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Abstract— Functional electrical stimulation (FES) is an ef-
fective upper limb stroke rehabilitation technology that helps
patients recover lost movement by assisting functional task
training. Unfortunately, current FES controllers cannot satisfy
the competing demands of high accuracy, robustness to mod-
elling error and limited set-up/identification time needed for
clinical or home deployment. To address this, an estimation-
based multiple model switched iterative learning control frame-
work is proposed, combining the most successful adaptive
learning features of existing FES controllers. A practical design
procedure that guarantees robust performance is developed,
and efficacy is established across realistic testing scenarios.

I. INTRODUCTION

One in four adults suffer a stroke in their lifetime, and
80% of survivors have impaired upper limb function [1].
Lost movement can be recovered by intensive practice of
functional tasks [2] which enables the brain to receive the
necessary haptic, proprioceptive and visual feedback to fuse
new connections. Functional electrical stimulation (FES) fa-
cilitates task training by artificially activating muscles using
a sequence of electrical pulses. It is the most popular rehabil-
itation technology and is supported by a substantial number
of clinical studies confirming it improves arm function [3].

All commercial FES devices use open-loop control [4] due
to its simple design, tuning and implementation. Similarly,
the vast majority of upper limb clinical studies are either
open-loop or are triggered by electromyography (EMG) [5],
however resulting movements are slow and inaccurate.

A variety of closed-loop model-free FES upper limb
approaches have been applied in single-session tests with
healthy and stroke participants, usually to only 1 or 2 muscle
groups in the arm or wrist. The most common approaches are
proportional-integral-derivative (PID) position control, and
proportional feedback of EMG and electroencephalographic
(EEG) signals. However, tuning is time-consuming and track-
ing accuracy is poor due to delay and fatigue. Adding simple
adaption to PID has only partially compensated for this [6].
Reinforcement learning [7] and artificial neural networks [8]
have eliminated tuning, but require excessive training.

Model based upper-limb FES control has provided higher
accuracy, but again has mainly focused on simple movements
involving only 1 or 2 joints. Simple approaches include
feedback compensation [9] and quasi-static control [10],
but model identification and tuning takes 15 minutes and
results in low accuracy. Model predictive [11] and optimal
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control [12] have improved forearm motion accuracy, but
identification time and inability to handle fatigue were still
substantial issues. Several sliding mode approaches have
added robustness to parametric model uncertainty, but can
cause discomfort, accuracy degradation, and do not provide
identification details [13], [14], [15]. [16] proposed multiple
model adaptive control (MMAC), applying it to isometric
elbow torque. A set of models was designed, and a bank of
Kalman filters computed which fitted the measured plant data
best. An optimal controller designed for this model was then
switched into closed-loop. MMAC is the only FES controller
to be tested with multiple healthy and impaired subjects in
experiments that induce full fatigue. Accuracy was high, and
once the model set was designed, it could be applied to new
subjects without model identification or tuning.

Iterative learning control (ILC) harnesses the repeated
nature of rehabilitation training to improve accuracy, and is
the only model-based upper limb approach to have been used
in multiple clinical trials. Over the course of 15 years, tests
with a total of 30 stroke patients have progressed to full arm
reaching tasks [17] including hand and wrist motion via an
FES electrode array [18]. Although accuracy has been high,
identification time has become prohibitively long, and recent
trials which avoided re-identification by reusing previous
models yielded significantly degraded tracking accuracy.

This paper addresses the above limitations by combining
the accuracy of ILC with the robustness properties of MMAC
and its inability to remove identification tests. It builds on the
estimation-based multiple model switched ILC (EMMILC)
framework introduced in [19]. Unlike other MMAC ap-
proaches, the EMMILC performance bounds do not degrade
when the number of models is increased. It develops a
principled design procedure that guarantees robust stability,
then verifies it on a realistic application for the first time.

II. PROBLEM STATEMENT

This section summarises the ILC design used in previous
clinical applications of FES, including [17], [18].

