
Journal of King Saud University - Computer and Information Sciences

Enhancing Model Quality and Scalability for Mining Business Processes with Invisible
Tasks in Non-Free Choice

--Manuscript Draft--

Manuscript Number: JKSUCIS-D-23-01194R2

Article Type: Full Length Article

Keywords: Business process management; Graph Database; invisible tasks; Process Mining;
process modelling

Corresponding Author: Riyanarto Sarno, Ph.D.
Institut Teknologi Sepuluh Nopember
Surabaya, INDONESIA

First Author: Kelly Rossa Sungkono, magister

Order of Authors: Kelly Rossa Sungkono, magister

Riyanarto Sarno

Bhakti Stephan Onggo

Muhammad Farhan Haykal

Abstract: At present, business processes are growing rapidly, resulting in various types of
activity relationships and big event logs. Discovering invisible tasks and invisible tasks
in non-free choice is challenging. alpha$ mines invisible prime tasks in non-free choice
based on pairs of events, so it consumes considerable processing time. In addition, the
invisible tasks formation by alpha$ is limited to skip, switch, and redo conditions. This
study proposes a graph-based algorithm named Graph Advanced Invisible Task in
Non-free choice (GAITN) to form invisible tasks in non-free choice for stacked
branching relationships condition and handle large event logs. GAITN partitions the
event log and creates rules for merging the partitions to scale up the volume of
discoverable events. Then, GAITN utilises rules of previous graph-based process
mining algorithm to visualises branching relationships (XOR, OR, AND) and creates
rules of mining invisible tasks in non-free choice based on obtained branching
relationships. This study compared the performance of GAITN with that of Graph
Invisible Task (GIT), alpha$, and Fodina and found that GAITN produces process
models with better fitness, precision, generalisation, and simplicity measure based on
higher number of events. GAITN significantly improves the quality of process model
and scalability of process mining algorithm.

Suggested Reviewers: Hyerim Bae
Professor, Pusan National University
hrbae@pusan.ac.kr
the research is about process mining, which is related with the topic of the proposed
article

Corallo Angelo
Professor, University of Salento
angelo.corallo@unisalento.it
His research about implementation process modelling, so it is suitable with the topic of
our article

Daniel Amyot
Professor, University of Ottawa School of Electrical Engineering and Computer
Science
damyot@uottawa.ca
His research interest is business process modelling, which is suitable with the topic of
our research

Response to Reviewers: Reviewer #1 : Congratulations. This is a very good paper.
Comment #1: Thank you very much for your review and your compliment.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Reviewer #3 : -.
Comment #3: Thank you very much for your time to review my paper.

Reviewer #4 :
The raised issues in a previous round of reviewing have been addressed. However,
there are still some key points that need further clarifications, and the clarity of
presentation could be enhanced by clarifying these issues and attending to some
reasoning issues. Specifically, the authors need to address the clarity of expressions.

1.The expression "Business processes are currently growing rapidly causing various
types of activity relationships to emerge" needs clarifications.
2."but only a few algorithms have capability to discover invisible tasks and invisible
tasks in non-free choice constructs." It is still unknown how the related work differs
from theirs with the drawbacks of existing ones.

Comment #4 :
Thank you very much for your review.
1.I changed the expression with two new sentences (the first sentence and the second
sentence of the second paragraph). I argue that the emergence of various business
process relationships is due to the diversity of user requirements to achieve business
objectives, and mining those business process relationships is a process discovery
algorithm challenge.
2.I added a list of process discovery algorithms that can form invisible tasks and
invisible tasks in free choice to emphasize the algorithm referred to in the sentence.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

[Prof. Riyanarto Sarno

Institut Teknologi Sepuluh Nopember

Jl. Raya ITS, Keputih,

Kecamatan Sukolilo

Surabaya

Jawa Timur

Indonesia 60111]

[Professor Nasser-Eddine Rikli

Editors-in-Chief

Journal of King Saud University - Computer and Information Sciences]

[June 11, 2023]

Dear Professor Nasser-Eddine Rikli,

I am pleased to submit an original research article entitled [“Enhancing Model Quality and Scalability for Mining

Business Processes with Invisible Tasks in Non-Free Choice” by Kelly Rossa Sungkono, Riyanarto Sarno, Bhakti

Stephan Onggo, and Muhammad Farhan Haykal] for consideration for publication in Journal of King Saud University

- Computer and Information Sciences. We propose a graph-based process mining method to handle large event logs

and discover advanced relationships, i.e., invisible tasks of stacked branching relationship in non-free choice. The

proposed graph-based method is an improvement of our previous graph-based process mining algorithm named GIT

(https://doi.org/10.1186/s40537-021-00487-x)

$, the sophisticated -based algorithm, discovers business process containing invisible prime tasks in non-free choice.

The drawback of $ is (1) $ mines invisible prime tasks in non-free choice based on pairs of events, so it consumes

considerable processing time, and (2) the invisible tasks formation by $ is limited to skip, switch, and redo conditions.

Based on our experiment data, we found that invisible tasks are needed for stacked branching relationships. GIT

algorithm (https://doi.org/10.1186/s40537-021-00487-x) is proven to produce less complexity time than $; however

GIT cannot handle large data of the event log at once due to the data limit of the graph database and cannot mine

invisible tasks of invisible task of stacked branching relationships. We propose new graph-based algorithm to extends

GIT rules for handling large event logs and mining invisible task of stacked branching relationships. First, the proposed

graph-based algorithm partitions the event log and creates rules for merging the partitions to scale up the volume of

discoverable events. The proposed graph-based algorithm visualises branching relationships in graph model and creates

rules of mining invisible tasks in non-free choice based on obtained branching relationships. We compared our proposed

graph-based algorithm with GIT, $ and Fodina and found our proposed graph-based algorithm produces better fitness,

precision, generalisation, and simplicity measure with higher events than those three algorithms.

