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Abstract: Data-driven approaches predict infectious disease dynamics by considering various factors
that influence severity and transmission rates. However, these factors may not fully capture the
dynamic nature of disease transmission, limiting prediction accuracy and consistency. Our proposed
data-driven approach integrates spatiotemporal human mobility patterns from detailed point-of-
interest clustering and population flow data. These patterns inform the creation of mobility-informed
risk indices, which serve as auxiliary factors in data-driven models for detecting outbreaks and
predicting prevalence trends. We evaluated our approach using real-world COVID-19 outbreaks in
Beijing and Guangzhou, China. Incorporating the risk indices, our models successfully identified 87%
(95% Confidence Interval: 83–90%) of affected subdistricts in Beijing and Guangzhou. These findings
highlight the effectiveness of our approach in identifying high-risk areas for targeted disease con-
tainment. Our approach was also tested with COVID-19 prevalence data in the United States, which
showed that including the risk indices reduced the mean absolute error and improved the R-squared
value for predicting weekly case increases at the county level. It demonstrates applicability for spa-
tiotemporal forecasting of widespread diseases, contributing to routine transmission surveillance. By
leveraging comprehensive mobility data, we provide valuable insights to optimize control strategies
for emerging infectious diseases and facilitate proactive measures against long-standing diseases.

Keywords: human mobility; emerging infectious disease; COVID-19; disease containment; surveillance

1. Introduction

High-threat infectious hazards are emerging and re-emerging diseases that may have
devastating consequences on health and life in multiple countries or worldwide, such
as pandemics [1]. For instance, the outbreak of the severe acute respiratory syndrome
coronavirus in 2003, H1N1 influenza in 2009, Ebola virus disease in West Africa in 2013–
2016, Zika virus disease in 2015, and the novel coronavirus disease in 2019 (COVID-19)
evolved to an unprecedented scale and geographic extent, significantly straining the world’s
healthcare systems [2]. The occurrence and transmission patterns of infectious diseases are
changing as a result of accelerated global integration and the impact of climatic, ecological,
and social environmental changes [3,4]. The development of robust predictive models
to forecast the dynamics of infectious diseases plays a crucial role in containing their
transmission and in real-time surveillance. Furthermore, related findings can further
inform policies, such as targeted interventions, mitigation strategies, emergency responses,
and allocations of health care resources [5].
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Traditional epidemic prediction models have used compartment-based models to
estimate disease transmission dynamics at the population level. Examples include the
Susceptible-Exposed-Infectious-Removed (SEIR) models and their variants, which have
been widely employed to predict the characteristics of the epidemic process [6,7]. However,
the design of epidemiological models involves numerous assumptions about disease spread
dynamics, and their interpretability and usability have been limited by the underlying
assumption of the spatiotemporal homogeneity of the spread of a virus [8]. In practice,
disease transmission patterns are substantially heterogeneous in space and over time
and correlated with various spatiotemporal driving factors, such as demographic [9],
environmental [10–12], social [13], and economic [14] factors. Therefore, a data-driven
approach that involves statistical analysis and machine learning has emerged as a tool that
can model spatiotemporal patterns of infectious diseases. The machine learning approach
has been used to assess factors that place people at a higher risk of measles [15,16], and
researchers have worked on influenza forecasting for a long time using statistical and
machine learning methods, such as the autoregressive integrated moving average model
and random forest algorithm [17]. Statistical and machine learning models have mainly
attempted to simulate the effects of driving factors (i.e., predictive variables) on the spread
dynamics of infectious diseases [18–20]. However, most relevant driving factors have
limited ability to directly reflect the process of infectious disease transmission and the
fine-grained details of the spatiotemporal dynamics of outbreaks.

To provide adequate knowledge of the physical dynamics of disease spread in space
and over time, several studies have investigated proxy variables informed by physics to
promote the positive effects of applying predictive variables in understanding transmis-
sion. Typically, human interaction in close physical proximity is the primary cause of the
transmission of highly contagious diseases [21,22]. Furthermore, internet users’ activity
data as surrogate indicators or supplemental data for influenza-like illness activity were
investigated to predict influenza epidemics in near real time [23]. These data were widely
aggregated from Google searches, Google trends, Wikipedia, and social media (e.g., Twitter
and Baidu) to forecast influenza [24,25]. During COVID-19, measuring human interaction
was an important step in understanding and predicting the disease’s spread [26]. Inter-
and intra-county proxies for human interactions through Facebook- and cell phone-derived
measures of connectivity and human mobility were suggested as input variables in a
machine learning model for predicting county-level COVID-19 cases in the conterminous
United States [27]. Moreover, proxies of the pandemic’s trajectory were measured by pro-
jecting the case and effective reproduction numbers, which were added into a machine
learning model to produce the final forecasts on COVID-19 [28].

However, to enhance our understanding of the physical progression of diseases, it
is important to optimize proxy indicators that describe human interactions with infected
individuals across and within regions. Data pertaining to human movement and contact are
valuable in quantifying these interactions and the interconnectedness of different locations,
enabling the tracking of an epidemic’s trajectory [29,30]. By utilizing time-varying inter-
regional population flow and detailed point-of-interest (POI) data [31], it becomes possible
to evaluate the spatiotemporal risk of infection in relation to transmission events, while
considering individual movement patterns and contact intensity, particularly in relation to
infection cases. This assessment of spatiotemporal infection risk has the potential to provide
valuable supplementary information, contributing to a more comprehensive understanding
of pandemic events.

In the study, we developed two mobility-informed risk indices to describe the risk of
infectious disease transmission in space and time. These risk indices were combined with
other relevant variables and used in statistical regression and machine learning models
to understand disease dynamics for transmission containment and real-time surveillance.
The proposed method can be used to detect outbreaks caused by newly introduced acute
human-to-human transmitted diseases (e.g., COVID-19 and pandemic influenza) at the
early stage of the outbreak, and to predict short-term trends of transmission in community
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hotspots where populations have not yet acquired herd immunity. We tested the method
using real-world data on COVID-19 outbreaks in Chinese cities and the United States.
The results showed that the proposed method was effective in identifying high-risk areas
throughout an outbreak in a city, assisting in the implementation of interventions to
quickly control the disease spread. Furthermore, the method maintained a generally high
level of performance for one- to four-week-ahead forecasts of the county-level COVID-19
prevalence in the United States, contributing to real-time surveillance of disease dynamics
within the country.

