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Abstract 
Fertility projections are vital to anticipate demand for maternity and childcare services, among other uses. 
Models typically use aggregate population-level data alone, ignoring the richness of individual-level data. 
We hence develop a Bayesian parity-specific projection model combining such data sources. We apply our 
method to England and Wales, using individual-level data from Understanding Society. Fitting generalised 
additive models gives smooth projections across age, cohort, and time since last birth. We also incorporate 
prior beliefs about the relative importance of the data sources. Our approach generates plausible forecasts 
by individual-level variables including educational qualification, despite their absence in the population-level 
data. 
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1 Introduction 
Fertility projections carry great importance on their own, for example in planning maternity serv-
ices and anticipating demand for school places. As a component of overall demographic change, 
they also have a highly significant influence on projected population sizes, age structures, and the 
associated uncertainty (United Nations Development Programme, Department of Economic and 
Social Affairs, Population Division, 2019a, 2019b). Despite the large and diverse literature con-
cerning fertility forecasting models (see Bohk-Ewald et al., 2018; Booth, 2006 for reviews), these 
typically use aggregate population-level data alone, e.g. from vital registration. However, the in-
trinsic dependence of fertility on human decisions means that childbearing behaviour is influenced 
by a variety of factors acting at different levels, such as the individual or country level, with 
individual-level determinants including partnership status, income, employment, and upbringing 
(Balbo et al., 2013). Furthermore, the precise impacts of these factors differ by parity (Fiori et al., 
2014), which is defined as the number of previous live-born children. Fertility projections by 
individual-level variables including education (e.g. Abel et al., 2016; Vollset et al., 2020) and eth-
nicity (e.g. Norman et al., 2014) have been produced, but these result from a specific desire to dis-
aggregate by these covariates. In this paper, we propose a general methodology to incorporate 
individual-level variables into a parity-specific fertility projection model, determining the exact 
variables to be used within the modelling process. 
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An established body of literature is dedicated to modelling fertility at the individual level and 
exploring the impact of background factors such as those listed above. Surveys are typically 
used as they often provide detailed birth histories and individual-level background covariates. It 
is standard practice for such analyses to take parity into account, consistent with evidence that 
the factors influencing the transition to motherhood differ greatly from those affecting the transi-
tion to higher-order births (Fiori et al., 2014). The explanatory focus of much of the existing lit-
erature, together with the likelihood that the individual-level data will suffer from the issues of 
inaccuracy, bias and non-response, mean that predictive extensions remain unexplored. 
Conversely, published birth registration data has little detail apart from year of birth, mother’s 
age and possibly parity; despite this, it is collected for all births and so avoids such sampling- 
related problems. In this way, the two levels of data complement each other, with a shortcoming 
of one being a strength of the other. The intuitive next step is to develop a fertility forecasting mod-
el that combines them in some way; to the best of our knowledge, a general approach to achieve 
this does not exist in the literature. 

The proposal to combine individual- and population-level data in itself is not new. Early work 
views the population-level data as exact, and thus able to increase the accuracy and precision of 
parameter estimates from models fitted to individual-level data. Imbens and Lancaster (1994) 
use generalised method of moments estimation to specify moment conditions that force the 
population-level constraints to be satisfied; Handcock et al. (2000) present a constrained 
maximum-likelihood approach to the same end. Handcock et al. (2005) extend their earlier 
work by constraining to subgroup data as opposed to simply the general fertility rate; this im-
proves the efficiency of coefficient parameter estimates as well as the intercept. Rendall et al. 
(2008) use the same method, finding that pooling surveys can even improve the efficiency of indir-
ectly constrained parameter estimates. The proposed empirical-likelihood-based method of  
Chaudhuri et al. (2008) only requires the satisfaction of linear constraints that do not depend ex-
plicitly on the model parameters, thus providing greater computational efficiency than solving 
non-linear constraints in the approach of Handcock and colleagues. 

Bayesian approaches allow the integration of prior knowledge about the constraints and can 
therefore account for bias in the population-level data. In the context of fertility, Rendall et al. 
(2009) identify upward bias in the population-level age-specific fertility rate (ASFR) estimates for 
Hispanic women in the USA, partly due to census undercounts of the risk population. Their 
Bayesian constrained maximum-likelihood model fitted to survey data specifies various elicited pri-
ors for the population-level constraints, allowing for different amounts of correction and uncer-
tainty. Contrastingly, Zhang and Bryant (2019) identify downward bias in the population-level 
province-specific ASFR estimates for Cambodian women due to census undercounts of births. 
Their hierarchical Bayesian model for the true counts incorporates measurement error models for 
the census and survey counts, enabling quantification of the undercoverage of the former and allow-
ing the latter, assumed unbiased, to drive the model estimates. Such studies demonstrate how differ-
ent levels of data and their associated uncertainties can be combined, and known biases can be 
incorporated, coherently within a Bayesian framework. They are also consistent with the increasing 
popularity of Bayesian methods in demographic forecasting (e.g. see Bijak & Bryant, 2016). 

The advent of methods that can handle bias in the population-level data is particularly relevant 
in the case of our population-level data source, namely parity-specific fertility rate estimates for 
England and Wales from the Office for National Statistics (ONS, 2020). Before 2012, information 
about previous births was only requested at the registration of marital births (Smallwood, 2002). 
Furthermore, only children with the current husband and any previous husbands were considered 
(ONS, 2022b). Therefore, the registration birth order (when collected) differed from the true birth 
order, complicating the calculation of parity-specific fertility rates. To combat this problem, ONS 
used data from fertility histories collected within an annual sample survey, the General Household 
Survey, to adjust for the missing data (ONS, 2022b; Smallwood, 2002). In this way, there is inher-
ent uncertainty and potential bias in the ONS (2020) population-level estimates, meaning that 
they cannot be viewed as the gold standard; this strengthens our motivation for a combined model. 

Existing fertility projection models generally neglect individual-level influences, and despite 
parity-specific fertility data being collected by most countries (Jasilioniene et al., 2015), also ignore 
such information. This paper addresses these gaps in the literature by developing a Bayesian 
parity-specific fertility projection model that combines individual- and population-level data,  
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thereby exploiting the richness of this information. We illustrate our method in the context of 
England and Wales, but it can be applied to any country with the required data. Through fitting 
generalised additive models (GAMs) to the individual-level data, we estimate smooth effects of the 
covariates on the likelihood of a subsequent birth. We then determine suitable covariate models to 
marginalise over the variables unique to the individual-level data and thus integrate the 
population-level data. Our use of weights to balance the information in the data sources is a 
key methodological innovation of our approach. The paper proceeds as follows. In Section 2, 
we describe the data sources that we use to fit our model, which we specify in terms of the 
individual-level and combination stages in Sections 3 and 4, respectively. We present the results 
in Section 5, including an assessment of their sensitivity to the precise weight chosen, and provide 
a discussion in Section 6. The paper builds on work undertaken by Ellison (2021). 