This manuscript has not been published and is not under consideration for publication elsewhere. We have no conflicts

of interest to disclose.

Thank you for your consideration.

Sincerely,

[Prof. Riyanarto Sarno, Ph.D.

Professor in Institut Teknologi Sepuluh Nopember]

Cover Letter

https://doi.org/10.1186/s40537-021-00487-x
https://doi.org/10.1186/s40537-021-00487-x

Response to Reviewer Comments

Paper ID JKSUCIS-D-23-01194

Paper Title Enhancing Model Quality and Scalability for Mining Business Processes with Invisible

Tasks in Non-Free Choice

Reviewer #1 : Congratulations. This is a very good paper.

Comment #1: Thank you very much for your review and your compliment.

Reviewer #3 : -.

Comment #3: Thank you very much for your time to review my paper.

Reviewer #4 :

The raised issues in a previous round of reviewing have been addressed. However, there are still some key

points that need further clarifications, and the clarity of presentation could be enhanced by clarifying these

issues and attending to some reasoning issues. Specifically, the authors need to address the clarity of

expressions.

1. The expression "Business processes are currently growing rapidly causing various types of activity

relationships to emerge" needs clarifications.

2. "but only a few algorithms have capability to discover invisible tasks and invisible tasks in non-free

choice constructs." It is still unknown how the related work differs from theirs with the drawbacks of

existing ones.

Comment #4 :

Thank you very much for your review.

1. I changed the expression with two new sentences (the first sentence and the second sentence of the

second paragraph). I argue that the emergence of various business process relationships is due to

the diversity of user requirements to achieve business objectives, and mining those business

process relationships is a process discovery algorithm challenge.

2. I added a list of process discovery algorithms that can form invisible tasks and invisible tasks in

free choice to emphasize the algorithm referred to in the sentence.

Response to Reviewers (without Author Details)

1

Enhancing Model Quality and Scalability for Mining

Business Processes with Invisible Tasks in Non-Free Choice

Kelly R. Sungkonoa, Riyanarto Sarnoa, Bhakti S. Onggob, Muhammad F. Haykala

aDepartment of Informatics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

bCORMSIS, University of Southampton, Southampton, UK

Abstract

At present, business processes are growing rapidly, resulting in various types of activity relationships and

big event logs. Discovering invisible tasks and invisible tasks in non-free choice is challenging. $ mines

invisible prime tasks in non-free choice based on pairs of events, so it consumes considerable processing

time. In addition, the invisible tasks formation by $ is limited to skip, switch, and redo conditions. This

study proposes a graph-based algorithm named Graph Advanced Invisible Task in Non-free choice

(GAITN) to form invisible tasks in non-free choice for stacked branching relationships condition and handle

large event logs. GAITN partitions the event log and creates rules for merging the partitions to scale up the

volume of discoverable events. Then, GAITN utilises rules of previous graph-based process mining

algorithm to visualises branching relationships (XOR, OR, AND) and creates rules of mining invisible tasks

in non-free choice based on obtained branching relationships. This study compared the performance of

GAITN with that of Graph Invisible Task (GIT), $, and Fodina and found that GAITN produces process

models with better fitness, precision, generalisation, and simplicity measure based on higher number of

events. GAITN significantly improves the quality of process model and scalability of process mining

algorithm.

Keywords: business process management; graph database; invisible tasks; process mining; process

modelling

Title Page (with Author Details)

1

Enhancing Model Quality and Scalability for Mining

Business Processes with Invisible Tasks in Non-Free Choice

Abstract

At present, business processes are growing rapidly, resulting in various types of activity relationships and

big event logs. Discovering invisible tasks and invisible tasks in non-free choice is challenging. $ mines

invisible prime tasks in non-free choice based on pairs of events, so it consumes considerable processing

time. In addition, the invisible tasks formation by $ is limited to skip, switch, and redo conditions. This

study proposes a graph-based algorithm named Graph Advanced Invisible Task in Non-free choice

(GAITN) to form invisible tasks in non-free choice for stacked branching relationships condition and handle

large event logs. GAITN partitions the event log and creates rules for merging the partitions to scale up the

volume of discoverable events. Then, GAITN utilises rules of previous graph-based process mining

algorithm to visualises branching relationships (XOR, OR, AND) and creates rules of mining invisible tasks

in non-free choice based on obtained branching relationships. This study compared the performance of

GAITN with that of Graph Invisible Task (GIT), $, and Fodina and found that GAITN produces process

models with better fitness, precision, generalisation, and simplicity measure based on higher number of

events. GAITN significantly improves the quality of process model and scalability of process mining

algorithm.

Keywords: business process management; graph database; invisible tasks; process mining; process

modelling

1. Introduction

In recent years, the availability of event logs for analysing business processes in many domains,

such as healthcare (De Roock & Martin, 2022; Pika et al., 2020) and manufacturing (Choueiri et al., 2020;

Choueiri & Portela Santos, 2021), has increased significantly. Process mining is a study that uses event logs

to gain insight into real-life processes, identify process-related issues, and improve process performance

Manuscript (without Author Details) Click here to view linked References

https://www.editorialmanager.com/jksucis/viewRCResults.aspx?pdf=1&docID=18422&rev=2&fileID=286575&msid=425727d2-92df-4f4a-8851-3939d4b8571f
https://www.editorialmanager.com/jksucis/viewRCResults.aspx?pdf=1&docID=18422&rev=2&fileID=286575&msid=425727d2-92df-4f4a-8851-3939d4b8571f

2

(van der Aalst, 2011). Process mining consists of three aspects: process discovery, conformance checking,

and enhancement. Process discovery is a process mining study (Erdogan & Tarhan, 2018; Hamdani &

Abdelli, 2020; Kim et al., 2022; van der Aalst, 2016) that automatically visualises the flow of activities

recorded in an event log (Beeson et al., 2002; Berger et al., 2022).