2. Materials and Methods

The aim of this study was to comprehend infectious disease dynamics using statistical
and machine learning models based on mobility-informed risk indices, as illustrated in
Figure 1. Initially, we developed these risk indices by analyzing individuals’ movements
and contacts over space and time. To predict infectious disease dynamics, we combined
these risk indices with socio-economic, demographic, environmental, and epidemiological
factors as predictive variables. We further utilized statistical regression and random
forest models to establish the relationships between the predictive and target variables of
interest. To validate the models, we used real-world COVID-19 transmission data under
two scenarios. At the early stages of an outbreak, timely identification of potential infections
in space is critical to contain disease spread. Therefore, we employed the models to identify
affected subdistricts during real-world importation-related COVID-19 outbreaks in Chinese
cities. Moreover, during widespread community transmission, most areas within a country
report continuous increases in infection rates. In this case, we made one- and four-week-
ahead forecasts of COVID-19 prevalence at the county level in the contiguous United States
to support routine surveillance. For each scenario, we used 10-fold cross-validation for
model training and tuning by randomly splitting historical sample data into training and
test sets. Finally, we applied the best-tuned model to predict actual COVID-19 transmission
dynamics, and prediction performance was estimated by comparing the predicted and
actual results.
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Figure 1. Flowchart for estimating the dynamics of human-to-human disease transmission using
statistical and random forest models based on mobility-informed risk indices. The models were
evaluated under two study scenarios: detection of potential affected subdistricts during COVID-19
outbreaks in Chinese cities; and spatiotemporal forecasts of county-level COVID-19 cases in the
contiguous United States.
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All data processing, calculation of mobility-informed risk indices, model training and
testing for statistical regression, and random forest models—as well as result evaluations—
were conducted using the Python programming language. Python provides a robust and
widely used platform for data analysis and modeling in the field of statistics.

2.1. Mobility-Informed Risk Indices

Transmission risks of infectious diseases were evaluated by examining individual
mobility patterns and contact intensity, utilizing data on time-varying population flow,
detailed POIs, and the locations of the first confirmed cases (Figure 2). Specifically, the case
flow intensity (CFI), which considers the location of initial cases and their movements across
regions (such as subdistricts or counties), was derived using an established travel network.
The CFI quantifies regional infection risk by counting the cumulative number of initial
cases that visited a region; higher CFI values indicate regions that have been visited by
more initial cases. Based on the CFI, the case transmission intensity (CTI) was computed to
represent the risk introduced by both inter-regional movements and intra-regional contact
with initial cases. The CTI is based on the number of potential new infections resulting
from the activity of initial cases, and regions with a larger CTI are more likely to have a
higher number of infected individuals.
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Figure 2. Illustration of mobility-informed risk indices. Based on point of interest (POI) data, mobile
travel flows, and the locations of initial confirmed cases, two spatiotemporal risk indices were
designed: case flow intensity (CFI) and case transmission intensity (CTI).

We expressed all regions as the set R = {ri, i = 1, 2, . . . , N}. At hour t, regions from
which people go to region ri are denoted as Ft

→i =
{

rj ∈ R, rj 6= ri, 0 ≤
∣∣Ft
→i

∣∣ < N
}

, where∣∣Ft
→i

∣∣ is the number of elements in the set. Regions where people travel from region si are
denoted as Ft

i→ =
{

rk ∈ R, rk 6= ri, 0 ≤
∣∣Ft

i→
∣∣ < N

}
. The number of visitors from sj to si is

Pt
ji. Accordingly, the population size in region si at hour t can be computed by:

Pt
i = Pt−1

i + Pt
→i − Pt

i→, (1)
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where Pt
→i = ∑rj∈Ft

→i
Pt

ji and Pt
i→ = ∑rk∈Ft

i→
Pt

ik is the population that moves in and out of a
region si, respectively.

The CFI-based regional infection risk can be depicted by the hourly cumulative counts
of initial cases. At hour t− 1, there were Ct−1

j and Ct−1
i initial cases in regions sj and si,

respectively. At hour t, Pt
ji visitors went to region si from sj, of which the number of initial

cases was positively proportional to the population flow given by:

Ct
ji = Ct−1

j ·
Pt

ji

Pt−1
j

, (2)

The hourly number of the initial cases is expressed as:

Ct
i = Ct−1

i + ∑
rj∈Ft

→i

Ct
ji − ∑

rk∈Ft
i→

Ct
ik, (3)

where ∑rj∈Ft
→i

Ct
ji and ∑rk∈Ft

i→
Ct

ik is the total number of initial cases entered and left region
si at hour t.

Therefore, the CFI risk index can be computed by:

µD
i (CFI) =

D

∑
t=0

Ct
i , (4)

where D is the duration of the population flow under consideration.
Instead, the infection risk based on CTI was depicted by hourly cumulative counts of

potential new infections due to contact with the initial cases within a region. At hour t, the
number of new infections increases in region si in terms of intra-regional contact with Ct

i
initial cases. The infection rate is given by:

λi = βi·
Ct

i
Pt

i
, (5)

where βi is the intra-regional transmission rate derived from the logged POI-based diversity

index. That is, βi =
(
∑c (mi,c)

q)1/(1−q), where mi,c is the number of POIs in region si for
POI secondary category c, and q is the exponential factor equal to 0.4 [32]. POI-based
diversity indices have been widely used to depict neighborhood vibrancy and human
activity [33–35].

Therefore, the CTI risk index can be computed by:

µD
i (CTI) =

D

∑
t=0

It
i , (6)

where It
i is the number of new infections in region si at hour t and is expressed as It

i ∼
Binom

(
Pt

i − Ct
i , λi

)
[26].

2.2. Models for Predicting High-Risk Subdistricts in Chinese Cities

This section presents a method for assessing outbreaks of newly emerging or emergent
acute human-to-human transmitted diseases in a city. We propose using logistic regression
and random forest classifiers based on CFI and CTI risk indices at the initial outbreak
stage to predict which subdistricts are at risk of being affected throughout an outbreak.
To outline our method, we collected data on actual COVID-19 outbreaks in Beijing and
Guangzhou and used an epidemiological model to simulate various outbreak scenarios at
the subdistrict level in these cities as the sample data. Using the sample for training and
tuning, we computed CFI and CTI risk indices which were inputted into logistic regression
and random forest classifiers to determine which subdistricts were affected. Finally, we
applied the fitted models to predict the affected subdistricts in actual COVID-19 outbreaks
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in Beijing and Guangzhou, and we evaluated the accuracy of our predictions by comparing
them to real-world data.