A. ILC Framework

Consider a discrete plant operator Pp parameterised by
the state-space quartet p = (Ap, Bp, Cp, Dp). ILC runs
over repeated trials, with index k = 0, 1, 2, .... Each trial
comprises N samples and the system is reset to identical
initial conditions x0. The state-space system on trial k is

xk(t+ 1) = Apxk(t) +Bpuk(t), x(0) = x0

yk(t) = Cpxk(t) +Dpuk(t), t = 0, 1, ..., N − 1,
(1)



where uk(t) ∈ Rm, yk(t) ∈ Rn are input and output signals.
The objective is to track a fixed signal yref as the trials
progress, i.e. the error ek(t) = yref (t)− yk(t) must satisfy

lim
k→∞

ek(t) = 0, t = 0, 1, 2, ..., N − 1. (2)

ILC design typically ‘lifts’ the signals, yielding supervectors

uk = [uk(0), uk(1), uk(2), ..., uk(N − 1)]⊤ ∈ RmN ,

yk = [yk(0), yk(1), yk(2), ..., yk(N − 1)]⊤ ∈ RnN ,

yref = [yref (0), yref (1), yref (2), ..., yref (N − 1)]⊤ ∈ RnN .
(3)

Without loss of generality, initial condition x0 can be ab-
sorbed into the reference so that the plant dynamics become

yk = Pp̂uk, (4)

where p̂ denotes the lifted realisation of plant p, with
associated matrix operator

Pp̂ =



Dp 0 · · · 0 0
CpBp Dp · · · 0 0

CpApBp CpBp · · · 0 0
...

...
. . .

...
...

CpA
N−3
P Bp CpA

N−4
p Bp · · · Dp 0

CpA
N−2
p Bp CpA

N−3
p Bp · · · CpBp Dp


∈ RmN×nN .

(5)
The most common ILC update form is

uk+1 = Qĉ(uk + Lĉek), (6)

where Qĉ ∈ RmN×mN is a robustness filter and Lĉ ∈
RmN×nN is a learning operator. A wide variety of designs
exist, see, for example, [20] for a review.

EMMILC is built on the adaptive framework of [21]
shown in Fig. 1 where (ui, yi) represents the plant input and
output (i = 1), external disturbances (i = 0) and measured
signals (i = 2). Here unlifted plant Pp and a controller Cc

operate continuously from sample to sample. To transform

Fig. 1: Closed-loop system structure

the structure of ILC into this setting, express (4) and (6) as

y1(k) = Pp̂u1(k), (7)

u2(k + 1) = Qĉ(u2(k)− Lĉy2(k)), (8)

where u1(k) = uk, y1(k) = yk, and ui(k) ∈ RmN , yi(k) ∈
RnN now contain data for a whole ILC trial. Clearly (7)
and (8) are both state-space systems operating in the lifted
space with respective parameterisations p̂ = (0, 0, 0, Pp̂) and
ĉ = (Qĉ,−QĉL, I, 0) and corresponding lifted operators Pp̂

and Cĉ. The standard ILC convergence condition is

σ := ∥Qĉ(I − LĉPp̂)∥ < 1. (9)

In the case of no disturbances, i.e. (u0, y0) = 0, then

y1(k) → (I −Qĉ(I − LĉPp̂))
−1QĉLĉPp̂yref as k → ∞.

In particular, if Qĉ = I , then tracking objective (2) holds.

B. ILC Robust Stability

Embedding ILC in the adaptive framework of [22] imme-
diately provides robust stability results that will be used in
the EMMILC design framework. Recall that the gap metric
[23] between two unlifted plant operators Pp, Pp∗ is denoted
δ(p, p∗), and characterises the distance between the two
systems. It was shown in [24] that the gap metric satisfies

δ(p̂, p̂∗) ≤ δ(p, p∗), (10)

where p̂, p̂∗ are the lifted forms of plants p, p∗. Applying
results from [22] yields the ILC robust stability bound:

Theorem 1: Let Pp, Pp∗ be systems of form (1) and Cĉ

be an ILC design for Pp such that condition (9) holds. Then
this ILC design also stabilises plant Pp∗ provided

δ(p, p∗) < ∥ΠPp̂//Cĉ
∥−1, (11)

where the mapping ΠPp̂//Cĉ
: (u0, y0)

⊤ 7→ (u1, y1)
⊤ is

ΠPp̂//Cĉ
=

(
(I − CcPp)

−1 −(I − CcPp)
−1Cc

Pp(I − CcPp)
−1 −Pp(I − CcPp)

−1Cc

)
. (12)

Furthermore, the bound satisfies

||ΠPp̂//Cĉ
|| ≤ ∥(Pp̂, I)∥

(
||(I, Pp̂)

⊤∥∥QĉLĉ∥
1− σ

+ 1

)
. (13)

