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Abstract: This study investigates the impact of magnesium oxide (MgO) nanoparticles on the thermo-
oxidative aging behavior of blends of polypropylene (PP) and ultra-high molecular weight polyethy-
lene (UHMWPE). The samples, both unfilled and filled with MgO, were aged at 120 ◦C for varying
durations of up to 672 h. The observed structural changes are not monotonic; recrystallization leads
to the increased crystallinity and melting temperature of UHMWPE until 336 h. Beyond this, the
consumption of the antioxidant leads to chain scission which, in turn, results in decreased crystallinity.
The presence of carbonyl groups indicates chemical changes and, as such, the carbonyl index is used
as an indicator of aging, with subsequent changes to charge transport. During thermal aging, the
interaction between PP and UHMWPE chains at interfaces is enhanced, leading to improved compat-
ibility and the emergence of a new single crystallization peak in PP/UHMWPE blends. Although
MgO does not show evidence of elevating the crystallization temperature, implying the absence of
enhanced nucleation, it acts as a compatibilizer, improving interfacial interaction compared with the
unfilled blend counterparts. MgO hinders the breakage of molecular structures and impedes the
diffusion of oxygen. This, in turn, results in nanocomposites filled with MgO having reduced their
charge accumulation and conductivity, thus delaying the aging process compared to PP/UHMWPE
blends without nanofiller.

Keywords: carbonyl index; chain scission; charge transport; magnesium oxide; polypropylene;
recrystallization; thermo-oxidative aging; ultra-high molecular weight polyethylene

1. Introduction

Thermo-oxidative aging is a process of the degradation of polymer-based materials
caused by a combination of elevated temperatures and exposure to oxygen as a function of
time. The accelerated thermo-oxidative aging of insulation materials, such as cross-linked
polyethylene (XLPE), has been extensively studied. Kim et al. [1] demonstrated that aging
XLPE at 120 ◦C led to the formation of carbonyl groups, altering the material’s melting
behavior and indicating chain scission and oxidation reactions, resulting in decreased
resistivity. The thermo-oxidative process involves the breaking of carbon and hydrogen
bonds, depending on the concentration of antioxidants in XLPE, leading to the production
of hydrogen peroxide, which further reacts to produce carbonyl groups [2]. The presence of
these carbonyl groups then increases charge accumulation, leading to increased polarization
at low frequency, and consequently, higher dielectric losses at a low frequency is associated
with significant cable aging [3].

Polypropylene (PP) allows for a potentially higher operating temperature than XLPE,
up to 160 ◦C. The high melting point potentially eliminates the need for crosslinking agents,
thus prevents by-product formation and eliminates the requirement for lengthy degassing
procedures [4]. Additionally, PP being a thermoplastic means it is more easily recyclable
at the end of its service life compared to XLPE [5]. PP is also a non-polar polymer with
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good hydrophobicity, making it suitable for cable insulation that maintains consistent
performance under various humidity conditions, particularly for submarine cables [6]. In
terms of its dielectric properties, PP possesses a high breakdown strength, low dielectric
permittivity, and high DC volume resistivity [7].

However, using PP without any additives in HV cables is not feasible due to its
brittleness resulting from its high glass transition temperature [8]. Additionally, PP has
significantly lower thermal conductivity compared to PE-based compounds [9], limiting
the potential benefits of its higher melting point. In a previous study [10], the addition
of 50 weight percentage (wt.%) of ultra-high molecular weight polyethylene (UHMWPE)
powder into PP matrix increased thermal conductivity from 0.21 W/m·K to 0.31 W/m·K,
primarily attributed to the long molecular chains of UHMWPE. The incompatibility be-
tween PP and UHMWPE, as well as the weak bonding strength of their interfaces resulted
in enhanced elasticity. However, this weak boundary was the main factor contributing to
the reduction in breakdown strength.

The addition of magnesium oxide (MgO) nanoparticles of up to 3 wt.% in PP/UHMWPE
blends was found to further improve the dielectric, thermal, and mechanical perfor-
mances [10]. PP/UHMWPE/MgO nanocomposites resulted in an increase in thermal
conductivity of up to 0.33 W/m·K. Due to the lack of a connected network at these low
MgO levels, the enhanced thermal conductivity of nanocomposites is limited. The addition
of MgO nanoparticles acts as a compatibilizer between two immiscible polymer blends,
enhancing the interaction at the interface and further improving elasticity and elongation
at break when compared to PP/UHMWPE blends. Moreover, this enhanced interfacial
interaction results in an increase in breakdown strength.