2 Data sources 
Our individual-level data comes from Wave 1 of Understanding Society, i.e. the UK Household 
Longitudinal Study (UKHLS) (University of Essex Institute for Social and Economic Research, 
NatCen Social Research, Kantar Public, 2017), which collected fertility histories and additional 
information from 27,792 women between 2009 and 2011 (Institute for Social and Economic 
Research, 2022). Our sample consists of 18,218 of these women, born between 1945 and 
1992, who provided complete and valid fertility histories and were living in England or Wales 
at the time of the interview. The sample selection process is described in online supplementary 
Appendix A. From each fertility history, we construct a series of records, one for each year of 
age the woman is observed at from 15 to 44. Each record has a corresponding binary response 
variable indicating whether the woman had a birth event. It additionally includes the values of 
the ‘clock’ variables (Raftery et al., 1996), i.e. age, period, cohort, time since last birth and parity, 
and any extra survey covariates. We have 357,287 records in total across the sample. 

Our population-level data consists of parity-specific fertility rates estimated by ONS (2020). The 
dataset covers parities 0–4+ for the 1920–2003 birth cohorts from ages 14 to 45. The last year of 
observation is 2018 (compared to 2008 for our UKHLS sample), so for example the 2003 cohort is 
observed up to age 15. For consistency across datasets, we henceforth restrict our analyses to the 
1945–2003 cohorts, from ages 15 to 44 and at parities 0, 1, 2, and 3+.1 We compare the data sour-
ces, concentrating first on their observed aggregate and parity-specific rates (Figure 1). For a given 
age and cohort group, we compute the former by dividing the total number of births by the total 
number of women, and the latter for parity i by dividing the number of births of order i + 1 by 
the number of women at parity i (taking i + 1 to be 4+ when i = 3+). For the UKHLS data, we 
weight the records using cross-sectional Wave 1 survey weights, which are specific to each individ-
ual and designed to improve the representativeness of analyses. We ignore parity–age–cohort com-
binations in the ONS data if the exposure estimate is low (negative, zero, or positive but exceeded 
by the birth count), which only occurs in the higher parities at the youngest ages.2 

The most striking difference between the UKHLS rates and their ONS counterparts is the sub-
stantially increased smoothness across age and cohort in the latter, owing to the ONS exposures 
being on average 1,000 times larger than the corresponding UKHLS exposures. The significant 
noise present in the UKHLS rates, which obscures many of the shapes and trends, is mostly re-
moved in the ONS rates. However, small exposures at the youngest ages for women who have al-
ready had a birth mean that the ONS rates remain erratic here, while the UKHLS rates are typically 
unobserved or based on even smaller exposures. In Section 3, we describe the first stage of our 
modelling process involving the UKHLS data only. 

3 Modelling the individual-level data 
3.1 Introduction 
In this section, we determine appropriate models for the individual-level data, considering parities 
0–3+ separately. We fit GAMs (Wood, 2017), a flexible class of models in which main effects and 

1 We combine parities 3 and above due to small cell counts at higher parities in the UKHLS data. 
2 In our subset of the ONS (2020) data there are only two instances of negative exposures, which are said to be anom-

alies occurring during data processing; there are 28 occasions where a positive exposure is exceeded by the birth count.  
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interactions can be estimated as smooth functions. Previous studies (e.g. Ellison et al., 2022;  
Ferrara & Vidoli, 2017; Reyes Santías et al., 2011) have found GAMs to improve efficiency 
and precision over standard, more restrictive methods when estimating complex underlying effects 
and interactions. In addition to their effective use of data and ability to learn about underlying pat-
terns precisely by borrowing strength across covariate values, GAMs have many advantages in a 
predictive context. For example, GAMs are less prone to overfitting due to their efficient method of 
estimation and can therefore attain more robust out-of-sample fits (e.g. Berg, 2007; Lohmann & 
Ohliger, 2019). Their smooth framework also naturally extends to unobserved covariate values, 
conveniently linking the past and the future (e.g. Currie et al., 2004). 

We include the covariates age, cohort, and time since last birth in our modelling process. 
Fertility trends across cohorts tend to be more stable than trends across calendar time (de Beer, 
1985; Li & Wu, 2003), making the cohort approach taken in this paper appealing as a forecast 
dimension. We also consider two individual characteristics that are highly predictive of fertility 
behaviour. The first is highest educational qualification, a categorical variable with levels ‘Less 
than General Certificate of Secondary Education (GCSE)’; ‘GCSE’; ‘Advanced (A) Level’; 
‘Degree’.3 We impute values for the youngest women, many of whom are in education when in-
terviewed and so have right-censored observations (see online supplementary Appendix B for 
an explanation of the imputation model). The second is the Human Development Index (HDI) 
of the country of birth, which we will refer to as ‘birth HDI’. We use this measure since there is 
in general an association between the HDI and fertility rates (Myrskylä et al., 2009). We assign 
each woman an HDI using the 2018 values (United Nations Development Programme, 2019). 
We categorise the HDI values using the country groupings (United Nations Development 
Programme, 2018) which have levels ‘low’, ‘medium’, ‘high’, and ‘very high’ human development, 
and we also create a ‘UK-born’ category. 

3.2 Model specification 
We use discrete-time event history analysis with a logistic set-up (Steele, 2005). For a given parity 
x ∈ {0, 1, 2, 3+}, let Yi be the sum of the ni binary responses corresponding to the set of records 
sharing the ith covariate pattern, i = 1, . . . , N, where N is the number of distinct covariate pat-
terns observed in the sample of records. We assume a binomial distribution for Yi with success 
probability ri, i.e. Yi ∼ Binomial(ni, ri). Note that ri is the conditional probability of a birth event 

Figure 1. Observed fertility rates for England and Wales by parity, year of age, and grouped cohort year of birth, from 
the UKHLS and ONS data sources. UKHLS rates calculated using the records in our sample (weighted); ONS rates 
calculated using ONS (2020). Note that rates with small underlying counts have been omitted. UKHLS = UK 
Household Longitudinal Study; ONS = Office for National Statistics.  

3 Note that each category includes equivalent qualifications, e.g. O Levels, CSEs, which existed when the older co-
horts were in education. Generally, GCSEs are taken at the end of secondary schooling (around age 16) and A Levels at 
around age 18; A Levels are typically a requirement for university admission.  
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given the included covariates and x. The most complex possible GAM considered takes the form: 

logit(ri) = Fiθ + fA(ai) + fC(ci) + fT(ti) + fAC(ai, ci) + fAT(ai, ti) + fCT(ci, ti)

+ fAQ(ai, qi) + fCQ(ci, qi) + fTQ(ti, qi) + fAH(ai, hi) + fCH(ci, hi) + fTH(ti, hi).
(1) 

The first term contains the fixed effects (the intercept; main effects of categorical variables and 
their interactions), where Fi is the ith row of the fixed effects model matrix with coefficients θ. 
The following terms are smooth functions of either the main effect of one variable or the inter-
action between two variables, with the variables involved indicated by the indexing [A = age; 
C = cohort; T = time since last birth top-coded at 11 years (available for x ∈ {1, 2, 3+}); Q= high-
est educational qualification; H= birth HDI]. We undertake a careful model selection process to 
determine which of these terms are included in the final model for each parity, described in 
Section 3.3. We note that the smooth interactions are two-dimensional (2D) functions unless 
one variable is categorical (Q or H), in which case the interaction is a one-dimensional (1D) 
smooth function of the continuous variable for each level of the categorical variable. The way 
in which we construct this latter kind of smooth interaction, as the combination of a global smooth 
function of the continuous variable, and level-specific functions with differing smoothness to cap-
ture the deviations from the global effect, allows the overall level-specific effects of the continuous 
variable to be shrunk towards the global effect. This set-up is akin to that of hierarchical general-
ised linear models, with smooth functions being pooled across groups as opposed to parameter 
estimates; by extension our GAM specification is also hierarchical (Pedersen et al., 2019).4 

3.3 Model selection 
To determine a chosen model for each parity, we fit and compare increasingly more complex forms of 
equation (1). Implementing a separate model selection process for each parity promotes parsimony 
and reduces the risk of overfitting by allowing each parity-specific model to be as complex as can 
be justified by the data. Referring to model components using the initials of the variables involved 
(i.e. U for the main effect of the variable U, UV for the interaction between the variables U and V), 
we begin by enforcing an A+C+AC baseline—that is, we include smooth main effects of age (A) 
and cohort (C) as well as their smooth interaction—so that the chosen models can fit sufficiently 
well to the population-level data. Our model selection process then involves the following steps:  

1. For x ∈ {1, 2, 3+}, explore the inclusion of time since last birth (T) and its interactions with 
the other clocks (age and cohort).  

