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A | SAMPLE SELECTION PROCESS

The process of obtaining our sample of 18,218 women from the initial 27,792 interviewed inWave 1 of the UKHLS is
outlined in Figure 10. A very similar process is followed to select theUKHLS sample used in Ellison et al. (2022), the key
differences being that birth cohort is not taken into account and a longer observation period is considered. To avoid
repetition, we summarize the differences here and direct interested readers to Appendix A of the aforementioned
paper for further details:
• Exclusion criterion 3: We exclude the comparatively smaller samples of women born in the pre-1945 and 1994

cohorts as their inclusion would introduce substantial uncertainty into our inferences.
• Exclusion criterion 7: Given our reproductive age range of 15-44, January 1960 is the first month where the

1945 cohort is observable (namely the January-born women). We choose the endpoint of November rather than
December 2008 for the same reason as that in Ellison et al. (2022); however, a consequence of this is that we
lose the 1993 cohort (N = 282 in Figure 10) from our sample, as only the January-born were observable at age
15 with the December cutoff.

F IGURE 10 Exclusion flowchart to illustrate the selection of the women in our sample.
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B | QUALIFICATION IMPUTATION MODEL

B.1 | Introduction

In Section 3.1 of the paper we mentioned the right-censoring of our highest educational qualification variable Q ,
caused by the youngest women still being enrolled at the time of survey and hence likely to achieve higher qualifica-
tions than those reported. To illustrate the problem, in Figure 11 we plot the unweighted proportion of women in the
Q4 categories (‘< GCSE’, ‘GCSE’, ‘A Level’, ‘Degree’1) for each cohort in our sample. The proportions appear to change
reasonably smoothly across cohort until we reach those born in the early 1980s (in their late twenties at the time of
survey), after which the ‘Degree’ proportions decline to zero quite rapidly. This is because many of the women in the
more recent cohorts have been interviewed before reaching the age at which we would expect a degree to have been
completed if it was going to be. The locations of the change points for the lower qualification levels are staggered
due to their successively younger average ages of completion. For example, the ‘A Level’ proportions show an un-
precedented rise starting from the mid-1980s cohorts, counteracting the ‘Degree’ decline - many of these women are
simply ‘waiting’ in the ‘A Level’ category until they are able to obtain a degree. The ‘GCSE’ and ‘< GCSE’ proportions
are stable up until the very youngest cohorts, where we see sharp rises in the proportions balanced by a steep decline
in the ‘A Level’ proportion, as many of the women are now too young to have even reached this qualification level.

If we were to proceed to modelling with the qualification variable in its current form, we would not be able
to reliably interpret the results due to this changing meaning across cohorts. Instead, we develop an imputation
model that we use to assign more plausible values to the youngest women. We present the modelling approach and
imputation method in Sections B.2 and B.3, and the results in Section B.4.

F IGURE 11 Plot of the unweighted proportion of women in the highest educational qualification categories
(‘< GCSE’, ‘GCSE’, ‘A Level’ and ‘Degree’) for each of the cohorts in our sample; solid lines indicate the three-year
moving average.

1Note that each category includes equivalent qualifications, e.g. O Levels, CSEs, which existed when the older cohorts were in education. Generally, GCSEs
are taken at the end of secondary schooling (around age 16) and A Levels at around age 18; A Levels are typically a requirement for university admission.
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B.2 | Modelling

To determine our imputation model, we fit various multinomial logistic regression models to the Q = Q4 counts that
we believe to be uncensored (we perform a sensitivity analysis to select our precise ‘cutoff’, i.e., the cohort after which
we will impute). It is clear that C = cohort should be a regressor, and we also explore the inclusion of our remaining
time-constant covariate, H = birth HDI, through its variants introduced in Figure 12.

F IGURE 12 Illustration of the variants of the categorical variable H (birth HDI); numbers and colours indicate
the levels of each variant; H3b indicates that the H variant is the second one (b) with three categories for example.

For a given cutoff c∗, we letN ∗ be the number ofwomenwithC ≤ c∗. LetYi be the vector of indicator variables for
each of theQ4 categories for the i th woman, e.g., if the i th woman belongs to the ‘GCSE’ category thenYi = (0, 1, 0, 0) .
Then we let Yi ∼ Multinomial(1, π1
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which are fitted simultaneously. Letting H = H∗ be a given H variant with K categories, we experiment with various
forms for the linear predictors ηj

i
, which we specify in Table 3.

TABLE 3 Specifications of potential imputation models; ηj
i
is the linear predictor from equation (11);

ci ∈ {1945, . . . , c∗} is the cohort of the i th woman and hi ∈ {1, . . . ,K } is her H value (in the order given in Figure 12).
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We will refer to the models as M1-M4. In words, M1 just contains an intercept, M2 adds the main effect of
C , M3 adds the main effect of H∗ and M4 adds an interaction between C and H∗. We fit M1-M4 using the mgcv

package in R, with M3 and M4 being fitted for all of the H variants in Figure 12, for a plausible set of potential cutoffs
c∗ ∈ {1980, . . . , 1984}. We find that M4 with H∗ = H3e gives the lowest BIC for each potential cutoff and so is our
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chosen model. Solving the equations in (11) for each π
j
i
(using the fact that ∑4

j=1 π
j
i
= 1), we obtain:

π1
i =

1

1 + ∑4
j=2 exp(ηji )

; π j
i
=

exp(ηj
i
)

1 + ∑4
j=2 exp(ηji )

, j = 2, 3, 4.

Using this relationship to compute the fitted probabilities and forecasts generated by simple extrapolation, we
find that the fits generally track the trends of the observed proportions well for each potential cutoff. We decide to
set c∗ = 1982 for the imputation because the gradients of the ‘Degree’ fits appear to decrease at a faster rate for
the post-1982 cutoffs, particularly in the foreign-born categories; this implies that the forecasts are becoming more
sensitive to the declining ‘Degree’ proportions close to the cutoff and therefore an earlier cutoff is preferable.

