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Detection and Segmentation of Fauna in Seafloor Imagery For Biomass Estimation

by Jennifer Louise Walker

Machine learning based image processing is sensitive to variation caused by hardware
and observation conditions, making the use of machine learning with marine imagery
particularly difficult when transferring knowledge between datasets. There is also a
considerable gap between the outputs of machine learning systems and useful
biological information for marine conservation purposes. This thesis investigates the
effects of physics based image normalisation and augmentation methods on the
transferability of an object detection and segmentation system between two distinct
datasets taken at different altitudes from the seafloor with different camera and
lighting systems. Scale, colour, and lens distortion correction methods are
investigated, along with augmentation methods including linear contrast, motion
blur, and noise, and more advanced distorting methods such as elastic distortions and
piece-wise affine transformations. A set of experiments for each combination of
independent variables has been carried out, finding a clear improvement when using
scale correction. When applying to low altitude datasets only there is an increase in
average performance from 62.2% to 68.6%, and when transferring knowledge from
high to low altitude datasets, there is an increase in performance from an average of
26.5% to 44.1% when using scale normalisation. Colour normalisation also had a large
impact, when applied to low altitude data showing an increase in performance from
56.6% to 74.1%, and when transfering from high altitude to low altitude datasets
showing an increase in performance from 32.7% to 38.0%. The impacts of lens
distortion correction and various augmentation methods were found to be less
significant. This thesis goes on to demonstrate the use of segmentation results for
biomass estimation through a simple polynomial relationship between segment size
and length of an individual, and previously well established Length Weight
Relationships (LWRs). The resulting method is fully scalable to larger datasets with no
additional human effort required, a vast improvement on the current labour intensive

biomass estimation methods used.
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Chapter 1

Introduction

1.1 Background and Motivation

Benthic imaging systems are developed in order to gain a greater understanding of
habitat and population distributions on the seafloor. Acoustic approaches such as
bathymetry and side-scan sonar imaging are useful tools for mapping large habitat
features, however visual imagery remains the most reliable non-invasive method for
identifying fauna and small scale features, and is the focus of this thesis. Visual
imagery must be collected at a relatively close distance off the seafloor, commonly less
than 10 metres, compared to bathymetry and side-scan sonar, which can be collected
at greater than 100 metre altitude. Therefore it must be collected by an underwater
vehicle such as a towed vehicle, a remotely operated vehicle (ROV) or an autonomous
underwater vehicle (AUV). Visual imagery datasets collected by such vehicles may
then be analysed in a variety of ways to extract useful information about the habitat

and populations present.

During robotic deployments, several thousands of millimetre resolution images are
gathered along robot trajectories that are kilometres in length. These show different
substrates, geological features, and individual fauna that need to be characterised in
order to describe the seafloor ecosystem. Manual analysis of such images is common,
but is time consuming and scales poorly to large scale marine monitoring endeavours,
and therefore automated analysis is an area of much interest for the field of marine
environment monitoring [6]. Automated analysis of such images is a challenge due to
many factors. Firstly, many developments in automated analysis rely on the
availability of example images and assigned labels that an algorithm can try to
reproduce. Typically these labelled training datasets need to be large enough to
represent the different types of targets and scenes that need to be described, as
machine learning algorithms do not generalise well to data outside the training
domain. In marine imagery the amount of available labelled training data is severely



2 Chapter 1. Introduction

Dataset examples

FIGURE 1.1: Examples of labelled images from the COCO dataset [1]

limited compared to terrestrial imagery datasets such as COCO [1] with over 200,000
labelled images, Pascal VOC [7] with over 10,000 labelled images, and Cityscapes [8]
with 20,000 labelled images. These datasets contain object classes such as people, cars,
houses, and trees, and are not directly useful for marine imagery analysis. Examples

from the COCO dataset are shown in Figure 1.1.

Efforts have been made to create larger marine datasets for improved machine
learning algorithm training, including BIIGLE 2.0 [9], Squidle+ [10], and FathomNet
[11].

It is often down to the teams wanting to interpret marine imagery to generate their
own training datasets, which poses a large time and energy investment that for most
applications is not justifiable. Secondly, the marine environment introduces many
challenges for visual imaging systems, such as increased light absorption underwater,
and varying levels of visibility due to water turbidity. Furthermore, variations to the
imaging system and the vehicle it is mounted on pose additional challenges. The use
of artificial light is required in deep water, and variation to how this is set up has large
impacts on the appearance of images. The camera specifications vary between
imaging systems, providing differences in lens distortion and resolution. Finally, the
vehicle’s target altitude off the seafloor, and ability to maintain that altitude in rugged
territory, has a large impact on the spatial resolution and appearance of objects within

images.

Because we have different imaging systems and varied environments, we need to have
a thorough understanding of how these things impact the information we gather. We
also need to establish best practises to ensure we get as much information out of the
data as possible and understand how reliable the information is. It is also important to
investigate whether training data taken from one system can be effectively applied to
data gathered by another system, or under a different set of conditions.

This thesis investigates methods to automatically analyse AUV imagery, and goes on
to investigate the transferability of such a system to images taken by a different

imaging system to those it was trained on. In order to achieve this, the thesis will
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investigate the use of standard data augmentation techniques that have been shown to
be effective in terrestrial image interpretation. This will be combined with methods of
data normalisation that are more specific to the underwater imaging domain,
including using optical models to correct for underwater image distortions, and use
available meta-data such as imaging altitude to correct for colour degradation cause
by light absorption and non-uniform illumination effects. The investigations will be
carried out on a dataset gathered in the North East Pacific Ocean at approximately.
700-800 metres deep, that consists of imagery gathered by two AUVs with very varied

specifications.

This thesis goes on to demonstrate how object detection and segmentation results may
be used to automatically estimate biomass on a per class basis, which has been
identified as a key ecological indicator for marine research. [12] This novel method
uses previously identified Length to Weight Relationships (LWRs), and newly
calculated Segment Size to Length Relationships (SSLRs) to form a simple polynomial
relationship between the segment size and estimated biomass of an individual. This
method provides a fully automated scalable solution to biomass estimation as
machine learning methods already exist, and are continually developed and

improved, that provide automated object segmentation.

1.1.1 Image Acquisition Methods

There are a variety of visual benthic image acquisition methods, including static

camera systems installed on the seafloor, towed camera systems, ROVs and AUVs.

Static camera systems are less prone to motion blur, and are not required to traverse
terrain in the same way that moving camera systems are. The main drawback of such
a system is that it only captures information in one static location, so is more often
used for temporal monitoring for a very small area of interest such as at a deep ocean
observatory such as MARS at Station M [13], and PAP-SO at the Porcupine Abyssal
Plane [14].

Towed camera systems are the simplest and often the cheapest of the moving imaging
system options, however it also has the least control in terms of navigation and
positioning, and must be towed at a high enough altitude off the seafloor to ensure it
won’t collide with rugged terrain.

ROVs provide the most control and flexibility, being connected to a manned vessel on
the surface by a data and power cable [15]. Human operators of ROVs can often see
live video feeds from the vehicle, and can operate the vehicle’s actuators and sampling
equipment such as robotic manipulators.
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AUVs require no human intervention during operation except for deployment and
recovery, having autonomous control systems on board [16; 17; 18; 19; 20]. They can be
programmed with a target route beforehand, or can use simple decision making
algorithms to determine their route in situ. As such, AUVs can be used to collect
imagery across a large area of the sea floor with relatively little human interaction.
This method of imagery acquisition is used for the experiments in this thesis as the
resulting datasets are large, consisting of hundreds to thousands of images from a

single deployment, giving a valuable opportunity for automated analysis.

Collecting images from the seafloor is only the first step in gaining a greater
understanding of habitat and population distributions. The images need to be
interpreted in order to extract useful information.

1.1.2 Image Interpretation

Useful information that can be extracted from images include population counts,
substrate identification, percentage cover of coral colonies, species diversity and
distributions, and biomass distributions.

Common methods for assigning manual labels to images include, but aren’t limited
to; whole image annotation, point labels on objects of interest, and classification of
randomly selected point labels. When making size or biomass estimates, length
weight relationships are often used, requiring the labeller identify some key length
per morphotype, such as the length of many fish, or the distance from the centre to the
end of an arm of a sea star. There are many software packages for manual labelling of
images, but ultimately manual labelling is a time consuming task that isn’t scalable to
large scale datasets. In practice, a small subset of the images is used, either through
random sampling or stratified sampling, to create a more manageable dataset, before
using aggregate statistics to represent the larger dataset. The statistical significance of
the resulting information is lower than what could be achieved when using more of
the available images, and information on the distribution is lost. Rare classes of
information, be that fauna species, substrate type, geological feature, or something
else, may not appear within the subset of images. Furthermore, arbitrary decisions on
how to subsample, and how many images to subsample, may have unseen effects on

the research outcomes.

Machine learning algorithms, although they often require labelled data to train on, are
a scalable solution that can be applied to a much larger number of images without
increasing the human input needed. However, training machine learning algorithms

with marine imagery datasets faces many challenges.

Firstly, there aren’t many large scale labelled datasets suitable for training a

generalisable system. Many large scale image acquisition programmes have been
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FIGURE 1.2: An overview of the coarsest levels of the CATAMI classification scheme

(2]

carried out, providing many images, such as the Australian integrated marine
observation system (IMOS) national AUV marine monitoring scheme [21].
Unfortunately, only a small subset of images from a small subset of such schemes are
labelled in a way that is useful for machine learning training. One example is
FathomNet [11], which uses video imagery from ROVs. Another example is
BENTHOZ-2015 [22], a large scale dataset consisting of 9,874 images, with 50
randomly selected points labelled in each image. This dataset is specific to shallow
water off the coast of Australia, and consists of 148 substratum and biological classes.
Many of these classes are highly specific to the shallow water reefs in Australia, and
aren’t generalisable to other areas. Schema have been developed to try to encompass
all the classes of interest such as VARS [23], developed for video annotation, and
CATAMI [2], developed for marine image annotation in Australia. There are many
classes within these schema, with complex hierarchies, and for a worldwide general
marine dataset, many labelled examples would be needed for every class. An
overview of the CATAMI classification scheme is shown in Figure 1.2, the full

hierarchy of labels is not shown, as it contains over 280 classes.

The field of deep-sea AUV benthic imagery is currently limited to small area and
vehicle specific datasets and often using different label formats hindering the ability to
collate these experiments into a larger dataset. These individual labelled datasets
often consist of a small number of images, as manual labelling is costly in terms of
time and effort, with a small number of researchers working on each dataset.

Secondly, the appearance of marine imagery varies greatly with environmental factors
and hardware setups. The behaviour of light in water, and interacting with particles
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suspended in it, poses a challenge for underwater imaging, and introduces a large
amount of variance to the appearance of objects depending on their distance from the
camera and the water conditions. Hardware setups and observation conditions vary
greatly too, varying in their distance off the seafloor, resolution, lens distortion, and
artificial lighting setups; notably the only light source when surveying in the deep sea
[24].

1.2 Problem Statement

Automated image analysis using machine learning is commonly used with
Autonomous Underwater Vehicle (AUV) collected data, given the high volume of
images captured and the limited time for manual annotation by experts. For effective
machine learning, target imagery must be captured within the same bounds as the
training data to ensure similarity in visual characteristics and distribution, enabling
accurate predictions on new, unseen data. However, standardisation across AUV
imagery is difficult due to differences in hardware, survey techniques, and

environmental factors.

This thesis aims to improve our understanding of how this variation limits the
information we can obtain from automated image analysis and how to overcome these
differences. Specifically, the thesis addresses the problem of using physics-based
image normalisation and data augmentation methods to generalise across hardware
setups and environmental conditions in an automated object detection and
segmentation machine learning system. The study uses data from the Adaptive
Robotics 2018 Falkor expedition, including surveys conducted over multiple days
with two AUVs of differing specifications.

The thesis assumes that physics-based image normalisation and data augmentation
methods effectively mitigate the impact of differences in hardware and environmental
conditions. Additionally, the use of the Falkor data provides a sufficient level of
variation to capture the differences that exist in AUV imagery. The thesis employs
mean Average Precision (mAP) as a metric to measure the performance of the machine
learning algorithm, justifying its use. The ability to predict useful biological statistics,
such as biomass estimation, is also investigated through traditional Length Weight
Relationships and a novel Segment Weight Relationship method. The thesis assumes
that manually annotated lengths and traditional Length Weight Relationships are
relatively accurate, and the correlation between manual and automated systems is

used to demonstrate the feasibility of the approach.

This thesis aims to address the challenges of standardising AUV imagery for machine
learning-based image analysis. By exploring the effectiveness of physics-based image

normalisation methods and data augmentation techniques, it seeks to overcome the
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differences in hardware setups and environmental conditions. Using the Adaptive
Robotics 2018 Falkor expedition data, with variations in AUV imagery, this research
investigates traditional and novel methods for estimating biological statistics.
Ultimately, this work has the potential to enhance our ability to understand and
manage marine ecosystems through efficient analysis of AUV imagery.

1.3 Contributions

The main contribution of this thesis to the field is a set of in depth experiments into
machine learning algorithms for the identification of fauna in benthic imagery, and the
transferability of these algorithms to other imaging systems. These experiments use
data collected using two AUVs with differing target altitudes and image resolutions.
Having data collected using two different imaging systems in the same geographical
area allows for a unique opportunity to analyse the cross vehicle transferability of

algorithms.

Augmentation and normalisation methods have been selected based on the context of
marine imagery, using image meta data and the physics of light’s behaviour in water
to normalise for colour and scale, and a contextual understanding of AUV camera
positioning and seafloor rugosity to inform augmentation technique selection such as

affine and piece-wise transformations.

These experiments use metrics that are standard in the field of machine learning, and
go on to present context specific performance metrics using Length Weight
Relationship (LWR) regression. LWRs are commonly used in marine imagery analysis
to estimate biomass based on a key length measurement such as from the tip of the
head to the tail of many fish morphotypes, or the width of the shell of crustaceans, or
the length from the centre to the end of an arm for echinoderms. The LWRs used in
this thesis are from the open source database Fishbase [5], and are largely calculated
using a Bayesian approach by Froese et al. [25]. By calculating the relationship
between such key length measurements and the size of segments, the estimation of
biomass may now be scaled to larger automatically analysed datasets. Rather than
measuring the performance of Mask RCNN based solely on classic machine learning
metrics, looking instead at the performance based on the context specific final
outcomes, ie. population count and biomass estimation, we assess the suitability of

Mask RCNN to the specific context of marine imagery and population monitoring.

1.4 Outline

This thesis is structured as follows:
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Chapter 2 outlines existing literature and established methods in the areas of
computer vision for object detection, classification, and segmentation, and of visual
benthic imagery.

Chapter 3 presents the methodology used in the experiments presented in this thesis,
covering the neural network architectures used, data augmentation and normalisation
methods including physics based approaches, the metrics used to assess the neural
networks’ performance, and the regression model used to relate length weight
relationships to segment sizes.

Chapter 4 presents the datasets collected and analysed as part of this thesis. It
describes the acquisition hardware used, the labelling method, and the resulting
population counts for each class.

Chapter 5 presents an in depth experiment to the effects of data augmentation and

data normalisation practices for benthic imagery on the performance of Mask RCNN.

Chapter 6 presents an in depth experiment into the transferability of Mask RCNN to
data captured by a different acquisition system to the training data. Transferability
from low altitude images to high altitude images and vice versa is investigated, and
the impact of different data augmentation and normalisation practices on this

transferability is assessed.

Chapter 7 presents a novel automated biomass estimation method that can use the
output of the Mask RCNN network to form these estimates. It makes use of newly
calculated relationships between segment size and line length per morphotype, and
known Length Weight Relationships.

Chapter 8 discusses in further detail the possible implications of this research, how it
differs from other findings in the literature, and other topics such as class imbalance,
unseen classes, and the the unattainable idea of an ideal universal marine imagery
dataset.

Chapter 9 concludes this thesis, summarising the findings of the experiments, and
their implications for the wider field. Suggested best practices for automated marine
imagery analysis are discussed, and areas requiring further investigation addressed.



Chapter 2

Literature Review

2.1 An Overview of Automated Image Analysis

Image analysis is the extraction of quantifiable information from images that are
otherwise just matrices of pixel values. This comes in many forms, including image
clustering and image classification, where the entire image, or part of it, is given some
value based on the pixel values within a region. More detailed image analysis
involves identifying regions within the image, either through semantic segmentation
where every pixel is assigned a class, or object detection, where individual instances of
objects are identified. Approaches that involve some manually identified
ground-truth, and a model that aims to recreate that relationship between input
images and the given labels, are supervised learning methods. Other approaches that
don’t make use of manual labels are unsupervised methods, instead using similarities
between images to cluster them, or using encoding and decoding to extract important

features, for example.

This thesis focuses on supervised learning methods for identifying objects within
images, as it has the potential for extracting key marine statistics such as population
counts and biomass distributions, useful for researchers and conservationists. This
approach involves having human experts identify objects in a set of images which is
then used for training and testing the performance of a model. This is often shown in
the form of input variables X and their target output variables Y. The model is then

optimised to best recreate the target output.

Many modern approaches involve some form of neural network as advances in
computational ability and in neural network architecture design have produced
impressive gains in performance. The next section covers how neural networks
function. More traditional approaches are also explored in this literature review, many
of which have the advantage of lower computational costs, but often don’t perform as

well as neural networks and deep learning approaches.
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2.2 Classical Approaches

Image analysis can be done using basic image features such as brightness, colour, and
texture. One such approach is thresholding, where images are translated into binary
black and white, with the category of each pixel depending on the intensity of the
pixel value [26]. This approach is especially useful for text analysis where
thresholding clearly separates the text from the background, or in other very basic
semantic segmentation tasks where the subject is sufficiently different to the
background in colour or intensity.

Other basic approaches include canny edge detection, where the patterns of pixel
values are analysed and edges of high contrast are identified [27]. This approach
identifies the edges of objects with a high contrast compared to the background, and
therefore can be used to segment objects, but is highly sensitive to noise, such as a
noisy marine environment with complex backgrounds and varying amounts of
contrast between objects and their environment. A combination of edge detection and
pixel grouping algorithms can be used to achieve a simple semantic segmentation
algorithm [28].

Semantic segmentation can also be achieved through region growing algorithms [29],
where initial regions are defined by point labels or automatically based on basic image
teatures like colour and intensity, and regions with similar features are added,
expanding regions to segment entire images. More complex region based approaches
use splitting and merging of regions to achieve better semantic segmentation results
[30].

2.3 Support Vector Machines

Support Vector Machines (SVMs) are a machine learning technique that involves
projecting data points into a large dimensionality space maximising the distance
between points belonging to different classes, and estimating the class of a new data
point by where in that space it gets projected onto [31]. SVMs are binary linear
classifiers, where the input data is a list of features defined as X and the target label is

a binary value y.

SVMs have performed well on machine learning tasks, but are often out performed by
deep neural networks on more complex tasks. In their simplest form they are used for
binary classification, but in more complex structures they are capable of tasks such as

semantic segmentation [32]. Their uses in marine image processing are discussed later

in this chapter, but they are not the focus of this thesis.
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FIGURE 2.1: A diagram of a single neuron with n inputs, x; to x,, showing a weight
applied to each input, those values being summed, a bias being added, and an activa-
tion function applied, producing the output y.
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FIGURE 2.2: Graphs of three different activation functions.

2.4 Neural Networks

Neural networks are composed of neurons [33] arranged into what are referred to as
layers or perceptrons [34]. Each neuron takes weighted inputs from either the input
data in the case of the input layer, otherwise neurons from the previous layer, and
applies an activation function which determines the output of the neuron. This
activation function can take many forms, including sigmoid, reLU, and softplus, for
example. These activation functions are shown in Figure 2.2. A single neuron is
demonstrated in Figure 2.1, where x; to x, represent input values, w; to w, represent
the weights assigned to each of those inputs, b represents the bias value applied, f
represents the activation function, and y represents the output value of this neuron.

This can be mathematically defined as

£ wix) +b) = y @)

i=1
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Input Layer Hidden Layers Output Layer

FIGURE 2.3: A diagram of a Multi Layer Perceptron (MLP)

When arranged into a series of layers, as shown in Figure 2.3, neurons can be formed
into Multi Layer Perceptrons (MLPs), that take input data x and form output y. A
single neuron can perform very simple separation problems, but when combined in
an MLP can model much more complex problems [35]. In this MLP, the final output
may be a numerical value in the case of regression, or a categorical output in the case
of classification. For image analysis, classification is far more common practice as it’s

useful for categorising images or the pixels or objects within them.

