7% and 0.8%, respectively). Approximately 25% of IBD presents during childhood
[13], and research performed using data from the Wessex region in England explored incidence
specifically among the paediatric population. A 50% increase in cases was observed from 2002 to
2012 (6.39/100,000 to 9.37/100,000), driven predominantly by CD cases [13]. The incidence in
this region had increased to 10.54 per 100,000 by 2017 [14], and over 12 per 100,000 by 2021
[15]. For the overall IBD population in the United Kingdom, incidence has been estimated at 28.6
per 100,000 [16]. Although IBD was previously thought to be only predominant in western
countries, incidence is documented to be rising in Asian and Latin American Countries. In Hong
Kong, the last 20 years has seen IBD incidence rise from 1 to 3.1 per 100,000, while the highest
documented incidence in the Asian-Pacific region is in India (9.31/100,000) [17]. The incidence of
CD in Asia has risen quicker than UC [17]. Worldwide, the prevalence of IBD will only increase,

compounding the health burden in the future.

1.1.2 Ulcerative colitis

Ulcerative colitis has a continuous inflammation pattern of the mucosa [18]. Inflammation is non-
transmural and usually begins at the rectum and extends to some, or all, segments of the colon
[18]. Patients are classified according to the extent of colonic involvement, and can be diagnosed
with proctitis, left-sided colitis which involves the sigmoid colon and may or may not involve the

descending colon, or pancolitis (Figure 1A) [18]. Pancolitis has been observed at a far higher
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frequency in child-onset versus adult-onset (82.2% versus 47.6%, children and adults
respectively), and the reverse is true for proctitis (1.4% versus 17.0%, children and adults
respectively) [19]. The most common symptoms of UC are bloody diarrhoea, rectal bleeding,
weight loss and abdominal pain [9]. In paediatric cases, UC can be particularly difficult to diagnose
due to heterogeneity in the UC phenotype [7]. The Porto criteria for paediatric patients describes
the most reliable feature for UC diagnosis as colonic mucosal inflammation involving the rectum,
but with no small bowel involvement, and no granulomas on biopsy [7]. There are five atypical UC
presentations in paediatric disease: upper intestinal tract involvement, rectal sparing, short
disease duration, left-sided colitis with an area of cecal inflammation, and acute severe UC that

features more characteristics of CD (for example deep ulcers and transmural inflammation) [7].

1.1.3 Crohn’s disease

Where inflammation in UC is restricted to the colon, in CD inflammation can occur along the
entire gastrointestinal tract, from the mouth to the anus (Figure 1B) [20]. Inflammation is
transmural and patchy, but is more common in the terminal ileum, colon and ileocolon (47%, 28%
and 21% respectively) than the upper gastrointestinal tract (3%) [18]. The symptoms of CD can
often be more general, which results in a longer time to diagnosis [21]. A diagnosis of CD is made
after considering clinical, radiographic, endoscopic and pathological findings [8]. CRP is a blood
marker that is an initial indicator of an inflammatory disease, and is also used to monitor disease
status [7]. Endoscopy can be used to access location of disease, and during this procedure a
number of biopsies are often obtained for histopathological investigation [7, 8]. The extent of
disease can be seen through the way in which the mucosa has been affected: from small ulcers in
mild disease to large deep ulcers in a wavy pattern in severe disease [22]. Common biopsy
findings in CD are discontinuous chronic inflammation, focal crypt distortion and granulomas [23].
CD patients can present with, or develop, complications such as strictures, fistulas and abscesses
[20]. There can be confusion with UC in cases where inflammation is solely colonic [7]. In addition,
some paediatric CD cases have been noted to present with isolated oral inflammation, and
develop gastrointestinal luminal disease during their disease course [7]. It has been observed that
paediatric CD is more common in male patients, and in adult patients this diagnosis is more
common in females [19]. Additionally, isolated ileal and isolated colonic CD has been noted as
more common in adult-onset disease, and paediatric onset CD was more likely to be extensive

[19].
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Figure 1 Locations of inflammation in UC and CD. A) The extent of inflammation in ulcerative
colitis inflammation varies, and patients are classified accordingly. B) Different

inflammation patterns in Crohn’s disease. Image adapted from [24].

1.1.4 Inflammatory bowel disease unclassified

Where an individual exhibits phenotypic features of both CD and UC, they are given a diagnosis of
inflammatory bowel disease unclassified (IBDU) [7, 8]. As previously mentioned there are cases
where it can be difficult to distinguish between the main subtypes, and a common situation for a
diagnosis of IBDU is inflammation is exclusive to the colon coinciding with CD presentations such
as height delay, or other macroscopic and microscopic features [7]. An IBDU diagnosis can also be
a result of an incomplete clinical investigation [25]. Additionally, paediatric-onset IBD is associated
with an IBDU diagnosis, with a stronger likelihood of IBDU in infantile and very early onset (<6
years) patients [26]. A paediatric IBDU diagnosis can resolve to a diagnosis of CD or UC during
disease course, but the rate of this diagnostic change is unclear. One study reports a diagnosis
change in 32% of paediatric cohort, with a median follow up time of 5.7 years [25]. Another
describes a change of diagnosis to UC or CD in 55% (median follow up 6.7 years) of paediatric

cases [27].
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1.15 Clinical classification systems

The complex presentation of the IBD subtypes can render decisions regarding appropriate
therapies difficult. Treatment regimens are not only based on subtypes, but on disease
behaviours, and their extent and severity. For these reasons guidelines for classifying patients
were deemed important, and necessary. A system for classification of IBD sub-phenotypes for CD
was first introduced in 1991, by The International Working Party in Rome [28]. This Rome
classification system was based on anatomical distribution, operative history and clinical disease
behaviour. The classification criteria evolved into the Vienna system in 1998, which was then
based on age of onset, disease location and disease behaviour [28]. When this was revised into
the Montreal classification the three criteria as per the Vienna classification remained, but
adjustments were made within them [28]. The Montreal classification age of onset categories
were a limitation in paediatric gastroenterology, as they were Al under 16 years, A2 17-40 years
and A3 above 40 years. A modification of the Montreal classification for paediatric patients called
the Paris classification was introduced, which introduced age of onset categories Ala 0to < 10
years, and Alb 10 to < 17 years [29]. The Paris classification also introduced amendments to
categories within disease behaviour and location, and added a Growth category to document

evidence of growth delay [29].

Sub-classification of UC was addressed in the Montreal classification and focused on the extent of
the inflammation, and the severity in UC. These categories were modified in the Paris
classification, with an additional class in extent of inflammation, and the use of the Paediatric
Ulcerative Colitis Activity Index (PUCAI) for measuring severity [29]. The PUCAI consists of 6
categories where points are given based on the patient’s current status: abdominal pain, rectal
bleeding, stool consistency and number, nocturnal stools and patient activity. Severe disease
activity is classified as a score above 65 [30]. A similar disease activity index exists for CD severity
called PCDAI (Paediatric Crohn’s Disease Activity Index). It covers well-being, abdominal pain,
number of liquid stools, and abdominal mass and complications, as well as including laboratory

results [31, 32].

1.1.6 Treatment strategies

As IBD is a chronic disease, treatment focusses on inducing and sustaining remission. There are
therapies specific to these two goals, and not every treatment is suitable for both CD and UC. The
clinical classification systems in Section 1.1.5 aid decisions regarding treatment strategy.
Treatment often follows a step-up approach, where aggressive therapies are reserved for disease

which is resistant to the induction of remission. A summary of available treatments is given in
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Figure 2. There are further challenges in treatment of paediatric, and more specifically for
younger IBD patients. Height, weight, and body mass index must be monitored, particularly in CD

patients, as well as managing puberty and educational needs.

Surgery
Monoclonal Antibodies
Nutritional
LM uc, €D, IBDU Support (CD)
Immunomodulators
M UC, CD, IBDU
Corticosteroids
| UC, CD, IBDU
5-aminosalicyclic acids
I,M ucC
Exclusive Enteral Nutrition
CD

Figure 2 The types of treatment for IBD patients, with the subtype these are suitable for given at
the bottom right of each section, and the aim of the treatment in the bottom left
(I=induction, M=maintenance). Treatment is usually escalated up the pyramid,
starting with safer therapies for milder disease. Sometimes top-down treatment is
recommended (starting with monoclonal antibodies), which is a more aggressive
treatment strategy that may benefit some patients. Nutritional support for paediatric
CD may be given throughout treatment, to address malnutrition and ensure normal

growth [33].

1.1.6.1 Induction of remission

Induction therapies are primarily targeted at reducing inflammation for patients. Exclusive enteral
nutrition involves the use of a completely liquid diet and is recommended as an initial treatment
for CD [33]. It is not recommended for UC patients [33]. Corticosteroids are a treatment
appropriate for moderate or severe UC and CD cases [33]. Steroidal treatments may be
administered intravenously for acute, severe colitis cases [33]. Due to many side effects when
corticosteroids are used long term, it is not recommended for maintaining remission [33].
Corticosteroids can be combined with 5-aminosalicyclic acid medications, and are recommended

as an initial treatment for mild to moderate UC [33].

Monoclonal therapies are usually reserved for patients who have disease resistant to remission.

These anti-tumour necrosis factor (anti-TNF) treatments, are suitable for both CD and UC patients
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[33]. These monoclonal therapies are also known as biologics, and have revolutionised treatment,
demonstrating efficacy in adults in the ACCENT [34] and PRECISE [35] trials, and in the REACH [36]
trial (88% response rate, paediatric CD). There is some evidence in adults that the introduction of
these therapies sooner i.e. a top-down approach starting with the most aggressive treatments,

may yield better results [37]. The benefits and risk of this approach have to be weighed carefully,
and is currently only recommended in paediatric patients for individuals who have CD with active

perianal fistulising disease [38].

1.1.6.2 Maintaining remission

The ultimate aims of maintenance therapies are twofold: clinical remission in order that patients
experience no symptoms of IBD, and endoscopic remission, where no inflammation can be seen in
the gastrointestinal tract and mucosal healing can be achieved and sustained [8]. As well as being
used as an induction therapy, 5-aminosalicyclic acids are used as a maintenance therapy in mild or
moderate UC [33]. For CD, the first recommended maintenance treatment is immunomodulators,
and this is also suitable for UC patients unresponsive to 5-aminosalicyclic acids [33].
Immunomodaulators are slow-acting, so they may be started concordantly with remission-inducing
therapies [39]. In patients where immunomodulators are ineffective, biologics are prescribed.
Current evidence demonstrates that these drugs can lead to mucosal healing and prolonged
remission in paediatric patients [40]. However, these treatments are not an option for every
patient, as it is estimated that up to 30% of patients are non-responsive to anti-TNF therapies, and
up to 40% may lose responsiveness over time [41]. Small molecule drugs are emerging as possible
alternatives that modify specific pathways, such as Janus kinase (JAK) inhibitors. There are
promising results in adult trials [41], but currently little evidence of their effective application in
paediatric onset IBD. These types of treatments target the underlying molecular cause of an
individual’s IBD. A range of small molecule drugs could lead to tailored treatments and less time
spent administering therapies that patients will be non-responsive to. However, for this approach
to be effective, investigation into the molecular profile of individual patients will need to become

the standard.

1.1.6.3 Surgery

Patients with CD can develop complicated disease behaviour, which includes the presence of
strictures, or narrowing, in the intestinal tract, and fistulas, where a connection forms between
two organs [20]. Relatively common is the perianal fistula, a connection between the anus and
skin. The 10-year risk of intestinal resection is reported to be 35.6% in paediatric CD [42]. Other
studies have reported surgery rates of 18-35% after 5-year follow-up in cohorts of paediatric and

adult-onset CD [43]. Overall surgery rates have declined in CD and UC patients over the past six
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decades [44], potentially due to the introduction of disease modifying biologics and other more
aggressive therapies, and a reduction in time to diagnosis [43]. For some UC patients, a colectomy
could completely resolve symptoms. However, there is a risk of complications such as intestinal
obstruction, either immediately or further along the disease course that may require surgery [45].

Rates of colectomy are estimated at 10% after 5 years in several cohorts [43].

1.1.7 Long-term risks

A diagnosis of IBD carries an increased risk of developing some cancers, in particular colorectal
cancer, lymphoma, non-melanoma skin cancer [42]. Risk factors are from both the inflammation
caused by IBD, and the therapies used to treat it. For IBD patients there also appears to be an
increased risk of small bowel cancer [46]. The relative risk is highest for specific patient
presentations. In UC, those with pancolitis are at highest risk. For CD paediatric onset, ileal
disease and stricturing complications in patients increased the relative risk [46]. Some patients
will experience extraintestinal complications, once again either caused by the disease or the
treatment. This could include complications involving the nervous system, lungs, eyes and bones
[47]. As there are complications related to specific treatments, discontinuing therapy during a
protracted period of remission is trialled when appropriate. However, this can often result in

disease relapse [40].

1.1.8 Age of onset

The presentation of IBD and its prognosis can vary depending on the age of onset. In general,
infantile onset is defined as diagnosis before 2 years of age [48, 49]. The presentation of infantile
IBD is not usually aligned with either subtype; research found that 71% of a 62 infant patient
cohort (<12 months) were diagnosed with IBDU. Of this cohort, 31% required extensive
immunosuppression, and 29% were given haematopoietic stem-cell transplantation [50]. Stem
cell transplants have been shown improve colitis and gastrointestinal fistulas in those with IL-10
signalling defects, and immunedysregulation polyendocrinopathy enteropathy X linked (IPEX)
syndrome [48]. Presentations of these specificimmune deficiencies are IBD-like. IL-10 signalling
defects manifested as refractory colitis with perianal disease in 100% of patients in a small cohort,
with abscesses, perianal fistulas and folliculitis being common [51]. IPEX syndrome patients
frequently have watery diarrhoea and enteropathy, in combination with extraintestinal
manifestations including type 1 diabetes, neurological and skin conditions [52]. Infantile onset IBD
falls within the group of very early onset IBD (VEOIBD), defined as presenting before 6 years of
age. The patient group diagnosed before this age are considered to be enriched for IBD caused by

a single gene (monogenic), rather than the complex disease of those diagnosed later in childhood,
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or adulthood [49]. They often have mutations in genes associated with primary
immunodeficiencies [49]. VEOIBD is thought to be more difficult to manage, and surgery rates in
this population supports this [49]. A diagnosis of UC is more common in VEOIBD, and CD is more

common in early onset (<10 years) and paediatric (<17 years) IBD [40].

When considering how age of onset can affect disease management more generally, it should be
noted that although an IBD diagnosis during childhood can result in differences in disease course
in comparison to adults, the histological, endoscopic and clinical features utilised in diagnosis and
monitoring of remission are the same for all age groups [20]. In clinical settings paediatric and
adult IBD are not considered to be distinct diseases, aside from in the cases of VEO IBD that
require specific treatment protocols such as haematopoietic stem-cell transplantation. The
differences between paediatric and adult IBD lie in disease location likelihood, growth impairment
and reduced bone density [50], and different tendencies towards severe disease, and
consequently surgery and further complications [20]. The age at diagnosis for the Southampton

Genetics of IBD study cohort used in the analysis of future is visualised in Figure 3.
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Figure 3 Age at IBD diagnosis for all individuals recruited through the Genetics of IBD study.
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Aside from the differences in common disease locations discussed in Sections 1.1.2 and 1.1.3,
there are other differences in presentation and management between adult and paediatric
patients. Reports suggest that rates of extraintestinal manifestations are higher in paediatric
patients than in adults [20, 53]. Paediatric-onset UC is consistently associated with more

aggressive and extensive disease when assessed through endoscopy and histology [54]. This is
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exemplified by a higher percentage of emergency admittance for acute severe colitis within 5
years of diagnosis for paediatric UC patients [54]. In addition, a study by Van Limbergen et al. of a
cohort over 10 years found a 40% colectomy surgery rate in paediatric UC patients, over double
that of the adult patients [19]. In general, there is less of a stark difference in disease extent and
severity when comparing paediatric and adult CD cohorts. For example, analysis suggests that
prevalence of a stricturing endotype, and the development of fistulas after 5 years is similar in
paediatric and adult populations [19]. However, there are several clinical presentations indicative
of poor CD outcomes for paediatric patients. These include: growth impairment, stricturing
endotype and penetrating disease at onset, and severe perianal disease [20]. One study did find
significantly more perianal disease (which includes the presence of skin tags, sentinel piles or
fistulas) at onset in their paediatric cohort, when compared to the adult IBD patients [53]. A
higher percentage of a paediatric IBD cohort was also found to have required a change of drug
regime to anti-TNFa therapy during the follow-up period, which was significantly different from
the adult IBD cohort [53]. In addition, this paediatric IBD cohort was found to experience

significantly more changes in their drug therapy schedules than the adult IBD cohort [53].

1.2  The genomics of inflammatory bowel disease

In Section 1.1, the heterogeneity of inflammatory bowel disease has been described. Patients are
diagnosed with a specific subtype, and then according to a sub-classification (CD) or extent and
severity (UC), and disease activity will vary for every patient. Many therapies are available
depending on the disease course. Successful management is dependent on a prompt and accurate
diagnosis, followed by effective treatment. Just as there is clinical heterogeneity, genetic
heterogeneity is also present in IBD. Genetics is thought to make a higher contribution to the
aetiology of IBD in paediatric patients than in adults [55, 56]. As age of onset increases, the
genetic burden changes. In the pathology of some individual’s IBD, a genetic profile can be
established as an underlying cause of their disease. In many case of infantile or VEOIBD a single
gene can be identified as driving disease manifestation (i.e. monogenic IBD) [57, 58]. In early
onset IBD, patients may be considered to have a digenic or oligogenic condition, where a small set
of genes, potentially from the same pathway, are disease causing. Patients diagnosed later on in
childhood or in adulthood are more likely to have a truly complex condition, where many
mutations in the genome interacting with environmental components contribute to an IBD
phenotype (Figure 4). Some of the clinical heterogeneity is driven by the variation in genes
involved. However, it is not clear exactly how the genomics relates to specific phenotypes, and to
what extent genomics drives them. It is therefore crucial to understand the genomic landscape of

inflammatory bowel disease. As technologies have improved, from early linkage studies, to

10
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genome wide association studies, and next generation sequencing, it has become easier to

understand and analyse genomics.

Onset Infantile Very Early Early Paediatric Adult
Age at .
Diagnosis Birth 6 years 10 years 17 years Adult
Genetic Factors T T T *
f TfT Polygenic
Oligogenic

Monogenic

Environmental Factors

Figure 4 Contributions of genetic and the environmental factors vary depending on age of onset.
At a younger age, a single or few genes are likely to contribute significantly to IBD
onset. As age increases, environmental factors have a larger impact and many

genetic mutations make small contributions to aetiology.

1.2.1 Early discoveries: families, twins and linkage analysis

Early research into IBD genetics focussed on family pedigrees and twin studies. In 1988, the first
twin study showed a higher concordance in monozygotic twins with CD (58.3% concordance) and
UC (6.3% concordance) than in dizygotic twins (3.6% concordance for twins with CD, 0% for UC)
[59]. These two trends in concordance in twins, a higher concordance in monozygotic twins and
higher concordance in those with CD, have been confirmed with further twin studies [60]. In
1991, one of the first population-based studies it was observed that in comparison to general
population controls, those with a first degree relative that had IBD had a 10-fold increased risk of
developing IBD. This was true for both CD and UC patients [61]. This confirms the heritability of
IBD, and a higher heritability in CD patients.

Linkage studies were implemented to further the understanding of IBD genetics. Briefly, linkage
studies rely on alleles that are located close together on a chromosome being inherited together,
as they are highly unlikely to be separated during meiosis (this is also known as alleles being in
linkage disequilibrium). Families with individuals that have the trait intended to be studied are
genotyped for genetically informative markers. If a marker is close enough to a gene that confers
susceptibility to the trait, that genotyped marker will be inherited by those with the trait, allowing
researchers to identify regions of chromosomes where causal genes may reside. In IBD linkage
studies, a total of nine regions were reported as conferring susceptibility on chromosomes 1, 3, 5,
6, 7,12, 14, 16 and 19 [1]. Of these linkage studies, the most replicated result was that of the IBD1

locus on chromosome 16 being associated specifically with CD, and not UC. It was later confirmed

11



Chapter 1

that the association was with the NOD2 gene when specific mutations were identified [2, 3].
NOD2 (Nucleotide-binding oligomerization domain-containing protein 2) is a gene involved in the
recognition of bacterial lipopolysaccharides, and triggers an immune response via the activation
of NF-kB. Many of the loci identified during this time pointed towards the involvement of genes
that could result in a dysregulated immune system if mutated. The IBD3 locus on chromosome 6
contained the Major Histocompatibility Complex (MHC), a region involved in the recognition of
antigens, and the IBD5 locus on chromosome 5 contains genes coding for a number of

immunoregulatory cytokines [1].

1.2.2 Genome Wide Association Studies

GWAS, or genome-wide association studies, have changed the understanding of the genomics of
many complex diseases. Early association studies tested a small number of genes in a modestly
sized case and control cohort (unlike linkage studies, individuals in the cohort were unrelated). An
allele in a gene was said to be associated with the phenotype being investigated if it occurred at a
significantly different frequency when the cases were compared to the controls. In contrast to
association-based methods and linkage analyses of a family with a small numbers of markers
(300-5,000), GWAS probed across the whole genome. In GWAS, sizable cohorts of cases and
controls are genotyped at genetic markers known as SNPs (single nucleotide polymorphisms),
with up to half a million SNPs genotyped for each person using commercially available arrays [62].
The frequency of the genotypes among cases and controls are compared, to see if a statistically
significant association between any SNPs and disease can be identified. These studies are
particularly suited to identifying disease-associated SNPs that are relatively common, and only
have a modest effect size. The effect of rare variation is not able to be detected this way, as this
would require huge numbers of participants. Additionally, not every associated SNP can be linked

with a single gene, if there are a multiple genes in the SNP region or conversely, no genes [62].

IBD was a big winner in the GWAS era, and to date over 230 loci have been identified as
associated with IBD [63-65]. The majority of these loci are not linked to a specific subtype, there
are 71 exclusive to CD and 30 exclusive to UC [4, 66]. In fact, not only are many loci associated
generally to IBD, but approximately 70% are also associated with other diseases that have
underlying autoimmunity or immunodeficiency [4]. These loci are involved in pathways with many
different functions, including: microbial defence, innate and adaptive immunity regulation,
reactive oxygen species generation, autophagy and epithelial recovery [67]. A full review of all
genes associated to IBD uncovered via GWAS is outside the scope of this thesis, but in Section
1.2.6 some of the key genes and pathways that have been discovered so far are discussed.

Although GWAS studies have found a large number of SNPs associated with IBD, their findings are
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estimated to account for approximately 37% of the genetic heritability in CD, and 27% in UC [68].
There is potential to uncover some of this missing heritability by identifying variation associated
with CD and UC that is rare or private to individuals. This can be achieved by through genetic

sequencing.

1.2.3 Variation in the human genome

The human genome contains 3.2x10° nucleotide bases, of which there are four types: adenine (A),
guanine (G), cytosine (C) and thymine (T). Deoxyribonucleic acid (DNA) is a double-stranded helix
organised into chromosomes, and within them regions of coding and noncoding sequence. Only
~1.2% of DNA codes for genes, the sections of sequence that encode the instructions for
synthesising proteins. Genes have coding and noncoding regions called exons and introns,
respectively. The sequences between genes are called the intergenic regions. The remaining

98.8% of DNA is still of import, as it performs regulatory functions [69].

Each gene has several exons and introns. In order to synthesise proteins from the gene sequence,
it is transcribed into messenger ribonucleic acid (mRNA). Then, splicing begins, where the intronic
regions are removed from the sequence, leaving contiguous exons in a mature mRNA. Ribosomes
translate the modified mRNA into protein, where three bases called a codon code for one amino
acid in the protein’s structure. Start and stop codons guide the beginning and end of translation
by the ribosomes. As the same amino acid can be coded for by more than one codon, there is an
amount of redundancy in the genetic sequence. Therefore, not all variation in the human genome
will cause disease. Furthermore, different types of variation can have different consequences

downstream.

Variation in the genome can be large or small scale. Large scale, or structural, variation refers to
copy number variants that cause changes in the sequence longer than 1 kilobase [70]. Small scale
variation involves a single nucleotide variant (SNV), or a small number of nucleotides. The main

types of small variation are as follows:

e Synonymous SNV: one base in the codon is changed, but this does not change the

downstream amino acid.

e Non-synonymous SNV: one base in the codon is changed, and this changes the

downstream amino acid.

e Stop-gain SNV: a base change converts a codon that codes for an amino acid, to one that
codes for the termination of protein synthesis. This can occur anywhere upstream of the

initial stop codon.
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e Stop-loss SNV: a base change converts a stop codon to one that codes for an amino acid,

causing protein synthesis to continue.

e Indel: The insertion or deletion of a small number of bases. Insertions and deletions that
are multiples of three will not affect downstream amino acids (non-frameshift variant).
The insertion or deletion of other numbers of bases affects all downstream amino acids as

it shifts the whole sequence (frameshift variant).

e Splicing variant: a base change in a region of the sequence that instructs the splicing of

the gene’s exons and introns.

Humans carry two sets of chromosomes (diploid), one set of maternal chromosomes, and one set
of paternal chromosomes. A variant can appear on one or both copies of a gene. This is called a
heterozygous genotype or homozygous genotype, respectively. Sometimes there can be a
different variant on each copy of the gene, and this is called compound heterozygosity. When a
male individual has a variant on their only X chromosome, this is called hemizygosity. When trying
to determine disease causal variation, it is important to consider the variant genotype as it relates
to the disease inheritance pattern. A dominant inheritance pattern means an individual needs
only one copy of a gene with the disease causing variation to inherit the disease, and a recessive

inheritance pattern requires both gene copies to be affected to cause disease.

1.24 Sanger sequencing

This first generation sequencing method was developed in 1977. This method amplifies a
sequence using the chain termination method. Four experiments are performed in parallel, with
each experiment containing a single strand of the DNA to be amplified, primers to initiate the
synthesis of DNA fragments, and deoxynucleotide triphosphates (dNTPs) for all four bases. In each
experiment, dideoxynucleotides triphosphates (ddNTPs) for only one of the four bases are
included. When a ddNTP is added instead of a dNTP, which will occur by chance during the
reaction, the DNA fragment is terminated. These fragments of varying length are then separated
using polyacrylamide gel electrophoresis with a lane for each of the four bases, and the resulting
sequence can be read off the gel [71]. Contemporary Sanger sequencing uses ddNTPs that have
been tagged with a fluorescent marker specific for each base, therefore only one experiment is
performed. The DNA fragments are separated by capillary electrophoresis, and the fluorescent
intensity for each base of the sequence can now be read by software [71]. This modern equivalent
of Sanger sequencing is still in use in clinical settings, often to validate variants in the genome

found during analysis of high throughput sequencing data.
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1.2.5 Next Generation Sequencing

The development of second generation sequencing, also known as high throughput sequencing or
next generation sequencing (NGS), led to genetic data being generated at increasingly rapid rates
for lower costs. In 2001 it cost $100,000,000 to assemble the first human genome, but 20 years
later to sequence an individual’s genome costs approximately $1,000 [72] (Figure 5). NGS is also
called short-read sequencing, as the method involves fragmenting the DNA into segments that
could range from 50 base pairs to 600, depending on the method. The sequences generated as
part of NGS are known as reads, and correspond to all, or part of the fragments of DNA.

Cost per Human Genome
$100,000,000

$10,000,000
Moore’s Law
$1,000,000

$100,000

$10,000

National Human Genome
Research Institute

genome.govisequencingcosts

$1,000

$100
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Figure 5 Decreasing costs of human genome sequencing, compared against Moore’s Law. Moore’s
Law is the observation that computing power doubles every two years, but cost

decreases [72].

1.25.1 Genome, exome and targeted sequencing

There are three main approaches to sequencing an individual: whole genome sequencing, whole
exome sequencing and targeted sequencing. In whole genome sequencing, a large volume of data
is generated on an individual, as every base is sequenced. This allows the analysis of the protein
coding exons, and the introns and intergenic regions that can contain important regulatory
sequences that influence transcription and splicing. The amount of data generated is dependent
on the depth to which the genome is sequenced. Here, depth of sequencing refers to the number
of times each base is included in a sequencing read. A higher depth of sequencing usually gives
more confidence to individual variant detection, as more reads containing the same variant mean
the variant is more likely to be true, rather than a sequencing error. However, higher depth comes
at the cost of bigger file sizes. A genome sequenced at approximately 40x depth will require over

300GB of storage space, as not only do the raw data files need to be stored, but also files that are
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required for analysis of the genome (three file types need to be stored, fastq, binary alignment
map and variant call format file, discussed in Chapter 3) [73]. Generating these files for analyses is
computationally and time intensive. The large volume of data generated can also create issues for
interpretation, as there are roughly 3.7 million variants in every person’s genome [74], and the
vast majority will not cause or impact disease. Interpreting variation can be particularly
challenging when analysing the intronic and intergenic regions. Current bioinformatic tools are
less equipped for non-coding variation, as the connection between mutation and the downstream

effects on protein production and pathways can be more obscure.

In comparison to whole genome sequencing, whole exome sequencing produces substantially less
data. To generate the same files listed for analysis previously, at approximately the same depth
(50x) would require only 13GB of storage (own data). While only 1.2% of the human genome are
coding regions [75], it is suggested that up to 85% of disease-causing mutations are contained in
the exons [76]. Therefore, using exome sequencing can reduce the computation power, the
computational and analysis time, and still uncover disease causing mutations. There are
approximately 26,000 variants for each individual’s whole exome sequencing data [77], but
bioinformatic tools are more equipped to assess the causal nature of these. As only specific
sections of the genome are being sequenced, due to the sequencing technique, the depth of
sequencing tapers towards the end of each exon (Figure 6A). This can cause difficulty in
generating enough data at the ends of exons to confirm variants residing there. Due to this,
splicing variants and variants in start and stop codons may be missed. It can also be very
challenging to detect copy number variants with whole exome sequencing, as DNA is usually
fragmented into smaller pieces during exome sequencing than in genome sequencing. This
fragmentation also causes a variable depth in the regions sequenced. Reassembling these large

regions of changed sequence is difficult.

Targeted sequencing further reduces the DNA sequenced to specific genes or regions that are to
be analysed in an individual. This method is currently applied for diagnosis of a disease that has a
well-defined phenotype and an associated panel of genes. Additionally, it can be used to
sequence a gene or region of interest very deeply. This approach also reduces data analysis time.
However, if the causal mutation is not found in the initial investigation, multiple rounds of
sequencing different genes can become more expensive that whole exome sequencing. Targeted
sequencing also does not have the advantage of being able to apply different gene panels in silico,
as in whole genome or whole exome sequencing. With the latter two methods, sequencing data
can be revisited when new evidence of disease specific causal mutations comes to light. For the
study of IBD genetics, whole exome sequencing is used as the best balance between data

produced and interpretability for a longitudinal cohort study of a complex disease.
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1.2.5.2 Whole exome sequencing technology

Whole exome sequencing (WES) consists of four steps: 1) Library preparation; 2) Amplification; 3)
Sequencing (Figure 7); and 4) Data Analysis. During library preparation for whole exome
sequencing the extracted DNA to be sequenced is sheared randomly into fragments, either using
a mechanical method such as ultrasonication shearing and nebulisation, or enzymatic digestion
(biological method) [78]. Adaptors are ligated on either end of the produced library fragments.
Tag sequences are ligated onto one or both fragment ends, depending on whether single-end
sequencing or paired-end sequencing will take place. During paired-end sequencing, both forward
and reverse strands are sequenced. By knowing the total DNA fragment length and the length of
the forward and reverse reads, the distance between the reads is also known (the inner distance)
(Figure 6B). This makes the process of mapping the reads to the reference sequence more
accurate and efficient. After adaptors have been attached, DNA or RNA baits, along with
oligonucleotides that are complementary to the adaptors, are added. These baits hybridise to the
DNA fragments that are exonic. This allows fragments that are not the target for sequencing (non-
exonic regions) to be washed away, and sequences that are the target to be pulled down for
sequencing [79]. Targeted sequencing is enabled by capture kits that are designed so that the
correct sequences are pulled down. In this case the target is the whole exome. These sequences

will be amplified in the next step.
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Figure 6 Paired end sequencing. A) The sequencing of fragments is achieved through a forward
strand read (read 1) and a reverse strand read (read 2). In whole exome sequencing,
the introns are not sequenced, so at the points where the exon ends there is a
tapering of reads due to their stepped arrangement. There are fewer reads to
overlap to get an increased sequencing depth at the ends. B) Reads are sequences
corresponding to part of the original fragment. There is a known distance between
the two reads called the inner distance. The read length will vary, for whole exome
sequencing this would usually be 50-150 base pairs depending on the method used.
The fragment lengths will also vary but will invariably be longer than the read lengths

(approximately 150-300 base pairs).

Illumina is a biotechnology company that currently dominates the global high-throughput
sequencing market. They perform DNA amplification via cluster generation. During cluster
generation, the adaptors on the templates hybridise with complimentary oligo primers on the
surface of a flow cell. A new strand is synthesised by extending the oligo primer to create a strand
complementary to the DNA fragment. Then the bridge amplification technique is used, where the
unconnected end of the newly synthesised strand hybridises to another oligo primer, and another
strand is extended from this primer. Once the two strands are denatured from each other, a
forward and reverse strand has been synthesised and are attached to primers on the flow cell.
Clusters are generated by repeating the bridge amplification process thousands of times. Finally,
the reverse strands that were generated are cleaved off, leaving the forward strands to be

sequenced.

The most common method for step three is sequencing by synthesis. This method consists of a
series of cycles of 1) Incorporation; 2) Imaging; and 3) Cleavage. A mix of the four fluorescently

tagged nucleotides and DNA polymerase are added to the reaction. One base at a time hybridises
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to the DNA templates synthesised during cluster generation, as there is a reversible terminator on
each nucleotide. During imaging the florescent tags are excited, for example by a laser, and the
emission spectra is captured. In the final step of the cycle the fluorescent tag and reversible
terminator are cleaved, allowing a new nucleotide to be added for the next cycle. If the
sequencing is paired end sequencing, strands generating during sequencing are denatured and
washed away. Another round of cluster generation follows, where the forwards strands are

cleaved leaving the reverse strands to be sequenced.
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Figure 7 Schematic of the whole exome sequencing process 1) Library Preparation: the process of

shearing DNA into fragments and pulling down fragments that are targets for
sequencing. 2) Amplification: this process is as described by Illumina where
thousands of copies of a DNA fragment are synthesised in order to amplify the signal
during the next step. 3) Sequencing: the sequencing by synthesis method where
nucleotides with a fluorescent marker and reversible terminator are added one by
one. The fluorescent marker is excited and emits a frequency specific to the base.

The marker and terminator are cleaved and the process repeats, giving the sequence.

1.2.5.2.1 Analysing whole exome sequencing data

Data from whole exome sequencing is commonly output in the form of a fastq file containing
quality information alongside each sequencing read. The first step is alignment to the reference

genome using bioinformatic tools such as the Burrows-Wheeler Aligner [80]. The reference
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genome has changed over the years since the first assembly during the Human Genome Project,
with each iteration filling in gaps in the human reference. The current genome build is GRCh38
(hg38) comprised of 11 individual’s genomic sequences [81]. The most recent builds also have
multiple alternative sequences in regions that are very diverse, particularly among different
ancestry backgrounds. After alignment, regions that differ from the reference are identified
(variant calling), and finally variants are annotated with useful information for their interpretation
(detailed information regarding exome sequencing data processing methods are given in Chapter
3). Many databases and bioinformatic scoring systems exist to annotate variants and help identify
probable causal mutations. GnomAD [82] and the 1000 genomes project [83] databases provide
information on variant frequencies in a population. PolyPhen-2 [84] and SIFT [85] both score the
likelihood that nonsynonymous variants are damaging, dbNSFP [86] scores nonsynonymous and
splicing variants, and GERP [87] scores how conserved each SNV is likely to be. CADD [88] and
DANN [89] score variants’ deleteriousness using machine learning and deep learning, respectively.
Both CADD and DANN can score all types of small variation, including synonymous SNVs and
indels. The databases ClinVar [90] and HGMD [91] collate information from literature regarding

potential variant pathogenicity, with the former relating this data to recorded clinical phenotypes.

