
1

Pareto-Optimal Multi-Agent Cooperative Caching
Relying on Multi-Policy Reinforcement Learning

Boyang Guo, Youjia Chen, Member, IEEE, Peng Cheng, Member, IEEE,
Ming Ding, Senior Member, IEEE, Jinsong Hu, Member, IEEE, Lajos Hanzo, Fellow, IEEE

Abstract—Given the popularity of flawless telepresence and
the resultants explosive growth of wireless video applications,
besides handling the traffic surge, satisfying the demanding user
requirements for video qualities has become another important
goal of network operators. Inspired by this, cooperative edge
caching intrinsically amalgamated with scalable video coding is
investigated. Explicitly, the concept of a Pareto-optimal semi-
distributed multi-agent multi-policy deep reinforcement learning
(SD-MAMP-DRL) algorithm is conceived for managing the
cooperation of heterogeneous network nodes. To elaborate, a
multi-policy reinforcement learning algorithm is proposed for
finding the Pareto-optimal policies during the training phase,
which balances the tele-traffic vs. the user experience trade-off.
Then the optimal policy/solution can be activated during the
execution phase by appropriately selecting the associated weight-
ing coefficient according to the dynamically fluctuating network
traffic load. Our experimental results show that the proposed
SD-MAMP-DRL algorithm 1) achieves better performance than
the benchmark algorithms; 2) obtains a near-complete Pareto-
front in various scenarios and selects the optimal solution by
adaptively adjusting the above-mentioned pair of objectives.

Index Terms—Edge caching, multi-objective optimization,
Pareto-front, scalable video coding, multi-agent reinforcement
learning.

I. INTRODUCTION

Edge caching has emerged as an efficient technique for
tackling the escalation of wireless video traffic. By pushing
popular contents near mobile users, it can dramatically reduce
the transmission distance and hence the latency as well as
the network cost. Conventionally, the major concern of edge
caching is how to efficiently reuse the limited storage resources
for enhancing the cache hit ratio. Recently, how to satisfy the
heterogeneous user preferences for video qualities with limited
storage resources has attracted substantial attention. In [1],
maximizing the user’s quality of experience (QoE) serves as
the objective of the caching design.

This work was supported by the National Natural Science Foundation
of China (Grant No. 62271150 and 62001116), the Engineering and Phys-
ical Sciences Research Council projects EP/W016605/1, EP/X01228X/1 and
EP/Y026721/1, and the European Research Council’s Advanced Fellow Grant
QuantCom (Grant No. 789028).

Boyang Guo, Youjia Chen and Jinsong Hu are with Fujian Key Lab
for Intelligent Processing and Wireless Transmission of Media Informa-
tion, College of Physics and Information Engineering, Fuzhou University,
350108, China (e-mail: {201120067, youjia.chen, jinsong.hu}@fzu.edu.cn).
Peng Cheng is with the Department of Computer Science and Information
Technology, La Trobe University, Melbourne, VIC 3086, Australia (e-mail:
peng.cheng@sydney.edu.au). Ming Ding is with Data61, CSIRO, NSW, 2015,
Australia. (e-mail: ming.ding@data61.csiro.au). Lajos Hanzo is with the
School of Electronics and Computer Science, University of Southampton, UK
(e-mail: lh@ecs.soton.ac.uk).

Correspondence author: Youjia Chen.

As a further advance, the specifics of video coding tech-
niques were also considered in the design of the caching
strategy [2]. Specifically, the scalable video coding (SVC),
mode of the H.264 standard is capable of dynamically recon-
figuring the video qualities [3]. It encodes the original video
into a basic layer and multiple enhancement layers that can
be flexibly added and reduced for upgrading and reducing the
video qualities. Such a design shows an intrinsic advantage in
caching scenarios, where the storage resources are limited. To
elaborate, SVC is introduced in the design of caching strategies
for meeting personalized user requirements [4, 5], and also for
the design of cooperative caching [6].

Although cooperative caching fundamentally enlarges the
available storage resource for improving the edge caching
performance, it increases the scheduling and design complex-
ity [7]. The key issue of cooperative caching is to avoid re-
peated caching and content exchange among cooperative units.
Hence the extraordinary decision-making capability of multi-
agent reinforcement learning (MARL) makes it an excellent
choice for cooperative cache design. However, a fully dis-
tributed structure is vulnerable to non-stationary environments
and may even fail to converge due to the associated vulner-
able information exchange [8]. By contrast, the centralized
structure generally leads to high computational complexity,
communication cost and decision delay. Hence the semi-
distributed concept was introduced, which strikes an attractive
performance vs. complexity trade-off [9].

When aiming for striking an attractive QoE vs. transmission
cost trade-off, a multi-objective optimization problem (MOP)
arises [10]. In this context, deep reinforcement learning (DRL)
is capable of acquiring the optimal action by finding the
maximum objective function value. Hence, when dealing with
a MOP to be solved by DRL, transforming them into a
single-objective one by scalarization is the commonly-used
approach [11]. This kind of approach relies on a predetermined
scalarization function during the training, which cannot be
changed during the execution phase. This lack of flexibility
makes the corresponding approaches less suitable for dynamic
wireless networks.

Against this backdrop, we aim to reduce the wireless traffic
and enhance the user’s QoE simultaneously, and we investigate
the benefits of cooperative caching design intrinsically amalga-
mated with SVC. A semi-distributed multi-agent multi-policy
deep reinforcement learning (SD-MAMP-DRL) algorithm is
proposed. As illustrated in Fig. 1, the main process consists
of a training phase and an execution phase. During the training
phase, multi-agents are jointly trained with the aid of an

2

Execution Phase

Multi-Agent Cooperation

Multiple

Pareto-optimal

policies

...

...
Orchestrator

Agent 1

Multi-policy

RL
Agent N

Multi-policy

RL

Adaptive weight

Training Phase

Policy Selection

Policy 1

Policy 2

Policy 3

Policy 4

An optimal policy

Weight Adjustment Regime

Trans. Cost vs. QoE

Real-time

traffic

Fig. 1. The main process of proposed SD-MAMP-DRL.

TABLE I
RELATED LITERATURE USING REINFORCEMENT LEARNING IN

COMPARISON TO OUR WORK

References Heterogeneous
agents

Distributed
computing

Cooperation
among

multiple agents

Multi-objective
problem Pareto policies

Adaptive decisions
to wireless

environments

[12] ! !

[13] !

[14] !

[15, 16] ! !

[17] ! ! !

[18, 19] !

[20–22] ! !

Proposed ! ! ! ! ! !

orchestrator. In contrast to the traditional RL that learns an
optimal policy of every possible state, the proposed solution
aims to develop multiple Pareto-optimal policies that balance
the transmission cost and the users’ QoE. Subsequently, in
the execution phase, a weight to balance the two objectives is
generated based on the real-time traffic load. Each agent then
uses the weight to select the corresponding optimal policy
from those Pareto-optimal policies.

The main contributions of this paper are three-fold,
• We introduce a semi-distributed multi-agent structure that

leverages the benefits of edge servers while taking into
account the heterogeneity of cooperative devices.

• A multi-policy DRL approach relying on maximizing the
hypervolume of the Pareto-front is used to obtain the
Pareto-optimal policies during the training, which strikes
a trade-off between the user’s QoE and transmission cost.

• To adapt to the wireless environment, we propose a
traffic-based weight adjustment regime, relying on which
of the most preferred policy can be dynamically selected
from the Pareto-optimal policies during the execution
phase.

The rest of the paper is organized as follows. Section II
introduces the current state-of-the-art. Section III describes the
system model and formulates the cooperative caching problem,
while Section IV elaborates on the proposed SD-MAMP-
DRL algorithm for the training phase. The execution phase,
including the traffic-based weight adjustment regime and the
corresponding policy selection process, is covered in Section
V. Our simulation results are presented in Section VI, and we
conclude with a summary of our findings in Section VII.

II. RELATED WORK

A. Multi-Agent Reinforcement Learning

In recent years, DRL has been successfully used for solving
decision-making problems, such as games, robotic tracking
control, autonomous driving, as well as edge caching prob-
lems [12]. When the decision-making problem involves mul-
tiple intelligent cooperative or competitive individuals in a
common environment, it may be modeled as a multi-agent
reinforcement learning (MARL) problem.

A fully centralized architecture having a global view is capa-
ble of improving the overall caching performance, but suffers
from excessive computational complexity when the network
scale escalates [13]. In the spirit of distributed algorithms, a
decentralized structure was developed, such as independent Q-
learning (IQL), where each agent independently improves its
strategy according to its state and reward [14]. To improve
the cooperative performance, flawless communications of the
agents are required in the distributed structure, which however
imposes extra communication overhead [15].