2. Explore the inclusion of highest educational qualification (Q) and its interactions with the 
clocks.  

3. Explore the inclusion of birth HDI (H) and its interaction with age.  
4. Explore the inclusion of interactions between birth HDI and the remaining covariates. 

As simpler alternatives to the qualification and HDI variables introduced in Section 3.1, in Steps 
2–4 we also consider variants with two or more levels formed by combining adjacent categories. 
The selection process reflects our expectation that the clocks have the most explanatory power, fol-
lowed by qualification and then HDI. We let qualification interact with the clocks because the lit-
erature supports at least an interaction with age (AQ), owing to greater postponement among more 
highly educated women (e.g. see Kravdal, 2001). There is also evidence for an AH interaction (e.g. 
see Waller et al., 2014), but for efficiency we only investigate further interactions involving HDI 
(i.e. proceed to Step 4) if the interaction with age provides a significant improvement in Step 3. 

In each step, we take an approach akin to forward selection, comparing models using the Bayesian 
Information Criterion (BIC). In Step 1, we compare four models to the baseline model, obtained by 
adding T, T+AT, T+CT, and T+AT+CT. The model with the largest improvement in BIC becomes 
our new preferred model, which we then build on. Steps 2 and 3 proceed similarly, except that we 

4 We note the connection between the functional regression framework and hierarchical GAMs, namely that they can 
be viewed as function-on-scalar regression (Pedersen et al., 2019). We do not consider this classification further here, but 
see Pedersen et al. (2019) for additional information and key references.  
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consider all Q (Step 2) and H (Step 3) variants in tandem as at most one can be included. Then if we 
proceed to Step 4, the chosen variant of H (and possibly Q) is already determined. We fit the models in 
R (R Core Team, 2019) using the mgcv package (Wood, 2017). We take a P-spline approach (Eilers & 
Marx, 1996), expressing the 1D smooth functions as linear combinations of local B-spline basis func-
tions and penalising the first differences of their coefficients to achieve suitable smoothness. The basis 
functions for 2D smooths are constructed by multiplying each of the univariate basis functions for the 
first variable with all of those for the second, penalising the first coefficient differences across both di-
mensions. Online supplementary Appendix C provides further details on the fitting process. As in 
Section 2, we weight the records using the survey weights. 

We present the chosen models in Table 1, together with the form of their fitted probabilities. We 
refer to the chosen model for parity x as Mx, for x ∈ {0, 1, 2, 3+}. Note that Q subscripts indicate 
the number of levels in the particular variant: Q4 is the original Q variable from Section 3.1; Q3 

has levels ‘< GCSE’, ‘GCSE/A Level’ and ‘Degree’; Q2 has levels ‘< A Level’ and ‘At least A Level’. 
We first observe that M1–M3+ include time since last birth in addition to the A+C+AC baseline, 
demonstrating its significance. The models for higher parities are less complex, supported by the 
presence of qualification in all models barring M3+, AQ only in M0 and M1, and Q4 only in M0. 
This simplification is likely partially accounted for by the fewer birth events at higher parities 
(Ellison et al., 2022). The fact that the two selected interactions involve age highlights its explana-
tory power. Lastly, the absence of HDI could be partly due to its consideration after qualification 
in our selection process. Indeed, for each parity at least two of the five models with the lowest BIC 
include HDI, evidencing its explanatory ability. 

4 Incorporating the population-level data 
4.1 Introduction 
In Section 1, we discussed the potential for bias in the ONS age–parity-specific fertility rates and 
summarised two studies that account for biases in the population-level data. Their methodologies 
require sufficient knowledge about the precise mechanism through which the bias arises. In our 
case such details are not available, and the mechanism is likely to be highly complex and parity- 
specific. Furthermore, the aim of this paper is to provide a general methodology that can be applied 
to a range of datasets. Therefore, we model the ONS data as unbiased. For a given parity x, age a, 
and cohort c, let Ya,c be the number of births and na,c the exposure. As with the UKHLS 
data in Section 3.2, we make a binomial assumption for the ONS birth counts, i.e. 
Ya,c ∼ Binomial(na,c, ra,c). Consistent with Table 1, we define the success probability 
ra,c ≡ P̂x(birth|a, c), x ∈ {0, 1, 2, 3+} as the generic form of these fitted probabilities. 

In order to integrate the ONS data into our chosen GAMs, we express each P̂x(birth|a, c) in 
terms of its corresponding fitted probability in Table 1, i.e. marginalise over the additional quali-
fication (Q) and/or time since last birth (T) covariates. Such an approach is reminiscent of the gen-
eral method used by Handcock et al. (2005) and Rendall et al. (2009) to construct their constraint 
functions. To this end, we can write: 

P̂0(birth|a, c) =


q4

P̂0(birth|a, c, q4)P̂0(q4|a, c); (2)

P̂1(birth|a, c) =


t,q2

P̂1(birth|a, c, t, q2)P̂1(t, q2|a, c)

=


t,q2

P̂1(birth|a, c, t, q2)P̂1(q2|a, c)P̂1(t|a, c, q2); (3)

P̂2(birth|a, c) =


t,q3

P̂2(birth|a, c, t, q3)P̂2(t, q3|a, c)

=


t,q3

P̂2(birth|a, c, t, q3)P̂2(q3|a, c)P̂2(t|a, c, q3); (4)  

P̂3+(birth|a, c) =


t

P̂3+(birth|a, c, t)P̂3+(t|a, c). (5)  
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For each parity, we have now expressed the marginalised probability P̂x(birth|a, c) as a weighted 
sum of the original GAM probabilities across all combinations of the corresponding Q and/or T 
values. The weights are (products of) conditional probabilities of these covariate values given oth-
er variables in the model. We classify the covariate probabilities by whether they model qualifica-
tion given age and cohort, or time since last birth given age, cohort, and qualification (note that 
dependence on qualification is only present for parities 1 and 2). In order to determine appropriate 
models for the covariate probabilities within these two groups, we require parity-specific counts by 
the variables involved for England and Wales. We obtain these from our sample of UKHLS re-
cords. We note that in order to marginalise the projections, it is necessary for these models to pro-
vide projected values for the unobserved age–cohort combinations. In Sections 4.2 and 4.3, we 
detail the modelling processes for the two groups. 