Training a neural network involves a set of input data, here labelled X, and their
corresponding target output values, here labelled Y, and some measure of the distance
between the actual neural network output and the target output values, referred to as
a loss function. The weights connecting the neurons in the network, w; through to w;,
in Figure 2.1, are then adjusted using gradient descent, with the aim of moving
towards a lower loss value with each training epoch. The training of an individual
neuron, for example, would involve passing the input values X = {x1, x, ..., X, }
through the neuron, applying the weights, the bias, and the activation function, to
reach some output value y. This output would then be compared with the target
output for the given input, Y = {y1,y2, ..., y» }, using some loss function to quantify
how similar they are, with a smaller loss value meaning they are more similar, and a
higher loss value meaning they are more different. The weights w; through w, are
then adjusted a small amount in the direction that reduces this loss value, making the
output y more similar to the target output. For a single neuron this process is quite
simple, however for multiple layers this wasn’t feasible until the invention of back
propagation [36] allowing for the weights of neurons in earlier layers to be updated

via gradient descent.
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FIGURE 2.4: Graphs showing two different regression loss functions

Loss functions vary by type, with the two most common types being regression
functions and categorical functions. They also vary by how they calculate the error or
difference between the actual output and target output. For example, regression loss
functions compare two numerical values, with two common functions being Mean
Absolute Error (MAE) and Mean Squared Error (MSE) shown in Figure 2.4 and

calculated like so;

1& .
MAE = = Y i — il (2.2)
iz
1& .
MSE = = Y (vi—9:)? (2.3)

i=1

The mean absolute error is linear in how it treats differences in values, whereas the
mean squared error gives relatively higher weight to larger errors. This can result in
different behaviour when training a machine learning algorithm, as the mean squared
error will penalise an algorithm that is correct most of the time but wildly off on a

small number of validation samples more so than the mean absolute error would.

Categorical loss functions also vary in the way they calculate the error. Binary loss
functions apply when only two categories are present, if there are more than two
classes then multi-class categorical loss functions are required. The most common

multi-class categorical loss function is categorical cross entropy, calculated like so;
CCE = — Zyi * log 7; (2.4)

where the output y and the target output i are arrays of the same length as the
number of classes. For example y may be [0, 1,0, 0] where the sample in question
belongs to the second class, and § may be [0,0.7,0.2,0.1] where each value represents
the predicted probability of the sample belonging to each class.

Gradient descent in neural networks has the potential to reach very good solutions to

problems, but faces some challenges.



14 Chapter 2. Literature Review

/1]

1]

Convolutional Filter

Output

Input
FIGURE 2.5: A diagram of a Convolutional Filter

¢ Local minima occur in the solution space, where a lower global minima may be
achieved when starting from another set of weights, applying noise to the
gradient descent process, or through processes such as simulated annealing [37].

* Vanishing gradient occurs with very deep neural networks consisting of many
layers, where the gradient tends towards 0 and deep layers can’t be trained. A
range of solutions to this problem have been proposed and are in use, one being
the ReLU activation function where the gradient is always 1 or 0 so many
gradients multiplied together will also always be 1 or 0, rather than an
increasingly small number as more values between 0 and 1 are multiplied
together [38]. Another solution is skip layers used in residual neural networks

passing gradient information directly between layers [39].

¢ Opver fitting is when a network so closely models the training data that it fails to
model the underlying relationship between the inputs and outputs, and fails to
generalise to unseen data. This can be overcome in a variety of ways. One such
way is including drop out where some neurons are ignored at random in each
training epoch, which reduces over-fitting by creating thinned out networks that
differ from each other in terms of architecture, with the final result being a
combination of all of these thinned out networks [40]. Another is data
augmentation where the input data is adjusted in some way, creating slight
variations in the training data while maintaining the validity of the target output
[41].

2.4.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a form of neural network with shared
weights, meaning some of the weighted inputs are shared between neurons. Shared
weights can represent more complex structures in neural networks. In the case of
CNNs these shared weights are in the form of convolutional filters, an NxN sliding
window that is applied across a 2D slice of data, as shown in Figure 2.5. Basic



24. Neural Networks 15

Low-Level| |Mid-Level| |High-Level Trainable
Feature Feature Feature Classifier

FIGURE 2.6: Learnt features in a CNN, published by medium.com in July 2020

Qutput

Convolutional Filter

Atrous Input
FIGURE 2.7: A diagram of an Atrous Convolutional Filter with a stride of 1

convolutional filters can identify edges in different directions, textures, and other
simple small scale features. Because convolutional filters are used across the entire
image, with the same weights each time it is applied, these features are identified
wherever they appear in the image, they are not location specific. When assembled
into a network with subsequent layers of convolutional filters, later layers can identify
much more complex features, as shown in Figure 2.6.

Atrous, or strided, convolutional filters are much like the standard convolutional
tilters described above, but instead of being a solid NxN grid, they are spaced out, as

shown in Figure 2.7.

Conditional Random Fields are a discriminative model based on Markov Random
Fields [42]. They are used to consider neighbouring examples when forming a
prediction, and therefore are useful in image analysis where the context of an object,
or the pixels surrounding it, are of great importance in identifying it. They have been
used as a stand alone machine learning technique for semantic segmentation, and
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have been used in conjunction with other methods to improve segmentation mask

outputs.

2.5 Whole Image or Point Annotations

Whole image annotation involves assigning a single class label to each image. Point
annotation involves picking a point in the image and some surrounding patch of
pixels, and treating that as a stand alone image for annotation. This is achieved by
translating the image into some set of features or a point in a feature space, and then
dividing that feature space along some boundaries to form categories. The way in
which the given feature space is built varies, and some classic computer vision
techniques for this include Scale Invariant Feature Transforms (SIFT), bag of visual
words, colour descriptions such as colour histograms, and texture descriptors such as
Gabor and Haar Wavelets. More modern CNN approaches extract features from the
images through layers of neurons as described above.

Point annotations can be useful for gathering statistics such as substrate identification,
but, whether using random or stratified points, is not sufficient for statistics such as

population count, percentage cover, or biomass estimation.

2.6 Semantic Segmentation

Rather than assigning a single label to each image, semantic segmentation involves
assigning a label to each pixel or region of pixels within an image. Greedy
graph-based approaches have been used [43] for computational efficiency, and for
unsupervised learning where target labels don’t exist. This approach does not assign a
semantic class label to each segment. SVMs have been used for semantic segmentation
[44], using a 5x5 sliding window across the input image, and extracting basic colour
and texture features from that 25 pixel patch. The development of CNNs has allowed
for large performance gains in semantic segmentation, and the use of Fully
Convolutional Networks (FCNs) allowed for the adaptation of whole image classifiers
into semantic segmentation classifiers by replacing the final fully connected layer with
a convolution layer [45]. More recent work includes DeepLab developed by Chen et
al. [46] the use of deep CNN s to extract score maps, followed by interpolation up to
the original image size, and then CRFs to classify pixels. They then improved on this
with the development of DeepLabv3+ [47], making use of multiple scales of atrous

convolutions to improve on segmentation at varying scales.

The training of semantic segmentation systems from sparse labels such as per-image

classes is a common approach to overcome a lack of training data, with approaches
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such as super pixels and region growing. Kolesnikov et al. presented their Seed,
Expand, Constrain (SEC) system [48], with a novel loss function that measures the
performance in each of the three given areas. Seeding is the allocation of a class at a
given location with no measure of size or boundary, expanding is the ability to expand
from a seed location to a reasonable size for the object, and constraining is the ability
to determine a precise boundary. The combination of these three principles results in

relatively well performing networks from sparse labels.

Semantic segmentation provides the information required for percentage coverage
statistics, however fails to identify the boundaries between different instances of the
same class, so can not be used for population counts or biomass estimates.

2.7 Object Detection

A limiting factor in semantic segmentation is that there’s no distinction between
individual instances of the same class in the image. More complex systems that

implement object detection are required to classify distinct individuals.

Object detection provides the information needed for population counts, biodiversity
measures, and if followed up with size estimation per instance, biomass estimates.

There are two types of approach to this problem, one stage and two stage object

detection algorithms.

2.7.1 One Stage Object Detection

One stage object detection requires a predetermined number of objects to detect per
image and is a single neural network from end to end, making it faster to train than
more complex two stage object detection methods. One stage systems are more
commonly used where computational cost needs to be minimised, such as in the field.
Two such networks are YOLO [49] and DetectNet [50].

2.7.2 Two Stage Object Detection

Two stage object detection involves firstly a region proposal network, and then a
second network that refines and classifies the proposed regions, allowing the
prediction of a varying number of objects in each image, but taking longer to train
than the simpler one stage detection methods. The improved accuracy of these
systems is better suited to processing images after collection where computational cost



18 Chapter 2. Literature Review

isn’t as limited, and higher accuracy can be prioritised. For this reason, this thesis
focuses entirely on two stage object detection methods.

A popular two stage object detection system combines a region proposal network with
a following convolutional neural network to classify the object in the proposed region,
thus called R-CNN [51]. In the first stage, a selective search algorithm generates
potential object bounding boxes or regions of interest (Rols) based on appearance and
texture similarities. In the second stage, Rol pooling converts the proposed regions
into fixed-size feature maps, allowing efficient processing by subsequent network

layers.

The CNN extracts high-level features from each region, encoding them into feature
vectors. These feature vectors are passed through fully connected layers for object
classification, using a softmax function to determine class probabilities for each region.

R-CNN also predicts more accurate bounding box coordinates by refining the initial
proposals through regression layers. Non-maximum suppression is applied to remove
redundant bounding box predictions and retain the most confident and
non-overlapping detections.

This architecture has been adapted to improve both efficiency and accuracy, resulting
in the development of Fast R-CNN[52]. Fast R-CNN, an evolution of R-CNN,
addresses some of the limitations of its predecessor by introducing a streamlined
approach. It eliminates the need for selective search by directly taking the entire image
as input and performing Rol pooling on shared convolutional feature maps. This
significantly speeds up the computation time compared to the multi-stage R-CNN.
Fast R-CNN also introduces a single-stage training process that jointly learns the
classification and bounding box regression tasks, leading to improved performance.

Building upon the advancements of Fast R-CNN, the object detection architecture was
further improved to create Faster R-CNN[53]. Faster R-CNN addresses the
computational bottleneck of region proposal generation in Fast R-CNN by introducing
a Region Proposal Network (RPN). The RPN operates on shared convolutional feature
maps, generating region proposals directly, which eliminates the need for separate
selective search or external proposal methods. By sharing computation with the
subsequent stages, Faster R-CNN achieves significant speed improvements.
Additionally, Faster R-CNN introduces a unified network that jointly learns the region
proposal and object classification tasks end-to-end. This integration allows for more
efficient training and improved accuracy.
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(A) Original Image (B) Random Point La- (C) Semantic Seg-
bels mentation

(D) Object Detection (E) Object Detection
and Segmentation

FIGURE 2.8: Comparison of labelling methods on two intersecting sea stars, deomn-
strating the difference between random point labels, semantic segmentation, object
detection, and object detection with semantic segmentation

2.7.3 Object Segmentation

Once objects have been identified, and often with a bounding box surrounding their
location, a step further is to then segment each detected image. This allows for the
boundary of the object to be more finely classified, and for the size of the object to be

determined, at least in terms of pixels in the image, if not physical measurements.

Mask R-CNN is an extension of the Faster R-CNN model that incorporates an
additional stage to generate binary masks alongside the bounding box refinement and
object classification stages. It utilises the same region proposal network architecture as
Faster R-CNN but introduces an extra branch dedicated to mask prediction. This
branch outputs a pixel-level mask for each proposed region, allowing for precise
segmentation of objects within the regions. By combining region proposals, bounding
box refinement, classification, and mask prediction, Mask R-CNN provides a

comprehensive framework for object detection and instance segmentation [3].

Figure 2.8 shows examples of each of these labelling methods to better illustrate the

differences between them.

Lateef et al. carried out an extensive review of modern image analysis techniques in
2019, focusing on semantic segmentation but also categorising approaches such as
object detection and segmentation, and video frame segmentation [54]. This review



20 Chapter 2. Literature Review

0.79 0.52 0.28 017

FIGURE 2.9: Example IoU scores on intersecting boxes

covers most of the more modern techniques described in this section, and separates
popular architectures into clearly defined categories.

2.8 Metrics for Success

An important aspect of training machine learning algorithms is how we measure the
similarity between the target output and the algorithm output. It is also important
when we are comparing two approaches to understand what metric is being used to
measure success. For regression models, this involves using measurements such as
mean squared error. For semantic segmentation, the proportion of correctly classified
pixels is often used to evaluate performance. In the case of object detection and

segmentation, there are a lot of factors to consider.

2.8.1 Intersection over Union

The first step in assessing the performance of an object detection system is to measure
the similarity between an object in the groundtruth dataset and an object in the
predicted output. A popular measurement for this is the Intersection over Union (IoU)
score, defined as the intersecting area between the groundtruth and estimate divided

by the union of the two areas. Example IoU scores are shown in Figure 2.9.

2.8.2 Mean Average Precision Score

To understand how the Mean Average Precision (mAP) score is calculated, we first
need to understand precision-recall curves. The precision is defined as %, and
recall is defined as Tpiil;N’ where TP is the sum of the true positives, where a
prediction was made that matched a groundtruth object, FP is the sum of false
positives, where a prediction was made where no such object exists in the

groundtruth, and FN is the sum of false negatives, where predictions were not made
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but an object did exist in the groundtruth dataset. The certainty threshold indicates
how certain the neural network’s prediction needs to be to include the object in the
prediction outputs. The precision recall curve is the plot of the precision and recall at
different certainty thresholds. The average precision is defined as the area under this
curve, resulting in a score between 0 and 1, with 1 being the best possible score. This
score is calculated for each test example, and the mean of these scores is the mAP

score.

2.9 An Overview of Visual Benthic Imagery

Visual benthic imagery provides the means to observe habitats and fauna on the sea
floor. This section outlines the key challenges specific to imagery taken in a marine
environment rather than in a terrestrial environment, and current uses for benthic

imagery for habitat and population mapping.

2.9.1 Environmental and Hardware Caused Variance

As touched on in Chapter 1, a major motivation for this thesis is to overcome the
marine imagery specific challenges presented when automating image analysis. In
part, these difficulties arise from the large variance caused by environmental and

hardware differences.

One challenge specific to the marine environment is the effect of light attenuation
through water. Visible light attenuation in water is much higher than in air, and is
much higher for longer wavelength light waves such as red, than shorter ones such as
blue and green, meaning the appearance of objects and their colour varies depending

on the distance from the light source and the camera.

The above mentioned light attenuation challenge is only intensified when taking into
account water turbidity in natural environments. Water turbidity is the measurement
of water clarity, and depends on the amount of light scattered by particles suspended
in the water. In natural benthic environments the turbidity varies greatly depending
on the amount of sediment picked up by currents, the movement of fauna, or even the

propellers of the AUV collecting imagery, as well as by marine snow.

As demonstrated by the points above, the distance between the light source, object
being photographed, and the camera, have a large impact on the appearance of objects
in the images taken. The camera and lighting mounting positions on the AUV will
directly affect this. Furthermore, the lighting intensity, colour, and direction have a
heavy influence. Finally, the camera itself has a large impact on the appearance of

objects, depending on the lens distortion, resolution, colour sensitivity, and so on.
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Due to non-uniform lighting, with the centre of marine images often more well lit, and
the edges often much darker, objects may appear differently even within the same
image depending on their location in that image. The effect this may have on object
detection algorithms has been investigated by Schoenning et al. [55], finding that
lighter morphotypes are harder to identify in the over saturated centre of images, and
darker morphotypes are harder to identify in the dark edges of images.

To summarise, a large amount of variance is introduced to how identical objects
would appear under different environments, with different imaging hardware, and at

different locations relative to the camera.

2.9.2 Uses for Marine Ecology Monitoring

Conservation typically involves understanding the spatial distribution, physical
characteristics and diversity of species in a region. In order to derive this sort of
information from images, it is necessary to convert from collections of pixel values to

real world dimensions and meaningful labels.

Traditionally this has been a manual task, for example when Seiler et al. [56] manually
annotated the lengths of a specific species of ocean perch, Helicolenus percoides, in
AUV imagery, in order to determine both the occurrence, length, and biomass

distribution, but also information pertaining to habitat preferences.

Morris et al. [57] also manually annotated their images. They annotated the location
and lengths of a large range of morphotypes in images taken at the Porcupine Abyssal
Plane. This study used images taken by the Autosub6000 AUV, images taken by a
towed camera system, and data collected by trawling, in order to make a comparison
between the different data acquisition methods and the resulting measures of
diversity and abundance in the surveyed area. This study aimed to understand the
influence of sloped mounds on the distribution of different species. Benoist et al. [58]
also aimed to do this, and they used AUV images stitched together into tiles of
approximately 7.3m? to assess faunal density, diversity, and composition. They also
investigated the area coverage required to make a statistically sound image based
survey, and suggests the use of number of individuals found rather than the area
covered by an AUV to define a sampling unit.

Another example using manually annotated marine imagery is the study by Thornton
et al. [59], who used 3D image reconstructions from AUV images to model the
population distributions and biomass distributions at two deep-sea vent sites in the
Iheya North field in the East China Sea. Unlike the previous two studies mentioned
which investigated the impact of slopes, this study looked into the impact of
hydrothermal vents on the distribution of different species. In this study, the biomass

estimates were based on physical samples of each major morphotype being collected,
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cleaned, ground down into a fine powder, and incinerated to determine their organic

carbon content.

Howell et al. [60] used a combination of trawl data, video from towed cameras, and
photographic transects, to model the aggregations of deep-sea sponges in the North
Atlantic. These datasets were also manually annotated to extract single points per
sponge to use a presence-background modelling approach, and the gathered
information was used to assess what drives the distribution of the sponges, and how
that relates to current Marine Protected Areas (MPAs) designed to protect them, and

inform future changes to MPAs to better achieve this.

Another important conservation effort involves understanding the impact of deep-sea
mining, and assessing the rate of recovery for an impacted eco-system. Simon-Lledo et
al. [61] carried out an AUV imagery based survey of the Clarion Clipperton Zone in
order to assess possible damages caused by polymetallic nodule mining, and the
suitability of the protected areas meant to mitigate the damage and allow
re-population of affected areas. Each individual greater than 10mm was labelled with
as specific a morphotype label as possible, and their biovolume was estimated using
the generalised volumetric method developed by Benoist et al. [62]. Biovolume has
also been estimated from micro-photography for meiso-fauna, harpacticoids and
nematodes, using a highly manual process that relies on a high contrast between the
background and the individuals in question, that is not applicable to photography in a
natural environment with natural substrate backgrounds [63].

To summarise, many studies have applied marine imagery to support marine ecology
and conservation efforts. Each of these examples involves labelling the images, either
with single points to look at abundance and distribution, or including size
information to extend this to look at biomass, to then gain useful biological statistics
from the images. Each of these examples also uses this information in conjunction
with other information, such as geographical location or measured environmental
variables such as temperature or salinity, to address scientific hypotheses. Studies like
this enable us to gain a better understanding of the impacts of MPAs, sloped regions,

hydrothermal vents, and more.

210 Automated Analysis of Benthic Imagery

Efforts to automate the analysis of benthic imagery are increasingly common with the
increasing volume of benthic data collected, and with the improving performance of
computer vision approaches. Both classic computer vision techniques, such as basic
colour and texture features and SVMs, and more modern deep learning approaches
have been investigated, and a summary of some notable automated benthic imagery
analysis is presented below. The growth in this area is well investigated and presented
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by Blaschke et al. who specifically look at Geographic Information System (GIS) object
based image analysis for remote sensing, and the growth in research in this area over
the past few decades [64].

Combining datasets collected in the same locations to form time series data has been
achieved via survey planning and aligning imagery datasets to compare exact

locations, allowing for analysis of how an area is changing over time [65].

2.10.1 Habitat Classification

As mentioned above, the coarsest form of automated image analysis is whole image
annotation. This is used in the marine imagery context for habitat labelling,
categorising an image based on the substrate and objects present in the image.

Features based on grouping pixels into regions of similar colour and texture are used
to determine image complexity, and therefore predict habitat types where smaller
particle grain sizes like sand produce less image complexity than larger particle grain
sizes such as pebbles and boulders [66]. These features are also used to estimate the
seafloor heterogeneity by analysing the local variability in complexity. Finally, this
method is also used to estimate seafloor coverage percentage by classifying the groups
of pixels with a Random Forest binary classifier.

Automated habitat classification based on labelled examples has been investigated,
making use of colour and salience features [67]. A combination of feature selectors
and classification methods are used by Shihavuddin et al. in their method, suggesting
users of the method select the feature selectors and classification methods best suited
to their datasets [68].

2.10.2 Point Classification

The classification of a given point in an image, or a given patch of an image, is another
common form of annotation in benthic imagery. Investigations have been carried out
into extracting features from the patch of an image surrounding the point to be
classified, followed by an SVM to classify the point based on said features [69; 70; 71].
The feature extraction methods investigated primarily involve classic computer vision

techniques such as bag of visual words, colour, and texture features.