B.3 | Method

We illustrate our imputationmethod for a given post-1982 cohort c ∈ {1983, . . . , 1992} andH3e value h ∈ {1, 2, 3}. For
a hypothetical woman with these covariate values, let π̂1

c,h
, . . . , π̂4

c,h
be the extrapolated fitted probabilities generated

from our chosen multinomial model. Let n j ,obs
c,h

be the number of women originally observed in Q category j , n j ,r eq
c,hbe the number of women required in Q category j , and n

j ,cur
c,h

be the number of women currently in the category,
initially set as the observed count n j ,obs

c,h
. Let nobs

c,h
=

∑4
j=1 n

j ,obs
c,h

and n
r eq
c,h

=
∑4

j=1 n
j ,r eq
c,h

. In essence, our imputation
process adjusts the number of women originally observed in each Q category to match the counts implied by the
fitted probabilities as closely as possible; women can either stay in their current category or move up to a higher level,
and certain checks are required to ensure that the total matches nobs

c,h
throughout. We perform the following steps:

1. Let n j ,r eq
c,h

= round(nobs
c,h

π̂
j
c,h

) , j = 1, . . . , 4 be the initial required counts. If, due to the rounding, the sum of the
required counts is one fewer than the sum of the observed counts (i.e., nr eq

c,h
− nobs

c,h
= −1), add 1 to n

j ′,r eq
c,h

, where
j ′ = argminj (���frac (

nobs
c,h
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j
c,h

)
− 0.5

���) is the category for which the decimal part of nobs
c,h

π̂
j
c,h

is closest to 0.5 and is
therefore the most borderline required count. If there is one too many in the required counts (nr eq

c,h
− nobs

c,h
= 1),

subtract 1 from n
j ′,r eq
c,h

for the same reason.
2. Then, for j̃ = 1, 2, 3, do the following:

a. Compute n
j̃ ,d i f
c,h

= n
j̃ ,cur
c,h

− n
j̃ ,r eq
c,h

, the difference between the current and required counts.
b. If the difference is positive (n j̃ ,d i f

c,h
> 0), move the excess n j̃ ,d i f

c,h
women currently in category j̃ to j̃ + 1, sampled

at random.
c. If the difference is negative (n j̃ ,d i f

c,h
< 0), fix the required count at its current value (set n j̃ ,r eq

c,h
= n

j̃ ,cur
c,h

). Then,
increase the required counts in the higher categories proportionally by computing

n
j ,r eq
c,h

= round ©«
π̂
j
c,h

∑4
k=j̃+1 n

k ,cur
c,h∑4

k=j̃+1 π̂
k
c,h

ª®¬ , j = j̃ + 1, . . . , 4

and adjusting if nr eq
c,h
, nobs

c,h
similarly to Step 1 (only possible for j̃ ∈ {1, 2}).

d. If the difference is zero (n j̃ ,d i f
c,h

= 0) move on to the next category (again, only possible if j̃ ∈ {1, 2}), i.e., set
j̃ = j̃ + 1.

We present the results of the imputation process in Section B.4.
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B.4 | Results

The imputation process moves women up to higherQ categories according to our chosenmultinomial model, allowing
us to generate a more realistic series of proportions for the post-1982 cohorts compared to the observed proportions
in Figure 11. We illustrate the impact on the unweighted (updating Figure 11) and weighted proportions by cohort
in Figure 13. Regarding the former, the fact that our sample consists predominantly of UK-born women means that
even though we have imputed at the level of H3e , the resulting aggregate proportions are relatively smooth. Ideally
we would have imputed on the weighted level directly, but this would require a more complicated process than that in
Section B.3 in order to appropriately select the women who should move to higher Q categories given their different
weights. Despite this, the weighted imputed proportions are only slightly more erratic than their unweighted counter-
parts, and definitely not at all implausible. So overall we are satisfied that this imputation suits our purposes in terms
of providing a set of more appropriate and realistic Q values for the youngest women in our sample. We replace Q

with this ‘mean imputation’ for all analyses performed in the paper.

F IGURE 13 Plots of the unweighted and weighted proportions of women in the highest educational qualification
categories for each of the cohorts in our sample (open circles and dashed lines), with the proportions resulting from
the imputation process overlaid (filled circles and solid lines); vertical black lines indicate the 1982 cutoff.
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C | FITTING GAMs IN R USING THE mgcv PACKAGE

In this appendix we give further details on the fitting process of GAMs in R using the mgcv package (Wood, 2017) and
taking a P-spline approach (Eilers and Marx, 1996). We break our description down into three sections, the first two
concerning the construction of the univariate and bivariate smooth functions. In each case there are two aspects to
consider: the form of the function itself, and its degree of smoothness. Sections C.1 and C.2 explain how these aspects
are controlled respectively via bases and penalties. In Section C.3 we then demonstrate how these components come
together in the model fitting process, through the method of penalized likelihood maximization. We illustrate the
concepts in the context of a binomial logistic GAMwith univariate smooths of age and cohort, and a bivariate smooth
of the two variables (see Section 3.2 of the paper). For convenience, we suppose we are fitting this GAM to the
UKHLS dataset so that our covariate values, when taken together, constitute the set of age-cohort combinations for
ages 15-44 and the 1945-1992 cohorts that are observable in the dataset; this gives N = 1005 covariate patterns.

C.1 | Bases

In the case of univariate smooths, the functions themselves are usually expressed as linear combinations of basis func-
tions, where a spline basis is commonly used. A spline is a curve constructed from a series of piecewise polynomials
joined together at knots, and is continuous up to its second derivative. Various spline bases exist, each with their
own advantages; we opt for a cubic B-spline basis. B-splines are a popular choice due to the local nature of the basis
functions, each being non-zero across the interval between a fixed number of knots (Wood, 2017). Let A be an N × k

matrix, where ai j is the j th cubic B-spline basis function evaluated at xi , the i th value of the covariate N -vector x. We
present this unconstrained basis for dimension k = 9 and x = age in the top-left panel of Figure 14.

A property of an unconstrained B-spline basis is that the sum of the values that the k basis functions take at any
given xi is 1 (i.e., ∑k

j=1 ai j = 1 for i ∈ {1, . . . ,N }), which means that the intercept term is in the span of the basis. This
is not a problem if there is only one smooth term in the model, as in this case a separate intercept term is simply not
included; however it is highly undesirable if there are multiple smooth terms, as they cannot each estimate their own
intercept (Wood, 2017). To this end, Wood (2017) imposes a sum-to-zero identifiability constraint on the basis using
a method based on the QR decomposition.

For readers unfamiliar with the QR decomposition, we provide a brief introduction here. Let Y be an s × t real
matrix with s ≥ t . The QR decomposition of Y factors the matrix as the product of an s × s orthogonal matrix Q and
an s × t upper triangular matrix R, i.e., Y = QR. As the bottom (s − t ) rows of R consist entirely of zeroes, it is common
to partition R or both R and Q as follows:

Y = QR = Q
[
R1

0

]
= [Q1 : Q2 ]

[
R1

0

]
= Q1R1 .