Once variants have been annotated, the variant frequencies and type are considered. Variants
that are not rare (>1% population frequency) can be filtered using information from databases
such as gnomAD [82], and synonymous variants excluded. The next steps depend on the purpose
of the variant analysis. If the analysis is being performed for clinical diagnostics, then it is likely
that deep phenotyping has been established. Additionally, a family history may be available so
that only variants that conform to the likely inheritance patterns will be considered. Literature
searches can identify a shortlist of genes, as well as the use of Genomics England’s PanelApp,
which stores virtual gene panels [92]. ClinVar [90], and literature searches can help identify likely
pathogenic variants. If the variant analysis is being performed for research, then the standard
candidate gene list may have already been exhausted. For Mendelian diseases, the American
College of Medical Genetics (ACMG) guidelines can be used to interpret variants of unknown
significance [93]. In all cases, the aforementioned bioinformatic scoring tools would be used to
determine a likely causal variant. However, any variant identified this way will need to be
functionally validated to discover if it does change downstream mechanisms as suggested by the
variant analysis. A summary of the strategy for analysing sequencing data to find causal variants is

given in Figure 8.
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Figure 8 Workflow for processing and analysing sequencing data. Simplified steps are 1) Data
processing; 2) Variant filtering; 3) Evaluating remaining variants to find probable
causal variants. This third step varies depending on whether the analysis is for clinical

diagnostics, or occurring in a research environment.

All filtering strategies have limitations. Firstly, synonymous variants can be disease causal, in
particular there is evidence that these variants can impact splicing. The appropriate splicing of
exons is contingent on specific sections of the exonic sequence signalling to splicing machinery
[94]. As this process is not fully characterised, some variants that will impact splicing are
mislabelled as synonymous. This illustrates a key constraint, that the assessment of variation is
only as good as the bioinformatic tools available. This limitation can be partially mitigated by
consulting many different databases to obtain a consensus view of whether a variant is likely to
be damaging. Additionally, compound heterozygotes can be difficult to identify with whole exome

sequencing data. It cannot be confirmed whether two different variants in the same gene have
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impacted one, or both copies of the gene. There are also multiple transcripts available for each
gene, and each transcript will place the variant in a different position. These transcripts are
supported by different levels of evidence, and a well-defined gene may have more than one
transcript supported by robust evidence. Multiple transcripts make analysing variants more
challenging. Many pipelines are not equipped for cases where variants will have different impacts
on the structure and function of proteins depending on the transcript used. In cases where
pipelines are equipped, strategies for prioritising different, potentially all well-evidenced,
transcripts must be developed [95]. This adds to the already time-intensive task of analysing

whole exome sequencing data.

1.2.6 Genes and pathways of inflammatory bowel disease

Genes discovered through GWAS allowed further elucidation of pathways involved in the
pathology of IBD (Figure 9). These pathways are interlinked, with many proteins contributing to
the activation of multiple downstream mechanisms. High throughput sequencing enabled
researchers to gain granularity regarding specific variation within these genes at scale. Further,
NGS technology has led to an increase in the identification of rare variants specifically associated
with earlier-onset IBD, either in novel genes, or in those that were already known to be associated

with the disease.
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f) Cytokine networks; g) Microbial recognition by inflammasome complexes. Image

adapted from [96].

1.2.6.1 Microbial recognition

The mechanisms that recognise microbial antigens are highly implicated in CD. Immune cells such
as macrophages and dendritic cells, as well as cells in the intestinal epithelium have the ability to
sense and recognise these molecules [97]. Pathogen-associated microbial proteins are recognised
by different types of pathogen-recognition receptors, including toll-like receptors (TLRs) and
nucleotide-binding oligomerisation domain-like receptors (NLRs) [97]. The NLRs NOD1 and NOD2
recognise y-D-glutamyl-meso-diaminopimelic acid and muramyl dipeptide, respectively [97]. This
can prompt the activation of the NF-kB (nuclear factor- kB), MAPK (mitogen-activated protein
kinase) and IFN-B (interferon-B) signalling pathways (Figure 10) [97]. NF-kB signals the activation
and differentiation of cells involved in the innate and adaptive immune response [98], and IFN-3
signalling mobilises macrophages to resolve bacterial inflammation [99]. NOD2 is the most well
defined risk gene in CD [2, 3]. NOD2 variants could affect the immune response in different ways.

Decreased NF-kB signalling caused by impaired NOD2 could reduce the antimicrobial response,
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causing a pathogenic microbial invasion [100]. Alternatively, NOD2 variants could cause decreased
inhibition of TLR2, leading to an excessively upregulated response from adaptive immune cells
[101]. In addition, a specific insertion (3020insC) has been shown to decrease interleukin-10 (IL-

10) expression, a cytokine that can downregulate the immune response [97].
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Figure 10 Recognition of bacteria by NOD1 and NOD2 proteins triggers the activation of NF-kB,

MAPK and IFN-B signalling. Image adapted from [102].
1.2.6.2 Innate immune response

The innate immune response is the first defence against pathogens, and is not specific to any
pathogen. Several components of the innate immune response are implicated in IBD, including
epithelial barrier function and autophagy [97]. The first layer of defence of the intestinal
epithelium is the mucosal layer, and mucin genes are an important component of maintaining

this. In CD, abnormal expression of mucin genes in comparison to controls has been observed,
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with decreased expression of MUCI in inflamed ileum, and MUC3, MUC4 and MUC5B in
uninflamed ileum [97]. The integrity of the epithelial barrier is essential to correctly regulate
foreign bodies coming into contact with immune cells. The structure is maintained by tight
junctions, adherens junctions and desmosomes. Increased intestinal permeability is a feature of
both CD and UC, however many genes from IBD GWAS that code for components or regulators of

the epithelial barrier have been specifically linked to UC (HNF4A, CDH1, LAMB1 and GNA12) [97].

Two genes with a role in autophagy that have been associated with CD are IRGM and ATG16L1
[97]. Further, ATG16L1 is thought to be closely linked with NOD2; bacterial activation of NOD2
triggers autophagy, and epithelial and dendritic cells with variants found in CD show antibacterial

autophagy defects [67].

1.2.6.3 Reactive Oxygen Species

CYBA, CYBB, NCF1, NCF2 and NCF4 are genes implicated in monogenic IBD-like disease, specifically
chronic granulomatous disease (CGD) [103]. This is a primary immunodeficiency that affects the
innate immune system, as a significant majority of mutations that cause CGD are loss-of-function
mutations that result in an absence or reduction of protein subunits that form the NAPDH oxidase
complex [104]. When the NADPH oxidase complex is activated, reactive oxygen species (ROS) are
produced as an innate immune response to any combination of the following: microbes, activated
pattern recognition receptors, and phagocytosis [103]. It is the failure of this mechanism that
leads CGD patients to be very susceptible to infection [104]. However, an overproduction of ROS
can activate the generation of pro-inflammatory cytokines such as TNFa (tumour necrosis factor
a) [103]. ROS influences pro-inflammatory cytokine production through the NF-kB signalling
pathway, a process that can also be induced by NOD2 [97]. These factors make the genes

encoding the proteins of the NADPH complex of interest for elucidation of the genetics of IBD.

There are seven different isoforms of NADPH oxidase (NOX) genes, and in particular NOX1, NOX2,
NOX3, Duox1 and Duox2 have been reported as being expressed in part(s) of the gastrointestinal
tract [105]. The genes NOX1, NOX2, NOX3, NOX4, NOX5, DUOX1, DUOX2, CYBA, RAC1, RAC2,
NOXA1, NOXO1, RAP1A, NCF1, NCF2, NCF4, DUOXA1 and DUOXAZ2 code for subunits in one or
more of the NADPH oxidase complex isoforms [105]. In NOX1, a stop-codon mutation has been
identified in an early onset IBD patient [106], and missense and loss of function mutations have
been found in VEOIBD patients [107]. Missense mutations in NOX1 and DUOX2 have also been
found together in a VEOIBD cohort, and associated with Paneth cell metaplasia (specific epithelial
cells in areas where they do not normally occur) [108]. A splicing mutation in CYBA [109], and

missense mutations in CYBA, CYBB, NCF1, NCF2 and NCF4 [110], have all been reported
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specifically in CD patients. A population based study found a significant association between

perianal disease behaviour and NCF4 mutation [111].

1.2.6.4 Adaptive immune response

The adaptive immune response (secondary immune response) targets specific antigens and
occurs after the innate immune response. In IBD, dysregulation around adaptive immunity is
linked to a loss of homeostasis between T regulatory-cells (Treg-cells, regulate the immune
response) and T helper-cells (Tu-cells, involved in activation of a number of immune cells) [67]. It
is thought that Treg-cells do not sufficiently control Tu-cell response in IBD [67]. Increased levels of
Tul7 cells have been found in CD and UC patients [112]. T417 cells are induced by the IL-6, TGF-3
and STAT3 expression, and their proliferation stimulated by I1L-23 [112]. T417 cells subsequently
produce the cytokines IL-17A, IL17F, IL21 and IL-22, the majority of which support pro-
inflammatory actions [112]. STAT3, IL-23R (IL-23 receptor) and JAK2 are some of the genes
implicated in Ty17 dysregulation [67]. Traditionally, Tu1 cell responses have been associated with
CD, and Tu2 cells with UC [67]. This is due to the levels of different cytokines in the different
subgroups: CD patients are reported to have high levels of IL-2 and IFN-y, and IL-5 and IL-13 are
present at high levels in UC patients [112]. B regulatory (Bcg) cells are also implicated in IBD [67].
Defects in these cells can result in a failure to upregulate anti-inflammatory cytokine IL-10. GWAS

implicated /L10 as a central immune regulation gene in the understanding of IBD [67].

1.2.6.5 Monogenic inflammatory bowel disease

In cases of VEOIBD, it is more likely that the disease is attributable to one gene [113]. Currently,
94 genes have been reported in the literature and implicated in monogenic IBD, or IBD-like
conditions (Supplementary Table 1) [57, 92, 114-142]. Many of these genes are associated with a
primary immunodeficiency, or autoimmunity mechanism. Mechanisms affected by these genes
include T and B cell production and regulation, phagocyte function and epithelial barrier function.
The discovery of these genes is an important step towards personalised medicine for VEOIBD, as
in these cases it is possible to pinpoint the exact mechanism by which IBD or IBD-like disease
manifests. For example, Mao et al. found that a CARD8 mutation that causes monogenic CD could
not be treated with anti-TNFa therapy due to the impediment of interactions between NLRP3 and
CARDS, but that patients were more responsive to IL-1f inhibitors [116]. Further, in a case where
a young child presented with intractable IBD, whole exome sequencing analysis revealed a
hemizygous mutation in the XIAP (X-linked inhibitor of apoptosis) gene. The precise diagnosis
meant the patient received an allogeneic haematopoietic progenitor cell transplant, and following

the treatment there was no recurrence of gastrointestinal disease [6].
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1.2.7 Integrating genomic information

As genomics becomes more commonly used for cancer and rare disease in a clinical setting,
research focus has shifted towards using genomic data for more complex situations, leveraging it
to predict prognoses, or in diagnosis for complex disease. GWAS data has been used to devise
polygenic risk scores, usually a sum of weighted risk loci. Uses for polygenic risk scores include
selecting the appropriate treatment for individuals and screening a disease susceptible population
[143]. Polygenic risk scores are limited as, although they can be derived from the whole genome
or whole exome, they usually select specific variants to contribute to these scores. It also assumes
a linear relationship between factors. High-throughput sequencing methods go some way to
mitigating these issues. Polygenic risk scores have been constructed for IBD cohorts. Rarely have
scores been connected back to a specific clinical phenotype, or the specific genetics driving
differences in individual’s polygenic risk scores been thoroughly examined. The majority of studies
focus on case vs control studies. Chen et al. synthesised risk scores for CD and UC patients, and
controls in a cohort from Australia and New Zealand. In a CD subgroup for which they had
phenotypic information, they found statistically significantly higher genomic risk scores in those
that required bowel resection, patients with a younger age of onset, and individuals with more
ilealic inflammation than colonic [144]. They did not report the genetics driving these differences.
Vancamelbeke et al. focused on generating risk scores from a subset of genes involved in
intestinal epithelial barrier dysfunction. They report significantly higher scores in CD and UC when
each subtype was compared against controls. These differences were driven by MUC19, MUC22,
TFF1 and PTGER4 in CD, and MUC21, MUC22, GNA12 and HNF4A in UC [145]. Another study from
Serra et al. conducted analyses on a VEOIBD cohort. They confirm a significantly higher risk score
for VEOIBD in comparison to controls. They also confirm a polygenic component to VEOIBD, but
were unable to quantify the contribution of common risk variants due to a lack of monogenic

diagnoses in the cohort [146].

Understanding of the genomics of IBD has improved dramatically in the past two decades, but
there has been limited translation of this knowledge into clinical settings. Some monogenic
conditions with IBD-like manifestations are able to be treated specifically, for example stem cell
treatments for IPEX patients who harbour a mutation in FOXP3 [52]. This kind of personalised care
must be extended to all IBD patients for better outcomes, and to achieve this there must be an
understanding of the links between genotypes and phenotypes. Currently, our ability to generate
patient’s genomic data is much faster than the ability to effectively analyse large volumes of data,
particularly if the analysis is cohort-based rather than on an individual level. The scale and

complexity of high-throughput data requires different tools for interpretation.
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1.3 Machine learning

Machine learning sits under the umbrella term of artificial intelligence, along with other
intelligent system methodologies. Machine learning involves the implementation of algorithms to
perform specific tasks, usually classification or regression. Classification problems can involve two
or more groups, for example sorting patients according to the treatment they would be
responsive to, or classifying them by disease subtype. Regression problems seek to predict a
continuous variable. Examples include predicting the correct treatment dose for patients, and
estimating the length of a patient’s hospital stay. These algorithms are not instructed, but infer
patterns from data that are often obscure and non-linear. All artificial intelligence methods are
unlike traditional statistical analyses, because these algorithms are intended for prediction, rather
than inference. Machine learning models are built with the intent to focus on one specific
problem, or patterns in a particular type of data. This is in contrast to other artificial intelligences,
where the aim may be to develop a system that is capable of handling many tasks. Key to the
effectiveness of machine learning, particularly if it is to be applied in a medical setting, is the

ability of a model to be robust and generalisable to new data.

1.3.1 Supervised and unsupervised learning

In the field of machine learning, there are two main types: supervised and unsupervised learning
(Figure 11). During supervised learning, the aim is to train a model to recognise patterns
associated with a specific outcome. The training data has a number of variables associated with
each individual data point (n). One of these associated variables is identified as the “outcome”
variable that machine learning is attempting to predict, and can be a continuous or discrete
variable. During machine learning training, the outcome variable is visible to the model, and the
patterns in the data that relate to the outcome variable value for each data point are learned.
Usually in a supervised machine learning workflow data is unevenly split into training and testing
data, where the majority of the data goes towards training the model. The model produced by the
training is applied to the testing data, where the outcome variable is hidden and the model
predicts the outcome variable for each data point according to the rest of the variables. The
success of a machine learning model is measured by its performance on the test data, as to be an

effective model it must generalise well to unseen data.

Analysis conducted utilising unsupervised learning is more exploratory. Here, there is no outcome
variable to be predicted, and the model is constructed based on all the data. Unsupervised
learning methods are based on clustering the data based on the patterns present. Apart from

discovering new groupings, these methods are also useful if there is no gold standard available, or
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if the current ground truth could be considered unreliable. This is a disadvantage of the
supervised method, as generalisability of a model could be undermined by an outcome variable
that does not accurately reflect the ground truth. However, as unsupervised learning models are
free to cluster according to any observed pattern, they may be more sensitive to bias in the data,

for example inherent sex differences in patients, or batch effects in data.

Supervised Learning Unsupervised Learning

@ Machine @ Machine
Learning Learning

] ®
.:® or ..'.
o0 09y
- 00

Figure 11 Schematic of the basic principle of supervised and unsupervised approaches. In the
supervised method, the groups the data belong to (orange and blue) are known, and
the machine learning sorts the data into these groups according to the variables
associated with each data point. In the unsupervised approach, groups are not
known (grey), and so the learning method clusters the data based on the similarities
within. In both cases, the machine learning models can be applied to new unknown

data, which is then categorised or clustered accordingly.

There are other types of machine learning. Semi-supervised learning utilises data with and
without a labelled outcome variable for training. It can be used when the process to define the
outcome variable is laborious. Reinforcement learning features an iterative training process that
relies on a feedback loop recording model success and failure in order to better the model
performance each time. The review and use of these methods is outside the scope of this work,

but further information is supplied elsewhere [147].
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1.3.2 Machine learning algorithms

The choice of machine learning algorithm is dependent on three main considerations. First is the
overall aim of the machine learning: is the analysis intended to be exploratory, or is there a
specific prediction problem? This question will decide whether supervised or unsupervised
approaches are the best fit. The second consideration is the data. What is the size of the data and
what type of data does it contain? Some methods perform better on smaller or larger data sets.
Additionally, some types of data require specific methods, for example to extract and use critical
information from free text, the use of natural language processing is key. Another data
consideration is whether it is expected to contain linear and/or non-linear relationships, and so
whether a linear or nonlinear method will be better suited. Lastly, which is more important:
performance or interpretability? As methods become more complicated, the processes that are
used to attain a high accuracy are more inscrutable. Even if all considerations are made, it is still
often common practice to trial many different models in order to find the best performing one. In
some cases model results are combined, where the majority consensus of all models for the
prediction for each data point is taken as the final result. Table 1 gives an overview of some of the
different models that can be used to illustrate the breadth of methods currently available for

machine learning.

Table 1 Description of supervised and unsupervised machine learning methods [148]

Method Machine Description

Learning Type

Linear Supervised A regression method that attempts to fine a line that will fit
Regression the most number of data points in the predictor space.
Logistic Supervised A version of a regression model that is instead used for
Regression classification.

Neural Supervised and | A group of methods that are loosely based on the structure of
Networks Unsupervised the brain, with a series of variably weighted, nested, nonlinear

function that processes data points in order to classify,

regress or cluster data.

Random Supervised An ensemble method that forms a large number of decision
Forest trees. These trees iteratively divide the predictor space

through a series of binary questions that will allow data points
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to be sorted according to the outcome variable. Each tree

sees a subset of the data and the decisions are aggregated.

k Nearest Supervised Compares the features of each data point to its (k) nearest
Neighbours neighbours, and positions the data point in its according

cluster related to the outcome variable.

Support Supervised The method partitions the predictor space into two via a
Vector decision boundary. Data points fall on either side of the
Machine boundary according to the outcome variable. This can be

adapted for regression or multi-class classification problems.

Hierarchical |Unsupervised Creates a hierarchy of the number of clusters the data can
Clustering cluster into in a dendrogram format. The number of clusters

selected takes up the most vertical space in the dendrogram.

K means Unsupervised Clusters the data points into the specified number of (K)
Clustering clusters iteratively until no improvement to the “closeness” of

the data points in each cluster can be made.

1.3.3 Feature selection

Increasingly, machine learning involves the use of very large data sets, for example the use of
genomic or transcriptomic data sets to understand disease. These types of data sets can be highly
dimensional, meaning a large number of variables, or features (f), are associated with each data
point (n), such that the total number of features (F) is much larger than the total data N (F >> N).
This type of dataset can be very noisy, and include data that may not contribute to the current
classification or regression task. Including every feature may obfuscate the signals in the data,
leading to a machine learning model that cannot regress or classify according to the aim. For this
reason, a number of feature selection methods exist, in order that the maximal amount of
information is retained for the machine learning task, with the smallest possible number of

features.

One of the simplest ways to reduce the dimensionality of the dataset is to remove features where
the variance is zero, or very low. These features are unlikely to include information that will help
differentiate the data. Another simple feature selection step is to remove features which are
highly correlated. One of a pair of features that passes a set correlation threshold can be

removed, as the information conferred is likely to be very similar. However, as correlation is
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linear, this method is not suitable for use if there may be useful nonlinear relationships within in

the data.

Univariate feature selection is another commonly used technique that considers each feature
separately. If the association between the outcome variable to be predicted and the feature is
significant (p-value less than the specified threshold for significance), then the feature is included.
The disadvantage of this method is a feature may become significant as it relates to other
features, so there is the potential to lose important prediction information [149]. While
multivariate approaches are more complex and computationally expensive than univariate
approaches, it generates a feature set that arguably contains more informative patterns for the
subsequent machine learning modelling. Forward and backward feature selection are two such
methods. Forward selection begins with the most informative feature, and iteratively adds the
feature with the next most information, up to the set number of features. Conversely, backward
feature selection begins with all features, and iteratively removes the feature with the smallest
amount of information in relation to all other present features. Both methods are referred to as

“greedy” methods, because they evaluate one feature at a time [150].

LASSO, or Least Absolute Shrinkage and Selection Operator, regularisation is another method of
feature selection that also regularises data at the same time [148]. The general idea of a
regularisation method is to shrink the weight associated with features towards zero if they do not
provide significant information for modelling. An upper bound is set for the total absolute value of
the model features. This then requires that some features are regularised (shrunk) to meet this
requirement. Unlike L2 regularisation, where only features shrinking can occur, LASSO
regularisation will shrink features to zero if the cost of including them is too great, therefore
excluding them from the future machine learning model. Methods based on machine learning
algorithms such as linear support vector machines [151] and random forests [152] can also be
used as feature selection methods. As well as the aforementioned supervised learning methods,
unsupervised learning can be used to reduce the number of features. Methods such as principle
component analysis attempt to condense a highly-dimensional set of data into a new set of fewer
components. Rather than reducing features, this method creates a new set of features in lower

dimensions that still accurately represents the structure and variation in the original data.

1.3.4 Overfitting

Models generated during supervised machine learning cannot be applied successfully in any
circumstance unless they generalise well to new data. A model that is highly tuned to a specific

data, for example because of the inclusion of too many features, will perform poorly due to
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overfitting. In the opposite case, if there is too little information to form a model that can
sufficiently describe the relationships in the data, this model will not perform well on the training
or test data, and is called underfitting. This dichotomy of under and overfitting is also known as
the bias-variance trade-off. A high-bias model will have a high training and testing error due to a
large gap between what is predicted and the truth. A high-variance model will have a high testing
error because the model varied greatly in order to closely match the data points in the training
data. In machine learning, the aim is to use the simplest possible model that performs to the
standard expected. For example, choosing to use a fourth order polynomial equation that will give
an accuracy of 0.80 on the training data, instead of a simpler cubic equation that gives an
accuracy of 0.78, is a poor bias-variance trade-off that will likely result in a lesser performance

when the model is applied to testing data.

1.3.5 Cross validation

As discussed in the previous section, training and testing a machine learning model can reveal
whether a model has been overfitted to a dataset. A model needs to generalise well to other data
in order to perform correct predictions. Cross validation is a technique used to subsample data in
supervised machine learning, and summarised in Figure 12. This process is an extension of the
basic two-fold split of the full dataset into the training and testing datasets, sometimes known as
hold-out validation. The dataset is first partitioned into training and testing data, with the testing
data being set aside and not used until the model is fully trained. This is crucial in order to
objectively view how generalisable the model is to new data. Then the training data is partitioned
into N folds of data. Popular splits are 3, 5 and 10-fold cross validation, or a leave-one-out
approach, where the number of folds is equal to the number of samples in the training data. For
each iterative round of model training, all but one fold is used to train the model, with the
remaining fold used to validate the model. Each fold is used as validation data only once, and the
overall performance of the machine learning model on the training data is the average
performance over all validation folds. Then the trained model is applied to the testing data. Cross
validation allows a user to train and validate a model several times over, while leaving the testing
data completely unseen to the model. This allows an extra opportunity to check the
generalisability of a model, without increasing the amount of data. Cross validation is more
computationally intensive than simply splitting the data into training and testing sets. In the
training of random forests, a similar process to cross validation called out-of-bag sampling is
conducted, where a subset of the data is used to build different trees that subsequently assemble
into a random forest model. For this reason, cross validation is not used when building random

forest-based models.
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Figure 12 Schematic of the implementation of cross validation in machine learning.

1.3.6 Evaluation metrics

When evaluating the performance of a machine learning model, there are several metrics that can
be employed. Two of the key metrics that give an overview of model performance are the area
under the receiver-operator curve (AUC), and the F-score. The F-score, sometimes called the F;-
score or F-measure, is a weighted average of two metrics, precision and recall (sensitivity). AUC
combines sensitivity and specificity. The AUC metric is unaffected by imbalanced data, which is
common in machine learning. The F-score can be affected by skews in the number of data points
associated with each outcome variable. However, there is evidence that the same AUC can
produce different precision-recall curves, which supports a need to look at several evaluation
metrics when evaluating model performance [153]. Many of the popular evaluation metrics are

defined in Table 2.
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Table 2 Definitions of commonly used evaluation metrics in machine learning.

Metric

Definition

Accuracy

Usually given as a percentage, a measurement of the total number

of correct predictions made by a model.

Area under the receiver-

operator curve (AUC)

Reported as a percentage or number between 0 or 1, this metric is

calculated using the model sensitivity/recall and specificity

Balanced Accuracy

Usually a percentage, and should be used for imbalanced datasets.
The total number of correct predictions in each class is weighted

according to the proportion of data available in each class.

F-Score

A model performance measure (between 0 and 1 or a percentage)

calculated using the recall and precision metrics.

Out-of-bag Error

A metric (between 0 and 1) exclusive to random forest-based

methodologies, measuring the test error of an assembled model.

Precision A measure also known as the positive predictive value, the number
of true positives as a fraction of the total given a “positive” label
(given either as a percentage or a number between 0 and 1).

Recall This metric is also known as sensitivity.

R? Measurement of the variation in the data explained by a
regression model.

Sensitivity Given either as a percentage or a number between 0 and 1, this
measures the number of correctly identified true positives.

Specificity Given either as a percentage or a number between 0 and 1, this

measures the number of correctly identified true negatives.

1.4 Thesis outline and aims

In this thesis | present work detailing the application of bioinformatic, statistical and

computational methods with the aim of classifying or stratifying IBD patients, in order to further

progress towards the ultimate aim of personalised medicine for individuals with this chronic,
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complex disease. This thesis first assesses the state of the field through a systematic review of ML
applications to autoimmune disease. This topic is later revisited to gauge how this area of
research as change, specifically for IBD. Using oxidative stress and antioxidant potential assay
data, the connections between these markers, clinical data and genomic variation are elucidated.
The main focus of the thesis is to develop optimal strategies to utilise genomic data alongside ML
to classify IBD patients by their disease subtype, and CD patients by the presence or absence of a
stricturing endotype. This included deducing the best way to prepare WES data to be used as
input in ML algorithms and improving on feature selection processes. This was with the
overarching aim of using ML techniques to bridge the gap between generating genomic data on
patients with life-long clinical needs, and enabling this data to inform clinical management of

these patients.
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Chapter 2 Systematic review of the applications of
artificial intelligence and machine learning for

autoimmune disease

Chapter summary — the systematic review in this chapter uses a straightforward search strategy
to assess artificial intelligence and machine learning (ML) applications to some of the most
common autoimmune diseases (search performed December 2018). The aim was to evaluate
the popular research questions for ML, which algorithms were most frequently used, and what
types of data were common. A summary of these questions for each autoimmune disease is
provided, alongside statistics such as the median sample size. The remainder of the results
section is organised according to the research question (for example diagnosis, or autoimmune
disease management). This work gave a broad overview of the current research in this

interdisciplinary field.

Chapter contributions — systematic search performed by Imogen Stafford. Imogen Stafford and
Melina Kellermann were first and second reviewers, respectively, for the assessment of study
abstracts. Enrico Mossotto also assisted with study inclusion and exclusion in cases where this
decision was challenging. Imogen Stafford gathered data from all papers and performed all

further analysis.

2.1 Introduction

2.1.1 Autoimmune disease

Autoimmune diseases are chronic and complex, whereby genetics, the environment, and immune
system dysregulation all contribute to their development (Figure 13). Due to the heterogeneity of
onset and progression, diagnosis and prognosis for autoimmune diseases is unpredictable. The
prevalence of autoimmune disease is difficult to estimate as diseases are variably represented
across studies and no definitive list exists [154-156]. The approximate prevalence is evaluated to

be between 4.5% [155] and 9.4% [154].
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Figure 13 Three factors that contribute to autoimmune disease development. I: Genetic
predisposition is often conferred by a combination of genes that may include human
leukocyte antigen (HLA) genes in the major histocompatibility complex (MHC). These
directly or indirectly affect immune system regulation. II: examples of potential
environmental events that trigger or contribute to dysregulation of the immune
system. Ill: autoantibody production by itself will not always result in development of
autoimmune disease, other dysregulation such as self-antigen production and

unnecessary escalation of immune response mechanisms is often required [157]

The contribution of genetics towards autoimmune disease development has been illustrated with
monozygotic and dizygotic twin studies. For example, the concordance of multiple sclerosis was
estimated to be 25-31% in monozygotic twins, and 3-5% in dizygotic twins [158)]. However, the
range of autoimmune disease concordance in monozygotic twins was wide, 12-15% for
rheumatoid arthritis in comparison to 75-83% for coeliac disease [158], indicating that the extent
that genetics contributes varies considerably. Additionally, HLA-DQ genetic markers have been
associated with multiple autoimmune diseases [159]. This paints a complex picture of genetic

involvement in autoimmune disease, without considering other contributory factors.

Genetics often contributes to autoimmune disease by predisposing individuals to autoimmunity
[160]. Resultant specific autoantibodies from loss of self-tolerance have been detected in patients
before clinical onset in many autoimmune diseases [161]. Autoimmune disease will only manifest
after further dysregulation in both the innate and adaptive immune system [162]. Microbial
antigens, foreign antigens and cytokine dysregulation, can cause induction of self-reactive
lymphocytes [157]. Hyper-activation of T and B cells may occur, along with a change in the
duration and quality of their response which further disrupts the homeostasis of the immune

system [162].

Gene-environment interactions can also contribute to autoimmune disease, through epigenetic
mechanisms. Many environmental factors, including infections, ultraviolet light, environmental
pollutants, smoking and diet, can induce epigenetic changes [163]. This can modify gene

expression and also contribute to loss of tolerance [164]. Specific DNA methylation and histone
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modifications have already been identified for a number of more prevalent autoimmune diseases

[165].

2.1.2 Personalised medicine

Personalised medicine is an area generating increasing interest, given its success transforming
cancer treatment for some patients [166]. Application of these kinds of strategies are becoming
achievable given current technologies. These approaches may be of particular value for complex
diseases, such as autoimmune diseases. There is distinct variability within disorders [167], and a
proportion of patients have additional autoimmune diseases (Table 3) due to shared
developmental mechanisms [168]. Arguably, a ‘one-size-fits-all’ approach to treatment is not
appropriate for this heterogeneity within diseases coupled with autoimmune co-morbidities. The
realisation of personalised healthcare would lead to treatment of the causal molecular

mechanism, resulting in better patient outcomes.

Table 3 Number of patients with one or more additional autoimmune diseases. These studies
perform their analysis by first identifying a cohort with one autoimmune disease (left

column), and subsequently reviewing the presence of other autoimmune diseases in

the cohort.
Autoimmune disease Patients with additional autoimmune disease(s) (%)
Rheumatoid Arthritis 24.3 [168]
Myasthenia gravis 15 [169]
Hashimoto’s Thyroiditis 29.4 [170]
Vitiligo 19.8 [171]

Standard patient care generates a diversity of clinical data types, and these data are often
accumulated longitudinally over the disease course. Examples include: images obtain during
colonoscopies and magnetic resonance imaging (MRI), laboratory test results from blood or
urinary samples, symptoms at diagnosis, successful and unsuccessful treatments, and time
between flare-ups of a relapsing-remitting disease. Along with demographic data, this information
is increasingly stored in electronic medical records (EMRs) [172], establishing these records as a

rich data source.

In addition to a wealth of clinical data, ‘omic data is becoming widely available. ‘Omic data sets

are large, as molecular measurements are made on a genome-wide scale [173]. It is sizeable
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enough that computational power and capacity remain a limitation [174], along with the expense
of data storage and operation of these technologies, despite their high-throughput nature [175].
The advent of high throughput technologies has allowed quick analysis of many ‘omic data types,
including the genome, transcriptome and proteome. Layering multiple sets of ‘omic data may give
a fuller picture of the molecular status of individual’s autoimmune disease, leading to novel

insights that could evolve into treatment strategies.

This wide variety of data types has limited clinical utility without methods for interpretation.
There is a clear need for automated, intelligent systems, and computational tools that can
uncover obscure, clinically relevant patterns within the wealth of data. Artificial intelligence and
machine learning methods have the capacity to fulfil this purpose [176]. The ability to stratify
patient’s using these data has implications for their care, from estimation of autoimmune disease

risk, diagnosis and prognosis to management, monitoring and treatment response.

This systematic review aims to appraise the current applications of artificial intelligence and
machine learning methods to autoimmune disease for improved patient care. The study identifies
the most common models, data and application types. Potential areas for improvement in this
area of exciting interdisciplinary research are established, and promising future possibilities

discussed.

2.2 Methods

2.2.1 Autoimmune disease selection

The autoimmune diseases selected for the systematic review were based on prevalence estimates
[154], choosing those that were most likely to have sufficient data for analysis using machine
learning. These included: Addison disease, alopecia, Coeliac disease, Crohn’s disease, ulcerative
colitis, type 1 diabetes, autoimmune liver diseases, hyper- and hypo-thyroidism, multiple
sclerosis, myasthenia gravis, polymyalgia rheumatica, psoriasis, psoriatic arthritis, rheumatoid
arthritis, Sjégren syndrome, systemic sclerosis, systemic lupus erythematosus, systemic vasculitis,

uveitis and vitiligo.

2.2.2 Systematic literature search

Literature searches were performed electronically with OvidSP on the MEDLINE from 1946, and
EMBASE from 1974 databases. An additional search on the Computers & Applied Sciences
Complete database, available on EBSCO, was performed. This was to ensure the capture of all

relevant studies, those aiming to solve medical problems, and those focusing on algorithm
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development that may use medical data. The literature search was completed in December 2018,

last search 17/12/2018. Autoimmune diseases were searched for separately, using a search

structure of the worlds “machine learning” or “artificial intelligence” combined with the selected

search terms for that autoimmune disease. The diseases and their corresponding search terms are

listed in Table 4. Boolean operators OR and AND were used to combine search terms

systematically. In both databases, the search terms needed to be present in the title, abstract, or

subject terms/keyword headings assigned by the study’s authors.

Table 4 Search terms used in OvidSP and EBSCO for each autoimmune disease.