Again, to strike a performance vs. complexity trade-off,
semi-distributed structures have also received research atten-
tion recently. In [16], a remote server evaluated the actions of
the agents and sent the evaluation results back to agents for
model updates. In [17], a value decomposition network (VDN)
was adopted, where the state-action value from each agent was
accumulated in the edge server to calculate the gradient for
neural network updates in each agent.

B. Multi-policy Reinforcement Learning

For MOPs that involve multiple potentially conflicting ob-
jectives, a commonly used approach is to transform these
objectives into a single-objective optimization problem (SOP).
Apart from the most popular scalarization method [18, 19],
converting other objectives into constraints is also an attractive
approach. In [23], the ε-constraint approach was adopted
to achieve optimality. However, in time-varying scenarios,
frequent retraining is required for refreshing the policy.

By contrast, Pareto-optimality reflects the trade-off among
different objectives, which has multiple solutions, where none
of the associated metrics can be improved in value without
degrading some of the other metrics. To find the Pareto-
optimal set of solutions in a single run, the non-dominated
sorting genetic algorithm-II (NSAG-II) was adopted in [24].

3

Similarly, to obtain the Pareto solutions, the straightforward
approach is that of transforming a MOP into multiple SOPs
with multiple scalarization preferences, which however results
in excessive computational cost [20, 21].

The authors of [20, 21] found that linear scalarization can
only find the solution set in a convex hull, while nonlinear
scalarization has no guarantee of convergence. To avoid the
extra complexity of multiple training processes, the multi-
policy concept was proposed in [22], which aims to learn the
Pareto solutions in a single training process.

In Table I, we boldly contrast our novel contributions to
the related literature of reinforcement learning techniques
mentioned in Sections II-A and II-B.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Scenario

We consider a video caching system based on the archi-
tecture of edge-based next-generation cellular networks [25],
which is shown in Fig. 2. Multiple small-cell and/or macro-
cell base stations (BSs) equipped with mobile edge comput-
ing/caching units are connected and served by an edge server.
The edge server generally consists of multiple management
modules, which can also offer computing and caching func-
tionality. Multiple edge servers are connected to a remote
video server through the wireless core network.

We then embark on investigating a cooperative caching
framework with the aid of the edge server. To reduce the
transmission delay and cost of video delivery from the remote
video server through the backbone and core network, the
popular video files are pre-cached in the BSs and the caching
module of the edge server. The edge server and its associated
BSs compose a cooperative caching cluster, where the cached
contents can be shared among the cluster units under the
control of the edge server.

Overall, the cooperative caching cluster consists of the
following network nodes having different functions.

Core Network

Remote Video Server

Mobile User

A Cooperative Caching Cluster

Base Station

Cache Module

1.

2.

3.

..
.

Edge Server

Fig. 2. An illustration of cooperative caching networks.

SVC

encoder

Bit-stream

extractor

Enhancement

layer 3

Enhancement

layer 2

Base layer 1

A video

(704×576)-pixel
Enhancement

layer 3

Enhancement

layer 2

Base layer 1

Enhancement

layer 2

Base layer 1

Base layer 1

(352×288)-pixel

(176×144)-pixel

Fig. 3. An illustration of the scalable video coding.

• Non-caching BSs: Such BSs only work as basic access
points of the cellular network and serve their associated
users.

• Caching-enabled BSs: Such BSs work as wireless access
points, but they are also equipped with extra storage for
video caching.

• Edge Server: It serves as the controller which coordinates
the content sharing among the associated BSs. It also has
sufficient storage resources to cache popular video files.

• Mobile Users: Under the basic one-user-one-BS associa-
tion criterion, we assume that each user can only request
one video from its serving BS at a given time instance.

We assume that there are M BSs and a single edge
server in a cooperative caching cluster, denoted by M =
{0, 1, 2, . . . ,M}, where the index 0 represents the edge server.
Moreover, for the m-th BS, Um,m ∈ {1, . . . ,M} denotes the
set of associated mobile users.

B. Video Delivery in the Cooperative Caching Scheme

Based on the cooperative caching scheme, the video delivery
involves four cases:
• from the associated BS: when the requested video is

cached in the user’s serving BS. Similar to [26], we define
ω1 (cost/Mbit) to represent the transmission cost of unit
traffic from a BS to its associated user.

• from the edge server: when the requested video is cached
in the edge server but not in the associated BS. The
transmission cost of unit traffic is denoted by ω2. As
shown in Fig. 2, compared to the above case, the backhaul
link between the edge server and the serving BS is
involved in the video delivery, thus we have ω2 > ω1.

• from cooperative BSs: when the requested video is only
cached in one of the cooperative BSs. The corresponding
transmission cost of unit traffic is denoted by ω3. Follow-
ing the network topology shown in Fig. 2, two backhaul
transmissions are involved, and hence we have ω3 > ω2.

• from the remote video server: when the requested video
is not cached in any cooperative cache unit. The trans-
mission cost of unit traffic denoted by ω4, and obviously
ω4 > ω3 > ω2 > ω1.

C. SVC-Based Cooperative Caching Scheme

To accommodate the users’ requirements concerning various
video qualities, and to fully exploit the caching resources, we
incorporate the SVC technique into our cooperative caching
scheme (SVC-CCS). The video stream is encoded with the

4

aid of the SVC technique into multiple layers, including a
base layer that provides basic video quality and multiple
enhancement layers that increase the video quality, as and
when required and/or affordable [3].

For example, as illustrated in Fig. 3, SVC generates the base
layer-1 and two enhancement layers (2 and 3). Base layer-
1 offers a (176 × 144)-pixel Quarter Common Intermediate
Format (QCIF) video, while the combination of base layer-
1 and enhancement layer-2 offers a (352 × 288)-pixel CIF
resolution. Moreover, all three layers may be combined to offer
a (704× 576)-pixel representation.

We further assume each video v in the library V =
{1, . . . , V } is encoded into L layers providing L various video
qualities. Upon denoting the size of the l-th layer of the v-th
video by bvl, and the video quality provided to the u-th user
by puv , the overall video size delivered can be expressed by

puv∑
l=1

bvl. (1)

Furthermore, an SVC-encoded video layer is viewed as a
caching object in SVC-CCS. We define δmvl = 1 to indicate
that the l-th layer of the v-th video is indeed cached in the
m-th BS, and δmvl = 0 otherwise. Additionally, δ0vl = 1
indicates that the l-th layer of the v-th video is cached in the
edge server. It should be noted that, considering the disparity
in video popularity and the importance of the base layer for a
video in SVC, a video layer is allowed to be cached in multiple
nodes within a caching cluster.

D. Performance and Optimization of SVC-CCS

We now embark on jointly optimizing two parameters, δmvl
and puv , namely the caching decision and the user-specific
video quality, while aiming for minimizing the transmission
cost and maximizing the user’s quality of experience (QoE).

1) Transmission Cost Reduction: Let us assume that the u-
th user requests the v-th file, and it is served by the m-th BS
at a video quality puv . Then, upon considering the four video
delivery cases mentioned in Section III-B, the transmission
cost can be calculated as
puv∑
l=1

[
δmvlω1 +

(
1− δmvl

)(
δ0vlω2+

(
1− δ0vl

)(
δm′vlω3 + (1− δm′vl)ω4

))]
bvl, (2)

where
∑puv

l=1[·] represents the cumulative layer transmissions
for a given video quality puv , and m′ denotes the index of a
cooperative BS in the same cooperative cluster. To elaborate
a little further,

1) the first item δmvlω1bvl of (2) represents the transmis-
sion cost when the video layer is delivered directly from
the associated BS;

2) the second item (1− δmvl)δ0vlω2bvl represents the cost
when the layer is delivered from the edge server;

3) the third item (1− δmvl)(1− δ0vl)δm′vlω3bvl represents
the cost of delivery when the layer is delivered from a
cooperative BS;

4) (1− δmvl)(1− δ0vl)(1− δm′vl)ω4bvl represents the cost
of delivery from the remote video server.

Compared to a scenario with no caching, where all the
video layers are delivered from the remote video server at
a transmission cost of

∑puv

l=1 ω4bvl, the average transmission
cost reduction ratio, o1, resulting from cooperative caching for
all the users can be expressed as

o1=
1

U

∑
m∈M

m′ 6=m,m′∈M

∑
u∈Um

∑
v∈Du

[
1− 1∑puv

l=1 ω4bvl

puv∑
l=1

[
δmvlω1 +

(
1−

δmvl

)(
δ0vlω2 +

(
1− δ0vl

)(
δm′vlω3 + (1− δm′vl)ω4

))]
bvl

]
.

(3)
Here, Du denotes the video requested by the u-th user.

2) Quality of User Experience: In this paper, we use the
bitrate of the received video to quantify the user’s QoE on
the video quality [27]. Upon relying on the definition of mean
opinion score (MOS) [28], and considering the various user
requirements, we calculate the user QoE as

o2 =
1

U

∑
m∈M

m6=0,m′∈M

∑
u∈Um

∑
v∈Du

min

{
exp

(
− β1

(∑puv

l=1 bvl∑p̂uv

l=1 bvl

)−β2

+ β1

)
, 1

}
.