R1 is a t × t upper triangular matrix, 0 is an (s − t ) × t zero matrix, and Q1 and Q2 have orthogonal columns and
dimensions s × t and s × (s − t ) respectively. We now return to discussing the sum-to-zero constraint.

Lettingα be the k -vector of basis function coefficients, the value obtained when the unconstrained smooth term
is evaluated at xi can be written as f (xi ) = Aiα, where Ai is the i th row of A. The N -vector of these values can then
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F IGURE 14 Unconstrained (ai j ), constrained (bi j ) and reparameterized (ci j ) cubic B-spline bases of dimension 9,
8 and 8 respectively for the covariate age; vertical dashed lines indicate knot locations for the unconstrained and
constrained bases, and x∗ for the reparameterized basis; horizontal dashed lines are at y = 0 and y = 1.

be written as f (x) = Aα. A sum-to-zero constraint is enforced across f such that ∑N
i=1 f (xi ) = 1′f (x) = 1′Aα = 0;

this causes the smooth to be orthogonal to the intercept, allowing the “sharpest inference about the constrained
components” (Wood, 2017) to be made. The constraint is implemented by finding a k × (k − 1) matrix Z such that
1′AZ = 0. This is achieved by obtaining the QR decomposition of Y = (1′A) ′ and taking Z = Q2. Then we have:

1′AZ = (1′A)Z = Y′Q2 = (Q1R1 ) ′Q2 = R′
1Q

′
1Q2 = R′

10 = 0

as desired, with Q′
1Q2 = 0 because Q1 and Q2 are formed of distinct columns of Q, which is an orthogonal matrix.

Having obtained the matrix Z, the smooth is then reparameterized in terms of a (k − 1)-vector γ such that
α = Zγ ⇒ γ = Z′α, and an N × (k − 1) matrix of constrained B-spline basis functions B = AZ. Then f (x) = Aα =

AZγ = Bγ satisfies the constraint as 1′AZ = 1′B = 0 and therefore 1′f (x) = 1′Bγ = 0γ = 0, as desired.
In the top-right panel of Figure 14 we illustrate the effect of the constraint. The degree of freedom used up
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through enforcing the sum-to-zero constraint is absorbed into the new basis via the simultaneous removal of the first
basis function and transformation of the rest, which introduces substantial asymmetry into the basis. This constrained
basis is used by mgcv for the univariate smooth terms, allowing a separate intercept to be estimated without any
identification issues.

Next we consider the implementation of bivariate smoothing of the continuous variables x and y . We note that
if the bivariate smooth of a continuous variable x and a discrete variable y is desired, a separate univariate smooth
function of x is estimated for each distinct value of y using the constrained basis discussed above.

There are twomainways to performbivariate smoothing of continuous variables in mgcv, namely isotropic smooth-
ing and tensor product smoothing: we use the latter approach as it naturally extends the univariate methods discussed
thus far and also removes the need for scaling (Wood, 2017). To construct the tensor product basis, the univariate
(or marginal) bases are first reparameterized for a second time so that the coefficients are the values of the smooth at
the (k − 1)-vector x∗ of evenly spaced covariate values. This improves the interpretation of the smoothing penalties
(Wood, 2017). Omitting the details, we let C be the N × (k − 1) matrix of reparameterized B-spline basis functions
with δ the corresponding (k − 1)-vector of coefficients. We represent C graphically in the bottom panel of Figure 14.

Letting C∗ be the (k − 1) × (k − 1) matrix of the reparameterized basis functions evaluated at x∗, it is clear from
Figure 14 that C∗ = Ik −1, i.e., the j th basis function is zero at all values of x∗ except x ∗

j
, where it is 1. Consequently,

f (x∗ ) = C∗δ = Ik −1δ = δ, i.e., the coefficients of the smooth are the values it takes at x∗, as desired.
Let Cx and Cy be the N × (k − 1) matrices of reparameterized basis functions for x and y . To obtain the basis, we

multiply each of the marginal basis functions for x with all of those for y , resulting in a basis dimension of (k − 1)2.
We let D be an N × (k − 1)2 matrix of tensor product basis functions. Mathematically, we have:

D = Cx ⊙ Cy =



cx11c
y
1 cx12c

y
1 · · · cx

1(k −1)c
y
1

cx21c
y
2 cx22c

y
2 · · · cx

2(k −1)c
y
2

.

.

.
.
.
.

. . .
.
.
.

cxN 1c
y
N

cxN 2c
y
N

· · · cx
N (k −1)c

y
N


,

where ⊙ represents the row-wise Kronecker (tensor) product and cy
i
denotes the i th row of Cy . Each of the (k − 1)2

basis functions in D is now a 2D surface, with the tensor product smooth term formed from a linear combination of
these surfaces in the same way as for the univariate smooths. Letting the (k − 1)2-vector of coefficients be denoted
by ζ, we define f (x, y) = Dζ to be the N -vector of values obtained when the tensor product smooth is evaluated at
each of the pairs (xi , yi ), i = 1, . . . ,N .

In Figures 15a-15c we present the tensor product bases constructed from the unconstrained, constrained and
reparameterized marginal bases respectively. Although only the latter (Figure 15c) is actually used in the model fitting
process, it is interesting to observe the increasing complexity of the surfaces caused by the successive transformations
being applied to the marginal bases. However, we note that the effect in terms of its smoothness is as it would be
if the basis in Figure 15a were used - the transformations depicted in Figures 15b and 15c are purely carried out for
the purposes of identifiability and interpretability. We motivate the use of penalties and describe their construction
in Section C.2.
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F IGURE 15 Tensor product bases for the smooth interaction between the covariates x = age and y = cohort constructed from the (a) unconstrained, (b)
constrained and (c) reparameterized marginal basis functions.
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C.2 | Penalties

Having discussed the forms of the univariate and bivariate smooth functions, the second aspect to consider is the way
in which their smoothness can be controlled via penalties. To put this into context we briefly introduce the concept
underlying the model fitting process, which we will give further details on in Section C.3. There are two opposing aims
to balance: goodness of fit to the data and smoothness; putting too much weight on the former can lead to overfitting
(and undersmoothing), whereas too much weight on the latter can lead to underfitting (and oversmoothing). Letting
β and ℓ (β) be the vector of model parameters and model log-likelihood respectively, we estimate the model by
maximising the penalized log-likelihood ℓp (β) , defined below:

ℓp (β) = ℓ (β) − 1

2

np∑
j=1

λj Pj (β) . (12)

Here, np is the total number of penalties (each univariate smooth function has one penalty while a 2D bivariate smooth
requires two, one for each dimension), λj > 0 is the smoothing parameter for the j th penalty, and Pj (β) is the j th
penalty term which depends on β. The penalty terms measure the roughness of the function, with smaller values
indicating greater smoothness. Each λj controls the aforementioned trade-off by weighting the contribution of its
corresponding penalty term, Pj (β) , to the sum of the penalties. In order to maximize ℓp (β) , it is clear that the larger
the value of λj , the more we will favour values of β that give rise to smaller values of Pj (β) . We will now explain how
the penalty terms are constructed, again for univariate and bivariate smooth terms as in Section C.1.