Autoimmune Disease

Disease Search Term(s) Used

Addison’s Disease

Addison*

Alopecia

Alopecia

Celiac Disease

Celiac, Coeliac

Inflammatory Bowel Disease

Inflammatory Bowel Disease, Crohn* Disease, Ulcerative

Colitis

Type 1 Diabetes

Type 1 Diabetes, Insulin?dependent Diabetes

Autoimmune Hepatitis

Autoimmune Hepatitis, Chronic Active Hepatitis, Primary

Biliary Cirrhosis, Primary Sclerosing Cholangitis

Thyroid Disease

Autoimmune thyroiditis, Hashimoto* Thyroiditis, Hashimoto*

Disease, Grave* Disease, Hyperthyroid*, Hypothyroid*

Multiple Sclerosis

Multiple Sclerosis

Myasthenia Gravis

Myasthenia Gravis

Polymyalgia rheumatica

Polymyalgia rheumatica

Psoriasis

Psoriasis

Psoriatic arthritis

Psoriatic arthritis

Rheumatoid Arthritis

Rheumatoid Arthritis

41



Chapter 2

Sjogren syndrome Sjogren syndrome

Systemic sclerosis Systemic sclerosis

Systemic Lupus Erythematosus |Lupus

Systemic Vasculitis Polyarteritis nodosa, microscopic polyangiitis, granulomatosis

with polyangiitis, eosinophilic granulomatosis with

polyangiitis.
Uveitis (iridocyclitis) Uvetitis, iridocyclitis
Vitiligo Vitiligo
2.2.3 Inclusion and exclusion criteria

Studies that applied machine learning methods to any autoimmune disease listed above, or to
complications arising from autoimmune disease were included. Studies that applied machine
learning to a non-autoimmune disease comorbidity in patients with autoimmune disease were
excluded. Other applied exclusion criteria were: studies not written in English, a publication date
before 2001, machine learning not trained on real, human patient data, articles that were not
peer-reviewed, and review articles. This systematic review conforms to the Preferred Reporting

Items for Systematic Reviews and Meta-Analyses (PRISMA) standards [177].

2.2.4 Data Visualisation

Studies were assigned an ML type according to the ML method used. Studies were counted
multiple times if there was more than one ML method recorded. The ML type and the
corresponding autoimmune disease this was applied to, and the IBD clinical applications ML was

applied to, was plotted in R [178] using ggplot2 [179].

2.3 Results

231 Summary of results

A total of 702 papers were identified in database searches, of which 169 met the criteria for
inclusion in analysis. 227 duplicate records were removed, 273 records were excluded after

reading the abstract, and 33 excluded after a full text read (Figure 14). Information on the
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included studies is summarised in Table 5, and a more detailed breakdown of the contents of each

study is given in Supplementary Table 2. Of the autoimmune diseases included in searches, six did

not return any study that met criteria for analysis: Addison disease, myasthenia gravis,

polymyalgia rheumatica, Sjogren syndrome, systemic vasculitis, and uveitis.

)
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"é through database identified through
£ searching. other sources.
] (n=702) (n=0)
=
——
\ 4 \ 4
)
Records after duplicates removed.
£ (n=475)
c
3 v
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7] Records screened. > Records excluded.
(n=475) (n=273)
~—
)
v Full-text articles excluded, with reasons.
> (n=33)
= Full-text articles
o assessed for eligibility. |———| Did not apply artificial intelligence or
%.o (n=202) machine learning (n=11)
Irrelevant to autoimmune disease (n=2)
No patient data used (n=12)
( \ Insufficient data (n=5)
\ 4
Not peer reviewed (n=2
E Studies included in P (n=2)
= systematic review Could not obtain full text (n=1)
(8]
= (n=169)
—

Figure 14 Flowchart recording number of papers reviewed in each stage. During the screening and

eligibility stages the inclusion and exclusion criteria are applied, first to the title and

abstract, and subsequently to the full text. For some records at the screening step,

inclusion or exclusion could not be established based on abstract only, and so a full

read of the record was completed at the eligibility stage. Two reviewers screened

records independently. If consensus on the record could not be established, a third

reviewer assessed the article and determine whether it was included or excluded.

43



Chapter 2

Table 5 Artificial intelligence and machine learning applications to autoimmune diseases. Study information is recorded per autoimmune diseases and includes: study

count, year range studies were published in, popular applications and methods, and all data types used. Median (range) sample size is included rather than

the mean, due to the inclusion of a minority of studies that had very large cohorts, usually analysing genome wide association study data, or electronic

medical records.

Disease Number of |Years |Most Popular Most Popular Machine Learning Median Sample |Data Types Used
Studies Classification/Prediction | Method(s) Size (min, max)
Application(s)
Multiple 41 [180-220]|2008- |Diagnosis, Prognosis, Type of Regression, Random Forest, |99 (12, 12566) Clinical, Survey, Genetic, MR, Lipid
Sclerosis 2019 Disease Subtype Markers, SNPs, Gait Data, Immune
Support Vector Machine
repertoire, Gene Expression
Rheumatoid 32[221-252]|2003- |Risk, Diagnosis, Early Support Vector Machine, Variations |338 (22, 922199) |Medical Database, Immunoassay,
Arthritis 2018 Diagnosis, Identify Patients | of Random Forest, Neural Network Metagenomic, Microbiome, GWAS/SNP,
and Decision Tree Clinical, Movement Data, Amino acid
analytes, Transcriptomic, EMRs,
Ultrasound images, Proteomic, Laser
images
Inflammatory |30 [253-282] |2007- |Diagnosis, Random Forest, Support Vector 273 (50, 53279) |Clinical, Colonoscopy Images,
Bowel Disease 2018 Machine Metagenomic, Gene Expression,
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Response to Treatment,
Disease Risk, Disease

Severity

GWAS, Microbiota, miRNA Expression,
EMRs, Exome, MRI

Type 1 Diabetes |17 [283-299] | 2009- | Disease Management Novel Methods/Hybrid Models, 23 (10, 10579) Clinical, Red Blood Cell Images, VOCs,
2018 Neural Network, Support Vector GWAS/SNPs
Regression
Systemic Lupus |14 [300-313]|2009- |Variations of prognosis, Logistic Regression, Neural Network, 318 (14, 17057) | Clinical, Electronic Health Records, Drug
Erythematosus 2018 Diagnosis Random Forest Treatment, SNPs, MRI, Exome, Gene
Expression, Proteomic, Urine Biomarkers
Decision Tree
Psoriasis 11 [314-324]|2007- |Diagnosis, Disease Severity | Support Vector Machine 540 (80, 22181) |Digital Image, GWAS, Proteomic, RNA
2018 Biomarkers
Coeliac Disease |7 [325-331] [2011- |Diagnosis Random Forest, Logistic Regression, |465 (47, 1498) VOCs, Clinical, Peptide, EMRs
2018 Bayesian Classifier, Support Vector

Machine, Logistic Model, Natural
Language Processing, Combined

Fuzzy Cognitive Map and
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Possibilistic Fuzzy c-means

clustering.

Thyroid 6 [332-337] |2008- |Diagnosis Hybrid Models 215 (215, 7200) |Clinical

Diseases 2018

Autoimmune 5[338-342] [2009- |Prognosis Variations on Random Forest 288 (64, 787) Clinical, Clinical Trial, Microbiome

Liver Diseases 2018

Systemic 4 [343-346] |2016- |Diagnosis, Treatment, Support Vector Machine, Random 119 (37, 991) Gene Expression, Nailfold capillaroscopy

Sclerosis 2018 Prognosis Forest images, Peripheral Blood Mononuclear
cell data (flow cytometry, DNA, mRNA)

Alopecia 1[347] 2013 Comorbidity Analysis Natural Language Processing 3568 Patient Data Repository

Vitiligo 1[348] 2013 Comorbidity Analysis Natural Language Processing 3280 Patient Data Repository
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The diseases where machine learning and artificial intelligence techniques were most prevalent
were multiple sclerosis (MS), rheumatoid arthritis (RA) and inflammatory bowel disease (IBD).
These models used the highest variety of data. In addition, only models of these diseases used
two data types (13/169 studies, clinical data was always one data type). Support vector machines
and random forests were the most common machine learning methods, through all types of
application and autoimmune diseases (Figure 15). The highest variety of machine learning types
were applied to RA, followed closely by IBD. For every autoimmune disease clinical data was used
in creating models, and for the majority of diseases a type of genetic data. The heterogeneity of
machine learning methods and the pipelines they reside in, applications and data, as well as
validation and evaluation of different approaches (Supplementary Table 2) renders a meta-

analysis inappropriate.

40-

Autoimmune Disease

I Alopecia
30- B Autoimmune Liver Disease
B Coeliac Disease
B Inflammatory Bowel Disease
B Multiple Sclerosis
[l Psoriasis/Psoriatic Arthritis
Il Rheumatoid Arthritis
B Systemic Lupus Erythematosus
Systemic Sclerosis
Il Thyroid Disease
Type 1 Diabetes

I vitiligo

Count

N
o

=y
o
v

Machine Learning Type

Figure 15 Stacked bar chart of types of machine learning found in the systematic review, grouped
according to the main autoimmune disease they were used for. The other category

includes uncommon methods, and novel ML pipelines.

The applications of machine learning to autoimmune disease can be categorised into six broad
areas: risk prediction, patient identification, diagnosis, classifying disease subtypes, progression

and outcome, and monitoring and management.
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2.3.2 Identifying and assessing autoimmune disease risk

The two main applications in this category were disease risk prediction [211, 221, 238, 266, 275,
276, 282, 287, 291, 292] and identification of novel risk factors using feature selection [234, 240,
248, 259, 313] for IBD, type 1 diabetes (T1D), RA, systemic lupus erythematosus (SLE) and MS.
Random forest, support vector machine and logistic regression were popular machine learning
model types. A form of genetic data was utilised in fifteen studies, using sequencing arrays
(GWAS), exome data (9 studies), gene expression data [211, 259], individual SNPs [291] within the
HLA regions [191, 287], or from pre-selected genes [240]. Two studies combined a type of genetic

data with clinical data [191, 211], and one used clinical data only [221].

2.3.3 Patient identification

The focus of this group of studies was to identify patients with autoimmune diseases from their
electronic medical records using natural language processing [230-232, 301, 309, 329, 330].
Gronsbell et al. focused on increasing the efficiency of these types of models [245, 250]. The
intention was for algorithms such as these tor replace International Classification of Diseases
billing codes, which have reported error rates of 17.1-76.9% because of the inconsistent
terminology used [301]. These algorithms also identify a cohort for further analysis, whether that
be with machine learning or other methods. Natural language processing was also used in the two
identified comorbidity studies for alopecia and vitiligo. Both diseases had similar autoimmune

comorbidities [347, 348].

234 Diagnosis

Patient diagnosis was the most frequent application of machine learning, and used for all
diseases. Support vector machines and random forests were the most frequently utilised model
types for this area. Twenty-seven studies focussed on classifying cases and controls. This model
type could have applicability in specific cases, for example where patients are asymptomatic.
However, distinguishing cases from controls may not be as clinically useful as the other models in
these studies, such as those using patients with a different autoimmune disease as controls [241-
243, 308], exploring the classification of multiple autoimmune diseases [272, 341], or
distinguishing diseases with similar presentations [209, 214, 236, 320, 326, 346, 349], for example
coeliac disease and irritable bowel syndrome. Early diagnosis was specified as important for the
degenerative conditions MS and RA, and so seven studies developed models for that aim [190,

192, 227, 243, 244, 249, 252]. More diagnostic applications included stratifying those with coeliac
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disease from an at risk group [325, 327], and distinguishing those likely to develop T1D
complications [285, 295].

2.3.5 Classifying disease subtypes

Machine learning classified RA (one study), IBD (two studies) and MS (six studies) disease
subtypes. These methods differentiated between CD and UC in the case of IBD, and two or more
of the four MS subtypes: relapsing remitting MS, primary progressive MS, secondary progressive
MS and progressive relapsing MS. Despite unsupervised methods being utilised infrequently, this
area featured the use of three different unsupervised clustering algorithms: hierarchical clustering
for identifying novel IBD subtypes [254]; consensus clustering to identify high, low and mixed
levels of inflammation in RA [226]; and agglomerative hierarchical clustering to cluster MS by
genetic signature [188]. Two of the previous studies also employed the supervised method
support vector machines [226, 254]. There was a wide variety of data types considering the small
number of studies: clinical (particularly MRI), genetic, RNA sequencing and gene expression data

were all utilised.

2.3.6 Disease progression and outcome

Aside from diagnosis, predicting aspects of prognosis was the most prevalent area for model
development. Twenty-seven studies focused on disease progression and patient outcomes. Other
study emphases were disease severity [233, 265, 315, 316, 318, 321, 331] in psoriasis, RA, IBD and
coeliac disease; treatment response [228, 239, 251, 258, 260, 261, 268, 273, 338] in IBD, RA and
primary biliary cirrhosis (PBC); and survival prediction [247, 306, 342] in PBC, RA and SLE. Other
models focused on improved image segmentation to aid prognoses [207, 213, 216, 280, 281, 312]
for IBD and MS. Commonly used methods were support vector machines, random forests and
neural networks. Few studies utilised ‘omic data [224, 256, 273, 324], with the majority using

clinical data as a machine learning input.

2.3.7 Monitoring and management

Machine learning was used for the monitoring and management of T1D, MS and RA. Of the ten
studies in T1D, four were for blood glucose predicted, four focused on predicting or identifying
hypoglycaemic events and two used machine learning to support decision making using decision
support systems or case-based reasoning. The majority of these models used clinical data. The

other models were developed for monitoring movement in MS (three studies) and RA (one study)
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using activity measurements. Support vector regression was the most frequently used method

[189, 199, 289, 290, 297].

2.3.8 Inflammatory Bowel Disease

As the research conducted in subsequent chapters centres IBD specifically, it was thought
appropriate to summarise the systematic review findings in relation to this disease. While 11
different ML types were used in modelling for IBD, a large proportion of studies employed
Random Forests (55%) [253, 256, 258, 261, 262, 268, 272-274, 280, 281] and Support Vector
Machines (40%) [254, 255, 262, 264, 265, 267, 276, 278]. The clinical task types that ML was
applied to for IBD are visualised in Figure 16. Another factor of interest was the composition of
the cohorts used for these studies. Some studies had cohorts of CD [256, 263, 265, 271, 273, 275,
279-282]and UC [255, 257, 260, 261, 270] patients (33.3% and 16.7%, respectively), and others
treated IBD as a singular disease group (20%) [253, 258, 262, 267, 268, 276]. The remaining
studies made note of the CD and UC subgroups within their cohort for analysis. Finally, it was
noted that there were 5 studies that utilised genetic data [266, 275, 276, 279, 282], and this data
type usually comprised genetic array-based data or the inclusion of selected SNPs. Two studies

had WES data available [275, 282], of which one used this data to impute genotypes [282].
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Figure 16 Number of studies per each prediction or classification task that ML was applied to for

IBD.
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239 Validation and independent testing

Of the 169 studies evaluated, 11 did not use any cross-validation method, so in these cases model
robustness and applicability is uncertain. Not including research that used random forest models
(where it is unnecessary to use cross-validation), or neural networks (where a cross-validation
process can be too computationally intensive), 18/169 models only used hold-out validation.
These models may be of clinical use, but unless the dataset is very large these methods have not
been as robustly validated in comparison to those that use k-fold cross validation, a leave-one-out
approach, or the combination of cross-validation methods and application of the method to an
independent data set. A minority of studies (14/169) did use the latter combination for evaluating
their models. This research did not have any machine learning algorithm types or applications in
common, and the studies were for many different autoimmune diseases. The most common input

data was clinical and genetic data.

2.4 Discussion

The variety of the machine learning models used and the pipelines that contain them reflects the
heterogeneity of the autoimmune diseases the methods were utilised for. This makes it
challenging to determine the methods that would be most effective, carried forward to further
validation, and ultimately clinical application. Alternatively, instead of choosing one model, many
could be combined with the aim of gaining consensus for the specific machine learning task.
Modelling utilised an assortment of ‘omic data, including proteomic, metagenomics and genomic
data. More common were sequencing array (SNP/GWAS) data, especially when the focus was
predicting disease risk. Undoubtedly the most prevalent data type was clinical and laboratory

data.

Data accessibility is critical for incorporating machine learning models into everyday clinical
practice, and EMRs provide this for clinical and laboratory data. Some initiatives have moved to
storing other data types in these systems, which will be essential for incorporating of multiple
datatypes at a large scale. The eMERGE (electronic medical records and genomics) network
integrates the genomic and EMR data repositories [350]. The SPOKE (Scalable Precision Medicine
Oriented Knowledge Engine) study aims create an intelligent system that integrates data types in
the storage platform, whilst analysing the connection between GWAS, gene ontology, pathways
and drug data and EMRs using unsupervised machine learning [351]. Understanding the

relationships between these and other data is key to implementing personalised medicine.

Personalised medicine approaches have already revolutionised cancer prognoses, improving

patient outcomes and quality of life, accompanied by economic benefits to treatment providers.
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Precision treatment has been propelled by the identification of cancer-specific driver mutations
[352], allowing the identification of molecular diagnosis that subsequently influences the
treatment strategy. Using targeted therapies, for example monoclonal antibodies and small
molecule inhibitors has transformed the treatment of some cancers, or improved survival times
[166]. Both cancer classification [353, 354] and pathway discovery has been achieved using
machine learning. Classical treatment of autoimmune disease has usually involved a broad-brush
approach to treatment. By utilising machine learning in conjunction with ‘big’ data, patients could
be stratified into groups, and the appropriate treatment identified: the approach that has been
effective in cancer. Currently, some studies have already exhibited this approach by using
machine learning to investigate IBD subtypes [254], and stratifying inflammation status in an RA

patient cohort [226].

Of the many models that were created for autoimmune disease diagnosis, usually classifying
patients and controls, the majority achieved good classifier performance (where a combination of
metrics are over the following thresholds: accuracy > 81%, AUC > 0.95, Sensitivity > 82,

Specificity > 84). Although these classification tasks were somewhat simple, they illustrated

machine learning’s utility in diagnostics.

With respect to research specific to IBD, this systematic review identified some underexplored
areas in the field. WES data was determined to be a rare data type to use [275, 282], and while
there were 5 studies total utilising a form of genetic data, no study using this data type employed
a Random Forest algorithm, which was very common in general for ML applications to IBD. As an
algorithm that can leverage data containing non-linear relationships, Random Forest could allow
the extraction of non-linear gene-gene interactions in genomic data for the benefit of IBD clinical
classification tasks. Further, the majority of studies either considered IBD as a single disease class,
or their cohort consisted of only CD, or only UC patients. This combined with only 2 studies
building classifiers based on IBD subtype, suggests that a further look at using ML to analyse

subtype differences could be beneficial to the field.

Six of 169 models from the literature returned more than one of the following metrics as either 1
or 100%: AUC, accuracy, precision and recall, sensitivity and specificity [186, 249, 285, 295, 317,
343]. A perfect performance indicates that a machine learning model may not be necessary, as
the some variable(s) in the dataset classify the groups with no error. Alternatively, this
performance may indicate overfitting without robust evaluation, or the poor implementation of

cross-validation techniques.

When researchers reported machine learning results, the metrics used varied considerably, but

often included accuracy, AUC, sensitivity and specificity. For the majority of machine learning
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tasks accuracy is an inferior measure to AUC, particularly when the dataset is imbalanced [355].
The AUC measure is not affected by an imbalanced dataset, but precision-recall curves may more
accurately reflect the performance of a model [153]. In the case of creating and evaluating any
model, it is important to decide the metrics that are most important to its evaluation. That is,
whether to minimise the false positives or false negatives. Scully et al. illustrated this with their
lesion segmentation model for SLE, which achieved a high specificity (99.9%) by labelling all tissue

as non-lesion [312].

A small proportion of the studies combined cross validation with a separate testing set for more
robust model evaluation, and the importance of this was demonstrated with Ahmed et al’s [227]
machine learning model. In their study the AUC dropped by 0.25 using an independent dataset,

indicating a decreased model performance on new data, and the importance of an independent

dataset to assess the generalisability of a model.

The literature reviewed here demonstrated that artificial intelligence and machine learning
methods can provide useful insight, and potentially improve patient outcomes, despite the
heterogeneity of autoimmune disease presentation, diagnosis, and prognosis. The diversity in
data used, machine learning models, and in particular model evaluation, is a preventative barrier
to transferring the knowledge obtained with these models to the clinical practice. Further, the
focus of the systematic search was restricted to a chosen list of autoimmune diseases, which may

have not fully captured all literature using machine learning for autoimmune diseases.

From consideration of the studies included here, it appears appropriate to advocate for the
standardisation of model evaluation, a combination of cross validation and independent test data
for model validation. Results should be reported using the full spectrum of evaluation metrics,
including AUC, sensitivity, specificity and F1 score. Increased confidence in model results may
allow for more complex model creation, through layering data types, or combining models. These
methods could then by applied to tasks that mirror the complexity of autoimmune diseases.
Through these improvements, artificial intelligence and machine learning brings the reality of
personalised medicine closer for, not only patients with autoimmune disease, but those with any

common, complex disease.
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Chapter 3 Methods and method development

Chapter summary - this chapter discusses the methods used for the processing and
transformation of the WES data used throughout this thesis. This includes the alignment, variant
calling and annotation of individuals alongside the quality control of WES batches. In addition,
the processing of this data as a cohort — variant joint calling, filtering for a high quality callset
and subsequent annotation — is also outlined. The transformation of WES data into a matrix of
per-gene, per-patient scores (called GenePy scoring) is detailed. Over the course of my PhD
project, it was necessary to implement bioinformatic pipeline upgrades for the joint calling
process, annotation and transformation of data into GenePy scores. Bioinformatic pipeline
upgrades are a mainstay of genomic informatics, and this represented a substantial component
of research time. For this reason, both the original (used in Chapter 4) and upgraded pipelines
(used in Chapter 5 and onwards) are described. Methods that are specific to each chapter are

discussed within their respective chapter.

Chapter contributions — initial pipelines for alignment, variant calling and annotation of WES
data for individuals and the IBD cohort were run by Imogen Stafford. Quality control was
performed by Imogen Stafford on three batches of WES data, with other batches quality
controlled prior to this thesis, and quality control of the 2020 batch of adult IBD data performed
by Guo Cheng. Guo Cheng and Imogen Stafford aligned and called individuals for the updated
pipeline, Guo Cheng performed the joint calling of all individuals. Imogen Stafford developed,

implemented and documented new annotation and GenePy scoring processes.

Supplementary files can be found at https://doi.org/10.5258/SOTON/D2655. Throughout the
Chapter relevant files and scripts are referenced to ensure reproducibility of whole exome
sequencing data processing. Static versions of GitHub repositories where joint calling pipelines

and GenePy scoring pipelines are detailed in full are included in Supplementary files.

3.1 Introduction

Raw data generated by high-throughput sequencing need to undergo a series of processes to
extract clinically significant information. Generating files ready for analysis consists of three stages
(Figure 17): alignment of data to the reference genome; calling for sites where the sample data
differs from the reference genome (variant calling); and annotation, where additional information

regarding each variant, such as allele frequencies and predicted deleteriousness metrics, are
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added. Some of the files created during variant calling and annotation are used for quality control.
Quality control is essential to 1) check that data of sufficient depth has been received; 2) ensure
that identifiers associated with the sequencing data are correct and have not been swapped, and
3) to check for contamination, either from another sample, or outside sources. Probands in each
batch are checked to ensure sufficient depth of coverage, the BAM (binary alighment map) file
size is correct, and that the clinically recorded sex matches with the genetics. Checking the
percentage of shared variants between individuals in the batch is used to cross-check the number
of related individuals (this can indicate contamination from other DNA). A selection of 24 SNPs for
each proband are also tested separately [356], and the genotypes of these sites cross-checked
with the sequencing data. Sequencing data can be processed for each individual, or the data can
be analysed as a cohort, through creation of a multi-call variant call format (VCF) file at stage two,

followed by annotation.

The traditional annotated VCF file created from sequencing data is not ideal as an input for
machine learning. The number of variants per patient would lead to a highly-dimensional dataset,
increasing in size as very rare and private variants are added with each patient sample.
Furthermore, the standard VCF file does not benefit from additional information such as variant
deleteriousness metrics and allele frequencies that can add biological and clinical meaning to
sequencing output. For this reason, a key method for further analysis in this thesis was the
generation of a GenePy matrix. GenePy [357] is a tool that creates a per gene, per individual score
based on the number of variants a patient has per gene, integrating the zygosity, minor allele
frequencies and predicted deleteriousness of those variants. This gene-level scoring approach is
particularly valuable for complex diseases such as IBD. The causes of such diseases may be
compound heterozygous variants, or the additive effect of many variants across one or more
genes. The GenePy matrix forms a standardised input suitable for integrating with other data sets

and machine learning. The three main pipelines for data processing are summarised in Figure 17.
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exome data. This is typically done as batches are sequenced, and files created during

the process are used to assess quality. The annotated VCF is used to assess potential

causal variants on an individual basis. IlI) Variant calling and genotyping VCFs to

create a cohort file (joint calling) that can be annotated to analyse variants on a

cohort basis. 1) Steps for the creation of a GenePy matrix, based on a cohort VCF.

These scores can be used in different types of analysis, for example machine learning.

3.2 Programming and bioinformatic resources

3.2.1 Iridis 5

Iridis 5 is the latest generation of the University of Southampton’s high performance computing

cluster, and all exome sequencing data processing was completed with the use of this system.

Iridis 5 is four times more powerful than the previous system: it has 464 computing nodes with 40
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CPUs and 192GB of memory per node. Additionally, there are four high-memory nodes with 64
cores, 768GB of memory and 9TB of local temporary storage space. Over 20,000 processors
provide 1,305 TFlops peak. Supercomputers like Iridis 5 are important to facilitate fast and
efficient processing of increasingly large volumes of sequencing data. Processing data is executed

using the bash command line which is based on the Unix architecture.

3.2.2 Burrows-Wheeler Aligner

The Burrows-Wheeler Alignment tool (BWA) implements the Burrows-Wheeler Transform (BWT)
algorithm for the alignment of sequencing reads [80, 358]. BWT was originally developed for the
compression of text string data, with a key factor being that additional data does not need to be
stored to reverse compression. In genomics, BWA uses this compression for quick alignment, as
each read is essentially a text string that often contains many repeats [80]. The BWA software has
three different aligners: BWA-backtrack, BWA-MEM and BWA-SW. The former is designed for
shorter reads (less than 100 base pairs), and latter two can align reads ranging from 70 base pairs
to over a megabase. BWA-MEM is the faster and more accurate of the two, and so is the tool
utilised in the bioinformatic pipelines in this chapter. In comparison to other aligners currently
available, BWA-MEM is not as accurate as Novoalign, however it is much faster [358]. When the
alignment of large genomic datasets is required, BWA-MEM represents the best trade-off

between accuracy and speed.

3.2.3 Genome Analysis Toolkit

Developed by the Broad Institute, the Genome Analysis Toolkit (GATK) is a software package that
can implement a number of tools for processing sequencing data [359]. GATK is used in the
bioinformatic pipelines detailed below to complete two key processes: variant calling and variant
quality score recalibration. Variant calling in diploid organisms is completed using
HaplotypeCaller. This software is very popular because variant calling can be scaled up to include
more samples without losing accuracy or sensitivity [360]. During variant calling, when
HaplotypeCaller encounters a region with variation, it ignores the existing alignment and
reassembles the reads in that region. This process means increased accuracy, particularly in
regions with a lot of variation, and an increase in the calling of insertions and deletions [359]. By
design, HaplotypeCaller is very sensitive in order to achieve the maximum number of variant calls.
For users who want to filter the variants called for an overall higher quality call set with fewer
false positives, GATK implements variant recalibration (VariantRecalibrator, ApplyRecalibration).

The first step uses machine learning to assign a probability score of a variant being a true positive,
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and the second filters the call set according to the sensitivity required of the call set (i.e. the

balance between missing true variants and including false positives [359].

3.24 ANNOVAR

The software package ANNOVAR is used to annotate variants to interpret their consequences
[361]. ANNOVAR only requires the VCF file and text files of any supported database to annotate
variants. The three main types of annotation are gene-based, filter-based and region-based
annotation. Gene-based annotation provides information regarding a variant’s position in the
genome (e.g. exonic, intronic, close to a splicing site), and if the variant is exonic, what type of
variant it is (e.g. nonsynonymous SNV, frameshift deletion). In filter-based annotation, the specific
variant is searched for in the chosen annotation databases. This type of annotation can provide
information about the frequency of a variant in a population, and its likely deleteriousness.
Region-based annotation will not search for the specific variant but instead a region which can
include one or more bases (e.g. chromosome 1:1000-1000, chromosome 3:2000-2050). The

nucleotide change is not important in region-based annotation.

3.2.5 Ensembl Variant Effect Predictor

The Ensembl Variant Effect Predictor (Ensembl-VEP), is another annotation tool similar to
ANNOVAR, which is available through the Ensembl website, or to download for offline use [362].
Input files can be in many formats, including a white space separated file of variants, and a VCF
file format, and can be output as a tab-delimited, VCF, or JSON (JavaScript Object Notation)
format. A file can be annotated based on Plugins, or a custom annotation. Plugins are supported
by Ensembl-VEP, and they are downloaded, along with the related reference database, in order to
annotate the file. Ensembl-VEP’s custom annotation system means that any file can be used to
annotate the input, including BED files and VCF files. Ensembl-VEP has a more granular annotation
of variant consequences when compared to ANNOVAR. For example, where all splicing variants
would be labelled as “splicing” by ANNOVAR, Ensembl-VEP categorises these into “splice donor”
(splice variant at the 5’ end), “splice acceptor” (splice variant at the 3’ end) and “splice region”
variants. Further, the transcripts used for annotation can be specified (for example the canonical

transcript), and multiple annotations per variant (based on multiple transcripts) can be reported.

3.2.6 CADD

The Combined Annotation-Dependent Depletion (CADD) score is a measure of variant

deleteriousness that is able to score single nucleotide variants and short insertions and deletions
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[88]. CADD does not use any prior knowledge of variant pathogenicity in its scoring. Instead, it
employs machine learning to predict pathogenicity. The early versions of CADD employed a
support vector machine, but versions 1.4 and 1.5 use a logistic regression model. The model is

|”

trained on millions of variants split into two groups: real “proxy-neutral” variants that have
become fixed in the genome and therefore are mostly benign and simulated “proxy-deleterious”
variants that are de novo and free of selective pressure. A variant that appears closer to the
simulated scenario is then presumed to be likely deleterious, as this variant would not become
fixated. The advantage of this approach is that all variants can be scored (approximately 9 billion
potential single nucleotide variants) [88]. The most recent version of CADD, version 1.6 or CADD-

Splice [363], also incorporates information from the bioinformatic tools for scoring splicing

variants, MMSplice [364] and SpliceAl [365].

3.2.7 Genome Aggregation Database

The Genome Aggregation Database (gnomAD) version 2 is a database containing 125,748 exomes
and 15,708 genomes assembled by the Broad Institute, mapped to the GRCh37 reference
sequence [82]. The sequences are derived from individuals with 6 global and 8 sub-continental
ancestries. The database is an excellent source of information for the expected frequencies of
variants in a population. After data processing, 14.9 million and 229.9 million high-quality variants
were identified in the exome and genome datasets, respectively. The more recent version 3
consists of 76,156 whole genomes mapped to GRCh38, however, this database is not as powered
for annotating coding variation as version 2, and as such it is still recommended to use the version

2 databases lifted over onto GRCh38 if analysis only involves the exonic regions.

3.2.8 GenePy

GenePy is a gene pathogenicity scoring system which assigns one score to each gene that reflects
the pathogenicity conferred by all variants present in that gene [357]. Each GenePy score is

calculated with the following equation

k
Sgh = Z D;ilogqo(fir - fi2)
i=1

Where the score S is calculated for each gene g, and individual h. The frequency of both alleles at
each locus j are represented by fi; and fi;. This is multiplied by the deleteriousness metric D for
every locus. Although any allele frequency database and deleteriousness metric can be employed
to construct GenePy scores, here the aforementioned gnomAD [82] and CADD [88, 363] were

utilised. This enables the generation of a gene-by-individual matrix. There were two main reasons
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for using this scoring system. Firstly, an annotated VCF file of all variants present in a cohort
would be highly-dimensional, and the consequent data sparsity means it is more difficult to
produce informative ML models in downstream analysis. Processing the data so it is at the gene
level, rather than the variant level therefore reduces the dimensionality of the dataset. Secondly,
in initial studies GenePy score distributions were found to be significantly different in cases and
controls for an IBD dataset, and a Parkinson’s disease dataset (examples of GenePy score
distributions for the IBD cohort utilised in this research are shown in Figure 18) [357]. These
distribution differences between groups can be leveraged through ML. Of particular value in the
calculation of GenePy scores is its ability to summarise rare and common variation in an
individual, ideal for a cohort of IBD patients, as the genetic makeup of individual’s disease may

range from monogenic to polygenic, as described in Section 1.2.
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Figure 18 Examples of GenePy score distributions within the IBD cohort, which highlights varied
distributions and ranges of GenePy scores. A) ATG16L1, a gene associated with
susceptibility to CD [366, 367]; B) NOD2, a gene associated with monogenic forms of
CD [5], and CD susceptibility [2, 3]; C) XIAP, identified as a monogenic IBD gene [57];
D) OR10H5, a gene part of the family of olfactory receptors, known for being highly
polymorphic [368].
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3.3 Methods

3.3.1 Recruitment and data collection

Patients with inflammatory bowel disease were recruited through the Southampton Genetics of
IBD study at Southampton General Hospital (REC: 09/H0504/125). This study has been recruiting
patients since 2012, and is still recruiting patients. As such, the number of patients in the cohort is
continuously growing. Both paediatric and adult IBD patients were recruited for the study in their
respective clinics. Patients under the age of 18 years were diagnosed according to the modified
Porto criteria [369], and adult patients were diagnosed according to the guidelines detailed in
[370]. DNA for whole exome sequencing was obtained from peripheral venous blood samples
collected in EDTA by the salting out method [371]. The Qubit 2.0 Flurometer was used to estimate
DNA concentration, and the 260:280 ratio was calculated with a nanodrop spectrophotometer (if
the DNA concentration is too low, it may not be possible to sequence the sample). Concurrently,
blood for the plasma used for reactive oxygen species assays was taken. This blood was frozen
until antioxidant potential and oxidative stress assays were performed. Participant’s blood is
usually taken at several time points as part of monitoring each patient’s condition. Common
laboratory tests on blood are performed, such as creatinine, alboumin and C-reactive protein.
Further details on the clinical data available and their extraction from University Hospital of

Southampton systems are included in Chapter 5.

3.3.2 Exome data processing

Approximately 20ug of DNA was extracted from each sample and sent for WES externally. Using
1pg genomic DNA per sample, this was fragmented and enriched with Agilent SureSelect All Exon
capture kit (version 4, 5 or 6). Libraries were subsequently sequenced on Illumina platforms.
Samples were sequenced using paired-end sequencing, with reads varying in length depending on
the sequencing batch (100, 125 and 150 base pair reads). The pipeline for exome sequencing data
processing is detailed in Figure 19. After sequencing, exome data are provided as fastq files that
contain the genetic sequence, where each base is paired with an ASCIl (American Standard Code

for Information Interchange) character that represents sequence quality (Figure 20A). Quality

“ I n ‘et

coded in ASCII ranges from representing the worst quality, to representing the best quality
(Figure 20B). The quality score represents the error probability i.e. for each sequenced base, what

is the probability that the base is incorrect.