2.2.1. Data on COVID-19 Outbreaks

At the initial stage of the COVID-19 outbreak, prompt interventions were implemented
to control the spread, and as such, socioeconomic and environmental factors had little
impact on the occurrence of transmission events. We obtained data on mobility, points of
interest (POI), demographics, and epidemiological outbreaks in Beijing and Guangzhou.
Given the challenges in accessing detailed information on infected individuals and fine-
grained origin-destination human mobility, we relied on metapopulation-based data at
the township-level divisions (i.e., subdistricts) of the two cities as our unit of analysis.
Beijing consisted of 331 subdistricts, while Guangzhou had 168 subdistricts. Information on
affected subdistricts and the number of cases were obtained from press releases and daily
pandemic notification reports released by the Beijing and Guangzhou Municipal Health
Commissions (Table A1). From 11 June 2020 to 5 July 2020, a total of 368 cases across 52
affected subdistricts were reported in Beijing. On 21 May 2021, the index case of a highly
transmissible variant of SARS-CoV-2 (VOC Delta) was confirmed in Guangzhou, and by 18
June 2021, 16 subdistricts had been affected with a total of 152 cases (including confirmed
and asymptomatic infections). Population data for 2021 at a 100-meter resolution were
obtained from WorldPop (www.worldpop.org, accessed on 1 June 2022).

We analyzed anonymized population movement flows between subdistricts in Beijing
and Guangzhou using hourly data aggregated from cellular signaling data provided by
China Mobile (www.chinamobileltd.com, accessed on 1 June 2022), one of China’s largest
national mobile carriers. Specifically, we used hourly two-day data from 11–12 June 2020 to
capture people’s movement between subdistricts in Beijing before the implementation of
travel restrictions across cities due to COVID-19 outbreaks. For Guangzhou, we used hourly
inter-subdistrict population flow data from 21–22 May 2021. Additionally, we obtained
POI data for 2020 from AMap Services (ditu.amap.com, accessed on 15 June 2022), one of
China’s main location-based service providers. AMap divided the POI into 23 primary
categories, 241 secondary categories, and 2035 tertiary categories.

2.2.2. Sample Data Simulated by SEIR Model

As access to sophisticated historical real-world population movement and epidemi-
ological data was limited, we employed a travel network-based SEIR modeling frame-
work [36] to simulate COVID-19 transmission across various outbreak scenarios in Beijing
and Guangzhou. The simulated epidemiological data was then used to develop pre-
dictive models for subdistricts that would be affected by an outbreak. The SEIR model
(github.com/wpgp/BEARmod, accessed on 10 July 2020) is capable of simulating COVID-
19 propagation across subdistricts within a city (Appendix B). For a single simulation, the
start date was the day when the first confirmed case was infected, and the start location
within the subdistricts was chosen randomly. The epidemiological parameters in the model
were defined based on existing studies (Table A4). The SEIR model estimated the daily
number of new cases in each subdistrict to determine the number of affected subdistricts
throughout an outbreak. To generate a series of epidemiological data, we utilized various
simulations for each city under different levels of transmissibility and random source
locations. Table 1 shows that COVID-19 transmission was simulated at 30 random initial
outbreak locations for each of the three different transmission levels controlled by the basic
regeneration number (R0), generating a total of 90 sets of COVID-19 outbreak epidemic
data for each city. The time-series changes in the number of daily cases under simulated
epidemics are shown in Figure A1.

The primary predictive variables used in our study were population, population
density, number of POIs, POI density, population flow volume, and mobility-informed risk
indices. We calculated the mobility-informed risk indices, namely CFI and CTI, based on
hourly flow data in the first two days after an outbreak occurred, and data on the location

www.worldpop.org
www.chinamobileltd.com
ditu.amap.com
github.com/wpgp/BEARmod
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of initial confirmed cases, to determine the initial stage risk levels. As an example, for
the Beijing outbreak, we defined the spatial unit si as one of the 331 subdistricts, and the
time unit t as an hour over the 48-hour period of 11–12 June 2020 (i.e., duration D = 48).
Pt=0

i represents the population count in subdistrict si, and Ct=0
i represents the cumulative

number of confirmed cases from 13 to 15 June 2020. Using these values and the definition
of CFI and CTI, we calculated the spatiotemporal population Pt

i , number of cases Ct
i , and

number of potential infections It
i to obtain the early-stage CFI and CTI risks, µD

i (CFI) and
µD

i (CTI). We followed a similar process to calculate the CFI and CTI risk values for the
Guangzhou outbreak.

Table 1. Simulated COVID-19 outbreaks under different transmissibility levels and source loca-
tions in Beijing and Guangzhou. For each city, there were three R0 (R0 mean and 95% confidence
interval upper and lower thresholds), and the outbreak was considered to start in one randomly
selected subdistrict.

City R0 Number of Affected Subdistricts

Beijing
3.32 43 (95% CI: 37–49)
1.4 14 (12–17)
3.9 52 (38–67)

Guangzhou
4.9 26 (22–29)
3.1 4 (3–5)
6.5 93 (81–104)

R0: basic reproduction number.

2.2.3. Logistic Regression and Random Forest Classifier

Simulated data was utilized to develop and refine logistic regression and random forest
classifiers for the prediction of subdistricts affected by actual COVID-19 outbreaks in Beijing
and Guangzhou. To train and optimize the models, a 10-fold cross-validation approach
was employed, whereby the simulated epidemiological data was randomly divided into
training and test sets. This cross-validation technique significantly aids in mitigating the
risk of overfitting [37]. The tuned model was subsequently utilized to classify subdistricts
within each city as either affected or unaffected. The predictions were then compared
against actual data regarding affected subdistricts, and the performance of the prediction
model was assessed using a confusion matrix. The confusion matrix, a two-by-two table
generated by a binary classifier, presents four possible outcomes [38]. Of particular interest
to us were two key metrics: sensitivity (SE) and specificity (SP). Sensitivity was calculated
as the ratio of correctly estimated affected subdistricts to the total number of actual affected
subdistricts, while specificity was calculated as the ratio of correctly estimated unaffected
subdistricts to the total number of actual unaffected subdistricts [39]. In a similar vein,
Moulaei et al. [40] employed machine learning algorithms to predict COVID-19 mortality
and assessed model performance using metrics derived from the confusion matrix such
as accuracy, sensitivity, precision, specificity, and receiver operating characteristic (ROC).
Likewise, Jahangiri et al. [41] conducted sensitivity and specificity analyses to investigate
the impact of ambient temperature and population size on the COVID-19 transmission rate
in various provinces of Iran, employing ROC to assess the performance of their classification
model, utilizing the confusion matrix.

Additionally, we evaluated the importance of all variables using the permutation
feature importance technique, which is defined as the decrease in the model score when a
single feature value was randomly shuffled [42].

2.3. Models for Estimating COVID-19 Cases in the United States

This section introduces regression models that utilize mobility-informed risk indices
to predict the spread of diseases in areas with high prevalence. The models aim to forecast
one- to four-week incidences at the county level in the contiguous United States. To achieve
this, we computed CFI and CTI risk indices with one- to four-week temporal lags based
on daily population flows across counties and reported weekly confirmed cases. These
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indices served as inputs for the elastic net and random forest regression models, which were
trained and tuned using the log-transformed incidence rate as the target variable. Moreover,
the models incorporated multiple base predictive variables selected from a previous study.
The fitted models generated one- to four-week ahead forecasts of weekly increases in
the number of cases on a given date, and we evaluated the predictive performance by
comparing the estimated results with the actual number of confirmed cases.