Returning to our unconstrained B-spline basis (see Figure 14), we note that the closer the values of the adjacent
basis coefficients, the smoother the resulting function; indeed, identical coefficients give rise to a constant function.
Therefore it is intuitive to penalize the (squared) differences between consecutive coefficients, i.e., apply difference
penalties; combining B-splines with such penalties was termed ‘P-splines’ by Eilers and Marx (1996). We use a first-
order difference penalty, with penalty term

P (α) =
k −1∑
i=1

(αi+1 − αi )2 .

It is clear that P (α) = 0 ⇐⇒ α1 = · · · = αk , i.e., only a constant function invokes a zero penalty. We can write
P (α) = (Pα) ′ (Pα) = α′P′Pα = α′ (P′P)α = α′Sαα, where

P =


−1 1 · · · 0

.

.

.
. . .

. . .
.
.
.

0 · · · −1 1


so that Pα =


α2 − α1
.
.
.

αk − αk −1


, as required.

We define Sα = P′P to be the k × k penalty matrix. In mgcv, Sα is scaled by the quotient of the maximum absolute
column sum of Sα (in this case, 4) and the squared maximum absolute row sum of A (in this case, 1) - we will call this
scaled version Sαs .

To obtain the penalty matrix for our constrained B-spline basis (see Figure 14), we simply express P (α) in terms
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of the new coefficients γ using the relationship α = Zγ:
P (α) = α′Sαsα = (Zγ ) ′Sαs Zγ = γ′Z′Sαs Zγ = γ′Sγγ = P (γ ), (13)

where Sγ = Z′Sαs Z is the (k − 1) × (k − 1) penalty matrix.
For the bivariate smooth there are two penalty matrices, one for each covariate direction. We first obtain the

two (k − 1) × (k − 1) reparameterized marginal penalty matrices for the covariates x and y , which we call Sx
δs

and
Sy
δs

respectively. Note that Sδ is obtained by expressing P (γ ) in terms of the new coefficients δ in a similar way to
equation (13), and is then scaled by its largest eigenvalue to obtain Sδs . We then define the two (k − 1)2 × (k − 1)2

tensor product penalty matrices as Sx
ζ
= Sx

δs
⊗ Ik −1 and Syζ = Ik −1 ⊗ Sy

δs
, where ⊗ denotes the Kronecker product. We

rescale these similarly to Sα , except using D in the place of A. We call the resulting matrices Sx
ζs

and Sy
ζs
.

Having now determined our matrix of basis functions B and our penalty matrix Sγ for the univariate case, and our
matrix of basis functions D and our penalty matrices Sx

ζs
and Sy

ζs
for the bivariate case, we discuss the model fitting

process in Section C.3.

C.3 | Model fitting

We begin by letting Bx and By be the N × (k − 1) matrices of constrained basis functions for x and y , and Sxγ and Syγ
be the corresponding penalty matrices. Before we fit the model, we test for linear dependence of the tensor product
basis functions on the intercept and marginal basis functions for x and y , i.e., of X2 = D on X1 = [1 : Bx : By ].
We follow the method described in Appendix D and implemented by the fixDependence function in mgcv. If any
dependence is present, we remove the identified columns from D, and the columns and corresponding rows from Sx

ζsand Sy
ζs

- we denote these reduced matrices by Dr , Sx
ζr

and Sy
ζr

respectively. Therefore the final model matrix in our
example is X = [1 : Bx : By : Dr ] and the final penalty matrices are Sxγ , Syγ , Sxζr and Sy

ζr
- we will call these S1, . . . , S4

for convenience.
Continuing from Section C.2, we letβ be the parameter vector containing the intercept and the coefficients of the

marginal and tensor product bases in X. Specifying our binomial logistic GAM explicitly, we letYi ind∼ Binomial(ni , ri ) ,
i = 1, . . . ,N , where ni is the number of women in the i th age-cohort group and ri is the probability of a birth in that
group. Then our GAM sets logit(r) = Xβ. We also set np = 4 and Pj (β) = β′Sj ′β, j = 1, . . . , 4, where Sj ′ is Sj
appropriately embedded as a diagonal block in an otherwise zero matrix, so that we obtain the correct penalty term.
Our penalized likelihood ℓp (β) , specified in equation (12) in Section C.2, then becomes:

ℓp (β) = ℓ (β) − 1

2

4∑
j=1

λjβ
′Sj ′β. (14)

For a given vector of smoothing parameters λ, the maximization problem can be solved (i.e., β can be estimated)
by the method of penalized iteratively re-weighted least squares (PIRLS) - see Wood (2017) for details. In the case
of logistic GAMs, which have a known scale parameter, λ is chosen to minimize the unbiased risk estimator (UBRE)
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criterion (Craven and Wahba, 1979) by default:
UBRE =

D

N
+ 2p̂

N
− 1,

where D is the model deviance and p̂ is the effective number of parameters. This latter quantity is defined as the trace
of the projection or hat matrix, as in linear regression. It is also possible to disaggregate the total by the smooth terms
and even the parameters themselves. Returning to the UBRE, we note that it is effectively just the Akaike Information
Criterion, i.e., the AIC (= 2p̂ − 2ℓm where ℓm is the log-likelihood of the fitted model) rescaled:

UBRE =
AIC
N

+ 2ℓs
N

− 1,

where ℓs is the log-likelihood of the saturated model which fits the data perfectly.
For various trial λ’s, the UBRE is evaluated upon convergence of the PIRLS scheme - the λ that gives the smallest

UBRE is then chosen, along with its corresponding estimate of β. Alternative methods to estimate λ are available in
gam, including a Laplace approximation to restricted maximum likelihood (REML) estimation and minimization of the
generalized cross validation (GCV) criterion.