4.2 Modelling qualification given age and cohort 
Here, we model the dependence of Q4, Q2, and Q3 (variant definitions given in Section 3.3) on age 
and cohort for parities 0, 1, and 2, respectively. We omit records for the post-1982 cohorts as their 
qualification values are imputed, and it is undesirable for our modelling decisions to be 
imputation-dependent. We determine suitable models for each parity which we then extrapolate, 
giving smooth fitted age–cohort surfaces for all the desired age–cohort combinations, i.e. for each 
of the 1945–2003 cohorts from ages 15 to 44 (see Section 2). We note that some of these combi-
nations, such as the 1995 cohort at age 40, are in the future. 

We briefly describe our modelling approach and selection process, with further details given in  
online supplementary Appendix E. We model the probability of belonging to each qualification 
category using Bayesian multinomial logistic regression, with the first level as reference category. 
We experiment with various specifications of the linear predictors and fit the models in R using the 
rstan software package (Stan Development Team, 2019), which implements the efficient 
Hamiltonian Monte Carlo methodology. We compare models using the BIC and perform a rough 
assessment of fit using a Pearson chi-squared statistic, selecting the model with the lowest BIC and 
a sufficiently close fit for each parity. In order to visualise the results of the model selection process, 
in Figure 2 we plot the fitted (posterior mean) probabilities of belonging to each qualification cat-
egory for a given age, cohort and parity. We achieve smoothness across age by constraining each 
series of age-specific parameters using a first-order random walk prior—this borrowing of strength 
is especially important for parities 1 and 2, where we have small exposures at the youngest ages 
and therefore considerable uncertainty about the corresponding parameters. Comparing the por-
tions to the left of the dividing lines (the age–cohort combinations used in model fitting) with the 
observed proportions (not shown here), they exhibit the same features and trends but with greater 
smoothness across both dimensions. This facilitates a plausible and appropriate extrapolation to 
future age–cohort combinations (the portions to the right of the dividing lines). 

4.3 Modelling time since last birth given age, cohort, and qualification 
To model the dependence of time since last birth (T) on age and cohort for parity 3+, and addition-
ally on qualification for parities 1 and 2, we take a similar approach to Section 4.2.5 We present the 

Table 1. Chosen models for parities 0–3+ (M0–M3+) with the generic form of their fitted probabilities 

Model Model description Fitted probability  

M0 A+C+AC+Q4+AQ4 P̂0(birth|a, c, q4) 

M1 A+C+AC+T+Q2+AQ2 P̂1(birth|a, c, t, q2) 

M2 A+C+AC+T+Q3 P̂2(birth|a, c, t, q3) 

M3+ A+C+AC+T P̂3+(birth|a, c, t) 

Note. A= age; C = cohort; Q= highest educational qualification (see text for variant definitions); T = time since last birth. 
Single letters are main effects, pairs of letters are interaction effects.  

5 Again we omit records corresponding to the post-1982 cohorts for parities 1 and 2, where we have dependence on 
qualification.  
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fitted (posterior mean) probabilities of belonging to each time since last birth category for a given 
age, qualification level, and parity in Figure 3, and highlight some key features of the surface before 
summarising the modelling approach (online supplementary Appendix F gives further details). 
First, the number of observable time since last birth categories increases from 3 at age 15 to our 
top-coded maximum of 11 for ages 23+.6 Second, there are opposing trends at the youngest 
and oldest ages, the proportions peaking at T = 1 and T = 11, respectively. This is intuitive be-
cause births to young women are likely to have occurred very recently, while at older ages the op-
posite is true. Third, we note that each diagonal line of cells parallel to the ‘step’ line corresponds to 
a different age at last birth event, increasing from 12 to 43. The approximate parallelograms of 
higher density in each surface thus represent the commonest ages at entry into the particular parity 
(or possible re-entry in the case of parity 3+). Further disaggregation by cohort resulted in surfaces 
exhibiting similar patterns. However, the smaller exposures led to increased parameter uncer-
tainty especially for the younger cohorts. We therefore ignore dependence on cohort, enabling 
maximal borrowing of strength and minimal extrapolation. 

As the number of observable time since last birth categories varies with age, we specify a separ-
ate multinomial model for each value from 3 to 11. However, we share T-specific parameters 
across age (and possibly qualification) by fitting the models simultaneously to the time since last 
birth counts for a given parity. We fit Bayesian models with various forms of the linear predictors, 
and perform model comparison and informal fit assessment as in Section 4.2. Again we employ a 
first-order random walk prior, this time to smooth the age-at-entry-specific parameters, reducing 
their uncertainty particularly at younger ages. The correspondence of the fitted probabilities in  
Figure 3 with the observed proportions (not shown here) is closest for older ages at entry, but 
the fit at younger ages looks plausible given that we aimed to obtain a smooth surface across all 
observable combinations of age and time since last birth. 

4.4 Integrating the data sources 
To incorporate the population-level data into our model for the individual-level data, we combine 
our chosen GAMs (Section 3.3) with the elements developed in Section 4. Using the notation of 
Section 3.2, for a given parity x and the ith covariate pattern we let nw

i and r̂i = yi/ni be the 
weighted number of records and the unweighted proportion of successes respectively. Then we ex-
press the binomial log-likelihood contribution for the UKHLS (individual-level) data, ℓINDIV, as: 

ℓINDIV =
N

i=1

nw
i {r̂i log ri + (1 − r̂i) log (1 − ri)}. (6) 

This adjusts the weighting method slightly from Section 3.3 to provide the integer number of trials 
and successes required by the Stan software (Stan Development Team, 2019), which we use for 
model fitting.7 Using the notation of Section 4.1, the equivalent quantity for the ONS (population- 
level) data, ℓPOP, is: 

ℓPOP =


a,c

na,c{r̂a,c log ra,c + (1 − r̂a,c) log (1 − ra,c)}, (7) 

where r̂a,c = ya,c/na,c is the observed proportion of successes. Note that the summation is over all 
observed age–cohort combinations in the ONS data. 

If we were to simply maximise the sum of the likelihoods in equations (6) and (7), we would 
essentially be combining the UKHLS and ONS populations; consequently, the information con-
tained in the ONS data would dominate our overall inference due to its significantly larger expo-
sures. To balance the sources of information we take a logarithmic pooling approach. Logarithmic 
pooling of prior distributions is commonly used to combine the opinions of experts in Bayesian 

6 This is because we censored any births to women aged less than 12 at the time of the birth, treating their dates as 
missing. 

7 In this way, we still use the weighted number of trials but replace the weighted proportion of successes with the 
unweighted proportion. This amounts to scaling the trial and success counts by the same factor, namely the quotient 
of the weighted and unweighted number of trials.  
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analyses (e.g. see Carvalho et al., 2023; Poole & Raftery, 2000). This method has also been applied 
to likelihoods to integrate information from multiple independent data sources and subsequently 
improve predictive performance (Fletcher et al., 2019; Hu & Zidek, 2002). Taking this latter im-
plementation, we introduce a weight w ∈ [0, 1] that gives us control over the joining of the two 
populations. Weighting the UKHLS and ONS contributions in equations (6) and (7) by (1 − w) 
and w, respectively, we then obtain the following combined log-likelihood contribution, ℓcomb: 

ℓcomb = (1 − w) × ℓINDIV + w × ℓPOP. (8) 

In this way, with the proportion of successes remaining unchanged, we are able to downweight 
each of the UKHLS and ONS exposures by (1 − w) and w respectively. We observe that setting 
w = 0 corresponds to putting full weight on ℓINDIV and no weight on ℓPOP, thereby fitting a 
UKHLS-only model; conversely, setting w = 1 corresponds to an ONS-only model. For 
w ∈ (0, 1), the combined population is a weighted average of the UKHLS and ONS populations. 