(4)

Here, p̂uv denotes the video quality that user-u requests
for video-v;

∑puv
l=1 bvl∑p̂uv
l=1 bvl

represents the ratio of obtained video
quality to the user’s requested video quality; β1 and β2 are
the coefficients representing the overall quality reduction and
quality gain vs. bitrate; min{·, 1} limits the QoE within the
range of (0, 1], where the maximum QoE, o2 = 1, means that
the user’s requested video quality is satisfied.

3) Problem Formulation: To simultaneously minimize the
video transmission cost and maximize the video quality, we
formulate the following multi-objective optimization problem:

max
{puv,δmvl,δ0vl}

O , [o1, o2] , (5)

s.t.
∑
v∈V

∑
l∈L

δmvlbvl ≤ gm, (5a)∑
v∈V

∑
l∈L

δ0vlbvl ≤ g0, (5b)

δmvl ∈ {0, 1},m ∈M, v ∈ V, l ∈ L, (5c)
δ0vl ∈ {0, 1}, v ∈ V, l ∈ L, (5d)
1 ≤ puv ≤ L, (5e)

where gm and g0 represent the cache capacity in BS-m and
the edge server, respectively. Note that, for non-caching BSs,
the cache capacity equals 0. The constraint (5e) represents the
range of video qualities.

In essence, the formulation in (5) represents a multi-
objective nonlinear integer programming problem, which is
typically NP-hard. Although some traditional techniques, such
as the branch-and-bound and heuristic algorithms can solve

5

this problem, they will impose excessive computational com-
plexity and are inefficient in nonlinear scenarios [29, 30]. To
address this problem, we resort to DRL, which constitutes a
powerful technique for handling a dynamic decision-making
problem.

Explicitly, a multi-agent DRL-based approach is proposed
in Section IV, where a Pareto-optimization-based multi-policy
DRL algorithm is designed to deal with the multi-objective
optimization problem considered and a semi-distributed multi-
agent framework is utilized for supporting cooperation among
BSs and the edge server.

IV. SEMI-DISTRIBUTED MULTI-AGENT MULTI-POLICY
DEEP REINFORCEMENT LEARNING

In this section, we introduce the proposed semi-distributed
multi-agent multi-policy deep reinforcement learning (SD-
MAMP-DRL) technique for a cooperative caching cluster.
Firstly, in contrast to the traditional DRL aiming for finding
the optimal action in each state, the goal of our algorithm
termed as multi-policy DRL is to obtain the Pareto solutions,
i.e. the set of actions in each state that achieves the Pareto-
front. Secondly, under the umbrella of semi-distributed multi-
agent DRL, we define the state and action spaces for different
kinds of agents and introduce the detailed double deep Q-
network (DDQN) [17] and QMIX [9] algorithms adopted in
the agents and the orchestrator, respectively. Furthermore, we
highlight the detailed information exchange between them.

A. Semi-distributed MADRL Framework

Agent type 1 Agent type 3Agent type 2

Non-caching BS Caching-enabled BS Caching module in

edge server

Orchestrator

Edge Server

() ()(,)t t

NB NB
Q s a

() () (1){ , , }t t t

NB NB NB

+
s a s

Gradient

Fig. 4. Multi-agent caching cooperative framework.

As illustrated in Fig. 4, the proposed SD-MADRL frame-
work consists of multiple types of agents and an orchestrator.
In our scenario, the agents include non-caching BSs, caching-
enabled BSs, and the caching module of the edge server, where
the edge server acts as the orchestrator. Each agent deploys
an independent DDQN to make a decision according to its
local observations. The orchestrator deploys a mixing network,
which leverages the global information collected from the
agents for adjusting the DDQN parameters of each agent.

B. State and Action Spaces for Different Agents
By taking into account the different types of agents, we

design different state and action spaces as follows.

1) State Space: The state of an agent depends on its local
observations of the environment [31].
• For the non-caching BS-m, the state is represented by the

video requests received from its associated mobile users,
and the corresponding requirements on video quality, de-
noted by s

(t)
NB ,

{
D(t)
u , p̂

(t)
uv ,∀u ∈ Um, v ∈ D(t)

u

}
, where

(t) denotes the t-th time episode.
• For the caching-enabled BS-m, the state includes two

parts: 1) the video requests from its associated users and
the corresponding requirements on video quality, and 2)
the video layers cached in its storage, denoted by s

(t)
CB ,{

D(t)
u , p̂

(t)
uv ,∀u ∈ Um, v ∈ D(t)

u ; δ
(t−1)
mvl ,∀v,∀l

}
.

• For the caching module of the edge server, its state only
involves the video layers cached in its storage, denoted
by s

(t)
EC ,

{
δ
(t−1)
0vl ,∀v,∀l

}
.

2) Action Space: The action of an agent is based on its
observation and experience [31].
• For the non-caching BS-m, its action only involves the

video quality provided for its associated users, denoted
by a

(t)
NB ,

{
p
(t)
uv ,∀u ∈ Um, v ∈ D(t)

u

}
.

• For the caching-enabled BS-m, its action includes both
the video quality provided for its users and the video
layers to be cached at the next time episode. Therefore,
we have a

(t)
CB ,

{
p
(t)
uv ,∀u ∈ Um, v ∈ D(t)

u ; δ
(t)
mvl,∀v,∀l

}
.

• For the caching module of the edge server, its action
only involves the caching decision, hence its definition
is a

(t)
EC ,

{
δ
(t)
0vl,∀v,∀l

}
.

C. Procedures in Each Agent
In (5), there are two optimization objectives, therefore we

harness a pair of DDQNs in each agent [32], where each
DDQN consists of an evaluation network and a target network.
It is worth noting that the proposed algorithm can also be
extended to address a multi-objective optimization problem by
increasing the number of DDQNs. Overall, for different types
of agents, their algorithmic structures are similar, although
their detailed states and actions may be different.

For the i-th agent, i ∈ I , {0, 1, · · · ,M}, given the
state si and the action ai, in the evaluation networks having
the parameters θ(t)i,1 for Objective-1 and parameters θ(t)i,2 for
Objective-2, the Q-value vector, Q

(t)
i , can be calculated as

Q
(t)
i = [q

(
s
(t)
i , a

(t)
i ; θ

(t)
i,1

)
, q
(
s
(t)
i , a

(t)
i ; θ

(t)
i,2

)
]

, q
(
s
(t)
i , a

(t)
i ; Θ

(t)
i

)
,

(6)

where q
(
s
(t)
i , a

(t)
i ; Θ

(t)
i

)
is the state-action value function de-

noting the expecting value of actions, namely Q-value vector,
and Θ

(t)
i , [θ

(t)
i,1 , θ

(t)
i,2].

Definition 1. (State-action value function) In RL, the state-
action value function is defined as the expected return G(t)

starting from state s, which can be expressed as

qπ(s, a) = Eπ
[
G(t)|s(t) = s, a(t) = a

]
, (7)

where π is the policy mapping the observed state s to a
probability distribution over all possible actions.

6

While in DRL, the deep neural network is considered
a function approximator to estimate the state-action value
function, namely the Q-value function in DDQN, which can
be expressed as

q(s, a; θ), (8)

where θ is the parameter of the neural network.

The action for the next state is then selected by

a
∗(t+1)
i = argmax

a
(t+1)
i

ActSel
(
q(s

(t+1)
i , a

(t+1)
i ; Θ

(t)
i)
)
, (9)

where the action selection scheme is designed and specified in
Section IV-E, based on the characteristics of the Pareto-front
constructed by the above pair of objectives.

Meanwhile, in the target networks having the parameters
Θ

(t)

i , which includes θ
(t)

i,1 for Objective-1 and parameter θ
(t)

i,2

for Objective-2, the Q-value vector with chosen a
∗(t+1)
i is

calculated by

Q
(t)

i = q

(
s
(t+1)
i , a

∗(t+1)
i ; Θ

(t)

i

)
. (10)

Then, the messages consisting of {s(t)i , a
(t)
i , s

(t+1)
i } and

{Q(t)
i ,Q

(t)

i } are sent from the i-th agent to the orchestrator.
The i-th agent then waits for the gradient vector to be returned
from the orchestrator, while the goal of updating the network
parameters Θi of the two evaluation networks by

Θ
(t+1)
i = Θ

(t)
i + ζ∇y(t), (11)

where ζ denotes the learning rate. The parameters Θi of the
target network are periodically updated by copying Θi.