While the aforementioned work [10] showed that PP/UHMWPE/MgO nanocom-
posites have some potential as insulation materials for HV power cables, their long-term
performance requires further investigation. The influence of nanoparticles on the thermo-
oxidative process and their impact on dielectric performance were studied in XLPE samples
with and without MgO nanoparticles that underwent thermal aging at 135 ◦C for 720 h [11].
The calculated carbonyl index (CI) for the nanocomposite was 1.04, whereas it reached
1.68 for neat XLPE. This resulted in a 38% decrease in breakdown strength for neat XLPE,
while the decrease in the nanocomposite was 20% compared to its unaged samples. In
addition, low-density polyethylene (LDPE)-based nanocomposites containing 1 wt.% of
silica (SiO2), zinc oxide (ZnO), and MgO nanoparticles were subjected to aging at 90 ◦C
for 1848 h, as studied in [12,13]. Among these nanocomposites, LDPE/MgO displayed the
best performance.

This study aimed to explore the structural changes and chemical characteristics that
may impact the dielectric performance of PP/UHMWPE blends with and without the
inclusion of MgO nanoparticles. PP/UHMWPE blends and PP/UHMWPE/MgO nanocom-
posites are prepared using the solvent blending method. This approach simplifies achieving
uniformly dispersed nanoparticles within a polymer matrix when using a suitable sol-
vent [14,15]. Furthermore, preparing polymer-based materials with UHMWPE using
high-temperature melt-mixing methods could result in the molecular entanglement or
breakage of the long molecular chains of UHMWPE due to high shear stresses [16]. These
would result in a lesser increase in thermal conductivity when compared to solvent blend-
ing [17,18]. The prepared samples are subjected to thermal aging at 120 ◦C for different
periods ranging from 0 to 672 h. Structural characteristics are analyzed using differential
scanning calorimetry (DSC) and X-ray diffraction (XRD). Chemical modifications are inves-
tigated using Fourier transform infrared (FTIR) spectroscopy. The dielectric performance
of the samples is evaluated by measuring the space charge dynamics and DC conductivity.

2. Materials, Sample Preparation, and Aging Procedure
2.1. Materials

The samples used in this study were produced from PP pellets (427,861) with a
melting temperature of approximately 160–165 ◦C and an average molecular weight of
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approximately 340,000 g/mol, as well as UHMWPE powder (429,015) with an average
molecular weight ranging from 3 × 106 to 6 × 106 g/mol. Both systems were obtained from
Sigma Aldrich (Dorset, UK). MgO nano powder, with a mean particle size of 10–30 nm,
was purchased from SkySpring Nanomaterial, Inc. (Houston, TX, USA). The silane cou-
pling agent, 3-aminopropyl triethoxy (EA), was obtained from Aladdin Industrial Inc.
(Shanghai, China).

2.2. Sample Preparations and Aging Procedure

The technique for the surface functionalization of MgO with EA using an anhydrous
method was established in [19]. The selection of ethoxy-modified MgO nanoparticles
at 1 wt.% is based on previous works [19,20]. Under both dry and humid conditions,
better dielectric properties were observed in EA-modified systems, when compared to
TiO2 and MgO nanoparticles modified with 3-trimethoxysilyl propyl methacrylate and
3-aminopropyl trimethoxy silanes in a PP matrix.

PP/UHMWPE blends and PP/UHMWPE/MgO nanocomposites were prepared using
a solution blending method. In the blends, a ratio of 50 wt.% of PP and UHMWPE was
mixed, while in the nanocomposites, 1 wt.% of MgO replaced an equal weight of UHMWPE
in the PP/UHMWPE mixture. Surface-modified MgO nano powder was initially sonicated
in 5 mg/mL of xylene for 30 min to break up agglomerations before adding it to a PP/xylene
mixture. The UHMWPE powder was then mixed with 245 mg/mL of xylene in the PP/MgO
solvent after 1 min of continuous stirring. The mixture was then stirred for an additional
minute before being poured into 90 mL of methanol. The resulting precipitated solid was
first dried for 24 h in a fume cupboard and then fully dried for 72 h in a vacuum oven at
80 ◦C. The final, dried product was pressed at 180 ◦C to produce plates with a thickness of
200 ± 10 µm and a diameter of 50 mm for most tests (for measurements of DC conductivity,
70 mm diameter specimens were used instead). Finally, the films were quenched in distilled
water at room temperature (~20 ◦C), and then stored in a desiccator until further use.