The bioinformatic pipeline began with concatenation of fastq files if there were multiple lanes

sequenced. The paired-end exome sequencing data was aligned to the human genome assembly
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GRCh38, using the Burrow-Wheeler Aligner, BWA-MEM [80]. The default recommended
parameters for mapping indels were used with BWA-MEM (open gap penalty=6, extension
penalty=1). Samtools [372] was used to convert the sam (sequence alignment map) into its
corresponding binary version, a BAM (binary alignment mabp) file. After these steps, Picard [373]
sorts the BAM file by base pair coordinate (SortSam), flags duplicates (MarkDuplicates) for
downstream tool GATK's HaplotypeCaller, and verifies forward and reverse strands match
(FixMatelnformation), correcting this if they do not. GATK 4.0 [374] then recalibrates base quality,
adjusting under- and over-estimations of sequencing quality due to systematic technical errors.
Firstly, the recalibration table to accomplish this is built by BaseRecalibrator, then implemented

with ApplyBQSR. The recalibrated BAM file is then ready for variant calling.

Recalibrated
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Figure 19 The pipeline for processing an individual’s exome sequencing data. This details the

bioinformatic tools for each of the three main processing steps, 1) alignment to the
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reference sequence; 2) variant calling to establish sequence differences between the

individual and the reference sequence; and 3) annotation for variant interpretation.

A

@A00957:17:H5VC5DSXY:3:1101:15673:1611 2:N:0:GGAATACT+CTCAACCG
CCTACAAGGTTGTCTTAGTCAGTTCTGTGCTGCTATAACAGAGTACCTGGGAGGTT
TAGTTCTTACACTTCTTGCGGGTGGGAAGTCAACGGTTGATGTCCTGCATCTCTCA Sequence

Sequence Identifierand
Description

GTGGTCTCTTGGCGTCATCATCCCATGGTGGAAGGTTGG

+

 FEF:,F:, FFFF,:FFF, F,FFF::FF,::F:FFFF:, 2, F:F FFFF:F:F:,F,FFF,FF,,, :F, FFFF, FFFF, _
ASCII Quality of sequence

FFFF:::,F,FFFFF:FFFF,FFF,:, FFF FF,,:FFFFFF, F, F,:F,:F, F:

B
I"#$%8&()*+,-./0123456789:;<=>? @ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]*_*abcdefghijklmnopgrstuvwxyz{| }*

Figure 20 Fastq file format and ASCII quality. (A) Example of the fastq information format for one
read. Sequence identifier and description provides information including the
instrument name and run number, lane number, and if the read passed or not. (B)
Lists the sequence of ASCII quality characters, with quality increasing from left to

right.

During variant calling with GATK 3.8’s HaplotypeCaller [359], single nucleotide polymorphisms,
inserts and deletions were identified, and in these regions the reads were re-assembled. Soft-
clipped bases were not used during variant calling. Soft-clipping refers to the bases at the 5’ and
3’ ends of reads in cases where these ends have not been aligned to the reference sequence. This
soft-clipping can be an indication of larger insertions and deletions in the exome sequence. By
excluding these bases, some calls relating to larger indels will be missed, but it excludes many
more false positive variants calls. This created an intermediate genotyped variant call format
(GVCF) file with ERC (emitting reference confidence scores) GVCF formatting. This formatting
results in a smaller GVCEF file, as sections of the GVCF where there are no alternative alleles are
condensed into non-variant blocks that represent genomic intervals. This GVCF was then input
into GATK 3.8’s GenotypeGVCFs [359], where at points of variation in the GVCF, genotype
likelihoods were calculated, and the variants genotyped and annotated. This creates a VCF file for

annotation.

Finally, annotation provides additional information on the called variants. After converting the
VCF file to an ANNOVAR [361] format (convert2annovar, ANNOVAR script), gene-based and filter-
based databases were added to the file (table_annovar, ANNOVAR script). These were refGene

[375], gnomAD exome v2.1.1 [82], dbnsfp35c (no annotations for synonymous variants) [86, 376]
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and HGMD2018 (Human Genetic Mutation Database) [91] (Table 6), adding the gene the variant

resides in, allele frequencies, deleteriousness and conservation metrics, and previously reported

disease(s) associated with the variant, respectively. It was also useful to include the

deleteriousness metric CADD [88], but the version that annotates insertions and deletions (v.1.5)

was not available using the ANNOVAR software, therefore the VCF file was annotated separately

with CADD Phred scores, and merged with the annotated file. An individual’s annotated file could

now be filtered to find potential disease-causing variants. These annotation steps can also be

completed using a VCF file that contains multiple probands, for example a cohort VCF file.

Table 6 Key databases for variant interpretation. Lists the annotation database and corresponding

contents.

Database

Contents

refGene [375]

FASTA sequences for all annotated transcripts in RefSeq Gene

GnomAD
exomev.2.1.1

(82]

Allele frequencies for all variants documented in the database. This includes
the overall allele frequency of the population included in the database, as well
as the allele frequency in specific subpopulations (male and female allele

frequencies, allele frequencies in different ethnic groups).

dbnsfp35c [86]

Annotation of non-synonymous SNPs. This includes:

e Tools that score based on whether a variant is likely to be damaging:
whole-exome SIFT score, PolyPhen2 (HVAR database for Mendelian
disease, HDIV for rare variants in complex disease), MutationTaster,
MutationAssessor, FATHMM, PROVEAN.

e Tools that score variants based on how conserved the genomic site is:
GERP++, fitCons, PhyloP and SiPhy (latter two scores from previous
version dbnsfp33a).

e Tools that incorporate machine learning into their prediction of variant
deleteriousness: CADD (v1.3), DANN, MetaSVM, MetalR, VEST, M-CAP,

fathmm-MKL, Eigen, and GenoCanyon.

HGMD2018 Published information of gene variants responsible for human inherited
[91] diseases
CADD [88] Raw score and Phred score. The Phred score is more informative for the

interpretation of variant deleteriousness.
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3.33 Quality control

Quality control was completed on individual batches as sequencing was completed. One method
by which samples can be checked for contamination is by calculating the number of shared
variants between every pair of samples in each batch. A higher number of shared variants among
individuals that are not known to be related indicates that either one sample has been cross-
contaminated with another, or the individuals are related and this is currently unreported in the
available clinical information. A lower number of shared variants could indicate contamination
from another substance (not another sample’s DNA). The number of shared variants between
those in the batch were calculated using sample annotated VCF files, and a sample-by-sample
matrix created. From the output of the script, unrelated individuals are expected to share
between 60 and 65% of their variants. First degree relatives are expected to share 80-85% of their
variants, and for pairs of samples where the ancestry is different for each individual it is expected
that there will be fewer shared variants (approximately 55-60%). The software VerifyBamID [377]
was used as an additional check for sample contamination, it outputs a p-value indicating the

probability of contamination based on the sample’s recalibrated BAM file.

The coverage of every sample was also checked using the BAM file. Both the mean coverage over
the sample, and the read depth percentage was assessed. Each sample should have at least 20x
read depth over 80% of the targeted regions. If this were not the case then the sample would
have to be re-sequenced as there is not the required depth of information for downstream
analyses. The annotated VCF files were used to check the percentage of heterozygous X
chromosome calls, and match the sex indicated by the variant calls to the clinically recorded sex.
If the percentage of heterozygous X chromosome calls were not as expected from the clinical
information (55-65% in females, 10-20% in males), this could indicate bias or error in the
sequencing, the sex had been misreported in the clinic, or a potential sample swap. The final
check to the sequencing was using SNP fingerprinting. For every sample 24 SNPs were genotyped
[356] and these genotypes were compared to the genotype called from the whole exome
sequencing data. This SNP panel was designed such that it could be utilised with a number of
capture kits, including Agilent capture kits [356]. This is primarily a check to ensure that the IDs of
samples have not been switched, but a lack of concordance between the SNP genotypes and

sequencing genotypes could also indicate contamination.

3.34 Joint calling and filtering for a high-quality cohort VCF file

To collate samples into one cohort VCF file, joint calling must be performed (Figure 22A). After

alignment and variant calling of individual samples (as in Section 3.2.2, this was performed with
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the ALIGN.sh and the CALL.sh scripts), all samples must be genotyped together. By calling all
samples together genotype calls are given for every site across the entire cohort, so it is possible
to determine whether a site is homozygous for the reference allele, or if the data is missing (this
would not be possible if sites were not called together). First, GVCFs were combined into small
batches of approximately 20 files using GATK [359] CombineGVCFs (performed with combiner.sh
script). Batches were subsequently genotyped together with GATK [359] GenotypeGVCFs, by
genotyping a single chromosome for all batches, and concatenating the chromosomes with GATK
CatVariants (performed with gtyper.sh and catvars.sh scripts). This creates the multi-call VCF file.
GATK v.3.8.1 was used throughout to multithread this computationally intensive process without
changing the pipeline [359]. At this stage of processing, the multi-call VCF file is not restricted to a
BED (Browser Extensible Data) file. As a minimum, each line of a BED file contains the
chromosome number, and the start and end points of a section of that chromosome. Each line
can also contain additional information, such as the number of exons within the section, and their
sizes. Every capture kit used prior to exome sequencing has a corresponding BED file that contains
the genomic coordinates of the regions that were targeted by the capture kit. As multiple capture
kit versions were used in sequencing individuals in the cohort, bedtools intersectBed was used to
create a BED file of the intersection of version 4, 5 and 6 capture kits [378]. The multi-call VCF file

was subsequently restricted to this BED file using GATK SelectVariants.

It is important to impose some restrictions on minimal data quality to the multi-call VCF file
created in the steps above, since errors occur during sequencing, and these are particularly
prevalent in genomic regions with low coverage. Retaining erroneous calls could bias outputs
derived from the multi-call VCF file, and downstream analyses. To improve the quality of the
multi-call VCF, the methods described by Carson et al. [379] were implemented (Figure 22B). The
genotypes of variants with a sequencing depth less than 8 and genotype quality (GQ, confidence
that the genotype is correct) less than 20 are replaced with the missing genotype (./.) using
vcftools [380], as these are poor quality variants. A filter requiring the mean GQ for each variant
across all included samples to be greater than 35 was also applied, followed by a missingness filter
to ensure that each variant was genotyped in a minimum of 88% of the samples in the VCF,

achieved using vcftools [380]. These filtering steps were performed using Filtering.sh.

New quality scores based on the likelihood of a variant being true versus being a sequencing
artefact were calculated by GATKs [359] VariantRecalibrator, which uses a Gaussian mixture
model to evaluate each variant. The model parameters created are applied using
ApplyRecalibration, which annotates the files with new quality scores, and flags those that do not
meet the required quality threshold (Figure 21). These two steps combined complete the Variant

Quality Score Recalibration (VQSR) process. In this case, the quality threshold was tranche 0.99,
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which requires 99% of the variants in the VCF to be included. This process was performed twice so
that SNVs and Indels were evaluated separately. In the case of the Gaussian mixture model for
Indels there were fewer variants, so the maximum number of Gaussians was set to four. This
lowers the number of clusters in the Gaussian mixture model so that there are enough variants
per cluster to satisfy modelling requirements, but this comes at the expense of resolution, i.e.
reduced ability to identify sequencing artefacts (recalibration stages performed using
Recalibrate.sh). Vcftools [380]was used to remove the flagged variants, creating a high-quality

multi-call VCF that can be used to create GenePy scores.
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Figure 21 Example of plots generated by running GATKs Variant Recalibration and Apply
Recalibration for a cohort (n=491). The transition/transversion ratio is a good proxy
for the true positive/false positive trade-off. Transitions are a base changing to
another base that has the same chemical structure, transversions are a base
changing to another base with a different chemical structure. (A) Breakdown of true
positives and false positives per tranche. Inclusion of all variants (tranche 100) would
lead to false positive variants (assigned the label false positive by the Gaussian

Mixture Model) remaining in the call set. (B) Specificity decreases (novel
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transition/transversion ratio) as the sensitivity (tranche) increases. The tranche is

chosen to optimise the trade-off between these two metrics.

3.35 Annotation and generation of GenePy matrix

The algorithm that creates GenePy scores requires that only bi-allelic variants are present in the
VCF, so these were removed with vcftools [380]. Only using bi-allelic variants is a limitation,
caused primarily by data availability. To include tri-allelic and quad-allelic variants another
database would need to be used to obtain allele frequencies, as the gnomAD database only
reports the major alternative allele frequency [82]. The genome browser Ensembl [381] reports
multiple alternative alleles, but integrating this primarily online data source into current pipelines
is difficult. Most importantly, Ensembl’s data is not as complete as data from the gnomAD
database. If future updates to gnomAD include reporting of minor alternative alleles, GenePy

could be modified to include all variants.

ANNOVAR [361] was used to create an annotated VCF file that included the gene name for each
variant (refGene database [375]) and the allele frequency in the general population
(gnomad_exome, all individuals [82]). If the variant is novel to the gnomAD database, it will be
assigned a frequency of 1/282,912 for the purposes of calculating a GenePy score. The
denominator is twice the number of exomes and genomes in the gnomAD database, because
there are two opportunities (i.e. two alleles) for the variant to appear in every person included in
the database. ANNOVAR does not currently support the most recent version of CADD, so the
CADD scores for each variant were generated separately. Required columns from the annotated
VCF and the file containing CADD [88] scores were merged together (merging performed with
cross-annotate-cadd.py). The file was then filtered to retain the type of variant required, for
example exonic and splicing. Subsequently the GenePy script was run for the genes that scores
were required for, either for all available genes from the RefSeq database [375], or a specific list.
This script creates files with GenePy scores for the cohort for each gene that are subsequently
merged into a matrix containing one score per patient per gene. Steps for creating the GenePy
matrix are summarised in Figure 22C. Several scripts were utilised to generate the GenePy scores:
subber.sh, GenePy_1.3.sh, make scores_mat_6.py, generate_final_matrix.py, and

MatrixMaker.sh. Full instructions for generating this matrix are found in the Supplementary Files.
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Figure 22 Three stages for GenePy matrix creation. (A) Variant calling and genotyping samples

together to create a multi-call VCF file. (B) Filtering and recalibration to improve the

guality of the cohort VCF. (C) ANNOVAR and CADD annotation to provide necessary

information for GenePy scoring (frequency, deleteriousness), subsequent creation of

GenePy scores and collation into a patient by gene matrix.

3.4 Pipeline developments for cohort analysis

In 2020, WES data became available for a large batch of adults with IBD recruited as part of the

Genomics of IBD study. The sequencing of this batch was performed as part of the National

Institute of Health Research’s BioResource [382].This led to the number of individuals for which

WES data was available approximately doubling, as previously fewer than 500 paediatric patients
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with WES data were present in the cohort. Additionally, all paediatric DNA samples that had been
previously sequenced with version 4 of the Agilent SureSelect Human All Exon capture kit were re-
sequenced using version 6 of this capture kit. Substantial discrepancies existed between the exon
coverage of version 4, and versions 5 and 6 (Figure 23). This was therefore a desirable
improvement to the exome capture efficiency. These changes resulted in a larger and more
uniform dataset. Therefore all whole exome sequencing in the cohort had been performed with
SureSelect version 5 or 6 capture kits. While this increase in data was welcome, it was also
recognised that this would increase the time required to process the data significantly. The
decision was made to update the exome processing pipeline to utilise the latest version of GATK
(v.4.1.2) during the joint calling process (GATK v.3.8 was previously used), utilising a new joint
calling workflow that would uplift called variants [383, 384]. The annotation process was also
revamped by replacing ANNOVAR [361]with Ensembl-VEP [362]. The new pipeline, intended to
align, joint call and annotate to enable the transformation of WES data into a cohort GenePy

matrix, is described in the next sections.
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Figure 23 Intersection of features in SureSelect version 4 (SSV4), version 5 (SSV5) and version 6
(SSV6) capture kit (CK). Feature counts determined with Python’s Pybedtools [385],
plotted using R’s UpSetR [386]. Plot shows a large overlap between all three capture
kits, but there are more features in the BED file that are 1) unique to SSV6; and 2)
present in SSV5 and SSV6 that are absent in SSV4, demonstrating the desirability of

resequencing where this was performed with SSV4.

34.1 Alignment and joint calling

Alignment proceeded as detailed within Section 3.3.2 and Figure 19A, with two differences.
Firstly, for the new pipeline an updated GRCh38 reference sequence was employed which
included HLA decoy sequences. Secondly, for the use of GATK v.4.1.2 [383, 384]in downstream
joint calling, there was a requirement to use a specific version of Java, OpenJDK, for generating a
BAM file from the fastq files. The GATK version utilise for BaseRecalibrator and ApplyBSQR had
already been updated from v.3 to v.4, so this portion of the script remained the same (alighment

was achieved with the preprocess.sh script).

To begin the joint calling process, first each BAM file created during alignment had to be
individually called. This was achieved as described in Section 3.3.2 and Figure 19B, except with the
GATK version 4.1.2 [383, 384]. Briefly, HaplotypeCaller converts the BAM file into a GVCF file, and

then these files are converted to VCF with GenotypeGVCFs. Additionally, an interval list was given
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to HaplotypeCaller in order to speed up joint calling downstream. The interval list was based on
the union of the SureSelect V5 and V6 capture kits, with 150bp padding on these intervals

(individual calling accomplished with caller.sh).

The main change to variant calling is in the joint calling stage (performed with joint_calling.sh
script). Previously, CombineGVCFs was utilised to transform many VCF files into a single file. With
the new GATK version 4 [383, 384], GenomicsDB performs the same function using a different
method, which improves on the time required to joint call many samples. GenomicsDB is
essentially a database for the variant call information. This data is stored in a 2D TileDB array,
where the rows represent a sample in the cohort, and the columns represent a genomic position,
which includes chromosome and base position. Therefore, each cell contains that sample’s
information at that genomic position. GenomicsDB can take many arguments which means joint
calling can be customised according to the user’s processing power. It also has an important
variation on the GenomicsDB command, called GenomicsDBImport, which allows samples to be
added to an existing database. This enables samples to be read into the database in batches. For
joint calling this cohort, GenomicsDBImport was used, and batches of 30 samples were read in to
the database. It is also required to provide a list mapping every sample name to its file location.
The previously described interval list was split into 97 smaller interval lists using Picard, so that a
different database for each of these regions, for all samples, was generated. In order to speed up
this process, the option to import data between the intervals was used (merge-input-intervals), as
this is recommended for WES data, where there are many intervals. Multithreading was used for

opening batches of VCF files, also to improve the processing time.

These 97 genomics databases, each containing all samples, were then joint called with GATK v4
[383, 384] GenotypeGVCFs. Performing the joint calling in this way is an improvement on doing so
in small batches of 30, as was done previously. This is because when joint calling is performed on
increasingly large numbers of samples, there is an increased opportunity to identify genotypes
where there is low confidence in a variant in one sample but many other samples have the variant
with high confidence, which confirms the likelihood of a variant in that location. Here, joint calling
has increased from 30 samples at a time in the previous pipeline, to over 1000, resulting in an
increased opportunity to identify variants. For joint calling, the associated interval list is again
provided. The option to load data in between intervals is included again, but this is combined with
the option to only output calls that start in the given intervals. These two options together allow
the process to be quicker, while restricting the intervals and so reducing file sizes. In addition,
common sites from dbSNP v.151 are provided to the caller, which provides sequence quality
calibration for these common alleles, and common alleles are called more reliably if this resource

is provided. Picard’s [373] MergeVcfs was then used to combine the 97 joint called VCF files.
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3.4.2 Filtering, annotation, and GenePy matrix construction

After generating the joint called VCF file, VQSR was performed as before, utilising GATK v.4.1.2’s
[383, 384] VariantRecalibrator and ApplyRecalibration for SNVs and indels separately. Previously,
the maximum number of Gaussians had to be set to 4 for indels to reduce the model’s resolution.
Due to the increase in sample size, it was no longer necessary to reduce model resolution, and
therefore VariantRecalibrator’s ability to identify sequencing artefacts was improved compared to
previous VCF file processing. The other change to the workflow for VQSR was utilising the option
called “trust-all-polymorphic” for both stages, and SNV and indel models. This option assumes
that all variants are polymorphic, in other words that one or more alternative alleles are present
at each site. This option improves processing time considerably, according to GATK’s
documentation. In this pipeline, performing VQSR prior to other quality-based filtration is a
deviation from the workflow set out by Carson et al. [379]. A comparison of the number of
variants present when performing VQSR before or after the other quality filters showed that the
order of these steps did not impact the number of variants (these recalibration steps were

performed with the vqgsr.sh script).

Next, the VCF was restricted to the BED file of the intersection of the Agilent SureSelect V5 and V6
capture kits [378]. The file was then filtered using VCFtools [380] with all quality thresholds
related to depth, GQ, mean GQ and missingness previously outlined in Section 3.3.4. As before,
the VCF file was restricted to biallelic variants only. Then, the VCF file with only biallelic variants
was annotated using Ensembl-VEP. This was a computationally intensive process and thus the file
was split into chunks by chromosome, before annotation. The longest chromosome, chromosome
1, took approximately 24 hours to annotate. Ensembl-VEP [362] became a more desirable
annotator than ANNOVAR [361] for two reasons. First, it is maintained better than ANNOVAR, as
it has frequent version updates, and these are accompanied by updates to the latest versions of in
silico tools alongside adding new tools. Secondly, Ensembl-VEP has CADD v1.6 [363] as a Plugin,
enabling easier VCF file annotation with this important metric. In addition to annotating the
cohort VCF file with CADD v.1.6 with Ensembl-VEP (v.103), annotations from the gnomAD v.2.1.1
database were included. Instead of RefSeq, Ensembl-VEP utilises its own sequence database. The
annotator was run with the option pick allele, which means each allele will be annotated with
information associated with only one gene transcript. The default order for choosing the
transcript was used, where the canonical transcript was utilised if it was available (annotation
performed with the vep.sh and vep_x.sh scripts). After annotation, the individual chromosome

VCF files were concatenated together into one VCF file.
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Separately, the input VCF was annotated by ANNOVAR [361] with the gnomAD random forest flag,
from gnomAD v.3.1.1. This method was designed by the Broad Institute as a flag-based quality
filter for their gnomAD database [82]. Briefly, a random forest machine learning model takes in
information from resources such as the 1000 Genomes high-quality site dataset, and classifies
variants as being true polymorphisms, or sequencing artefacts. This sequencing artefact category
is additionally broken down into other categories based on the variant characteristic(s) that
flagged it as dataset noise. This flag can be one, or a combination of ACO; AS_VQSR, and
InbreedingCoeff. Variants classified as ACO had no alleles after filtering out low-quality calls
(based on depth, GQ and allele balance); AS_VQSR variants failed allele-specific GATK VQSR, and

the InbreedingCoeff flag indicates excess heterozygosity at the variant site.

Although using Ensembl-VEP [362] to annotate CADD [363]scores improved processing time, the
annotator was unfortunately unable to annotate all sites. To fill in the annotation gaps, these sites
were extracted from the annotated VCF file, and uploaded to the CADD website. The scores from
the CADD website were re-inserted into the original data using a Python (v.3.7) script
(genepy_combine_annotations.py). Next, all relevant columns were compiled together before
final filtering: chromosome, variant start position, reference allele, alternative allele, variant
consequence, gene symbol, gnomAD allele frequency, CADD Rawscore, and gnomAD random
forest flag. Variants that had failed the random forest flag were excluded from the file. Finally,
only exonic variants were retained for the generation of a GenePy score matrix. As Ensembl-VEP’s
variant consequence field was more granular than ANNOVAR, the following variants were defined

as exonic:

e Coding sequence variant
e Downstream gene variant
e Frameshift variant

e Inframe deletion

e Inframe insertion

e Missense variant

e Protein altering variant
e Splice acceptor variant

e Splice donor variant

e Startloss

e Stop gained

e Stop lost

e Stop retained variant

e Synonymous variant
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e Upstream gene variant

It should be noted that some variants can be annotated with multiple consequences, but as long
as one of the consequences listed above was present, that variant would be included in GenePy
scoring. After this the GenePy matrix was generated. The matrix was generated with the following
scripts: subber.sh, GenePy_1.3.sh, make scores_mat_6.py, generate_final_matrix.py, and
MatrixMaker.sh. More information on specific file manipulation required for VCF file preparation

for GenePy, and the usage of scripts in matrix generation is detailed in the research group’s

Github, and a static version of these instructions is available in the Supplementary Files. The new

pipeline is shown in Figure 24.
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Figure 24 Pipeline for updated joint calling and annotation for the generation of GenePy scores. A)

Variant calling and quality control. This pipeline starts at the variant calling stage, as

the alignment stage is already detailed in Figure 19. Variants are called for every

individual, and then joint called. Subsequent filtering steps lead to a high-quality

cohort VCF file. B) Annotation and GenePy score generation. Ensembl-VEP and

ANNOVAR annotate the cohort VCF file, and then file manipulations are performed in

order to ensure relevant information is complete and columns ordered. Final filtering

based on annotated variant quality and variant consequence is the last step before

generating the GenePy scores.
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3.5 Research outputs from the processing of whole exome sequencing

data

Throughout my candidature, exome data was processed and multiple GenePy matrices generated
as more patients were recruited to the Genetics of IBD study. In addition to the use of GenePy
matrices throughout this thesis, this data processing also contributed significantly to other

research outputs.

In a study led by James Ashton, | assisted with the processing of WES data. This research focussed
on variant-level data, and sought to identify paediatric patients within the IBD cohort where their
disease could be considered to have a monogenic cause [5]. This analysis led to the discovery of
patients with “pathogenic” or “likely pathogenic” variants (according to American College of
Medical Genetics guidelines) in several genes, including TRIM22, WAS, and NOD2. Often, these
patients had variants which were compound heterozygous, and this was later confirmed through
segregation analysis. Additionally, patients thought to have an autosomal recessive NOD2-related

disease were more likely to have a stricturing (narrowing of the gastrointestinal tract) phenotype.

For another study that utilised genomic data and targeted RNA-sequencing data obtained from
ileal biopsies in treatment-naive paediatric patients, | processed WES data, and generated GenePy
matrices. This research found that high GenePy scores in several genes across the NOD-signalling
pathway, including NOD2, were associated with reduced transcription of the NF-kB pathway
[387]. Another study led by James Ashton used the GenePy scores of NOD2 generated by myself
to attempt to stratify patients into several risk groups based on the presence or absence of the CD
stricturing endotype (narrowing of the gastrointestinal tract) [388]. The presence of the stricturing
endotype in the highest risk group was over 50%, compared to approximately 20% of patients

with a stricturing endotype in the lowest risk group.

A GenePy matrix | generated was also used for a study by Enrico Mossotto and Joanna Boberska,
which also utilised metabolomic data [389]. They sought to establish links between paediatric
patient’s active inflammation, their metabonomic profiles, and their genomic variation in the
form of GenePy scores. This was accomplished by using machine learning to identify key nuclear
magnetic resonance (NMR) peaks, correlating these peaks with GenePy scores, and finally

performing gene enrichment analysis.

| provided WES data, or GenePy matrices for two studies led by Tracy Coelho. One study focused
on periostin, a matricellular protein implicated in tissue fibrosis, and its potential use for assessing
disease activity and surgical outcomes. As such the GenePy scores of a gene network functionally

connected to periostin was examined. They found no significant differences in mutational burden
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in these periostin-connected genes between patients who did and did not undergo surgery [390].
The second study, which researched the immunological profile of paediatric IBD patients, looked
at muramyl di-peptide (a peptidoglycan motif on several types of Gram-positive and Gram-

negative bacteria)immune response in the context of NOD2 variants [391].
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Chapter 4 Reactive oxygen species and inflammatory

bowel disease

Chapter summary — in this chapter, data from oxidative stress and antioxidant potential assays
are analysed. The relationship between these assays and patient characteristics were assessed.
This included observing any relationship between these assays and age, IBD diagnosis, and the
commonly used blood marker for general inflammation C-reactive protein. Additionally, there
was an interest in understanding how the patient’s assay results related to their genetics. This
was assessed by using GenePy scores of genes involved in reactive oxygen species pathways,
combined with linear regression, and then machine learning. The machine learning pipeline
tested several different algorithms to find the method that could best differentiate between
high and low assay results (for each assay), according to the GenePy scores for key selected

genes.

Chapter contributions — the FRAP (ferric reducing ability of plasma), TBARS (thiobarbituric acid
reactive substances), and TFT (total free thiol) assays were performed by Magda Minnion,
Bernadette Fernandez, and Monika Mikus-Lelinska. Martin Feelisch assisted with the
interpretation of raw data from these assays. Enrico Mossotto assisted with the processing of

WES data. All analysis performed by Imogen Stafford.

Supplementary files can be found at https://doi.org/10.5258/SOTON/D2655.

4.1 Introduction

As discussed in Section 1.2.6.3, the production of reactive oxygen species (ROS) is of interest to
IBD research due to dysregulation of their production potentially leading to intestinal
inflammation [103, 110]. Although ROS are important signalling molecules (redox signalling) for
downstream immunological pathways, excessive ROS production can cause cellular oxidative
stress. Oxidative stress can cause oxidative damage to biomolecules including lipids, protein and
DNA. To counteract excessive ROS production, antioxidant molecules can be released that
scavenge ROS in order to prevent oxidation of molecules, decreasing oxidative stress [392]. In
order to gain insight into the impact of ROS in disease, both oxidative stress and the ability, or

potential, to produce antioxidants must be measured.
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4.1.1 Assays for oxidative stress and antioxidant potential

Just as the blood marker C-reactive protein (CRP) is used as an indication of inflammation levels in
a patient, measurements of oxidative stress in patients could also be indicative of inflammation.
Markers of inflammation can indicate whether disease is active or in remission. The ferric
reducing ability of plasma (FRAP) assay measures the total antioxidant capacity, and thus can
measure its capability to handle future oxidative stress events. The thiobarbituric acid reactive
substances (TBARS) assay measures the oxidative degradation of lipids (lipid peroxidation) by ROS.
Lipid peroxides are highly unstable, and their metabolism generates TBARS, including
malondialdehyde. The Total free thiol (TFT) assay is a more general measure of oxidative stress
that assesses the total thiol status of the plasma, and describes the plasma antioxidant status in
the body. Through measuring the thiol antioxidants, the assay is a proxy for current oxidative
stress. These assays are all performed using plasma, which makes using them as a marker

relatively accessible in clinical settings because blood is all that is required from the patient.

4.1.2 Measuring oxidative stress and antioxidant potential in autoimmune disease

Reactive oxygen species are known to be involved in chronic granulomatous disease, but are also
implicated in the pathogenesis of a number of autoimmune diseases. Mateen et al. confirmed an
increase in production of ROS along with increased lipid peroxidation in rheumatoid arthritis (RA)
in comparison to healthy controls. In comparison to controls RA patients also had a reduced
capacity to defend against oxidative stress with antioxidant production (FRAP assay) [393]. Lower
antioxidant potential has also been observed in patients with juvenile idiopathic arthritis in
comparison to healthy controls, although the difference only trended towards significance [394].
This decreased antioxidant potential in comparison to controls was also found in another group of
children diagnosed with type 1 diabetes [395]. Juybari et al. also observed significantly higher lipid
peroxidation and reduced antioxidant capacity in relapsing remitting multiple sclerosis patients in
comparison to healthy controls [396]. Significantly higher lipid peroxidation in comparison to
healthy controls has also been identified in coeliac disease [397]. These case-control studies do
provide more evidence of ROS involvement in these diseases, but do not progress the question of
whether they can be used in clinical management. There are fewer studies that examine the
heterogeneity of ROS production and antioxidant response within autoimmune diseases and how
this relates to disease course. Ademoglu et al.’s study of Grave’s disease patients established

differences in lipid peroxidation depending on disease course. Patients who experienced a relapse
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after treatment had significantly higher levels of lipid peroxidation in comparison to patients in

remission [398].

It is known that variation in NADPH oxidase genes is directly linked to chronic granulomatous
disease (CGD) aetiology. The disease results in patient’s susceptibility to severe bacterial and
fungal infections, but disease can also manifest with a number of inflammatory conditions,
including intestinal inflammation phenotypically similar to CD. This susceptibility to infection is
caused by deficiencies in NADPH oxidase that results in decreased production in ROS. This
appears to be at odds with the apparent conclusion that the contribution of ROS to autoimmune
disease is through overproduction of these molecules. However, it is now thought that a hyper
inflammatory immune response is due to autophagy dysregulation caused by ROS deficiency. ROS
are necessary to facilitate autophagy, and if this does not occur then there is an increased
production of interleukin 1B, an inflammatory cytokine [399]. This cytokine is known to contribute
to IBD pathogenesis, contributing to CD-like disease in CGD patients. Currently, there is very
limited research into lipid peroxidation and antioxidant capacity in CGD. It is therefore unknown
whether the same trends in increased lipid peroxidation and decreased antioxidant capacity (in
comparison to healthy controls) in other autoimmune diseases would be observed in CGD
patients. This type of research could provide some evidence as to whether underlying ROS
mechanisms in CGD are similar or different to other autoimmune diseases such as rheumatoid

arthritis, multiple sclerosis and type 1 diabetes.

4.1.3 Measuring oxidative stress and antioxidant potential in inflammatory bowel disease

Of the three assays described in Section 4.1.1, the majority of prior research has used either the
FRAP or TBARS assays, with little evidence that the TFT assay has ever been used for an IBD
cohort. The FRAP assay has been used to evaluate differences in antioxidant status of both serum
and saliva in those with active and inactive CD. The CD group with active disease had decreased
antioxidant capacity in comparison to patients with inactive CD, where the measure of activity
was the CD activity index [400]. Szczeklik et al. also investigated serum and saliva antioxidant
potential differences between CD and UC, finding a significantly lower antioxidant capacity in CD
patients [401]. Both studies were conducted with smaller cohorts of 58 and 31 IBD patients,
respectively. A study by Luceri et al. used both the FRAP and TBARS assays to evaluate oxidative
stress and antioxidant potential in the serum of adults patients with severe CD requiring surgery.
In this, they identified significantly higher lipid peroxidation in the CD group in comparison to
controls, but no differences in the FRAP assay. This was also a relatively small study, with 54 CD

patients and 17 controls [402]. Statistical significance between CD and controls in TBARS assays
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was corroborated by Langenberg et al. [403]. Maor et al. also confirmed significantly higher lipid
peroxidation levels in CD than controls, and also in those with active disease in comparison to
inactive disease, according to the CD activity index [404]. Levels of lipid peroxidation levels in UC
have not been shown to be significantly higher than controls [405]. These studies in small groups
of patients all show the same trend of increased lipid peroxidation and decreased antioxidant
capacity as observed in other autoimmune diseases. No study analysed an exclusively paediatric
IBD cohort, including few, if any, paediatric cases. As stated earlier, there were differences in
results from juvenile idiopathic arthritis patients in comparison to an RA study. This could be due

to the patient’s ages, or differences in disease aetiology.

There are currently no biomarkers that are specific to IBD or any subtype, either for diagnosis or
monitoring disease activity. As previously mentioned, CRP levels can be used as an indication of
disease status in the patient. Other nonspecific blood markers, such as erythrocyte sedimentation
rate, platelet count and mean platelet volume can be used as an indicator of whether disease is in
remission or active. These methods are only used to guide further investigation, and cannot be
used diagnostically, or to confirm remission. For subtype diagnosis, the best biomarkers are
thought to be a combination of anti-Saccharomyces cervisiae antibodies (ASCA) and atypical
perinuclear antineutrophil cytoplasmic antibodies (pANCA). Used together they had a specificity
above 90% and sensitivity of approximately 55% when differentiating UC from CD, however
sensitivity is much lower for colonic UC versus CD (approximately 35%) [406]. Faecal calprotectin
is a marker currently in use for differentiating between IBD and irritable bowel syndrome, and for

indicating intestinal inflammation [407].