2.3.1. Data on COVID-19 Prevalence

County-level daily COVID-19 cases in the United States were collected from USA Facts
(usafacts.org/visualizations/coronavirus-covid-19-spread-map, accessed on 15 July 2022)
for the period between 29 March 2020, and 9 April 2021. USA Facts is a reputable non-profit
organization that provides data on government tax revenues, expenditures, and outcomes.
The data on COVID-19 cases from USA Facts have been widely used in previous studies on
COVID-19 spread characteristics [43,44]. Figure A2 shows the weekly number of new cases,
with approximately 200,000 cases reported during the week of 29 March 2020 to 4 April 2020,
affecting nearly 70% of counties across the country. The number of new cases continued to
rise throughout 2020, with 1.5 million new cases per week by the end of the year. Population
mobility and POI data were obtained from SafeGraph, which provided precise global POI
data. We obtained the aggregated population flow data between counties, covering 22
January 2020, to 15 April 2021, from the website (gis.cas.sc.edu/GeoAnalytics/od.html#,
accessed on 10 July 2022). This data included daily origin-destination (OD) mobility data at
the county level. SafeGraph’s website (www.SafeGraph.com/products/places, accessed on
10 July 2022) provided the spatial distribution of POIs across the contiguous United States,
which included 6,778,576 POIs, covering 199 main categories and 400 subcategories.

2.3.2. Target and Predictive Variables

To train and tune our models, we used the natural logarithm of new cases per
10,000 people plus one (to avoid zero values) as the target variable. The rationale behind
using the log-transformed target variable, as opposed to directly predicting the number of
weekly new cases, was to minimize skewness and, more importantly, reduce the sensitivity
of the models to the population of counties [27]. The formulas used to calculate the values
are as follows:

incidence rateT
i =

CasesT
i

Pi
, (7)

yT
i = ln

(
incidence rateT

i + 1
)

, (8)

where CasesT
i denotes the number of weekly new confirmed cases (from day T to T + 7) for

the start day T, and yT
i is the log-transformed incidence rate as the target variable for model

training. For a given date T, the corresponding target variables for one- to four-week-ahead
forecasts are the incidence rate by week, with the time range from T to T + 7, T + 7 to
T + 14, T + 14 to T + 21, and T + 21 to T + 28, respectively.

Studies have shown that the time between exposure to the virus and symptom onset
can be up to 14 days [45]. We used a 14-day period of population movement to calculate
the CFI and CTI risk indices, with the number of cases reported in the week prior to the
forecast date as initial cases. Specifically, we defined si as the spatial unit representing a
county in the contiguous United States, and t as the time unit representing a given day
within the 14-day period of population flows (D = 14). To calculate county-level risk
values with a one-week temporal lag (CFI_T_1 and CTI_T_1), we set t = 0 as the day
T− 14 for forecast date T, and used the weekly number of confirmed cases reported, given
by Ct=0

i = CasesT−7
i , as the initial cases. Pt=0

i represented the population size of county
si. We obtained CFI_T_1 and CTI_T_1 based on the definition of CFI and CTI using daily
population flows across counties. We divided these values by the county population and
recorded them as IN_CFI_T_1 and IN_CTI_T_1. To obtain the corresponding risk values
with a two- to four-week temporal lag, we advanced the time of population flows and

usafacts.org/visualizations/coronavirus-covid-19-spread-map
gis.cas.sc.edu/GeoAnalytics/od.html#
www.SafeGraph.com/products/places
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initial cases by one week at a time. For example, to calculate CFI_T_1 for a given date T,
we used the daily inter-county population flow data from T − 14 to T and the cumulative
number of cases from T− 7 to T, as shown in Table 2. However, to calculate the risk values
with a four-week temporal lag (CFI_T_4 and CTI_T_4), we used the daily inter-county
population flow data between T − 35 and T − 21 and the cumulative number of cases from
T − 28 to T − 21.

Table 2. The time range of population flow and initial case data required for calculating the mobility
risk index in one- to four-week temporal lags.

Mobility-Informed Risk Index Temporal Lag Duration for Mobility
Data Duration for Case Data

CFI_T_1 One-week (T − 14) ∼ (T) (T − 7) ∼ (T)
CFI_T_2 Two-week (T − 21) ∼ (T − 7) (T − 14) ∼ (T − 7)
CFI_T_3 Three-week (T − 28) ∼ (T − 14) (T − 21) ∼ (T − 14)
CFI_T_4 Four-week (T − 35) ∼ (T − 21) (T − 28) ∼ (T − 21)

CFI_T_1, CFI_T_2, CFI_T_3, and CFI_T_4: CFI risk indices with one- to four-week temporal lags.

Basic predictive variables were extracted from two previous studies that were similar to
our study. These variables were employed to conduct reference experiments, designated as
REF1 and REF2, respectively. REF1 [27] employed various demographic and socioeconomic
variables, temperature data, features obtained from Facebook and SafeGraph, and weekly
changes in cumulative COVID-19 cases as predictive variables (Table A2). REF2 [28]
included a comprehensive set of features such as population health, demographic data,
COVID-19 testing results, and projections of the number of cases and Rt (Table A3). Our
proposed models incorporated the variables used in each reference study with temporally
lagged weekly CFI and CTI risk indices. We named this combination of variables the
proposed experiments, which we labeled as Proposed1 and Proposed2. The performance of
the proposed models was compared with that of the reference experiments under the same
settings, except for the predictive variables utilized (Table 3). While REF1 and Proposed1
were used to forecast 39 consecutive weekly intervals from 3 May 2020 to 24 January
2021, REF2 and Proposed2 were utilized to predict 11 consecutive weekly intervals from 1
November 2020 to 10 January 2021.

Table 3. Design for comparison between proposed models and reference experiments.

Experiment Predictive Variables Used Forecast Date Model
REF1 See Table A2

39 weekly intervals from 3 May
2020 to 24 January 2021 Elastic net and random

forest regression
Proposed1

Variables in REF1 and
mobility-informed risk

indices
REF2 See Table A3

11 weekly intervals from 1
November 2020 to 10 January 2021Proposed2

Variables in REF2 and
mobility-informed risk

indices

2.3.3. Elastic Net and Random Forest Regression

We developed a spatiotemporally autoregressive model that can forecast weekly
increases in COVID-19 cases up to four weeks ahead, covering 3103 counties. The study
involved 39 forecast dates in REF1 and 11 forecast dates in REF2. To train and fine-tune the
model, we collected two weeks of historical data preceding each forecast date, resulting in
3103 × 2 total samples. The model’s performance was evaluated in predicting new cases
for the upcoming week using 10-fold cross-validation. For example, to make a one-week-
ahead forecast on 3 May 2020, sample data was collected from 19–25 April 2020 and 26
April–2 May 2020, for training and fine-tuning. The fine-tuned model was then used to
predict the new cases in each county during the 3–9 May 2020 period. Similarly, to make a
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four-weeks-ahead forecast on 3 May 2020, we collected sample data from 29 March–4 April
2020 and 5–11 April 2020, and predicted the number of increased cases between 24–30 May
2020. This training and testing process was conducted for different prediction horizons,
and calculated target variables separately for each prediction horizon.