A key challenge of this approach is choosing the value of w—to inform this, we derive an ap-
proximate interpretation. In Section 2, we noted that the ONS exposures are around 1,000 times 
greater than the corresponding UKHLS exposures. If, for convenience, we approximate the ratio 
of the UKHLS to the ONS exposures by 1:999, and believe a priori that the relative importance of 
the two datasets to overall inference is INDIV:POP, it can be easily shown that it is appropriate to 
set w = POP/(999 × INDIV + POP). This does however assume equal overdispersion in the two 
datasets, which may be unrealistic. In Table 2, we present various ratios INDIV:POP, together 
with the corresponding value of w. Starting from a 9:1 ratio, we increase the ONS contribution 
up to a 1:9 ratio, generating weights between 0.0001 and 0.009. This demonstrates that due to 
the large exposures in the ONS data, an a priori belief that the datasets are equally important 
only requires a very small value of w (0.001). We note that the derivation, and by extension the 
correspondence between INDIV:POP and w, is not precise—it just gives a rough indication of 
how the value of w can be interpreted. 

4.5 Fitting the Bayesian parity-specific fertility projection model 
In this subsection, we summarise the fitting process for our Bayesian parity-specific fertility 
projection model. First, as in Sections 4.2 and 4.3, we use the rstan software package (Stan 
Development Team, 2019). We therefore need to formulate Bayesian GAMs that incorporate 
the mgcv set-up in terms of basis functions and penalisation (see Section 3.3 and online 
supplementary Appendix C), with some adaptations to suit our proposed projection model.8 

Figure 2. Parity-specific Lexis surfaces of the fitted probabilities corresponding to the final models for each 
qualification category and a given age and cohort. Qualification categories correspond to the variant included in the 
particular chosen model in Table 1. The dividing lines indicate the age–cohort combinations used in model fitting (the 
1945–1982 cohorts, observed up to 2007); to the right of these lines the probabilities are extrapolations.   
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We do this by combining the likelihood in equation (8) with priors on the parameters controlling 
the smoothness of each of the functions in our particular chosen GAM (see Table 1) to express our 
belief that smoother functions are more likely. 

For ease of explanation, we describe the construction of the prior for a general smooth function 
that can either be 1D or 2D (see Section 3.2). Following from the description of the P-spline ap-
proach given in Section 3.3, we model this function as the product Mμ, where M is the matrix 
of basis functions and μ the vector of basis function coefficients. 

Taking a 1D smooth function first, we let S be the penalty matrix such that μ′Sμ gives the sum of 
the squared first coefficient differences to be penalised (see Section 3.3). Lastly, we define the 
smoothing parameter τ, which controls smoothness such that smaller values of τ impose greater 
smoothing. Following Umlauf et al. (2018), we then specify the prior for μ, conditional on τ, as 

f (μ|τ) ∝
S
τ











1
2

exp −
1
2

μ′
S
τ

 

μ
 

. (9) 

For a 2D smooth function, the construction of the prior extends naturally to accommodate the fact 
that the coefficient differences are penalised across two dimensions rather than one (Section 3.3). 
Consequently, we have two penalty matrices, S1 and S2, and two smoothing parameters, τ1 and τ2. 
We specify the resulting prior as: 

f (μ|τ1, τ2) ∝
S1

τ1
+

S2

τ2











1
2

exp −
1
2

μ′
S1

τ1
+

S2

τ2

 

μ
 

. (10) 

We specify a weakly informative N+(0, 102) half-normal prior on smoothing parameters τ to give 
the data sufficient freedom to determine appropriate smoothness. We specify N(0, 102) priors on 
all other parameters. 

Figure 3. Parity-specific Lexis surfaces of the fitted probabilities corresponding to the final models for each time 
since last birth category and a given age and qualification category. Qualification categories correspond to the variant 
included in the particular chosen model in Table 1. The empty cells in the top-left corner of each plot indicate age– 
time since last birth combinations that are not observed, as they correspond to ages at birth younger than 12.  

8 We adapt the mgcv basis functions in two ways: (1) We amend our basis functions for the age and cohort smooths 
so that they cover the required ranges (15–44 and 1945–2003, respectively). (2) We retain the linearly dependent basis 
functions for the 2D smooths, which are removed in the mgcv fitting process (see Section C.3 of the online supplementary 
Appendix C), to obtain more appropriate forecast intervals.  
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Then, for each parity we integrate the Stan code for the chosen GAM (Section 3.3) and the rele-
vant covariate models (Sections 4.2 and 4.3), allowing simultaneous fitting. We can therefore ac-
cess the resulting probabilities and marginalise over qualification and/or time since last birth to 
obtain the ra,c’s (Section 4.1). Finally, we adjust the log-likelihood contribution as in equation 
(8) to incorporate the ONS data. We refer to these models, which combine the data sources using 
a particular weight w ∈ [0, 1], as ‘integrated models’. We perform 1,000 warmup and 1,000 re-
tained iterations for each model, which takes approximately 3, 9.5, 11, and 3 h on average for par-
ities 0, 1, 2, and 3+, respectively, on a 2.7 GHz Intel Core i7 Windows machine. This correlates 
strongly with the number of covariate patterns N in the UKHLS dataset (Section 3.2): while par-
ities 0 and 3+ include only one of qualification and time since last birth in their chosen models 
(Table 1), parities 1 and 2 include both and therefore have considerably larger values of N. 

5 Results 
5.1 Initial examination of the effect of varying the pooling weight 
For each parity, we fit a Bayesian version of the UKHLS-only GAM chosen in Section 3.3, and in-
tegrated models for the INDIV:POP ratios proposed in Table 2. We begin by investigating the effect 
of varying INDIV:POP on the model fits, forecasts, and their plausibility. In Figure 4, we plot the 
posterior means of the marginalised probabilities, i.e. the ra,c’s (see Section 4.1) for all age–cohort 
combinations and ascending w, with the observed ONS rates in the bottom row. Consequently the 
figure presents a spectrum of models, the ONS contribution increasing as we move downwards. For 
convenience, we refer to the integrated models using the odds notation in Table 2. We reiterate that 
these should not be overinterpreted, and are simply being used as they carry more meaning than w 
itself. 

For parity 0, comparing the projections from the 1:0 (UKHLS-only) model to those from the 9:1, 
2:1, and 1:1 models, we see that incorporating the ONS data reverses the increases forecast by the 
former to increasingly slower declines, which are quickest at the youngest ages. This is driven by 
the additional observations from the 1993–2003 cohorts in the ONS data (see Section 2). In par-
ticular, the diminishing rates of early motherhood only start to occur for these more recent co-
horts, so the 1:0 model forecasts could not be influenced by this. As the ONS contribution 
increases further to the 1:9 model, we see stronger recuperation of first births at older ages; this 
is likely to be due to the greater emphasis on recent declines. Comparing the analogous plots 
for parity 1, the differences, albeit less drastic than parity 0, are again most noticeable for the 
youngest cohorts. We also see that the fitted probabilities at around age 20 for the oldest cohorts 
reduce slightly to align with the ONS rates. Increasing w shifts the projected curves for the young-
est cohorts to the left, leading to increases at younger ages and faster decreases at older ages. This is 
likely an effect of overfitting to the little ONS data available for these cohorts, and can be seen most 
clearly in the 1:9 model forecast. 