The aim of the following research was to better understand the mechanisms through which ROS
production affects IBD using the FRAP, TBARS and TFT assays. Additionally to assess whether
oxidative stress or antioxidant potential were viable markers of IBD or its subtypes. To this end
the relationships between: 1) the antioxidant potential and oxidative stress assay data; 2) the
three assays and clinical and demographic characteristics of paediatric IBD patients, and 3) the

three assays and genomic data converted into GenePy scores were explored.
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4.2 Methods

4.2.1 Genomic data

Paediatric patients were recruited and blood for DNA and plasma collected as described in Section
3.3.1. WES data processing, including alignment, joint calling, annotation and GenePy score

generation was performed as in Section 3.3.

4.2.2 Antioxidant potential and oxidative stress assays

The metabolomic assays analysing oxidative stress and antioxidant potential were performed over
three days, across 11 (FRAP and TBARS assays) or 17 (TFT assay) plates, using previously frozen
plasma samples. All three assays are based on spectrophotometric methods and performed in

duplicate (FRAP and TBARS assays) or triplicate (TFT assay and protein content).

4.2.3 Ferric Reducing Ability of Plasma assay

The protocol for the FRAP assay is based on the method by Benzie and Stain [408]. In brief, the
FRAP reagent was prepared, which mixes 25 ml acetate buffer, 2.5ml tripyridyltriazine solution,
and 2.5ml iron (lIl) chloride solution. Calibration was performed with iron (1) solutions of known
concentrations between 100 and 1000 umol/L. 300 pL of the FRAP reagent was incubated at 37°C
for 30 minutes. After a reagent blank reading was taken with the FRAP reagent at 593nm on a
spectrofluorometer, 10ul of centrifuged plasma, which was thawed as required, was added to the
FRAP reagent alongside 30 uL of H,0. The absorbance of the resulting blue colour from the

reduction of ferric ions to ferrous ions measured at 593nm on a spectrofluorometer.

4.2.4 Thiobarbituric acid Reactive Substances assay

The TBARS assay usually requires a larger volume of plasma, but due to plasma availability this
assay was miniaturised [409]. In brief, the TBARS reagent was prepared by dissolving 7.5g
trichloroacetic acid, 1.035ml hydrochloric acid, and 0.1875g 2-thiobarbituric acid in 50ml of
milliQ-water. Additionally the Butylated hydroxytoluene (BHT) solution was prepared by
dissolving 0.2g of BHT in 10 ml ethanol. Next, 65uL of plasma and 65uL of methanol were
centrifuged, and the recovered volume (approximately 90uL) was added to a 1:1 mix of TBARS
and BHT reagents. This mixture was transferred to glass inserts inside microcentrifuge tubes with

500 pL water inside, and incubated at 90°C for half an hour. At this high temperature the
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malondialdehyde-thiobarbituric acid adduct forms. Stainless steel balls covered the glass inserts
to prevent sample evaporation, but allow the escape of excess gas. After cooling on ice for 10
minutes, and being centrifuged for 15 minutes, 50uL of each of the samples was added to
microplate wells, and the fluorescence intensity read at 532nm and 750nm on a

spectrofluorometer (the latter reading was used for spectral background correction).

4.2.5 Total Free Thiol assay

The plasma sample was centrifuged for 10 minutes, and 75uL of the plasma extracted and mixed
with a Tris pH 8.2 buffer. 90uL of prepared standard solution and plasma was added to the wells
of the flat bottom well plate. The absorbance of this mix is measured at 412nm and 630nm, which
is called absorbance pre-incubation. Then 20uL of DTNB (dithionitrobenzoic acid) was added to
each well on the plate, put on the plate shaker and incubated at room temperature for 20
minutes, after which the absorbance of the samples is measured at 412nm and 630nm
(absorbance post incubation). The assay was normalised by dividing by the protein content of

each sample, measured using the Coomassie (Bradford) protein assay kit.

4.2.6 Statistical and regression analyses

The statistical testing and stepwise linear regression used in the analysis of assay data were
performed using R (v.3.6.0) [178]. The Shapiro-Wilk test evaluates whether a random data sample
forms a normal distribution. A significant result indicates a skewed distribution. The one-way
analysis of variance (ANOVA) test indicates whether a significant difference exists in a continuous
variable in two or more groups. The Kruskal-Wallis test is the non-parametric version of the one-
way ANOVA. Regressions were performed with one or more variables. When more than one
variable was included, the stepwise regression method was used. This combines the forward and
backward selection of variables. When each new variable is added, all other current variables are

examined. If any current variable is now non-significant, it is removed.

4.2.7 Supervised machine learning

For further analysis of antioxidant potential and reactive oxygen species assay results, supervised

machine learning was used to classify extreme high and low assay results, using GenePy scores as

prediction features. The genes chosen for inclusion as features in machine learning were based on
NADPH oxidase gene literature [410]. The machine learning workflow is illustrated in Figure 25.

The data set of each assay was separated into the top quartile (“high”), the bottom quartile
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(“low”) and remaining results classified as “medium”. Any results labelled as “medium” were
removed from the data set. This created a balanced, binary classification problem, and it was
expected that any machine learning algorithm would more easily distinguish between these two
classes. This data set was split into training and testing data, in the ratio 80/20. Pre-processing of
the data by centring and scaling (z-score) the GenePy scores was conducted on the training data

and test data independently.

Assay (z-scored) and Split assay data Remove data in
GenePy Score data into quartiles quartiles 2 and 3

Machine learning dataset:
assay data in quartile 1 (low) and 4
(high), with GenePy scores)

|

Training Split into training and testing Testing
Data datasets (80/20) Data
Z-score Z-score
GenePy scores GenePy scores

Scaled

Training Data

!

Optimise 5 machine learning
methods (resampling x5, 10
fold cross validation)

l |

Best performing method R Scaled
(chosen using AUC) " Testing Data

Figure 25 Machine learning workflow for classifying extreme (high and low) assay data values

using GenePy scores. The workflow was repeated for each assay.

All machine learning training and testing was accomplished using the caret package (v.6.0-84)
[411]in R (v.3.6.0) [178]. Five machine learning algorithms were tuned, and their performance
evaluated. These were two support vector machine algorithms, one with a linear kernel and one
with a radial kernel, gradient boosting machines, random forest and logistic model trees. During

training of each model, the data was resampled 5 times, and 10-fold cross validation was used.
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The training process was repeated for each potential hyperparameter value in order to optimise
each method. The support vector machine with radial kernel, and gradient boosting machines,
had two tuning parameters, while the other three algorithms had one. The model with the
highest AUC on the training data was chosen to classify the testing set. This was repeated for each

assay independently (see Supplementary Files for machine learning scripts).

4.3 Results

The cohort for this study consisted of 331 patients, as this was the subset of patients from the
Southampton Genetics of IBD study for which plasma samples were available for analysis (clinical
characteristics available in Table 7). FRAP and TFT assay results are available for all probands,
while the TBARS assay failed for four probands, and no duplicate is available for 25 probands. The
TBARS assay failures are due to the miniaturisation of the assay, and the high temperature the
samples were heated to, causing some samples to evaporate. The protein content measurement
for the normalisation of the TFT assay was repeated for one proband due to a high variation
between the triplicate samples (coefficient of variation 17.12%, median coefficient of variation

over all samples 3.72%).

Table 7 Clinical characteristics of a paediatric cohort for which plasma samples were available,

split by sex.
Female Male Total

N 123 208 331
Median age at diagnosis (SD) 12 (3.25) 13 (3.44) 12 (3.36)
Range of age at diagnosis 2-16 1-17 1-17
Diagnosis ch 73 155 228

uc 42 41 83

IBDU 3 6 9

No IBD 5 6 11

To gain an initial understanding of these data produced by FRAP, TBARS and TFT assays, summary

statistics are calculated (Table 8). The distribution of these data is visualised in Figure 26, and the
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Shapiro-Wilk test was used to determine if the data of each assay deviates from a normal
distribution. The TFT assay before and after normalisation have a normal distribution. However,
there is significant evidence that the FRAP and TBARS assay results distributions deviate from
normality (p=1.215e-14, p=4.824e-11, respectively). Therefore, non-parametric statistical tests

were required for subsequent analyses of these data.

Table 8 Basic statistics describing results from TFT, FRAP and TBARS assays.

FRAP TBARS TFT TFT (Normalised)

N 331 327 331 331

Mean 1012.039 7.325 375.389 6.147
Median 961.000 6.910 375.268 6.130
Standard Deviation | 262.189 2.919 71.537 0.998
Range 1949.000 22.600 441.372 5.940
Minimum 506.000 1.600 191.764 3.420
Maximum 2455.000 24.200 633.136 9.360
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Figure 26 FRAP, TBARS, TFT before normalisation and TFT after normalisation assay results
distribution. FRAP and TBARS assay results have a (positively) skewed distribution,
confirmed by the Shapiro-Wilks test for normality. TFT assay results before and after

normalisation has a normal distribution.

4.3.1 Plate analysis and correction

The distribution of the assay data was tested to determine if assay results were in any way
influenced by batch effects. Kruskal Wallis test for the FRAP and TBARS assays and one-way
ANOVA test for the TFT assay were used to assess differences between result distributions across
plates, and across days. The associated p-values indicated significant differences in plates for all
assays, and significant differences in days for TFT and FRAP (Figure 27), indicating that some
correction needed to be applied to the data to prevent bias in subsequent results due to batch
effects. The FRAP assay plate in particular displayed a strong trend of the median result on a plate
increasing in each subsequent plate. This trend is present for all three days the FRAP assay was
conducted. The results from testing the distribution on the TBARS plates and days informed how
the correction should be implemented. In this case the differences between plates were masked
when the data for the overall day was observed. This demonstrated that any correction must be

done in reference to plates, rather than days.
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Figure 27 FRAP, TBARS and TFT assay concentrations by day (left) and by plate (right). Kruskal-
Wallis test (FRAP, TBARS) and one-way ANOVA (TFT) p-values noted on each plot for

differences in assay concentrations per day and per plate.

As oxidative stress can increase as the body ages, a potential cause of significant batch effects
would be that some plates were enriched for patients of younger or older age. Kruskal-Wallis and
one-way ANOVA tests revealed no significant differences in the age distribution on each plate
(Table 9). Given the cause of significant batch effects could not be determined, the raw assay
results were transformed into z-scores within batches. This conserved the extreme values

observed within each assay (Figure 28).
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Table 9 Results for determining whether a significant difference exists in the ages of the samples

on each plate.

N Test p value
TFT plate vs Age at blood draw 331 One-way ANOVA | 0.200
FRAP plate vs Age at blood draw 331 Kruskal-Wallis 0.798
TBARS plate vs Age at blood draw 327 Kruskal-Wallis 0.775
FRAP z-scores per Plate, Grouped by Day TBARS z-scores per Plate, Grouped by Day
n=331, p=1 ° n=327, -
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o H e

o P | T e . T —
3 L : ; | o §-4 | + _ I ST
X ; 5 T - -, .
o 4 o . ; H
= 5= = II ]

IR T I T A A S T S SO R T S T
N B ST o R - i
[

1 2 3 4 5 6 7 g o 10 N 12 3 4 5 & 7 & 9 10

Assay Plate Assay Plate
TFT (normalised) z-score per Plate, Grouped by Day

n=331, p=1 + - . T .
& ~ i T T T - H :
o
8 o
P
N |
10 N U N e R S T T S A A I A
A - __ ; = T

12 3 4 5 6 7 8 9 10 12 14 16

Assay Plate

Figure 28 Boxplots of FRAP, TBARS and TBARS assays after z-score conversions. Kruskal-Wallis test
(FRAP, TBARS) and one-way ANOVA (TFT) p-values included.

4.3.2 Correlation between oxidative stress assays

It was hypothesised that patients with lower z-scores in the FRAP (antioxidant potential) assay
would be ill-equipped to effectively deal with increased oxidative stress, resulting in higher z-
scores in the TBARS and TFT assay. A linear regression was performed between TBARS and FRAP

assay results and TFT and FRAP assay results (Figure 29). A significant linear correlation assists
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between FRAP and TFT assays, although it accounts for very little of the variation in the data
(adjusted R?=0.0284). The direction of this correlation does not support the hypothesis. The same
analysis conducted only on those cases with CD (n=225) results in a slight increase in R? for the
significant regression of TFT versus FRAP (adjusted R?=0.0295, p=0.005912). Additionally, when
this regression is performed on only UC data (n=81), this relationship does not persist. This is
either due to fewer cases of UC in the dataset, or because the biological connection between

reactive oxygen species and UC is weaker, or not at all present.

TBARS assay z-score vs FRAP assay z-score TFT assay z-score vs FRAP assay z-score
n=326 « - ° .+ n=326,Adj. R*=0.0284
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Figure 29 TBARS assay z-score vs FRAP assay z-score, and TFT assay z-score vs FRAP assay z-score,
with details of the linear regressions in the top-right of each figure. The regression
line is shown where the adjusted R? generated from the linear regression is

significant.

4.3.3 Oxidative stress assay results and inflammatory bowel disease diagnoses

The oxidative stress assay profile across patients with different diagnoses of IBD was examined
(Figure 30). No significant differences between the assay results of different diagnostic groups

were found using the Kruskal-Wallis (FRAP, TBARS) and one-way ANOVA (TFT) statistical tests.
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Figure 30 FRAP, TBARS and TFT assay distributions, grouped by diagnosis.

4.3.4 Assays and age

To assess whether a linear relationship exists between assays and age of diagnosis, and between
assays and age at blood draw, linear regressions between these variables was calculated. These
results are shown in Figure 31, which also allows the comparison of the distributions of the data.
When this analysis is conducted on the CD data (n=224), the same adjusted R? are obtained. This
suggests this relationship between age and assay result is driven by the CD cases. To determine
whether age at diagnosis was significantly associated with assay results, or simply related to
patient age at blood draw, a stepwise linear regression was used. It was thought that by using this
method the more significant age variable could be determined. The results of this are shown in
Table 10. The TFT assay has no significant correlation with either age variable. FRAP and TBARS
assays both have significant relationships with age variables. The regression for the TBARS assay
indicates that both age at blood draw and age at diagnosis are significant, although the
corresponding adjusted R? for this regression is very small. Therefore, from these results it is more

likely the age at blood draw is the influential variable.
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FRAP assay z-score vs age at blood draw
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Figure 31 Plots of assays versus age at diagnosis, and age at blood draw. Details of the results of

the linear regression are displayed in the top-left corner. Where the R? generated

was significant, the corresponding regression line is shown in the figure.
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Table 10 Results of the stepwise linear regression for assay and age variables.

Assay | Variable Coefficient (p value) Adjusted R? (p value)

FRAP Age at blood draw | 0.09306 (0.00244) 0.1101 (4.862x10°%)
Age at diagnosis 0.02519 (0.34514)

TBARS | Age at blood draw | 0.09872 (0.00219) 0.02354 (0.009085)
Age at diagnosis -0.06971 (0.01316)

TFT Age at blood draw | 0.02239 (0.486) 0.0009588 (0.3179)
Age at diagnosis -0.03844 (0.172)

4.3.5 Oxidative stress assays and C-reactive protein

C-reactive protein (CRP) is a commonly tested marker of inflammation, which can be used to
monitor disease [406]. The majority of available data on CRP concentration was from probands
with CD (CD=145, UC=11, IBDU=2). To compare inflammation and oxidative stress, a linear
regression model was used where each assay’s z-score was regressed against the CRP results
(Figure 32). It was expected that patients with a high CRP result would also have high assay
results. A significant linear relationship with CRP exists for those assays that measure oxidative
stress, TFT and TBARS. This relationship was not what was expected. Instead, those patients with

high CRP concentrations have lower results in the oxidative stress assays.
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Figure 32 FRAP, TBARS and TFT assay z-scores plotted against CRP concentration. Where the p

value of the adjusted R? was significant, the regression line representing the linear

model is shown.

4.3.6 GenePy scores

GenePy scores were generated for 15 NADPH oxidase genes, and 3 genes of interest thought to
have a role in oxidative stress or inflammation. For one potentially important NADPH oxidase
gene, NCF1, as there was no coverage of that gene in version 4 of the sequencing library. As 83
probands were sequenced with this version, a large proportion of patients would not be included
in the analysis if the GenePy scores were generated using only the data from later versions of the
sequencing library. Therefore, this gene was omitted. Although GenePy scores were generated,
there were no exonic variants in the gene RACI, resulting in all zero GenePy scores, as these were
based on exonic variants present in the gene. Coverage and function of each gene and potential

relationships to IBD are contained in Table 11.
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Table 11 Coverage of genes used in analysis (Agilent SureSelect Human All Exon v 4, 5 and 6). Information on gene function and any literature evidence of contributions
to IBD development caused by these genes. Tier 1 genes have variants that have been implicated in IBD, tier 2 genes have not been implicated in IBD, but

are NADPH oxidase genes. Some tier 2 genes code for proteins that form complexes with proteins encoded by genes in tier 1.

Gene Coverage Gene Function Relation to IBD

V4 V5 V6

Tier1

NOX1 0.615 | 0.620 | 0.528 | The complex is responsible for one-electron transfer of oxygen to Loss-of-function variants in NOX1 can be
generate superoxide. context-specific disease modifiers [412].

CYBA 0.311 | 0.283 | 0.256 | Part of the NOX1, NOX2 and NOX3 enzyme complexes These genes are implicated in CD. Linked

to a higher likelihood of perianal disease
CYBB/NOX2 | 0.621 | 0.643 | 0.538 | Part of the NOX4 enzyme complex

and stricturing disease [110].

NCF1 0 0.499 | 0.455 | Forms NOX2 enzyme complex, with NCF2, NCF4, RAC2 and RAP1A.
NCF2 0.498 | 0.511 | 0.445 Forms NOX2 enzyme complex, with NCF1, NCF4, RAC2 and RAP1A.
NCF4 0.626 | 0.565 | 0.483 | Forms NOX2 enzyme complex, with NCF1, NCF2, RAC2 and RAP1A.
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DUOX2 0.563 | 0.613 | 0.549 | Protein encoded forms similar enzyme complex to the NADPH Missense variants identified in VEOIBD

oxidase complexes, but the end product is hydrogen peroxide. patients, showing reduced ROS production
[108]

REG3A 0.702 | 0.661 | 0.548 | Associated with cell proliferation or differentiation, anti- Increased expression in IBD [413]. In-house
inflammatory. Part of the REG gene family (REG1, REG2A, REG2B, machine learning analysis suggested
REG3A, REG4). Mediates killing of gram-positive bacteria. Regulates | REG3A as a gene of interest
keratinocyte proliferation and differentiation after skin injury.

HMOX1 0.737 | 0.697 | 0.647 | HMOX1 is a component of antioxidant defence against oxidative In-house variant analysis implicated this
stress [414]. genein CD

NOD2 0.720 | 0.664 | 0.609 | Recognises bacterial lipopolysaccharides, activates NF-kB and IFN-B | A monogenic CD gene, and also causes CD
pathways [102]. in combination with other genes [5, 415].

Tier 2

NOXA1 0.514 | 0.546 | 0.475 | Activation of NADPH oxidases

NOXO1 0.748 | 0.671 | 0.674 | Activation of NADPH oxidases

RAC1 0.543 | 0.557 | 0.541 | Present in NOX1 enzyme complex

Chapter 4
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RAC2 0.445 | 0.419 | 0.373 | Present in NOX2 enzyme complex Potential association with CD [416].
DUOXA1 0.808 | 0.781 | 0.636 | Gene encodes maturation factor for DUOX1 function
DUOXA2 0.708 | 0.718 | 0.659 | Gene encodes maturation factor for DUOX2 function
DUOX1 0.524 | 0.596 | 0.469 | Similar enzyme complex to DUOX2, found in different tissues/cells.
NOX3 Similar enzyme complex to NOX1/NOX2, found in different
0.622 | 0.683 | 0.535 | tissues/cells.
NOX4 Similar enzyme complex to NOX1/NOX2 found in different
0.407 | 0.503 | 0.444 | tissues/cells.
NOX5 Similar enzyme complex to NOX1/NOX2, found in different
0.693 | 0.720 | 0.593 | tissues/cells.
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4.3.7 Stepwise linear regression

A stepwise linear regression was used to determine to what extent a linear relationship existed
between antioxidant potential and oxidative stress assay results and genes identified as
potentially related to reactive oxygen species production and oxidative stress. Six models were
created, two per assay, with one using all available data, and another only using data from
probands diagnosed with CD, following on from previous results indicating these relationships
may be more important in these patients. Seventeen GenePy scores were used as predictor
variables. The stepwise regression used both forwards and backward feature selection, to obtain

the best combination of GenePy scores for assay result prediction (Table 12).

Table 12 Stepwise linear regression results for FRAP, TBARS and TFT, for two datasets.

Assay | Data(n) Variable Coefficient | p value Adjusted R? | pvalue
(p value)
FRAP | All Data (314) CYBA -0.541 0.094 0.0099 0.078
NOX5 0.418 0.142
CD data only (224) | DUOXA1 | -0.725 0.148 0.0088 0.139
NOX5 0.577 0.118
TBARS | All data (314) RAC2 1.022 0.013 0.03296 0.0062
REG3A 1.457 0.152
DUOXA1 -0.892 0.045
DUOXA2 | 1.026 0.122
CD data only (224) | REG3A 1.468 0.136 0.03537 0.012
DUOXA1 | -0.939 0.040
DUOXA2 | 1.606 0.021
TFT All data (314) HMOX1 -0.674 0.052 0.07958 5.65x10°
NOXA1 -0.905 0.001
DUOX1 -1.138 1.07x10*
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NOX5 0.430 0.123

CD data only (224) | HMOX1 -0.915 0.018 0.08161 7.33x10°
NOXA1 -0.942 0.005
DUOX1 -0.914 0.007

There is no significant adjusted R? for the regression with either FRAP assay dataset, but there are
significant regressions for TBARS and TFT assay data (TBARS adjusted R? 0.03296 (all data),
0.03537 (CD data only), TFT adjusted R? 0.07958 (all data), 0.08161 (CD data only)). Where the
adjusted R? was significant, an increase in this statistic is observed when only CD data is used.
These linear relationships do not account for much of the variation in the data, indicating that

more complex methods may produce better predictions.

4.3.8 Machine learning for predicting assay results

All identified NADPH oxidase genes, where GenePy scores were available and not invariant were
included as features (n=15): NOX1, CYBB, CYBA, NCF2, NCF4, RAC2, DUOX2, NOXA1, NOXO1,
DUOXA1, DUOXA2, DUOX1, NOX3, NOX4, and NOX5. The five machine learning algorithms:
gradient boosting machines (GBM), logistic model trees (LMT), random forest (RF) and support
vector machines with radial and linear kernels (SVM (R) and SVM (L), respectively) were run
separately for each assay’s training data (n=128 per assay dataset). Training involved optimising
each method on the training data. Details of the hyperparameters, the values of the
hyperparameters trialled, and the optimum parameter values for each assay are given in Table 13.
The AUC values produced during training are visualised in Figure 33A-C. With FRAP and TBARS
assay training data, SVM (R) was the best performing model with the highest AUC. For the TFT
assay training data, the GBM model had the highest AUC (Table 14).
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Table 13 Description of the tuning parameters for each model and optimal parameter values in

training for the prediction of the extreme assay results in each assay’s data set.

Model | Hyperparameter | Hyperparameter Hyperparameter Optimal Parameter
Description Values Tried Value
FRAP | TBARS TFT
data | data data
GBM interaction.depth | Maximum tree 1,3,5,7,9 5 3 9
depth
n.trees Number of 50-1,500 in 400 1200 50
boosting intervals of 50
iterations
LMT iter Number of 1, 20, 40, 60, 80, 100 | 400 60
iterations 100, 150, 200,
250, 300, 400, 500
RF mtry Number of 2,8,15 15 2 2
randomly selected
features
SVM C Cost 0.75,0.9,1, 1.1, 09 |11 1.25
(L) 1.25,1.5,1.75
SVM sigma Sigma 0.01, 0.015, 0.2, 0.25 | 0.25 0.2
(R) 0.25
C Cost 0.75,0.9,1, 1.1, 0.75 | 0.9 0.75
1.25
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Table 14 AUC achieved by each model for each assay training dataset.

AUC, Training Data

FRAP assay TBARS assay TFT assay
GBM 0.4659410 0.5352494 0.5730952
LMT 0.4889116 0.5601984 0.5390306
RF 0.3563039 0.5644501 0.5517857
SVM (R) 0.6224830 0.6075624 0.5314399
SVM (L) 0.4661565 0.5435601 0.5121995

These machine learning models, each with hyperparameters selected for to maximise AUC, were
used on the testing data (n=32 for FRAP and TFT assay data, n=30 for TBARS assay data). When
applied to the test data sets, the models for TBARS and TFT failed to predict high and low assay
results (TBARS accuracy=0.33, sensitivity=0.40, specificity=0.27; TFT accuracy=0.41,
sensitivity=0.40, specificity=0.27). The SVM (R) for the FRAP assay data was a reasonable predictor
and was better at identifying the assay results in the upper quartile (sensitivity=0.69,
specificity=0.56). However, there were very wide confidence intervals for the accuracy of this
model: accuracy=0.63, 95% Cl 0.44 — 0.79. AUCs for each assay’s testing data are visualised in
Figure 33D-F.
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Figure 33 Training and testing machine learning models for differentiating patients with extreme

assay results using GenePy scores. A-C: Five models trained on a balanced two class

datasets (n=128) for each assay: SVM (R), SVM (L), GBM, RF and LMT. Boxplots

sorted by performance (top to bottom). D-F: Best performing model on the training

data applied to the test data, prediction performance demonstrated with AUCs.
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4.4 Discussion

Here, data from the oxidative stress assays TFT and TBARS, and the antioxidant potential assay
FRAP were explored to first understand these data, then understand potential relationships
between assays and IBD, and finally the relationships between assays and genetic variation (using
GenePy scores). Linear regressions between FRAP and TBARS, and FRAP and TFT assays revealed
little overlap between oxidative stress and antioxidant potential assays, illustrated by low
adjusted R?values (although this was significant for the FRAP and TBARS regression). There was a
negative correlation between TFT and FRAP that was unexpected. In a “healthy” control
population this negative relationship would be expected, an increased antioxidant potential
leading to lower general oxidative stress. Therefore, it was expected that in the IBD cohort there
may be some perturbation from this. As there was no control cohort, it may be that the
relationship observed is milder than that present in a control cohort, indicating some

dysregulation.

There were statistically significant differences observed between the assay results on different
plates for the FRAP and TBARS assays. This was corrected by transforming results into z-scores
within each plate. For the FRAP assay in particular there appeared to be an upward trend in
results for each plate, and these upwards trends were observed for each day, with assay results
appearing to return to lower values at the start of each day. After consultation with the team that
performed the lab work, the time of day was thought to be a factor, potentially combined with
temperature. One person performed the FRAP assay for each plate sequentially over the 3 days,
and temperature may have been a factor as the FRAP assay protocol states that plasma samples
were thawed when necessary. Samples thawed later in the day may have been brought up to
temperature more quickly due to a higher ambient temperature. For the TBARS assay, there is
less of a clear trend. The significant differences between plates are no longer significant after
observing results obtained per day. However, this assay was miniaturised, which led to a protocol

that was more difficult to execute, which may account for inconsistencies in results.

No statistically significant differences were observed when assay results were compared across
diagnosis groups, However, there were outliers in the data, particularly in the TBARS assay data
for CD and UC, and in the FRAP assay data for CD. It is not expected that all patients within either
disease subtype have the same aetiology. There may be a small subset of patients that have a
distinctive ROS assay profile that is indicative of oxidative stress being the primary contributor to
disease aetiology. Further investigation of outliers may consist of an analysis of genetic variation

that could underpin these comparatively extreme assay results.
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The investigation of associations between the FRAP assay and age revealed that these observed
differences were likely to be driven by the patient’s age when the blood was taken. This is as
opposed to the age at diagnosis, as the plasma for assays were not necessarily taken on or near
the day of diagnosis. Although there is limited evidence, one paper suggests that an increase in
antioxidant potential may be standard in a paediatric cohort. In an analysis of antioxidant capacity
in children with childhood caries, the whole cohort was used to plot the total antioxidant capacity
in saliva against age [417]. This produced a positive linear regression that was close to significant,
similar to the significant one viewed in this analysis. This regression could have perhaps been
significant with a larger cohort, or a wider age range, as 100 children were included between 3
and 5 years of age. This leads to a tentative suggestion that antioxidant potential may naturally
increase as children age, and their bodies become more capable of handling oxidative stress.
When considering the TBARS assay and age, the correlation between age at blood draw and lipid
peroxidation was negative, while the correlation between age at diagnosis and lipid peroxidation
was negative. While these correlations, and the adjusted R? were significant, the contradictory
directions of these correlations mean the evidence is not conclusive, especially when also
considering the other measure of oxidative stress (TFT) had no significant correlations with age.
For all assays, the results indicate that these measures cannot be used as an indicator for early

onset IBD.

No significant correlation between CRP and FRAP was observed. There were small but significant
correlations for the TBARS and TFT assays. In these cases, an increased CRP was associated with
decreased oxidative stress assay results. This was contrary to expectations, as it was thought that
an increase in reactive oxygen species production, leading to oxidative stress would result in
higher inflammation. The results here appear more in line with the pathology of Chronic
Granulomatous Disease, where loss of function variants cause a decreased production of reactive

oxygen species [104].

There was very limited evidence that accrued pathogenic variation in genes that might impact
proteins in oxidative stress pathways, were correlated with oxidative stress assays. The highest
correlation (R?=0.082) was between GenePy scores and TFT assay on the CD patient subset. The
GenePy scores for the genes HMOX1, NOXA1 and DUOX1 were the factors identified that
explained some of the variance in the TFT assay data. HMOX1 is a component of antioxidant
defence against oxidative stress [414]. NOXA1 is an activator of NOX1, and DUOX1 is a component
of an NADPH oxidase complex that is known to be expressed in the colon [105]. Instead of the
genetic burden existing in one gene, variation in a combination of genes involved across this
pathway could be contributing to the function of downstream complexes, reflected in the

oxidative stress assays. Sensitivity to detect a relationship between mutations in genes encoding

107



Chapter 4

proteins critical to ROS and anti-oxidant potential may be improved by also including the sum of
GenePy scores that are part of one complex. For example summing all scores of genes that code
for proteins in the NOX1 complex. This has been shown as a promising approach in analyses of
GenePy scores and transcriptomic data (unpublished data). This method takes into account
potential interactions between complexes that may, in combination, cause an effect such as
dysregulation of reactive oxygen species production. There was no significant relationship
between GenePy scores and the FRAP assay in the regression analysis. This is in contrast to the
machine learning results, where the FRAP assay classifier performed the best. This could be
indicative of nonlinear relationships between GenePy scores for all assays that cannot be

identified through regression analysis.

Machine learning was applied to attempt to differentiate between high and low assay results
using GenePy scores. The prediction problem was adjusted from a regression to a two-class
classification, and results in quartiles one and four of each assay distribution were retained to
make these categories (high and low) more distinct. Despite this, the machine learning models for
the TBARS and TFT assays performed poorly, and the model for FRAP assay results was only
modestly good. Although the genes used as features were selected using biological knowledge,
the feature set was small for each of the three models (n=15). Additionally, not all features had
been implicated in IBD. The machine learning may have benefitted from an initial feature
selection step, and maybe expanding the genes included to other, related pathways upstream or
downstream of ROS production. However, it is not unreasonable to suggest that the ability for
machine learning to predict assay results from the GenePy scores is weak. Many factors may
affect the connection between the features and the outcome variable, including transcriptomic,
diet and environmental factors. The machine learning classifier for the FRAP assay did indicate
that these results are more strongly derived from genetics. Future work here may include
incorporating these assay results as a feature, along with other clinical features such as blood test
results in a potential model for CD. This could address disease activity monitoring, or
complications of CD. The current volume of assay data for CD is however quite small (n=224), and
may not be adequate to train and test a machine learning model once the data is split according

to the particular outcome variable.

There are a few limitations in the assay data used here. The first is that the data did have to be
transformed into z-scores due to inconsistencies across the different plates. Although z-scores
preserve the extreme results within the new range, it is possible that potentially useful
information was lost during this process. Secondly, it is not known how much the results of these

assays for each patient would vary over time, and what could cause this variation. The individual’s
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diet and environment could affect these results, as could the treatment they are on, and the
activity of disease. The data are a cross-sectional snapshot, and not longitudinal. Finally, these
data were generated from blood plasma. It is not clear whether an under or overproduction of

reactive oxygen species in the gut would be reflected in the plasma.

Although the analyses in this chapter have not revealed any assay to be a biomarker for IBD, it
adds further evidence to current biological knowledge. A consistent theme across the analyses
was that the results showed a stronger tendency towards significance when the analysis was
restricted to Crohn’s Disease patients. This was demonstrated in linear regressions between
assays and age, and when stepwise linear regression was used for predicting assay results from
GenePy scores. These findings are in line with Jahanshahi et al.’s results using the TBARS assay
[405], but corroboration with other literature is limited by research often focusing on cases versus
healthy controls. These relationships are likely only prevalent in a subgroup of CD patients where
dysfunction in reactive oxygen species activation pathway contributes to pathology. Further

stratification of the CD subgroup may be necessary.

As was described in Section 1.2.6.3, pathways involving NOD2 signalling are somewhat interlinked
with reactive oxygen species production by NADPH oxidase complexes. Variants in NOX1 and
CYBA were identified in a patient with VEOIBD, and functional assay analysis confirmed the
protein encoded by CYBA (p22phox) did interact with NOD2 [418]. Mouse models have also
identified that deficiency of NOD2 together with CYBB causes intestinal inflammation like the type
and pattern of CD [419]. Evidence of interactions between NOD2 and NADPH oxidase genes,
combined with the observed relationships between the assay results and CD further evidences
that reactive oxygen species and NADPH oxidase analysis will be most profitable using a CD

subtype cohort.
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Chapter 5 Random forest classification of inflammatory
bowel disease subtypes and the Crohn’s

disease stricturing endotype

Chapter summary — this chapter is the first of three chapters dedicated to stratifying IBD
patients into clinical groups, using genomic data and ML. Initial random forest model results are
obtained for two clinical tasks: classifying IBD patients into CD and UC, and classifying CD
patients into stricturing and not-stricturing groups. These classification tasks are performed
using three different gene panels. Additionally, two different forms of the GenePy matrix were
investigated, along with an additional pre-processing step, to see if the performance of the

random forest could be improved with changes to the input genomic data.

Chapter contributions — Whole exome sequencing data was joint called by Guo Cheng, with all
subsequent processing, and transformation into GenePy scores, performed by Imogen Stafford.
The IBD gene panel was curated by Guo Cheng and James Ashton. Extraction of clinical data
from University Hospital Southampton records was performed by Florina Borca and Hang Phan.
Clinical stricturing status was assessed by Melina Kellerman, Imogen Stafford and James Ashton.
Fuentes false positive gene list remapping was performed by Ellie Seaby and Imogen Stafford.
Ellie Seaby also assisted with quality control checks. ML pipeline was generated by Enrico

Mossotto and Imogen Stafford.

Supplementary files can be found at https://doi.org/10.5258/SOTON/D2655.