Proof: Setting w = (u0, y0 + yref ), (7), (8) give

[
ΠPp̂//Cĉ

w
]
(k)=

( I
Pp̂

)( k∑
i=1

{
[Qĉ(I − LĉPp̂)]

i−1
(QĉLĉyref

−QĉLĉ(Pp̂,−I)w0(k − i))
}
+ u0(k)

)
and it follows that an upper bound on ∥ΠPp̂//Cĉ

∥ is

sup
w0(k) ∈ RmN×nN

∥w0∥ ≠ 0

(∑∞
k=0

∥∥∥( I
Pp̂

)∑k
i=1 [Qĉ(I − LĉPp̂)]

i−1
QĉLĉ(−Pp̂, I)

×w0(k − i) + u0(k)
∥∥∥2) 1

2

(∑∞
k=0 ∥w0(k)∥2

) 1
2

where w0 = (u0, y0)
⊤. Setting u0 = 0 and y0 = 0 separately

and applying relationship

∥ΠPp̂//Cĉ
w0∥

∥w0∥
=

∥∥∥ΠPp̂//Cĉ

(
u0

0

)∥∥∥ +
∥∥∥ΠPp̂//Cĉ

(
0
y0

)∥∥∥∥∥∥( u0

y0

)∥∥∥
≤

∥∥∥ΠPp̂//Cĉ

∣∣∣
y0=0

∥∥∥ +
∥∥∥ΠPp̂//Cĉ

∣∣∣
u0=0

∥∥∥
yields (13) after significant further manipulation.

Theorem (1) provides a transparent condition for robust
stability of ILC. To illustrate this, suppose Pp is a plant
model and U is the uncertainty space specified by the
designer as the set of all plants that may contain the true
plant (1). Then (11) defines a gap ‘ball’ of plants that are
stabilised by the ILC update (6). This is illustrated in Fig. 2.



Fig. 2: Gap ball of plants stabilised by ILC update Cĉ, with
centre Pp, and radius ∥ΠPp̂//Cĉ

∥−1 .

III. EMMILC FRAMEWORK

In practice ILC often has poor robustness, with a small
gap radius ∥ΠPp//Cc

∥−1 generated by model Pp. EMMILC
addresses this by introducing a set of ‘candidate’ plant
models P = {p1, p2, ..., pNp}, where each is used to design
an ILC controller ĉ = K(p),∀p ∈ P with K denoting the
control design procedure. The set of all controllers is denoted
C = {ĉ1, ĉ2, ĉ3, ..., ĉNp

}. Note that Pp and Cĉ are referred
to by their state-space parameterisations p and ĉ. Then, gap
balls of all the closed-loop systems [Pp̂, CK(p)] are designed
to cover the whole uncertainty set U , as illustrated in Fig. 3.

Fig. 3: a) Uncertainty set U covered by balls of radius ρp.
b) Every plant p ∈ U has a stabilising controller ĉ ∈ C.

By suitably switching between controllers, EMMILC guar-
antees bounded-input bounded-output stability for any true
plant Pp∗ ∈ U . To decide on which ILC update to apply
for each trial, a bank of Kalman estimators are designed
to establish how well each plant model fits the measured
data (u2, y2). Each estimator computes a residual, rp̂, equal
to the size of the minimum disturbance necessary to ex-
plain the measurement (u2, y2) given that Pp̂ is the true
plant. Specifically, suppose N [0,k]

p̂ (u2, y2) is the set of all
disturbances (u0, y0) compatible with plant Pp̂, the measured
signals (u2, y2) and the signal connections in Fig. 1 over ILC
trials [0, k]. Then the residual on trial k is defined as

rp̂[k] = inf{r ≥ 0|r = ∥v0∥, v0 ∈ N [0,k]
p̂ (u2, y2)}. (14)

This can be calculated recursively as

rp̂[k] =
√
(rp̂[k − 1])2 + (rp[N − 1])2, (15)

where the unlifted residual over interval [0, t] on trial k is

rp[t] = inf{r ≥ 0|r = ∥v0∥, v0 ∈ N [0,t]
p (u2(k), y2(k))}.