The samples, prepared as described earlier, underwent thermal aging in a fan oven
(Memmert UF 30) at 120 ◦C for various durations from 0 to 672 h. Throughout the thermal
aging, both surfaces of each sample were exposed to the air, to ensure uniform oxidative
reactions across the sample thickness. After the completion of the aging process, the
samples were allowed to naturally cool down to room temperature. Subsequently, the aged
films were stored in a vacuum desiccator to minimize the influence of ambient humidity
on any subsequent measurements. The composition of each sample and its corresponding
aging conditions are summarized in Table 1.

Table 1. Composition of each sample and its aging conditions.

Materials
Compositions (wt.%) Temperature

(◦C)
Aging Time

(Hours)PP UHMWPE MgO

PP/UHMWPE 50 50 -

120

Unaged
168
336
504
672

PP/UHMWPE/MgO 50 49 1

The uniformity of such an aging approach is evinced by Tantipattarakul et al., who
aged blends of LDPE/high-density polyethylene (HDPE) with a thickness of 200 µm at
120 ◦C for 720 h [21]. The authors used confocal Raman mapping to measure the carbonyl
index across the sample thickness and found negligible variation in Raman scattering
throughout the sample thickness.
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3. Characterization Techniques

Alterations in the crystalline structure as a consequence of thermal aging were investi-
gated via XRD with a Bruker Power X-ray D2 Phaser. Diffraction patterns were recorded
over a 2θ range of 10◦–80◦, with an incremental step size of 0.0202◦, employing a Cu Kα

X-ray source with a wavelength of 1.54184 Å, and operating at 30 kV and 10 mA.
The melting and crystallization behavior of the PP and UHMWPE phases was charac-

terized using a Mettler Toledo DSC-820 differential scanning calorimeter. Samples weighing
~5 mg were placed in aluminum containers and were then heated from 20 ◦C to 200 ◦C,
held at 200 ◦C for 5 min, before finally being cooled back to 20 ◦C. Both the heating and
cooling processes were carried out at a rate of 10 ◦C/min in a nitrogen atmosphere.

FTIR spectra in attenuated total reflection (ATR) mode were acquired using a Thermo
Scientific Nicolet iS5 FT-IR Spectrometer equipped with iD7 AR diamond crystal plates.
The spectral data were collected over a range of 525–4000 cm−1 and each spectrum was
generated by averaging 16 scans at a resolution of 4 cm−1.

Space charge dynamics data were acquired using a pulsed electro-acoustic (PEA)
system following the IEC/TS 62,758 standard [22]. A pulse signal with an amplitude of
600 V, a pulse width of 5 ns, at a frequency of 400 Hz was applied. To enhance the acoustic
signal, silicone oil was applied between the samples and the electrodes. The samples were
initially calibrated at a +5 kV/mm electric field at room temperature and then tested for
1 h under an applied electric field of +40 kV/mm (poling). Immediately afterwards, each
sample was short-circuited, and data were acquired for an additional hour (de-poling). All
collected space charge data were analyzed using LabVIEW.

DC conductivity measurement was performed following the ASTM D257-14 stan-
dard [23]. The samples were placed between two gold-coated electrodes, and the measuring
electrode had a 30 mm diameter guarding. The conduction current was monitored every
1 s for a duration of 1 h using a Keithley 486 picometer. The measurements were carried
out at room temperature during a period of 3600 s, using an applied field of +40 kV/mm,
and the data were collected and analyzed using LabVIEW.

4. Results
4.1. Thermal and Crystal Evaluations

As no significant changes in cross-section morphology were observed in scanning
electron microscopy (SEM) between unaged and thermo-oxidatively aged samples, the
analysis of the morphology was omitted from this paper. This is consistent with the
SEM results presented in [24,25], which suggest that subjecting PP to thermal aging at
120 ◦C has no impact on the structure of PP. Figure 1 shows the XRD patterns acquired
from PP/UHMWPE and PP/UHMWPE/MgO samples after thermal aging at 120 ◦C for
durations ranging from 0 to 672 h. The XRD diffractogram of neat PP displays distinct
peaks at 2θ = 14.1◦, 17◦, 18.6◦, 21.3◦, 21.8◦, 25.6◦, and 28.7◦, which match with the (110),
(040), (130), (111), (131)/(041), (060), and (220) crystal planes of the α-crystal (monoclinic)
structure [26,27]. The diffractogram of UHMWPE shows peaks at 2θ values of 21.6◦, 24◦,
and 36.3◦, which correspond to the (110), (200), and (020) crystal planes of orthorhombic
PE crystals [28]. The presence of face-centered cubic structured MgO nanoparticles is
indicated by the peaks located at 36.9◦ (111), 42.9◦ (200), and 62.3◦ (220) [29]. In the
unaged PP/UHMWPE blends and PP/UHMWPE/MgO nanocomposites, the presence of
UHMWPE and MgO does not affect the crystal forms of PP. Notably, there are no distinct
peaks corresponding to the β(300) crystal form (2θ = 16◦) in the PP phase, which is different
from other reports [30,31], where UHMWPE was observed to induce the β(300) crystal form
in PP. However, in both types of samples, the (110) reflection in UHMWPE is combined
with the (111) and (131)/(041) reflections of PP.
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Figure 1. XRD diffractogram of (a) PP/UHMWPE and (b) PP/UHMWPE/MgO systems, thermally
aged at 120 ◦C from 0 to 672 h.