D. Procedures in the Orchestrator

1) Calculation of the Global Reward: In the t-th training
time episode, the orchestrator receives the states and the
actions of each agent. Here, the joint state and joint action
are defined as

S(t) = {s(t)i ,∀i ∈ I}. (12)

A(t) = {a(t)i ,∀i ∈ I}. (13)

Then, the corresponding reward vector can be calculated using
(2) and (3), which are defined as

r(t) = O(t) = [o
(t)
1 , o

(t)
2]. (14)

2) Calculation of the Joint Q-value: As shown in Fig. 5,
the mixing network in the orchestrator uses the Q-values of
agents and the joint state as input to calculate the joint Q-
value. In more detail, the two-layer hyper-networks generate
the weights {µ(t)

1 , µ
(t)
2 } and biases {η(t)1 , η

(t)
2 }.

Given the received set {Q(t)
i ,∀i}, the joint Q-value Q

(t)
tot

can be calculated as

Q
(t)
tot =

1

|I|
∑
i∈I

µ
(t)
2 · elu(Q

(t)
i · µ

(t)
1 + η

(t)
1) + η

(t)
2 , (15)

where elu(·) is the active function. Similarly, with the received
set {Q(t)

i ,∀i}, Q
(t)

tot can be obtained.

Agent 0Replay Memory

Environment

Store transition
t o t

y

Hypernetwork 1

Linear

layer 1

Linear

layer 2

Hypernetwork 2

Elu

Agent M

() () () (1)(, , ,)t t t t+
S A r S

The Mixing Network

Local state

Local transition

Weight

Joint Q-value

Joint state

Sample

Bias

Weight

Bias

Q-value

M
S

E
 lo

ss
Global reward

Gradient loss

Fig. 5. The detail of QMIX deployed in the orchestrator.

3) Gradient Return to Each Agent: Upon combining the
joint Q-value vector Q

(t)
tot = [Q

(t)
tot,1, Q

(t)
tot,2] obtained, as well

as Q
(t)

tot = [Q
(t)

tot,1, Q
(t)

tot,2], and the global reward r(t), we can
obtain the loss vector y(t) = [y

(t)
1 , y

(t)
2] and its corresponding

gradient vector as follows

y(t) =
[
r(t) + γQ

(t)

tot −Q
(t)
tot
]2
, (16)

where γ ∈ (0, 1) denotes the discount factor, and the squaring
operation is applied for each element of the vector. Then, the
gradient vector can be formulated as

∇y(t) =

[
∂y

(t)
1

∂Q
(t)
tot,1

,
∂y

(t)
2

∂Q
(t)
tot,2

]
, (17)

where ∇ denotes the gradient operator on each element of the
vector.

The message consisting of {∇y(t)} will be sent to each
agent for updating the evaluation networks, as shown in (11).
Given a sufficient number of training episodes, the losses of
the DDQNs in each agent would converge, i.e. be capable of
carrying out the optimal action maximizing the global reward.

The detailed procedure of the proposed SD-MAMP-DRL is
formulated in Algorithm 1.

E. Hypervolume-based Action Selection Scheme

In this subsection, we outline the design of an action
selection scheme for the agent. This scheme allows the agent to
obtain the optimal action as indicated in line 12 of Algorithm
1, namely function ActSel in (9). We then present the specific
formulation, represented by (20), summarized in Algorithm 2.

In the traditional DDQN algorithm of single-objective op-
timization problems, the action is selected according to the
maximum Q-value, formulated as

a
∗(t+1)
i = argmax

a
(t+1)
i

q(s
(t+1)
i , a

(t+1)
i ; θ

(t)
i).

However, when dealing with a multi-objective optimization
problem, the Q-value obtained is a vector, namely Q in (7).

7

Algorithm 1 SD-MAMP-DRL
1: Initialization:
2: Initialize the replay memory Z .
3: Initialize all parameters for evaluation networks and

target networks of all agents and the mixing network.
4: Initialize the learning rate ζ, and explore probability ψ.
5: for Step t = 1, ..., T do
6: Procedures in Each Agent:
7: for Agent i do
8: Update Θ

(t+1)
i = Θ

(t)
i + ζ∇y(t).

9: Every period time, Θi = Θi.
10: Observe s(t)i from environment.

11: Choose a(t)i as:

12: a
(t)
i =

{
randomly action, with probability ψ.
(9) (c.f. Algorithm 2), with probability 1− ψ.

13: Execute a(t)i and receive s(t+1)
i .

14: Obtain Q
(t)
i ,Q

(t)

i according to (6), (10).
15: Send s(t)i , a

(t)
i , s

(t+1)
i ,Q

(t)
i ,Q

(t)

i to the orchestrator.

16: end for
17: Procedures in the Orchestrator:
18: Construct S(t), A(t), and S(t+1).
19: Calculate r(t).
20: Store transition (S(t),A(t), r(t),S(t+1)) to Z .
21: Obtain the Qtot, Qtot according to (15).
22: Calculate y according to (16).
23: Perform a gradient descent step according to (17).
24: Send the gradient to each agent.
25: Update evaluation networks in the orchestrator.
26: Reset target networks as evaluation networks every

period time correspondingly.
27: end for
28: Execution Phase: See Section V for detail.
29: return result

Hence, in the action selection, the traditional ‘maximum’
criterion cannot be applied here. In this case, we design the
following action selection scheme based on the hypervolume
of the multi-objective Pareto-optimal solutions.

1) Pareto-Front: For a pair of Q-value vectors, Q domi-
nates Q′ denoted by Q � Q′, which means that Q is at least
as good as Q′ for all the elements, and strictly better than Q′

in at least one element. And Q′ � Q represents that Q is
non-dominated by Q′.

Given a set Q containing all Q-value vectors, the Pareto-
front is defined as follows.

Q∗ , {Q ∈Q : Q′ � Q,∀Q′ ∈Q}. (18)

It indicates that the Pareto-front Q∗ is a set consisting of all
non-dominated Q-value vectors.

2) Hypervolume Measurement for the Pareto-Front: The
goal of the proposed SD-MADRL algorithm is to obtain all the
efficient (optimal) actions constituting the Pareto-front during
the training phase. To obtain an accurate Pareto-front, we
design the action selection scheme based on its hypervolume.

O
b

je
c
tiv

e
 2

Objective 1

1
Q

*

1 1 2 3 4
{ , , , }=Q Q Q Q Q

*

2 5 6 7 8
{ , , , }=Q Q Q Q Q

* *

2 1
)>H() H(Q Q

2
Q

3
Q

4
Q

5
Q

6Q

7Q

8
Q

*

1
)H(Q

*

2
H()Q

Fig. 6. The hypervolume of the Pareto-front Q∗
1 and Q∗

2 .

Definition 2. (Hypervolume) Explicitly, the hypervolume of
the Pareto-front represents the volume of objective subspace
dominated by the non-dominated Q-value vectors and delim-
ited from a reference point [33]. The hypervolume for the
optimization problem with a pair of objectives is illustrated in
Fig. 6. In our scenario, we choose the origin as the reference
point, and the hypervolume of the set Q∗ is defined as

Ho(Q∗) , Λ
(
{Q′ | ∃Q ∈Q∗ : Q � Q′ and Q′ > 0}

)
,

(19)
where Λ(·) denotes the Lebesgue measure [34].

The hypervolume is the only known scalar indicator for
the Pareto-front to be strictly monotonic [33]. That is, if an
approximated Pareto-front Q∗1 dominates another front Q∗2,
then we have Ho(Q∗1) > Ho(Q∗2). Hence, the proposed
action selection scheme chooses the optimal action, which
contributes to the maximum hypervolume.

3) Proposed Action Selection Scheme: For the i-th agent,
the Pareto Q-value vector obtained is stored in the Pareto-
front Q∗i during the training phase. In the t-th episode, the
contribution of each action to Q∗(t)i , i.e. the hypervolume,
is calculated, and the action associated with the maximum
hypervolume is selected (c.f. (9)). That is,

a
∗(t+1)
i = argmax

a
(t+1)
i

ActSel
(
q(s

(t+1)
i , a

(t+1)
i ; Θ

(t)
i)
)
,

= argmax
a
(t+1)
i

Ho

(
F

(
Q∗(t)i

⋃
q
(
s
(t+1)
i , a

(t+1)
i ; Θ

(t)
i

)))
,

(20)
where the function F(·) represents the operation of selecting
the Pareto-front from a vector set.

After selecting the optimal action, the Pareto-front Q∗i will
be updated simultaneously. That is,

Q∗(t+1)
i = F

(
Q∗(t)i

⋃
q
(
s
(t+1)
i , a

∗(t+1)
i ; Θ

(t)
i

))
. (21)

The detailed workflow of the proposed action selection
scheme is specified in Algorithm 2.