In the case of Mahmood et al.[72], point classification has been used in a grid pattern
on a larger image mosaic to perform coarse semantic segmentation to identify where

coral is present.
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Sun et al. [73] use deep learning networks originally trained on terrestrial datasets
before being fine-tuned to marine imagery, to identify morphotypes in patches of

images.

2.10.3 Semantic Segmentation

Semantic segmentation is most useful in the field of marine imagery when labelling
contiguous areas belonging to a specific class, such as coral or areas of substrate.
Biological statistics of note that can be gained from these labels include seafloor
coverage of species in the surveyed area. A comparative study of classic semantic
segmentation techniques was carried out by Wahidin et al. in 2015, but this did not
include deep learning methods or neural networks [74]. The use of an ensemble of
SVMs and basic features was investigated by Blanchet et al. in 2016 [75]. Also in 2016,
Schoening et al. used an unsupervised learning technique to do binary segmentation
between a background and a foreground for the analysis of polymetallic nodules,
analysing their size, density, and distribution [76]. King et al. carried out a study into
the use of more modern semantic segmentation techniques for the segmentation of
coral in 2019 using neural networks. [77] Mizuno et al. have made coral coverage

estimates using CNNs using an array of cameras on a towed vehicle [78].

Efforts to overcome the challenge of sparse training data have been made in the area
of semantic segmentation of marine environments, where Alonso et al. [79; 80] have
developed a method to train a semantic segmentation system with point labels

through the use of super pixels and region growing algorithms.

In some cases, semantic segmentation has been used to perform population counts,
such as in one study by Schoening et al. [55], where the assumption is that individuals
don’t overlap with one another to such an extent as to obscure the count.
Unsupervised approaches to segmentation have been investigated, for example by
Steinberg et al. [81] who used Bayesian models to cluster images and segments within
the images. Unsupervised approaches to these problems are incredibly valuable as the
cost of manual labelling is so high, however they are limited in terms of performance
and in the information output by them - for example with no prior knowledge trained
into the system about what different classes are, the output cannot apply correct class
labels. Segmentation in lab environments has also been investigated to segment
camouflaging cuttlefish [82]. This method is unlikely the generalise well to natural
environments and natural background substrates, and is based in very traditional

computer vision techniques, using textons and SVMs.
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2.10.4 Object Detection

Object detection is used for population counts and population distribution mapping,
as it involves identifying all occurrences of a class within the given images. A well
established architecture called Inception V3, developed by Szegedy et al. [83], has
been used by Piechaud et al. [84] to detect epifauna in benthic imagery. Mandal et al.
[85] have used the Faster R-CNN architecture [53] to detect fish in frames of
underwater video from GoPro cameras in shallow waters. Zurowietz et al. used Mask
R-CNN for machine assisted image annotation, labelling individuals in images with a
circle identifying the boundaries of the object [86]. Zurowietz et al. went on to
investigate the transferability of knowledge for object detection in images from
different vehicles, finding that when vehicles are within half or double the distance off
the seafloor from each other that knowledge transfer performs well, and that beyond
that gap knowledge transfer falters but still improves performance compared to when
no knowledge transfer is performed [87]. They also suggest, based off their results,
that the labelled dataset for training should be taken at half the distance from the

seafloor as the target dataset for the best results.

2.10.5 Other forms of analysis

Features extracted from AUV imagery have been used to compare AUV datasets
collected from the same geographical location in order to match image locations [88].
This is particularly useful for time based surveys, assessing differences over any
period from days to years, although the study shows a higher match rate on datasets
taken 12 hours apart compared to datasets taken 2 years apart due to environmental

changes in the area.

Imagery has also been used in conjunction with other data, for example by Rao et al.
[89] who used a combination of AUV imagery and ship based bathymetry
measurements to automatically classify habitat types for the purpose of insitu

deployment planning.

Another approach to reducing the human effort required to analyse AUV imagery is
to automatically identify images of interest, or salient images, for manual analysis.
Johnson-Roberson et al. investigated such an approach [90] using colour and texture
features to automatically select salient images, and found this approach generalised to

new environments.
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211 Summary

This chapter has given an overview of current computer vision techniques and marine
imagery analysis, and the overlap between the two. Different computer vision
approaches suit different aspects of marine imagery analysis, such as whole image
annotation for habitat classification, and object detection for population counts.

With a lack of large consolidated datasets for marine imagery, compared to their
terrestrial counterparts, the application of machine learning to marine imagery has
many hurdles to overcome. Over fitting to a specific training dataset, limiting the
generalisability to new unseen data, is a major concern. Despite this, we see many
examples of automated imagery analysis being used to estimate ecological variables
such as biodiversity. Clearly, from the literature presented, there is a great amount of
improvement possible for the generalisability of automated benthic imagery analysis,
and such an improvement would greatly benefit the benthic ecological community.
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Chapter 3

Methodology

In the field of machine learning, where accuracy scores are often the sole focus, and its
use in marine imagery where the amount of labelled data to assess such metrics, and
the reliability of these labels, comes into question - this thesis aims to provide insight
into how best to tackle inter and intra-vehicle learning, and the effects not only on
classic machine learning metrics, but on the biomass estimates generated from this
method.

The following section presents the experiment design, and later sections go into more
depth on the individual methods utilised in these experiments.

3.1 Experiment Design

For the experiments in this thesis, one machine learning architecture was selected and
used, Mask R-CNN, as it is implemented as an open source repository for accessibility,
has performed well on test datasets such as COCO[1], and as it is an object detection
and segmentation system, it allows for the extraction of more useful values such as
biomass estimates than other possible approaches like labelling points or whole
images. A second machine learning system, DeepLab V3+[46], is described in the
following section that was used for preliminary studies, but ultimately not included in
this thesis as it is a semantic segmentation system better suited to estimating statistics
such as coral percentage coverage, as opposed to identifying distinct individual

instances of a class, due to its inability to discern overlapping individuals.

The data augmentation and normalisation techniques selected were chosen for their
marine specific applications, for the removal of artefacts commonly found in marine
imagery such as vignetting, or for the simulation of marine imagery variation such as
marine snow. While investigating each of these techniques independently of each

other would be of interest, it is the combination of these techniques that poses the
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most interest. One hypothesis is that through a combination of normalisation and
augmentation techniques, it is possible to achieve greater transferability between
vehicles of differing altitudes. For example, some augmentation techniques such as
elastic distortion are hypothesised to perform differently for scale normalised images
than for scale varying images, as in the normalised images the elastic distortions are
all at the same scale. For this reason, these experiments present the results of every

single combination of independent variables investigated.

In machine learning experiments, it is common practice to consider the impact of
random aspects on the results and account for their variation. In the case of the Mask
R-CNN architecture, certain aspects remained unseeded to ensure that the introduced
variations are properly addressed. It is important to note that small performance
differences observed under specific seeded conditions may not hold consistently
across different seeds. To mitigate this, each experiment was repeated seven times,
and the analysis focused on the three best-performing runs. This approach ensures a
comprehensive evaluation and provides a robust understanding of the model’s

performance.

3.2 Convolutional Neural Networks

The automated image processing investigated in this thesis uses CNNSs, as they
constitute the current state of the art in both semantic segmentation and object
detection.

3.21 DeepLab V3+

Preliminary experiments were carried out and published using DeepLab V3+,
analysing the impact of physics based corrections and data augmentation on the
segmentation accuracy, presented and published at the Underwater Technology 2019
conference [91]. The DeepLab V3+ architecture is a semantic segmentation
architecture, and the study presented investigated estimating coral coverage, a goal
well suited to semantic segmentation. The studies presented in this thesis, however,
focus on the final goal of estimating biomass for morphotypes with distinct individual
instances visible in AUV imagery, so this approach was not continues and will not be
discussed further in this thesis.

3.2.2 Mask R-CNN

The results presented in this thesis show the impact of physics based corrections and

data augmentation on the object detection and segmentation accuracy of Mask
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FIGURE 3.1: Mask R-CNN Architecture Summary [3]

R-CNN [3], based on an implementation published on github by Matterport [92],
selected due to it being open source and being well supported by the machine
learning community. Mask R-CNN is based off of Region-based Convolutional Neural
Networks (R-CNN), building on Fast R-CNN [52] and Faster R-CNN [93], as
described in more detail in Chapter 2. The network consists of a Region Proposal
Network (RPN) followed by a Convolutional Neural Network (CNN) for feature
extraction, classification, and segmentation. It achieved a relatively high mAP score,
compared to other architectures, of 60% on the COCO dataset when using an IoU
threshold of 50%. A further breakdown of results at different IoUs, and the results of
different machine learning architectures, were published by He et al. [3]. Figure 3.1
shows a high level summary of the Mask R-CNN architecture.

3.3 Data Augmentation

Data augmentation is a widely employed technique in machine learning to mitigate
overfitting and augment the training dataset without requiring additional manual
labels. In the experiments conducted for this thesis, a Python data augmentation
library called imgaug was utilised [94]. imgaug provides a comprehensive set of tools
and functions to apply a diverse range of augmentation transformations to images,

such as random rotations, translations, scaling, and mirroring.

Due to the size of the training dataset in these experiments, data augmentation is used
in all of the experiments, with the base set of augmentations matching current

literature in the area, using flipping, rotating, Gaussian blur, and JPEG compression
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[87]. Gaussian blur is the application of a Gaussian convolutional filter across an
image, where the value in the centre of the convolutional filter, or kernel, is the highest
value, having the highest input on what the new pixel value at that position will be,
with the surrounding pixels having a smaller value the further from the centre of the
kernel they appear, creating a blurring effect. It is called Gaussian blur due to the
Gaussian distribution of values in the convolutional filter.

JPEG compression creates small artefacts in the image due to the loss of information in
the compression process. JPEG compression is incredibly common in image
processing, and the input data for the keras implementation of Mask R-CNN being
investigated is JPEG, so a certain level of JPEG compression is applied to all the
training data by default. By varying the amount of compression, and therefore the
amount of information lost, the system should be robust when handling unseen data

that has been compressed to different levels of information loss.

The effect of extra augmentations are investigated, with the addition of pixel value
addition, multiplication, salt and pepper noise, motion blur, and linear contrast

transformations.

Pixel value addition adds the same value to every pixel in an image. This can make an
image appear brighter with positive numbers, or darker with negative numbers. Pixel
value multiplication is similar but applies a multiplication function to every pixel in
an image. This makes an image appear brighter with values over 1, and darker with
values under 1.

Salt and pepper noise is the addition of white and black pixel patches over an image.
The size, or granularity, of these patches, and their density both greatly affect the
appearance of this augmentation, and are controlled by parameters to the function.
With dense small patches of only white patches, the effect looks similar to snow, and
with larger less dense patches it can simulate an object in the image being obscured or

at the edge of an image.

Motion blur, similar to the previously defined Gaussian blur, is the application of a
convolutional filter, however the distribution is not a normal Gaussian curve, but a
directional distribution. The resulting image has the appearance of being caught in
motion. This simulates the natural motion blur that occurs when a vehicle is moving
too fast for the shutter speed of the camera, or if an object pictured is moving at a high
speed relative to the camera.

Linear contrast transformations can either increase or decrease the contrast of an
image, by either increasing the differences in pixel values or decreasing them. This
effect is very similar to that of multiplication.

A further final set of augmentations is investigated that have been grouped as elastic

augmentations, including elastic transformations, piece-wise affine transformations,
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and perspective transformations. All of these augmentation types are hypothesised to
simulate varying terrain and vehicle roll and pitch, with elastic and piece-wise affine
transformations simulating bumps and dips in the terrain, and perspective
transformations simulating roll and pitch by viewing the scene from a slightly

different angle.

Elastic transformations move pixels around the image using displacement fields. Two
parameters, alpha and sigma, control the strength and the smoothness of the
displacement respectively. The visual effect of this augmentation can vary from a
water like effect to a noisy pixellated effect depending on the parameters used.

Piece-wise affine transformations cause local distortions in a grid pattern, applying
randomly selected affine transformations to each section of the grid.

Perspective transformations are applied to the entirety of the image and are designed
to simulate a change in perspective, such as pitch and roll of a vehicle. This effect is
achieved by selecting 4 random points in a defined area near each corner, and
transforming the image such that they are the four corners of the newly augmented

image.

In the experiments presented in this thesis, the augmentations used by default in all
experiments are flipping, rotating, Gaussian blur, and JPEG compression. When
referring to extra augmentations, this is referring to the group of addition,
multiplication, motion blur, linear contrast, and salt and pepper noise. When referring
to elastic augmentations, this is referring to the group of elastic transformations,
piece-wise transformations, and perspective transformations. The parameters used for
each of these augmentations are listed in Table 3.1.

TABLE 3.1: Parameters for data augmentation methods. Unless specifically stated, 0.1
is used as the frequency parameter for all augmentation methods.

Augmentation Parameters
Flipping Horizontal & Vertical Frequency 0.5
Rotation 0.25 Frequency for Each 90° Angle
Gaussian Blur Sigma Values 0.01 to 0.7
JPEG Values 1 to 5
Add Values -10 to 10
Multiply Values 0.75 to 1.25
Motion Blur K Values 3 to 10
Linear Contrast Alpha Values 0.5 to 1.5
Salt & Pepper p Value 0.05
Elastic Transformations Sigma Values 4 to 6, Alpha Values 0 to 7
Piece-wise Transformations Scale Values 0 to 0.05
Perspective Transformations Scale Values 0 to 0.02
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3.4 Data Normalisation

Where data augmentation introduces artificial variance to the training data, data
normalisation takes the opposite approach of removing unwanted variance. It is
known that environmental factors such as water turbidity and distance between the
camera and the object of importance, in this case the sea floor, have a large impact on
the visual appearance of underwater imagery, and this section covers the various

methods to normalise this variance that were investigated in this thesis.

3.4.1 Colour Normalisation

Two methods of colour variance normalisation are investigated here, basic mean and
standard deviation corrections per colour channel, carried out in the first stage of the
machine learning algorithm by default, and a pixel-wise statistics correction method
described below.

Pixel-wise statistics correction uses a greyworld assumption often used in traditional
image correction, and the version used in this study was developed by Bryson et al.
[88]. This assumption is that the average pixel in a well balanced image should be a
neutral grey colour. This is ordinarily applied on an image by image basis, shifting the
distribution of pixel values to centre on the specified mean value and standard
deviation. The method investigated here, on the other hand, uses this grey world
assumption across the entire dataset based on pixel positions, for example the mean of
all pixel values at coordinate [0, 0] should be a neutral grey and the values should be
shifted to achieve this, likewise with all pixel values at coordinate [0, 1], and [0, 2] and

so on, for all pixel coordinates in the images.

This method doesn’t require any metadata be attached to the images, and has the
effect of removing vignetting from the images, the effect of brighter pixels in the centre
of images and darker pixels in the corners and around the edges. Vignetting is
common in deep sea imagery due to the artificial lighting, and removing this effect
removes an aspect of variance to the visual appearance of fauna captured in the centre
of images and in the edges of images.

This approach doesn’t take into account variance in altitude of the vehicle, so variance
introduced by this is not corrected for with this method.

It can be mathematically defined as;

I,(u,v,A) = m(u,v,A) * Iy(u,v,A) + n(u,v, ) (3.1)
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m(u,v,A) = ‘72(“72)\) (3.2)
n(u,v,A) = py —m(u,v,A)px(u,v,A) (3.3)

where p, and ayz are the target mean and variance, and iy (1,0, 1) and 02 (u, v, A) are
the mean and variance of pixel intensities across the images at pixel location (1, v) for
the channel A. (1,0, A) is the input intensity at pixel location (u,v) for the channel A,
and I;(u,v, A) is the resulting normalised intensity at pixel location (u, v) for the
channel A. m(u,v, A) is the calculated scale factor, and n(u, v, A) is the calculated
offset, to get from I, (u,v,A) to I, (u, v, A).

Although not investigated in this study, a method for further investigation is altitude
based correction. It builds on the previously described pixel-wise statistics method,
and was also developed by Bryson et al[88], taking into account altitude information
attached to the images. This method corrects for altitude variance and water turbidity
by fitting the given pixel values to an attenuation over distance function,

approximating the light attenuation through the water for the given dataset.

It is similarly mathematically defined as;

I(u,v,A,d) = m(u,v,A,d) * I (u,0,A,d) + n(u,v,A,d) (3.4)
o
Ad) =4 5——— .
m(u,v,A,d) (w0, A, d) (3.5)
n(u,v,A,d) = py, —m(u,v,A,d)px(u,v,A,d) (3.6)

where the additional parameter d is the distance from the camera to the seafloor, often
recorded by an altimeter on board the AUV. It is possible to assign distance bins, for
parameter d, to group images for this calculation.

In cases where the depth variable is known not only for each image, but also for each
pixel in each image for example in 3D reconstructions, each pixel or region of pixels
may be corrected for their depth independent of the rest of the image, demonstrated
by Bodenmann et al. [95].
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3.4.2 Scale Normalisation

A further effect of changing altitudes is scale variance, with images taken at different
distances off the sea floor. By using altitude information in conjunction with camera

opening angle information, images can be normalised for scale.

The spatial scale of the image, assuming no pitch or roll, a flat surface, and an accurate

altitude measurement, can be calculated by
si = 2a(tan(6/2)) (3.7)

where s; is the spatial scale of the image, a is the altitude, and 6 is the opening angle of
the camera. This is then used to calculate the spatial scale of each pixel, and the

rescaling factor to reach a target pixel spatial scale with
sp =si/p (3.8)

r=35p/st (3.9)

where s, is the estimated spatial scale per pixel, p is the size of the image in pixels, s; is

the target pixel spatial scale, and r is the rescaling factor.

The practical implications of this method are shown in Figure 3.2, with the low
altitude data on the left, and high altitude data on the right. It shows not only how the
spatial scale is normalised for through up or down scaling, but also how the low
altitude data is adjusted to match the high altitude optical resolution.

3.4.3 Lens Distortion Normalisation

Differing camera lenses and pressure windows result in differing levels of lens
distortion, which when corrected for not only normalises the appearance of objects in
centre and at the edges of images, but also normalises the appearance of images taken

by cameras with different lens and pressure window configurations.

The python library OpenCV includes a function for correcting lens distortion in
images. It corrects for radial distortion and tangential distortion. Radial distortion
causes straight lines to appear curved in an image, an effect that becomes more
pronounced further from the centre of the image, and is defined as follows, where r
represents the radial distance from the centre of the image, and ky, k2, and k3 are the

radial distortion coefficients, calculated during camera calibration:
Xdistorted = X (1 4 k172 4 kora + kare) (3.10)

Ydistorted = ]/(1 + k11‘2 + k27’4 + k37’6) (3.11)



3.4. Data Normalisation 37

©@® o
S
- 3
(A) original Scale (B) Upscaling High Altitude Data

—
avg  Aagpe

LT el
Yol e w7

’ *ﬁ?’\
and Matching Low Altitude Resolu-

(c) Downscaling Low Altitude Data tion

FIGURE 3.2: Demonstration of rescaling methods with low altitude data on the left,
high altitude data on the right

Tangential distortion causes some areas in an image to appear closer than others, and
is defined as follows, where p; and p» are the tangential distortion coefficients, also
calculated during camera calibration:

Xaistorted = X + (2p1xy + p2(r2 + 2x%)) (3.12)

Yaistorted = Y + (p1(r2 + 24°) + 2paxy) (3.13)

To correct for these two forms of image distortion, we requires the distortion
coefficients and a camera matrix, defined as follows:

d = (ki ka, p1,pa,ks) (3.14)
fx 0 0

c=10 f, O (3.15)
cx ¢y 1

where d are the distortion coefficients, and c is the camera matrix containing (f, f,) as

the focal length, and (cy, ¢;) as the optical centre. All of these parameters are
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(A) With lens distor- (B) Corrected for lens
tion distortion

FIGURE 3.3: Lens Distortion of AE2000f Images shown with a simple grid

calculated at the camera calibration stage, carried out before studies in the field using
a chequerboard pattern.

Figure 3.3 shows an example of a simple grid under the effect of lens distortion, and

after correcting for the distortion.

3.5 Metrics

The metrics used to measure the performance of an algorithm vary in what they
prioritise and how they measure success, so have a large impact on capturing the
outcome of training a machine learning algorithm. For all the experiments in this
thesis the mAP score is calculated using an IoU threshold of 0.5, meaning the
intersecting area of a ground truth label and the estimated label must be at least half
the total union of those two areas.

The statistical significance of the variance in mAP scores overall is analysed using an
ANOVA test, and the impacts of different categories on the results are analysed with
Tukey HSD tests. Tukey HSD tests are used to make multiple comparisons between
the means of different groups, taking into account the multiple comparisons being
made. It is important to note that there are certain assumptions that need to be made
for the results of these tests to be valid. The data must be normally distributed and
have equal variances between groups. Additionally, the observations must be
independent and identically distributed.