(16)
where N [0,t]

p (u2(k), y2(k)) is the unlifted equivalent of
N [0,k]

p̂ (u2, y2) on trial k. It is shown in [25] that (16) can be

computed by the discrete-time unlifted Kalman filter using
the unlifted ‘along-the-trial’ update

x̃p(t+ 1/2) = x̃p(t)−Σp(t)C
⊤
p [CpΣp(t)C

⊤
p + I]−1

· [(y2(k))(t) + Cpx̃p(t)]
(17)

Σp(t+1/2) = Σp(t)−Σp(t)C
⊤
p [CpΣp(t)C

⊤
p +I]−1CpΣp(t)

(18)
x̃p(t+ 1) = Apx̃p(t+ 1/2) +Bp(u2(k))(t) (19)

Σp(t+ 1) = ApΣp(t+ 1/2)A⊤
p +BpB

⊤
p (20)

with initial conditions Σp(0), x̃p(0) and sample t ∈ [0, N −
1]. The required rp[N−1] is then given by a weighted norm

rp[N − 1] =
[∑N−1

t=0 ∥(y2(k))(t) + Cpx̃p(t)∥2[CpΣp(t)C⊤
p +I]−1

] 1
2

.

(21)
Computations (15),(17)-(21) incur far less load than solving
(14) since they do not involve large matrices.

The ILC update corresponding to the candidate plant with
the smallest residual is then used to compute the next input.
The switching signals is therefore defined by

q(k) := argmin
p∈P

rp̂[k] ∀k ∈ N (22)

with corresponding ILC operator CK(q(k)). The overall EM-
MILC scheme is illustrated by Fig. 4.

Fig. 4: EMMILC: the bank of estimators E(.) defined by
(17)-(21) outputs the residuals rp̂1

to rp̂n
, the minimum

residual is used to produce the switching signal q, which
then selects the next ILC update.

In [19], two conditions are derived that guarantee robust
performance of EMMILC when applied to an unknown plant
Pp∗ ∈ U . Firstly the candidate model set P must satisfy

1) ∃p ∈ P, s.t. δ(p, p∗) < ρ(P, C,U), (23)

where ρ is a function of the controller set C, plant set P
and uncertainty space U . This criterion specifies a minimum
radius of gap balls covering the uncertainty space, and hence
dictates the number of estimators required. It is illustrated by
Fig. 3a). Secondly, the set of controllers C must satisfy

2) ∃ĉ ∈ C, s.t. ∥Πp̂//ĉ∥ < ∞ ∀p ∈ U , (24)

which means there must exist a stabilising controller for each
plant in set U . This is illustrated in Fig. 3b).



Computing ρ(P, C,U) entails a large computational bur-
den, and is also conservative (i.e. more candidate plants
are specified than required). To address this, an efficient
design procedure is now developed, which does not explicitly
require calculating ρ(P, C,U).

Firstly, criterion (24) requires all plants in the uncertainty
set U to be stabilised. The obvious approach to satisfy this is
using the stability bound (11) to design a minimal candidate
plant set P whose gap balls (with radius ||Πp̂//K(p)||−1)
cover the uncertainty space U . This is achieved by using
Theorem 1, i.e. selecting a radius of

ρp = γ∥ΠPp̂//Cĉ
∥−1, (25)

where γ = 1. However, criterion (23) may not be satisfied.
Hence the tuning parameter 0 < γ ≤ 1 will be employed to
reduce the radius of the balls. As γ → 0, more gap balls will
be included to cover the same set U , hence (23) will always
be satisfied for any ρ, avoiding the need to calculate it.

To compute the minimal set of candidate plants that cover
set U , a practical approach is to first define the largest set of
plant models that resources permit, H = {p1, p2, ..., pNm

}.
These should be uniformly distributed in the uncertainty
space U , then remove models that are not required. When
all unnecessary models are removed, the minimum set P
is obtained. The overall approach is stated in Algorithm 1,
where the ILC controller set C is produced using the resulting
minimum plant set. The principle is illustrated by Fig. 5.

Algorithm 1 Design Procedure
Require: ILC design procedure K, and 0 < γ ≤ 1
Ensure: Minimal candidate plant set P

1: Define H = {p1, p2, ..., pNm} as the finest grid that
computational resources allow;

2: Set S = {0, 0, ..., 0} with Nm elements, Sj denoting the
jth element;

3: for each i ∈ {1, 2, 3, ..., Nm} do
4: for each j ∈ {1, 2, 3, ..., Nm} do
5: if ∃a ∈ {1, 2, 3, ..., Nm}, s.t. Sa = 0 then
6: Design Qĉi , Lĉi for ĉi = K(pi), s.t. bound (13)

is minimised, ||Πp̂i//K(pi)||−1 is maximised.
7: if δ(p̂i, p̂j) < γ||Πp̂i//K(pi)||−1 then
8: Sj = i;
9: end if

10: else
11: Delete repetitions from S, set Np = |S|;
12: P = {PpS1

, PpS2
, ..., PpSNp

}; Exit loops;
13: end if
14: end for
15: end for
16: Return P .