C.4 | Formulating a Bayesian GAM

An overview of the Bayesian formulation is given in Section 4.5 of the paper, however for completeness we note some
additional details. To connect the description in Section 4.5 of the paper to this appendix, we let τj = 1/λj , j = 1, . . . , 4

be the inverses of the original smoothing parameters. The total smoothing penalty in equation (14) then becomes:
4∑

j=1

β′ Sj ′
τj

β = β′ ©«
4∑

j=1

Sj ′
τj

ª®¬β = β′S (τ )β,

where S (τ ) = ∑4
j=1

Sj ′
τj

is the combined penalty matrix as a function of the new smoothing parameters τ . Following
Umlauf et al. (2018), we specify the below prior for β, conditional on τ :

f (β |τ ) ∝ |S (τ ) |
1
2 exp

(
− 1

2
β′S (τ )β

)
. (15)

Note that equation (15) is equivalent to combining equations (9) and (10) of the paper, which are written for general
1D and 2D smooth functions, for all smooth functions included in the particular model being fitted. The prior for β
is based on the multivariate normal distribution, and its spread is determined by the smoothing parameters τ . The
proportionality expresses our prior belief that smoother functions are more likely, as this gives higher prior probability
density to values ofβ that give rise to smaller values of the total penaltyβ′S (τ )β for fixed τ . However, the strength of
this prior belief depends heavily on the value of τ : small values of τ impose substantial smoothingwhereas large values
of τ have negligible effect (note that this is the opposite interpretation to λ as a result of the inversion). Therefore
the prior on τ is critical. The weakly informative prior that we specify in the paper is not so vague that it provides
no information, but not so precise that we are unable to learn from the data. In this way we give the data sufficient
freedom to determine the best compromise between goodness of fit and smoothness, as was the case in the classical
approach described in Section C.3.
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D | NUMERICAL IDENTIFICATION OF DEPENDENCE

Let X2 be the model matrix for the tensor product smooth term, and X1 be the combined model matrix for the in-
tercept and marginal smooth terms for the covariates involved in the tensor product smooth. We want to test for
linear dependence of X2 on X1. If X1 and X2 are separately of full column rank, we can do this by obtaining the QR
decomposition of [X1 : X2 ] = Q∗

[
R∗

0

]
(see Section C.1). Then if X2 depends on X1 ([X1 : X2 ] has reduced column

rank), the upper triangular matrix R∗ has reduced rank with the order of rank deficiency given by the size of the zero
block at the lower right corner of R∗. The use of column pivoting when computing the QR decomposition of a rank
deficient matrix is preferable - to avoid the selection of any of the r columns of X1 for removal through the pivoting
process, the QR decomposition of [X1 : X2 ] is performed in two steps:

1. Obtain the QR decomposition of X1 = Q1

[
R1

0

]
.

2. Let Q′
1X2 =

[
Ḡ
G

]
, where Ḡ contains the first r rows of Q′

1X2 and G contains the rest.

Then obtain the QR decomposition of G = Q2

[
R2

0

]
with pivoting.

Noting that asQ1 is an orthogonal matrix, X2 = Q1Q′
1X2 = Q1

[
Ḡ
G

]
, we can express the QR decomposition of [X1 : X2 ]

in the following way:

[X1 : X2 ] =
[
Q1

[
R1

0

]
: Q1

[
Ḡ
G

] ]
= Q1


R1 Ḡ

0 Q2

[
R2

0

] = Q1

[
Ir 0

0 Q2

] 
R1 Ḡ
0 R2

0 0


= Q∗

[
R∗

0

]
,

where Q∗ = Q1

[
Ir 0

0 Q2

]
and R∗ =

[
R1 Ḡ
0 R2

]
.

In this way, if dependence is present then then will be a zero block at the lower right corner of R2. The dependent
columns are then easily identifiable as the X2 columns that were pivoted to these final columns in Step 2, and can
subsequently be removed to ensure identifiability.
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E | MODELLING QUALIFICATION GIVEN AGE AND COHORT: FURTHER
DETAILS

Following on from Section 4.2 of the paper, in this appendixwe provide further details on themodelling of qualification
(Q ) given age (A) and cohort (C ), which for convenience we will refer to as modelling Q |A,C .

E.1 | Model specification

We begin by specifying the form of our multinomial logistic regression model in a similar way to the imputation model
in Section B.2. For a given parity, age a , cohort c, and qualification variable Q with nq categories (in ascending order),
let Ya,c = (Y 1

a,c , ...,Y
nq
a,c ) be the vector of counts and nobsa,c be the total observed number of records. Then we let

Ya,c ∼ Multinomial(nobsa,c , π
1
a,c , . . . , π

nq
a,c ) , where π

j
a,c is the probability of belonging to the j th Q category, j = 1, . . . , nq ,

and ∑nq
j=1

π
j
a,c = 1. With Q category j = 1 as the reference category, we specify the model through the equations:

log
(
π
j
a,c

π1
a,c

)
= η

j
a,c , j = 2, . . . , nq , (16)

which are fitted simultaneously. We experiment with various forms for the linear predictors ηja,c , which we specify in
Table 4.
TABLE 4 Specifications of the initial Q |A,C models; ηja,c is the linear predictor from equation (16); nq is the
number of qualification categories; x̃ indicates that the variable x is centred around the median of its distinct values.

Model (M) Specification

1 η
j
a,c = β

j
0 [j

2 η
j
a,c = β

j
0 + β

j
1c̃ [j

3 η
j
a,c = β

j
0 + β

j
2,c [j

4 η
j
a,c = β

j
0 + β

j
2,c + β

j
3 ã [j

5 M4 but with η
nq
a,c = β

nq
0 + β

nq
2,c + β

nq
4,a

6 M5 but with η
nq −1
a,c = β

nq −1
0 + β

nq −1
2,c + β

nq −1
4,a

7 η
j
a,c = β

j
0 + β

j
2,c + β

j
4,a [j

We will refer to the models as M1-M7. In words, M1 just contains an intercept, M2 adds the main effect of C
as a linear term while M3 modifies this to be a set of cohort-specific parameters (essentially treating C as a discrete
variable rather than continuous); we take the 1945 cohort to be the reference category. M4 adds a linear age effect
to M3 while M5 again changes this to be a set of age-specific parameters for j = nq only (when nq ∈ {3, 4}); M6
uses this more complex representation of A for j ∈ {3, 4} when nq = 4, while M7 allows this for all j ≥ 2. We take
age 15 as the reference category for parity 0, but age 44 for parities 1 and 2. This is because we found that the low
exposures at the youngest ages led to great uncertainty in the parameter estimates if the youngest age was taken to
be the reference category.
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E.2 | Model fitting and comparison

For each parity, we fit these models in R using the Stan software package (Stan Development Team, 2019). Weweight
the contribution to the multinomial log-likelihood for each age-cohort combination so that the implied sample size is
the weighted number of person-years (denoted nobswa,c ) as opposed to the raw number nobsa,c - this is achieved by using
the weight nobswa,c /nobsa,c . Vague N (0, 102 ) priors are specified for the model parameters. For each model we perform
1,000 warm-up iterations followed by 1,000 retained iterations, and find that the samples exhibit a strong level of
convergence.