5.1 Introduction

Early diagnosis is important for many chronic diseases, including inflammatory bowel disease.
Diagnosing individuals with the correct subtype is crucial, in order that the patient receives
treatment for the induction and maintenance of remission specific to that subtype. Furthermore,
a delayed subtype diagnosis can result in an increased risk of complications that can require

surgery [420, 421]. In paediatric cases, a delay of over 8.8 months was shown to be independently
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associated with impaired growth that persisted one year after diagnosis [21]. In particular, studies
have found that it takes longer to obtain a diagnosis of CD for both paediatric and adult cases [21,
420]. The median diagnosis time in a paediatric cohort was 2.4 months for UC/IBDU (combined in
study analysis) and 6.8 months for CD [21], and there were similar median diagnostic times in an
adult cohort (CD 5 months, UC 1 month) [420]. It has been hypothesised this is due to many CD
symptoms overlapping with other diseases, whereas specific UC symptoms, such as bloody
diarrhoea, have been shown to decrease the likelihood of diagnostic delay [21]. In addition, some
delays in diagnosis are caused by a lag between primary care referrals and an appointment with a
specialist clinician [422]. One cohort study also found that a previous diagnosis of Inflammatory
Bowel Syndrome or depression resulted in an increased wait for referral to a specialist [422]. In
the UK, the National Institute for Health and Care Excellence states that no patient should wait
more than four weeks to be seen by a specialist [423]. Aside from this, there is very limited clinical
guidance regarding timelines for diagnosis. There are no recommendations for time to complete
each diagnostic assessment by in the revised Porto criteria for paediatric patients [7]. In the
British Society of Gastroenterology consensus guidelines, which govern adult IBD diagnosis and
management [8], there is only a recommendation that a full ileocolonoscopy be conducted within
the first year, to definitively confirm subtype diagnosis, and assess disease extent and severity.
Some clinical investigations are conducted in order to eliminate other diseases a patient may
have, for example coeliac disease testing, primary sclerosing cholangitis, and functional gut
disorders [424, 425]. Details of common clinical investigations to diagnose IBD, and more
specifically CD and UC, are given in Figure 34. In cases where symptoms are general like CD, using
different patient information such as genomic and immunologic data to diagnose may be

beneficial for reducing diagnosis times.
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Figure 34 Potential investigations conducted in order to diagnose IBD, and then CD and UC [424-
427]. Investigations are colour coded according to whether they are performed for
both subtypes, or one subtype. A) Initial physical exams often involve listening to,
and feeling the abdomen; B) Clinical tests including blood and stool tests consisting
of general inflammatory markers such as platelet count and C-reactive protein, and
other tests which can differentiate IBD from other diseases (faecal calprotectin,
coeliac disease testing); C) Further physical exams consist of endoscopies where
biopsies are taken for histological confirmation of CD or UC. As CD can cause
inflammation anywhere in the Gl tract, further tests such as enteroscopies are used

to investigate disease extent.

Perhaps even more important than an initial diagnosis of CD or UC is an understanding of
individual patient’s disease courses. Traditional treatment of IBD involves a step-up approach,
reserving the use of more aggressive therapies, for example biologic agents, for severe disease

courses, or patients with disease resistant to remission (Section 1.1.6) [428]. An alternative, which
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is currently being explored, is a top-down approach to treatment. A concise “workflow” for top-
down treatment is not currently available, but it broadly suggests that treatments should be given
in the inverse order, beginning with biologics, followed by immunomodulators, steroids and lastly
5-ASAs [429]. Few studies have interrogated the alternative top-down approach, although early
evidence suggests this is a plausible strategy, and that early administration of a combination of
immunosuppressants and biologics were effective at reducing the risks of complications requiring
surgery, and increasing time in remission [37]. In a literature review of the efficacy of top-down
therapy for Crohn’s disease, the majority of studies were randomised control trials and
retrospective cohort studies. The application of the top down therapy was a blanket approach for
a subset of a cohort, not a targeted approach [429]. A concern of the top-down approach is the
increased risk of adverse reactions in patients when using these more aggressive treatments
[429]. The development of methods that can stratify patients based on the severity of disease
course could help decide whether a top-down or step-up approach is the most effective form of

treatment strategy on a case by case basis.

There are complications specifically associated with CD that can cause irreversible bowel damage,
including strictures, fistulas and abscesses [37]. Strictures, or narrowing, can occur in any section
of the luminal gastrointestinal tract [430]. They are not uncommon, with around a third of CD
patients developing stricture(s) in the first 10 years of their disease course [431]. Studies have
demonstrated that patients in early stages of their disease course (less than 2 years) have less
bowel damage, and that bowel damage at diagnosis is associated with an increased risk of surgery
[37]. This highlights a need to quickly identify cases of CD and treat appropriately to avoid
complications and irreversible damage. Therefore, the focus of this chapter is both on IBD
subtype diagnosis, and identification of patients who are susceptible to stricturing endotype for

early intervention.

Supervised machine learning is an ideal tool for stratification in these cases. There have been
several attempts to predict aspects of IBD prognosis, including hospitalisation [253], response to
treatment and remission [261, 432], and likelihood of surgical intervention [433]. These types of
models almost exclusively use clinical and laboratory data. If these data have to be collected over
an extended period of time, it could potentially slow down the rate at which an intervention can
be made. Additionally, clinical data such as C-reactive protein and platelet count, which are
general measures of inflammation, can be affected by patient co-morbidities, treatments,

surgery, and other factors unrelated to a patient’s IBD. This is in contrast to genomic data, which
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is unaffected by these aforementioned factors. In addition, genomic data remains the same,
regardless of the amount of time that has passed since diagnosis, or a patient’s current disease

status.

Of the recent literature that has sought to combine genetic data and machine learning for IBD,
some researchers combined clinical data with specific gene polymorphisms to model early
intestinal resection, and extra-intestinal manifestations [434, 435]. Other analysis utilised
immunochip genotyping data to classify individuals as CD or controls [436, 437], UC or controls
[436], and to assemble a CD risk model that also incorporated clinical information [438]. Earlier
work that utilised WES data was published as a response to the Critical Assessment of Genome
Interpretation (CAGI) challenge, for classification of CD patients and controls [439]. The datasets
associated with the challenge were relatively small, and two of the three datasets had batch
effect issues. Many challenge participants chose to select SNVs as features for this challenge.
More recently, WES data has been summarised into gene mutational burden scores for
classification of CD patients and controls: Wang et al. utilising predicted variant consequence
(indel, missense etc.) and zygosity to construct scores [440], and Raimondi et al. used variant
consequence, and weighted genes according to their number of appearances in publications
where that gene was associated with IBD [441]. A thorough search of the literature reveals no
research paper that employs whole exome sequencing in conjunction with machine learning to

distinguish between IBD subtypes, or to answer any prognostic questions.

In this chapter, a random forest machine learning algorithm is used for two classification tasks:
firstly, to classify patients as the IBD subtype CD, or UC; secondly to determine whether CD
patients will develop a stricturing endotype; and thirdly to investigate the impact of age of onset
on the genomic basis of IBD. For each classification task three gene panels are used: 1) all genes
where GenePy scores are available; 2) an autoimmune gene panel; and 3) an IBD gene panel.
Additionally, two different GenePy matrices are used to determine whether an additional filter
based on predicted gene pathogenicity is advantageous. Finally, a remapped false positive gene
list from [442] is tested as an additional filter for genes included in the random forest model to

determine if this additional GenePy matrix pre-processing step improved modelling.
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5.2 Methods

5.2.1 Patient phenotype data extraction and characterisation

Patients were recruited according to Section 3.3.1. Diagnoses of IBD subtypes CD, UC and IBDU
were made according to British Society of Gastroenterology guidelines for adults [8], and the
modified Porto criteria for paediatric patients [369]. Adult IBD subtype diagnosis data was
updated as part of preparation of the clinical data. Patients can be diagnosed with IBDU on
recruitment, and later their diagnosis is updated to one of the subtypes. Similarly, patients can be
mis-diagnosed with UC if their inflammation is only colonic when presenting at clinic, and
subsequently inflammation spreads to other areas of the gastrointestinal tract. To confirm each
patient’s IBD subtype manually, clinical questionnaire information was extracted. If the latest
records showed patients had a Harvey Bradshaw Index score on record, the patient was recorded
as having CD. If a patient had a recorded Ulcerative Colitis Disease Activity Index, then they were a

confirmed UC patient.

Current NHS databases are not automated to provide flags for specific CD endotypes such as
stricturing. Additionally, there is no questionnaire or score associated with this endotype. This
makes extracting deep phenotyping data more challenging. For paediatric IBD patients, this data
had been curated by searching through individual clinic letters. This process was time consuming.
Additionally, the increase in sample size comes from patients that are all adults, so on average
these patients have more clinical history to search through. In order to extract the adult patient’s
stricturing endotype status more smoothly to use as an outcome in machine learning,
collaborators at the National Institute of Health Research Southampton Biomedical Research
Centre assisted in gathering this data. Relevant radiology reports for recruited IBD patients were
extracted. These were: endoscopy, small bowel MRI, MR Enterography, abdominal ultrasound,
and computerised tomography abdomen scan. To facilitate identification of these endotypes,
each report was flagged for presence (1) or absence (0) of keywords related to a stricturing

endotype: “strictur”, “fibrosis”, “fibrotic”, “narrowing”, “narrowed”, “dilatation”, “dilati",

“stenotic”, and “diameter”. The searches were not case sensitive.

To assess how accurate the flags were, reports for a subset of patients were given to a medical
student, with the flags removed. Without knowledge of the flag, the opinion of the medical
student and the keywords were assessed for concordance. The flag and the medical student

agreed 81% of the time (34/42). In this initial test many false positives were found, as it was
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common to find endoscopy reports where clinicians had commented “no sign of stricturing”, and
these were flagged as positive for the stricturing endotype. In order to assess the instance of false
negatives, a second subset of patients for which all reports were flagged 0 in all categories were
reviewed blindly by the medical student. In this case, 100% of those reports flagged 0 were
confirmed by the medical student as not stricturing. From this analysis, it was concluded that
records flagged 0 did not need to be assessed manually and these could be automatically
classified as not stricturing. However, due to the number of false positives, all records flagged 1 in
any category needed to be manually reviewed. In these initial tests, some reports referred to
earlier patient tests which were not present in the dataset. As a result of this, the initial report
extraction was widened to ensure reports from all Southampton hospitals were in the dataset. Of
2,398 reports extracted for 506 adult IBD patients, 1,545 were not flagged as 1 for stricturing,
leaving 853 reports to review manually. As well as recording the presence of a stricturing
endotype, the date of the medical exam when this was first referenced was recorded as the date
of the endotype occurrence so that time to stricturing could be calculated for use in further

analysis (see Chapter 7).

5.2.2 Additional patient data curation

The patient dataset includes the outcome data for the machine learning tasks (disease subtype,
stricturing endotype), but it also contains other important patient information, some of which is
used in pre-processing prior to random forest classification. Collating this data involves using the
Peddy software [443] and extracting data from BC|INSIGHT. Peddy generates relatedness, I1BSO,
heterozygosity, sex and ancestry information from a ped file and approximately 25,000 sites of a
cohort VCF file. It also compares the content of the ped and VCF files to look for sex mismatches.
BC|INSIGHT is the repository for the clinical information collected as part of the Southampton

Genetics of IBD study. Deep longitudinal information is collected as part of the study and includes:

i) Demographic information such as sex and date of birth.

ii) Diagnostic information such as date of diagnosis, diagnostic subtype (UC, CD, IBDU),
and Paris classification information including age category, extent and severity of
each patient’s disease.

iii) Colonoscopy and Gastroscopy: detailed breakdown of the status of areas visualised in
colonoscopy and gastroscopy. The reason (for example initial investigation or

surveillance) and date of each procedure is recorded.
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iv) Details of both autoimmune and non-autoimmune comorbidities.

V) Longitudinal blood test results including reported values for C-reactive protein,
platelet count, white blood count and calprotectin.

vi) Surgery information, including surgery type and priority.

vii) Pharmacy data regarding drugs administered, and their dose and frequency.

viii) Anthropometric Data.

5.2.3 Whole exome sequencing data processing

WES data was quality controlled and processed according to Sections 3.3.3 and 3.4, respectively.
Two versions of the GenePy matrix were created. The first followed the process according to
Section 3.4.2. The second employed an additional filter on the variants included in the GenePy
matrix. Only variants that were annotated with a Phred-scaled CADD score 2 15 were included in
this matrix. Variants with a score of 15 or above would be in the top 3% (approx.) of all possible
variation in terms of potential pathogenicity. This threshold has previously been used in the
filtering of variants to identify possible disease-causing variation [444, 445]. Therefore, there was
a GenePy matrix with all variants included, referred to throughout as GenePy (all variants); and a
matrix with variants that had a Phred-scaled CADD score > 15, referred to as GenePy (CADD cut-
off).

5.2.4 GenePy score pre-processing

GenePy scores with no variation were excluded using scikit-learn’s [446] VarianceThreshold
(threshold=0). The remaining scores were scaled by the maximum score of each gene
(MaxAbsScaler, disease subtype classifier), or to between 0 and 1 (MinMaxScaler, stricturing
endotype classifier) to ensure no bias in downstream machine learning caused by different
scoring scales across genes. A further pre-processing step was trialled in order to see if machine
learning modelling results could be improved through its implementation. In 2012, Fuentes
Fajardo et al. assembled a list of genes which were thought to give a false positive signal in in-
silico genomic diagnostics [442]. Reasons for inclusion on this list (hereafter referred to as the
Fuentes false positive gene list), were highly polymorphic genes, or characteristics that suggested
that variants within these genes were miscalls due to technical noise during sequencing. It was
discovered that many of the gene symbols listed in the paper were outdated, therefore the gene

list was re-mapped. This was achieved by employing the following tools and databases: Multi-
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Symbol-Checker from the HUGO Gene Nomenclature Committee (HGNC) [447], g:Profiler [448],
Genecards [449, 450], and the NCBI gene database [451, 452]. Once the gene list was remapped,
genes in the GenePy matrix that were also present on the Fuentes false positive gene list were
filtered out. This additional filter was present for one machine learning modelling pass of the
disease subtype and stricturing endotype classifiers, so its effect on the results of machine

learning could be assessed.

5.25 Patient data pre-processing

Identified by Peddy [443], the most frequent ethnicity was European, so only these cases were
included. Only one ethnicity was included to reduce bias in the machine learning modelling.
Additionally, there had to be sufficient confidence in the assigned ethnicity, therefore only
patients with a probability greater than 90% that the predicted ethnicity was correct were
included. Related patients were also removed. For every pair of related individuals, the patient
with the younger age of diagnosis was retained for the analysis. The younger patient was included

as genetics was more likely to substantially contribute to their IBD aetiology.

5.2.6 Random forest classification

A random forest algorithm was used to perform binary classification tasks for IBD subtypes and
the stricturing endotype in Python (v.3.7) using scikit-learn [446]. The model was applied to three
different gene panels: 1) all genes with GenePy scores; 2) an autoimmune gene panel curated by
HTEdgeSeq; 3) an IBD gene panel that included genes identified in IBD GWAS, and genes
associated with monogenic forms of IBD. After genomic, and clinical data pre-processing, the
dataset was split into training and testing datasets in an 80:20 ratio, where the split calculation
was based on the minority class (UC, patients with stricturing behaviour). Feature selection was
performed using a linear support vector classifier (SVC) with L1 penalisation (C=1) using the
training data. Cross-validation was used with this feature selection, and the number of folds
varied according to the sample size of the training dataset: 10-fold cross-validation for the disease
subtype classification, and 5-fold cross-validation was used for the stricturing endotype classifier.
Genes not chosen by the classifier in any cross-validation fold of the SVC were excluded. L1, or
LASSO, was chosen for feature selection as this method shrinks feature coefficients to zero,

essentially removing those features from the dataset. This is in contrast to L2, or ridge
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penalisation, which retains the features, and makes their associated coefficient very small. LASSO

penalisation is ideal for reducing dataset dimensionality, which is necessary for this dataset.

The random forest classifier was trained on the training data using the selected genes. All random
forest hyperparameters were set to the default value, aside from the number of estimators
(trees), which was set to 10,000. Out-of-bag-error measured the random forest performance on
the training data. The random forest ML model was applied to the test set, and its performance
evaluated using precision, recall, specificity, F1 score and AUC. Another output was the list of
genes chosen in model training ranked by their relative importance to the classifier. The machine
learning pipeline can be viewed in Figure 35 (see Supplementary Files for machine learning

scripts).

After the most appropriate GenePy matrix and pre-processing steps had been determined, the ML
pipeline from Figure 35 was utilised to determine whether differences existed in the genomic
basis of IBD depending on the age of onset. To achieve this the IBD dataset was split into each
subtype, and the RF classifier attempted to classify CD patients based on whether their disease
was paediatric onset (<18 years of age at diagnosis) or adult onset (18 years and over at
diagnosis), and then repeated this for the UC patients. Training and testing data for the CD data
and UC data were split in an 80:20 ratio, where the split calculation was based on the minority
class (adult-onset IBD for both CD and UC data) The same three gene sets were utilised: 1) all
genes with GenePy scores; 2) an autoimmune gene panel curated by HTEdgeSeq; 3) an IBD gene
panel that included genes identified in IBD GWAS, and genes associated with monogenic forms of

IBD.
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Figure 35 ML pipeline for classifying IBD subtypes and the CD stricturing endotype. The steps

marked with an asterisk (*) indicate the two places where different data or

processing was implemented. ML results with and without these changes were

analysed to see how this affected the ML model performance.

5.2.7 Analysis of selected features

After obtaining model results from best performing subtype and stricturing endotype

classification ML models, SHAP values were used to gain further insights into how genes

contributed to these classifications. SHapley Additive exPLanations, or SHAP values, are an

explainable Al tool based on the mathematical concept of the Shapley value, which measures the
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average marginal contribution of each variable [453]. This analysis was performed in Python using

the SHAP package, specifically the SHAP tree explainer tool.

Pathway enrichment analysis was generated for the model with the highest AUC for both the
disease subtype and stricturing endotype classifiers. Genes selected by the Linear SVC feature
selection during operation of the machine learning pipeline were input into the Enrichr [454]. The
maximum number of genes was included in all instances of analysis (there is a maximum
threshold of top relevant genes to include in analysis of 500). Significantly enriched pathways
were determined using the KEGG [455] 2021 Human database. Pathways were determined to be
enriched according to the Fisher exact test p-value < 0.05, adjusted using the Benjamini-Hochberg

multiple hypotheses testing correction (as is standard for the Enrichr software).

53 Results

The IBD cohort includes 1,087 recruited individuals that have been whole exome sequenced. Of
these, 502 patients were recruited in the paediatric clinic, and 506 were recruited in the adult
clinic. The remaining 79 were parents or relatives of the proband that was initially recruited, some
of whom also have an IBD diagnosis. Table 15 characterises the cohort further. It is important to
note that some patients recruited through the adult IBD clinic may have been diagnosed as

children.
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Table 15 Clinical characteristics of the IBD cohort, split by paediatric and adult IBD diagnosis.

Some categories do not sum to 1,087 because of incomplete data.

Paediatric IBD (<18 | AdultIBD (218 | Total
years) years)

Age at diagnosis Median years (N, 13 (577, 1-17) 32 (496, 18-84) | 1,073
range)

Subtype diagnosis CD 379 297 676
uc 176 190 366
IBDU 20 6 26

Stricturing Endotype (CD |Yes 77 103 180

Only) No 480 324 804

Sex Male 328 226 554
Female 249 270 519

Ancestry (Peddy) African (AFR) 3 4 7
American (AMR) 8 1 9
East Asian (EAS) 0 1 1
European (EUR) 545 471 1,016
South Asian (SAS) 13 13 26
Unknown 8 5 13

As detailed in Section 3.3.3, quality control was performed on the WES data of this IBD cohort.

One sample, which had already been sent for sequencing previously, was found to mismatch with

the SNP fingerprinting performed. That sample was excluded, but it did not impact the overall

number of individuals in the cohort as it was a duplicate. Aside from this, the checks performed

showed no other mismatches or contaminations, and as such all other samples passed quality

control checks (see Supplementary Files). The characteristics of the cohorts used for 1) the IBD
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subtype classifier, and 2) the stricturing endotype classifier, after patient data pre-processing

steps regarding ancestry prediction and relatedness were completed, are found in Table 16 and

Table 17, respectively.

Table 16 Clinical characteristics of individuals included in the IBD subtype classifier models, after

patient data pre-processing. Age at diagnosis information was unavailable for three

individuals.
Paediatric IBD (< 18 yrs) Adult IBD (218 yrs)

N 491 412
Median age at diagnosis (range) |13 (1-17) 32 (18-82)
IBD Subtype [CD 334 263

uc 157 149
Sex Male 286 191

Female 205 221

Table 17 Clinical characteristics of individuals included in the CD stricturing endotype models,

after patient data pre-processing. Age at diagnosis information was unavailable for

two individuals.

Paediatric IBD (< 18 yrs) Adult IBD (218 yrs)
N 332 255
Median age at diagnosis (range) |13 (1-17) 31 (18-82)
Stricturing  |Yes 71 98

Endotype g 261 157
Sex Male 206 113
Female 126 142

5.3.1 Impact of different GenePy matrix formulations on random forest modelling

In total, 335,978 exonic variants were input into the GenePy (all variants) matrix. For the GenePy

(CADD cut-off) matrix 135,867 exonic variants had a Phred-scaled CADD score > 15. An increased

number of variants does give more power to detect causal variants in each patient, but raises a
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potential concern when integrating this information into a GenePy score. The GenePy score for
some genes may become artificially inflated because of the summation of many variants with
minimal effect. It is for this reason that the GenePy (CADD cut-off) matrix was generated, where

fewer variants with a larger potential effect size would be included in each score.

The machine learning pipeline process was repeated three times for the two GenePy score
datasets. Each pipeline run uses a different gene panel: 1) all available genes; 2) an autoimmune
gene panel curated by HTGEdgeSeq; 3) an IBD gene panel curated in house, including genes
implicated in GWAS and genes reported as causing monogenic forms of IBD (see Supplementary
files for gene panels). Whether a GenePy score is available for a gene is dependent on two factors:
if that gene can be annotated by Ensembl-VEP [456], and if there are variants in the cohort in that
gene that met the rigorous quality filters. A breakdown of the number of genes included in
downstream machine learning after each pre-processing stage is detailed in Table 18. The
comparison of the two GenePy score matrices was completed with two classification tasks 1) the
disease subtype classifier discriminating CD and UC, and 2) the stricturing endotype classifier on
CD patients only. A breakdown of the training and testing datasets for each classification task is

detailed in Table 19.
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Table 18 Number of genes with GenePy scores for the GenePy (all variants) matrix, and GenePy
(CADD-cut-off) matrix before and after selecting genes with GenePy score variance.
This breakdown is shown for every gene panel, and for both the disease subtype

classifier, and the stricturing endotype classifier.

Total genes with |Genes with GenePy
GenePy scores score variance (% of
total)
16,794 16,657 (99.2%)
Subtype GenePy (all All genes
Classifier (n=906) | variants) ‘ 1721 1,706 (99.1%)
Autoimmune
gene panel
526 523 (99.4%)
IBD gene panel
15,669 15,341 (97.9%)
GenePy All genes
(CADD cut- , 1,598 1,552 (97.1%)
Autoimmune
off)
gene panel
499 494 (99.0%)
IBD gene panel
o 16,794 16,465 (98.0%)
Stricturing GenePy (all All genes
Classifier (n=589) | variants) . 1721 1,692 (98.3%)
Autoimmune
gene panel
526 518 (98.5%)
IBD gene panel
15,669 14,742 (94.1%)
GenePy All genes
(CADD cut- _ 1,598 1,493 (93.4%)
Autoimmune
off)
gene panel
499 472 (94.6%)
IBD gene panel
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Table 19 Training and testing dataset sizes for the disease subtype classifier and the stricturing

subtype classifier

Training Dataset Testing Dataset Total

CD uc CD uc
Disease Subtype 244 244 356 62 906
Classifier

Stricturing | Not Stricturing | Stricturing Not Stricturing
Stricturing Subtype 136 136 34 283 589
Classifier

The results of the disease subtype classifier on the test dataset for both GenePy datasets are
contained in Table 20. Regardless of the gene panel used as input for machine learning, using the
GenePy matrix with the CADD cut-off produces higher AUC and F1 scores for classifying CD and
UC on the test data. This gives some evidence that the CADD cut-off is beneficial, as it may reduce
the noise in patients GenePy scores caused by many low-effect size variants. Instead the GenePy
scores for each gene sum together fewer variants with a larger predicted pathogenic effect. When
analysing the results from models using the GenePy matrix with the CADD cut-off, the best model
uses the autoimmune gene panel, achieving an AUC of 0.67. In comparison to the other two
models, an uplift in sensitivity to UC cases is observed (sensitivity 0.58 versus 0.53 and 0.52). For
every gene panel, and the different GenePy matrices, NOD2 is present as the strongest genetic
signal for all random forest models. This is not surprising, given the known potential impact of
NOD2 variants on the development of CD. It is reassuring to see the machine learning model
identify this gene as the strongest discriminant. Aside from NOD2, two genes remain constant to
the top 10 for the all genes classifiers, and three genes for the autoimmune and IBD panels. These
are: ASPM and EPB41L4A for the all genes classifier; DNAH12, TNS1 and HTT for the autoimmune
gene panel; and NFATC1, ERAP1 and DOCKS for the IBD gene panel.

A comparison of the distribution of NOD2 GenePy scores can be viewed in Figure 36, where the
results from the best model using the GenePy with all variants, and GenePy matrix using the
CADD cut-off, are compared. There is a strong difference in NOD2 distribution depending on
which matrix is used, as NOD2 is more important in the classifier where the CADD cut-off is used

than where all variants were used. Many of the other gene distributions were similar when
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comparing the CD and UC classes, even when utilising the GenePy matrix with CADD cut-off. Often
one of the disease subtype classes will have a longer tail to the distribution, i.e. a few individuals

are present in the subtype class with a high GenePy score.
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Table 20 Random forest classifier of UC and CD. Machine learning metrics on the test set for both versions of GenePy scores, and three different feature sets

GenePy (all variants) — all genes

GenePy (all variants) — autoimmune gene panel

GenePy (all variants) — IBD gene panel

No. Features 1,240 No. Features 826 No. Features 459

Precision |Recall |Specificity |F1 Precision |Recall |Specificity |F1 Precision |Recall |Specificity |F1
CcD 0.87 0.53 |0.53 0.66 |CD 0.88 0.54 0.58 0.67 |CD 0.87 0.57 |0.52 0.69
uc 0.17 0.53 |0.53 0.25 |UC 0.18 0.58 0.54 0.28 |UC 0.17 0.52 |0.57 0.26
Average 0.76 0.53 |0.53 0.60 |Average 0.78 0.55 0.58 0.61 |Average 0.77 0.56 |0.52 0.63
AUC 0.53 AUC 0.64 AUC 0.57

Top 10 Genes

NOD2, ASPM, TAPBPL, BOD111,
SPTBN5, USP40, EPB41L4A, GRIN2B,
POMT2, SYNE1

Top 10 Genes

NOD2, MEFV, CX3CR1, DNAH12, TNS1,
NCOR2, P2RX7, HTT, TSHR, ERAP1

Top 10 Genes

NOD2, MEFV, NFATC1, PER3, ERAP1,
TNFRSF6B, DOCK8, ADA2, BANK1, TAF8

GenePy (CADD cut-off) — all genes

GenePy (CADD cut-off) — autoimmune gene panel

GenePy (CADD cut-off) — IBD gene panel

No. Features 1,213 No. Features 733 No. Features 403

Precision |Recall |Specificity |F1 Precision |Recall |Specificity |F1 Precision |Recall |Specificity |[F1
CD 0.88 0.63 |0.50 0.73 |CD 0.91 0.62 0.66 0.74 |CD 0.87 0.58 |0.52 0.70
uc 0.19 0.50 0.63 0.27 |UC 0.23 0.66 0.62 0.34 |UC 0.18 0.52 0.58 0.26
Average 0.78 0.61 0.52 0.66 |Average 0.81 0.62 0.65 0.68 |Average 0.77 0.57 0.53 0.63
AUC 0.59 AUC 0.67 AUC 0.59

Top 10 Genes

NOD2, GC, EPB41L4A, ASPM, LAMA1,
VWDE, COL4A3, TUBB3, DNAH17,
SVEP1

Top 10 Genes

NOD2, TTN, TG, DNAH12, TNS1, P2RX7,
WDFY4, TNC, SPATS2L, HTT

Top 10 Genes

NOD2, GC, DOCKS8, NPC1, GALC,
ERAP1, NFATC1, CELSR3, TEP1, CD6
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Subtype Classifier Results, Autoimmune Gene Panel, Test Data
GenePy (all variants)
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Figure 36 Comparison of the best disease subtype model produced using a GenePy matrix
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generated with all variants (A-C) and GenePy with variants that meet the CADD cut-

off (D-F). In both cases the random forest model performed best with the

autoimmune gene panel. A) AUC on the test set for GenePy (all variants); B) Top 10

most discriminate genes and their relative importance in the GenePy (all variants)

random forest; C) Violin plots of the top 10 most discriminant genes (CD=blue,
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UC=orange) for GenePy (all variants); D) AUC on the test set for GenePy (CADD cut-
off); E) Top 10 most discriminate genes and their relative importance in the GenePy
(CADD cut-off) random forest; C) Violin plots of the top 10 most discriminant genes

(CD=Dblue, UC=orange) for GenePy (CADD cut-off).

The results for the stricturing endotype classifier on the test data can be viewed in Table 21. In
this case it is also seen that the classification results are the same or better across the gene panels
when utilising the GenePy matrix with the CADD cut-off. In particular, the random forest
classifiers that used all genes, and the IBD panel, saw an AUC increase of 0.1 after implementation
of the CADD cut-off. This is reflected in a complete change in the 10 most important genes to
classification for the ML model that used all genes, and only the genes CNTRL and GC are present
in both classifiers that use the IBD panel. For the two classifiers that use the autoimmune gene
panel, the top 10 genes in both are completely different, but this is not surprising for a ML model
where the performance is no better than random (AUC 0.5 for both versions of the classifier). A
comparison of the results of the best ML model (all genes, AUC 0.59) for the GenePy matrix with
all variants, and the GenePy matrix with the CADD cut-off is presented in Figure 37. There is very
little difference between the GenePy score distributions of the top 10 genes for the stricturing
and not-stricturing classes, in both ML models shown in Figure 37. Of surprise here is an absence
of NOD2 in all top 10 gene lists apart from the classifier that used the IBD gene panel. NOD2 is
also implicated in the formation of strictures, and variation in this gene has been shown to be a
risk factor in the development of this endotype [5]. Overall, these results provide evidence that
utilising the CADD cut-off when generating the GenePy matrix is beneficial for downstream

machine learning modelling.
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Table 21 Random forest classifier of stricturing (S) vs not-stricturing (NS) in CD patients. Machine learning metrics on the test set for both versions of GenePy scores, and

three different feature sets

GenePy (all variants) — all genes GenePy (all variants) — autoimmune gene panel GenePy (all variants) — IBD gene panel
No. Features 570 No. Features 467 No. Features 317
Precision |Recall |Specificity |[F1 Precision |Recall |Specificity |F1 Precision |Recall |Specificity |F1
NS 0.90 0.46 |0.59 0.61 |NS 0.9 0.50 0.56 0.65 NS 0.86 0.44 |041 0.58
S 0.11 0.59 |0.46 0.19 |S 0.12 0.56 0.50 0.20 |S 0.08 0.41 |0.44 0.14
Average 0.82 0.47 0.57 0.56 |Average 0.82 0.51 0.55 0.60 |Average 0.78 0.44 0.41 0.54
AUC 0.488 AUC 0.50 AUC 0.44
Top 10 Genes FABP2, EPN3, SEC16A, HECW1, Top 10 Genes | TPO, SEC16A, FABP2, PADI4, CARD14, |Top 10 Genes |SEC16A, CNTRL, GPR35, NOTCH1, KSR1,
TOMM?34, PTPRQ, ABCC6, C4orf50, GPR35, NOTCH1, NCOR2, KSR1, ANK3 BANK1, FAM171B, GC, IRF2BP2,
TNN, THSD7B RPS6KA2
GenePy (CADD cut-off) — all genes GenePy (CADD cut-off) — autoimmune gene panel GenePy (CADD cut-off) — IBD gene panel
No. Features 520 No. Features 418 No. Features 292
Precision |Recall |Specificity |[F1 Precision |Recall |Specificity |F1 Precision |Recall |Specificity |F1
NS 0.92 0.57 0.59 0.70 |NS 0.88 0.53 0.41 0.66 |NS 0.89 0.47 0.53 0.61
S 0.14 0.59 |0.57 0.23 |S 0.09 0.41 0.53 0.15 |S 0.11 0.53 |0.47 0.18
Average 0.84 0.57 0.59 0.65 |Average 0.80 0.51 0.42 0.61 |Average 0.81 0.47 0.52 0.57
AUC 0.59 AUC 0.50 AUC 0.54
Top 10 Genes PREX1, CNTRL, MAPT, SVEP1, TTN, Top 10 Genes TG, TTN, TNS1, P2RX7, TNC, LOXL2, Top 10 Genes | GC, CNTRL, DOCKS, UTP20, TEP1, NPC1,
FAT4, OR5M1, PKD1L3, PLCE1, PTPRQ SPATS2L, BAZ2B, DNAH12, FLT4 F5, GALC, GSDMA, NOD2
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Stricturing Endotype Classifier Results, All Genes, Test Data
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Figure 37 Comparison of the stricturing endotype random forest model produced using a GenePy

matrix with all variants (A-C) and a GenePy matrix utilising the CADD cut-off (D-F),

using the all genes where GenePy scores were available. A) AUC on the test set for

GenePy (all variants); B) Top 10 most discriminate genes and their relative

importance in the GenePy (all variants) random forest; C) Violin plots of the top 10

most discriminant genes (stricturing=blue, not-stricturing=orange) for GenePy (all
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variants); D) AUC on the test set for GenePy (CADD cut-off); E) Top 10 most
discriminate genes and their relative importance in the GenePy (CADD cut-off)
random forest; F) Violin plots of the top 10 most discriminant genes (stricturing=blue,

not-stricturing=orange) for GenePy (CADD cut-off).

5.3.2 Impact of Fuentes false positive list on machine learning classifier results

The comparison of the random forest classifiers concluded that for these data, using the GenePy
matrices constructed with variants with a CADD score = 15 is the best strategy. However, one
gene observed in the top 10 genes for the stricturing versus not stricturing classifier raised
concerns. In the all genes and autoimmune gene panel stricturing endotype classifier, and the
autoimmune gene panel disease subtype panel that used the GenePy (CADD cut-off) matrix, TTN
is in the top 5 most discriminant genes. This is the longest human gene and as such can accrue
many mutations (and therefore a high GenePy score) without this necessarily contributing to

disease.

In order to potentially exclude genes such as TTN, which are highly mutable, but also highly
unlikely to cause disease, the Fuentes false positive gene list was implemented as an additional
GenePy score pre-processing step. However, during initial investigations of the Fuentes false
positive gene list, of 2,213 genes in the list, 1,644 were found to not be present in GenePy. It was
subsequently determined that many of the gene symbols on the list needed to remapped. Using
Multi-Symbol-Checker from HGNC [447], or g:Profiler [448] — where an Ensembl gene ID was
identified and then converted to a gene symbol — remapping, or confirmation that the original
gene symbol was correct, was performed for 1,564 genes. Two genes were identified as being

withdrawn from databases.

For the remaining 649 genes, the Genecards database [449, 450] was searched to identify
alternative aliases. Additionally, any gene symbols starting with “LOC” were searched without the
prefix to find if these genes had been identified. It was established through the NCBI gene
database [451, 452] that three groups of unidentified genes (prefixes FLI, DKFZp, and MGC) were
clones of another gene symbol. An additional three withdrawn genes were identified through
these database checks. After these searches, another 578 gene symbols had been remapped. In
total, 2,141 genes were remapped, or their gene symbol was confirmed. However, there were

many duplicates, and after these were removed 1,298 genes remained on the Fuentes false
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positive gene list. The remapped gene list can be found in the supplementary files. In Table 22,

the number of genes present after each GenePy score pre-processing stage can be viewed.