There are many kinds of business process relationships to describe the diversity of user

requirements for achieving business objectives. Therefore, the challenge of the process discovery algorithm

is to mine various business process relationships in order to visualise the right model of the running business

process. Various studies have proposed process discovery techniques to form variations in business process

relationships. The pioneering process discovery algorithm, (Back et al., 2020; van der Aalst, 2016)

implemented several rules based on footprints of activity pairs to form sequence, XOR, and AND in a Petri

net-based process model. algorithm has several variants, such as ++ (Wen et al., 2007; Zheng et al.,

2019) to discover non-free choice constructs (NFC), # algorithm (Wen et al., 2010) to mine invisible tasks,

and $ algorithm (Guo et al., 2015) to form invisible tasks in non-free choice constructs. The inductive

miner (Battineni et al., 2020; Pika et al., 2020) and the refined process structure tree (RPST) (Yan et al.,

2019) divide the event log into smaller sub-logs and implement rules to define activity relationships based

on the pairs of activities. Inductive miner (Battineni et al., 2020; Pika et al., 2020), refined process structure

tree (Anugrah et al., 2015) and (Zayoud et al., 2019) can only discover sequence, XOR, and AND

relationships. Furthermore, Heuristic Miner (Kurniati et al., 2016; Namaki et al., 2022; Weber et al., 2018)

can only discover sequences, XOR, and AND relationships, while Fodina (vanden Broucke & De Weerdt,

2017) improves the rules of Heuristic Miner to discover invisible tasks. Graph-based algorithms have

undergone various developments to discover activity relationships of a process model, such as sequence

relationships, branching (XOR, OR, AND) relationships (Waspada et al., 2020), invisible tasks (Sarno et

al., 2019) and invisible tasks in non-free choice (Sarno et al., 2021). Most process discovery algorithms can

mine sequence and branching relationships, but only a few algorithms, which are # algorithm (Wen et al.,

2010), $ algorithm (Guo et al., 2015), a graph-based algorithm (Sarno et al., 2019), GIT (Sarno et al.,

3

2021) and Fodina (vanden Broucke & De Weerdt, 2017), can form invisible tasks and/or invisible tasks in

non-free choice constructs in the process model.

Creating invisible tasks to delineate specific process flows is challenging because those tasks are

not stored in the event log. Wen (Wen et al., 2010), the inventor of # algorithm, states that invisible tasks

are formed to visualise skip, switch, and redo conditions. These invisible tasks are called invisible prime

tasks. Other algorithms, $ algorithm (Guo et al., 2015), GIT (Sarno et al., 2021) and Fodina (vanden

Broucke & De Weerdt, 2017) mine invisible tasks with reference to the rules of # algorithm.

In addition to the branching relationship, some processes need stacked branching relationships to

model their conditions. Invisible tasks are added to clarify the position of branching relationships when

they are stacked (can be seen in the actual process model of Fig 1). This study also presents bakery

productions processes and a solid hazardous waste management process that need invisible tasks to model

stacked branching relationships in their process models (detailed explanation in Section 2.3). The ability of

a process discovery algorithm to discover invisible tasks of stacked branching relationships is important,

especially when the result is used for further analysis (e.g., conformance analysis) or modelling (e.g.,

simulation).

Fig 1. The problem encountered when mining stacked branching relationships by # algorithm

algorithm can mine one type of stacked branching relationships (an AND relationship is

followed by a XOR relationship) without define an invisible task, so # algorithm does not create rules to

mine invisible tasks for stacked branching relationships. However, this study detects a problem if the stack

4

of branching relationships is switched (a XOR relationship is followed by an AND relationship) by using

algorithm. In Fig 1, although a mined process model of # based on an event log EL1 is sound, R cannot

be parallelised with A and O. The process model based on EL1 shows that R and A or R and O can be

carried out in one process flow (case), whereas they are not allowed based on the actual model. $ algorithm

(Guo et al., 2015) extends rules of # algorithm to mine invisible prime tasks in non-free choice (IT-SBR-

NFC). Nevertheless, $ has not considered IT-SBR-NFC because it adopts the invisible task mining rules

of the # algorithm.

In addition to accurately detecting relational variations, the computing time of process discovery is

an important concern. Existing algorithms which are (van der Aalst, 2016) and its developments,

Inductive miner (Battineni et al., 2020), refined process structure tree (RPST) (Yan et al., 2019), Heuristic

Miner (Namaki et al., 2022), and Fodina (vanden Broucke & De Weerdt, 2017) create rules of each type of

relationships based on pairs of activities. Creating rules of each type of relationships produces high time

complexity to mine advanced relationships, including invisible tasks and invisible tasks in non-free choice

construct. Graph-based algorithms (Sarno et al., 2019, 2021; Waspada et al., 2020) store activities and

obtained basic relationships in the form of graphs and mines advanced relationships based on obtained basic

relationships to reduce time complexity. Another advantage of graph-based algorithm is that the event log

and the process model are formed on one platform (graph database), so there is no conversion process.