3.6 Length Weight Relationship Regression

LWRs are the estimated relationship between the length of a morphotype and its
weight, calculated from many measured data points using polynomial regression.
LWRs were developed by measuring fish caught either by line fishing or trawling, and
therefore rely on the morphotype in question being caught and measured before

[96; 97]. Where the calculation of LWRs relies on the individuals being caught and
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FIGURE 3.4: Estimated segment size to length relationships. The relationships are
calculated using regression on measured segment sizes and line lengths, resulting in
an estimated polynomial relationship.

measured, LWRs can be applied with non-invasive methods, as the length of an
individual can be estimated from imagery. The LWRs used in this study are from the

large open source database Fishbase [5].

LWRs have been used with images to estimate biomass before, for example Seiler et
al.[56] used length weight relationships and manually annotated AUV images to
determine the biomass distribution of the Ocean Perch. It is worth noting, however,
that overly bent or curled up fish were excluded from this study. Garcia et al. have
used object detection and segmentation to then estimate the length of fish to
determine if they are undersized for commercial trawling and should therefore be
released [98]. This method involves estimating the internal skeleton position, a
complex problem that is specific to the morphotype in question. This method is well
suited to the single morphotype problem it was designed for as the internal skeleton
differs between different morphotypes, while the method presented in this thesis is
more generalisable to multiple morphotypes, better suited for biodiversity estimates,

and estimating biomass across multiple morphotypes.

The method developed for this thesis estimates the polynomial relationship between
the segment size in cm? and the length in cm of the measurement required for the
morphotype’s specific LWR. The length measurement required differs between
morphotypes, for the Rockfish morphotype this length is from the head to the tail, but
for the Crab morphotype it is the width of the carapace. In order to estimate this
relationship, a set of images were labelled both with length measurements (c) and
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TABLE 3.2: Segment-Size Length Relationship, calculated from collected data for this

thesis - cm? to cm, Length Weight Relationships, gathered from the large open source

database Fishbase [5] - cmm to grams, and derived Segment-Size Weight Relationships -
cm? to grams

Class Name SLR LWR SWR
Crab 2.6x938 1 0.00036x%%2 | 0.0058x11
Hagfish 5.93x9%2 | 0.0048x>72 0.61x14
Rockfish 42705 0.012x308 1.08x1:5%
Soles 2.74x95% [ 0.0074x3% | 0.17x1669
Seastar 1.82x9%8 | 0.00032x2% | 0.0014x141

with segments (cm?). By performing regression on the measured segments and
lengths, the segment size to length relationship is calculated, the SLR. Because SLRs
allow us to estimate the length based on a segment size, and LWRs allow us to
estimate the weight based on a length, a derived segment size to weight relationship
(SWR) can be calculated, and the estimation of biomass from segmented images

becomes an automated process.

Further development of this method, and relying on such a method for biological
measurements and estimates, would require additional morphotypes to be labelled,
and for further samples of the given morphotypes to be labelled to increase the
sample size and to increase trust in the given relationships.

Figure 3.4 shows the relationships between the length measurements and the segment
sizes. There is a stronger relationship between segment size and length measurements
for Rockfish, Sole, and Seastars than for Crabs and Hagfish. This may be because of
the complex shape of crabs, and due to the burrowing and curling behaviour of
Hagfish where their shape and the amount of their body visible above ground vary.
Table 3.2 shows these segment-size length relationships (SLRs), the known length
weight relationships (LWRs) for each class, and the combined segment-size weight
relationship (SWRs) calculated by the combination of these two functions.
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Datasets

This chapter presents the datasets used for the experiments in this thesis, describing

their acquisition and characteristics.

4.1 Adaptive Robotics 2018 Expedition

The 2018 Adaptive Robotics Expedition, on the Schmidt Ocean Institute’s RV Falkor,
went to the South Hydrates Ridge off the coast of Oregon in the North East Pacific
Ocean. This expedition, lead by Professor Blair Thornton, was a technical trial into the
use of multiple AUVs, one ROV, and on ship measurements in parallel for marine

surveying with on ship data processing and analysis.

Figure 4.1 shows the route the RV Falkor took during the expedition. Figure 4.2 shows
the full 3D mosaic reconstruction of the surveyed area.

o
0
o
Astonﬂ S

FIGURE 4.1: Map of the Adaptive Robotics 2018 Expedition
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FIGURE 4.2: Mosaic of the South Hydrates Ridge from the Adaptive Robotics 2018
Expedition from the High Altitude Vehicle
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(A) Train Dataset Dataset (C) Test Dataset

FIGURE 4.3: Mosaics of the South Hydrates Ridge from the Adaptive Robotics 2018
Expedition from the Low Altitude Vehicle

4.1.1 Tunasand

The Tunasand AUV was created by the University of Tokyo in 2007 [17], and is a
hover-style AUV with a low speed and high manoeuvrability, resulting in high
resolution images from close to the seafloor covering a relatively small spatial area.
Table 4.1 shows the specifications for this AUV, and Figure 4.4 shows a photo of the
vehicle.

4.1.2 High Altitude, AE2000f

The AE AUV was originally developed as a commercial vehicle, and was more
recently adapted for research purposes at the University of Tokyo in 2016 [99; 4]. Itis a
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TABLE 4.1: Tunasand AUV Dataset Specifications

Dimensions 1.1x0.7x1.1m
Weight in air 180 kgf
Vehicle Depth Rating 1500m
Speed 0.4 knots
Target Altitude 22m
Endurance 8 hours
Batteries Li-ion rechargeable 3.8 kWh
Diving and surfacing methods | 2 x drop weights, 5 or 10 kg
Camera Name Unagi Visual Mapping
Opening Angle 55.96° x 47.82°
Resolution 2464 x 2056
Port Dome
Camera Depth Rating 6000m
Labelled Images 522
Training Images 207
Validation Images 123
Test Images 192

FIGURE 4.4: A photograph of the Tunasand AUV being deployed in the field.

gliding AUV with a higher speed and lower manoeuvrability than Tunasand,
resulting in lower resolution images but covering a much larger spatial area in a
similar amount of time. Table 4.2 shows the specifications for this AUV, and Figure 4.5
shows a photo of the vehicle.

4.1.3 Classes

Many classes of mega-fauna were identified in the Falkor 2018 expedition dataset, of
which a subset of the larger classes present in both the Tunasand and AE2000f images
were selected for use in the presented experiments. This subset is presented below,
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FIGURE 4.5: A photograph of the AE2000f AUV being deployed in the field.

AN |

(C) Relative Difference in Spatial Scale

FIGURE 4.6: Example images from each dataset and their relative difference in spatial
scale



4.1. Adaptive Robotics 2018 Expedition 45

TABLE 4.2: AE2000 AUV Dataset Specifications

Dimensions 3.0x1.3x09m
Weight in air 370 kgf
Vehicle Depth Rating 2000m
Speed 1.7 knots
Target Altitude 8 m
Endurance 8 hours
Batteries Li-ion rechargeable 3.3 kWh
Diving and surfacing methods | 2 x drop weights, 5 or 8 kg
Camera Name SeaXerocks 3 Visual Mapping
Opening Angle 60.41° x 52.12°
Resolution 1280 x 1024
Port Flat
Camera Depth Rating 3000m
Labelled Images 60
Training Images 20
Validation Images 20
Test Images 20

showing the population counts in each dataset in Figure 4.8, and example images of
each class in Figure 4.7. The population counts for these classes are incredibly
unbalanced, with very few examples of the Hagfish class, and many examples of the
Rockfish class, with varying numbers in-between. While this is unusual for curated
machine learning datasets, it is representative of marine imagery data sets where the
abundance of different morphotypes varies massively. For the purposes of this study,
the class imbalance will not be counteracted in any way, with the most abundant class
having the highest impact on the performance scores, and likely being the most
accurately identified class. With the aim of making biomass estimates summed across
all classes, the most abundant class will have the highest impact on the results, and
therefore being prioritised is not an issue. It is advised that when using machine
learning for another application that requires all classes to be prioritised equally, for
example when inaccuracy on a rarer class has a large adverse effect, that class
balancing techniques are used such as augmenting examples of rarer classes to

artificially create balance, or weighted impacts on loss scores.

All five of the presented classes were used in training, however for results analysis
purposes, Sole and Sea Stars have been excluded. The Sole class contains two quite
distinct morphotypes with relatively few examples, causing unreliable performance
on this class. Sea Stars, while relatively abundant in these datasets, are close in
physical appearance to another class that was excluded from the labelling efforts, the
Brittle Star. This class is highly abundant in the area, however it is hard to label
reliably in part due to the small size of many of the individuals. In many cases, Brittle
Stars are wrongly identified as being Sea Stars, causing unreliable performance on this
class.
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Low altitude High altitude

Rockfish Hagfish Crabs

Soles

Sea stars

FIGURE 4.7: Examples of each class labelled and used in the training data. The colours

used for each class will be used throughout this thesis, and any example labelled im-

ages will use these colours to indicate which class the label is for. Labels coloured
black are classes which were labelled but which were not included in this thesis.

Some of the classes included in this study are of environmental and commercial
importance, with the snow crab being a commercially fished species with concerns
around its over-fishing and population sustainability, [100] and Roberts et al. found
Rockfish to be a generally commercial fish in cold water coral reefs in the Pacific
Ocean [101].

4.1.4 Example Images

In Figure 4.9, both a low altitude image, £, and a high altitude image, H are shown
and a random selection of augmentations are applied to them. These examples firstly
show the difference in size of objects appearing in the £ dataset compared to those in
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FIGURE 4.8: Class count per dataset in each of the test, validate, and train datasets for
both low (£) and high () altitude.

the H dataset, with those in the £ dataset appearing larger and in higher resolution.
The number of individuals in each image is relatively representative, with the H
images covering a much larger spatial scale than the £ images, resulting in more
individuals present per image. We see the effects of some of the augmentations
applied for this study when applied to the full image, it is worth noting that the
augmentations are applied to a random cropping of the image in practice to maintain
spatial scale when acquiring a 1024x1024 patch for training the neural network.
Augmentations that effect the orientation of the image, the colour balance, the
contrast, and elastic distortions are all shown in the figure for both low and high
altitude datasets, £ and H.

Figure 4.10 shows two example labelled images from the low altitude and high
altitude datasets, £ and H, and the effect of distortion correction on these images.
Figure 4.11 shows examples zoomed in on individuals in the images show the
differences in effect on the appearance of individuals. A much more visible effect is
seen on individuals towards the corners of H images due to the flat port of the
camera. There is a much larger lens distortion effect from flat port cameras than from
dome port cameras [102].
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(A) £ example labelled image (B) H example labelled image

(c) Augmented L im- (D) Augmented H image, ro-
age, with higher contrast tated 180°, with minor changes
to colour balance

(E) Augmented £ image with (F) Augmented H image with
elastic transformations adjusted colour balance

(G) Augmented £ image with (H) Augmented H image with
90° rotation and stretching elastic transformations

FIGURE 4.9: Examples of labelled images, and those images under different random
augmentations
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(A) £ example labelled image (B) H example labelled image

(D) H example corrected for distortion,
more visible effect due to the flat lens of
the camera

(C) L example corrected for distortion,
hardly visible due to the dome lens of
the camera

FIGURE 4.10: Example images and their labels from the low altitude dataset, £, and

the high altitude dataset, #, and the effect of lens distortion correction on each image.

There is minimal difference for the £ image, and a large difference for the H image
due to the dome port of the £ camera and the flat port of the H camera.
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(A) Zoomed in on specimen in L ex-

. (B) Zoomed in on specimen in L
ample image

example image with distortion cor-
rection, individual is not visibly
changed

(C) Zoomed in on specimens in H ex-
ample image

(D) Zoomed in on specimens in H ex-

ample image with distortion correc-

tion, causing visible changes in the
shape of individuals

FIGURE 4.11: Zoomed in examples of an £ image and a # image, showing a small
difference in appearance for the individual in the £ image and a much more obvious
difference in shape for the individual in the H image.
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Effects of augmentation and

normalisation on learning

The results presented in this chapter show the impact of the previously described
augmentation and normalisation methods on learning and performance on images
taken in different, but nearby, spatial regions by the same vehicle. This is referred to as
intra-vehicle transferability within this thesis. These experiments provide an insight
into each combination of normalisation and augmentation techniques” impact on
performance of the Mask R-CNN neural network architecture. The datasets used are,
as described in previous chapters, taken by two AUVs, one at a low altitude and one
at a relatively higher altitude. These datasets were collected on the same expedition
with the same lighting and camera setups, on different days and with possibly

differing environmental conditions.

Experiment notation consists of; the altitude of the dataset, signified by £ for low
altitude with a target altitude of 2.2 metres, and H for high altitude with a target
altitude of 8 metres; whether the dataset is the train or test dataset, signified in
superscript as train, and test; and the applied normalisation and augmentation
techniques, signified in subscript using the codes described in Table 5.1, such as
C1.S3.E1 for no colour correction, normalising to high altitude scale, and using elastic
augmentations. For example L8, . — H!<!., . describes the experiments that were
trained on low altitude data with greyworld colour correction applied, normalised to
low altitude scale, and without elastic augmentations, and tested on high altitude data
under the same conditions. For the independent variables not included, this indicates
that the experiments have not been filtered by this variable and that all versions of this

variable are included in these results.

The results are split into two sections, one for the low altitude experiments, ie.
Lirain _y rtest and one for the high altitude experiments, ie. H!™" — H!et The results
for each section are shown as mAP boxplots broken down by independent variable,
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and a table of average mAP scores and standard deviations per combination of

independent variable, to provide the case by case statistics.

TABLE 5.1: Independent Variable Codes

C - Colour Correction

C1 Raw images
C2 Grey world correction
S - Scale
S1 Original scale
S2 Low altitude spatial scale
S3 High altitude spatial scale

S4 | Low altitude scale with high altitude resolution
D - Distortion Correction

DO Without Distortion Correction

D1 With Distortion Correction

E - Elastic Distortion Type Augmentations

EO0 | Without Elastic Distortion Type Augmentations
El With Elastic Distortion Type Augmentations

I - Individual Channel Augmentations

I0 Without Individual Channel Augmentations

I1 With Individual Channel Augmentations
A - Extra Augmentations

A0 Without Extra Augmentations

Al With Extra Augmentations

5.1 Low Altitude

This section presents the results for the low altitude dataset, taken by the Tunasand
AUV on the Falkor 2018 expedition. This covers every combination of independent
variables for all experiments of the form L"" — L' The analysis starts by looking
at a breakdown of the mAP scores by independent variable, filtering those results
down to the higher performing experiments, and then showing some examples of
estimated segmentation masks alongside their manually annotated counterparts. A
table of results for every combination of independent variables is also presented,

allowing for deeper analysis of the variables interactions with one another.

Figure 5.1 shows a breakdown of the mAP scores by independent variables. As shown
in Figure 5.1a, there is an improvement in performance between LZ4" — LI and
Eggi” — Egt, improving from an average of 42.57% to 74.14%. This is most likely
because effects such as vignetting caused by the artificial lighting in deep sea imagery
are only corrected for when using C2, pixel statistics correction. Correcting for these
vignetting affects provides a significant improvement in performance for this set up,
the significance of which is analysed in further detail later, and implies that the

variation caused by these effects is not trivially overcome by this neural network with
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limited training examples. It is worth noting that the Mask R-CNN architecture
applies histogram stretching to the input images, so simple colour imbalance does not

account for these differences in performance.

1.0 1.0 1.0
1 ——
% 0.5 % 0.5 i % 0.5
0.0 0.0 ‘ 0.0
Cl Cc2 S1 S2 83 S4 Do D1
(A) Split by colour (B) Split by rescaling (C) Split by distortion
correction correction
1.0 1.0 1.0
% 0.5 % 0.5 % 0.5
0.0 ‘ 0.0 0.0
A0 Al EO El I0 I1
(D) Split by extra (E) Split by elastic (F) Split by inde-
augmentations augmentations pendent channel
augmentations

FIGURE 5.1: mAP scores for low altitude vehicle, £7%" — L't split by each inde-
pendent variable, and aggregating over all other independent variables.

The statistical significance of these results can begin to be analysed in Table 5.3,
showing the ANOVA test results for each category independently to one another. The
F-value is a measure of how much the variation in the mAP can be explained by the
variation in the independent variables. When the F-value is higher, it indicates that
the independent variables have a greater impact on the outcome variable, the mAP.
The p-value is a measure of the statistical significance of the F-value indicating
whether the observed F-value is likely to have occurred by chance. A small p-value
(usually less than 0.05) suggests that there is a significant relationship between the
predictor variables and the outcome variable. Conversely, a large p-value suggests
that there is no significant relationship. From this table we see the most significant
impact comes from the rescaling method, followed by the elastic transformations and
the colour correction method. Other categories have a much lower, statistically

insignificant impact.

Looking at the relationships between independent variables, Table 5.4 shows the
ANOVA test results for each combination of independent variables. The combination
of Colour Correction and Scale, both statistically significant individually, is stronger
than each variable alone, with an F-value of 29.253 and a p-value of 3.590¢ 2.
Another combination stronger than each variable alone is Scale and Extra

Augmentations, with an F-value of 31.898 and a p-value of 1.127¢~34.
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TABLE 5.2: mAP scores and variance for low altitude vehicle, £ —, [test
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El
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EO
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0.87 £ 0.03
0.53 +£0.38
0.59 £0.39
0.55+£0.39
0.78 £0.01
0.78 £0.04
0.83 £0.01
0.77 £0.03
0.43 +£0.05
0.36 £0.04
0.36 £ 0.09
0.40 £0.03
0.00 +=0.00
0.30£0.23
0.56 =0.18
0.32+£0.23
0.86 == 0.03
0.82 £0.02
0.86 == 0.02
0.85+0.02
0.84 £0.02
0.82 £0.02
0.85+£0.02
0.83 £0.03
0.59 £0.03
0.47 £0.03
0.61 £0.02
0.49 +=0.06
0.47 £0.33
0.65£0.04
0.73 +£0.04
0.00 £0.00

0.85+£0.04
0.80 =0.04
0.55£0.39
0.00 +=0.00
0.27 £ 0.39
0.71£0.02
0.53 +0.37
0.50 £0.35
0.11+0.13
0.28 £0.07
0.43 £0.02
0.05£0.08
0.22£0.31
0.11+0.16
0.24£0.34
0.00 £0.00
0.54 +=0.38
0.84 £0.04
0.82 £0.02
0.80 +=0.08
0.80 £0.01
0.80 £ 0.05
0.55£0.39
0.81 £0.02
0.55+£0.04
0.53 +0.03
0.51 £0.07
0.37£0.17
0.01 +£0.00
0.00 == 0.00
047 £0.34
0.41£0.29

0.88 £+ 0.01
0.52£0.37
0.28 £0.40
0.25+0.36
0.83 £0.03
0.50+£0.35
0.28 £ 0.40
0.52£0.37
0.07 £0.10
0.06 £ 0.07
0.00 £ 0.00
0.00 £0.00
0.48 £0.34
0.00 £0.00
0.00 +=0.00
0.00 £0.00
0.88 - 0.03
0.25+0.36
0.86 £0.01
0.26 £0.37
0.84 £0.02
0.56 +0.39
0.86 £ 0.00
0.29 £0.41
0.00 £0.00
0.09 +£0.13
0.16 £0.12
0.00 +=0.00
0.69 +0.08
0.00 £0.00
0.78 £0.01
0.22£0.30

0.87 £ 0.01
0.00 £ 0.00
0.56 = 0.39
0.00 = 0.00
0.84 +0.02
0.52+£0.35
0.82 +0.03
0.54 £0.38
0.00 £ 0.00
0.00 £ 0.00
0.00 £ 0.00
0.00 £ 0.00
0.00 £ 0.00
0.00 £ 0.00
0.70 £ 0.03
0.00 £ 0.00
0.88 £ 0.02
0.62 +0.26
0.89 £ 0.01
0.78 £ 0.06
0.88 £ 0.02
0.54 +0.39
0.85£0.02
0.81 +0.03
0.01 £0.01
0.00 +=0.00
0.00 £ 0.01
0.00 = 0.00
0.76 £ 0.04
0.25£0.35
0.77 £0.02
0.27 £0.38

The only two variables that didn’t have a statistically significant impact on results
individually were Distortion Correction and Individual Channel Augmentations, and

in combination with each other there was no clear improvement on this.