To compare models we use the Bayesian Information Criterion (BIC), which balances goodness of fit to the data
with complexity, i.e., the number of parameters; smaller values are desirable. We perform a rough assessment of
model fit using a Pearson chi-squared statistic, X 2:

X 2 =
∑
a,c,j

(nobsw
a,c,j

− nobswa,c π̂
j
a,c )2

nobswa,c π̂
j
a,c

, (17)

where nobsw
a,c,j

is the observed number of person-years with age a , cohort c and qualification level j multiplied by the
weight above, and π̂

j
a,c is the corresponding posterior mean probability (this is also used in the BIC computation). For

each model we compute this statistic and for calibration present the 95% quantile of the χ2
ν distribution (χ2

ν,0.95), with
ν the appropriate degrees of freedom if the model were unpenalized (ν = (nq −1) ×nobsac −p , where nobsac is the number
of observed age-cohort combinations and p is the number of model parameters).

E.3 | Initial results and variant descriptions

We present the results of this initial modelling in Table 5, noting that it is not possible to fit M5 for parity 1, and M6
for parities 1 and 2, as their nq values are too small. The parity 0 results show M4-M7 (models including age as well
as cohort) to have reasonable X 2 values; however the BIC is lowest for M5 and so we take this forward as our initial
chosen model. For parity 1 M7 is our chosen model as it has the lowest BIC; its X 2 value is also low. Finally, for parity
2 the situation is identical to parity 0 (except with M6 absent) - M5 has the lower BIC and so is our preferred model.

Next, we build on these chosen models in order to allow us to obtain forecasts for the post-1982 cohorts; we call
this the first variant and denote the corresponding models as Mx .1. This first variant approximates the cohort-specific
parameters (β j

2,c ) with a straight line for c ≥ 1972, which requires only an intercept and slope parameter for each j

as opposed to the 11 independently estimated coefficients β j
2,1972, . . . , β

j
2,1982 in our initial models. Establishing this

linear relationship between the cohort-specific parametersmeans thatwe can extrapolate it to future cohorts and thus
forecast the age-cohort surface. We choose the 1972 cohort as the starting point for this linear approximation as it
marks the start of a sharp decline in the parity 0 ‘< GCSE’ observed proportions (this can be seen in the corresponding
fitted probability surface in Figure 2 of the paper); this decrease is as a result of the replacement of O Levels by GCSEs
in 1988. In Figure 16we plot the β j

2,c parameter estimates from the initial chosenmodels with the first variant overlaid.
The parity 0 plot evidences this 1972 change point - the jump in the β

j
2,c values indicates the proportions increasingin the higher Q categories to counteract the decline in the lowest category. Following this the β

j
2,c values exhibit a

linear trend which is also the case for the higher parities, justifying our approach.
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TABLE 5 Results of the initial modelling of Q |A,C for parities 0, 1 and 2. M is the model number (see Table 4 for
the model specifications); p is the number of parameters in the model; X 2 is the Pearson chi-squared statistic which
we compare to χ2

ν,0.95, the 95% quantile of the χ2
ν distribution. The row of the chosen model for each parity is in bold.

Values given to 2 decimal places.
Parity M p BIC ν X 2 χ 2

ν ,0.95

0

1 3 35297.45 2847 20568.62 2972.25
2 6 22327.57 2844 7676.09 2969.18
3 114 20586.94 2736 4681.47 2858.80
4 117 18152.82 2733 2267.38 2855.73
5 145 17711.02 2705 1468.14 2827.11
6 173 17972.23 2677 1388.68 2798.48
7 201 18224.61 2649 1306.28 2769.85

1
1 1 7371.36 910 3486.08 981.29
2 2 6518.14 909 2679.24 980.25
3 38 6103.00 873 1888.06 942.85
4 39 5264.35 872 1071.19 941.81
7 67 5018.32 844 549.67 912.70

2

1 2 14292.55 1646 7406.08 1741.50
2 4 11428.35 1644 4716.15 1739.44
3 76 11137.55 1572 3536.80 1665.35
4 78 8995.13 1570 1601.53 1663.29
5 106 8737.65 1542 1200.83 1634.47
7 134 8882.70 1514 1018.96 1605.63

F IGURE 16 Parity-specific plots of the cohort-specific parameter (β j
2,c ) estimates for the initial chosen models

from Table 5 and the first variant. Vertical lines indicate the 1972 change point; error bars indicate 95% CIs.
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The second variant (models denoted Mx .2) modifies the first variant by additionally smoothing the age-specific
parameters (β j

4,a ) via a first-order random walk with standard deviation parameter σA ∼ N (0, 0.012 ) ; we contrast the
β
j
4,a estimates for the two variants in Figure 17. This figure clearly illustrates the considerable uncertainty associated

with the estimates for small a in the parity 1 and 2 plots, caused by small exposures at these ages - as such, we deemed
it necessary to borrow strength across age in order to obtain more plausible CIs, which we have evidently achieved.
In terms of the patterns exhibited by the parameter estimates in Figures 16 and 17, we can interpret the generally
positive trends in the former as representing an increase in the likelihood of belonging to a higher qualification category
as the cohorts become younger. In the case of the latter, the gradual increases with age are caused by women in
lower qualification categories being more likely to have a child and so remove themselves from their current risk set
at younger ages; this means that the women remaining in the said risk set will tend to be from higher qualification
categories as age increases. However, the stabilising behaviour seen in the latter half of the age range across the
parities is caused by these women themselves becoming more likely to have children compared to those in the lower
categories due to postponement.

F IGURE 17 Parity-specific plots of the age-specific parameter (β j
4,a ) estimates for the first and second variants;

error bars indicate 95% CIs.

E.4 | Variant results

In Table 6 we present the results of our initial chosen models (copied from Table 5 for convenience) and the first and
second variants applied to these models. We note that the fit of the first variant is less close, which is expected as it
greatly simplifies each of the initial chosen models; however, the X 2 values are still reasonable. The BIC increases for
parity 0 but decreases for parities 1 and 2, due to the gains in parsimony outweighing the losses in fit in the case of
the latter but not the former.