Due to thermal aging, the crystalline structures in both the PP/UHMWPE and
PP/UHMWPE/MgO samples shift towards lower diffraction angles, specifically beyond
336 h. The relationship between the interplanar spacing (d-spacing) between atoms and
the diffraction angle can be expressed by Bragg’s law (2d sin θ = nλ), where λ represents
the wavelength of XRD [32]. It can be inferred that the interplanar spacing is inversely
related to the angle of diffraction. Thus, based on the XRD spectra in Figure 1, it is evident
that aging for more than 336 h leads to an increase in interplanar spacing. This increase
suggests an expansion of the lattice in the polymers. Comparing PP/UHMWPE blends
to PP/UHMWPE/MgO nanocomposites demonstrates that the XRD peaks exhibited a
similar trend. This observation aligns with the findings in [11], where XRD shifted to lower
diffraction angles, which were observed in XLPE and XLPE/MgO nanocomposites. The
expansion of lattices is attributed to the increase in defects and damage to the crystalline
structure caused by oxidation reactions [2,33].

Figure 2 shows the first scan of the melting (Tm) and crystallization (Tc) temperatures
of PP/UHMWPE blends and PP/UHMWPE/MgO nanocomposites aged for different
durations (0–672 h) at 120 ◦C, as recorded via DSC. In the unaged materials, the melting
behavior is described by two distinct peaks around 130 ◦C and 162 ◦C, representing
the UHMWPE and PP phases, respectively. As thermal aging progressed, the Tm in the
UHMWPE phase of the blends sharply increased within 336 h, after which the Tm increase
became less pronounced with further thermal aging (as depicted in Figure 3). Similarly,
the nanocomposites displayed comparable behavior, albeit with a lesser change in the
Tm of the UHMWPE phase compared to the blends. After 336 h of aging, the Tm of
PP/UHMWPE blends exhibited an increase from 130.2 ± 0.2 ◦C to 137.2 ± 0.2 ◦C, while the
nanocomposites experienced a rise from 130.6 ± 0.2 ◦C to 136.1 ± 0.3 ◦C. Conversely, no
changes were observed in the PP phase of both PP/UHMWPE and PP/UHMWPE/MgO
during the thermal aging process. As for the second scan of all aged samples, no difference
in Tm was observed in each PP or UHMWPE component compared to the unaged samples.
As such, these results were omitted from this paper.

With respect to Tc, as depicted in Figure 2b,d, the nanocomposites exhibit no alteration
in their crystallization behavior after thermal aging, with a consistent single crystallization
peak, maximum at 118 ◦C. This implies that there is no evidence of MgO elevating the crys-
tallization temperature, suggesting the absence of enhanced nucleation. On the other hand,
the blends exhibited a transition from a bimodal crystallization behavior in the unaged
samples to a single crystallization peak as the aging time increased. The crystallization
peak in both components shifted towards an intermediate point and remained at 118 ◦C,
similarly to the behavior observed in the nanocomposites.
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Figure 2. Melting temperatures of (a) PP/UHMWPE and (c) PP/UHMWPE/MgO, as well as crystal-
lization temperatures of (b) PP/UHMWPE and (d) PP/UHMWPE/MgO aged at 120 ◦C.
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Figure 3. Changes in melting temperature of UHMWPE phases in PP/UHMWPE and
PP/UHMWPE/MgO at 120 ◦C thermal aging.