V. POLICY SELECTION AND WEIGHT ADJUSTMENT
REGIME

Following the workflow of multi-objective optimization, in
this section, we first describe the policy selection which maps

8

Objective 1

O
b

je
c
ti

v
e

2

(1, 8)

(9, 1)

(3, 7)

(6, 5)

A

B

C

F

D

E

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

1w

w
Q

A F

D

B

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

1w

w
Q

1w

w
Q

A F

D

B

w
Qmax

(c)

Fig. 7. An example of convex coverage set. (a) Q-value vectors in the Pareto-front; (b) The corresponding linear-scalarized Q-value Qw; (c) The piece-wise
function maxQw vs. w1.

Algorithm 2 Proposed Action Selection Scheme Based-on
Hypervolume

1: Input: s(t),Q∗(t−1)s ,Θ(t),H = ∅
2: for each a(t) under the state do
3: Calculate the Q-value vector: Q(t)=q

(
s(t), a(t); Θ(t)

)
.

4: Obtain Q(t) = Q∗(t−1)s

⋃
Q(t).

5: Delete the dominated vectors in the set Q(t).
6: Calculate the hypervolume hv = Ho(Q(t)).
7: Store hv to H
8: Clear Q(t).
9: end for

10: Obtain a∗(t) = argmaxa(t) H
11: Obtain Q∗(t)s = q

(
s(t), a∗(t); Θ(t)

)⋃
Q∗(t−1)s

12: Update Q∗(t)s by deleting the dominated vectors.
13: Output: a∗(t).

the weights of two objective function parameters to the optimal
solution. Then, we introduce a weight adjustment regime on
the basis of real-time network traffic.

A. Policy Selection

1) Most Preferred Pareto Solution: Again, in the semi-
distributed multi-agent structure, each agent carries out its own
action. Relying on the training process introduced in Section
IV, for each state, each agent can obtain the Pareto-front of
the Q-value vectors and the corresponding action is referred
to as the Pareto solution.

Without loss of generality, for the i-th agent associated with
the state s, the Pareto-front Q∗ in (18) has been obtained. The
corresponding Pareto solution set is

A∗ ,
{
a : Q(a) ∈Q∗

}
, (22)

where Q(a) , q
(
s, a; Θ

)
is the Q-value vector for action a

with the trained DDQN.
In practice, this necessitates determining one solution from

the Pareto solution set. Here, the solution determined is
referred to as the most preferred Pareto solution, while this

determination process is referred to as policy selection. Math-
ematically, we have

π : s→ a∗, a∗ ∈ A∗. (23)

2) Linear Scalarization and Convex Coverage Set: In this
work, we use linear scalarization for choosing the most
preferred Pareto solution in (23).

With an arbitrary weight vector w, the linear-scalarized Q-
value can be expressed as

Qw(a) = wTQ(a). (24)

The policy selection in (23) represents the selection of the
action which corresponds to the maximum linear-scalarized
Q-value, where

a∗ = argmax
a∈A∗

Qw(a)

= argmax
a∈A∗

wTQ(a).
(25)

Note that the Pareto-front Q∗ obtained may contain several
concave points, indicated by the grey points in Fig. 7(a). The
corresponding Pareto solutions of these concave points never
be the most preferred solution, regardless of the weight w.

A convex coverage set (CCS) is defined [35], which is
the subset of the Pareto solution set containing all the most
preferred Pareto solutions associated with an arbitrary w,
defined as follows

Ac=

{
a∈A∗ : ∃w, ∀a′∈A∗, wTQ(a) ≥ wTQ(a′)

}
.

(26)
where we have Ac ⊆ A∗.

3) Policy Selection by Weight Segmentation: In our scenario
of two-dimensional Q-value vectors, the function Qw(w1) can
be represented by the lines seen in Fig. 7(b), where each line
corresponds to a Q-value vector on the Pareto-front. Hence, the
solid blue line in Fig. 7(c) represents the piece-wise function
maxQw(w1). Observe from this figure that the most preferred
Pareto solution a∗ is also represented by a piece-wise function
corresponding to the solid blue line.

To identify the break points defining the segments (such
as the point A in Fig. 7(a)) of this piece-wise function, we
calculate the intersection point between every two lines. Given
the pair of actions a and a′ in the CCS, the corresponding Q-

9

Algorithm 3 CCS and the Break Point Acquisition
1: Input: Ac = ∅, the state s, W = {0, 1}.
2: Obtain the Pareto-front Q∗ and corresponding Pareto

solution set A∗ from DDQN.
3: Sort the vectors in the set Q∗ according to the value

of the second element, and obtain the sorted Q∗ =
{Q1,Q2, ...,QN} and the corresponding sorted A∗ =
{a1, a2, ..., aN}.

4: for n = 2, ..., N − 1 do
5: for m = 1, ..., n− 1 do
6: Calculate Qn −Qm = (I1, I2).
7: for k = n+ 1, ..., N do
8: Calculate Qk −Qm = (J1, J2).
9: if J1I2 − J2I1 > 0 then

10: Delete the Qn in Q∗ and the an in A∗.
11: End this loop and jump to n+ 1 turn.
12: end if
13: end for
14: end for
15: end for
16: Obtain Ac = A∗.
17: for j = 2, .., |Q∗| do
18: Obtain Qj−1=[Qj−1,1, Qj−1,2] from Q∗.
19: Obtain Qj=[Qj,1, Qj,2] from Q∗.
20: Calculate wj =

Qj−1,2−Qj,2

(Qj−1,2−Qj,2)−(Qj−1,1−Qj,1)
.

21: Store wj in W .
22: end for
23: Reorder W .
24: Output: Ac and W .

value vectors are Q(a) = [Q1, Q2] and Q(a′) = [Q′1, Q
′
2].

Upon assuming that Q2 > Q′2 (i.e. Q1 < Q′1), we have the
most preferred solution as

a∗ =

{
a, if w1 ≤ Q2−Q′2

(Q2−Q′2)−(Q1−Q′1)
;

a′, otherwise.
(27)

By determining all the break points of w1, we can obtain the
break point set W = {w1, · · · , w|Ac|+1} having ascending
elements. Then the most preferred solution can be readily
decided. Given the weight vector w = [w1,w2], we have

a∗ = aj , if wj ≤ w1 ≤ wj+1. (28)

The detailed workflow of obtaining the CCS Ac and the
break point set W is presented in Algorithm 3.

B. Weight Adjustment Regime and Execution

In essence, the weight vector balances the preference of the
two objectives: reducing the transmission cost and improving
the quality of video service. As w1 denotes the weight for
the reduced traffic in the network, a larger 0 < w1 < 1
means that more transmission cost can be reduced by adopting
the corresponding action, and hence a lower video quality is
provided for the users since w2 = 1− w1.

It is worth noting that wireless traffic tends to exhibit
periodicity in the time domain [36], yielding increased traffic

congestion probability at peak time. Hence, in this work, a
dynamic transmission cost reduction weight w1 is adopted by
closely following the real-time network traffic. In detail, we
consider a pair of criteria:
• The transmission cost reduction weight obeys w1 → 1

when the real-time traffic of the BS is approaching its
maximum capacity.

• The transmission cost reduction weight follows w1 → 0
when the network traffic is quite low, aiming for improv-
ing the user’s QoE.

Considering that the variation of QoE under small and
large-scale traffic is slower than in medium-scale, we use a
shifted sigmoid function to generate the weight of transmission
cost reduction [37]. The proposed dynamic weight for the
transmission cost reduction is as follows.

w1(k) =
1

1 + exp[−a(k
k̂
− 1

2))]
, (29)

where k denotes the current traffic and k̂ is the threshold of
traffic, while a ≥ 12 is an experiential parameter controlling
the slope of the curve [37]. Given the real-time w1, in the
execution phase, the most preferred solution can be directly
obtained according to (27).

Above we have given the detailed decision process on the
basis of real-time network traffic. In particular, the different
weight segmentation and corresponding decisions are listed in
Section VI-B.

VI. SIMULATION RESULT AND ANALYSIS

In this section, we first demonstrate the performance of our
proposed SD-MAMP-DRL algorithm and show the impact of
various video and caching parameters. Then, we characterize
the Q-value of different solutions, i.e. the Pareto-front asso-
ciated with various video and caching parameters, and show
the weight segmentation, the executed actions and the rewards
obtained for validating the proposed algorithm. Finally, we
compare the performance of the algorithm conceived to that
of the benchmark algorithms.

In our simulations, PyTorch 1.9 was used to execute our
algorithm, and the RMSProp optimizer was employed for
updating the parameters of DDQN and the mixing network.
The discount factor γ and the learning rate ζ are set as 0.99
and 0.0005, respectively. The 1000 episodes are considered for
the agent’s training. Additionally, we set the bitrate of the five
SVC layers used to 600 kbps, 2200 kbps, 4800 kbps, 6760
kbps, and 11200 kbps, respectively [38]. The number of users
for the m-th BS in the cooperative caching cluster is Um = 3,
and the transmission cost coefficients ω1, ω2, ω3, ω4 in (3) are
0, 1, 3, and 5, respectively. The popularity of videos in the
video library follows the Zipf distribution with the exponent
of 0.3, 0.8, and 1.5.