Table 22 Number of genes with GenePy scores in the GenePy (CADD cut-off) matrix at each stage
of pre-processing the data prior to machine learning. Also includes the percentage
change between the genes with GenePy scores, and the number of genes included

after implementation of both pre-processing stages.

Total genes Genes after Genes with %
with GenePy |exclusion using GenePy score |Change
scores false positive list | variance
15,669 15,242 14,922 4.8
Subtype All genes
Classifier ot 1,598 1,586 1,540 3.6
(n=906) utoimmune
gene panel
499 494 489 2.0
IBD gene panel
o 15,669 15,242 14,342 8.5
Stricturing All genes
Classifier ol 1,598 1,586 1,484 7.1
(n=589) utoimmune
gene panel
499 494 467 6.4
IBD gene panel

The results for disease subtype, and stricturing endotype machine learning classifiers that exclude
genes on the Fuentes false positive list, are collated in Table 23. For the disease subtype classifier
there were very minor changes in the AUC in comparison to the classifier which did not use the
Fuentes false positive gene list. After employing this additional filter, the AUC for the classifier
that uses all genes reduced by 0.02, with one change in the top 10 important genes (SVEP1 in
previous ML results is replaced by MY0O18B). The number of genes chosen by feature selection
increased by 3, to 1,216. The TTN and TG genes were replaced with E2F4 and NFATCI1 for the
classifier that began with the autoimmune gene panel, with no change in the AUC, and 6 fewer

genes selected during feature selection. The performance of the model that uses the IBD gene
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panel improves slightly with this additional gene filter, achieving an AUC of 0.6. As with the
autoimmune panel classifier, 6 fewer genes are chosen during feature selection. TEP1 is replaced
by GSDMA in the top 10 most important genes. Overall, random forest performance is not better
or worse for the disease subtype classifier with the use of the Fuentes false positive gene list as a
filter. However, it does remove a gene signal from ML modelling that is known to be erroneous.
The best ML model results, using the autoimmune gene panel, with the Fuentes filter, are shown

in Figure 38.
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Table 23 Fuentes results on the test set for both the disease subtype classifier and the stricturing classifier

Chapter 5

CD vs UC- ALL GENES

CD vs UC - AUTOIMMUNE PANEL GENES

CD vs UC - IBD PANEL GENES

No. Features 1,216 No. Features 739 No. Features 397

Precision |Recall |Specificity |F1 Precision Recall Specificity F1 Precision Recall |Specificity F1
CD 0.88 0.62 |0.53 0.73 |CD 0.90 0.61 0.63 0.73 CD 0.87 0.56 0.52 0.68
uc 0.20 0.53 |0.62 0.59 |UC 0.22 0.63 0.61 0.33 uc 0.17 0.52 0.56 0.25
Average 0.78 0.61 |0.54 0.66 |Average 0.80 0.61 0.63 0.67 Average 0.77 0.55 0.56 0.62
AUC 0.57 AUC 0.67 AUC 0.60

Top 10 Genes

NOD2, GC, EPB41L4A, ASPM,
LAMA1, VWDE, COL4A3, TUBB3,
MYO18B, DNAH17

Top 10 Genes

HTT, E2F4, NFATC1

NOD2, DNAH12, TNS1, WDFY4, P2RX7, SPATS2L, TNC,

Top 10 Genes

NOD2, GC, DOCKS, NPC1, GALC, ERAP1,
NFATC1, CELSR3, GSDMA, CD6

STRICTURING VS NOT-STRICTURING—- ALL GENES

STRICTURING VS NOT-STRICTURING — AUTOIMMUNE PANEL GENES

STRICTURING VS NOT-STRICTURING - IBD PANEL GENES

No. Features 534 No. Features 411 No. Features 284

Precision |Recall |Specificity |F1 Precision Recall Specificity F1 Precision Recall |Specificity F1
NS 0.92 0.54 |0.59 0.68 | NS 0.90 0.51 0.53 0.65 NS 0.89 0.45 0.56 0.60
S 0.13 0.59 |0.54 0.22 |S 0.12 0.53 0.51 0.19 S 0.11 0.56 0.45 0.18
Average 0.83 0.54 |0.58 0.63 |Average 0.82 0.51 0.53 0.60 Average 0.81 0.46 0.55 0.55
AUC 0.63 AUC 0.52 AUC 0.55

Top 10 Genes

PREX1, CNTRL, MAPT, FAT4, GG,
AKR7L, PLCE1, PKD1L3, ACACB,
PTPRQ

Top 10 Genes

FLT4, SORBS1, WDFY4

TNS1, P2RX7, SPATS2L, LOXL2, BAZ2B, DNAH12, ANK3,

Top 10 Genes

GC, CNTRL, DOCKS8, UTP20, NPC1, GALC,
GSDMA, NOD2, ERAP1, CD6
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Subtype Classifier Results with Fuentes gene list filter, Autoimmune Gene Panel
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Figure 38 IBD subtype random forest model using the Fuentes false positive gene list as an
additional filter, and the GenePy matrix with the CADD cut-off. A) Test dataset AUC;
B) Normalised confusion matrix on test dataset. C) Top 10 most discriminate genes
and their relative importance for the random forest; D) Violin plots of the top 10

most discriminant genes (CD=blue, UC=orange).

A further examination of the contributions that different genes made to classification of IBD
subtypes by the random forest model was conducted by producing SHAP values (Figure 39A).
SHAP values revealed that, in general, a low GenePy score contributed to UC classification (a
negative SHAP value), and a high GenePy score contributed to CD classification (a positive SHAP
value). The genes for which this trend did not apply were NFATC1, LRR1, IL31RA, NRP1, PYGL and
LRP1. There was also an extended look at the feature importances, as shown in previous figures
such as Figure 38C. In Figure 39B, the feature importance value of the top 50 genes (739 genes
were selected in total by feature selection, as documented in Table 23) are shown. As the feature
importances of all 739 genes sum to 1, and this visualises the ever decreasing contribution that

each feature makes to classification.
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Figure 39 Further analysis of gene contributions to the best subtype classifier, using the GenePy

(CADD cut-off) matrix, and the Fuentes filter. A) SHAP values for top discriminatory

genes, where a high feature value is equivalent to a high GenePy score and vice

versa. A positive SHAP value indicates the feature makes a contribution to the

positive class, which was coding as CD. B) Feature importance as in Figure 38C, but

extended to the top 50 genes.
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In addition, pathway enrichment analysis was performed using Enrichr [454] and the KEGG [455]
2021 Human database, with the genes selected during feature selection for the best performing
IBD subtype model, which used the autoimmune gene panel. This produced 289 pathways, of
which 162 were significant after adjusting the p-value for multiple hypotheses testing (adjusted p-
value < 0.05). Table 24 lists the top 20 most significant pathways according to the combined score
produced by Enrichr, which takes into account p-value and the z-score for the deviation from the
expected rank. This revealed several immune pathways that were enriched in this gene set, some
of which are already know to contribute to IBD aetiology such as the JAK-STAT signalling pathway
[457] and the NF-kB signalling pathway [98, 387]. However, there was concern with this approach
that the reason these pathways were enriched was due to how the autoimmune gene panel was
constructed, as it is naturally enriched for immune pathways. This issue was exacerbated by the
number of genes chosen during feature selection, as this meant 48% of the genes present in the
autoimmune gene panel (post gene-filtering steps) were input into random forest modelling.
Pathway enrichment analysis was performed using the 1,540 autoimmune genes in the panel
prior to any feature selection. This produced 303 pathways, of which 204 had a significant
adjusted p-value. Aside from two pathways (other glycan degradation, ABC transporters), all
significant pathways from the enrichment analysis of genes selected for subtype classification
overlapped with significant pathways contained within the whole autoimmune gene panel. This
led to the thought that observing which pathways had been removed during feature selection
would be more appropriate. Here, it was found that 44 pathways were no longer significant. Of
particular interest was the exclusion of the terms type 1 diabetes mellitus, and autoimmune
thyroid disease. The full list of pathways omitted by feature selection can be viewed in

Supplementary Table 3.

Table 24 Pathways identified by Enrichr as significant (according to an adjusted p-value < 0.05)
from the features selected during subtype classifier modelling. Top 20 of 162,

ordered by combined score.

Term Overlap |P-value Adjusted P- |Odds |Combined
value Ratio |Score
PPAR signalling pathway 28/74 1.87E-21 |1.35E-19 16.45 |785.13
JAK-STAT signalling pathway 46/162 |3.84E-28 |3.70E-26 10.96 |691.58
Th1 and Th2 cell differentiation [29/92 1.32E-19 |5.46E-18 12.45 |541.05
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Term Overlap | P-value Adjusted P- |Odds |Combined
value Ratio |Score
Cytokine-cytokine receptor 61/295 |1.37E-28 |1.98E-26 7.32 469.35
interaction
Adipocytokine signalling pathway |22/69 |2.58E-15 |3.74E-14 12.54 [421.33
Th17 cell differentiation 29/107 |1.35E-17 |3.25E-16 10.04 |390.19
Pathways in cancer 85/531 |6.02E-31 |1.74E-28 5.48 381.53
PD-L1 expression and PD-1 25/89 9.33E-16 |1.50E-14 10.50 |363.47
checkpoint pathway in cancer
AGE-RAGE signalling pathway in  |27/100 |1.99E-16 |4.41E-15 9.97 360.38
diabetic complications
C-type lectin receptor signalling |27/104 |5.87E-16 |1.07E-14 9.45 331.36
pathway
NF-kB signalling pathway 27/104 |5.87E-16 |1.07E-14 9.45 331.36
Tuberculosis 39/180 |1.95E-19 |7.05E-18 7.56 325.47
Coronavirus disease 46/232 |5.05E-21 |2.92E-19 6.81 318.14
Hepatitis B 36/162 |2.02E-18 |5.30E-17 7.78 316.86
Type |l diabetes mellitus 15/46 |5.00E-11 |3.21E-10 12.85 (304.84
Hematopoietic cell lineage 25/99 |1.43E-14 |1.76E-13 9.08 289.43
FoxO signalling pathway 30/131 |5.95E-16 |1.07E-14 8.03 281.41
Lipid and atherosclerosis 42/215 |4.78E-19 |1.54E-17 6.65 280.46
Insulin resistance 26/108 |1.46E-14 |1.76E-13 8.53 271.69
Osteoclast differentiation 29/127 |1.98E-15 |3.01E-14 7.99 270.40

For the stricturing endotype ML models that employed the Fuentes false positive gene list filter

(results Table 23), the AUC improved regardless of the gene panel utilised. For the classifier using

all genes the AUC improved by 0.04, and for the autoimmune panel and IBD panel AUC increased

by 0.02 and 0.01, respectively (Figure 40). There were small changes to the number of genes
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chosen in feature selection: 14 fewer for the all genes classifier, 7 fewer when using the
autoimmune panel, and 8 fewer genes for the IBD panel. For the top 10 genes in the all genes ML
model, SVEP1, TTN and OR5M!1 are replaced by GC, AKR7L and ACACB after utilising the false
positive gene list. Three genes are also replaced for the autoimmune gene panel random forest:
TG, TTN and TNC are changed to ANK3, SORBS1 and WDFY4. Only two genes change between
classifiers for the IBD panel: TEP1 and F5 are replaced by ERAP1 and CD6. When comparing the
most discriminant genes for the disease subtype classifier and the stricturing endotype classifier,
there are some commonalities. For the all genes classifiers, only GC is common to both top 10.
However, for the autoimmune gene panel there were five shared genes between the two
classification tasks (DNAH12, TNS1, WDFY4, P2RX7, and SPATS2L), and for the IBD gene panel
there were seven (NOD2, GC, DOCK8, NPC1, GALC, GSDMA, and CD6). This suggests that CD-

associated genes are driving the disease subtype classifier.

Stricturing Endotype Classifier Results with Fuentes gene list filter, All Genes
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Figure 40 Stricturing endotype random forest model using the Fuentes false positive gene list as
an additional filter, and the GenePy matrix with the CADD cut-off. A) Test dataset

AUC; B) Normalised confusion matrix on test dataset. C) Top 10 most discriminate
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genes and their relative importance for the random forest; D) Violin plots of the top

10 most discriminant genes (stricturing=blue, not-stricturing=orange).

A further examination of the contributions that different genes made to classification of CD
patients by stricturing endotype by the random forest model was conducted by producing SHAP
values (Figure 41A). SHAP values revealed that, of the genes visualised, a small majority showed
high GenePy scores corresponding to negative SHAP values, indicating that mutations in these
selected genes have the possibility of protecting against the formation of strictures (for example
MAPT, CNTRL and PREX1). The remaining eight genes showed high GenePy scores conveying risk
of stricture, including AKR7L, RASAL1 and UTP20. There was also an extended look at the feature
importances, as shown in previous figures such as Figure 40C. In Figure 41B, the feature
importance value of the top 50 genes (534 genes were selected in total by feature selection, as
documented in Table 23) are shown. The feature importances of all 534 genes sum to 1, and this
visualises the small contributions each gene makes to classification. Unlike the subtype classifier,
where NOD2’s feature importance was much higher that all other features, there is no stand-out
gene or genes that makes a comparatively higher contribution to classification than the rest of the

selected genes.
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Stricturing Endotype Classifier Features, All Genes
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Figure 41 Further analysis of gene contributions to the best stricturing endotype classifier, using
the GenePy (CADD cut-off) matrix, and the Fuentes filter. A) SHAP values for top
discriminatory genes, where a high feature value is equivalent to a high GenePy score
and vice versa. A positive SHAP value indicates the feature makes a contribution to
the positive class, which was coding as presence of a stricture. B) Feature importance

as in Figure 40C, but extended to the top 50 genes.
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As performed for the subtype classifier, pathway enrichment analysis for the highest performing
stricturing endotype classifier model was achieved with Enrichr [454] and the KEGG [455]2021
Human database. As the best performing classifier used all genes, the issue of a gene panel
artificially enriching the pathways that corresponded to genes picked during feature selection was
not present. Enrichr displayed 260 pathway terms associated with the stricturing endotype gene
list. Of these, none were found to be significant after adjusting for multiple hypotheses testing

(adjusted p-value < 0.05).

5.3.3 Classifying CD and UC cohorts by age of onset

In order to determine whether the underlying genomics was significantly different depending on
age of onset, the RF pipeline was utilised, with the genomic data filtering which had been
determined to give the best results (GenePy (CADD cut-off) matrix, Fuentes false positive gene
list). This ML modelling was done for each subtype separately, such that genomic differences
between CD and UC did not influence or overshadow differences between paediatric and adult
onset. Here, paediatric onset IBD was defined as a receiving a diagnosis prior to 18, and all
individuals receiving a diagnosis at 18 or over were defined as adult-onset IBD. As before, three
gene sets were employed, 1) all available genes; 2) the autoimmune gene panel; 3) the IBD gene
panel. In Table 25, the number of genes after each pre-processing filtration step are recorded for
the CD age of onset classifier and the UC age of onset classifier. In Table 26 the training and

testing datasets for both classifiers are recorded.
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Table 25 Number of genes with GenePy scores in the GenePy (CADD cut-off) matrix at each stage
of pre-processing the data prior to machine learning for age of onset classifiers. Also

includes the percentage change between the genes with GenePy scores.

Total genes Genes after Genes with %
with GenePy |exclusion using false | GenePy score Change
scores positive list variance
15,669 15,242 14,375 8.3%
CDdata |All genes
- 1,598 1,586 1,486 7.0%
(n=600) | Autoimmune 0
gene panel
499 494 468 6.2%
IBD gene panel
15,669 15,242 13,153 16.1%
UCdata |All genes
(n=306) _ 1,598 1,586 1,327 17.0%
Autoimmune
gene panel
499 494 422 15.4%
IBD gene panel
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Table 26 Training and testing dataset sizes for the CD age of onset classifier and the UC age of

onset classifier

Training Dataset Testing Dataset Total
Paediatric Adult onset | Paediatric onset |Adult onset
onset
CD age of onset 212 212 122 54 600
classifier
Paediatric Adult onset | Paediatric onset |Adult onset
onset
UC age of onset 119 119 38 30 306
classifier

The ML metrics on the testing dataset for each of the classifiers are documented in Table 27. The
all genes classifier for both CD age of onset and UC age of onset classifiers achieved very high
AUCs (0.92 and 0.96, respectively). These classifiers both had the same top 3 genes, MAPT,
APOLS5, PRKRA, and these genes had the highest feature importances observed throughout ML
modelling in Section 5.3. There was no overlap between the top 10 genes selected by the IBD
subtype classifier utilising all genes, and the CD and UC age of onset classifiers using this same
gene set. The classifiers utilising the autoimmune gene panel achieved good AUCs (0.68 for CD
age of onset, 0.67 for UC age of onset). There was an overlap of three genes in the top 10 for the
IBD disease subtype classifier and the CD age of onset classifier: TNC, DNAH12, and P2RX7. In
addition there was an overlap of two genes in the top 10 for the IBD disease subtype classifier and
the UC age of onset classifier: TNS1 and DNAH12. Six of the top 10 genes overlapped for all three
classifiers (IBD subtype classifier, CD age of onset classifier, UC age of onset classifier) when
utilising the IBD panel: GC, DOCK8, GALC, ERAP1, CD6, NPC1. However, where the CD age of onset
classifier obtained a moderately good AUC (0.65), the UC classifier AUC performed poorly (0.44).
Feature importances and violin plots of top features for the CD age of onset classifier, for all gene
sets, are visualised in Figure 42. The feature importances and violin plots of top features for the

CD age of onset classifier, for all gene sets, are visualised in Figure 43.
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Table 27 Random forest classifier of CD age of onset and UC age of onset classifiers (P=paediatric-onset, A=adult onset). Machine learning metrics on the test set for both

for the three different feature sets

CD- ALL GENES

CD- AUTOIMMUNE PANEL GENES

CD- IBD PANEL GENES

No. Features 605 No. Features 607 No. Features 376

Precision Recall |Specificity F1 Precision Recall Specificity F1 Precision Recall |Specificity F1
A 0.78 0.93 0.89 0.85 |A 0.42 0.57 0.65 A 0.42 0.63 0.62 0.51
P 0.96 0.89 0.93 092 |P 0.77 0.65 0.57 0.71 |P 0.79 0.62 0.63 0.70.
Average 0.91 0.90 0.91 0.90 |Average 0.67 0.62 0.60 0.64 | Average 0.68 0.62 0.63 0.64
AUC 0.92 AUC 0.68 AUC 0.65

Top 10 Genes

MAPT, APOL5, PRKRA, SERPINF2, PHF1,
CHIT1, MAMDC2, ZNF681, FAT4, CELA1

Top 10 Genes

SERPINF2, TNC, WNK1, TEK, P2RX7, PLCL1,

LOXL2, TET2, ERAP1, DNAH12

Top 10 Genes

GC, DOCKS, PLCL1, ERAP1, TET2, GALC,
NPC1, CNTRL, CD6, ITLN1

UC— ALL GENES

UC - AUTOIMMUNE PANEL GENES

UC - IBD PANEL GENES

No. Features 393 No. Features 371 No. Features 309

Precision Recall |Specificity F1 Precision Recall Specificity F1 Precision Recall |Specificity F1
A 0.97 0.93 0.97 095 |A 0.56 0.47 0.71 0.51 |A 0.33 0.33 0.47 0.33
P 0.95 0.97 0.93 0.96 |P 0.63 0.71 0.47 0.67 |P 0.47 0.47 0.33 0.47
Average 0.96 0.96 0.95 0.96 |Average 0.60 0.60 0.57 0.60 |Average 0.41 0.41 0.40 0.41
AUC 0.96 AUC 0.67 AUC 0.44

Top 10 Genes

MAPT, APOL5, PRKRA, CHIT1, WDR81, CYFIP1,
PHF1, DNAH3, EPS8L1, PLCE1

Top 10 Genes

SERPINF2, BMP8A, TNS1, ADAMTSS5, SALL2,
NR1H3, GALC, VWF, NCOR2, DNAH12

Top 10 Genes

GC, DOCKS8, GALC, ERAP1, CARMIL2, TET2,

CD6, NPC1,

PLCL1, UBASH3A
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CD Age of Onset Classifier Feature Plots, Test Data
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Figure 42 Feature importance and violin plots for the CD age of onset classifier for each gene set
(P=paediatric onset, A= adult onset). A) Feature importances for the CD age of onset
classifier which utilises all genes; B) Violin plots for the CD age of onset classifier
which utilises all genes; C) Feature importances for the CD age of onset classifier
which utilises the autoimmune gene panel; D) Violin plots for the CD age of onset
classifier which utilises the autoimmune gene panel. E) Feature importances for the
CD age of onset classifier which utilises the IBD gene panel; F) Violin plots for the CD

age of onset classifier which utilises the IBD gene panel.
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Figure 43 Feature importance and violin plots for the UC age of onset classifier for each gene set
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(P=paediatric onset, A= adult onset). A) Feature importances for the UC age of onset
classifier which utilises all genes; B) Violin plots for the UC age of onset classifier
which utilises all genes; C) Feature importances for the UC age of onset classifier
which utilises the autoimmune gene panel; D) Violin plots for the UC age of onset
classifier which utilises the autoimmune gene panel. E) Feature importances for the
UC age of onset classifier which utilises the IBD gene panel; F) Violin plots for the UC

age of onset classifier which utilises the IBD gene panel.
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5.4 Discussion

Here, random forest algorithms were applied to IBD subtype determination, and classifying
stricturing endotype status. In addition, through these two classification tasks, it was determined
that the GenePy (CADD cut-off) matrix, and the Fuentes false positive gene lists were two
beneficial genomic data processing and filtering changes. Their implementation either led to an
improvement in model AUC for both tasks, or to no change, and removed genes that were known
to not include pathogenic variation (for example, TTN). The number of variants included in the
GenePy (CADD cut-off) matrix was roughly a third of the total variants available for inclusion in
GenePy scores. The threshold employed here may have been too stringent. Further work could
explore introducing a threshold of a Phred-scaled score > 10, to see if this is a better balance
between excluding trivial variants and removing variants that do contribute to a pathogenicity
burden already present due to other, more damaging variants. TTN is also the longest gene, and
this raises the question of whether gene length could affect GenePy scores, and therefore affect
ML classifier results. However, as these classifiers are determining the differences between two
classes, the length of the gene is constant across classes. As in, there is no comparison between
the scores achieved by different genes, only the gene scores per class. Therefore, highly
polymorphic genes known to be unrelated to disease were the concern, and using the Fuentes
false positive gene list as a filter made excluding these genes straightforward. However, the gene
remapping that had to be performed in order to utilise it did highlight the age of the original
study. There is a need to re-perform analysis as performed by Fuentes Fajardo et al. [442], in light
of improved high-throughput sequencing methods and bioinformatic tools, as well as availability
of the GRCh38 genome build. A new list of genes that are highly likely to contain false positive
pathogenic variants would be helpful for many genomic modelling approaches, and for genetic

diagnostics.

In all cases of ML modelling, it is important to look at the composition of input data, as it is well
known that biased inputs can affect algorithm training, and result in biased outcome predictions.
One limitation of the modelling is that it only included those with European ancestry, and
therefore the RF algorithm is biased towards predicting according to patterns established for that
ancestral group. Restricting to one ancestry group was performed to reduce bias, to avoid
genomic differences related to ancestry affecting subtype and stricturing endotype classifications.
The advantage of the ML pipeline is that once a GenePy matrix has been produced a new model
could be trained for groups with different genetic ancestries, given a sufficiently large cohort.

Another notable bias within the clinical characteristics of the cohort was the percentage of male
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paediatric CD patients. It is consistently reported that rates of CD diagnosis are higher in
paediatric males [14, 19], with one cohort containing 59.4% paediatric male CD patients [19]. In
the IBD cohort utilised here 57% of individuals with paediatric CD were male, and when restricting
to individuals who were included in the subtype model (after patient data filtering, Table 16) 58%
of paediatric CD cases were male. Therefore, the male/female differences in CD paediatric
diagnosis observed could be considered to be representative of patient populations observed in
clinics. There is a possibility that there are some individuals within the dataset that have been
diagnosed with the incorrect subtype. Where misclassification occurs, this is likely to be a CD
patient misclassified as a UC patient [8]. Therefore, it is highly unlikely that the stricturing
endotype classifier would be affected by subtype misclassification. When considering the subtype
classifier, 26 patients that were included had minimal follow-up time of less than year. Of these,
15 patients had a UC diagnosis. In this group of 26 patients, there were no cases of infantile or
VEO IBD, which can be the cases most prone to misclassification [7]. It is unlikely that subtype

misclassification has biased RF algorithm predictions, but this cannot be dismissed as a possibility.

In the full IBD cohort (Table 15) 57% of those with a stricturing endotype were adult-onset CD.
When considering only those included in the stricturing endotype classifier (after patient filtering
by ancestry prediction and relatedness), the adult-onset stricturing endotype patients are 58% of
the total. Stricturing endotype rates have been found to be similar in paediatric and adult
populations after 5 years of follow up [19]. Therefore, this discrepancy is more likely due to more
active and recent recruitment to the Genetics of IBD study in paediatric clinics, leading to a
greater proportion of paediatric onset patients at an early stage in their disease course. Of those
included in the stricturing endotype classifier, 41% of paediatric-onset CD have less than 5 years

follow-up, in comparison to 6% of adult-onset CD patients.

For the disease subtype classification model, the best result was obtained using the autoimmune
gene panel (AUC 0.67). Regardless of the gene panel utilised in ML modelling, NOD2 was always
ranked as the most important gene. This was particularly impressive for the ML model that used
all genes. This random forest had no prior gene filtering based on biological knowledge, and still
singled out NOD2 as an important genetic discriminant of the two IBD subtypes. The different
AUCs achieved through the use of each gene panel highlight a difficult balance when using
biological knowledge as feature selection. Including all possible genes creates problems for ML
modelling, as it increases the dimensionality of the dataset with little to no advantage; many
genes that are highly unlikely to be associated with IBD pathogenesis are included, with the
upside that a few undiscovered genes will also be included. On the other hand, the panel which

solely focuses on genes implicated in IBD does not perform as well as the autoimmune gene
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panel. Clearly, a gene panel that is too restrictive risks missing important genes for classification,

and also important gene-gene linear or non-linear interactions.

Aside from NOD2 being selected as the most discriminant gene in random forest modelling,
another gene present in the NOD-signalling pathway, P2RX7, was also in the top 10 important
genes. This is a key innate immune pathway highly implicated in CD aetiology [102, 458]. Other
genes of note in the top 10 most discriminant genes are WDFY4, TNC and NFATCI. Interestingly,
WDFY4 has previously been reported as a gene associated with systemic lupus erythematosus,
and not CD or UC in a GWAS meta-analysis of risk loci associated with autoimmune diseases [459].
However, in the violin plots, there is a clear tail to the GenePy score distribution in the CD group.
This suggest some rare variation that has a high CADD score is present in a subset of these
patients, potentially rare enough to not be detected in GWAS. WDFY4 is thought to be involved in
autophagy [460]. When levels of the glycoprotein product of TNC, Tenascin-C, were measured in
IBD patients, they were found to have elevated levels in comparison to controls [461]. The gene’s
glycoprotein is involved in arresting T-cell activation and intestinal barrier function. More recently
TNC was associated with IBD during a GWAS performed with an African American IBD cohort
[462]. It is possible that variation in this gene is present in individuals with European ancestry, but
itis rarer in that cohort than in those with African ancestry, again meaning GWAS on a European
cohort would not detect this. Finally, NFATC1 plays a role in T-cell activation, in particular in the
induction of /IL-2 and IL-4 [463]. It was also present in the top 10 important genes in the classifier

that used the IBD gene panel.

Further investigation into the contribution of genes to subtype classification involved producing
SHAP values and visualising the feature importances of an increased number of genes. A trend
which emerged in the SHAP values was that a higher GenePy score (feature value) was associated
with a positive SHAP value, meaning those values contributed to discriminating individuals as CD.
For a few genes, such as IL31RA, NRP1 and LRP1, high GenePy scores were associated with UC
classification, but far more common was a low GenePy score (minimal-to-no variation in that
gene) contributing to discriminating UC cases. This is reflective of current biological knowledge,
whereby the percentage of genetic heritability that has been accounted for is higher for CD than
UC [68]. Through SHAP values and feature importance plots, NOD2 cements itself as the strongest
predictor, with very clear delineation between positive and negative SHAP values. Plotting the
feature importances of the top 50 genes emphasises, after NOD2, how small a contribution each
gene makes to discriminating between each subtype class. This is one reason why a network

analysis approach such as STRING [464] was considered inappropriate. This visualisation of SHAP
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values and feature importances does not reveal any subset within the 739 features selected that
were more important to classification. Therefore, a cutoff cannot be established for a gene
subset, and a very large gene network would be minimally informative. Further, the autoimmune
gene panel is already enriched for genes that are related to similar mechanisms, and finding that
these genes interact would be expected. This is a disadvantage in using panels, as although it
decreases the dimensionality of the input data, the gene choices are predicated on biological

knowledge, and therefore these genes will often be part of related pathways.

A traditional pathway enrichment analysis approach was revealed to be inappropriate for the
data, as the initial autoimmune gene panel was already enriched for key immune pathways,
hence artificially enriching the pathways of the genes selected. After this, the pathways which
were no longer significant were deemed to be more informative. An interesting result from this
pathway enrichment analysis approach was the exclusion of pathways associated with type |
diabetes mellitus, and autoimmune thyroid disease. It has been established that many
autoimmune diseases co-occur [168-170], and this is thought to be due to underlying immune
dysfunction manifesting as more than one autoimmune disease. It is therefore interesting, and
potentially useful for exclusion of genes from further investigation. Whether autoimmune thyroid
diseases and type 1 diabetes co-occur with IBD at lower rates than other autoimmune diseases
could also be a subject for further investigation. However, when performing further investigations
into gene associations it is important to remember that the relationship between the genes
chosen (or not chosen) during feature selection and the chosen modelling outcome is only as
strong as the testing AUC achieved. This is because the testing AUC is representative of the
generalisability, and reliability of the results. The testing AUC achieved, in combination with small
SHAP values and feature importances for genes aside from NOD2, combine to give very limited

confidence in any predictions that could be made with related genes and pathways.

For the stricturing endotype classifier, the best performance was achieved with the random forest
that utilised all available genes (AUC 0.63). It was surprising to see the mediocre performance of
the more targeted autoimmune and IBD panels, where the AUCs were only slightly better than
random. Many factors could be at play here for this classifier to produce a worse performance
than the disease subtype classifier. Firstly, while the patient groups for CD and UC are
approximately as imbalanced as the stricturing endotype groups (1:2 UC:CD, 1:2.5 stricturing:not-
stricturing), the stricturing classifier is performed on only CD patients, and as such this training
data is approximately half the size of the disease subtype classifier’s training data. Additionally,
the gene panels used here were geared towards IBD, and there was no stricturing endotype

specific panel. As established for the disease subtype classifier, the gene panel does play an
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important role. Therefore, a more bespoke panel may produce better results. Further, the not-
stricturing clinical group is not as certain as the stricturing group. Patients within the not-
stricturing group may stricture in the future. The ML model may have predicted some individuals
as stricturing when they are in the not-stricturing group, and thus this is an incorrect classification
currently, but the algorithm’s prediction may be proved correct in the future. It is therefore
reassuring that the ML model was better at identifying individuals in the stricturing class, than the

not-stricturing class (sensitivity 0.59 vs 0.54).

Of the genes selected as the most discriminant by the stricturing endotype classifier utilising all
genes, PREX1, GC, and PLCE1 are of note as having connections to inflammation and the immune
system, or IBD pathogenesis. PREX1 is associated with innate and adaptive immunity and is a
potential target of microRNAs that were found to be overexpressed in CD and UC patients [465].
GCis also known as the Vitamin D Binding Protein (VDBP). Studies have shown lower levels of
VDBP in paediatric IBD patients than healthy controls [466], and higher VDBP concentrations were
associated with an increased risk of disease flare in adult CD patients [467]. SNPs in PLCE1 have
been reported as associated with colorectal cancer [468], and the gene is associated with MAPK

signalling, which can initiate inflammatory processes [469].

When observing the SHAP values produced from the stricturing endotype classifier utilising all
genes, there are some genes where a higher GenePy score (feature value) have a negative SHAP
value, therefore contributing to a not-stricturing classification and implying variation in those
genes is protective. For other genes, the more expected relationship between stricturing
endotype (positive SHAP value) and high GenePy scores is observed. Of note is that for CNTRL,
TEKT5, and PFAS, there are data points for low or lower GenePy scores (feature values), which
correspond to both positive and negative SHAP values. This arguably indicates that this model
isn’t a strong discriminator of the two classes in comparison to the subtype classifier. The
extended feature importance plot of the top 50 genes emphasises the small contribution each of
the 534 features makes to the discriminating stricturing and not-stricturing statuses. Pathway
analysis did not reveal any significantly enriched pathways. As no panel was used, this was an
agnostic approach, where the feature selection had the potential to choose genes that belong to
pathways previously not associated with the stricturing endotype. No significantly enriched
pathways suggests that the highly dimensional nature of the dataset, where the number of genes
(features) greatly exceeds the number of individuals (samples) has led to challenges in feature

selection.
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An analysis of the potential differences in the underlying genomics of IBD patients depending on
age of onset was performed using the random forest ML pipeline. This problem was transformed
into a binary classifier of paediatric (< 18 years of age at diagnosis) and adult onset (18 years and
over at diagnosis). When using all genes, the CD age of onset classifier, and the UC age of onset
classifier attained very high testing AUCs of above 0.9. The top three genes were the same for
both classifiers: MAPT, a gene encoding microtubules that is differentially expressed in the
nervous system [470]; APOL5, a gene encoding a cytoplasm protein that may affect lipid
movement [471]; and PRKRA, a protein kinase that mediates the effects of interferon in response
to viral infection [472]. None of the top 10 genes in these age of onset classifiers were selected in
the IBD subtype classifier. The combined feature importances of the aforementioned genes sum
to 0.18 for the CD age of onset classifier, and 0.20 for the UC age of onset classifier. This goes
against the trend observed in IBD subtype classifiers and stricturing endotype classifiers of small
feature importances attributed to each gene. Given this different trend in gene importances; that
genes are not related to any pathways or functions known to contribute to IBD development; and
that there are no top genes in common between the age of onset classifiers and the IBD subtype
classifier, this classifier was thought to be unreliable, with the high AUC observed potentially the
result of data artifacts. Regardless of cause, these differences in genes do not appear to impact
the IBD subtype classifier. For the autoimmune gene panel classifiers there were 2 overlapping
genes (TNS1 and DNAH12) in the top 10 of the CD and UC age of onset classifiers, and the IBD
subtype classifiers. For the IBD gene classifiers 6 genes overlapped between the three classifiers
(GC, DOCK8, GALC, ERAP1, CD6, and NPC1), although the UC age of onset classifier was unable to
discriminate paediatric and adult IBD (AUC 0.44). Observing the violin plots for all classifiers
produced leads to the possible hypothesis that rare variation, (long tails on the GenePy score
distributions) drive these classifications. This is similar to what was observed for the IBD subtype
classifier. In general, genes appear to have similar distributions with more extreme scores
appearing in both paediatric and adult onset groups, depending on the gene. These more extreme
scores may then go on to drive the IBD subtype classifier, regardless of which age of onset group

is more likely to have these higher GenePy scores.