The current graph-based algorithms have several drawbacks. First, those algorithms could not

identify invisible tasks of stacked branching relationships (IT-SBR) and invisible tasks in non-free choice

for stacked branching relationships (IT-SBR-NFC) because their rules to constructing invisible tasks adopt

rules of # algorithm. Moreover, those graph-based algorithms are not able to handle large data from the

event log at once due to the data limit of the graph database. Based on this background, we have several

motivations to perform this study as follows:

1. This paper presents invisible tasks are needed to form stacked branching relationships condition (a

XOR relationship is followed by AND/OR relationships) in the process model. A few process

5

discovery algorithms (Guo et al., 2015; Sarno et al., 2021; vanden Broucke & De Weerdt, 2017; Wen

et al., 2010) can mine invisible tasks and # algorithm (Wen et al., 2010) is the pioneer algorithm of

discovering invisible tasks. Unfortunately, # algorithm (Wen et al., 2010) cannot form invisible tasks

of stacked branching relationships. Therefore, the appropriate method for mining invisible tasks of

stacked branching relationships (IT-SBR) is needed to produce better process models and enhance the

process model quality.

2. Another advanced activity relationship is invisible tasks in non-free choice for stacked branching

relationships (IT-SBR-NFC), i.e., a condition when IT-SBR meets non-free choice constructs. $

algorithm (Guo et al., 2015), the first algorithm that introduces invisible tasks in non-free choice,

cannot mine IT-SBR-NFC because $ algorithm adopts rules of discover invisible tasks by #

algorithm. Inability to form IT-SBR-NFC can decrease the quality of process model.

3. Existing algorithms (Battineni et al., 2020; Guo et al., 2015; van der Aalst, 2016; vanden Broucke &

De Weerdt, 2017; Wen et al., 2007, 2010; Yan et al., 2019) create rules of every type of activity

relationships, so they produce high time complexity to mine advanced activity relationships, including

IT-SBR and IT-SBR-NFC. Graph-based algorithms (Sarno et al., 2019, 2021; Waspada et al., 2020)

reduce time complexity by utilising obtained basic relationships to form advanced relationships.

However, the data limit of graph database causes the graph-based algorithms unable to model

processes from a massive event log. Data pre-processing is needed to overcome the inadequacies of

graph-based algorithms.

According to those motivations, we propose a new graph-based algorithm—Graph Advanced

Invisible Task in Non-free choice (GAITN)—to discover IT-SBR and IT-SBR-NFC from an event log.

Specifically, we extend Graph Invisible Task (GIT) (Sarno et al., 2021) by adding new rules to identify IT-

SBR and IT-SBR-NFC. To handle a large volume of data, GAITN does data pre-processing by partitioning

event logs into event log snippets. This is because the computing time required to process multiple smaller

event log snippets is shorter than that required to process a single large event log. The use of partitions

6

requires us to modify the rule that discovers a sequence relationship, such that the rule can discover a

sequence relationship from activities stored in multiple event log snippets. Identifying IT-SBR and IT-SBR-

NFC improves the quality of the process model, whereas partitioning event logs aims to increase scalability.

We conducted two experiments to evaluate the GAITN. The objective of the first experiment is to

compare the quality of the process model discovered by GAITN, GIT (Sarno et al., 2021), $ (Guo et al.,

2015) and Fodina (vanden Broucke & De Weerdt, 2017) using fitness, precision, simplicity, and

generalisation. For this experiment, we will use two synthetic event logs of processes containing IT-SBR-

NFC, an event log generated by the simulation model of a medical waste management system, and an event

log of medical records (Sarno et al., 2021). The objective of the second experiment is to compare the

computing times and number of events handled by those algorithms. For this experiment, we use two

synthetic event logs: two event logs from medical records (Sarno et al., 2021), and three real-life event logs:

BPIC 2011 Hospital (B. F. van Dongen, 2012), Domestic Declarations (B. van Dongen, 2020), BPI

Challenge 2012 (B. van Dongen, 2012a).

The remainder of this paper is organized as follows. Section 2 describes the preliminaries of this

research, such as the definition of the event log, graph query language, IT-SBR-NFC, types of constructs

discovered by previous process discovery algorithms, and quality measures. A detailed explanation of the

proposed GAITN algorithm is presented in Section 3. The materials, experimental results, and discussion

are presented in Section 4. Finally, we conclude the study in Section 5.

2. Preliminaries

2.1. Event Log, Traces, and Cases

The main input of PDAs is the event log. The event log is a collection of traces. A trace is a collection

of unique cases. A case is formed by a sequence of executed activities. For example, an event log 𝐿3 =

{(𝐺𝐴, 𝐺𝐵, 𝐺𝐶, 𝐺𝐷), (𝐺𝐴, 𝐺𝐵, 𝐺𝐶, 𝐺𝐷)} contains two cases, each with four activities. However, these two

cases were not unique. Therefore, L3 contained only one trace.

7

2.2. Graph Query Language (Cypher)

Our proposed algorithm, GAITN, uses Cypher Query Language (Francis et al., 2018; Saad et al.,

2023; Šestak & Turkanovic, 2023) to implement discovery rules and construct a process model. Cypher

Query Language is a declarative graph query language that can be used to create nodes and their

relationships. In a GAITN, nodes represent activities and relationships denote links between activities in a

process model. Cypher Query Language has several notations: rounded brackets denote nodes (nodes) and

square brackets represent the relationship [:relation]. Every node contains information, and every piece of

information is stored in a node as its attribute. An attribute contains two types of data: a label and a

description. For example, Fig 2 shows a representation of the process model at the top of Cypher Query

Language. To represent the GA activity in the process model, we used Cypher Query Language syntax

(:Activity: {name:”GA”}). For the sequence relationship in the process model, the equivalent Cypher

Query Language syntax is –[:relationship]→. The other Cypher syntaxes used by GAITN are listed in

Table 1.