We selected elastic net regression [46] and random forest regression models which
addressed the multicollinearity issue among predictive variables. The trained models made
forecasts for county-level weekly increases in cases on each forecast date, ranging from one
to four weeks in advance. The accuracy of the proposed model’s forecasts was evaluated
against actual case counts by calculating mean absolute error (MAE) and R-square (R2)
values. Additionally, we calculated the permutation importance of all variables used in
elastic net and random forest regression models.

3. Results
3.1. Risk Deification at the Initial Outbreak Stage

Based on the proposed mobility-informed indices, the logistic regression and random
forest classifiers demonstrated the ability to identify a range of 50–90% of affected subdis-
tricts during COVID-19 outbreaks in Beijing and Guangzhou, as presented in Table 4. These
models exhibited a high accuracy rate in Beijing, correctly detecting over 87% of subdistricts
with cases (sensitivity). Additionally, both models demonstrated accurate identification of
unaffected subdistricts in Beijing, with a specificity exceeding 0.75. In comparison to the
SEIR epidemiological model, the proposed models outperformed in predicting affected
subdistricts during the Beijing outbreak. The SEIR model failed to identify 24 out of 52
affected subdistricts, resulting in a sensitivity of only 54%. When considering the trade-off
between sensitivity and specificity, the proposed models achieved an Area Under the Curve
(AUC) value exceeding 0.9 in the Receiver Operating Characteristic (ROC) analysis for
Beijing (refer to Figure 3). Regarding the outbreak in Guangzhou, the logistic regression
model demonstrated superior performance in identifying affected subdistricts compared to
the random forest classifier, as evidenced by a larger AUC value. It successfully captured
87% of the affected subdistricts. In contrast, the SEIR model exhibited a higher specificity
of 0.92 compared to the logistic regression model.

Table 4. Performance evaluation of the proposed models in identifying affected subdistricts during
real-world COVID-19 outbreaks in Beijing and Guangzhou. The logistic regression and random
forest classifier, based on mobility-informed indices, were used to predict subdistricts with COVID-19
cases. The predicted results were evaluated using the confusion matrix. The brackets refer to the 95%
confidence interval.

Model Subdistrict Actual COVID-19 Outbreak

Beijing Guangzhou

Logistic regression
Estimated

Reported Affected Unaffected Affected Unaffected
Affected 45 53 14 58

Unaffected 7 226 2 94
SE: 0.87 (0.83–0.90)
SP: 0.81 (0.80–0.81)

SE: 0.87 (0.84–0.90)
SP: 0.62 (0.61–0.62)

Random forest
classifier

Affected Unaffected Affected Unaffected
Affected 47 71 8 50

Unaffected 5 208 8 102
SE: 0.90 (0.88–0.93)
SP: 0.75 (0.74–0.75)

SE: 0.50 (0.47–0.53)
SP: 0.67 (0.66–0.68)

SEIR model

Affected Unaffected Affected Unaffected
Affected 28 13 13 12

Unaffected 24 266 3 140
SE: 0.54 (0.50–0.56)
SP: 0.95 (0.93–0.96)

SE: 0.81 (0.79–0.83)
SP: 0.92 (0.90–0.94)

SE: sensitivity; SP: specificity.
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Figure 3. Receiver Operating Characteristic (ROC) curves and the corresponding Area Under the
Curve (AUC) values for the logistic regression and random forest classifier models. These models
utilize mobility-informed indices to predict subdistricts with COVID-19 cases. The ROC curves
illustrate the performance of the models in terms of sensitivity and specificity, while the AUC values
provide a quantitative measure of their predictive accuracy.

The relative importance of the predictive variables showed that the CFI risk index
had the most dominant impact in estimating potential subdistricts with cases throughout
an outbreak (Figure 4). Population size and CTI risk index were also significant variables,
especially in predicting outbreaks in Beijing.
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Figure 4. Relative permutation importance of predictive variables. The logistic regression and
random forest classifier were applied to predict subdistricts with cases of actual COVID-19 outbreaks
in Beijing and Guangzhou, respectively. Error bars represent 95% confidence intervals.

3.2. Forecasts of Weekly Increased Cases
3.2.1. Forecasting Performance

The proposed models, which incorporate CFI and CTI risk indices, led to a decrease in
MAE for most forecast dates compared to the reference studies (Figure 5). Specifically, the
proposed method using predictive variables in REF1 (Proposed1) had a lower MAE than
REF1 for one-week-ahead forecasts on 28 (95% CI: 2–36) and 37 (33–37) of 39 dates using
the elastic net and random forest models, respectively (Figure 5a). On average, REF1 had
a higher MAE for four-weeks-ahead forecasts on 20 and 24 dates using the two models
(Figure 5d). For one- to four-weeks-ahead forecasts, using the random forest regression,
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the average MAE decrease from REF1 to Proposed1 on a given date was 7.5 (3.6–11.4), 2.7
(−3.5–8.9), 1.1 (−5.8–8.1), and 0.4 (−7.8–8.6) (Figure 5a–d). Furthermore, the incorporation
of a regression forecasting model, in combination with CFI and CTI related risk indices,
led to a decrease in MAE of REF2 for forecasts ranging from one to four weeks in advance.
Specifically, the utilization of elastic net regression resulted in MAE reductions for 9, 9,
7, and 7 out of the 11 dates, respectively (Figure 4e–h). Similarly, employing random
forest regression in conjunction with CFI and CTI related risk indices resulted in MAE
reductions of 9, 7, 7, and 7 out of the 11 dates for forecasts spanning one to four weeks
ahead, respectively.
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Figure 5. Evaluation of models’ forecasting performance using the mean absolute error (MAE). For
each forecast date, the elastic net and random forest regression were used to predict the weekly
increases in the number of cases in U.S. counties for one to four weeks ahead. The MAE was used to
measure the error between the estimated and actual number of cases. The proposed method with
additional mobility-informed risk indices (Proposed1 and Proposed2) was compared to two reference
studies (REF1 and REF2), respectively: (a–d) the MAE difference between Proposed1 and REF1 for
39 weekly forecast dates and (e–h) the MAE difference between Proposed2 and REF2 for 11 weekly
forecast dates. The error bars represent 95% confidence intervals.
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The inclusion of CFI and CTI related variables as inputs in the elastic net and random
forest models demonstrated improved R2 for most forecast dates. The Proposed1 method
achieved an R2 higher than 0.5 for one- to four-weeks-ahead forecasts on 39 dates, as shown
in Figure A3. Similarly, the Proposed2 method, which used random forest regression,
achieved an R2 higher than 0.8 for the forecasts on 11 dates. On average, the Proposed1
method improved R2 for one- to four-weeks-ahead forecasts on 35, 31, 31, and 31 dates
compared to REF1 when using random forest regression (Figure 6). Additionally, Proposed2
improved R2 on 8, 9, 8, and 7 dates against REF2.
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Figure 6. Evaluation of models’ forecasting performance using the R-square (R2). For each forecast
date, the elastic net and random forest regression were used to predict the weekly increases in the
number of cases in U.S. counties for one to four weeks ahead. The average value of R2 between
the estimated and actual number of cases was calculated. The proposed method with additional
mobility-informed risk indices (Proposed1 and Proposed2) was compared to two reference studies
(REF1 and REF2), respectively: (a–d) the R2 difference between Proposed1 and REF1 for 39 weekly
forecast dates and (e–h) the R2 difference between Proposed2 and REF2 for 11 weekly forecast dates.