In the following, we set the number of agents to M = 3
and 5, the number of videos to V = 5, 10, 15, 20, and 25,
the number of video layers to L = 3, 4 and 5, while the
storage size of the caching-enabled BS to range from 1 to
3 for comparison, respectively. Except otherwise stated, all
users’ requirement on video quality is set as p̂uv = L.

10

0 200 400 600 800 1000

Episode

0

500

1000

1500

2000

2500

3000

3500

4000

4500

H
y
p

e
rv

o
lu

m
e

0

1

2

3

4

5

6

7

A
v
e

ra
g

e
 L

o
s
s

105

SD- MAMP-DRL with 10 videos (3-agents)

SD- MAMP-DRL with 10 videos (5-agents)

SD- MAMP-DRL with 15 videos (3-agents)

Loss under 10 videos (3-agents)

Loss under 10 videos (5-agents)

Loss under 15 videos (3-agents)

Fig. 8. The total hypervolume achieved by multiple agents during training
vs. the episode index.

A. Performance of the Proposed SD-MAMP-DRL

Again, in our proposed algorithm, each cooperative agent
aims for maximizing the hypervolume of the Pareto-front of
Q-value vectors. Hence, for characterizing the performance
of this multi-agent algorithm, i.e. the overall performance
of the cooperative caching cluster, in Fig. 8, we plot the
accumulated hypervolume achieved vs. the episode index
during the training. Specifically, we consider the cases, where
the number of agents is M = 3 and 5, and the number of
videos is V = 10 and 15.

Observe from Fig. 8 that: 1) first, the accumulated hyper-
volume increases with the number of training episodes, and
then saturates in all cases. Again, the hypervolume represents
the space dominated by the non-dominated Q-value vectors,
and it is a monotonic characteristic of the Pareto-front. Hence,
the increase of the hypervolume indicates that the Pareto-
front obtained during the training is approaching the true
Pareto-front, and the saturation of the hypervolume implies
the convergence of the algorithm for all cooperative agents;
2) Given the three agents, the hypervolume associated with 15
videos is smaller than that with 10 videos. The reason behind
this is that given the same storage size, a larger video library
leads to degraded caching performance, i.e. lower transmission
cost reduction and a lower QoE. This results in a reduced
Q-value vector in the Pareto-front, which leads to a smaller
hypervolume; 3) Given V = 10 videos, the hypervolume
associated with three agents saturates at around 600 episodes,
while that of five agents saturates at around 800 episodes.
Furthermore, the loss value of five agents decreases slower
than that of three agents. Hence, it may be surmised that
increasing the number of agents in this multi-agent algorithm
leads to a moderate degradation of the convergence speed.

To show the Pareto-front achieved by the proposed semi-
distributed algorithm, in Fig. 9, we plot the non-dominated av-
erage reward of QoE vs. transmission cost reduction achieved
by 3, 4 and 5 video layers. 1) Observe from Fig. 9 the trade-
off between the two objectives, namely the average reward of
QoE vs. that of transmission cost reduction. In all scenarios,

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4

Average Reward of Transmission Cost Reduction

0.6

0.65

0.7

0.75

0.8

0.85

0.9

A
v
e

ra
g

e
 R

e
w

a
rd

 o
f

Q
o

E

SD-MAMP-DRL - 3 layers

SD-MAMP-DRL - 4 layers

SD-MAMP-DRL - 5 layers

Fig. 9. Pareto-front of average reward for 3, 4 and 5 video layers.

0 0.05 0.1 0.15 0.2 0.25 0.3

Average Reward of Transmission Cost Reduction

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
v
e

ra
g

e
 R

e
w

a
rd

 o
f

Q
o

E
SD-MAMP-DRL - 15 videos

SD-MAMP-DRL - 20 videos

SD-MAMP-DRL - 25 videos

Fig. 10. Pareto-front of average reward for 15, 20, 25 video numbers.

a higher QoE requires a more minor transmission cost reduc-
tion. A higher QoE requires better video qualities and hence
more video layers transmitted at higher bit rates, leading to
increasing the network’s wireless traffic. 2) Upon comparing
the three Pareto-fronts, it is observed that the non-dominated
average reward vectors obtained in the scenario of three video
layers generally have higher average rewards in terms of both
QoE and transmission cost reduction than those in the scenario
of four or five video layers. More specifically, having fewer
video layers results in a smaller requested video rate

∑p̂uv

l=1 bvl
(c.f. the denominator in (4)), and hence a higher QoE can be
satisfied with lower transmission cost. Furthermore, a smaller
number of video layers leads to a smaller number of caching
candidates. Hence, the same storage size can achieve better
caching performance, i.e. resulting in higher transmission cost
reduction.

In Fig. 10, we show the average reward of QoE vs. trans-
mission cost reduction parameterized by the number of videos.
This allows us to characterize the Pareto-front achieved after
the training using various numbers of videos. We can observe

11

TABLE II
PARETO-OPTIMAL SOLUTIONS AND CORRESPONDING REWARD VECTOR

Weight Segment
wj ∼ wj+1

Video Quality Served
puv

Trans. Cost Reduction
o1

User’s QoE
o2

0.00 ∼ 0.33 {3, 2, 3, 3, 2, 2} 0.41 1.00

0.33 ∼ 0.45 {2, 2, 3, 3, 2, 2} 0.43 0.92

0.45 ∼ 0.65 {3, 2, 3, 3, 2, 1} 0.48 0.88

0.65 ∼ 0.85 {2, 1, 2, 3, 2, 2} 0.57 0.84

0.85 ∼ 0.88 {2, 1, 2, 3, 2, 1} 0.63 0.73

0.88 ∼ 0.90 {2, 1, 2, 3, 1, 1} 0.67 0.61

0.90 ∼ 0.91 {1, 1, 1, 3, 2, 1} 0.68 0.56

0.91 ∼ 0.95 {1, 1, 1, 3, 1, 1} 0.72 0.45

0.95 ∼ 1.00 {1, 1, 1, 2, 1, 1} 0.73 0.37

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Average Reward of Transmission Cost Reduction

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
v
e

ra
g

e
 R

e
w

a
rd

 o
f

Q
o

E

SD-MAMP-DRL - 3 cache storage

SD-MAMP-DRL - 2 cache storage

SD-MAMP-DRL - 1 cache storage

Fig. 11. Pareto-front of average reward for 3, 2 and 1 cache storage.

that the non-dominated average rewards in the scenario of
25 videos generally are smaller in terms of both QoE and
transmission cost reduction than those of 15 or 20 videos.
Specifically, the performance in the scenario of 15 videos
is higher around 7.38% and 300% than those of 20 or 25
videos. The reason behind this is that a degraded caching
performance is achieved due to having a larger number of
caching candidates for given a storage size.

In Fig. 11, we enlarge the storage size of the caching-
enabled BSs from 1 to 3 units and plot the Pareto-front of
the average reward obtained after training. The performance
improvement of increasing the storage size can be clearly
observed, especially in terms of QoE. Specifically, when the
cache size is increased from 1 to 2, the average reward of
QoE increases from around 0.4 to nearly 0.8, although when
the cache size is further increased from 2 to 3, the increase in
QoE becomes moderate. Moreover, when the cache size is only
1, the improvement of user QoE brings a large degradation in
transmission cost reduction.

B. Weight Segmentation for Decision

To show the most preferred actions corresponding to dif-
ferent weights and the resultant rewards, in Table II we list

the optimal action puv of BSs, i.e. the video quality provided
for user-u requesting video-v. As we can see, upon relying on
the Pareto-front obtained after training, the region w1 ∈ (0, 1)
is unequally divided into 9 segments, and the most preferred
action, puv , varies across segments.

Since the weight w1 represents the importance of the
transmission cost reduction, we can observe from the table that
the video quality provided for the associated 6 users, namely
puv , gradually decreases with the growth of w1. Explicitly,
the agent degrades the video quality provided for their users
to reduce the video traffic, when the traffic load is high, i.e. w1

in (29). On the other hand, we can see that the QoE decreases
simultaneously due to the poorer video quality provided by
the BS. These results verify the rationale of the optimal action
decided in the execution phase and the trade-off between the
transmission cost reduction and QoE in wireless caching.

Furthermore, considering that the users’ requested video
quality is {3, 1, 3, 3, 2, 2}, when the weight for transmis-
sion cost reduction lies within the range of (0, 0.33], all
the users are served with their requested video quality,
i.e. puv = {3, 2, 3, 3, 2, 2}, resulting in a QoE reward of
o2 = 1. As ω1 increases, the video quality experienced is
progressively reduced. Explicitly, one user is not satisfied
when ω1 ∈ (0.33, 0.65]; two users are not satisfied when
ω1 ∈ (0.65, 0.85]; and as ω1 continues to increase, the number
of unsatisfied users grows accordingly.