Fig 2. Graph Model and Cypher Query Language

Table 1. Cypher Syntaxes

Syntaxes Description Examples

MERGE Depict nodes

and/or

relationships

and merge

nodes with

same names

Objective: Construct an activity GA that has a sequence relationship

with GB, where GA and GB are the first and last activities, respectively

Cypher: MERGE (:activity {name:”GB”}) – [:Seq] → (:activity

{name:”GA”})

Before Process: Empty graph database

After Process:

8

DELETE Remove nodes

and/or

relationships

Objective: Delete all nodes and their relationship

Cypher: DELETE p=()–[]–()

Before Process:

After Process: Empty graph database

2.3 Invisible Tasks in Non-Free Choice for Stacked Branching Relationships (IT-SBR-NFC)

This paper adds the stacked branching relationships condition as a new condition that needs invisible

tasks. The first example of a business process having stacked branching relationships is the production

processes of a bakery. The bakery gets an order to factory (OTF) from the distributor and checks the OTF

data. If the data are correct, the OTF will be forwarded to the Production Planning and Inventory Control

(PPIC) Department and the Finished Goods Warehouse (FGW). However, if the data is incorrect, the bakery

will return the OTF request to the distributor. The production process has stacked branching relationships

after activity Checking OTF because there is a choice relationship (XOR) between activity returning OTF

to Distributor and a parallel relationship (AND) of passing OTF to PPIC and passing OTF to FGW.

Stacked branching relationships also occurred in the solid hazardous waste management processes.

The solid waste is sorted into seven types: recyclable waste, pathological waste, infectious waste, sharp

waste, pharmaceutical waste, cytotoxic waste, and radioactive waste. The activity of putting waste in the

bin has choice relationships (XOR relationships) based on the type of waste. However, there are solid wastes

classified as pathological infectious waste, so the activity of put pathological waste and put infectious waste

has multi-choice relationship (OR relationship). The process of putting waste portrays stacking XOR-OR

relationships, so the process model of solid hazardous waste management has invisible tasks of stacking

branching relationships (denoted by gray boxes in Fig 5). Furthermore, there is non-free choice constructs

between put waste and shed waste in the solid waste management process, so there is a condition that the

invisible tasks meet non-free choice constructs. The solid waste management process needs invisible tasks

in non-free choice constructs for stacked branching relationship condition (IT-SBR-NFC).

9

Fig 3 illustrates two examples of IT-SBR-NFC in a real-world process. The first flow pattern, the IT-

SBR represents a combination of a choice relationship (XOR) and a multi-choice relationship (OR) or

parallel relationship (AND). In a process model, this is achieved by adding a dummy activity called invisible

tasks (e.g., gray nodes in Fig 3). The second flow pattern, the non-free choice (NFC) construct, represents

a situation in which a choice depends on a previous choice (Guo et al., 2015; Sarno et al., 2021; Zheng et

al., 2019); for example, the choices are connected by dotted lines in Fig 3. Hence, the IT-SBR-NFC occurs

when the invisible tasks of stacked branching relationships (IT-SBR) meet the non-free choice (NFC)

construct in the process model.

Fig 3. Invisible Tasks in Non-Free Choice for Stacked Branching Relationships

1.3 GIT Algorithm

GIT (Sarno et al., 2021) defines eight relationships:
𝑠𝑒𝑞
→ ,

𝑥𝑜𝑟𝑠𝑝𝑙𝑖𝑡
→ ,

𝑥𝑜𝑟𝑗𝑜𝑖𝑛
→ ,

𝑎𝑛𝑑𝑠𝑝𝑙𝑖𝑡
→ ,

𝑎𝑛𝑑𝑗𝑜𝑖𝑛
→ ,

𝑜𝑟𝑠𝑝𝑙𝑖𝑡
→ ,

𝑜𝑟𝑗𝑜𝑖𝑛
→ ,

𝑁𝐹𝐶
→ , and depicts an additional task: Invisible Prime Task (IPT).

𝑠𝑒𝑞
→ expresses two activities that can

be executed consecutively.
𝑥𝑜𝑟𝑠𝑝𝑙𝑖𝑡
→ and

𝑥𝑜𝑟𝑗𝑜𝑖𝑛
→ symbolize the XOR relationship, whereas

𝑎𝑛𝑑𝑠𝑝𝑙𝑖𝑡
→ and

𝑎𝑛𝑑𝑗𝑜𝑖𝑛
→

10

denote the AND relationship.
𝑜𝑟𝑠𝑝𝑙𝑖𝑡
→ and

𝑜𝑟𝑗𝑜𝑖𝑛
→ represent OR relationships. The NFC relationship is denoted

as
𝑁𝐹𝐶
→ . Definition 1 is formal description of GIT algorithm and Table 2 shows the graph-based process models

depicted by the GIT.

Definition 1. (Relationships defined in GIT algorithm) Let 𝑇 be a set of activities (𝑡1, 𝑡2, … , 𝑡𝑛), 𝐿 be an

event log over 𝑇, 𝑘, 𝑙, 𝑎𝑛𝑑 𝑦 are three tasks depicted in a graph model, the relationships defined in GIT

algorithm are defined as follows:

- 𝑘
𝑠𝑒𝑞
→ 𝑙 ⟺ 𝑡1, 𝑡2, … , 𝑡𝑛 ∈ 𝐿, 𝑖 ∈ 1,… , 𝑛: 𝑡𝑖 = 𝑘 ∧ 𝑡𝑖+1 = 𝑙 ∧ 𝑡𝑖𝐶𝑎𝑠𝑒𝐼𝐷 = 𝑡𝑖+1𝐶𝑎𝑠𝑒𝐼𝐷