Splitting the results by rescaling method, as shown in Figure 5.1b, there is a clear
increase in performance comparing L0 — L&t and LUg" — L!%!. Looking across
all the subplots in Figure 5.1, this is clearly the most impactful variable by far, and 52
provides the highest performance boost. Based on these findings, the recommendation
this thesis presents to further marine imaging and machine learning endeavours, is to

normalise by scale to allow for the most efficient use of limited training data.
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TABLE 5.3: ANOVA test results for each category, L% — Ltest

Category F-value | p-value

Colour Correction 21.392 | 5.131¢%
Distortion Correction 0.322 0.571

Scale 52.827 | 1.467¢= %8

Elastic Transformations 19.703 | 1.185¢ %
Individual Channel Augmentations 1.452 0.229

Extra Augmentations 14.352 | 0.000176

TABLE 5.4: ANOVA test results for each combination of category, L7 — [test

Combined Categories F-value | p-value

Colour Correction and Distortion Correction 7.878 | 4.119¢7%

Colour Correction and Scale 29.253 | 3.590e 32

Colour Correction and Elastic Transformations 14.450 | 6.219¢ %

Colour Correction and Individual Channel Operations 7.942 | 3.779¢ %

Colour Correction and Extra Augmentations 12.412 | 9.238¢™ %

Distortion Correction and Scale 23.795 | 9.176e=%

Distortion Correction and Elastic Transformations 6.855 | 1.654¢ %
Distortion Correction and Individual Channel Operations 0.891 0.446

Distortion Correction and Extra Augmentations 4905 | 2.344e %

Scale and Elastic Transformations 30.459 | 2.538¢ %

Scale and Individual Channel Operations 22.929 | 7.122¢7%

Scale and Extra Augmentations 31.898 | 1.127¢

Elastic Transformations and Individual Channel Operations | 7.099 | 1.187¢%

Elastic Transformations and Extra Augmentations 15255 | 2.159¢%

Individual Channel Operations and Extra Augmentations 7.865 | 4.195¢~ %

1.0 ——

0.0
Crab  Hagfish Rockfish

FIGURE 5.2: mAP scores for low altitude vehicle, £!7" — ptest summary per class,
aggregating over all experiments

In comparison, the performances of both L7 — Li¢t and L0 — LI are very
poor. This is understandable due to the reduction of information when downscaling
images in this way, with less pixels to hold visual information. What is interesting,
however, is the improved performance of L8 — L!&! over LU — L% where the
amount of information available before processing the images is the same, with the
only difference being the spatial scale of the images mimicking that of the average low

altitude image. This shows that the spatial scale of the images, and the objects within
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FIGURE 5.3: mAP scores for each independent variable, for low altitude vehicle,
Ll —y plest gplit by class and by each independent variable, and aggregating over
all other independent variables.

them, have a large effect on the performance of Mask R-CNN.

Factors that impact the ability of Mask R-CNN to detect and segment objects of
varying sizes includes the region proposal network anchor size parameter, which has
not been investigated as part of this study, and are set as a default to the values
(32,64,128,256,512), giving a large enough range in size to theoretically overcome the
smaller size of objects in S3. As it currently stands, there are few recommendations as
to the preferred spatial scale of images for an object detection and segmentation
system, and these findings imply that this is a severe shortcoming that may be
impacting the performance of applied machine learning, especially in the marine
environment. In this case, the smaller spatial scale, with objects appearing larger,
performed better, however there is no evidence to conclude what spatial scale is
optimal for this set up, or how that information can be transferred to other datasets or
other analysis methods. The recommendation of this thesis is for further research into
the effect of spatial scale be carried out, especially before relying upon machine

learning to automatically analyse marine imagery for scientific discoveries.

Another significant change in performance is shown in Figure 5.1e, where the elastic
transformations applied caused a significant drop in performance of Mask R-CNN,
with better performance for L8 — Lt than for £ — LUt This is not
conclusive for all elastic transformations, and other forms of image distortion, or other
parameters for the given methods, may produce different results. One hypothesis for
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FIGURE 5.4: mAP scores for each independent variable for low altitude vehicle,
trai test
L& 050 = L& Fo.sp- Summary per class

further investigation is that the chosen elastic distortion parameters were too harsh.
Another is that individual methods investigated have differing effects, and may not
all follow the over all pattern of decreasing performance. This study combined three
different types of elastic distortion into this one category, and the negative impact of
any one of them cannot be differentiated from the others. The three techniques
investigated were ElasticTransformation, PiecewiseAffine, and PerspectiveTransform,
from the imgaug python library. All three of these techniques were chosen to simulate
the changing of terrain or vehicle perspective on a scene, and while this specific
combination greatly hindered the performance of Mask R-CNN, there is still an
interest in future research into simulating such an effect, and selecting the techniques

and specific parameters that provide the most gain to a system such as Mask R-CNN.

Figure 5.2 shows the breakdown of the mAP scores by class across all £ — L
experiments, with Figure 5.3 showing the more in depth breakdown by class and by
independent variable, showing a higher performance on Rockfish, followed by
Hagfish, very closely followed by Crabs. Rockfish performing the highest out of these
three classes is as expected, with Rockfish not only being the most abundant class of
the three, but also being far more contrasting with the background substrate than
Hagfish, and a much simpler shape to segment than Crabs. Due to this much higher
performance, Rockfish are the most viable class for a neural network architecture
trained on this labelled dataset to then be relied on for scientific study. The other two
classes provide important insight into low-shot machine learning - the training of
machine learning systems on very few training examples per class. The findings in
Figure 5.3 do not show a large variance in the effects of different independent
variables on different classes, but one finding of note is the performance of S2 for the
Rockfish class, resulting in a high performance with a very small amount of variance.
Scale normalisation having such a strong impact on this class in particular may be

worth further investigation.
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FIGURE 5.5: Example predictions and their respective manually generated labels

for fcwo instances of Mask RCNN, one trained on ﬁgg‘lgz‘Do.Eo.Io. 40- and one on

LI 50 Eo.10.40 images. Both of these instances make the same mistake of labelling a
fish of a different morphotype as a Rockfish

Given the clear improvement in performance when using greyworld colour correction,
C2, when not applying elastic augmentations, E0, and when rescaling to the average
low altitude spatial scale, S2, Figure 5.4 shows the mAP scores for Etcrg.ige.sz — L0 o
split by class for closer analysis of the other independent variables. This figure shows
that distortion correction has a small impact on performance, with a small decrease in
performance across all classes. The effect of distortion correction being so small for the
low altitude dataset is as expected due to the dome port camera used on this vehicle

providing a very small amount of lens distortion in the images.

Extra augmentations improve performance for the Crab and Rockfish classes, but
decrease performance for the Hagfish class. Both the Crab and Rockfish classes have a
high contrast with the background substrates, with their bright orange colours, while
the Hagfish is much darker. Whether this is the cause of such a difference in effect is
beyond the scope of this thesis, but this is one possible explanation worth further

consideration.
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Debayered, CO Greyworld, C1

Predictions

Manual Labels

FIGURE 5.6: Example predictions and their respective manually generated labels
for two instances of Mask RCNN, one trained on Ucrg.lgz.Do.Eo.Io. 0. and one on

Ll o o, 10.40 images. Both of these instances successfully identify an instance of

a crab, but fail to fully segment the complex shape. Both of these attempted segmen-

tations however have a large enough IOU score to count as successful detection and
segmentation.

Finally, independent channel augmentations harm the performance on the Crab class,
and mildly harm performance for the Rockfish class, but provide an improvement for
the Hagfish class. Again, the difference in colour and contrast between the Hagfish
and the other two classes may contribute to this difference in effect. Independent
colour channel augmentations provide shifts in the colour balance of the images,
which will effect the appearance of the brightly coloured Rockfish and Crabs much
more than the darker Hagfish class, so this hypothesis is likely but remains

unconfirmed.

In Figure 5.5 the inference results from two trained instances of Mask RCNN are
shown along with the manually generated labels for a given image. The two instances
in question were trained on L8, 0 and LEF O o0 1040 TeSpectively, with the
only difference in training images for these networks being the colour correction
method. The example image shown contains two individuals, one Rockfish and one
individual from another class not included in this study. This class was not abundant
enough in the data to be included, but as is shown in these examples can provide
some confusion. Both of these instances of Mask RCNN mistook this individual as an
instance of a Rockfish. The quality of the segmentation, both of the correctly identified
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Debayered, CO Greyworld, C1

Predictions
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FIGURE 5.7: Example predictions and their respective manually generated labels
for two instances of Mask RCNN, one trained on ﬁtcrg.lgz.Do.Eo.Io. 0. and one on

L, o ro10.40 images. The instance trained on CO struggles to successfully iden-

tify a Hagfish, identifying one but also identifying an overlapping Rockfish, where
the instance trained on C1 successfully identifies the Hagfish with no other complica-
tions.

Rockfish, and the incorrectly identified other morphotype, are very good with well
defined boundaries and an accurate shape and size. This example demonstrates the
impact of early decisions in this study, particularly the decisions made on which
classes to include in the labelled training data. Including rare classes that the network
has a poor chance at correctly identifying may negatively impact its performance on
other more abundant classes, and it is for this reason that fewer, but more abundant
classes, were selected to be labelled and included in these experiments. However, this
example also shows that by not training the network on this rarer class, it can be
misclassified as one of the included classes and can bring down the network’s
accuracy. A human labelling these images, having only learnt the classes from the
labelled training data, would easily identify that the other fish is not a Rockfish, but
instead belongs to a previously unseen class. This kind of reasoning is more complex
than the simple object detection and segmentation that Mask R-CNN is architecturally
designed to do. Perhaps a more complex neural network architecture that can identify

objects, recognise uncertainty in the classification stage, and classify them as not
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FIGURE 5.8: Example predictions and their respective manually generated labels
for two instances of Mask RCNN, one trained on Etcrflgl.Do.Eo.Io. A0 and one on

trﬂin . . . . . .
L% Do.Eo.10.40 images. This example contains a single instance of the Crab fish class.

belonging to the classes it has learnt from would be better suited to this task, and to
real world machine learning applications in general. In this example there are
instances of this unincluded class in the training data, though very few, but it is also
highly probable that there will be instances of unseen classes when applying machine
learning algorithms to marine imagery data, especially when applying it at scale.
Handling these cases where a previously unseen class is present is an interesting

question for further investigation.

Figure 5.6 again shows the output predictions from two instances of Mask R-CNN
trained on L8, 000 4o and L0 0o 4o Tespectively. In this example there is a
single instance of a Crab. Both instances of Mask R-CNN have correctly identified this
instance of this class, and have made a relatively good attempt to segment this
complex shape. The legs of the Crab class are among the most complex shapes present
in the labelled datasets used in this study. The IOU score, used to determine if a
segmentation counts as successful or not, for both of these cases would be high
enough to count as a successful detection and segmentation, as the area covered in the
predicted segment is similar enough to that of the manually generated labels. This
example raises the question of what impact this less accurate segmentation may have
on biomass estimates made from these predictions. Previously used biomass estimate
methods use the width of a crab’s carapace to calculate an estimate, and as the
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Not Rescaled, S1 Rescaled, S2

FIGURE 5.9: Example predictions and their respective manually generated labels
for two instances of Mask RCNN, one trained on nglgl.Do.EO,Io. 0. and one on

Predictions

Manual Label

Ll o040 images. This example ci)ntains a single instance of the Hagfish fish
class.

Not Rescaled, S1 Rescaled, 52

Predictions

Manual Label

FIGURE 5.10: Example predictions and their respective manually generated labels
for two instances of Mask RCNN, one trained on Cffi‘.’&.oo.;so.m. 40- and one on

train . . . . . .
L& po.ro.10.40 images. This example contains a single instance of the Crab fish class.
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majority of the crab’s weight is held in the carapace perhaps disregarding the legs is a
more accurate approach. Whether Mask R-CNN would adapt well to being trained on
labels of just the carapace of crabs, and being expected to disregard the legs, is

currently unknown.

Figure 5.7 again shows example predictions from two instances of Mask R-CNN, and
is the final comparison between examples trained on £, . . - and

LI o ro10.40- This example shows the rarer class from this study, the Hagfish. This
class poses multiple levels of complexity, both with it’s rarity in the labelled datasets -
in training, validation, and testing - but also with its behaviours, with the tendency to
tie itself into knots and other complex shapes, and to burrow under the sediment. The
Hagfish in this example is partly submerged under the sediment, with only its head
visible in the images. In this example, the network trained on C1 images correctly
identifies the Hagfish and produces a highly accurate segmentation. On the other
hand, the instance trained on CO correctly identifies and segments the Hagfish, but

also wrongly detects an overlapping Rockfish.

Figure 5.8 shows the results from two instances of Mask R-CNN trained on

Lo o040 And LIF 0o 1040 Tespectively, with the difference in training
datasets being the rescaling method, S1 against S2. This example shows a single
instance of the Crab class. Similarly to the earlier example of the Crab class, the
instance trained on S2 correctly identifies the class but struggles with segmenting the
complex shape of the crab’s legs. The instance of Mask R-CNN trained on S1 images
however does not perform as well, correctly classifying the Crab instance, but also
detecting an overlapping Hagfish and an overlapping Sole - a class included in the
training datasets but later removed from the performance analysis of this study.
Incorrectly predicting overlapping classes is one of the common mistakes made by the
less accurate Mask R-CNN instances, behind the most common mistake of not
identifying the presence of an object at all. The cause for this mistake is unclear, but of
course brings down the accuracy of the network, and would over-predict the biomass

in this example by predicting the presence of more objects than there are.

Figure 5.9 shows another set of example predictions from two instances of Mask
R-CNN, trained on £ o o o and LI o 10 40 Tespectively, containing one
instance of a Hagfish. This is the same instance of a Hagfish seen in Figure 5.7, where
it has burrowed and is only partly visible in the image. In these examples the instance
of Mask R-CNN trained on 52 images has successfully detected and segmented the
Hagfish. On the other hand, the instance trained on S1 images has correctly identified

the Hagfish and incorrectly detected an overlapping Sole.

Figure 5.10 shows the final example comparing instances of Mask R-CNN trained on
Ll o040 and L9 0 10.40- Showing an example with a single instance of a

Crab. Again, the instance trained on S2 successfully detects the Crab, but as with
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previously seen examples fails to fully segment the complex shape of the Crab’s legs.
The instance trained on S1 images similarly struggles to segment the legs, and also
wrongly identifies an overlapping Rockfish over half the Crab’s body. The two classes
are similar in colour and contrast with the background substrate.

5.2 High Altitude

This section presents the results for the intra-vehicle transferability on high altitude
datasets, taken by the AE2000f AUV at a target altitude of 8 metres. Similarly to the
previous section, these results are presented as mAP boxplots split by independent
variable, then filtered to high performing experiments, and a full table of every
combination of independant variables is presented. Furthermore, example

segmentation outputs are shown and compared with the manually generated

groundtruth.
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FIGURE 5.11: mAP scores for high altitude vehicle, H!*" — H!*, split by each inde-
pendent variable, and aggregating over all other independent variables.

Figure 5.11 shows a breakdown of the mAP scores by independent variables for all
experiments in the form Hirain _y qtest and more detailed numerical data for each

combination of variables is shown in Table 5.5.

The improvement in performance between H0" — H!t and HIgim — H!%!, shown
in Figure 5.11a, is similar to that seen in the low altitude experiments, improving from
an average of 44.59% to 74.40%, and a standard deviation of 13.65% to 3.72%. The
reasons for this improvement are highly likely to be the same, because of the extra
features that greyworld correction, C2, corrects for, such as vignetting, over basic raw
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FIGURE 5.12: Altitudes recorded for each image in a subset of 3000 images from both
the Low and High altitude test datasets.

images going through histogram stretching, C1. This method improving performance
at both altitudes is not surprising, as vignetting is apparent in both datasets. It
appears to be less significant for HZ5" — H!! than for L297 — LI&!, perhaps due to
the different lighting set ups of each vehicle and the effect of distance off the seafloor.
Visually comparing the low altitude images with the high altitude images, it appears
the vignetting effect is more pronounced for low altitude images where both the
camera and the lighting setup are closer to the sea floor, reaffirming this hypothesis.

The effect of rescaling, shown in Figure 5.11b, differ from the low altitude results in
that rescaling to the average spatial scale for high altitude images shows no clear
change in performance. There is no clear difference between H5" — H!%! and

Hiran — HIS! ooing from an average of 60.43% to 58.56%. This may be due to the
higher altitude of the vehicle meaning small absolute fluctuations to the altitude, such
as those caused by currents or terrain variation, have a lower effect on the relative
distance to the seafloor than for the lower altitude vehicle. The altitude values
recorded for a subset of 3000 images are shown in Figure 5.12, where although both
vehicles vary in altitude throughout data collection, the relative change in the low

altitude dataset is more pronounced.

The results for elastic augmentations are similar to their low altitude counterparts
where H8im — !¢t clearly out performs H 0" — !¢t This is unsurprising, but
was not a guaranteed result as elastic transformations simulating changes to terrain
largely depend on spatial scale to determine what kind of effect is being simulated,
small scale distortions simulating variation in texture, and large scale distortions

simulating variation in slope, or the appearance of hills or dips in the terrain.
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TABLE 5.5: mAP scores and variance for high altitude vehicle, J{train _ qqtest

FO
10

FO
nn

F1
10

F1
I1

C1
C1
C1
C1
C1
C1
C1
C1
C2
C2
C2
C2
C2
C2
C2
C2

S1
S1
S1
S1
S2
S2
S2
S2
S1
S1
S1
S1
S2
S2
S2
S2

DO
DO
D1
D1
DO
DO
D1
D1
DO
DO
D1
D1
DO
DO
D1
D1

EO
E1l
EO
El
EO
El
EO
El
EO
El
EO
El
EO
El
EO
El

0.45 £ 0.09
041+0.11
0.44 £ 0.06
0.33 +0.02
0.39 £ 0.05
0.29+£0.10
0.49 +£0.07
0.27 = 0.08
0.74 +£0.03
0.72£0.02
0.75+0.02
0.70 £0.03
0.78 £ 0.04
0.73£0.03
0.77 £ 0.05
0.75+0.02

0.51£0.12
0.22 £ 0.09
0.43£0.12
0.32 +0.09
0.42 +0.08
0.33 £0.07
0.44 +£0.07
0.32+£0.10
0.75+0.01
0.71£0.02
0.70 £0.04
0.73£0.03
0.75+0.03
0.79 + 0.02
0.76 £0.01
0.72 +£0.02

0.57 £0.03
0.60 = 0.05
0.57 £0.07
0.54+0.06
0.52 +£0.05
0.47 £0.07
0.53 +£0.07
0.54 £0.00
0.75+0.00
0.75+£0.02
0.75+0.02
0.77 £ 0.04
0.76 = 0.02
0.72£0.07
0.74+0.03
0.74 £ 0.06

0.57 £0.02
0.49 £0.01
0.54 £0.02
0.53 £0.04
0.53 £ 0.06
0.35+0.25
0.52 £ 0.04
0.32£0.23
0.77 4 0.02
0.73 £0.02
0.77 4 0.01
0.72£0.03
0.75+0.03
0.73£0.01
0.78 £ 0.01
0.72 +£0.05

TABLE 5.6: ANOVA test results for each category, 1" — H{!est

Category F-value | p-value

Colour Correction 421.557 | 4.091e—>0
Distortion Correction 0.003 0.958
Scale 0.516 0.474
Elastic Transformations 5.546 0.020
Individual Channel Augmentations 0.516 0.474
Extra Augmentations 7.357 0.007

The statistical significance of these results is analysed with ANOVA tests, the results of
which are shown in Table 5.6. Similarly to the Low Altitude results already presented,
the categories with the highest significance are scale, colour correction, and elastic
transformations. The ANOVA results for each combination of two categories is shown
in 5.7, and unlike the Low Altitude results, some combinations of variables have
stronger significance than either variable alone.

The results show that both Colour Correction had the strongest impact of all variables,
with an F-value of 421.557 and a p-value of 4.091e . Extra Augmentations and
Elastic Transformations also had statistically significant effects on the results, with
over 95% significance, with F-values of 7.357 and 5.546, and p-values of 0.007 and 0.02
respectively. When combined, the effect of Colour Corrections and Extra
Augmentations on the outcome variable is even stronger, with an F-value of 196.115
and a very low p-value of 1.222¢~%, indicating a highly significant effect. The same
can be said for Colour Correction and Elastic Transformations, with an F-value of
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TABLE 5.7: ANOVA test results for each combination of category, H!™" — st

Combined Categories F-value | p-value

Colour Correction and Distortion Correction 139.096 | 1.688¢ %

Colour Correction and Scale 145.373 | 9.539¢%

Colour Correction and FElastic Transformations 169.694 | 2.989¢ >3

Colour Correction and Individual Channel Augmentations 141.807 | 4.829¢ #

Colour Correction and Extra Augmentations 196.115 | 1.222¢7
Distortion Correction and Scale 0.207 0.891
Distortion Correction and Elastic Transformations 1.830 0.143
Distortion Correction and Individual Channel Augmentations 0.176 0.912
Distortion Correction and Extra Augmentations 2.428 0.067
Scale and Elastic Transformations 2.065 0.106
Scale and Individual Channel Augmentations 0.345 0.793
Scale and Extra Augmentations 2.952 0.034
Elastic Transformations and Individual Channel Augmentations | 2.184 0.091
Elastic Transformations and Extra Augmentations 4.564 0.004
Individual Channel Augmentations and Extra Augmentations 2.682 0.048
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FIGURE 5.13: mAP scores for high altitude vehicle, H"*" — 7{'*!, summary per
class, , split by each independent variable, and aggregating over all other independent

variables.