Previous work demonstrated that the of PP and UHMWPE is 113 ◦C and 119 ◦C,
respectively [10]. Increasing the UHMWPE content up to 50 wt.% raised the Tc of PP to
117 ◦C [10]. The increase in Tc of PP with higher UHMWPE content in unaged immiscible
PP/UHMWPE blends is attributed to heterogeneous surface nucleation at the interfaces,
which is influenced by the total number of interfaces and the melt viscosity in the blend
system [31,34,35]. In terms of the new single crystallization of PP/UHMWPE blends
seen after thermal aging, this can be attributed to the annealing effect, leading to the
recrystallization of polymer chains. Since only the Tm of UHMWPE changes in Figure 2,
this indicates that the molecular chains of UHMWPE can undergo increased molecular
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mobility and recrystallization. As time progresses, the long UHMWPE chains diffuse across
phase boundaries, impeding the chain relaxation of PP and promoting nucleation sites for
the formation of a new crystalline phase at the PP/UHMWPE interfaces [31,36].

Figure 4 presents a quantitative comparison of the impact of the aging time on overall
crystallinity, as revealed by XRD (χXRD) and DSC (χDSC). χXRD was calculated by dividing
the total area of the crystalline peaks by the area of all peaks [37], while χDSC was obtained
using Equations (1) and (2) [38–40]:

χc,PP(%) =
∆Hm,PP

(1 − w)∆H0
m,PP

× 100% (1)

χc,UHMWPE(%) =
∆Hm,UHMWPE

w∆H0
m,UHMWPE

× 100% (2)

where χc,PP and χc,UHMWPE denote the crystallinities of the PP and UHMWPE phases,

respectively. The melting enthalpies of 100% crystalline PP
(

∆H0
m, PP

)
and UHMWPE(

∆H0
m,UHMWPE

)
are 167 J/g [38,40] and 293 J/g [39], respectively. ∆Hm,PP and ∆Hm,UHMWPE

are the melting enthalpies of PP and UHMWPE, respectively. w is the weight fraction of
UHMWPE in the blends.
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Figure 4. The overall crystallinity measured in XRD and DSC techniques for (a) PP/UHMWPE and
(b) PP/UHMWPE/MgO.

Both techniques show a similar trend in χXRD and χDSC values: the impact of aging,
especially within the first 336 h, appears to be influenced by recrystallization conditions,
resulting in increased crystallinity. However, as the aging period increases, the rate of
degradation increases following antioxidant consumption, which is associated with a
drastic chain scission and a deteriorated crystal structure [2,21,41], as indicated by the drop
in crystallinity.

As observed in the XRD measurement (Figure 1), the overlapping peaks of (111)
and (130)/(041) of the PP phases and (110) of the UHMWPE phase do not provide a
direct determination of the changes in crystallinity for each component. The crystallinity
of each polymer was, therefore, considered by DSC alone, as shown in Figure 5. Only
the crystallinity in the UHMWPE phase changes, which aligns with the general trend
in the overall crystallinity shown in Figure 4. This implies that applying thermal aging
at 120 ◦C only affects the UHMWPE chains into two distinct ways: recrystallization or
chain scission. Conversely, the molecular chain of the PP phase remains unaffected. This
finding corresponds to the results presented in references [24,25,42], which indicates that the
thermal aging of PP, PP blended with an elastomer, and PP nanocomposites at temperatures
lower than 130 ◦C for durations of up to 672 h had no impact on the PP structure. However,
when aging PP and its composites at temperatures closer to the Tm of PP, i.e., 140 ◦C [24,43],
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the recrystallization of PP structures resulted in an increase of 3–4 ◦C in Tm and a 6%
increase in crystallinity.
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Figure 5. Crystallinity in PP and UHMWPE phases measured in DSC technique of (a) PP/UHMWPE
and (b) PP/UHMWPE/MgO.

In addition, the effects of thermo-aging reactions on the molar mass changes in PP
and UHMWPE were observed using gel permeation chromatography (GPC), as reported
elsewhere [44,45]. PP aged between 95 ◦C and 125 ◦C exhibited a 5% drop in molar mass
after 1500 h of aging [44]. A significant drop in molar mass occurred when PP was aged at
135 ◦C, reducing the time to failure compared to the lower thermal aging temperatures [44].
In contrast, when subjected to thermal aging at 115 ◦C for 1344 h, UHMWPE displayed a
significant drop in molar mass, of around 70% [45]. This suggests that, when PP/UHMWPE-
based samples are aged at 120 ◦C, the UHMWPE phase is more likely to break before the
PP phase.