During identification of adult IBD patient’s stricturing endotype status, the number of clinical
records required to review was reduced by using keyword flags. However, over 1,000 records
were still reviewed manually. The process was time-consuming, and error-prone. The record fields
searched were free-text fields, and as such some records could be more ambiguous than others.
This meant additional checks were required by a clinician in order to verify stricturing endotype

status where it was not clear. This adds to the time required to gather this patient information.
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Another challenge of collecting this data, is its potential to change quickly. Unlike a subtype
diagnosis, CD patients are monitored regularly, and have the potential to develop stricturing
behaviour at any time. The stricturing endotype data collection could therefore become out of
data very quickly. There is a requirement to streamline records for patients in order that
complications like stricturing can be easily identified. Other endotypes could also be investigated
if clinical records were more automated. An example of this is the fistulating endotype, where a
tunnel can form connecting one portion of the bowel to another section, or to the outside of the
body. ML models for these specific prognostic questions cannot be generated unless there is a

quick, reliable way to gather this clinical data.

The random forest ML performed here produced a good AUC for the disease subtype classifier,
and a modest AUC for the stricturing endotype classifier. These results present the real potential
of utilising genomic data and ML for IBD. However, there are additional measures that could be
implemented to potentially improve the algorithm’s performance. Aside from including more
trees (estimators = 10,000) in the random forest, all other hyperparameters were set to the
default for random forest. Optimisation of these hyperparameters, which dictate the rules of the
random forest algorithm, could lead to improved classification results. It is unfortunate that the
stricturing endotype classifier did not perform as well as the disease subtype classifier. Being able
to predict a patient’s disease course, and whether they are susceptible to the development of
specific endotypes and complications would have more impact on patient management and their
quality of life than the prediction of their disease subtype. As discussed above, the use of another
gene panel for the stricturing endotype classifier could lead to better random forest performance,

which would be a step towards personalised medicine.
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Chapter 6 Optimisation of machine learning for
inflammatory bowel disease subtypes and the

Crohn’s disease stricturing endotype

Chapter summary — this chapter focusses on optimising the modelling performed in Chapter 5,
for IBD subtypes, and the CD stricturing endotype. Two hyperparameter tuning methods were
investigated, and their results compared for the different clinical tasks. In addition, for the
stricturing endotype additional optimisation of the genomic and patient input data was

performed.

Chapter contributions — \Whole exome sequencing data was joint-called by Guo Cheng, with all
subsequent processing, and transformation into GenePy scores performed by Imogen Stafford.
The IBD gene panel was generated through literature searches performed by Guo Cheng and
James Ashton. Stricturing gene panel literature search was performed by Imogen Stafford.
Clinical stricturing status and follow-up were assessed by Imogen Stafford and James Ashton.
Modelling and optimisation were performed by Imogen Stafford, with guidance from Mahesan

Niranjan.

Supplementary files can be found at https://doi.org/10.5258/SOTON/D2655.

6.1 Introduction

6.1.1 Hyperparameter tuning

When optimising a machine learning (ML) model to obtain the best results, there are two aspects
of the algorithm to consider: the parameters and the hyperparameters. Parameter optimisation
occurs during the training of a model. These parameters will be defined in relation to the
prediction task and the input data. The parameters of the model will determine how the data is
classified. The input data and prediction task are also used for hyperparameter tuning, but in this
case what is determined are the constraints on how the algorithm can operate to subsequently

classify the data (descriptions of random forest hyperparameters are included in Table 28). For
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example, if data is very noisy, then to classify the data with a random forest it could be beneficial
to set the hyperparameters such that the model does not become too complex. This could be
achieved by reducing the maximum depth of each tree, so that there are few data splits per tree,
or the number of samples required to make a tree split could be increased to prevent many splits
resulting in end nodes with one sample in each. However, it is difficult to know intuitively what

the best hyperparameters could be for the best classification result.

There are several approaches that can be taken in order to obtain the optimal hyperparameters
for a model. An exhaustive grid search will work through all possible combinations of
hyperparameters, training a model for each in order to determine the optimal set. While
thorough, this approach can be very time intensive. The random search method will select a
hyperparameter combination at random and train a model with these hyperparameters. A second
set of hyperparameters will be selected, model trained, and these results are compared. The
algorithm then retains the better hyperparameter combination. This will continue for the number
of hyperparameter trials selected by the user. In both these methods, there are no assumptions
about the potential best hyperparameter, and every trial of a hyperparameter combination is
independent. A downside of the random search method is that, while the algorithm tries to
minimise the cost function, i.e. create the most accurate model, it can find, and subsequently be
trapped, in a local minima. Then, the random search will select a combination of hyperparameters
that will give a good machine learning model result, but not the best that could have been
achieved, if the search had found the global minimum. An alternative to these is a Bayesian
approach. A Bayesian optimisation search will use the performance of the previous
hyperparameter combination to inform the choice of the next hyperparameter combination.
Similar to random search, the number of hyperparameter combinations trialled is selected prior
to tuning. In addition, the Bayesian approach samples points across the cost function to identify
possible minima. It is this combination of trialling all possible minima, and prior knowledge, that
means this approach is almost certain to arrive at the global minimum and give the optimal

hyperparameter combination for the creation of the best model.

160



Chapter 6

Table 28 Description of the function of the random forest hyperparameters optimised in this

chapter.

Hyperparameter Python Variable

Name Name

Definition

Number of estimators | n_estimators

The random forest model is an ensemble
classifier that outputs its classification results
based on many decision trees. This parameter
determines the number of trees generated

during the modelling.

Maximum Tree Depth | max_depth

The maximum number of times that the data is

split (a decision) in each tree.

Minimum samples per |min_samples_split

split

The minimum number of samples required at a

tree node to split the data.

Minimum samples per |min_samples_leaf

leaf

The minimum number of samples required in a
leaf node (a node which classifies the data

present at that node into a category).

Maximum Features per | max_features

split

The maximum number of features in the dataset

to consider for each tree split.

6.1.2 Nested Cross-validation

The principle of cross-validation was introduced in Section 1.3.5, and for hyperparameter

optimisation using cross-validation gives a more generalised and robust estimate of the

performance of each hyperparameter combination. However, a potential issue when using a

simple cross-validation scheme to optimise a model’s hyperparameters, is that during this process

both the parameters determined from the data, and the hyperparameters of the model will be

decided upon. It is therefore possible that information leaks through from the hyperparameter

tuning to decisions regarding model parameters. As a result, the estimated performance of the

tuned model can be inflated. One approach to minimising information leakage is to use a nested

cross-validation scheme illustrated in Figure 44. An inner cross-validation is performed using the
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training data of the outer cross-validation. Therefore, a separate combination of data is used to
determine the optimum hyperparameters. The ML algorithm, and its parameters, is subsequently

trained and tested on the outer cross-validation data.

Train Train Train Train Test
Quter cross

Test — s
validation

Apply optimal — —

hyperparameter Train Train Test

values to test
Inner cross

fold m — validation
(hyperparameter
tuning)
Test

Figure 44 Example of a nested cross-validation scheme that uses 5-fold outer cross-validation and

3-fold inner cross-validation.

This chapter begins with the machine learning pipeline established in Chapter 5, applied to two
classification problems: 1) IBD subtypes; and 2) CD stricturing endotype. For both clinical tasks,
hyperparameter tuning is performed in three different ways: 1) individually, to observe each
hyperparameter’s behaviour, 1) using the Grid Search method, and Ill) using Bayes optimisation.
By selecting the best combination of hyperparameters, the machine learning models become
more tailored to the idiosyncrasies of the genomic data, and by extension the individual clinical
classification problem. For the stricturing endotype classifier, multiple gene panels were trialled to
try and arrive at an optimal gene set that best classified the patients. In addition, a filtered patient
dataset was used in some modelling to observe if requiring a specific number of years of clinical
follow-up in the ‘not stricturing’ group would enable a model to better distinguish between the

stricturing and not-stricturing groups.

162



Chapter 6

6.2 Methods

In Chapter 5, two main GenePy score processing steps were tested: a CADD Phred filter that only
included likely pathogenic variants were included in GenePy scores, and the Fuentes false positive
gene list [442] so that genes with a high pathogenicity burden, but have been identified as not
disease causal, would not be included in modelling. These measures were intended to reduce
noise in the dataset, giving the random forest modelling clearer genomic signals to detect. As
these steps were successful, they were implemented on the GenePy score matrix before
hyperparameter tuning. Other standard pre-processing of the GenePy score matrix and patient
data was performed as in Section 5.2.4 and Section 5.2.5. To begin optimisation of the modelling,
the gene panel representing the genomic data input was determined. For the disease subtype
classification task, this was the autoimmune gene panel, as this data input gave the best random
forest modelling results in Section 5.3.2. For the stricturing endotype classifier, during previous
modelling no one gene set was determined as the optimal one. Therefore, as part of model
optimisation discussed herein, several gene panels were evaluated:
) All genes: the genes that GenePy scores could be generated on.
) Autoimmune panel: the HTG EdgeSeq panel
) IBD panel: the in-house IBD panel that includes genes associated with IBD-like
monogenic illness, and genes identified through assessment and analysis of IBD
GWAS (unpublished data)
V) Extended NOD signalling pathway: comprises genes included in the
KEGG:hsa04621 and REACT:R-HSA-168638 pathways.
V) Stricturing panel (inclusive): includes genes from a literature search of genes
associated with the stricturing endotype, and all genes from (II) and (l11).
Vl) Stricturing panel (exclusive): only includes genes from the stricturing endotype
literature search and does not include genes from (1) and (lll) unless they were

identified in the literature search.

As stated above, a literature search was performed to collate a comprehensive list of genes
implicated in the development of a stricturing endotype. A Boolean literature search was
performed in PubMed. There was a low threshold for including genes in the stricturing panel, to
try and assemble an inclusive list. The search was as follows: (Crohn’s disease OR Crohn disease)

AND (stricture OR stricturing OR fibrotic OR fibrosis) AND (gene OR genetic). Papers from 2016 to
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the present (search performed 20" September 2021) were assessed. Genes were included in the

stricturing panel if they were implicated as a causal or a protective gene.

In addition, the patient data included in the stricturing endotype model was also considered. The
follow up period in the IBD cohort is highly varied. The study that recruits patients to this cohort is
ongoing, so patients recruited in recent months and years will have little or no follow-up data, and
in most cases not enough time will have passed for these patients to develop strictures. This
means there may be some patients that are currently classified as not-stricturing who may
develop a stricturing endotype in the future. Therefore, two patient datasets were used: one
which included all patients, and one that set a follow-up threshold in the not-stricturing group to
exclude patients where their future stricturing endotype status is uncertain. The duration of a
patient’s follow-up time was determined by the date of most recent clinical contact, which was

defined as either pathology results, an outpatient appointment or an admission to hospital.

Feature selection for reduction of the number of genes used in modelling was performed with a
support vector classifier as in the previous chapter. Next, three different hyperparameter tuning
processes were completed:

¢ Individual hyperparameter tuning: five random forest classifier hyperparameters
(max_features, n_estimators, min_samples_split, min_samples_leaf, and max_features)
were tuned utilising the GridSearchCV algorithm, contained within the Python (v.3.7)
package scikit-learn [446]. A non-nested cross-validation approach, with 7 folds was used,
as measuring the generalisability of these models was not required.

e Grid Search hyperparameter tuning: GridSearchCV was used to tune all five
hyperparameters simultaneously, given a limited number of values that each
hyperparameter could take. This was done within a nested scheme, with 7-folds in the
outer cross-validation, and 5-folds in the inner cross-validation.

e Bayes Search hyperparameter tuning: BayesSearchCV from the Python (v.3.7) package
scikit-optimize was used to perform the tuning of the five hyperparameters
simultaneously. The range of values that each hyperparameter could take was wider than
for the Grid Search, as the number of iterations of hyperparameter tuning is less that the
former, exhaustive method. This was done within a nested scheme, with 7-folds in the

outer cross-validation, and 5-folds in the inner cross-validation.

For each hyperparameter tuning process, the model performance was assessed using balanced

accuracy. The aim with individual hyperparameter tuning was to observe how each
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hyperparameter could impact modelling, and to what extent (i.e. the change in balanced
accuracy). For the Grid Search and Bayes Search tuning, the chosen hyperparameter combination
was used in the downstream modelling in order to understand how this changed the
characteristics of the model, and its performance. The hyperparameter tuning described here was

performed separately for both the disease subtype and stricturing endotype classifiers.

The set of tuned hyperparameters from the Grid Search and Bayes Search was then applied to the
whole training set to get a final random forest model, and this model was applied to the test set,
which had not been used for any tuning or training. This resulted in the generation and
assessment of three random forest models: an untuned model, a model tuned using
GridSearchCV, and a model tuned using BayesSearchCV. The random forest model test set
performance was assessed as before using the area under the curve, as well as other output
metrics (precision, sensitivity, specificity and F1 score). Genes that contributed to the model were
analysed. SHAP values [453] were produced for the disease subtype and stricturing endotype
classifiers that had been hyperparameter tuned, as in Section 5.2.7. Pathway analysis with Enrichr
[454] was performed for a hyperparameter tuned stricturing endotype classifier, as in Section
5.2.7. The full pipeline for these methods is illustrated in Figure 45 (see Supplementary Files for

machine learning scripts).
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GenePy Matrix (CADD
Cutoff) — Optimal Gene
Panel

4

Pre-processing

4

Training

Clinical
Patient Data

Dataset

Feature Selection (Linear SVC
with CV)

Training
Dataset with
Selected Genes

l

Hyperparameter Tuning
(Random Forest, Nested CV)

!

Optimal
Hyperparameters

1

— Random Forest

l

A

/  Testing

Trained Random Forest <

Classifier results
on testing dataset

Dataset

Figure 45 Machine learning pipeline with the addition of hyperparameter tuning. The

hyperparameter optimisation step is always performed using random forest as the

base algorithm, with nested cross-validation, but the method of tuning is either Grid

Search or Bayesian Optimisation, depending on the approach being trialled. This

pipeline was performed for both the subtype classifier and the stricturing endotype

classifier.
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6.3 Results

6.3.1 Disease subtype classifier

This classifier includes CD and UC patient data. After pre-processing using ancestry and
relatedness information (full details in Section 5.2.5), 600 CD, and 306 UC patients are included in
the modelling. The clinical characteristics of these individuals are as detailed in Section 5.3. The
training dataset consists of 244 CD, and 244 UC patients (80% of patients, according to the

minority class), and the testing dataset includes 356 CD, and 62 UC patients.

6.3.1.1 Hyperparameter tuning

In Table 29, the values that were trialled for each hyperparameter in each tuning method
(individual hyperparameter tuning, Grid Search, Bayes Search) are given. These are given in a list
format, as unlike other classifiers, such as support vector machine, where the hyperparameter
tuning space is continuous, each hyperparameter for random forest expects an integer as input.
Due to the computational and time costs of Grid Search, fewer hyperparameters values are

included for this tuning process.
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Table 29 Hyperparameter default values, and values tested during individual, grid search and

Bayes hyperparameter tuning for the disease subtype classifier

log2(n_features)

None

log2(n_features)

None

Hyperparameter |Default|Values Tested — Values Tested — |Values Tested - Bayes
Name Individual Grid Search
Hyperparameter
Tuning
n_estimators 100 100, 250, 500, 750, 500, 750, 1000, 100, 250, 500, 750,
1000, 2000, 3000, 5000 1000, 2000, 3000,
4000, 5000, 6000, 4000, 5000, 6000,
7000, 8000, 9000, 7000, 8000, 9000,
10000 10000
max_depth None |1-30, None 5, 10, 20, 30, 1-30, None
None
min_samples_split |2 2,3,4,5,6,7,8,9,10 |2,3,4,5 2,3,4,5,6
min_samples_leaf |1 1,2,3,4,5,6,7,8,9, |1,2,3,4,5 1,2,3,4,5,6
10
max_features sqrt sqrt(n_features), sqrt(n_features), |sqrt(n_features),

log2(n_features)

None

Each hyperparameter was tuned individually to gauge the potential impact each one could have

on the performance of the random forest model (Figure 46). Overall, changing individual

hyperparameter values resulted in only small changes to the cross-validated balanced accuracy

achieved by the models. Minimum and maximum balanced accuracies attained by specific

hyperparameter values were often within 0.1 of each other. The balanced accuracy range was

particularly small for the minimum samples per leaf, and maximum depth hyperparameters.

Hyperparameter tuning for the number of estimators had the expected trend of the balanced

accuracy increasing sharply as the number of estimators increased, before reaching a plateau

(Figure 46B). The minimum samples per leaf hyperparameter also exhibited a trend towards

poorer model performance as the number of samples required at a leaf increased (Figure 46D). In
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contrast, the minimum samples per split hyperparameter did not have a clear trend that indicated
an optimal value, or range of values (Figure 46A). The most successful hyperparameter, by CV

balanced accuracy, was the maximum feature number. Setting this to “None” achieved a balanced

accuracy of 0.6 (Figure 46C).

Individual Hyperparameter Tuning, Autoimmune Gene Panel
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Figure 46 Average balanced accuracy score across the 7 cross-validation (CV) folds for individually

tuned hyperparameters (disease subtype classifier).

Using an exhaustive Grid Search, a set of values for each hyperparameter was tuned together

with nested cross-validation. Chosen hyperparameters for each inner cross-validation fold and the
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corresponding average balanced accuracy across five folds, and the balanced accuracy in each of
the outer cross-validation folds can be viewed in Table 30. The average balanced accuracy across
all 7 outer folds was 0.489 (standard deviation 0.087). There was variation in the
hyperparameters chosen, particularly for the minimum number of samples per leaf
hyperparameter, and the number of estimators hyperparameter. The optimal hyperparameters
were chosen according to the balanced accuracy of the corresponding outer cross-validation fold.
Here, the best outer fold had a balanced accuracy of 0.643 (fold 5), and the following
hyperparameters were selected: maximum depth = 5, maximum features = none, minimum

samples per leaf = 1, minimum samples per split = 5, and number of estimators = 1000.

Table 30 Hyperparameters selected by nested grid search and corresponding balanced accuracy in

inner and outer cross-validation folds for the disease subtype classifier.

Fold |Outer Fold |Inner CV Optimal Hyperparameters
Balanced Balanced . .
Max |Max Minimum Minimum Number of
Accuracy Accuracy ]
Depth |Features |Samples per |Samples per |Estimators
Leaf Split
1 0.500 0.533 5 log2 5 2 1000
2 0.452 0.706 5 None 5 2 5000
3 0.500 0.500 5 log2 4 2 500
4 0.500 0.560 10 log2 1 5 1000
5 0.643 0.525 5 None 1 5 1000
6 0.325 0.639 5 None 1 2 750
7 0.500 0.562 5 None 4 2 750

Next, the Bayes Search method with 60 iterations was used to optimise the hyperparameters. The
same nested cross-validation scheme of 5-folds in the inner cross-validation, and 7-folds in the
outer cross-validation was used. The results of this optimisation, with the best inner cross-
validation balanced accuracy and corresponding hyperparameters, and the balanced accuracy

when applying these hyperparameters to the outer fold test set, can be viewed in Table 31. All
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hyperparameters, except the maximum number of features, varied widely across the different
outer folds. The average balanced accuracy across the outer folds was 0.569 (standard deviation
0.034). The best balanced accuracy in the outer fold was 0.610 in fold 5. Therefore the chosen
hyperparameter values from Bayes optimisation were: maximum depth = 27, maximum number
of features = None, minimum samples per leaf = 1, minimum samples per split = 4, and 250

estimators.

Table 31 Bayes search nested CV results for the disease subtype classifier, with balanced accuracy

in inner and outer folds for each fold’s selected hyperparameter combination.

Fold | Outer Fold |Inner CV Optimal Hyperparameters
Balanced Balanced . .
Max Max Minimum Minimum Number of
Accuracy Accuracy .
Depth |Features |Samples per |Samples per |Estimators
Leaf Split
1 0.538 0.603 6 None 5 6 250
2 0.523 0.628 28 None 4 3 8000
3 0.548 0.611 22 None 2 3 750
4 0.585 0.578 13 None 3 2 250
5 0.610 0.604 27 None 1 4 250
6 0.559 0.624 24 None 6 6 100
7 0.619 0.571 11 Sqrt 1 5 5000
6.3.1.2 Application of optimal hyperparameters to random forest modelling

After the optimal hyperparameters were selected by Grid Search and Bayes Search methods, the
random forest was trained with these hyperparameters on the whole training set. A comparison
of untuned and tuned random forest model results on the test set is recorded in Table 32. The
only hyperparameter value that remains consistent across all three models is
minimum_samples_leaf=1. Both tuned models selected maximum features to be none, meaning
there is no limit on the size of the feature subsample in each estimator. Therefore, the algorithm

is free to include any number of genes in each split of a tree in the random forest.
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Neither the Grid Search tuned, nor the Bayes Search tuned models result in an improvement in
the AUC achieved. The Grid Search tuned model has a reduction in sensitivity to identifying the
Crohn’s Disease class, in comparison to the untuned model (0.61 untuned recall versus 0.50 grid
search recall). However, the grid search model is much more sensitive to the ulcerative colitis
class (0.63 versus 0.74). Interestingly, this coincides with an almost tenfold increase in the feature
importance of NOD2, when comparing the untuned model to the Grid Search tuned model (Figure
47A and Figure 47B). This trend in the sensitivity at which the model can identify each class is
similar in the Bayes Model, but to a lesser extent. This coincides with a fivefold increase in the
importance of NOD2 (Figure 47A and Figure 47C). Of the top 10 most important genes, three in
the untuned model do not appear in the tuned models: TNS1, TNC, HTT. The top 10 important
genes stay the same for the tuned models (although the order changes), except for WDFY4 in the

Grid Search tuned model, which is replaced by P2RX7 in the Bayes Search tuned model.
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Table 32 Disease subtype classifier results on the test data for the untuned ML model, the tuned with Grid Search ML model ,and the tuned with Bayes Search ML model

(features = 739).

UNTUNED

TUNED WITH GRID SEARCH

TUNED WITH BAYES SEARCH

Hyperparameters Selected

Hyperparameters Selected

Hyperparameters Selected

Max Depth None Max Depth 5 Max Depth 27
Max Features sqrt(n_features) Max Features None Max Features None
N Estimators 10,000 N Estimators 1000 N Estimators 250
Min Samples Leaf 1 Min Samples Leaf 1 Min Samples Leaf 1
Min Samples Split 2 Min Samples Split 5 Min Samples Split 4
Machine Learning Results Machine Learning Results Machine Learning Results

Precision Recall |Specificity F1 Precision Recall |Specificity F1 Precision Recall |Specificity F1
CD 0.90 0.61 0.63 0.73 |CD 0.92 0.50 0.74 0.64 |CD 0.92 0.57 0.71 0.70
uc 0.22 0.63 0.61 0.33 |UC 0.20 0.74 0.50 0.32 |UC 0.22 0.71 0.57 0.34
Average |0.80 0.61 0.63 0.67 |Average |0.81 0.53 0.71 0.60 |Average |0.81 0.59 0.69 0.65
AUC 0.67 AUC 0.652 AUC 0.656
Top 10 NOD2, DNAH12, TNS1, WDFY4, P2RX7, |Top 10 NOD2, GZMA, NFATC1, E2F4, HHAT, GALC, |Top 10 NOD2, E2F4, SPATS2L, DNAH12, NFATC1,
Genes SPATS2L, TNC, HTT, E2F4, NFATC1 Genes ATM, SPATS2L, DNAH12, WDFY4 Genes GALC, GZMA, ATM, HHAT, P2RX7
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Disease Subtype Classifier: Feature Importance
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Figure 47 The relative feature importances of the trained random forest using the autoimmune
gene panel for the A) untuned model, B) model with hyperparameters tuned by Grid

Search, C) model with hyperparameters tuned by Bayes Search

A comparison of the SHAP values of the untuned subtype classifier and the Bayes Search tuned
classifier, both utilising the autoimmune gene panel, is shown in Figure 48. Genes determined to
have SHAP values that impacted subtype discrimination remained the same, with the exception of
ABCA1, IL31RA and TRIM63. In the model tuned using Bayes Search, there are considerably higher
SHAP values for NOD2, both for the long tail of higher GenePy scores with positive SHAP values
contributing to CD classification, and the negative SHAP value cluster which contributes to UC

classification.
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Subtype Classifier Features, Autoimmune Gene Panel, untuned Subtype Classifier Features, Autoimmune Gene Panel, Bayes tuning
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Figure 48 SHAP values for top discriminatory genes, for the disease subtype classifier utilising the autoimmune gene panel. A) Untuned model as shown in Chapter 5; B)
after hyperparameter tuning performed using Bayes Search. A high feature value is equivalent to a high CADD score and vice versa. A positive SHAP value

indicates the feature makes a contribution to the positive class, which was coding as presence of a stricture.
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6.3.2 Stricturing endotype classifier

6.3.2.1 Optimal gene set and patient data to include

The literature search identified 1,023 genes for inclusion in the stricturing gene panel. Some
studies listed specific genes that contained implicated variants, such as NOX4 being identified as
protective of fibrotic disease [473], and mouse models showing mutations in IL33 and ST2
promoted intestinal fibrosis [474]. Other studies suggested full pathways as implicated in the
development of a stricturing endotype; these included the JAK-STAT, NOD and Nfr2-ARE signalling
pathways. The full list of identified genes and their source(s) are detailed in the Supplementary
Files. This supplementary information also documents where genes were implicated in stricturing

by multiple sources.

A clinical follow-up threshold for the not-stricturing group of Crohn’s disease patients was
required for one of the patient datasets. There is an absence of clear clinical guidance on how
many years of follow-up would be required in order to determine that a patient would not
develop the stricturing endotype. This threshold was arbitrarily set to maximise the follow-up
time in the not-stricturing group, while not reducing the sample size. This dataset is imbalanced,
with stricturing being the minority class. Due to this, an 8-year follow-up threshold could be set
for the not-stricturing group while retaining the same sample size for the balanced training data
as in Chapter 5 (136 stricturing, 136 not-stricturing). Roughly equal numbers of stricturing and
not-stricturing patients were included in the testing data. The distribution of clinical follow-up
time for the stricturing and not-stricturing patient groups is visualised in Figure 49, annotated

with the 8-year follow-up threshold.
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Figure 49 Histogram of years of clinical follow-up for the stricturing and not-stricturing patient

groups (n=553, as some CD patients did not have follow-up time data available).

An important aspect to take into account when considering sub-setting the patient data that goes
into the stricturing endotype model, is how this might affect the distribution of the data with
regards to age of diagnosis. As paediatric patients have, in general, had less time to develop
stricturing disease behaviour, the data could potentially be skewed towards the patients with an
adult age of onset, who have had more time to develop the endotype. Further, these patients
may have been diagnosed in a time prior to the change in treatment approach towards earlier use
of biologic therapies, which have been suggested to delay disease progression to stricturing in
paediatric patients [475]. In Table 33, the breakdown of the number of patients with a paediatric
age of onset, in each class, for the two different datasets, is shown. The follow-up time filter for
the not-stricturing class means the percentage of patients with paediatric onset in the stricturing
and not-stricturing classes is even. Further clinical detail for the dataset with all data, and the

dataset filtered by follow-up time are shown in Table 34.

177



Chapter 6

Table 33 Numbers of patients in each class and the percentage of paediatric onset CD (< 18 yo)

per classifier category, depending on the patient set used.

Dataset Stricturing Class | Not-stricturing |Total Data
(% paediatric | Class (% paediatric
onset) (% paediatric onset)

onset)

All Data 170 (42%) 419 (61%) 589 (55%)

Filtered Data (not-stricturing class > 8 yrs

clinical follow-up)

170 (42%)

193 (44%)

363 (43%)

Table 34 Clinical characteristics of the full dataset (as used in Chapter 5), and the filtered data,

which imposes an 8 year follow-up requirement on individuals in the not-stricturing

endotype category. Age at diagnosis information was unavailable for two patients in

the full data, and one patient in the filtered data.

All Data Filtered Data (not-stricturing
class > 8 yrs clinical follow-
up)

PaediatricIBD |Adult IBD Paediatric IBD |Adult IBD

(<18 yrs) (=18 yrs) (<18 yrs) (=18 yrs)

N 332 255 157 205
Median age at diagnosis (range) |13 (1-17) 31(18-82) |13(1-17) 30(18-82)
Stricturing  |Yes 71 98 71 98
Endotype
No 261 157 86 107
Sex Male 206 113 90 87
Female 126 142 67 118

Six different gene panels were used in modelling for the two different patient datasets: 1) all

genes, ) the autoimmune gene panel, 1ll) the IBD gene panel, IV) the extended NOD-signalling
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pathway panel, V) the stricturing (inclusive) panel, which also includes panels (IllI) and (1V), and VI)
the stricturing (exclusive) panel, which only includes genes identified in the literature search
described above. The gene panels are available in the Supplementary Files. The overlap between
gene panels are shown in Figure 50. Not all genes listed in each panel could be included in the
modelling, as the generation of GenePy scores is based on a reference database which is not
exhaustive. In addition, the genetic data pre-processing steps, in particular removal of genes with
invariant GenePy scores, mean that the genes included are also dependent on the patient data
included. In Table 35, the number of genes in each panel, for both patient datasets documented

in Table 34, is recorded.

Al IBD

NOD-signalling

Stricturing (exclusive) pathway

Figure 50 Venn diagram displaying the overlap between the stricturing exclusive panel, the
autoimmune gene panel, the IBD gene panel, and the extended NOD-signalling
pathway (as labelled from left to right on the diagram. The stricturing (inclusive)
panel is not included for clear visualisation, as this includes the genes from the first
three panels listed. As the extended NOD-signalling pathway panel contains no genes
unique to this panel, the stricturing (inclusive) panel also contains within it the NOD-

signalling pathway gene panel.

179



Chapter 6

Table 35 Number of Genes in each of the six gene panels used for random forest modelling of the
stricturing endotype. Records total panel genes, genes for which GenePy scores were

available, genes after pre-processing for all patient data (n=589), and genes after pre-

processing for the patient data where not-stricturing patients are only included if

they have over 8 years of follow-up (n=363).

Gene Panel Total Genes with Genes after pre- N after pre-processing

Genes GenePy processing (all (patient data with
Scores patient data) follow-up cut-off)

All genes 15,669 15,669 14,342 13,490

Autoimmune gene 2,017 1,598 1,484 1,397

panel

IBD gene panel 821 499 467 439

Extended NOD 180 144 132 121

signalling pathway

panel

Stricturing (inclusive) | 3,155 2,368 2,207 2,085

panel

Stricturing 1,023 847 795 754

(exclusive) panel

After patient data pre-processing, 589 CD patients were included in modelling, with 272 patients
(136 stricturing, 136 not-stricturing) in the training dataset, and 317 patients (34 stricturing, 283
not-stricturing) in the testing dataset. In Table 36, the test set results of the random forest
classifier for the six different gene panels are detailed. For these experiments, the classifier with
the highest performance was the model using all available genes (AUC 0.63), and the second-best
performing classifier used the NOD signalling pathway genes (AUC 0.58). The classifier that
utilised all genes was more accurate in positively identifying patients in the stricturing class
(sensitivity 0.59), in comparison to the not-stricturing class (sensitivity 0.54). This was the
opposite for the classifier using the NOD signalling pathway panel, which had the highest
sensitivity for the not-stricturing class (0.60). There was little overlap in the top 10 genes of each

model, which was particularly surprising when considering the autoimmune panel, IBD panel, and
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stricturing panel (inclusive), as the former two gene panels are included in the latter. The most
overlap in the top 10 genes occurred between the two stricturing panels, with three of the
overlapping genes belonging to the collagen family. In total, eight genes appear in the top 10
genes of two classifiers, including NOD2, DOCK8 and CNTRL. Only two genes appeared in the top
10 genes of three classifiers: P2RX7 and GC.
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Table 36 Random forest results for the classification of CD patients by stricturing endotype using different gene panels. All metrics from algorithm performance on the

testing dataset (NFS = number of features selected, NS = not-stricturing class, S = stricturing class)

All genes Autoimmune gene panel IBD gene panel
No. Features 534 No. Features 411 No. Features 284
Precision Recall Specificity F1 Precision Recall Specificity F1 Precision Recall Specificity F1
NS 0.92 0.54 0.59 0.68 |NS 0.9 0.51 0.53 0.65 |NS 0.89 0.45 0.56 0.60
S 0.13 0.59 0.54 022 |S 0.12 0.53 0.51 0.19 |S 0.11 0.56 0.45 0.18
Average 0.83 0.54 0.58 0.63 |Average 0.82 0.51 0.53 0.60 |Average 0.81 0.46 0.55 0.55
AUC 0.627 AUC 0.518 AUC 0.551

Top 10 Genes

PREX1, CNTRL, MAPT, FAT4, GC, AKR7L, PLCE1,
PKD1L3, ACACB, PTPRQ

Top 10 Genes

TNS1, P2RX7, SPATS2L, LOXL2, BAZ28,
DNAH12, ANK3, FLT4, SORBS1, WDFY4

Top 10 Genes

GC, CNTRL, DOCKS, UTP20, NPC1, GALC, GSDMA,
NOD2, ERAP1, CD6

NOD-signalling pathway gene panel

Stricturing gene panel (inclusive)

Stricturing gene panel (exclusive)

No. Features 103 No. Features 462 No. Features 349

Precision Recall Specificity F1 Precision Recall Specificity F1 Precision Recall Specificity F1
NS 0.92 0.60 0.56 0.73 |NS 0.90 0.53 0.53 0.67 |NS 0.87 0.52 0.32 0.65
S 0.15 0.56 0.60 0.23 |S 0.12 0.53 0.53 0.19 |S 0.08 0.32 0.52 0.12
Average 0.84 0.60 0.56 0.68 |Average 0.82 0.53 0.53 0.61 |Average 0.78 0.50 0.34 0.60
AUC 0.578 AUC 0.536 AUC 0.396

Top 10 Genes

P2RX7, NLRP3, NOD2, TP53BP1, PLCB3, NOD1,
GPRC6A, RNASEL, IRAK2, MAPK12

Top 10 Genes

CNTRL, FAT4, GC, TNS1, COL6A2, DOCKS,

COL4A4, BMP1, P2RX7, COL27A1

Top 10 Genes

FAT4, COL6A2, COL4A4, COL27A1, P2RX7, BMP1,
COL15A1, LAMC3, TNC, DNAH17
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In Table 37, the ML results of these same gene panels are detailed, but using the patient data with
a follow-up threshold of 8 years in the not-stricturing group. The training dataset included 272 CD
patients (136 stricturing, 136 not-stricturing), and the testing dataset included 91 CD patients (34
stricturing, 57 not-stricturing). Here, the best performing classifier used the IBD gene panel (AUC
0.63), while the next best performing classifier used the stricturing panel (inclusive), which does
contain the IBD gene panel (AUC 0.60). Classifiers using gene panels specifically aimed at
identifying the stricturing endotype (both the inclusive and exclusive panels) had the highest
sensitivity for identifying not-stricturing patients, although these classifiers had a comparatively
poorer performance overall. There was more overlap in the top 10 genes across classifiers in this
analysis. The all-genes classifier was the only classifier in this analysis section where no gene from
the top 10 was featured in another classifier. Apart from the all-genes classifier, NOD2 appeared
in every other classifier as an important gene. Another gene common to four classifiers was the
NOD-signalling pathway gene P2RX7. There were 11 genes in total that appear in at least two
classifiers, and every gene in the top 10 of the stricturing panel (inclusive) appeared in another
classifier. There is slightly more consistency in the top genes selected here, in comparison to the

analysis that used all patient data. Overall, 26 genes appear in both Table 36 and Table 37.

When choosing the patient data and gene panel which gave the best model, the overall AUC, as
well as the sensitivity with which each class could be identified was considered. Some models h