The effect of the second variant is slightly harder to assess because although technically we have added one
standard deviation parameter (σA) in each case, in reality we have again simplified our current model (the first variant)
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TABLE 6 Results of the additional modelling of Q |A,C for parities 0, 1 and 2. M is the model number (see Table
4 for the model specifications; x .y indicates Model x with variant y applied); p is the number of parameters in the
model; X 2 is the Pearson chi-squared statistic which we compare to χ2

ν,0.95, the 95% quantile of the χ2
ν distribution.

Values given to 2 decimal places.
Parity M p BIC ν X 2 χ 2

ν ,0.95

0
5 145 17711.02 2705 1468.14 2827.11
5.1 118 17815.56 2732 1898.26 2854.71
5.2 119 17828.83 2731 1898.60 2853.69

1
7 67 5018.32 844 549.67 912.70
7.1 58 4947.59 853 575.87 922.06
7.2 59 4964.25 852 574.10 921.02

2
5 106 8737.65 1542 1200.83 1634.47
5.1 88 8615.57 1560 1292.66 1653.00
5.2 89 8635.97 1559 1257.73 1651.97

by borrowing strength across age and so reducing the effective number of age-specific parameters. As there is no easy
way to ascertain this quantity, we set p as its upper bound and hence work with a worst-case scenario; this should
be taken into account when interpreting the BIC. The X 2 value has increased marginally for parity 0 while decreasing
more substantially for parities 1 and 2. This is likely due to the greater impact the smoothing has had for these parities
in terms of decreasing the uncertainty associated with age-specific parameters for which the data provided very little
information, a problem that parity 0 did not suffer from (see Figure 17). Noting that the X 2 values are still low for
the second variants, we take them forward as our final chosen models for each parity. We present the corresponding
Lexis surfaces of fitted probabilities for each parity in Figure 2 of the paper.
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F | MODELLING TIME SINCE LAST BIRTH GIVEN AGE AND QUALIFICA-
TION: FURTHER DETAILS

Following on from Section 4.3 of the paper and in a similar way to Appendix E, in this appendix we provide further
details on the modelling of time since last birth (T ) given age (A) and qualification (Q ), which for convenience we will
refer to as modellingT |A, (Q ) .

F.1 | Parity 3+ model specification and initial results

We begin with parity 3+ as there is no dependence on Q and so the specification is more straightforward - hence we
are modelling T |A for now. As discussed in Section 4.3 of the paper, the number of T categories at a given age is
not constant. Consequently, we specify a separate multinomial model for each distinct maximum observableT value
from T = 3 to T = 11, i.e., A = 15 to A ≥ 23. However, we share T -specific parameters across A by fitting these
models simultaneously to theT counts.

We now specify the form of our multinomial logistic regression model in a similar way to Section E.1. For a given
parity, age a and maximum T value t a ∈ {3, . . . , 11}, let Ya = (Y 1

a , ...,Y
ta
a ) be the vector of T counts and nobsa be the

total observed number of person-years. Then we let Ya ∼ Multinomial(nobsa , π
1
a , . . . , π

ta
a ) , where π

j
a is the probability

of belonging to the j th T category, j = 1, . . . , t a , and ∑ta
j=1

π
j
a = 1. With T category j = 1 as the reference category,

we specify the model through the equations:

log
(
π
j
a

π1
a

)
= η

j
a , j = 2, . . . , t a , (18)

which are fitted simultaneously. We experiment with various forms for the linear predictors ηja , which we specify in
Table 7.
TABLE 7 Specifications of the initialT |A models; ηja is the linear predictor from equation (18); x̃ indicates that
the variable x is centred around the median of its distinct values; ab = a − t , i.e., the age at the last birth event.

Model (M) Specification

1a η
j
a = β

j
0 [j

2a η
j
a = β

j
1 ã [j

3a η
j
a = β

j
0 + β

j
1 ã [j

4a η
j
a = β

j
0 + β

j
1 ã + β

j
2 ã

2 [j

5a η
j
a = β

j
1 ã + β

ab
3 [j

6a η
j
a = β

j
1 ã + β

j
2 ã

2 + β
ab
3 [j

We will refer to the models as M1a-M6a for reasons that will become clear when we discuss parities 1 and 2. In
words, M1a contains just an intercept, M2a contains just the main effect of A as a linear term while M3a combines
M1a and M2a; M4a additionally includes a quadratic effect of age. The final two models introduce the main effect of
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Ab (the age at the last birth event) as a set of Ab -specific parameters for which a reference category is not necessary
- M5a adds the linear age term while M6a additionally adds the quadratic age term. We fit these models as in Section
E.2, adjusting the weighting process to be for each age rather than age-cohort combination. We also compare models
and informally check their fit as before, again adjusting equation (17) to remove dependence on C ; the degrees of
freedom ν is simply the number of observed age-time-since-last-birth combinations with t > 1, minus p .

We present the results of the initial modelling ofT |A in Table 8. We see that only M5a and M6a have reasonable
X 2 values, illustrating the importance of accounting for Ab - this is not surprising given our earlier discussion of the
presence of the ‘parallelograms’ in the plots of the fitted probabilities in Figure 3 of the paper. M5a has the lowest
BIC, so we will take this forward as our initial chosen model for now.
TABLE 8 Results of the initial modelling ofT |A for parity 3+. M is the model number (see Table 7 for the model
specifications); p is the number of parameters in the model; X 2 is the Pearson chi-squared statistic which we
compare to χ2

ν,0.95, the 95% quantile of the χ2
ν distribution. The row of the chosen model is in bold. Values given to 2

decimal places.
M p BIC ν X 2 χ 2

ν ,0.951a 10 22067.78 245 19212.18 282.51
2a 10 12137.34 245 9605.52 282.51
3a 20 2513.52 235 900.28 271.76
4a 30 2041.95 225 423.29 260.99
5a 41 1798.42 214 107.54 249.13
6a 51 1869.66 204 72.79 238.32

F.2 | Parity 1 and 2 model specification and initial results

Next we will consider parities 1 and 2, which are more involved due to the presence of Q . It is straightforward to
adjust our parity 3+ setup in Section F.1 to account for this by simply indexing our model components by A and Q

rather than just A, e.g., π j
a,q , η

j
a,q , etc. In terms of the models, we will focus onM5a andM6a only due to their superior

performance for parity 3+. For a given model, we have more options as we can allow each model term to be either
independent of Q and therefore shared across all Q categories, or to be Q -specific. Letting the equivalents of M5a
andM6a for parity 1/2 be the cases where all terms are shared, we specify an additional 3 variants of M5a (M5b-M5d)
and 7 variants of M6a (M6b-M6h). We illustrate these in Table 9, where ✗ and ✓ indicate that the relevant parameter
is shared and Q -specific respectively.
TABLE 9 Illustration of theT |A,Q models fitted for parities 1 and 2. M is the model number (see Table 7 for the
specifications of M5a and M6a); β j

1 is the coefficient of age, β j
2 is the coefficient of the square of age, and β

ab
3 is the

age at last birth parameter; ✗ indicates that the parameter is shared across Q categories, while ✓ indicates it is
Q -specific.