3.2.2. Applicability Analysis

The use of random forest regression on the same forecast dates revealed that while the
R2 of REF2 was higher, its MAE was generally greater when compared to REF1 (Figure 7).
The average increase in MAE from REF1 to REF2 was −1.6, 23.8, 37.8, and 33.6 for one- to
four-weeks-ahead forecasts, respectively, while R2 increased by 0.04, 0.04, 0.03, and 0.07.
The incorporation of CFI and CTI risk indices into REF1 had a more pronounced effect on
reducing MAE and increasing R2 than incorporating them into REF2. For instance, the
forecasts from REF1 to Proposed1 exhibited a greater decrease in MAE and increase in R2
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compared to those from REF2 to Proposed2. Additionally, the changes in MAE and R2 over
time from REF1 to Proposed1 were smoother for three- and four-weeks-ahead forecasts.
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Figure 7. Comparison of the forecasting performance between two reference studies using mean
absolute error (MAE) and R-square (R2). The weekly increases in the number of cases in U.S. counties
were predicted for one to four weeks ahead, and MAE and R2 between the estimated and actual
number of cases were calculated. The proposed method was compared to two reference studies,
REF1 and REF2, respectively. There were 11 same weekly forecast dates from 1 November 2020 to 10
January 2021: (a,b) the MAE and R2 difference between REF1 and REF2 for one- to four-weeks-ahead
forecasts using random forest regression; (c–f) and (g–j), The MAE and R2 difference between the
proposed method and reference study using random forest regression, respectively.

The top eight important variables for one- to four-weeks-ahead forecasts consistently
included several CFI and CTI related risk variables in the proposed methods (Figures 8 and 9).
The variable with the highest importance ranking in the Proposed1 method was the incidence
rate in the week before the forecast date (i.e., LOG_DELTA_INC_RATE_T_1). However, the
method also gave high importance to CFI and CTI risk indices, such as IN_CFI_T and
IN_CTI_T. Moreover, the Proposed2 method consistently gave high importance to state-
level test numbers, test positivity, and the predictions of case and Rt alignment, particularly
when using elastic net regression. The random forest regression prioritized a few CFI and
CTI related variables for one- and two-weeks-ahead forecasts.

The findings indicate that the inclusion of CFI and CTI risk indices can enhance the
precision of COVID-19 forecasting models. The models that included CFI and CTI related
variables with elastic net and random forest regression methods demonstrated a reduced
MAE and an increased R2 in comparison to the reference experiments. The impact of
incorporating CFI and CTI was more notable in diminishing the MAE and elevating the R2

of REF1 than REF2. The significance ranking of variables revealed that CFI and CTI indices
were among the top predictors of COVID-19 prevalence, particularly in the proposed
method that utilized predictive variables in REF1.
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method. The elastic net and random forest regression were used to predict the weekly increases in
the number of cases in U.S. counties for one to four weeks ahead. Proposed2 represents the proposed
method based on mobility-informed risk indices and the variables used in a reference (REF2). Error
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4. Discussion

Diverse multidimensional factors may contribute to the severity and rate of disease
spread [47,48]. Examining and developing variables that account for the physics of the
disease spread process can improve the effectiveness and physical consistency of applying
predictive variables to understand the dynamics of infectious diseases. Based on human
mobility and POI information data, which are widely used to understand the diffusion
of infectious diseases [49,50], our study created mobility-informed risk indices (CFI and
CTI) by integrating inter-regional movement and the locations of infections. We further
revealed that CFI and CTI indices could effectively identify high-risk areas to help contain
COVID-19 spread at the early stages of an emerging outbreak, as well as maintain a high
accuracy rate for one- to four-weeks-ahead forecasts of disease transmission.

The timely spatial prediction of infections in the early stages of an emerging outbreak
using our proposed method can provide valuable insights for the implementation of
interventions aimed at containing disease spread. For instance, interventions such as testing,
resource allocation, travel restrictions, and school and workplace closures can be optimized
and targeted in 87% of the actual affected subdistricts, as predicted by the logistic regression
model based on mobility-informed risk indices for real-world outbreaks in Beijing and
Guangzhou (see Table 4). In contrast to traditional SEIR models, which heavily rely on
various epidemiological assumptions and parameters that may not be easily or quickly
confirmed in the early stage of a pandemic, our method is based on mobility-informed
risk variables and has fewer epidemiological assumptions and parameters. This makes it
more consistent and easier to use in various cases, especially when rapid response decision-
making is required to determine where interventions should be prioritized. Furthermore,
our approach accounts for the complex geographic drivers of spatiotemporal heterogeneity,
thereby providing accurate predictions of disease transmission.

The incorporation of CFI and CTI risk indices, which account for the physics of
disease spread, can significantly enhance the spatiotemporal prediction of the prevalence
of infectious diseases. Data analysis on COVID-19 prevalence in the United States show
that when the physics of disease dynamics involved in the predictive variables used
were less accounted for, the addition of CFI and CTI could greatly improve forecasting
performance (as seen for REF1 in Figure 7), indicating that these risk indices provide
valuable supplemental physical information. While REF2 used the projections of the case
and the effective reproduction number that involved much physical information and
had R2 greater than 0.8, the addition of mobility-informed indices still slightly improved
forecasting performance. However, the improvement was reduced as the forecasting
horizon extended from one to four weeks (as seen in Figure 5). In practice, CFI and CTI
mainly reflected the spatial risk in the two weeks following the forecast date and showed
more obvious improvement for one- and two-weeks-ahead forecasts than for three- and
four-weeks-ahead forecasts. Nonetheless, when other variables covered limited physics-
related information, CFI and CTI related variables showed higher relative importance for
three- and four-weeks-ahead forecasts (as seen in Figures 8 and 9). In summary, physics-
informed factors, such as mobility-informed risk indices, are essential in ensuring the
accuracy of disease prevalence predictions. The incorporation of CFI and CTI risk variables
can improve forecasting performance, particularly when other predictive variables have
limited physics-related information.