C. Performance Comparison with Benchmarks

0 200 400 600 800 1000

Episode

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
v
e

ra
g

e
 R

e
w

a
d

 o
f

T
ra

n
s
m

is
s
io

n
 C

o
s
t

R
e

d
u

c
ti
o

n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
e

ra
g

e
 R

e
w

a
d

 o
f

Q
o

E

SD-MAMP-DRL

SD-DRL-SR

FD-DRL

LFU

SD-MAMP-DRL

SD-DRL-SR

FD-DRL

Fig. 12. Comparison for transmission cost reduction in different algorithms

To further validate the benefits of the semi-distributed multi-
agent structure in the global optimization of the cooperative
caching cluster, we also compared it to the following bench-
mark algorithms.
• Fully distributed DRL (FD-DRL) [8]: Each agent em-

ploys an independent DDQN without the orchestrator for
learning the optimal strategy from its local state, and
formulates its own caching and video service strategy.

• Semi-Distributed DRL with global reward (SD-DRL-
GR) [39]: In contrast to FD-DRL, SD-DRL-GR fa-
cilitates state-information exchange among the agents

12

and relies on a centralized node for calculating the
global/system reward, which is used in each agent for
gradient update.

• Least frequently used (LFU) [40]: This is a traditional
caching algorithm, where the video file requested least
frequently is replaced in the storage.

In Fig. 12, it is observed that the performance of the
traditional LFU algorithm is inferior to the other learning-
based algorithms, and LFU cannot provide dynamic decisions
concerning the video qualities. More importantly, among the
three multi-agent DRL algorithms: 1) the FD-DRL achieves
the poorest performance, which is due to the lack of global in-
formation or message exchange; 2) the proposed SD-MAMP-
DRL algorithm outperforms SD-DRL-GR since the neural
network of the orchestrator calculates not only the global
rewards as the SD-DRL-GR but also the joint Q-value and the
corresponding gradient, which is then returned to each agent
for network updates.

VII. CONCLUSION

Pareto-optimal cooperative edge caching of popular videos
relying on SVC techniques was investigated. With the goals
of reducing transmission cost caused by video delivery and
improving QoE, we proposed the novel SD-MAMP-DRL
algorithm, in which the semi-distributed structure achieves
global optimization of the cooperative caching cluster and the
multi-policy DRL obtains multiple Pareto policies suitable for
different network conditions. Our simulation results validated
the convergence of the proposed algorithm and portrayed the
Pareto-front in various scenarios, Our solution outperformed
the benchmark algorithms. Moreover, the dynamic weight
setting expedited the final phase of policy selection in an
efficient manner.

REFERENCES
[1] Z. Qu, B. Ye, B. Tang, S. Guo, S. Lu, and W. Zhuang, “Cooperative

caching for multiple bitrate videos in small cell edges,” IEEE Transac-
tions on Mobile Computing, vol. 19, no. 2, pp. 288–299, 2020.

[2] B. Jedari, G. Premsankar, G. Illahi, M. Di Francesco, A. Mehrabi, and
A. Ylä-Jääski, “Video caching, analytics, and delivery at the wireless
edge: a survey and future directions,” IEEE Communications Surveys &
Tutorials, vol. 23, no. 1, pp. 431–471, 2021.

[3] S. Rimac-Drlje, O. Nemcic, and M. Vranjes, “Scalable video coding ex-
tension of the H.264/AVC standard,” in Elmar, International Symposium,
2009.

[4] J. Meng, H. Lu, and J. Liu, “Joint quality selection and caching for
SVC video services in heterogeneous networks,” in IEEE WCNC 2020
- IEEE Wireless Communications and Networking Conference (WCNC),
2020, pp. 1–6.

[5] X. Zhang, T. Lv, Y. Ren, W. Ni, N. C. Beaulieu, and Y. J. Guo, “Eco-
nomical caching for scalable videos in cache-enabled heterogeneous
networks,” IEEE Journal on Selected Areas in Communications, vol. 37,
no. 7, pp. 1608–1621, 2019.

[6] K. Poularakis, G. Iosifidis, A. Argyriou, I. Koutsopoulos, and L. Tas-
siulas, “Caching and operator cooperation policies for layered video
content delivery,” in IEEE INFOCOM 2016 - The 35th Annual IEEE
International Conference on Computer Communications, 2016, pp. 1–9.

[7] R. Wu, G. Tang, T. Chen, D. Guo, L. Luo, and W. Kang, “A profit-
aware coalition game for cooperative content caching at the network
edge,” IEEE Internet of Things Journal, vol. 9, no. 2, pp. 1361–1373,
2022.

[8] J. Foerster, N. Nardelli, G. Farquhar, T. Afouras, P. H. Torr, P. Kohli,
and S. Whiteson, “Stabilising experience replay for deep multi-agent re-
inforcement learning,” in International conference on machine learning.
PMLR, 2017, pp. 1146–1155.

[9] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster,
and S. Whiteson, “QMIX: Monotonic value function factorisation for
deep multi-agent reinforcement learning,” in International conference
on machine learning, 2018, pp. 4295–4304.

[10] D. Liu, J. Zhang, J. Cui, S.-X. Ng, R. G. Maunder, and L. Hanzo, “Deep-
learning-aided packet routing in aeronautical Ad Hoc networks relying
on real flight data: From single-objective to near-Pareto multiobjective
optimization,” IEEE Internet of Things Journal, vol. 9, no. 6, pp. 4598–
4614, 2022.

[11] Parisi, Simone, Restelli, Marcello, Pirotta, and Matteo, “Multi-objective
reinforcement learning through continuous pareto manifold approxima-
tion,” The Journal of Artificial Intelligence Research, 2016.

[12] G. Qiao, S. Leng, S. Maharjan, Y. Zhang, and N. Ansari, “Deep
reinforcement learning for cooperative content caching in vehicular edge
computing and networks,” IEEE Internet of Things Journal, vol. 7, no. 1,
pp. 247–257, 2020.

[13] Z. Yang, Y. Liu, Y. Chen, and L. Jiao, “Learning automata based Q-
learning for content placement in cooperative caching,” IEEE Transac-
tions on Communications, vol. 68, no. 6, pp. 3667–3680, 2020.

[14] T. Ming, “Multi-agent reinforcement learning: Independent versus co-
operative agents,” in Proceedings of the Tenth International Conference
on Machine Learning (ICML), 1993, pp. 330–337.

[15] S. Chen, Z. Yao, X. Jiang, J. Yang, and L. Hanzo, “Multi-agent deep
reinforcement learning-based cooperative edge caching for ultra-dense
next-generation networks,” IEEE Transactions on Communications,
vol. 69, no. 4, pp. 2441–2456, 2021.

[16] Y. Zhang, B. Feng, W. Quan, A. Tian, K. Sood, Y. Lin, and H. Zhang,
“Cooperative edge caching: A multi-agent deep learning based ap-
proach,” IEEE Access, vol. 8, pp. 133 212–133 224, 2020.

[17] Y. Chen, Y. Cai, H. Zheng, J. Hu, and J. Li, “Cooperative caching for
scalable video coding using value-decomposed dimensional networks,”
China Communications, 2022.

[18] X. Hu, Y. Zhang, X. Liao, Z. Liu, W. Wang, and F. M. Ghannouchi,
“Dynamic beam hopping method based on multi-objective deep rein-
forcement learning for next generation satellite broadband systems,”
IEEE Transactions on Broadcasting, vol. 66, no. 3, pp. 630–646, 2020.

[19] Y. Yu, J. Tang, J. Huang, X. Zhang, D. K. C. So, and K.-K. Wong,
“Multi-objective optimization for UAV-assisted wireless powered IoT
networks based on extended DDPG algorithm,” IEEE Transactions on
Communications, vol. 69, no. 9, pp. 6361–6374, 2021.

[20] K. V. Moffaert, M. M. Drugan, and A. Nowé, “Scalarized multi-objective
reinforcement learning: Novel design techniques,” in 2013 IEEE Sympo-
sium on Adaptive Dynamic Programming and Reinforcement Learning
(ADPRL), 2013.

[21] G. Duflo, G. Danoy, E.-G. Talbi, and P. Bouvry, “Automating the design
of efficient distributed behaviours for a swarm of UAVs,” in 2020 IEEE
Symposium Series on Computational Intelligence (SSCI), 2020, pp. 489–
496.

[22] K. Van Moffaert and A. Nowé, “Multi-objective reinforcement learning
using sets of pareto dominating policies,” J. Mach. Learn. Res., vol. 15,
no. 1, p. 3483–3512, Jan. 2014.

[23] Z. Zhao, J. Shi, Z. Li, J. Si, P. Xiao, and R. Tafazolli, “Multiobjective
resource allocation for mmWave MEC offloading under competition of
communication and computing tasks,” IEEE Internet of Things Journal,
vol. 9, no. 11, pp. 8707–8719, 2022.