- 𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔(𝑘) ⟺ 𝑘
𝑠𝑒𝑞
→ 𝑡𝑖

- 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔(𝑘) ⟺ 𝑡𝑖
𝑠𝑒𝑞
→ 𝑘

- 𝑘
𝑥𝑜𝑟𝑠𝑝𝑙𝑖𝑡
→ 𝑙 ⟺ (𝑛𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔(𝑘) > 1) ∧ (𝑛𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔(𝑙) = 1) ∧ (𝑛𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔(𝑙) = 1)

- 𝑙
𝑥𝑜𝑟𝑗𝑜𝑖𝑛
→ 𝑘 ⟺ (𝑛𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔(𝑘) > 1) ∧ (𝑛𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔(𝑙) = 1) ∧ (𝑛𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔(𝑙) = 1)

- 𝑘
𝑎𝑛𝑑𝑠𝑝𝑙𝑖𝑡
→ 𝑙 ⟺ (𝑛𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔(𝑘) > 1) ∧ (𝑛𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔(𝑙) = 𝑛𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔(𝑘)) ∧ (¬(𝑙

𝑠𝑒𝑞
→ 𝑘))

- 𝑙
𝑎𝑛𝑑𝑗𝑜𝑖𝑛
→ 𝑘 ⟺ (𝑛𝑖𝑛𝑔𝑜𝑖𝑛𝑔(𝑘) > 1) ∧ (𝑛𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔(𝑙) = 𝑛𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔(𝑘)) ∧ (¬(𝑘

𝑠𝑒𝑞
→ 𝑙))

- 𝑘
𝑜𝑟𝑠𝑝𝑙𝑖𝑡
→ 𝑙 ⟺ (𝑛𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔(𝑘) > 1) ∧ (𝑛𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔(𝑙) > 1) ∧ (𝑛𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔(𝑙) < 𝑛𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔(𝑘)) ∧

(¬(𝑙
𝑠𝑒𝑞
→ 𝑘))

- 𝑙
𝑜𝑟𝑗𝑜𝑖𝑛
→ 𝑘 ⟺ (𝑛𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔(𝑘) > 1) ∧ (𝑛𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔(𝑙) > 1) ∧ (𝑛𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔(𝑙) < 𝑛𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔(𝑘)) ∧

(¬(𝑘
𝑠𝑒𝑞
→ 𝑙))

- 𝑘
𝑥𝑜𝑟𝑠𝑝𝑙𝑖𝑡
→ 𝐼𝑃𝑇

𝑥𝑜𝑟𝑗𝑜𝑖𝑛
→ 𝑙 ⟺ (𝑘

𝑥𝑜𝑟𝑗𝑜𝑖𝑛
→ 𝑙) ∧ (𝑘

𝑥𝑜𝑟𝑠𝑝𝑖𝑡
→ ¬𝑙)

- 𝑙
𝑁𝐹𝐶
→ 𝑦 ⟺ (𝑙

𝑥𝑜𝑟𝑗𝑜𝑖𝑛
→ 𝑘) ∧ (𝑘

𝑥𝑜𝑟𝑠𝑝𝑙𝑖𝑡
→ 𝑦) ∧ (𝐶𝑎𝑠𝑒𝐼𝐷𝑙 = 𝐶𝑎𝑠𝑒𝐼𝐷𝑦)

- 𝑙
𝑁𝐹𝐶
→ 𝐼𝑃𝑇 ⟺ (𝑙

𝑥𝑜𝑟𝑗𝑜𝑖𝑛
→ 𝑘) ∧ (𝑘

𝑥𝑜𝑟𝑠𝑝𝑙𝑖𝑡
→ 𝐼𝑃𝑇) ∧ (𝐼𝑃𝑇

𝑥𝑜𝑟𝑗𝑜𝑖𝑛
→ 𝑦) ∧ (𝐶𝑎𝑠𝑒𝐼𝐷𝑙 = 𝐶𝑎𝑠𝑒𝐼𝐷𝑦)

Table 2. Relationships of Activities

11

Name of

Relationship

Traces of an Event Log

/ Process Models of GIT

Sequence Trace: (𝐺𝐴, 𝐺𝐵, 𝐺𝐶, 𝐺𝐷)
Process Model:

XOR Traces: (𝐺𝐴, 𝐺𝐵, 𝐺𝐸), (𝐺𝐴, 𝐺𝐶, 𝐺𝐸), (𝐺𝐴, 𝐺𝐷, 𝐺𝐸)
Process Model:

AND Traces: (𝐺𝐴, 𝐺𝐵, 𝐺𝐶, 𝐺𝐷, 𝐺𝐸), (𝐺𝐴, 𝐺𝐵, 𝐺𝐷, 𝐺𝐶, 𝐺𝐸),
(𝐺𝐴, 𝐺𝐶, 𝐺𝐵, 𝐺𝐷, 𝐺𝐸), (𝐺𝐴, 𝐺𝐶, 𝐺𝐷, 𝐺𝐵, 𝐺𝐸), (𝐺𝐴, 𝐺𝐷, 𝐺𝐵, 𝐺𝐶, 𝐺𝐸),
(𝐺𝐴, 𝐺𝐷, 𝐺𝐶, 𝐺𝐵, 𝐺𝐸)

Process Model:

OR Traces: (𝐺𝐴, 𝐺𝐵, 𝐺𝐶, 𝐺𝐸), (𝐺𝐴, 𝐺𝐵, 𝐺𝐷, 𝐺𝐸), (𝐺𝐴, 𝐺𝐶, 𝐺𝐵, 𝐺𝐸),

(𝐺𝐴, 𝐺𝐶, 𝐺𝐷, 𝐺𝐸), (𝐺𝐴, 𝐺𝐷, 𝐺𝐵, 𝐺𝐸), (𝐺𝐴, 𝐺𝐷, 𝐺𝐶, 𝐺𝐸)