169.694 and a p-value of 2.989¢ >3, indicating a higher significance tthan Colour

Correction alone.

As already stated, the results show that Colour Correction has a significant effect on

the outcome variable, with an F-value of 421.55 and a very low p-value of 4.091e%9,

indicating a highly significant effect. Distortion Correction, on the other hand, does
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FIGURE 5.14: mAP scores for high altitude vehicle, 1" — #{'*!, summary per class
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FIGURE 5.15: mAP scores for high altitudelvehicle, Htcrg.%o.sz — Htcgjfm.sw summary
per class

not show any significant effect, with an F-value of 0.003 and a high p-value of 0.958.
When combined, Colour Correction and Distortion Correction have a significant effect
on the outcome variable, with an F-value of 139.096 and a very low p-value of
1.688¢~%7, indicating a highly significant effect. This may be explained by the very
strong effect of Colour Correction alone, but may also imply a synergy between the
two variables.

The highest performing independent variables for the high altitude experiments are
clearly the greyworld colour correction, C2, and without elastic augmentations, EQ. As
not rescaling, S1, and rescaling to the average high altitude spatial scale, S2 have
comparable performance here, S2 has been selected. Figure 5.15 shows the results for
M50 = HiSeo 50

There is a small decrease in performance when applying extra augmentations, E1, for
the Crab and Rockfish Classes, with a minor increase in performance for Hagfish.

The impact of distortion correction on the Crab and Rockfish classes is inclonclusive,
but there is a clear decrease in performance for Hagfish. This class is the more
complex shape in most cases, where the Hagfish is a flexible creature that often ties
itself in knots, which may contribute to this difference from the other classes.
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FIGURE 5.16: Example predictions and ground truth labels from two instances of

Mask R-CNN trained on M8 1o ro10.40 A0 HEME o ko 10,40 Tespectively, contain-

ing one instance of a Rockfish and one instance of a Crab. Both instances of Mask

R-CNN successfully detect and segment the Rockfish, and both fail to successfully de-
tect the Crab. Colours for labels use the legend set out in Figure 4.7.

Similarly, the impact of independent channel augmentations, I1, is inconclusive for
both the Crab and Rockfish classes. There is a small increase in performance for

Hagtish, but is not clearly significant.

Figure 5.16 shows example predictions from two instances of Mask R-CNN, and their
relative manually assigned labels. These two instances of Mask R-CNN were trained
on HAEM o040 and HEI 0 e 10,40 Tespectively, with the only difference in
training data being the colour correction method applied. This example in particular
shows one instance of a Rockfish and one instance of a Crab. Both of the instances of
Mask R-CNN successfully detect and segment the Rockfish, which reflects the higher
accuracy score we see for this class. Neither, however, successfully detected and
segmented the Crab. The instance trained on CO mistook the Crab for a Rockfish, and
the instance trained on C1 detected the Crab but mistakenly also detected an
overlapping Rockfish. Each of these mistakes has a different effect on automated
biological analysis. The mistake of the instance trained on CO will be referred to as
mis-classification, and the mistake of the instance trained on C1 will be referred to as

extra detection. The mis-classification mistake will lead to overestimating the
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FIGURE 5.17: Example predictions and ground truth labels from two instances of

Mask R—CNN trained on Hgg.lgl.Do_.Eo. 1040 and HEIL S -0 10,40 TeSpectively, contain-
ing two instances of Crabs. Both instances of Mask R-CNN successfully detect and

segment the Crabs, however both also mistakenly detect an object, or objects, where
an artificial object appears in the image. Colours for labels use the legend set out in
Figure 4.7.

population count and the biomass estimation for the Rockfish class, and
underestimating the population count and the biomass estimation for the Crab class,
however for aggregate statistics that don’t concern individual classes, this mistake
leads to the same number of organisms being counted. The extra classification mistake
leads to the correct population count and biomass estimate for the Crab class, but
over-estimates the population count and biomass both for the Rockfish class and for
aggregate statistics. The severity of each of these mistakes depends heavily on what
biological statistics are being calculated from these predictions.

Figure 5.17 also shows example predictions from two instances of Mask R-CNN, again
trained on HZEY o o010 40 and HEIR o0 20 10,40 Tespectively, with the difference in
training data being the colour correction method, CO and C1. This example contains
two instances of Crabs. Both of these instances of Mask R-CNN successfully detect
and segment both of the Crabs in the image, however both struggle to segment the

complex shape of the Crabs’ legs. This is similar to the examples seen in the previous
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FIGURE 5.18: Example predictions and ground truth labels from two instances of

Mask R-CNN trained on HZ8%, o o010 40 and HETL Do -0 1040 Tespectively, contain-

ing one instance of a Rockfish and one instance of a Crab. Both instances of Mask

R-CNN mistakenly detect an extra object on top of the Crab, neither successfully de-

tects the Rockfish, and they each mistakenly detect two and two Hagfish, respectively.
Colours for labels use the legend set out in Figure 4.7.

section trained on low altitude imagery, showing this limitation of Mask R-CNN’s
segmenting abilities is cross vehicular. Both of these instances of Mask R-CNN also
wrongly detected objects where an artificial object appears in the image, with the
instance trained on CO detecting both a Rockfish and a Hagfish, and the instance
trained on C1 detecting just a Hagfish. These mistakes are both extra classifications,
and in this case are caused by an unusual object appearing in the image that may not
have been present in the training data. Similarly to the low altitude example in Figure
5.5, where a Rockfish was incorrectly detected where an organism of a class outside
the training label set was visible, a more complex machine learning architecture
capable of classifying objects as belonging to an unseen class may be more robust
against this kind of mistake. Furthermore, as an extra classification mistake, these
predictions would add to the population count and biomass estimates for the wrongly

detected classes, and for aggregate statistics.

Figure 5.18 shows the third and final example outputs from two instances of Mask
R-CNN trained on high altitude ) pg ko 0.40 and HETS1 o £0.10.40 data
respectively. This example shows one instance of a Crab and one instance of a
Rockfish. Unlike the previously seen examples, neither of the instances of Mask
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FIGURE 5.19: Example predictions and ground truth labels from two instances of

Mask R-CNN trained on HZ8, o010 4o and HETL o0 -0 10 40 TeSpectively, contain-

ing two instances of Crabs. Both instances of Mask R-CNN successfully detect the

Crabs, however they both also mistakenly detect a Hagfish where an artificial object

appears in the image, and one mistakenly detects two Crabs where there is only one.
Colours for labels use the legend set out in Figure 4.7.

R-CNN successfully detect the Rockfish. Both of the instances of Mask R-CNN detect
and segment the Crab, but also detect an overlapping Sole. Furthermore, both
instances also detect Hagfish, with the instance trained on C0 detecting two, and the
instance trained on C1 detecting one. These mistaken detections and segmentations
occur where a distinct rock appears in the image, providing the contrasting edge
expected between an object and the background substrate, which likely contributed to
these incorrect detections. The missed detection of the Rockfish differs from the
previously seen mistakes in this section, underestimating the population count and
biomass estimates for both the Rockfish class and aggregate statistics. The other
mistakes in this example are all extra classifications, where the population count and

biomass estimates are over-estimated for Sole, Hagfish, and aggregate statistics.

Figure 5.19 shows example predictions from two instances of Mask R-CNN trained on

train train : ; : : :
HETE Do.Eo.10.40 A HEES po ko.10.40- the first example in this section comparing



5.2. High Altitude 73

Not Rescaled, S1 Rescaled, S2

Predictions

Manual Label

FIGURE 5.20: Example predictions and ground truth labels from two instances of

Mask R-CNN trained on 8% -0 4o and HEFn o0 0 4 Tespectively, contain-

ing one instance of a Sole, one instance of a Rockfish, and one instance of a Crab. Both

instances of Mask R-CNN successfully detect and segment the Crab and the Rockfish,

however both mistakenly detect the Sole and a Rockfish, and the second instance also

mistakenly detects a Hagfish overlapping the Sole. Colours for labels use the legend
set out in Figure 4.7.

instances trained on differently scaled training data, S1 and S2. This example contains
two instances of Crabs. Both instances of Mask R-CNN successfully detect and
segment these instances, however the instance trained on scale normalised data, S2,
wrongly detects an overlapping instance of a Crab. Both of these instances of Mask
R-CNN also incorrectly detect a Hagfish where an artificial object appears in the
image. This artificial object is a similar colour to many examples of Hagfish, which
may have contributed to this extra detection. The duplicate detection of the Crab
would add to the population count and biomass estimated of both the Crab class and
the aggregate statistics, and similarly the extra detection and classification of the
Hagtfish would add to the population count and biomass estimates for the Hagfish

class and the aggregate statistics.

Figure 5.20 shows another set of example predictions from two instances of Mask
R-CNN trained on HZ8, 0 w0 10 a0 and HETL 00 10,40 Tespectively, with the only
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FIGURE 5.21: Example predictions and ground truth labels from two instances of

Mask R-CNN trained on H&ain o000 and HEOM 00010 4o Tespectively, contain-

ing one instance of a Rockfish and one instance of a Crab. Both instances of Mask

R-CNN successfully detect both the Crab and the Rockfish, however they also mis-

takenly detect a Crab and a Hagfish, respectively, where a dark object appears in the
image. Colours for labels use the legend set out in Figure 4.7.

difference in training data being the rescaling method. This example contains one
instance of a Sole, included in the training dataset but removed from the analysis for
this thesis due to it’s rarity in the datasets, one Crab and one Rockfish. Both of these
instances of Mask R-CNN successfully detect and segment both the Crab and the
Rockfish, however neither successfully detects and segments the Sole. The instance of
Mask R-CNN trained on the original scale training data, S1, incorrectly identifies the
Sole as a Crab, overestimating the population count and biomass statistics for the Crab
class, and underestimating for the Sole class. The instance of Mask R-CNN trained on
scale normalised data, S2, incorrectly identifies the Sole as an instance of a Crab, and
as an overlapping instance of a Hagfish in a very unusual shape. This mistake
overestimates the population count and biomass statistics for both the Crab and
Hagfish classes, and overestimating aggregate statistics, while also underestimating

for the Sole class.

Figure 5.21 is the final example of predicted segments from two instances of Mask
R-CNN trained on HZ8%, o0 20 10 40 and HIZOT 0010 40 Tespectively, and the final
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example over all in this section. This example shows one Crab aand one Rockfish,
which both instances of Mask R-CNN successfully detect and segment. This example
also contains a dark object that may be marine snow close to the camera, which the
instance of Mask R-CNN trained on the original scale images, 51, identifies as a Crab,
and the instance trained on scale normalised images, S2, identifies as a Hagfish. Each
of these mistakes would overestimate statistics for the Crab and Hagfish classes

respectively, and would overestimate aggregate statistics.

To conclude, in £ — L experiments, the most impactful variables were colour
correction and rescaling method, with the best results coming from correcting for
colour and rescaling to the average low altitude spatial scale. Applying elastic
augmentations and extra augmentations caused a drop in performance. For H — H
experiments, colour correction also provided a large improvement in results, however
rescaling did not. In £ — £ experiments, the best performance was on the Rockfish
class, whereas for H — H experiments the highest performing class was Crab,
possibly due to Crabs being larger in size than Rockfish, and therefore being easier to

detect in the high altitude imagery than Rockfish.
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Chapter 6

Transfer of learning across
acquisition platforms

This chapter presents the results for transfer learning, where the training and
validation datasets and the test dataset are from different vehicles. This is a valuable
experiment as it provides insight into how best to apply learning from a given dataset
to one collected by an entirely different vehicle, with notable differences including
altitude, lighting setup, and camera opening angle. This is broken down into Low
altitude to High altitude, £ — H, and High altitude to Low altitude, H — L.

6.1 Low altitude to High altitude transfer

The general performance when transferring from low to high altitude datasets, that is
training on the low altitude dataset and testing on the high altitude dataset

Lirain _y 3test ig very poor, with a maximum mAP score of 36%.

Figure 6.1 shows a breakdown of the mAP across the independent variables for this
set of experiments. The most notable thing is the overall low performance, but other
patterns of note are shown. There is a drastic increase in performance between C1 and
C2, where applying pixel-statistics greyworld correction provides a clear
improvement, with the majority of the C1 experiments achieving an mAP of 0%,
identifying nothing correctly. Scale also shows to have a significant effect on
performance, with S2, scaling to the average low altitude spatial scale, out performing
other rescaling methods. Finally, there is a drop in performance when applying elastic
transformations, E1. All three of these findings are in line with the findings of the

Liram —y flest experiments.

The ANOVA tests for the statistical significance of these results is included here in
Tables 6.2 and 6.3. The individual ANOVA scores correspond with the observed
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TABLE 6.1: mAP scores and variance for low altitude vehicle, £ —y 3{test
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results above, with significance for colour correction, scale, and elastic

transformations. The combined results indicate high significance for every

combination of colour correction, scale, and elastic transformations with all other
variables. This may imply synergy between some variables, but could also be
explained by the strong significance of each of those variables alone, and due to the
generally low mAP score in this set of experiments, it is not possible to draw any

further conclusions.

Figure 6.2 shows the breakdown of mAP scores by class, with the lowest performance
for Hagfish, and the highest performance for Rockfish. This is, again, in line with the
findings from the £*" — L't experiments, and perhaps implies that a higher
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TABLE 6.2: ANOVA test results for each category, £ — st

Category F-value | p-value

Colour Correction Type 221.109 | 8.812¢~ 4
Distortion Correction 0.060 0.806

Rescaled 17.720 | 8.730e 11
Elastic Transformations 9.630 0.002
Separate Channel Operations | 0.826 0.364
Flip /Rotate 0.181 0.671

TABLE 6.3: Two-way ANOVA test results for different image augmentation tech-
niques, [irain _y 4 test

Combined Categories F-value | p-value
Colour Correction and Distortion Correction 7344 | 1.74e7%
Colour Correction and Rescaled 85.56 | 7.17¢e 7%
Colour Correction and Elastic Transformations 90.51 | 3.29¢~*
Colour Correction and Separate Channel Operations 74.77 | 5.00e=8
Colour Correction and Flip Rotate 7358 | 1.54¢=%
Distortion Correction and Rescaled 7.76 8.98¢~ 7
Distortion Correction and Elastic Transformations 3.30 0.02
Distortion Correction and Separate Channel Operations 0.37 0.77
Distortion Correction and Flip Rotate 0.59 0.62
Rescaled and Elastic Transformations 9.89 24611
Rescaled and Separate Channel Operations 7.71 1.02¢ %8
Rescaled and Flip Rotate 8.93 3.43¢~10
Elastic Transformations and Separate Channel Operations | 4.07 0.01
Elastic Transformations and Flip Rotate 4.10 0.01
Separate Channel Operations and Flip Rotate 0.93 0.43

number of training examples are required for higher performance on the
LI — 345t experiments.

6.2 High Altitude to Low Altitude

The transferability from High Altitude datasets to Low Altitude datasets proves much
more promising, with performance that, while not suitable for large scale scientific
analysis with any level of trust, shows potential for further work and, with additional
training data and closer fine-tuning, may provide a fully scalable cross vehicle
solution. These improvements are outside the scope of this thesis, and instead this
section focuses on the impact of the independent variables on performance, to best

inform such future work.

Figure 6.3 shows the mAP scores for H/*" — L', The improvement in performance
when applying C2 over C1 shown here makes this effect universal across all the

experiments in this thesis. The findings shown in this thesis allow for a reasonably
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FIGURE 6.1: mAP scores for transfer learning from low altitude to high altitude,
Liram 3t split by each independent variable, and aggregating over all other
independent variables.
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FIGURE 6.2: mAP scores for transfer learning from low altitude to high altitude,
Lirmm —y st split by class.

confident recommendation to apply greyworld pixel-wise statistical correction over
simple histogram stretching. Any possible loss of information by this transformation
is clearly made up for and more by the improvements this correction method
provides, such as the removal of vignetting, the common effect in marine imagery of
the illumination being brightest in the centre of the image and darker at the edges.

There is a significant improvement in performance when normalising for scale, with
Higin — L6 outperforming HIM" — LI6F, with respective average mAP scores of
44.09% and 26.52%. It is expected that scale normalisation has a large effect on
inter-vehicle transferability where the two vehicles in question have very different
target altitudes and the images they capture have very different typical spatial scales.

There is also a clear decrease in performance when applying D1 over DO, this is in line
with the findings of H!"*" — {!'**. This is an unexpected finding for these
experiments, as the lens distortion present in the high altitude images, H, is much
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TABLE 6.4: mAP scores and variance for low altitude vehicle, %" — [test
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FIGURE 6.3: mAP scores for transfer learning from high altitude to low altitude,
Hiran it split by each independent variable, and aggregating over all other

independent variables.

higher than that in the low altitude images, £, leading to the expectation that

correcting for this distortion would make the images more similar in appearance and

would make transferability between them easier.

The statistical significance of these results is calculated with ANOVA test and shown

in Tables 6.5 and 6.6. In Table 6.5 we see results backing up the observational

comments above, with statistically significant effects from Scale with an F-value of
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FIGURE 6.4: mAP scores for transfer learning from high altitude to low altitude,
Hiram — flest gplit by class.

TABLE 6.5: One-way ANOVA test results for correction types, H!™" — Ltest

Category F-value | p-value

Colour Correction 9.86 0.00196
Distortion Correction 7.74 0.00593
Scale 22549 | 4.08¢7 3%

Elastic transformations 1.22 0.27127
Separate Channel Operations 1.69 0.19514
Extra Augmentations 3.16 0.07714

TABLE 6.6: Two-way ANOVA test results for combined categories, 1" — Lfest

Combined Categories F-value | p-value
Colour Correction and Distortion Correction 6.176 | 5.028¢7*
Colour Correction and Scale 124.579 | 1.855¢ *
Colour Correction and Elastic Transformations 3.878 0.010
Colour Correction and Separate Channel Operations 4.033 0.008
Colour Correction and Extra Augmentations 4.586 0.004
Distortion Correction and Scale 113.854 | 4.671e %
Distortion Correction and Elastic Transformations 3.052 0.030
Distortion Correction and Separate Channel Operations 3.217 0.024
Distortion Correction and Extra Augmentations 3.686 0.013
Scale and Elastic Transformations 76.815 | 1.778¢ 32
Scale and Separate Channel Operations 77.070 | 1.498e~ %
Scale and Extra Augmentations 79.521 | 2.944¢=°
Elastic Transformations and Separate Channel Operations | 1.427 0.236
Elastic Transformations and Extra Augmentations 1.570 0.198
Separate Channel Operations and Extra Augmentations 1.837 0.142

225.49 and a p-value of 4.08¢73*, Colour Correction with an F-value of 9.86 and a
p-value of 0.00196, and to a lesser extent Distortion Correction with an F-value of 7.74
and a p-value of 0.00593. As seen previously, combinations of these variables show
promise of being more effective than either variable alone, with the combination with
the highest impact in the two-way anova tests being Colour Correction and Scale, with
an F-value of 124.579 and a p-value of 1.855¢~%. This synergy may be because in
combination with each other the images are better normalised than with either
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FIGURE 6.5: Example of predictions made by two instances of Mask R-CNN trained

train train EE testt
on HEG's1 po.ro.to.a0 ad HET'S) po po.jo.apr and predicting for LG5y po po.j0.40 and
LIt 5o Fo.10.40 Tespectively. This example contains one instance of a Rockfish.
Colours for labels use the legend set out in Figure 4.7.

correction type alone.

Figure 6.4 shows the breakdown of mAP scores by class, and again shows the lowest
performance for the Hagfish class, and the highest performance for the Rockfish class.

This is inline with all of the experiments in this thesis.

Figure 6.5 shows example predictions from two instances of Mask R-CNN trained on

train train : : :
H6'51.00.£0.10.40 A0 HET'51 po.po.10.40 TesPectively, and the images being used for

prediction are L!s; 1o £o.10.40 A0 L1 po £o.10.40 Tespectively. This example shows
the ability of these instances of Mask R-CNN to transfer from the high altitude images

they were trained on to low altitude images taken by a different vehicle. This example
contains a single instance of a Rockfish. Both of the instances of Mask R-CNN detect
and segment this Rockfish, however the instance trained on CO also wrongly detects
an overlapping Crab. Neither instance produces good segmentation around the fins of
the Rockfish - a feature that is likely less visible in the high altitude images they were
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FIGURE 6.6: Example of predictions made by two instances of Mask R-CNN trained

trai trai o test

on Hegs1 po.eo.ro.a0 A He'sy po.poo.aor and predicting for Le5's po po o 40 and

Lhet. DO.E0.10.A07 respectively. This e;xample contains one ipstance of a Rockfish, and

other objects such as rocks and a shrimp that confuse these instances of Mask R-CNN.
Colours for labels use the legend set out in Figure 4.7.

trained on - but the segmentation overall is good enough to count as a successful

detection and segmentation.