The impact of introducing the ONS data is significant for parity 2, the shape of the curves from 
ages 15 to 22 transforming from a gradually increasing to sharply declining trend from a much 
higher level. A dramatic change at these young ages is unsurprising given the erratic nature of their 
observed rates due to low exposures (see Section 2). Regarding the forecasts, the curves for the 
youngest cohorts are close for small w, however with larger w they decline with quickening speed; 

Table 2. Various a priori beliefs about the relative importance of the UKHLS and ONS datasets INDIV:POP, with the 
corresponding required weight w on the ONS exposures (given to 1 significant figure) 

INDIV:POP w  

9:1 1/8,992 ≈ 0.0001 

2:1 1/1,999 ≈ 0.0005 

1:1 1/1,000 = 0.001 

1:2 2/1,001 ≈ 0.002 

1:9 9/1,008 ≈ 0.009   
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this presents even stronger evidence that the need to fit closely to the ONS data is dominating the 
need for smoothness and hence overfitting is occurring. Lastly, the parity 3+ forecasts only change 
slightly for the youngest cohorts between the 1:0 and 1:1 models. Moving towards the 1:9 model 
there is greater disparity across the curves at the youngest ages, and a gradual lowering of the 
curves for the most recent cohorts. 

Figure 4. Fitted (posterior mean) probabilities of a birth event given age, cohort, and parity for various integrated 
models, and the observed parity-specific fertility rates from ONS (2020). Dashed lines indicate forecasts, i.e. 
age–cohort combinations after the most recent year of observation across the included datasets.   

12                                                                                                                                                   Ellison et al. 
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/advance-article/doi/10.1093/jrsssc/qlad095/7343209 by H
artley Library user on 08 N

ovem
ber 2023



In conclusion, we see that even the 9:1 model considerably adjusts the forecasts for the youngest 
cohorts, aligning the fits with the ONS rates reasonably precisely. Increasing the ONS contribution 
up to the 1:9 model improves this alignment but also overfits to the erratic rates at young ages, 
leading to unrealistic declines forecast for parities 1 and above. For convenience, in the following 
subsections we will concentrate on a subset of these models, namely the 1:0, 1:1, and 1:9 models, 
to contrast examples with high UKHLS, roughly equal, and high ONS contributions, respectively. 

5.2 Unmarginalised results 
In this section, we present the probabilities directly modelled by our chosen GAMs from Section  
3.3, i.e. those depending on qualification (Q) and/or time since last birth (T) in addition to age and 
cohort. We focus on parities 0 and 1 as the presence of age–qualification interactions means that 
when plotting the probabilities by age for a given cohort, they exhibit more interesting features 
than a simple change in level. Starting with parity 0, in Figure 5 we plot the posterior mean prob-
abilities for the 1:0, 1:1, and 1:9 models by age and cohort for each qualification level, with the 
marginalised probabilities from Figure 4 in the first column. There is strong evidence of postpone-
ment across qualification: for example, the curves for the mid-1980s cohorts are strongly bimodal 
with peaks at younger and older ages for the lower qualification levels, but unimodal with one 
higher peak at older ages for the ‘Degree’ category. A similarly changing age pattern is identified 
and discussed extensively in Ellison et al. (2022). 

As in Section 5.1, we see the reigning in and reversal of the optimistic and explosive 1:0 model 
forecasts upon incorporating the ONS data. However, being able to plot the qualification-specific 
forecasts gives us an additional insight into the mechanism through which these changes can be 
realised. For example, the forecasted declines in teenage fertility mostly occur to those with lower 
levels of education, whose curves change from strongly bimodal to unimodal for the youngest co-
horts (Figure 5). In this way, the model predicts a convergence to a late childbearing pattern across 
the qualification categories. The ability of our integration method to retain qualification and time 
since last birth, and hence allow us to improve forecast plausibility for population subgroups de-
termined by these variables despite the ONS data not explicitly informing about them, is a key 
strength of our approach. 

Figure 5. Fitted (posterior mean) probabilities of a birth event given age, cohort, highest educational qualification 
and being in parity 0 for various integrated models. Dashed lines indicate forecasts, i.e. age–cohort combinations 
after the most recent year of observation across the included datasets.   
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Next, we present the parity 1 results, two key differences being that the qualification variant, Q2, 
has two categories (‘< A Level’ and ‘At least A Level’), and time since last birth is included. In  
Figure 6, for the 1:0 and 1:1 models we plot the posterior mean birth probabilities and their corre-
sponding 95% credible intervals (CIs), for selected cohorts and an age at first birth of 19 years, as 
this is the most common value in our sample. In this way, A = 20 is equivalent to T = 1, A = 21 to 
T = 2, and A ≥ 30 to T = 11, and so the effects of age and time since last birth are confounded. The 
likelihood of a second birth peaks sharply at 2–3 years after the first, before declining steeply. We 
still see postponement, here through the decrease and increase in level at younger and older ages 
respectively for the ‘At least A Level’ category. The effects of incorporating the ONS data identified 
in Section 5.1 persist, albeit less noticeably due to the confounding and truncated age range. 
Regarding the CIs, we observe a significant reduction in uncertainty through integrating the 
ONS data; this further illustrates the benefits of combining the datasets for inferring about variables 
that are unavailable at the population level. The CIs also indicate that the peak around A = 22 is not 
so severe for cohorts currently younger than this; for example, the intervals for the 2000 cohort 
under the 1:1 model allow for reasonable flexibility in its location, height, and sharpness. 

5.3 Marginalised results 
Next, we concentrate on the marginalised probabilities, i.e. those depending on age and cohort 
only. We plot the posterior means in Section 5.1 so here, for the 1:1 model and each parity, in  
Figure 7 we present the 95% CIs for the underlying probabilities for selected cohorts. We also pre-
sent results from fitting the 1:1 model using the ONS data available in 2013 rather than 2018, the 
five years of holdout data allowing us to assess forecast sensitivity. We overlay the ONS rate es-
timates for comparison, but we do not expect 95% of them to lie within the CIs; this is mainly 
because the fit is also influenced by the UKHLS data. We note that the intervals do not include 

Figure 6. Fitted (posterior mean) probabilities of a birth event given age, cohort, highest educational qualification, 
time since last birth and being in parity 1, with age at first birth fixed at 19 years (thick lines), and their corresponding 
95% credible intervals (thin lines), for various integrated models. Dashed lines indicate forecasts, i.e. age–cohort 
combinations after the most recent year of observation across the included datasets.   
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predictive uncertainty, which would widen them slightly where exposures are small, i.e. for the 
youngest ages at parities 1 and above. 