4.2. Fourier Transform Infrared Spectroscopy

The infrared spectral data obtained from unaged PP/UHMWPE blends and PP/
UHMWPE/MgO nanocomposites are presented in Figure 6. The spectra include distinct
bands corresponding to PP, UHMWPE, and overlapping bands from both the PP with
UHMWPE phases, which aligns with the findings reported in the published literature [46,47].
In the PP/UHMWPE/MgO nanocomposite, a broad band below 700 cm−1 is attributed to
the magnesium–oxygen bending vibration, as reported in previous studies [48,49].
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Figure 6. The FTIR spectrum of the unaged reference samples of PP/UHMWPE blend and
PP/UHMWPE/MgO nanocomposite.

After undergoing thermal aging at 120 ◦C for a duration of 672 h, Figure 7 highlights
the emergence of new infrared absorbance within the range of 1600–1900 cm−1, corre-
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sponding to carbonyl groups (C=O). The nanocomposites exhibit a lower peak intensity
of carbonyl groups compared to the blends. Both the PP pellets and UHMWPE powder
used to prepare the blends and nanocomposites were commercial materials and would be
expected to contain antioxidants. The presence of antioxidants was observable in the FTIR
spectra of some samples, but these signals, when detectable, were weak. Thus, it was not
possible to make a precise identification, beyond suggesting that they appear to be related
to phenolic-based antioxidants. Thereby, the variations in these carbonyl groups at different
aging periods are likely to be linked to different oxidation reactions, a consequence of
antioxidants and thermo-oxidative reactions [2,50].
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Figure 7. The FTIR absorption band of carbonyl groups under thermal aging in (a) PP/UHMWPE
and (b) PP/UHMWPE/MgO.

The calculation of the CI, used to represent the degree of oxidation as illustrated in
Figure 8, is based on the ratio of the peak areas of the carbonyl band (1600–1900 cm−1) to
the CH2 scissoring band (1420 to 1500 cm−1) [51]. Interestingly, the CI values of all tested
samples do not exhibit a smooth trend with an increasing aging time. For aging durations
below 336 h, the CI gradually increases, but beyond that point, it experiences a rapid rise,
reaching a high value at 672 h. During the first 336 h, the oxidation process is inhibited by
antioxidants within the system. As the aging periods further increase, the CI significantly
increases, which is related to the consumption of antioxidants and a consequent acceleration
of thermo-oxidative reactions [2].
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Figure 8. The calculated CI of PP/UHMWPE and PP/UHMWPE/MgO aged at 120 ◦C from 0 to 672 h.
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4.3. Space Charge Dynamics

Figure 9 illustrates the space charge profiles obtained from PP/ UHMWPE and
PP/UHMWPE/MgO after different aging periods at 120 ◦C. In the unaged samples, the
nanocomposites exhibit lower charge injection from the cathode compared to the blends.
This finding is consistent with previous studies when using a low filler content (<5 wt.%) of
MgO in the polymer matrix [52,53]. After thermal aging, the PP/UHMWPE blends showed
a gradual increase in the injection of homocharges from the cathode up to 336 h, after which,
at 504 h, the homocharges significantly decreased, and charge injection was rarely observed.
However, with further thermal aging up to 672 h in this blend, the injection of homocharges
is once again significantly increased. On the other hand, for PP/UHMWPE/MgO, ho-
mocharges from the cathode are gradually injected into the samples, and in this system,
a charge injection further increases up to 504 h before sharply decreasing at 672 h. This
observed homocharge injection behavior is in line with the estimated total charge accumu-
lation after 1 h of poling under +40 kV/mm (Figure 10), obtained by integration across the
sample thickness using the subtraction method [54].

It appears that PP/UHMWPE/MgO nanocomposites display a lower charge accumu-
lation than the unfilled blend counterparts. When considering this total charge together
with the CI in Figure 8, both samples showed the lowest charge accumulation when the CI
was around 0.15. This corresponds to 504 h aging in the unfilled system and 672 h aging
in the MgO system. In short, MgO is slowing the aging (the rate of increase in CI), and
this maps straight through to the space charge. It is therefore reasonable to conclude that
the CI is a good indicator for space charge dynamics [21], as these carbonyl groups seem
to act as (shallow) charge traps. The CI value of 0.15 appears to be a threshold value in
the samples tested. Higher values of the index can be linked to significantly higher charge
accumulation, as observed in the 672 h PP/UHMWPE blend.