Figure 6.6 shows exampe predictions from two instances of Mask R-CNN trained on
Hco.51.00.0.10.40 and Hc1.51.p0.£0.10.40 respectively. These predictions are for
Lco.s1.00.£0.10.40 and Lc1.51.p0.E0.10.40 images respectively, and show the transferability
of these Mask R-CNN instances. This example contains one instance of a Rockfish,
which both instances of Mask R-CNN successfully detect and segment, however the
instance trained on CO also incorrectly detects a Crab overlapping the Rockfish, and
mistakes rocks and a shrimp in the image for two Crabs and two Rockfish, greatly
overestimating the total population count in this example. The instance trained on C1
also incorrectly detects the shrimp as a Rockfish, so also overestimates the population
count and biomass estimate, but not to the same degree as the instance trained on CO.

Figure 6.7 shows the final example of predicted labels from two instances of Mask

R-CNN where the only difference in these instances is the colour correction method
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FIGURE 6.7: Example of predictions made by two instances of Mask R-CNN trained

trai trai ; ot test
on Hegish po.ro.ro.a0 A HETS1 po.po.ro.apr and predicting for L&'y po.po.ro.40 and
LI o Eo.10.40- Tespectively. This example coptains one instance of a Rockfish that is
successfully detected and segmented by both instances of Mask R-CNN. Colours for
labels use the legend set out in Figure 4.7.

applied to the training data. This example contains a single instance of a Rockfish,
and, unlike the earlier example in Figure 6.5, both instances of Mask R-CNN
successfully detect and segment it. Neither instance fully segments the shape of the

fins correctly, but correctly identifies the majority of the area of the fish.

Figure 6.8 shows example labels from two instances of Mask R-CNN trained on
HEm o o040 and HET o 010,40 Tespectively, where the difference in these two
instances is the scale normalisation applied to the training images. This example
contains a single instance of the Hagfish class. The instance of Mask R-CNN trained on
S1, original scale images, incorrectly identifies the Hagfish as a Crab. The instance of
Mask R-CNN trained on S2 images, scale normalised to the low altitude spatial scale,
incorrectly identidies the Hagfish as both a Hagfish and a Crab overlapping, and fails

to correctly segment the shape of the Hagfish, leaving a hole in the middle of the fish.
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FIGURE 6.8: Example of predictions made by two instances of Mask R-CNN trained
trai trai . test

on Het's) pogo.ro.a0 A HET'SH po.po.ro.aor and predicting for LE sy po po o 40 and

Ll boE0.10.40 Tespectively. This example contains'one_ instance of a Hagfish.
Colours for labels use the legend set out in Figure 4.7.

The estimate made by the instance trained on S1 would contribute to underestimating
the biomass and population count for the Hagfish class and overestimating the
biomass and population count for the Crab class. The estimate made by 52 would
correctly estimate the population count for the Hagfish but may underestimate this
instance’s biomass due to the incorrect segmentation result. It would also contribute

to overestimating the biomass and population count of the Crab class.

Figure 6.9 shows another example of predicted labels from two instances of Mask
R-CNN where the difference between these two instances is the scale normalisation
method used. This example contains a single instance of a Rockfish, which both
instances of Mask R-CNN correctly identify and segment, although the instance
trained on 51 does not correctly segment the fins of the fish. Both instances, however,
also identify an extra object within the image. The instance trained on S1, with no
scale normalisation, incorrectly identifies the shrimp in the image as a Rockfish,
perhaps due to the orange colour and the similarities in shape to many Rockfish
examples. Where scale is a major difference between the shrimp and the Rockfish in
the collected images, an instance of Mask R-CNN trained on varying scaled images
has less reliable scale information to train on, and it less likely to be capable of
differentiating classes based on scale. The instance of Mask R-CNN trained on S2,
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FIGURE 6.9: Example of predictions made by two instances of Mask R-CNN trained

train train C test
on Het'sy po.ro.to.a0 and HeT'sr po.po.go.ao- and predicting for LE7g) po o 10,40 and

Ll D00 10.40- Tespectively. This example contains one instance of a Rockfish.
Colours for labels use the legend set out in Figure 4.7.

scale normalised to the low altitude spatial scale, incorrectly identifies a rock in the
image as a Crab. The prediction made by the instance S1 would over predict the
population count and biomass estimate for the Rockfish class, and the prediction
made by the instance S2 would correcly estimate the population count and biomass of

the Rockfish class, and would overestimate for the Crab class.

Figure 6.10 shows the final example of predicted outputs from Mask R-CNN where
the difference in the two instances is the rescaling method used on the training data,
S1 being images at their original scale, and S2 being images normalised to the average
low altitude spatial scale. In this example there are two instances of the Rockfish class.
The instance of Mask R-CNN trained on S1 images correctly identifies both of the
Rockfish, however it also identifies an overlapping instance of a Crab on one of the
Rockfish, and on the other it identifies an overlapping Crab and an overlapping
smaller Rockfish. The instance of Mask R-CNN trained on 52 also correctly identifies
both of the instances of Rockfish, but also identifies one overlapping instance of a
Crab on one of them. Both of these predictions lead to overestimations but to different

degrees. The instance trained on S1 would overestimate biomass and population
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FIGURE 6.10: Example of predictions made by two instances of Mask R-CNN trained

train train F ot test
ort1 ;HCLSLDO.EO.IO.AO and H Y5 po.eo.jo.aor and predicting for L&Y'y po po.g0.40 and
es . . . . .
L& 53 po.o.10.40- Tespectively.  This example contams'twg instances of Rockfish.
Colours for labels use the legend set out in Figure 4.7.

counts for both the Rockfish and Crab classes, and the instance trained on S2 would

overestimate the biomass and population counts for the Crab class.

To conclude,H — L out performed £ — H, and the most significant variables were
colour correction and rescaling, where applying colour correction and rescaling
provided the best results. There is much further work that should be done to rule out
the importance of other variables on performance, such as distortion correction and
elastic augmentations, where other methods not used in this thesis may provide better

results.
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Chapter 7

Biomass Estimates from Object
Detection and Segmentation Results

Automated image analysis is a useful tool to ease deep sea monitoring efforts, but is
only useful if it can provide meaningful information about the surveyed area. For this
reason, this thesis presents a novel method for estimating biomass from the output of
Mask R-CNN and similar object detection and segmentation systems that have been
discussed in previous chapters in this thesis. Image analysis for deep sea monitoring
provides a non-invasive alternative to previous methods such as trawling. The benefit
of a non-invasive method is that often the areas of most interest for surveying are
protected areas where trawling either is not allowed, or is likely to disturb and destroy
valuable and vulnerable habitats and ecosystems. Image analysis, however, has
limitations when it comes to calculating Essential Ocean Variables (EOVs) such as

biomass, where traditionally specimens from trawling would be weighed.

TABLE 7.1: Segment-Size Length Relationship, calculated from collected data for this

thesis - cm? to cm, Length Weight Relationships, gathered from the large open source

database Fishbase [5] - crn to grams, and derived Segment-Size Weight Relationships -
cm? to grams, repeated from Table 3.2

Class Name SLR LWR SWR
Crab 2.6x938 1 0.00036x%%% | 0.0058x™ 11
Hagfish | 5.93x0°2 | 0.0048x>72 | 0.61x#
Rockfish | 4.27x95 | 0.012x308 1.08x15%
Soles 2.74x9%% [ 0.0074x39 | 0.17x1-667
Seastar 1.82x9%8 | 0.00032x2% | 0.0014x™4T

Efforts have been made to bridge this gap and estimate EOVs from images through
the use of manual labelling and Length Weight Relationships (LWRs), drawing a
relationship between the size of an individual and its weight, but they still suffer from
a lack of scalability due to the manual analysis needed. The method developed as part

of this thesis uses previously established LWRs, and newly calculated Segment Size to
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FIGURE 7.1: Example of a Rockfish labelled for length and for segment size.

Crab,ly = 2.60x0-% Hagfish, y = 5.93xY2
All Classes rr = 0.38 = 0.47
30 .
G0
w0 20
40 1NN
20 10
G
g 0 0
p 0 200 0 200 0 500
Eﬁ Rockfish, y = 4.27x0-20 Sole, y= 2. 74154 Seastar, y = 1.82x5-8
£ r —0.88 r- = 0.86 = 0.77
F - |
=40 30
20
20
10
0 0

- 2
Segment area in cm”

FIGURE 7.2: Estimated segment size to length relationships. The relationships are
calculated using regression on measured segment sizes and line lengths, resulting in
an estimated polynomial relationship. This is repeated from Figure 3.4.
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Length Relationships (SSLRs), to estimate the relationship between segment sizes and
weights of individuals in images. Manual labels for lengths, along with the manual
labels already created for the previous experiments outlined in this thesis, were used
to develop the SSLRs, as shown in Figure 7.1. The length and area values were
calculated from pixel values by using the opening angle of the camera and the altitude
of the vehicle off the seafloor. The polynomial relationships calculated from these
labels are presented in Chapter 3, but are worth repeating here, in Table 7.1, and
Figure 7.2.

This method allows for the automation of the entire process providing a fully scalable
solution. Other automated systems have been investigated before which often rely on
estimating the length measurements through machine learning. This form of machine
learning is very domain specific, and has not been developed by the wider machine
learning community. Furthermore, determining the length measurement of an object
that may be curved or in an unexpected position poses a very complex problem. One
benefit of the solution developed for this thesis is that it makes use of the very well
developed non-domain-specific field of object detection and segmentation, reducing
the complexity and increasing the reliability of the machine learning algorithms

available.

Furthermore, the relationship between length and weight may not be as strong as the
direct relationship between segment size and weight, forming a relationship between
a two dimensional measurement and a three dimensional target metric, rather than a
relationship between a one dimensional measurement and a three dimensional target
metric. This novel method for estimating biomass based on segment sizes incentivises
further investigation into the relationship between segment sizes when viewed from
above and biomass, which may prove to be a more accurate relationship than
traditional LWRs, and more easily scalable due to machine learning. For the purposes
of this study, however, the combination of SSLRs and LWRs is used to estimate this

relationship.

In this chapter, two individually trained instances of Mask R-CNN are used to
generate biomass estimates for the test datasets, one trained on Etcrg"'gz'm. £0.10.40 and
the other on Hgg’ég D0.E0.10.40- Each of these two instances were then used to estimate
the biomass for both £, 10 ro.10.40 A H S s3 o ko.10.40- Tesulting in four distinct
sets of results, Egza.igZ.DO.EO.IO.AO — L12.52.D0.E0.10.A0,

‘ng.igz,DO.EO.IO,AO = HE'sa.p0.60.10.40 HE395.00.60.10.40 — LE's2.00.80.10.40- AN

HES boEot0.40 — & ss po.Eo10.ao- The biomass estimates formed from SSLRs and
LWRs combined are then compared with the estimates formed from LWRs alone, as
shown in Figure 7.3. The relationships for low altitude datasets are most promising,
especially for the thrg_igz. DO.E0.I0.A0 — ﬁg_tsz. D0.E0.10.40 €Xperiment where the accuracy of
Mask R-CNN is highest, showing that improving the accuracy of the object detection

and segmentation system improves the accuracy of subsequent biomass estimations.
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FIGURE 7.3: Mask R-CNN estimated biomass per image plotted against the man-

ual label estimated biomass. The strongest correlation is shown in Lirain g plest

where the estimated biomass from each method is most similar. In £ — 7{st and

Hirain — Htest there are fewer points due to the smaller number of high altitude im-
ages needed to cover the same spatial area.

The most important aspect of this approach is its scalability, with the ability to analyse
any number of images with the same level of manual effort, allowing the analysis of all
the images collected in a dive as opposed to the small subset often used, and allowing
the analysis of multiple datasets, with the only limit being computational power and
data storage capabilities. Furthermore, the most computationally expensive part of the
process is the training of Mask R-CNN, compared to the less computationally intense
inference stage, allowing the production of biomass distribution plots such as those
shown in Figures 7.4, 7.5, and 7.6 to feasibly be done in the field, on board ships,
where available computational power may be relatively low compared to on shore.

Figures 7.4 and 7.5 show example biomass distribution estimates over an entire
surveyed area during a single dive of the low altitude Tunasand vehicle. It covers an
area of roughly 32 by 24 metres. Figure 7.4 is an estimate made by an instance of Mask
R-CNN trained on L2817, 1 -0 10 40 Subfigure 7.4a shows the photo mosaic of the
AUV dive, and subfigure 7.4b shows the total biomass distribution estimate across all

three of the given classes.
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A breakdown per class is shown in subfigures 7.4c, 7.4d, and 7 .4e. Both in the breadth
of the distribution and in the scale of the colour map, it is clear that the Rockfish
contributes the most to the overall biomass distribution, with the other classes being
more localised and much smaller in terms of grams per metre?. This is as expected
where the Rockfish is by far the most abundant class in the surveyed area.

Figure 7.5 shows an estimate made by an instance of Mask R-CNN trained on high
altitude data and estimating for low altitude data, HZ3% o0 20 1040 = L5 po.Eo.10.407
showing an higher estimate for both the Crab and the Hagfish classes, and an lower
for the Rockfish class compared to the estimates made by

train test+
ﬁCZ.SZ.DO.EO.IO.AO - ECZ.SZ.DO.EO.IO.AO'

In order to demonstrate the scalability of this solution, it has been applied to all four
dives made by the high altitude vehicle in the South Hydrates area in the Falkor 2018
Adaptive Robotics Expedition, covering approximately 200km?. The instance of Mask
R-CNN in this case has been trained on H/*" and is estimating for H® The results of
this are shown in Figure 7.6, with the full image mosaic in Figure 7.6a, the biomass
density across all classes in Figure 7.6b, and the next three subfigures showing the
breakdown by class. This shows the majority of the biomass contribution comes from
Rockfish, the most abundant class, in keeping with the findings from the low altitude
biomass estimations. There are areas of higher density for the Rockfish class visible in
these heatmaps. The distribution of biomass is more varied for the other two classes,
Hagfish and Crabs. These two classes have similar distributions with similar areas of
high and low density. Findings such as this allow marine biologists to pose and
perhaps even answer questions such as whether this is due to the morphotypes being
comfortable in similar environments, or being drawn to the same sources of food. For
expeditions concerned with a particular class of organism, set of classes, or the
relationship between two classes, this sort of information from a high altitude vehicle
could inform further AUV deployment plans in-situ, especially the deployment of low
altitude vehicles covering much smaller areas in much higher resolution. Making
more informed decisions such as this results in more valuable information collected in
the same time span on a research expedition, generating more valuable scientific

outputs without increasing the amount of expensive ship time required.

Another way to visualise the results is demonstrated in Figure 7.7, showing
histograms of the biomass density per image, both as a total of all classes and broken

down into individual classes.

This method becomes even more valuable when combined with existing information
about an area, such as the map shown in Figure 7.8, developed by Yamada et al. [103]
showing the habitat classification of each image in the dataset. This combination of
information allows for the analysis of the relationship between biomass distributions
and habitat types, in this case showing a higher density of Hagfish and Crabs on the
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substrate classified as Rocky in this particular study. Again, findings such as this
allow marine biologists to pose questions about this correlation and investigate
possible causes.

A major difficulty in developing this method further and improving trust in this
method, is the lack of validation data. The acquisition of such data is challenging, but
entirely possible. Images taken from above with either a known distance to the subject
and known opening angle of the camera, or with a known scale of the subject, for
example with a ruler at the same distance as the subject visible in the images, and then
the weights of the subjects, would need to be recorded. This is more invasive than
AUV imagery alone, as to record the weight physical samples need to be taken. This
data would be valuable in validating the accuracy of this method, and the collection of

such a dataset is possible future work to build on this thesis.

To conclude, this chapter has introduced and demonstrated a novel method of
biomass estimation through the use of segment sizes, which as demonstrated earlier in
this thesis can be automatically estimated with relatively high accuracy with limited
labelled training data. As such, this method is fully automated and fully scalable,
providing biomass distribution estimates that make use of every single image
collected with no extra manual input required to increase the number of images being
utilised. With further development of direct relationships between segment size and
weight or biomass, this method will become even more accurate and more effective. A
possible validation dataset has been proposed. Furthermore, the computational cost of
applying this method is relatively low and can be applied in-situ on board ships and,
with further optimisation and improving hardware, even on AUVs themselves.
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Chapter 8

Discussions

This discussions chapter delves into several key aspects related to the challenges and
considerations encountered in the field of marine imagery analysis using machine
learning approaches. This chapter aims to explore various topics that arise when
transferring knowledge between datasets, analysing performance variations across
different classes, addressing class imbalance, handling unseen classes, and the concept
of an ideal universal marine imagery dataset. Each section addresses specific
intricacies and complexities associated with these aspects, providing valuable insights

and potential avenues for future research and improvement.

8.1 Low Transferability from Low Altitude Training Data to
High Altitude Test Data

One result of interest is the incredibly low performance when transferring from low
altitude to high altitude data. This disagrees with current literature on the topic,
where Zurowietz et al.[87] found that transferring from Low to High altitude imagery
had better results than the inverse, transferring from high altitude to low altitude
data. Possible reasons for this low performance are discussed in this section.

One possible reason for the low transferability from low altitude training data to high
altitude test data is the difference in altitude investigated between the two studies.
The work of Zurowietz et al. suggests that transferring from low altitude to high
altitude imagery yields better results than the reverse scenario. However, in this
thesis, the datasets used involve high altitude data at four times the altitude of the
original data. This significant difference in altitude may contribute to the observed

low performance in transferring knowledge.

When Zurowietz et al. transferred from low altitude to high altitude data at two times

the altitude of the original data, they might have captured a more gradual and
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manageable transition. On the other hand, the fourfold increase in altitude used in
this thesis could result in a more drastic change in the visual appearance of the scenes.
The algorithms trained on low altitude data may struggle to generalise effectively to
the high altitude test data due to the substantial differences in the characteristics and
features of the images.

Another potential source of discrepancy between the conflicting results lies in the
datasets used. The specific characteristics and properties of the datasets can greatly
influence the performance and generalisability of the trained models. It is important
to consider factors such as resolution, quality, diversity, and representativeness of the
data when comparing the outcomes of different studies.

In this thesis, random cropped sections of each image were utilised for training,
validation, and testing. On the contrary, Zurowietz et al. employed a sampling
method centered around Objects Of Interest (OOIs). This means that in their study,
there is an object of interest positioned in the center of every training sample. In
contrast, the experiments conducted in this thesis might have incorporated a broader
range of scenes without necessarily focusing on specific objects.

The difference in sampling methods can have a significant impact on the learned
representations and the subsequent transferability of knowledge. By centering the
training samples on OOIs, Zurowietz et al. might have biased the training process
towards object-centric features and structures. This targeted sampling strategy could
enhance the model’s ability to recognise and transfer object-related information. In
contrast, the random cropping approach employed in this thesis might have captured
a more diverse set of scene contexts, which could influence the model’s generalisation

capabilities differently.

These differences in experimental setups and dataset characteristics highlight the
importance of careful consideration when comparing and interpreting results across
different studies. Factors such as altitude difference and sampling methods can
significantly affect the performance and transferability of models trained on low
altitude data and tested on high altitude scenarios. Future research could investigate
these factors more comprehensively to gain deeper insights into the challenges and
opportunities associated with transferring knowledge between altitudes.

8.2 Variance in Performance By Class

An interesting observation in the detection and segmentation experiments is the
variation in performance across different classes. Among the classes examined,

Rockfish demonstrated high performance, while Crabs exhibited slightly lower
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performance overall. On the other hand, Hagfish displayed the lowest performance.
This section delves into the factors that contribute to these performance variations.

Rockfish exhibited high performance in the transferability experiments. Several
factors can explain this favourable outcome. Firstly, Rockfish are abundant in the
dataset, allowing the model to encounter a substantial number of instances during
training. The availability of a large number of training samples facilitates the learning
process, enabling the model to capture and generalise the distinguishing
characteristics of Rockfish effectively.

Furthermore, Rockfish possess a high contrast with the background. Their distinctive
orange colour stands out prominently, making them visually distinguishable from the
surrounding environment. This high contrast simplifies the task for the model, as it
can rely on the salient visual cues to identify and classify Rockfish instances accurately.

Additionally, Rockfish exhibit a relatively simple shape compared to the other classes.
The presence of fewer intricate details reduces the complexity of the segmentation
task, leading to improved performance.