IV. PRACTICAL VERIFICATION

In this section EMMILC is compared with the standard
ILC approach used in FES based rehabilitation (a fixed con-
troller) using a clinically relevant application. The tracking
performance will be measured with different values of γ.

Fig. 5: The black plant models are not needed and removed
from the initial plant set H. The remaining red plants form
the minimal candidate plant set P , which still covers U .

A. Model and Controller Design

From [26], an accurate model of wrist dynamics that is
widely used for FES control design is given by

Pp(s) = hIRC · ω2
n

s2 + 2ωns+ ω2
n

· 1

Iss2 +Bss+Ks
, (26)

where physiological parameters hIRC , ωn, Is, Bs and Ks de-
note the isometric recruitment curve (IRC) constant, natural
frequency, inertia, damping and stiffness, respectively, and
vary from patient to patient. The input to this model is the
FES pulsewidth, and the output is the wrist angle. Nominal
wrist parameter are taken from practical data measured
in [26], [27], [28] and [29], and are listed in Table I.
Because stiffness and inertia vary most among individuals,
this simulation only considers their ranges.

TABLE I: Values of wrist parameters.

Symbol Nominal value Uncertainty range Unit
hIRC 0.0117 N/A N/A
ωn 9.4248 N/A rads/s
Ks 1.62 0.62 ∼ 3.24 Nm/rad
Bs 0.128 N/A Nms/rad
Is 0.0045 0.0007 ∼ 0.00612 Nms2/rad

The reference trajectory is selected to produce 60◦ wrist
extension corresponding to a grasp and release task. A
sampling time of 0.025 seconds (40Hz) and a duration
of 7.5 seconds are also chosen to match existing clinical
implementations, yielding N = 300 samples. The model
uncertainty set U comprises the parametric uncertainties
defined in Table I.

The inverse ILC update with step size β = 1 is employed
due to its rapid convergence and prior tremor implementation
[30], hence producing Lĉ = P−1

p̂ . A 10th order zero-phase
low-pass filter with cut-off frequency 5Hz is established and
lifted using (5) to produce a robustness filter Qĉ, in order to
satisfy the design protocol in Algorithm 1. The ILC update
Cĉ, ĉ = K(p) is hence given by

u2(k + 1) = Qĉ[u2(k)− P−1
p̂ y2(k)], ∀p ∈ H. (27)

To design the candidate model set, Algorithm 1 is now
implemented using tuning parameter γ = 1. This is chosen to



establish whether a minimum candidate plant set can provide
satisfactory performance. Within Algorithm 1, Nm = 100 is
selected for the initial plant set H since it takes approxi-
mately one hour to compute the minimum plant set, which
is deemed acceptable for each implementation.

After implementation, the output of Algorithm 1 is a
minimal candidate plant set P = {p1, p2, ..., pNp} com-
prising Np = 36 plants (64 having been removed). The
candidate controller set C = {ĉ1, ĉ2, ĉ3, ..., ĉNp

} contains 36
ILC controllers, each corresponding to a plant p ∈ P .

B. Evaluation of Tracking Performance

To evaluate the effect of EMMILC, it will be compared
to standard ILC, with the latter designed using a nominal
model, denoted pf , whose wrist parameters are taken from
Table I. Meanwhile, the true plant p∗ has parameters Ks =
3.24, Is = 7 × 10−4, Bs = 0.1280, hIRC = 0.0117 and
ωn = 9.4248. Here the true value of Ks is increased and Is
is decreased compared to the nominal parameters in Table I
due to isometric effort [31], in order to simulate a moderately
fatigued wrist. This true plant is not one of those in the
candidate model set P . To replicate experimental conditions,
the external disturbances (u0, y0) in Fig. 1 are chosen as
white noise with a signal-to-noise ratio of 8%.

First standard ILC is applied with a fixed controller K(pf )
designed using the nominal model Ppf . After 6 ILC trials,
the tracking results show that the error norm rapidly diverges,
and eigenvalues of the error evolution Qĉ(I − P−1

p̂f Pp̂∗)
confirm that the closed-loop system [Pp̂∗ , CK(pf )] is indeed
unstable. The failure of standard ILC hence motivates the
application of EMMILC.