[24] A. Akbar, M. Ibrar, M. A. Jan, A. K. Bashir, and L. Wang, “SDN-
enabled adaptive and reliable communication in IoT-fog environment
using machine learning and multiobjective optimization,” IEEE Internet
of Things Journal, vol. 8, no. 5, pp. 3057–3065, 2021.

[25] A. Kabir, G. Rehman, S. M. Gilani, E. J. Kitindi, Z. Ul Abidin Jaffri,
and K. M. Abbasi, “The role of caching in next generation cellular
networks: A survey and research outlook,” Transactions on Emerging
Telecommunications Technologies, vol. 31, no. 2, p. e3702, 2020.

[26] X. Li, X. Wang, and V. Leung, “Weighted network traffic offloading in
cache-enabled heterogeneous networks,” in IEEE International Confer-
ence on Communications, 2016.

[27] B. Jedari, G. Premsankar, G. Illahi, M. Di Francesco, A. Mehrabi, and
A. Ylä-Jääski, “Video caching, analytics, and delivery at the wireless
edge: a survey and future directions,” IEEE Communications Surveys &
Tutorials, vol. 23, no. 1, pp. 431–471, 2020.

[28] H. Hu, X. Zhu, Y. Wang, R. Pan, J. Zhu, and F. Bonomi, “Proxy-based
multi-stream scalable video adaptation over wireless networks using
subjective quality and rate models,” IEEE Transactions on Multimedia,
vol. 15, no. 7, pp. 1638–1652, 2013.

[29] M. Qi, M. Wang, and Z.-J. Shen, “Smart feasibility pump: Rein-
forcement learning for (mixed) integer programming,” arXiv preprint
arXiv:2102.09663, 2021.

13

[30] Y. Sun, M. Peng, and S. Mao, “Deep reinforcement learning-based mode
selection and resource management for green fog radio access networks,”
IEEE Internet of Things Journal, vol. 6, no. 2, pp. 1960–1971, 2018.

[31] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Processing
Magazine, vol. 34, no. 6, pp. 26–38, 2017.

[32] L. Xi, L. Yu, Y. Xu, S. Wang, and X. Chen, “A novel multi-agent
DDQN-AD method-based distributed strategy for automatic generation
control of integrated energy systems,” IEEE Transactions on Sustainable
Energy, vol. 11, no. 4, pp. 2417–2426, 2019.

[33] C. Audet, J. Bigeon, D. Cartier, S. Le Digabel, and L. Salomon, “Per-
formance indicators in multiobjective optimization,” European journal
of operational research, vol. 292, no. 2, pp. 397–422, 2021.

[34] A. P. Guerreiro, C. M. Fonseca, and L. Paquete, “The hypervolume
indicator: Problems and algorithms,” arXiv preprint arXiv:2005.00515,
2020.

[35] D. M. Roijers, S. Whiteson, and F. A. Oliehoek, “Computing convex
coverage sets for faster multi-objective coordination,” Journal of Artifi-
cial Intelligence Research, vol. 52, pp. 399–443, 2015.

[36] B. Yan, Y. Zhao, X. Yu, W. Wang, Y. Wu, Y. Wang, and J. Zhang,
“Tidal-traffic-aware routing and spectrum allocation in elastic optical
networks,” Journal of Optical Communications and Networking, vol. 10,
no. 11, pp. 832–842, 2018.

[37] X. Yin, J. Goudriaan, E. A. Lantinga, J. Vos, and H. J. Spiertz, “A
flexible sigmoid function of determinate growth,” Annals of botany,
vol. 91, no. 3, pp. 361–371, 2003.

[38] C. Kreuzberger, D. Posch, and H. Hellwagner, “A scalable video coding
dataset and toolchain for dynamic adaptive streaming over HTTP,” in
the 6th ACM Multimedia Systems Conference, 2015, pp. 213–218.

[39] N. Naderializadeh, J. J. Sydir, M. Simsek, and H. Nikopour, “Resource
management in wireless networks via multi-agent deep reinforcement
learning,” IEEE Transactions on Wireless Communications, vol. 20,
no. 6, pp. 3507–3523, 2021.

[40] K. Arora and D. R. Ch, “Web cache page replacement by using LRU
and LFU algorithms with hit ratio: a case unification,” Int. J. Comput.
Sci. Inf. Technol, vol. 5, no. 3, pp. 3232–3235, 2014.

Boyang Guo received his B.S. degree in electronic
and information engineering from Jiangsu University
of Science and Technology, Zhenjiang, China. He
is currently pursuing his Ph.D. degree in informa-
tion and communication engineering with Fuzhou
University, China. His research interests include
wireless caching/computing, resource allocation and
reinforcement learning in wireless networks.

Youjia Chen (Member, IEEE) received the B.S. and
M.S. degrees in communication engineering from
Nanjing University, Nanjing, China, and the Ph.D.
degree in wireless engineering from the University
of Sydney, Camperdown, NSW, Australia, in 2005,
2008 and 2017, respectively. From 2008 to 2009,
she was with Alcatel-Lucent ShanghaiBell. Then she
was with the College of Photonic and Electrical En-
gineering, Fujian Normal University, Fuzhou, China,
from August 2009. She is currently a Professor with
the College of Physics and Information Engineering,

Fuzhou University, Fuzhou, China. She has authored or co-authored more
than 40 research papers in leading international journals and conference,
and contributed to a Wiley-IEEE Press book. Her research interests include
wireless caching/computing, intelligent reflecting surfaces, internet of video
things, and wireless AI.

Peng Cheng (Member, IEEE) received the B.S. and
M.S degrees with great honors in communication
and information systems from University of Elec-
tronic Science and Technology of China (UESTC),
Chengdu, China, in 2006 and 2009 and the Ph.D.
degree from Shanghai Jiao Tong University, Shang-
hai, China, in 2013. From 2014 to 2017, he was a
Postdoctoral Research Scientist in CSIRO, Sydney,
Australia. From 2017 to 2020, he was an ARC DE-
CRA Fellow/Lecturer at the University of Sydney,
Australia. He is currently an ARC DECRA Fellow

and a Senior Lecturer (Tenured Associate Professor in U.S. systems) in
Department of Computer Science and Information Technology, La Trobe
University, Australia, and is affiliated with the University of Sydney, Australia.
He has published over 70 peer-reviewed research papers in leading interna-
tional journals and conferences. His current research interests include wireless
AI, machine learning, IoT, millimeter-wave communications, and compressive
sensing theory.

Ming Ding (Senior Member, IEEE) is currently
a Senior Research Scientist with Data61, CSIRO,
Sydney, NSW, Australia. He has authored more than
150 papers in IEEE journals and conferences, all
in recognized venues, and around 20 3GPP stan-
dardization contributions, and also two books. His
research interests include information technology,
data privacy and security, and machine learning and
AI. He also holds 21 U.S. patents and has co-
invented another more than 100 patents on 4G/5G
technologies. He is currently the Editor of IEEE

TRANSACTIONS ON WIRELESS COMMUNICATIONS and IEEE COM-
MUNICATIONS SURVEYS AND TUTORIALS. He was the guest Editor/Co-
Chair/Co-Tutor/TPC Member for multiple IEEE top-tier journals/conferences.
He was the recipient of several awards for his research work and professional
services.

Jinsong Hu (Member, IEEE) received the B.S. and
Ph.D. degrees from the School of Electronic and
Optical Engineering, Nanjing University of Science
and Technology, Nanjing, China, in 2013 and 2018,
respectively. From 2017 to 2018, he was a Visiting
Ph.D. Student with the Research School of Engineer-
ing, The Australian National University, Canberra,
ACT, Australia. He is an Associate Professor with
the College of Physics and Information Engineer-
ing, Fuzhou University, Fuzhou, China. His research
interests include covert communications, physical-

layer security, and array signal processing. He is currently serving as a Review
Editor of Frontiers in Communications and Networks.

Lajos Hanzo (Fellow, IEEE) received his Master
degree and Doctorate in 1976 and 1983, respectively
from the Technical University (TU) of Budapest.
He was also awarded the Doctor of Sciences (DSc)
degree by the University of Southampton (2004) and
Honorary Doctorates by the TU of Budapest (2009)
and by the University of Edinburgh (2015). He is
a Foreign Member of the Hungarian Academy of
Sciences and a former Editor-in-Chief of the IEEE
Press. He has served several terms as Governor of
both IEEE ComSoc and of VTS. He has published

2000+ contributions at IEEE Xplore, 19 Wiley-IEEE Press books and has
helped the fast-track career of 123 PhD students. Over 40 of them are
Professors at various stages of their careers in academia and many of them
are leading scientists in the wireless industry. He is also a Fellow of the Royal
Academy of Engineering (FREng), of the IET and of EURASIP.