For parity 0, we plot the results for the full and truncated datasets respectively in rows 1 and 2 of  
Figure 7. Each vertical line indicates the last observed age, with points to the right excluded from 

Figure 7. Fitted (posterior mean) probabilities of a birth event given age, cohort and parity (thick lines), and 95% 
credible intervals (thin lines), for the 1:1 model fitted using ONS data to 2018 and 2013. ‘Observed’ and 
‘Unobserved’ refer, respectively, to the data points included in, and excluded from, model fitting. Dashed lines 
indicate forecasts, i.e. age–cohort combinations after the most recent year of observation across the included 
datasets; vertical lines correspond to this most recent year of observation. ONS = Office for National Statistics.   
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model fitting (i.e. unobserved). We see that truncating the dataset leads to severe declines in the 
fertility level across all ages for the younger cohorts, whereas with the full dataset the decreases 
at young ages are partially offset by a strong recovery predicted at older ages (see also  
Figure 4). Despite this, the unobserved rates tend to lie in the intervals, albeit towards the upper 
bound, which is expected given the more negative forecasts. This suggests that a tighter prior on 
the smoothing parameter for the cohort main effect may be necessary to incorporate our prior be-
lief that cohort changes are relatively slow, thereby reducing the risk of quickly emerging trends at 
young ages being extrapolated across the age range. Although the change in level makes it difficult 
to compare the widths of the CIs for the youngest cohorts, for slightly older cohorts with more 
observed data (e.g. the 1980s cohorts) the intervals are noticeably wider with the truncated data-
set, as anticipated. 

For parity 1 (rows 3 and 4 of Figure 7), the posterior means change less dramatically with the 
truncated dataset, and there is a clear increase in forecast uncertainty for all cohorts. However, we 
see less stability across cohorts at older ages, with reasonably strong decreases in level for the 
youngest cohorts (e.g. the 2000 cohort) at ages above 30. The CIs perform slightly better com-
pared to those for parity 0, the unobserved points occupying different regions of the intervals; 
they are also wide enough to account for the erratic observations at young ages. For parities 2 
and 3+ (rows 5–8 of Figure 7) the widening of the intervals is even more striking, with the trun-
cated dataset giving rise to increases for the youngest cohorts at younger ages (most notably the 
2000 cohort), which are particularly steep for parity 3+ at ages 15–30. While these optimistic fore-
casts appear to be inappropriate for parity 2, with the unobserved points near the lower bounds of 
the CIs, they look to be more justifiable for parity 3+. 

5.4 Aggregate results 
In this final subsection, we additionally marginalise over parity to obtain measures on the aggre-
gate level, namely ASFRs and completed family size (CFS). For a particular cohort c, the ASFR at 
age a is calculated by dividing the total number of births by the total number of women; summing 
these ASFRs across the reproductive age range then gives the CFS, which represents the average 
number of children born to women in cohort c. Inspired partly by the methodology of  
Smallwood (2002), we describe our approach for a given model and iteration of its marginalised 
probabilities. We take the age–cohort exposures as known, using midyear population estimates 
from ONS (2020) up to 2018, and the ONS 2018-based National Population Projections 
(NPPs) thereafter (ONS, 2019). For a given cohort, we first assume that all women are childless 
at the youngest reproductive age considered (15 in our case). Next, at each age we sample order- 
specific birth counts from binomial distributions with number of trials equal to the estimated 
parity-specific exposures, and success probabilities equal to the corresponding marginalised prob-
abilities. We use these to update the number of women exposed at each parity at the next age, 
which we then scale so that they sum to the appropriate midyear population estimate. 

For each age, aggregating the births and dividing by the midyear population estimate gives a sam-
ple of the ASFR, and summing the ASFRs over age gives a sample of the CFS. Repeating this process 
for each iteration and cohort gives us 1,000 samples of each ASFR and CFS, from which we calcu-
late posterior means and 95% CIs. In Figure 8, we present these quantities for the ASFRs of selected 
cohorts, for the 1:1 model with truncated and full ONS datasets (see Section 5.3), and the 1:9 mod-
el. Similarly to Figure 7, we overlay the ONS rate estimates. However, as these are direct estimates 
and our intervals incorporate predictive uncertainty (through the binomial variability), we can as-
sess the fit and forecast performance of our integrated models more reliably. 

The fits of the 1:1 models are reasonably close, with some overprediction for the 1976 and 1982 
cohorts at ages 20–30. This discrepancy diminishes with more weight on the ONS data in the 1:9 
model. As in Section 5.3, the forecast intervals noticeably widen upon truncating the ONS dataset; 
they include most of the unobserved data points, but perform poorly for the 1982 cohort. The 1:9 
model CIs are slightly narrower than those for the corresponding 1:1 model, owing to the larger 
combined population in the likelihood (see Section 4.4). The last row displays the projected ASFRs 
under the principal variant of the 2018-based NPPs. We observe that these are considerably higher 
than the 1:9 model posterior means at ages 20–25 (e.g. the 2000 cohort) and 30–35 (e.g. the 1994 
cohort).  
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Figure 9 plots the 50% and 90% CIs for the CFS under the 1:1 and 1:9 models fitted to the full 
ONS dataset, overlaying the observed values. As in Figure 8, the 1:9 model fit is closer and the fore-
cast CIs are narrower. We additionally overlay the corresponding CIs for the Bayesian cohort fer-
tility forecasting model of Schmertmann et al. (2014a), which was found to be one of the 
best-performing methods in a recent comparative paper (Bohk-Ewald et al., 2018; Ellison et al., 
2020). We fit the model using the code provided on the accompanying website (Schmertmann 
et al., 2014b), with minor modifications to update the input data. Comparing with the 1:9 model 
(right panel), we see that both models predict broadly similar trends in the CFS with comparable 
levels of uncertainty; however, the decline is projected to begin slightly later under the model of  
Schmertmann et al. (2014a) and so the intervals remain at higher levels. We also overlay CFS pro-
jections derived from the principal, low fertility and high fertility variants of the 2018-based NPPs. 
They represent three distinct scenarios rather than a probability interval so we cannot perform a 
direct comparison. However, we observe that while our models forecast steep declines over the 
next 30 years, the principal variant predicts a gradual decrease with a slight resurgence for the 
youngest cohorts. This is consistent with the higher predicted ASFRs at key reproductive ages 
(Figure 8). We also note that our projections align most closely with the low fertility NPP variant. 

6 Discussion and conclusion 
This paper proposes methodology for obtaining parity-specific projections of fertility rates within 
a Bayesian set-up, allowing explicit and coherent uncertainty quantification. The core of our ap-
proach is a GAM initially fitted to individual-level data, into which we incorporate population- 
level data. We achieve this integration through a sophisticated marginalisation process, enabling 
examination of the results at three levels—unmarginalised, marginalised and aggregate—for 

Figure 8. Fitted (posterior mean) probabilities of a birth event given age and cohort (thick lines), and 95% credible 
intervals (thin lines), for various integrated models fitted using ONS data to 2013 and 2018, as well as the ASFRs 
from the principal variant of the ONS 2018-based NPPs (bottom row). ‘Observed’ and ‘Unobserved’ refer 
respectively to the data points included in, and excluded from, model fitting. Dashed lines indicate forecasts, i.e. 
age–cohort combinations after the most recent year of observation across the included datasets; vertical lines 
correspond to this most recent year of observation. ONS = Office for National Statistics; ASFRs = age-specific 
fertility rates; NPPs = National Population Projections.   
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differing relative contributions of the data sources. Our proposal advances the fertility projection 
literature in two main ways. First, we project fertility by parity, while current methods typically 
neglect to include such information. This allows us to mimic the sequential nature of childbearing 
decisions and capture the differences between the populations at risk of each birth order. Second, 
we incorporate individual-level data, selecting the variables to be included during the modelling 
process rather than beforehand, as has been done in the existing literature. This flexible and gen-
eral approach is also principled, as the choice of variables is data-driven. 