Process Model:

12

NFC Traces: (𝐺𝐴, 𝐺𝐵, 𝐺𝐶, 𝐺𝐷, 𝐺𝐸), (𝐺𝐴, 𝐺𝐹, 𝐺𝐶, 𝐺𝐺, 𝐺𝐸)

Process Model:

IPT Traces: (𝐺𝐴, 𝐺𝐵, 𝐺𝐶, 𝐺𝐷), (𝐺𝐴, 𝐺𝐷)

Process Model:

IPT-NFC Traces: (𝐺𝐴, 𝐺𝐵, 𝐺𝐶, 𝐺𝐷, 𝐺𝐹, 𝐺𝐺), (𝐺𝐴, 𝐺𝐷, 𝐺𝐸, 𝐺𝐺)

Process Model:

The GIT determines XOR, AND, and OR based on the number of outgoing and incoming arrows.

The total number of outgoing arrows from 𝑘 (𝑛𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔(𝑘)) represents the number of relationships in the

graph-based process model, where all these relationships have 𝑘 denotes the initial activity. By contrast,

the total number of incoming arrows to 𝑘 (𝑛𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔(𝑘)) is the number of relationships appearing in a graph-

based process model, where all of these relations have 𝑘 as the final activity. An XOR relationship over a

set of activities is discovered when each activity in the set has an incoming or an outgoing arrow. An AND

relationship occurs over a set of activities when the number of incoming and outgoing arrows is equal to

the total number of activities in the set. For example, in a graph-based process model, activities 𝑘, 𝑙 and 𝑦

13

are included in the AND relationship if each activity has three incoming and outgoing arrows. The OR

relationship over a set of activities is depicted if the number of incoming arrows or outgoing arrows is more

than one but less than the number of activities in the set. An IPT relationship between two activities is

formed in the process model if those activities have
𝑥𝑜𝑟𝑗𝑜𝑖𝑛
→ and if one of the activities has

𝑥𝑜𝑟𝑠𝑝𝑙𝑖𝑡
→ to another

activity. For example, if activity 𝑘 has
𝑥𝑜𝑟𝑗𝑜𝑖𝑛
→ with activity 𝑙 and activity 𝑘 has

𝑥𝑜𝑟𝑠𝑝𝑙𝑖𝑡
→ with activity 𝑦, an

IPT relationship exists between activities 𝑘 and activity 𝑙. An NFC exists if the execution of an activity in

an XOR relationship depends on the earlier activity in an XOR relationship. For example, if there is an

event log 𝐿4 = {(𝐺𝐴, 𝐺𝐵, 𝐺𝐶, 𝐺𝐷, 𝐺𝐸), (𝐺𝐴, 𝐺𝐹, 𝐺𝐶, 𝐺𝐺, 𝐺𝐸)}, there are two NFC: 𝐺𝐹
𝑁𝐹𝐶
→ 𝐺𝐺 and

𝐺𝐵
𝑁𝐹𝐶
→ 𝐺𝐷. Meanwhile, if there is an event log 𝐿5 = {(𝐺𝐴, 𝐺𝐵, 𝐺𝐶, 𝐺𝐷, 𝐺𝐸), (𝐺𝐴, 𝐺𝐹, 𝐺𝐶, 𝐺𝐺, 𝐺𝐸),

(𝐺𝐴, 𝐺𝐵, 𝐺𝐶, 𝐺𝐺, 𝐺𝐸), (𝐺𝐴, 𝐺𝐹, 𝐺𝐶, 𝐺𝐷, 𝐺𝐸)}, 𝐺𝐹
𝑁𝐹𝐶
→ 𝐺𝐺 and 𝐺𝐵

𝑁𝐹𝐶
→ 𝐺𝐷 are not depicted by GIT (Sarno

et al., 2021) because 𝐺𝐹 and 𝐺𝐺 are not always executed in the same trace. This is also true for 𝐺𝐵 and 𝐺𝐷.

IPT-NFC is a combination of IPT and NFC.

2.5. Quality Measurements

The PDA quality can be measured using four dimensions: fitness, precision, simplicity, and

generalization (Imran et al., 2022; Sarno et al., 2021; Syring et al., 2019). Fitness measures the ability of

PDAs to portray all traces of an event log in the process model obtained. The more traces of an event log

formed in a process model, the higher the fitness value. Precision measures the fit of a discovered process

model. The fitness value emphasizes the traces of an event log, whereas the precision value focuses on

traces formed in the obtained process model. Generalization shows how a process model can accommodate

the emergence of new traces. Simplicity measures the simplicity of a process model. The ‘simple process

model’ depicts precise relationships and nonredundant activities.

3. Methodology

Fig 4 shows the main flow of the GAITN algorithm. The GAITN algorithm solves the scalability

problem of the Graph-based Invisible Task (GIT) algorithm (Sarno et al., 2021) by partitioning the event

14

log into event log snippets (Step 1). As shown in the experiment, the rule to discover sequence performs

better in processing multiple smaller event log snippets than a big event log (even though the total size of

the event log snippets is the same as that of the large event log). In the second step, we applied the rule to

form a sequence relationship to all event log snippets and combined the discovered sequences into one

graph model. In the final step, GAITN applies rules to form other relationships and adds them to the graph

model. The GAITN output is a graph-based process model.

Fig 4. Flowchart of GAITN

3.1. Partitioning Event Log

A graph database requires high computing time when processing a large volume of data (Sarno et

al., 2021). Therefore, GAITN partitions the event log into smaller event log snippets to reduce computing

time. The partitioning process is performed using the Hadoop Distributed File System (HDFS) (Hua et al.,

2018; Oussous et al., 2018). In our experiment, we set the size of each snippet to 1 MB because the graph

database employed in GAITN performs better with smaller data. Based on the five event logs used in this

study, a block size of 1 MB stores approximately 500 recorded cases.