Figure 11 presents normalized plots of the charge accumulation of PP/UHMWPE and
PP/UHMWPE/MgO during the charge decay process over 3600 s. The results suggest that
charge decay is faster after thermal aging in both samples. In the case of PP/UHMWPE, the
decay rate is slower at 504 h before showing a significantly higher decay rate at 672 h. On
the other hand, PP/UHMWPE/MgO exhibits a faster charge decay rate with an increasing
aging time, only to slow down at 672 h of aging. When comparing PP/UHMWPE and
PP/UHMWPE/MgO, the charge decay in the latter is slower, considering the equivalent
aging conditions.
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Figure 9. Cont.
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Figure 9. Space charge profile at the different aging times of 120 ◦C in PP/UHMWPE blends (left)
and PP/UHMWPE/MgO nanocomposites (right) of (a) unaged, (b) 168 h, (c) 336 h, (d) 504 h, and
(e) 672 h.
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Figure 10. The total charge of thermally aged in PP/UHMWPE and PP/UHMWPE/MgO under
+40 kV/mm.
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Figure 11. The normalized charge decay obtained from (a) PP/UHMWPE and (b) PP/UHMWPE/
MgO aged from 0 to 672 h.

4.4. DC Conductivity

Figure 12 shows the time-dependent conductivity data obtained from PP/UHMWPE
with and without MgO nanoparticles aged at 120 ◦C for periods up to 672 h. Due to
the overlapping nature of the conductivity datasets, presenting all the data in the format
shown in Figure 12 would lead to impaired clarity. Therefore, the impact of aging time
on conductivity is represented using steady-state DC conductivity values, which were
estimated by fitting the time-dependent data to the Curie–von Schweidler law [55].

From the results in Figure 13, it is evident that the magnitude of the conductivity
exhibits non-monotonic behavior. For the unaged PP/UHMWPE and PP/UHMWPE/MgO
samples, the derived conductivity reaches a steady-state at approximately 3.6 × 10−16 S/cm
and 3.2 × 10−16 S/cm, respectively. These findings are consistent with the results in [13,56],
which suggest that the addition of the low MgO filler content (<3 wt.%) results in somewhat
lower conductivity compared to the unfilled samples.
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Figure 12. Time-dependent DC conductivity of (a) PP/UHMWPE and (b) PP/UHMWPE/MgO aged
at 120 ◦C from 0 to 672 h.
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Figure 13. Steady-state DC conductivity of PP/UHMWPE and PP/UHMWPE/MgO aged from 0 to
672 h.

The effect of thermal aging initially led to a higher measured conductivity compared
to the unaged samples. The behavior exhibited in Figure 13 is similar to the one described
in the total charge amount shown in Figure 10. Once again, the reduced conductivity
observed at 504 h for PP/UHMWPE and at 672 h for PP/UHMWPE/MgO is likely related
to the critical carbonyl index of around 0.15.

5. Discussion
5.1. Aging, Structural Changes, and Chemical Characteristics

Thermo-oxidative aging in PP/UHMWPE and PP/UHMWPE/MgO follows a similar
mechanism. During the 336-h aging period, the CI gradually increases with aging time.
During this period, the oxidation process is inhibited by the antioxidant within the systems.
Simultaneously, recrystallization, primarily observed in the UHMWPE phase, becomes
dominant. This ongoing process results in an augmentation of the crystallinity and melting
temperature of UHMWPE. Tantipattarakul et al. [21] demonstrated a similar phenomenon
in aged LDPE/HDPE blends at 120 ◦C, where the Tm of the HDPE phase (124 ◦C) in
the blends shifted to higher values with an increasing aging time. It is suggested that the
increase in crystallinity and melting temperature is attributed to annealing effects, which are
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enhanced by the initial stages of chain scission, facilitating lamellar recrystallization [57,58].
As the aging periods continue to increase, the CI experiences a significant increase. This
stage is associated with the consumption of the antioxidant, as thermo-oxidative reactions
occur rapidly. This reaction leads to chain scissions and decreases the thermal stability [59].
The diffusion of oxygen into the materials primarily occurs within the amorphous/melt
phase [2,21,60]. This process subsequently inhibits recrystallization, leading to a reduction
in crystallinity [2,21].

In comparison to PP/UHMWPE blends, nanocomposites demonstrate a lower oc-
currence of thermo-oxidative reactions, especially from 336 h onward, indicating their
increased resistance to thermal aging. This observation is consistent with the findings
in [11], where it was shown that the presence of MgO in XLPE delays thermo-oxidation re-
actions compared to unfilled XLPE. Additionally, results from [12,13] indicated that the use
of MgO in LDPE effectively delayed thermo-oxidative reactions during aging, as opposed
to composites filled with SiO2, ZnO, or unfilled LDPE. The authors stated that the varied
response of different nanocomposites to thermal aging can be attributed to their distinct
thermal stability [13]. This phenomenon could be attributed to the interfacial interaction
between nanoparticles and the polymer matrix, which hinders the breakage polymer chains
during thermal aging. As a result, in the case of PP/UHMWPE, the absence of MgO makes
the polymer more susceptible to chain scission, resulting in a more pronounced reduction
in thermal stability [59].