Crabs displayed slightly lower performance compared to Rockfish in the
transferability experiments. This discrepancy can be attributed to several factors.
Firstly, crabs are less abundant in the dataset, resulting in a smaller number of training
instances. The limited availability of training samples may hinder the model’s ability

to learn and generalise the defining characteristics of crabs effectively.

Moreover, Crabs possess a more complex shape compared to Rockfish. The intricate
structure of their body, including the presence of legs and pincers, adds complexity to
the classification task. The increased number of distinctive features and their spatial
arrangement requires the model to capture a broader range of visual cues, which can

pose challenges in accurate classification.

However, despite these challenges, Crabs still exhibit a relatively high contrast with
the background in terms of colour. The distinct coloration of crabs enables visual
differentiation from the surrounding environment. This colour contrast provides a
valuable cue for the model to distinguish crabs from the background, contributing to

their reasonable performance.

Hagfish showed the lowest performance among the examined classes, primarily due
to their distinct characteristics. Hagfish have long, eel-like bodies with intricate
shapes, making them visually challenging to capture and recognise accurately. Their
behaviours, such as knotting themselves and burying themselves, introduce
additional complexity, as these actions alter their appearance and visual cues. These
unique behaviours and body structure hinder the model’s ability to generalise across

different configurations and positions of Hagfish, resulting in reduced performance.
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Furthermore, Hagfish’s dark colouration adds to the difficulty of accurate
classification. Their dark tones make them blend with the background, reducing the
contrast and visual distinction between Hagfish and their surroundings. The lower
contrast negatively impacts the model’s ability to differentiate Hagfish instances

accurately, contributing to the observed lower performance in the experiments.

8.3 Addressing Class Imbalance

Class imbalance is a common challenge in machine learning tasks, including marine
imagery analysis. It refers to a situation where the distribution of samples across
different classes is significantly uneven, leading to biased learning and potentially
lower performance for minority classes. In the context of this research, the presence of
class imbalance in the datasets used for the experiments raises important

considerations.

In the conducted experiments, no explicit measures were taken to address class
imbalance. This decision was based on several factors specific to the research
objectives and dataset characteristics. Firstly, the primary focus of the investigation
was to examine the effects of physics-based image normalisation and augmentation
methods on the transferability of the object detection and segmentation system. The
aim was to understand how these techniques could improve the overall performance

and generalisation of the system across different altitudes and imaging conditions.

Additionally, the selected marine species classes exhibited varying levels of
abundance within the datasets. Rockfish, for instance, showed high abundance, while
Crabs had a moderate presence, and Hagfish were less abundant. The inherent
imbalance in the natural distribution of these species is reflective of real-world
conditions. By not explicitly addressing class imbalance, the experiments aimed to
assess the system’s ability to handle the inherent class distributions and reflect the real

challenges faced in marine conservation scenarios.

However, it is important to acknowledge the potential impact of class imbalance on
the performance of the system. The under-representation of certain classes can lead to
skewed learning and a bias towards dominant classes, resulting in sub-optimal
performance for minority classes. Therefore, in future experiments or applications,
addressing class imbalance could be considered to ensure fair representation and

improved performance for all classes.

Several strategies can be explored to mitigate class imbalance in marine imagery
analysis. Oversampling techniques, such as data augmentation for underrepresented
classes, can be employed to increase the number of samples and balance the class
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distribution. This can involve synthesising additional instances of the minority classes

through techniques like image transformations or generative models.

Another approach is to leverage specialised training algorithms, such as cost-sensitive
learning or class weighting, which assign higher penalties or adjust sample weights to
the minority classes during the training process. These techniques can help alleviate

the impact of class imbalance and encourage the model to give equal consideration to

all classes.

In conclusion, while the present experiments did not explicitly address class
imbalance, future studies can explore strategies to tackle this challenge. By employing
techniques such as oversampling and specialised training algorithms it becomes
possible to enhance the fairness and performance of the machine learning system in
marine imagery analysis. Considering class imbalance is crucial for developing robust
and reliable models that can effectively support marine conservation efforts.

8.4 How to Handle Unseen Classes

One of the challenges in marine imagery analysis is dealing with unseen classes,
referring to classes that are not present in the training data but may appear during
testing or real-world scenarios. The ability to handle unseen classes is crucial for the
robustness and practicality of using machine learning models for real world
applications. In this section, we discuss the difficulties encountered with unseen
classes, specifically highlighting the issues encountered with the Sea Star and Brittle
Star classes, and explore potential strategies to address this challenge.

In the conducted experiments, the Sea Star class was initially included in the training
and testing datasets. On the other hand, although Brittle Stars were abundant in the
dataset, their high abundance and unfeasible lower bound on size made manual
labelling and inclusion in the tests unfeasible. This posed a problem as the model,
lacking exposure to Brittle Stars during training, encountered difficulties in correctly
classifying them during testing. The misclassification of Brittle Stars as Sea Stars
further underscored the importance of addressing unseen classes in marine imagery

analysis.

Handling unseen classes that are neither labelled nor present in the training data
poses an additional level of complexity. The model’s inability to recognise and classify
these unseen classes can lead to erroneous outputs and limited practicality in
real-world scenarios. However, instead of providing low-confidence estimates for
such instances, a potential alternative approach could involve flagging these instances
and highlighting them to researchers for further analysis. This can provide valuable



104 Chapter 8. Discussions

insights into the presence and behaviour of previously unseen classes, contributing to
the expansion of knowledge and understanding in marine biology and conservation.

It is worth noting that the challenges faced with handling unseen classes in marine
imagery analysis highlight a weakness in classification Al Expert human labellers
possess the ability to identify and classify unseen classes based on their deep
understanding and knowledge of the domain, and also higher reasoning skills. In
contrast, machine learning models trained on specific datasets struggle with
recognising unfamiliar classes without explicit training examples, and lack the
reasoning capabilities to know that what they have seen and are struggling to identify

is something new.

To address this limitation, the development of more generalised intelligence Al
systems may offer potential solutions. These systems, equipped with broader
knowledge and reasoning capabilities, could better handle the recognition and
classification of unseen classes based on their understanding of underlying patterns
and principles. By leveraging generalisation and transfer learning techniques, such Al
systems can exhibit greater flexibility and adaptability to novel marine species or

classes not encountered during training.

In conclusion, handling unseen classes in marine imagery analysis is a challenging
task. The difficulties encountered with the Sea Star and Brittle Star classes underscore
the importance of addressing this challenge. Highlighting instances of unseen classes
to researchers can provide valuable insights into gaps in the given models capabilities,
and perhaps in rare cases can identify entirely new morphotypes. Furthermore, the
exploration of more generalised intelligence Al systems holds promise for better
handling unseen classes and advancing the field of marine imagery analysis.

8.5 The Ideal Universal Marine Imagery Dataset

Creating a universal marine imagery dataset that encompasses the vast diversity of
marine life and habitats presents significant challenges, if not impossibilities, due to
the sheer complexity and scale of the marine ecosystem. The marine environment is a
dynamic and diverse environment, with countless species, habitats, and ecological
interactions. Attempting to form a single dataset that adequately represents this

vastness is an ambitious task that encounters numerous obstacles.

One of the primary challenges in forming a universal marine imagery dataset lies in
the incredible biological diversity present in the marine environment. From
microscopic plankton to large marine mammals, the range of species inhabiting the
oceans is vast and encompasses an astonishing array of morphological characteristics,

behaviours, and ecological roles. Each species requires specific knowledge and



8.5. The Ideal Universal Marine Imagery Dataset 105

expertise for accurate identification and classification, making it challenging to curate

a dataset that comprehensively represents the multitude of marine organisms.

Adding to the complexity, marine habitats exhibit tremendous variability across the
globe. Coral reefs, bacteria mats, kelp forests, deep-sea trenches, estuaries, and polar
regions are just a few examples of the diverse ecosystems within the marine
environment. Each habitat possesses distinct physical and ecological features that
shape the composition and distribution of species. Collecting data across such a wide
range of habitats is a logistical challenge, requiring extensive resources, specialised

equipment, and expertise in various environmental conditions.

Furthermore, sampling limitations pose a significant hurdle in forming a universal
marine imagery dataset. Conducting comprehensive surveys across different regions,
depths, and seasons is resource-intensive and often constrained by factors such as
time, budget, and accessibility. As a result, any dataset formed is inevitably influenced
by the specific sampling biases and limitations of the data collection efforts. These
limitations can introduce biases in the representation of species and habitats,

potentially leading to incomplete or skewed datasets.

Another obstacle in creating a universal marine imagery dataset arises from the
taxonomic knowledge gaps within the scientific community. Despite advancements in
marine taxonomy, many species remain unidentified or undersampled. Furthermore,
different taxonomic identifiers have been developed for specific research goals,
resulting in a lack of universally agreed-upon labels. Additionally, taxonomic
revisions and ongoing research continue to shape our understanding of marine
biodiversity, making it challenging to create a dataset that accurately represents all
known species.

Moreover, the marine environment is characterised by spatial and temporal
variability. Factors such as water temperature, salinity, currents, and nutrient
availability exhibit gradients and fluctuations across different regions and time scales.
These environmental factors influence species composition, distribution, and
behaviour. Capturing the full range of environmental variability within a single
dataset is impractical, as it would require extensive sampling efforts covering diverse
spatiotemporal scales.

Given these challenges, it is important to acknowledge the limitations of forming a
universal marine imagery dataset. However, this does not diminish the value of
targeted and representative datasets that focus on specific regions, habitats, or
taxonomic groups. By concentrating efforts on specific areas of interest, researchers
can still contribute to our understanding of localised ecosystems, uncover unique

ecological interactions, and support targeted conservation initiatives.
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While a comprehensive universal dataset may be unattainable, it is crucial to
emphasise the importance of collaborative efforts in data sharing and integration. By
sharing data across research institutions, organisations, and countries, it becomes
possible to assemble larger, more diverse datasets that encompass a broader range of
species, habitats, and environmental conditions. Collaboration fosters the exchange of
knowledge, encourages standardised data collection methodologies, and promotes the
development of more robust models and analyses.

In conclusion, the formation of a universal marine imagery dataset is an immensely
complex and challenging task due to the incredible biological diversity, habitat
variability, sampling limitations, taxonomic knowledge gaps, and environmental
heterogeneity within the marine ecosystem. While a comprehensive dataset covering
the entirety of marine life may be unfeasible, focused and representative datasets can
still contribute to advancing our knowledge and conservation efforts within specific
marine regions, habitats, and taxonomic groups. Collaborative approaches, data
sharing, and integration are crucial for maximising the value of available data and

overcoming the limitations of individual datasets.
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Chapter 9

Conclusions

This thesis investigated the use of modern machine learning techniques to automate
the analysis of AUV imagery. AUV surveys provide more visual imagery data than
can currently be analysed by experts, and current automated methods of analysis lack
the domain specific outputs needed to determine important values of interest such as
biomass. This thesis presents a more automated and scalable solution that not only
expands the amount of data that can be analysed, but also provides useful information

in the form of biomass estimates separated by class.

9.1 Contributions

There are three major contributions from this thesis, detailed in the sections below.

9.1.1 Investigation of Intra-Vehicle Transferability

Chapter 5 presents the findings of a thorough investigation into intra-vehicle
transferability of the Mask R-CNN neural network, using datasets collected at
differing, but nearby, geographical locations, on the Adaptive Robotics Falkor 2018
expedition. The transferability of learning to newly seen datasets collected by the
same vehicle was measured and analysed, achieving an mAP score of 89% on low

altitude imagery and 79% on high altitude imagery.

The most novel aspect of this investigation is the breadth of independent variables
being investigated, and the results for every subsequent combination of variables are
presented. Both data normalisation and data augmentation techniques were
investigated. The data normalisation techniques investigated were colour correction,
scale normalisation, and distortion correction. The data augmentation techniques

investigated were elastic or piece-wise transformations, independent channel
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augmentations, addition, multiplication, salt and pepper noise, motion blur, and

linear contrast.

The key findings include that greyworld colour correction improved performance
greatly for both low and high altitude datasets, improving from an average mAP of
56.6% to 74.1% for low altitude data, £ — L', and improving from an average
mAP of 44.6% to 74.4% for high altitude data, H'™" — H!*!. A further finding of note
is that rescaling to the average low altitude spatial scale worked best for low altitude
images, and rescaling had little effect on the accuracy for high altitude data. For

Llrain _ [lest experiments, rescaling to the average low altitude spatial scale

improved mAP scores from an average of 62.1% to 68.6%.

The other variables investigated have a less significant effect on the performance, and
may need further investigating for their efficacy in different situations. In the specific
set up investigated in this thesis, distortion correction harmed performance, as did
elastic distortions.

9.1.2 Investigation of Inter-Vehicle Transferability

Chapter 6 presents the findings of the inter-vehicle transferability experiments for this
thesis. In these experiments, the training and validation datasets were from a different
vehicle to the test dataset, either transferring learning from a low altitude dataset to a
high altitude dataset or vice versa, £ — H!est and H !4 — [Llest,

When transferring learning from a low altitude dataset to a high altitude dataset,
Ltrain — Jtest performance is incredibly poor. On the other hand, transferring from a
high altitude dataset to a low altitude dataset, Hirain _y plest ywag relatively successful,
achieving as high as 54%. The independent variable with the largest impact on these
results was rescaling, where rescaling to the average high altitude spatial scale
improved mAAP scores from 26.5% to 44.1%. Furthermore greyworld colour
correction also provides clear improvements in accuracy, improving from an average
mAP score of 32.7% to 38.0%. The colour correction results are in line with the
findings of the intra-vehicle results, implying that using greyworld colour correction
over raw histogram stretching is applicable across many situations. The rescaling
results, however, differ between H!™" — H!est and H!™" — L1t having little impact
in the former case, and improving results drastically in the latter, showing the
situational improvements scale correction offer. Scale is a major difference between
the appearance of animals in high altitude imagery and low altitude imagery, and
correcting for this scale variation is clearly more important when looking at

inter-vehicle transfer learning than when looking at intra-vehicle learning.

Similarly to the intra-vehicle learning results, the other independent variables

investigated had less significant impacts on results. Again, distortion correction
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reduced accuracy going against expectations. Furthermore, data augmentations all
caused a small decrease in performance. In order to effectively use data
augmentations more investigation is needed into optimising their parameters and

identifying individual useful augmentation techniques.

9.1.3 Automated Biomass Estimation

Chapter 7 presents an automated biomass estimation method based on the use of
Length Weight Relationships (LWRs) and the newly developed Segment Size to
Length Relationships (SSLRs). This method allows for a fully automated process of
biomass estimation from AUV imagery via Mask R-CNN or similar object detection
and segmentation techniques, and the application of these relationships to form a
biomass estimate for each detected individual. This thesis demonstrates the method
on the datasets collected on the Adaptive Robotics FK2018 expedition on both low and
high altitude datasets, and with the results broken down by class to show class
specific distributions in the form of biomass density heatmaps and biomass
histograms. This demonstrates the fully scalable automated method, and shows how
it can be applied to large datasets containing thousands of images with no additional
manual intervention required. This method will allow for the automated estimation of
biomass distributions in the field, informing AUV deployment decisions in real time.
Furthermore, it can be applied to existing datasets, increasing the value of collected
imagery to the science community, getting more information out of expensive ship
based expeditions.

9.2 Further Work

There is a wide range of possible future work that builds on and improves the
findings of this thesis. There are some key directions further work may take, such as
improvements to the Mask R-CNN experiments themselves, investigating the metrics
by which we measure performance, and further work on improving the automated
biomass estimation process. Examples of further work in each of these areas are

discussed below.

9.2.1 Mask R-CNN

The training of the Mask R-CNN neural network poses many different areas for

possible adjustment and investigation.

With more time and man power available, investigations with a larger labelled dataset

would be possible, and would provide a clearer insight into the effects of various
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independent variables on performance without the interference of over-fitting, severe

class imbalance, and other such effects common to small datasets.

Simply expanding the number of labelled images is not the only way the datasets in
use could be enhanced. One possibility is the the addition of other vehicles to the
study, seen in Zuroweitz et al.’s work [87]. In this study, a larger set of vehicles was
included, including vehicles closer in altitude than the two for this study, allowing for
investigation into the impact of smaller shifts in altitude. Another such possibility
would be the addition of different classes. There was a clear difference in performance
between different classes in this thesis, and while the data available allows us to only
speculate on the reasons why, a thorough investigation into the performance on
different classes could be carried out. This could look into the size of individuals in
the class, their colour and contrast with their surrounding areas, their shape, and even
features such as whether they are a burrowing species, or other behavioural aspects.
An investigation into this class performance difference is vital if automated analysis is

ever to be relied upon for scientific study and conservation decisions.

Another area for improvement in the training of Mask R-CNN is hyper-parameter
finetuning. This vital aspect of machine learning is often overlooked, as it was in this
thesis, due to the complex combinations of hyper-parameters and their impact on
learning. Before a system such as Mask R-CNN should be used for fully automated
analysis of a marine survey for scientific study, it should be finetuned to achieve the
very best performance possible. Whether such finetuning of neural network
parameters would change the findings of studies such as this one is mostly unknown,
and the assumption made is that if gains in performance were to be made with
finetuning of these hyperparameters, they would be universal and would not change
the relative performance of differing independent variables. Further work can and

should be done to investigate this assumption.

The way training data is provided during training can also have a large impact on
performance, and there are a number of alternatives to what was used in this thesis.
Repeating images containing rarer classes more often than those only containing more
common classes, sometimes referred to as class balancing, is one such approach that
may improve performance on the rarer classes in the training data and is worth
investigating. Another approach is to repeat images that the neural network gets a
lower accuracy score for, sometimes referred to as bootstrapping, and showing images
it scores well on less often as it has already learnt what it needs to from those images.
Both of these approaches have shown promise in other studies, and are worth

investigating with marine imagery.
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FIGURE 9.1: Example of IOU metric failing to capture context specific information.
The example on the left would result in a more accurate biomass estimate, but would
score lower in terms of IOU scores than the example on the right.

9.2.2 Metrics

The measurement of performance of an automated system for marine imagery is
challenging, as experiments into differences between manual annotations from
different experts show the level of agreement between two marine experts is often
low. [104; 97]. Furthermore, these classic computer vision metrics measure the direct
similarity between the two sets of labels, and do not take into account the context
specific impacts of incorrect labels, such as changes this makes to population counts,
size distributions, or biomass estimates. By calculating these statistics and comparing
those as opposed to directly comparing labels, we can assess more accurately how
well an algorithm will perform in the marine imagery context. This is demonstrated in
Figure 9.1 where the example on the left gets a lower IOU score than the example on
the right, but in the context of biomass estimation the example on the left would be
more accurate then the example on the right, that would underestimate the biomass.

9.2.3 Biomass Estimate Improvements

LWRs were developed a long time ago for the use of fishermen and scientists, among
others, to easily estimate the weight of a physical sample without the need to weigh it.
These estimates were useful at the time, and continue to be used today, but they were
not developed as the best way to estimate biomass from images, and, with the time

and manpower required, LWRs could be super-ceded by a direct relationship between
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segment size and biomass. The datasets required for such a relationship to be
calculated were not readily available at the time of writing this thesis, and curating
such a dataset was outside the scope of the project. Creating such a dataset would
involve photographing individual specimens from above with a known size per pixel,
and then weighing each individual, to provide a direct comparison between visible
segment size from above and weight. Such a dataset would enable a more accurate
fully scalable automated biomass estimation system than the one demonstrated here,
and would be a vital step towards large scale automated biomass estimation from

AUV imagery for use in scientific discoveries and marine conservation efforts.

9.2.4 Large Labelled Datasets

In the application of machine learning to terrestrial imagery the image acquisition
conditions are very rarely taken into account, with very large datasets collected by
varying hardware in varying environmental conditions. With a large and varied
enough dataset this may be possible with marine imagery too, but would require a
large dataset of thousands of images to be collected and labelled in a consistent format
with consistent class labels. Crowd sourcing such datasets has been successful for
many different fields, including astronomy with the use of Galaxy Zoo, a project by
Zooniverse, where images of space taken by a telescope are labelled by volunteers
online with varying levels of expertise in the area. Another approach to gathering
such a dataset may be a large scale collaboration between research institutes to
provide their labelled datasets publicly with a consistent labelling schema. A dataset
such as this would enable automated detection and segmentation of a larger array of
classes and to a higher degree of accuracy. This would allow for the use of machine
learning on AUV imagery for scientific outcomes, and would enable better
investigation into the effects of normalisation and augmentation on differing classes.
As previously mentioned in this thesis, the performance of Mask R-CNN varies by
class, as does the effect of varying augmentation techniques, and with the three classes
labelled and analysed in this thesis hypotheses can be posed, but further classes must
be analysed to identify the cause of this variance. Possible causes to investigate
include, but are not limited to, size, shape, colour, and behaviour such as burrowing.
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