Parameter/M 5a 5b 5c 5d 6a 6b 6c 6d 6e 6f 6g 6h

β
j
1 ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓

β
j
2 - - - - ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓

β
ab
3 ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓
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Fitting thesemodels similarly to those for parity 3+, and following slight adjustments to the BIC andX 2 definitions
in order to incorporate the multiple AT surfaces that we have for parities 1 and 2, we present the results of fitting
M5a-M6h in Table 10. First considering parity 1, we observe that all of the X 2 values are relatively large, with those
for M6f and M6h the most reasonable. As M6f has the lowest BIC of all the models, we take this forward as our
initial chosen model for parity 1. In contrast, for parity 2 there are four models with low X 2 values, namely M5d and
M6f-M6h. Again it is one of these models, M5d, that also has the smallest BIC and so is our chosen model for parity
2. It is interesting that our chosen models, M5d and M6f, both have Q -specific coefficients of age (β j

1,q ) and age at
last birth parameters (β ab

3,q ) (with M6f further including shared coefficients of the square of age (β j
2)).

TABLE 10 Results of the initial modelling ofT |A,Q for parities 1 and 2. M is the model number (see Tables 7
and 9 for the model specifications); p is the number of model parameters; X 2 is the Pearson chi-squared statistic
which we compare to χ2

ν,0.95, the 95% quantile of the χ2
ν distribution. The row of the chosen model for each parity is

in bold. Values given to 2 decimal places.
Parity 1 Parity 2

M p BIC ν X 2 χ 2
ν ,0.95

p BIC ν X 2 χ 2
ν ,0.955a 41 5313.95 487 2428.22 539.45 41 10230.79 736 5947.72 800.22

5b 51 5011.52 477 1964.88 528.92 61 7427.15 716 2963.98 779.36
5c 72 4949.41 456 1697.30 506.78 103 6271.01 674 1484.56 735.51
5d 82 4735.66 446 1316.86 496.24 123 5505.64 654 455.86 714.60
6a 51 4688.47 477 1541.30 528.92 51 10257.42 726 5855.46 789.79
6b 61 4387.99 467 1135.83 518.38 71 7464.33 706 2905.95 768.92
6c 61 4450.56 467 1209.22 518.38 71 8288.26 706 3725.20 768.92
6d 82 4318.89 446 822.70 496.24 113 6316.81 664 1418.20 725.06
6e 71 4448.02 457 1088.81 507.84 91 6858.87 686 2124.43 748.04
6f 92 4151.87 436 545.41 485.68 133 5516.59 644 355.59 704.15
6g 92 4294.99 436 724.59 485.68 133 5785.53 644 640.01 704.15
6h 102 4243.73 426 513.31 475.12 153 5711.19 624 320.42 683.22

F.3 | Variant descriptions and results

As in Appendix E, we present two variants of these chosen models. The first is motivated by the Pearson residual
plots for our initial parity 1 chosen model (not shown). They indicate that a partial cause of the large X 2 value is the
presence of large positive residuals at T = 11. To mitigate this, we add an intercept parameter at this t value (β 11

0 )
shared across Q . We denote M6f fitted with this first variant by M6f.1 and present the results in Table 11. This extra
parameter reduces the value of X 2 to something much more reasonable, and also improves the BIC considerably.

The second variant (denoted Mx .2) is similar to that used in Section E.3 in that we smooth the Q -specific/shared
age at last birth parameters (β ab

3,(q ) ) via a first-order randomwalk, with standard deviation parameter σAb
∼ N (0, 0.012 )

shared across the qualification levels q in the case of parities 1 and 2. The reason for this is again to borrow strength
and reduce the uncertainty associated with the parameter estimates corresponding to very young ages at the last
birth event. We fit this second variant to the first variant for parity 1 and the initial chosen models for parities 2 and
3+. Its impact is illustrated in Figure 18, where we see that the smoothing has the desired effect across the parities.
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TABLE 11 Results of the additional modelling ofT |A,C , (Q ) for parities 1, 2 and 3+. M is the model number
(see Tables 7 and 9 for the model specifications; x .y indicates Model x with variant y applied); p is the number of
parameters in the model; X 2 is the Pearson chi-squared statistic which we compare to χ2

ν,0.95, the 95% quantile of
the χ2

ν distribution. Values given to 2 decimal places.
Parity M p BIC ν X 2 χ 2

ν ,0.95

1
6f 92 4151.87 436 545.41 485.68
6f.1 93 3991.47 435 370.10 484.63
6f.2 94 4148.80 434 409.66 483.57

2 5d 123 5505.64 654 455.86 714.60
5d.2 124 5672.35 653 538.63 713.56

3+ 5a 41 1798.42 214 107.54 249.13
5a.2 42 1878.82 213 151.55 248.05

F IGURE 18 Parity-specific plots of the Q -specific/shared age at last birth parameter (β ab
3,(q ) ) estimates for the

initial chosen models (parities 2 and 3+) or first variant (parity 1) and second variants; error bars indicate 95% CIs.

Inspecting the results for the second variants in Table 11, we see that that unlike in Section E.4 where the X 2

values either stayed basically the same or decreased, here they increase substantially. This is likely due to the original
β
ab
3,(q ) estimates tending to be extremely small at low Ab values (Figure 18). By smoothing these parameters we are

forcing them to be considerably larger than they would otherwise choose to be, and hence causing the fit to be less
close. However, the intended benefit of this second variant is to obtain fitted AT surfaces that would look more
plausible for a larger population, even if they correspond less well with our particular survey population. It is also
important to note that despite these increases in X 2, the values are still reasonable compared to χ2

ν,0.95. We therefore
take these second variants forward as our final chosen models for each parity. We present the corresponding Lexis
surfaces of fitted probabilities for each parity in Figure 3 of the paper.
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