Thermo-oxidative reactions occur throughout the interface regions between the two
polymers, leading to the formation of more carbonyl groups. Unlike PP/UHMWPE blends,
the inclusion of MgO nanoparticles as a compatibilizer in unaged samples [10,61] enhances
the interfacial interaction between PP and UHMWPE. This results in reduced chain scission
in nanocomposites, leading to better thermal stability [59]. As a consequence, the structural
changes in nanocomposites are less pronounced during thermal aging, which hinders
oxygen diffusion and leads to fewer carbonyl groups.

5.2. Aging and Charge Transport

The chemical and structural changes within PP/UHMWPE blends, as well as their
nanocomposites, follow similar trends, with nanocomposites displaying slower changes
compared to the blends. However, when considering charge accumulation and conduc-
tivity, these systems show different behaviors. Both systems exhibit an increase in charge
accumulation and conductivity after thermal aging until a certain time. Beyond this specific
period, the charge accumulation and conductivity significantly decrease compared to their
unaged counterparts.

The lowest charge accumulation and conductivity are observed in both systems when
the CI is around 0.15, which corresponds to 504 h of aging for PP/UHMWPE blends
and 672 h of aging for PP/UHMWPE/MgO nanocomposites. This suggests that the
addition of MgO to PP/UHMWPE blends results in slower aging, which corresponds to a
reduced rate of CI increase, and this effect directly influences the charge accumulation and
conductivity. These results align with the published literature [12,13], which demonstrates
that LDPE/MgO nanocomposites delay thermo-oxidative reactions and effectively suppress
charge accumulation compared to unfilled LDPE.

When the carbonyl index surpasses this critical threshold, both charge accumulation
and conductivity significantly increase, leading to faster charge decay. Similar effects of
thermal oxidation on the rate of charge decay have been previously reported [62,63], with
the decay rate being linked to trap density and trap depth energy levels. Samples with
lower concentrations of traps exhibit a slower decay of trapped charge, whereas an increase
in the number of traps results in the faster decay of the trapped charge.

Carbonyl groups, consisting of C=O bonds, possess a different electronegativity com-
pared to the hydrocarbon groups. When polar molecules with high electronegativity are
introduced, the electronic structure at the interface is modified, effectively acting as traps
within the interfaces and hindering the movement of charge carriers. This effect has been
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observed in various studies [21,64,65], where the introduction of a low concentration of
carbonyl groups into the systems reduces the effective charge carrier mobility.

6. Conclusions

In this work, the effects of thermo-oxidative aging in PP/UHMWPE and PP/UHMWPE/
MgO were reported. PP/UHMWEP blends, as well as the respective MgO-nanocomposites,
were aged at 120 ◦C up to 672 h. This shows that the thermo-oxidative aging of PP/UHMWPE
and PP/UHMWPE/MgO follows a similar mechanism, with recrystallization dominating
the initial 336 h of aging. This process leads to an increase in crystallinity and melting
temperature. Beyond 336 h, the consumption of antioxidants promotes chain scission,
leading to a decrease in crystallinity.

The presence of MgO nanoparticles as a compatibilizer in PP/UHMWPE blends delays
the thermo-oxidative reactions and structural changes during thermal aging. This results
in PP/UHMWPE/MgO having less charge accumulation and conductivity, implying a
slower aging process compared to PP/UHMWPE blends. The carbonyl index plays a
significant role in charge accumulation and conductivity behavior. The lowest charge
accumulation when the carbonyl index is around 0.15, which aligns with 504 h of aging in
the unfilled PP/UHMWPE system and 672 h of aging in the PP/UHMWPE/MgO system.
Once the carbonyl index surpasses the critical threshold, both the charge accumulation and
conductivity significantly increase.

Overall, this study provides details regarding the effects of thermo-oxidative aging
behavior on changes in chemical, structure, and dielectric properties of PP/UHMWPE
and PP/UHMWPE/MgO nanocomposites. The findings demonstrate the potential of
these nanocomposites as insulation materials for HV insulation systems, highlighting the
importance of considering thermal aging effects for long-term performance evaluation.
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