This study has several limitations that should be noted. First, while the CFI and
CTI variables were able to capture potential intra-regional infectious risks through the
establishment of the population flow network, they did not fully account for the risk of
infection events that may occur when an infected person moves between two regions.
Future research could optimize these indices by considering more risk events. Second,
the proposed method requires a training set generated by SEIR model simulations for the
identification of high-risk areas at the early stage of an outbreak. The prediction accuracy
could be further improved with available historical real-world epidemiological data that are
often used in decision-making in the early stage of an outbreak. Third, the effectiveness of
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our approach has been successfully validated by analyzing two scenarios of the COVID-19
pandemic in China and the United States. However, to further examine the real-world
effectiveness of these approaches, it would be beneficial to obtain more data on various
infectious diseases. By obtaining appropriate data support from other countries and regions,
our method can be extended to comprehensively understand the dynamics of infectious
diseases in diverse contexts beyond those studied. Finally, despite the use of variable
selection methods such as the elastic net and random forest regression, multicollinearity
among extensive variables may have influenced the permutation importance ranking. Thus,
variable filtering could be conducted before model training for case forecasts in the United
States to mitigate the effects of multicollinearity.

5. Conclusions

The development of robust and efficient predictive models to forecast the dynamics of
infectious diseases is crucial for timely and targeted interventions in mitigating and moni-
toring the impact of disease outbreaks and epidemics. A data-driven approach provides
rapid predictions, enabling a timely comprehension of the dynamics of both emerging and
persistent infections. By utilizing mobility-informed risk indices, an accurate portrayal of
the risk associated with spatiotemporal propagation events is achieved. These indices fur-
nish a priori information pertaining to the physical aspects of disease transmission, thereby
enhancing the prediction accuracy and physical consistency of data-driven models. While
SEIR models have found extensive application in comprehending infectious diseases, this
study also underscores the potential of machine learning and statistical regression models
in disease control and surveillance, particularly in complex and multidimensional data
scenarios. In conclusion, a data-driven approach, informed by priori physical information,
holds promise in contributing to the detection and response of infectious disease outbreaks
and epidemics.
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Figure A1. Pandemic curves of simulated COVID-19 outbreaks under different values of R0 using the
constructed SEIR model in Guangzhou and Beijing. The daily number of new cases and cumulative
cases in the two cities are shown, respectively. The simulated transmissions are presented as the
mean (solid blue lines) and 95% confidence intervals (shading) of various random source locations
of outbreaks.
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Figure A2. A time series of the total weekly number of newly increased COVID-19 cases in the
contiguous United States, along with the county-level spatial distribution of the cumulative number
of cases from 29 March to 4 April 2020. The data used for this analysis was obtained from USA Facts
(usafacts.org/visualizations/coronavirus-covid-19-spread-map, accessed on 15 July 2022), a reliable
source of information on COVID-19 cases.
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Figure A3. R-square(R2) of the proposed method on 39 weekly forecast dates in REF1 and on
11 weekly forecast dates in REF2, respectively. Forecasts with R2 less than 0 would not be displayed
in the panels.

Table A1. Number of cases in each subdistrict affected by COVID-19 outbreaks in Guangzhou and
Beijing. There were 152 cases in 16 Guangzhou communities and 368 cases in 52 Beijing communities.

Subdistrict Name Number of Cases Subdistrict Name Number of Cases

Guangzhou (21 May–18 June 2021)

Baihedong Subdistrict 91 Longjin Subdistrict 2
Zhongnan Subdistrict 29 Taihe Town 1
Zhujiang Subdistrict 10 Changgang Subdistrict 1
Ruibao Subdistrict 4 Haichuang Subdistrict 1

Dongjiao Subdistrict 3 Nanhuaxi Subdistrict 1
Dashi Subdistrict 2 Beijing Subdistrict 1
Luopu Subdistrict 2 Dongsha Subdistrict 1

Yongping Subdistrict 2 Chongkou Subdistrict 1

Beijing (11 June–5 July 2020)

Huaxiang Area 192 Changxindian town 1
Xihongmen Area 25 Changxindian Subdistrict 1

Xincun Subdistrict 21 Yuetan Subdistrict 1
Huangcun Area 17 Youanmen Subdistrict 1

Yongdinglu Subdistrict 10 Yongdingmenwai Subdistrict 1
Qingyuan Subdistrict 9 Yizhuang Area 1

Lugouqiao Area 8 Xingfeng Subdistrict 1
Majiabao Subdistrict 7 Xiaohongmen Area 1
Tiancunlu Subdistrict 6 Wanshoulu Subdistrict 1
Nanyuan Subdistrict 6 Tiantan Subdistrict 1

Changyang town 4 Taipingqiao Subdistrict 1
Qingyundian town 4 Sijiqing Area 1

Xiluoyuan Subdistrict 3 Shibalidian Area 1
Weishanzhuang town 3 Qinglongqiao Subdistrict 1

Nanyuan Area 3 Panggezhuang town 1
Lugouqiao Subdistrict 3 Lixian town 1

Dahongmen Subdistrict 3 Jiugong Area 1
Zhanlan Road Subdistrict 2 Jinrong Street Subdistrict 1

Yongding Area 2 Huilongguan Area 1
Tiangongyuan Subdistrict 2 Hepingli Subdistrict 1
Linxiao Road Subdistrict 2 Guang’anmenwai Subdistrict 1

Guanyinsi Subdistrict 2 Guang’anmennei Subdistrict 1
Fengtai Subdistrict 2 Beizangcun town 1
Beiyuan Subdistrict 2 Balizhuang Subdistrict 1

Beixinqiao Subdistrict 2 Babaoshan Subdistrict 1
Baizhifang Subdistrict 2 Anding town 1
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Table A2. Predictive variables used in reference study REF1.