As, to the best of our knowledge, such a fertility projection model has not been previously pro-
posed, our main discussion points concern the methodological challenges posed and how we ad-
dress them. An important challenge is how best to obtain expressions of parity-specific birth 
probabilities by age and cohort when additional individual-level variables, here qualification 
and time since last birth, are involved. The aforementioned marginalisation approach is also 
used in the fertility estimation models of Handcock et al. (2005) and Rendall et al. (2009). 
These papers use the observed proportions to take a weighted average of the birth probabilities, 
but we found this to be unsatisfactory for two reasons. First, it does not translate well to a fore-
casting context, unless a crude approach such as freezing the proportions is applied. Second, if the 
proportions progress erratically, as we found for parity 3+ across age at small time since last birth 
values, this behaviour filters through to the marginalised level. We therefore develop multinomial 
logit projection models for the covariate probabilities that enforce smoothness across age (Sections  
4.2 and 4.3). These models fit the observed counts closely, but their determination adds consider-
able complexity to our modelling process. 

Following this marginalisation, another key challenge is how best to combine the individual- 
and population-level data sources. Due to a lack of knowledge as to the direction or amount of 

Figure 9. Completed family size posterior distributions under various integrated models and the model of  
Schmertmann et al. (2014a), as well as variants from the ONS 2018-based NPPs. Vertical lines indicate the last 
fully-observed cohort across the included datasets. ONS = Office for National Statistics; NPPs = National Population 
Projections.   
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bias in either dataset, it is not appropriate to use one source to constrain the inferences from the 
other, which tends to be done in previous work (Handcock et al., 2005; Rendall et al., 2009;  
Zhang & Bryant, 2019). We opt to take a logarithmic pooling approach applied to the likelihoods, 
governed by the critical pooling weight w (Section 4.4). Reweighting the likelihood allows us to 
control the balance of the information provided by both data sources in an intuitive way, with 
the value of w interpretable in relation to the relative importance of the datasets. However, the 
resulting combined likelihood, which is non-standard in that it is constructed from two data sour-
ces rather than a single source, can be viewed as somewhat abstract. 

A further challenge is that of determining an appropriate value for w. We examine the sensitivity 
of projections to w, presenting marginalised forecasts for a range of values (Section 5.1); this is 
similar in spirit to Rendall et al. (2009), where various constraint priors are compared. This ap-
proach is manageable here because we only have one weight to vary; however, it would become 
impracticable were we to combine a larger number of data sources, and it also does not allow 
the weight(s) to be informed by the model itself (Carvalho et al., 2023). Various methods to learn 
about such weights more formally have been proposed in the literature, including cross-validation 
(Fletcher et al., 2019; Wang & Zidek, 2005) and modelling the weights explicitly as parameters, 
with associated priors in a Bayesian context (Carvalho et al., 2023). In our case, the need to use 
Monte Carlo methods to approximate the posterior, together with the highly contrasting sample 
sizes in the two data sources, mean that a cross-validation approach would likely prove problem-
atic (Guo et al., 2012). A preliminary attempt to specify a prior for w in the parity 3+ model re-
sulted in a posterior mean roughly corresponding to a 70:1 model (see Section 4.4), which 
would seem to give insufficient weight to the population-level data. Further work on methodology 
to estimate w is planned. 

The final challenge is how best to additionally marginalise across parity, thus obtaining projec-
tions at the aggregate level that can be contrasted with existing methods. We achieve this by cu-
mulating cohort fertility as in Smallwood (2002). This is not ideal as it assumes invariance of 
the parity distribution to mortality and migration in the population, which could have a significant 
impact on the results, particularly in the case of migration. Further information on the resulting 
caveats is provided in the methods protocol for the Human Fertility Database, where a similar ap-
proach is taken to construct fertility tables (Jasilioniene et al., 2015). Comparing our projections 
of CFS with those from the model of Schmertmann et al. (2014a), we find that the intervals overlap 
extensively (Figure 9). This is reassuring given that Bohk-Ewald et al. (2018) found this model to 
outperform existing methods in terms of uncertainty quantification. There are some small differ-
ences however, possible reasons for which we describe below. 

One explanation for the discrepancies could be that the cumulative contributions across parity 
exacerbate the projected decline under our proposed model. Related to this, we note that close 
alignment with the population-level data at the aggregate level (i.e. the ASFRs) necessitates the 
same at the parity-specific level, i.e. by choosing a larger value of w. This is problematic because 
we have less confidence in the parity-specific rates compared to the ASFRs, and increasing w leads 
to overfitting and faster-changing projections (Section 5.1). Thus, future work should explore a 
joint approach, whereby the ASFRs could be constrained directly using the population-level esti-
mates, and the CFS constrained to change in line with past trends (Figure 9) or expert opinion, for 
example from the NPP consultations (ONS, 2022a). This could help to inform about biases in the 
parity-specific rate estimates, increase forecast precision, and reduce forecast sensitivity to the 
amount of training data (Sections 5.3 and 5.4). 

We make some additional suggestions for future extensions of this work. First, a key limitation 
is that we only present a single implementation of our proposed model—it is vital to investigate the 
robustness and generalisability of our methodology when applied to alternative data sources and 
to data from different countries. Of particular interest are countries where the required data are 
less accessible and may therefore be coarser or cover a shorter time period, for example less- 
developed countries. It is likely that the ability to constrain the ASFRs directly, an area of future 
work described above, will be essential if there is limited or even no availability of population-level 
parity-specific rates. Second, in this paper our geography of interest is England and Wales as a 
whole. However, there is also considerable subnational variation in fertility patterns and levels 
(e.g. see Campisi et al., 2020; Fiori et al., 2014). Accounting for such differences would rely on 
having sufficiently detailed data at the individual and/or population levels; it would also greatly  
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increase model complexity, which may not be justifiable. Depending on the research question, the 
geography and variables of interest might change. Further work could therefore include country, 
region and other variables in the model selection process so that they can be chosen if they substan-
tially improve model fit. 

In conclusion, combining individual- and population-level data in our Bayesian parity-specific 
fertility projection model generates plausible probabilistic forecasts for population subgroups de-
termined by characteristics such as qualification and time since last birth, despite their absence in 
the population-level data. This has richness and value in itself, but also requires sophisticated 
methodology to perform the marginalisation. A comparison with one of the best-performing ex-
isting models indicates that our model predicts with reasonable accuracy and uncertainty; how-
ever, integrated modelling of the parities is needed to determine whether individual-level and/or 
parity information can improve predictive performance. Despite Bohk-Ewald et al. (2018) finding 
minimal accuracy gains in more complex cohort fertility forecasting methods, if a model incorp-
orating such information can be fitted with reasonable efficiency and forecast with comparable re-
liability, the additional ability to provide plausible breakdowns by parity and/or individual-level 
variables would prove extremely valuable. 
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