The final trial tracking performance of EMMILC is shown
by Fig. 6b). The results show the error norm rapidly con-
verges to a sufficiently small value with a selected controller
switched into the closed-loop system after the first ILC trial.
The switching signal is shown by Fig. 6a, where the plant
p75 has the lowest residual, and the corresponding controller
CK(p75) is switched into closed loop on the 2nd trial to form
the stable closed-loop system [Pp̂∗ , CK(p75)]. Eigenvalues
also confirm that this closed-loop system is stable.

Fig. 6: a) Switching signal settles at p75 on trial 2. b) Top
plot shows the EMMILC tracking output on trial 6. Bottom
plot shows the error norm ∥y2(k)∥ for each trial k.

In order to evaluate EMMILC on a realistic case, a
severely fatigued wrist is also simulated by increasing the
stiffness and reducing the inertia to obtain Ks = 12.96 and

Is = 1.75 × 10−4. These values are actually outside the
set U to further test the capability of EMMILC. The value
of γ in Algorithm 1 is reduced to increase the number of
candidate plants Np, hence guaranteeing stability and robust
performance in the presence of moderate and severe fatigue.
To quantify the performance, the accuracy index

D =

(
1− ∥e6∥

∥e1∥

)
× 100%. (28)

is used, since it captures both convergence speed and final
tracking accuracy. Different values of γ are tested, and the
tracking accuracy for each case is shown in Table II.

TABLE II: Accuracy after 6 trials for standard ILC and
different γ in the cases of NF (no fatigue) for [Ppf , CK(pf )],
MF (moderate fatigue) and SF (severe fatigue). A red D
value means the error is diverging.

D value NF MF SF Np

standard ILC 96.47% 94.73% 46.57% N/A
γ = 1 96.48% 96.42% 95.83% 36
γ = 0.5 96.62% 96.55% 96.24% 62
γ = 0.25 96.71% 96.68% 96.46% 84

The results confirm that the standard ILC update can-
not stabilise either the moderately or the severely fatigued
wrist. However, EMMILC with the original plant set of 36
candidate plants provides accurate tracking. Adding more
candidate plants slightly improves the performance at the
expense of computational burden, but is unnecessary unless
very high accuracy is required. If the patient’s wrist becomes
severely fatigued during intensive task practice, the accuracy
decreases and the closed loop system becomes unstable with
γ = 1 due to the unsatisfied stability criterion (23). In this
case, reducing the value of γ addresses this problem by
increasing the number of candidate plants until Np = 62.
Eventually, the most accurate result is obtained with D =
96.71% when γ = 1 before the occurrence of fatigue.

During intensive training tasks, moderate fatigue occurs
first and is followed by severe fatigue. To evaluate the
efficacy of EMMILC in a realistic training scenario, it is
assumed that there is no fatigue on trial k = 1, 2, then
moderate fatigue occurs on trial k = 3 and progresses to
severe fatigue on trials k = 4, 5, 6. This overall process
of sequentially fatiguing the wrist yields the tracking per-
formance shown in Fig. 7b), with corresponding switching
signals shown in Fig. 7a). The diverging errors show that
the standard ILC and the EMMILC with γ = 1 cannot
compensate for the fatigue which sequentially changes in a
practical training scenario. This is also addressed by reducing
γ from 1 to 0.5, which increases the number of candidate
plants Np from 36 to 62. The switching signals in Fig. 7a)
do not change when moderate fatigue progresses to severe
fatigue. However, reducing γ then satisfies stability criterion
(23), which demonstrates the utility of Algorithm 1.

V. CONCLUSION

This paper addresses limitations of FES-based stroke re-
habilitation by introducing an adaptive multiple model ILC



Fig. 7: a) Switching signal for γ = 1 and γ = 0.5. There is
no switch when severe fatigue occurs because it is outside
the uncertainty set U . b) Top plot shows the tracking output
on trial 6. Bottom plot shows the error norm ∥y2(k)∥.

approach. A computationally efficient design procedure is
proposed based on gap metric stability bounds, and enables
guaranteed stability for any true plant within an uncertainty
space specified by the designer. A case study confirmed the
EMMILC framework’s efficacy in realistic clinical condi-
tions. Future work will evaluate EMMILC experimentally
with stroke patients, first using single-pad electrodes and then
multi-electrode FES arrays to control hand, wrist and arm
motion. The ultimate aim will be to highly assist movement
while eliminating model identification and tuning.
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