Category Variable Abbreviation

Socioeconomic and demographic

Population density POP_DENSITY
Pct. of African American population PCT_BLACK
Pct. of the male population PCT_MALE
Pct. of the population aged > 65 PCT_65_OVE
Pct. of Hispanic population PCT_HISPAN
Pct. of the rural population PCT_RURAL
Pct. of Native American population PCT_AMIND
Median household income MED_HOS_IN
Pct. of the population with a college degree PCT_COL_DE
Pct. of the population who voted republican PCT_TRUMP_

Temperature Average of daily minimum temperature in one week MIN_TEMP_T
Average of daily maximum temperature in one week MAX_TEMP_T

COVID-19 incidence rate Natural logarithm of cumulative incidence rate in
one week LOG_DELTA_INC_RATE

Features derived from Facebook Intra-county movement features RATIO_MOB_T, REL_MOB_T
Inter-county features SPC_T

Features derived from SafeGraph Intra-county movement features

distance_traveled_from_home,
median_home_dwell_time,
pct_completely_home_device_count,
pct_delivery_behavior_devices,
pct_full_time_work_behavior_devices,
pct_part_time_work_behavior_devices

Inter-county features FPC_T

Table A3. Predictive variables used in reference study REF2.

Category Variable Abbreviation

Population health

Infectious disease mortality rates (tuberculosis,
AIDS, diarrheal disease, lower respiratory
disease, meningitis, hepatitis)

AIDS_mortality, diarrheal_mortality,
hepatitis_mortality, tubercolosis_mortality,
meningitis_mortality, hepatitis_mortality

Respiratory disease mortality rates (interstitial
lung disease, asthma, coal pneumoconiosis,
asbestosis, silicosis, pneumoconiosis, COPD,
chronic respiratory disease, other
pneumoconiosis, other respiratory diseases)

COPD_mortality, asbestosis_mortality,
asthma_mortality,
chronic_respiratory_mortality,
coal_pneumoconiosis_mortality,
lower_respiratory_mortality,
other_resp_mortality,
interstitial_lung_mortality,
other_pneumoconiosis_mortality,
silicosis_mortality, pneumoconiosis_mortality

Mortality risk (0–5, 5–25, 25–45, 45–65, and
65–85 age groups) mortality_risk

Life expectancy life_expectancy
Diabetes prevalence rates Diabetes_Prevalence_Both_Sexes

U.S. Census (2018 estimates)

Population density POP_DENSITY
Population TOT_POP
African Americans BA_MALE, BA_FEMALE
Native Americans NA_MALE, NA_FEMALE
Multiracial Americans TOM_MALE, TOM_FEMALE
Hispanic Americans H_MALE, H_FEMALE
Individuals over 65 years of age ELDERLY_POP
Land area Land Area

Metric that assesses the
vulnerability to COVID-19, taking
into account socioeconomic,
epidemiological, and healthcare
system risk factors

Socioeconomic Status Socioeconomic Status
Household Composition and Disability Household Composition and Disability
Minority Status and Language Minority Status and Language
Housing Type and Transportation Housing Type and Transportation
Epidemiological Factors Epidemiological Factors
Healthcare System Factors Healthcare System Factors

Features derived from Facebook Daily mobility relative to average baseline fb_movement_change
Proportion of users staying in same location fb_stationary

Epidemiological related Features
Weekly case increase confirmed_cases, confirmed_cases_norm,

normalized_cases_norm

Daily tests increase, test positivity
positiveIncrease, positiveIncrease_norm,
test_positivity, totalTestResultsIncrease,
totalTestResultsIncrease_norm

Projection of case prediction_aligned_int
Projection of Rt rt_aligned_int
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Appendix B. SEIR Model

Using human mobility data, a travel network-based SEIR modeling framework
(github.com/wpgp/BEARmod, accessed on 10 July 2020) [36] was employed to gener-
ate simulated epidemiological data under various outbreak scenarios in Guangzhou and
Beijing, where the main parameters were determined in our study (Table A4).

In terms of the epidemiological parameters for the COVID-19 outbreak in Beijing’s Xin-
fadi Market [51], the incubation period was assumed to be a mean of 5.2 days (4.1–7.0) [52].
Due to the illness’s high transmissibility during the first five days after onset [53], we calcu-
lated the daily contact rate using the basic reproduction number (R0 = 3.32, 1.4–3.9) [54]
divided by 5, weighted by the relative level of daily contact based on Baidu movement
data (Baidu-based weight). Infectiousness was apparent in an average of two to three days
prior to the development of symptoms [55], and the duration from illness onset to isolation
of the first case in Beijing was five days. Therefore, the initial lags from infectiousness onset
to isolation were set to 7.5 days. The start date of the simulation was set to 3 June 2020, as
the first case occurred in Xinfadi Market on that day.

Epidemiological characteristics of SARS-CoV-2 Delta variant infections in Guangdong,
China, from May to June 2021, were explored in another study [56]. The mean incubation
period was estimated at 5.8 days (95% CI: 5.1–6.5). Owing to 99.8% (93.2–100.0) of trans-
missions occurring within four days after illness onset, we calculated the daily contact rate
using the basic reproduction number (R0 = 4.9, 3.1–6.5) divided by 4, weighted by the daily
Baidu-based weight. Patients infected with the Delta variant maintained a high viral load
for four days before illness onset, and the number of days from illness onset to isolation of
the first case in Guangzhou was two. We then determined the initial number of days from
infectiousness onset to isolation to equal 6. The start date of the SEIR model simulation
was set to 13 May 2021, considering the first case with symptoms that occurred on 18 May
2021, and the mean incubation period was 5.8 days.

For the outbreaks in Guangzhou and Beijing, we used time lags from the first day
of the infectiousness period to the date of isolation as the proxy for the infectious period.
The implementation of large-scale nucleic acid testing shortened the infectious period,
enabling timely case isolation across the outbreak. The control effects of interventions were
expressed by the daily changing contact rate and the shortening of the infectious period.
The maximum outbreak duration was assumed to be two months.

The SEIR model was used to simulate the cumulative number of cases in a subdistrict,
and the mean of many simulations (e.g., 500) was used to estimate the regional SEIR-
based infection risk. The affected subdistricts were estimated by rounding up the infection
risk during an outbreak. We employed the constructed SEIR model to estimate affected
subdistricts throughout actual COVID-19 outbreaks in Beijing and Guangzhou. Moreover,
we used SEIR to generate simulated transmission data under various outbreak scenarios in
the two cities.

Table A4. Parameters in the epidemiological model (SEIR). To identify subdistricts affected by the
actual COVID-19 outbreak in Beijing and Guangzhou, the SEIR model was used to generate simulated
COVID-19 outbreaks in the two cities as the sample data.

Parameter Beijing Guangzhou

Basic reproduction number 3.32 (95% CI: 1.4–3.9) 4.9 (3.1–6.5)
Incubation period 5.2 days (4.1–7.0) 5.8 days (5.1–6.5)

Days from illness onset to isolation 5 4

Infectious period 7.5 (Initial) 6 (Initial)
Shortened with the implementation of large-scale nucleic acid testing

Start date of the SEIR model
simulation 3 June 2020 18 May 2021

Intervention intensity Relative level of daily contact based on Baidu movement data

github.com/wpgp/BEARmod
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