3.2. Forming Sequence Relationship

The rules for discovering sequence relationships in GAITN are listed in Algorithm 1. This rule is

formed by the CQL syntax of MERGE. This rule uses the timestamp and case ID to determine the sequence

relationship between two activities. The rule discovers a sequence relationship between two activities if

both activities have the same case ID and the timestamp of the initial activity (𝑇𝑎𝑡𝑖𝑚𝑒) is earlier than the

timestamp of the end activity (𝑇𝑎+1𝑡𝑖𝑚𝑒).

15

An additional rule was implemented in the first activity of the event log snippet to merge two snippets

(lines 2-8). This additional rule is not applicable for the first snippet (𝐺 ≠ ∅). First, the rule searches for

activities (𝑔𝑎) that have the same case id as the case id of the first activity (𝑔𝑐). If no activity after 𝑔𝑎

((𝑔𝑎) → ∅), then the rule creates a sequence relationship from 𝑔𝑎 to 𝑔𝑐. Another condition for creating a

sequence relationship from 𝑔𝑎 to 𝑔𝑐 if the next activity of 𝑔𝑎 (𝑔𝑏) has different case ID with 𝑔𝑐. The

purpose of the second condition is to connect the first activity of the new snippet with the last activity of

the previous snippet, where the last activity already has a sequence relationship with another activity.

Algorithm 1. Algorithm to Discover Sequence Relationship

𝐈𝐧𝐩𝐮𝐭: 𝑎 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠 𝑖𝑛 𝑎𝑛 𝑒𝑣𝑒𝑛𝑡 log 𝑠𝑛𝑖𝑝𝑝𝑒𝑡 (𝑇), 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠 𝑖𝑛 𝑙𝑖𝑠𝑡 (𝑛𝑇),
𝑎𝑛𝑑 𝑎 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠 𝑖𝑛 𝑎 𝑔𝑟𝑎𝑝ℎ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑚𝑜𝑑𝑒𝑙 (𝐺)

𝐎𝐮𝐭𝐩𝐮𝐭: 𝑎𝑛 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑔𝑟𝑎𝑝ℎ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑚𝑜𝑑𝑒𝑙
1: 𝒇𝒐𝒓 𝑎 = 0 𝒕𝒐 𝑛𝑇 − 1 𝒅𝒐

2: 𝒊𝒇(𝑎 = 0) ∧ (𝐺 ≠ ∅) 𝒕𝒉𝒆𝒏

3: 𝒇𝒐𝒓 (𝑔𝑎, 𝑔𝑏 ∈ 𝐺) ∧ ((𝑔𝑎) − [∶ CASEID] → 𝑇𝑎𝐶𝑎𝑠𝑒𝐼𝐷) 𝒅𝒐

4: 𝒊𝒇 ((𝑔𝑎) → ∅) ∨ (((𝑔𝑎) − [] → (𝑔𝑏)) ∧ ¬((𝑔𝑏) − [∶ CASEID] → 𝑇𝑎𝐶𝑎𝑠𝑒𝐼𝐷))𝒕𝒉𝒆𝒏

5: 𝑔𝑐 ← 𝑇𝑎𝑁𝑎𝑚𝑒

6: MERGE (𝑔𝑎) − [: SEQUENCE] → (𝑔𝑐) − [: CASEID] → (𝑇𝑎𝐶𝑎𝑠𝑒𝐼𝐷)

7: 𝒆𝒏𝒅𝒊𝒇
8: 𝒆𝒏𝒅𝒇𝒐𝒓
9: 𝒆𝒍𝒔𝒆

10: 𝒊𝒇 (𝑇𝑎𝐶𝑎𝑠𝑒𝐼𝐷 = 𝑇𝑎+1𝐶𝑎𝑠𝑒𝐼𝐷) ∧ (𝑇𝑎𝑡𝑖𝑚𝑒 < 𝑇𝑎+1𝑡𝑖𝑚𝑒) 𝒕𝒉𝒆𝒏

11: 𝑔𝑎 ← 𝑇𝑎𝑁𝑎𝑚𝑒 , 𝑔𝑏 ← 𝑇𝑎+1𝑁𝑎𝑚𝑒

12: MERGE (𝑇𝑎𝐶𝑎𝑠𝑒𝐼𝐷) ← [: CASEID] ← (𝑔𝑎) − [: SEQUENCE] → (𝑔𝑏) − [: CASEID] → (𝑇𝑎+1𝐶𝑎𝑠𝑒𝐼𝐷)

13: 𝒆𝒏𝒅𝒊𝒇

14: 𝒆𝒏𝒅𝒊𝒇

15: 𝒆𝒏𝒅𝒇𝒐𝒓

3.3. Discovering Other Relationships Beside Sequence

After discovering the sequence relationships, the GAITN applies the rules implemented in the GIT to

discover the XOR, OR, AND, invisible prime tasks (IPT), and NFC relationships. Details of this step are

reported in (Sarno et al., 2021). The next step was to discover invisible tasks of stacked branching

relationships and invisible tasks in non-free choice.

3.3.1 Constructing Invisible Tasks of Stacked Branching Relationships

The GAITN algorithm uses the outputs of the GIT algorithm to form invisible tasks of stacked

branching relationship (IT-SBR). GIT detected stacked branching XOR-AND relationships and stacked

16

branching XOR-OR relationships as OR relationships, so GIT could not mine stacked branching

relationships. However, we can create a rule to discover IT-SBR by utilising the number of recorded

activities of cases in the event log. The rules for discarding the IT-SBR are shown in Algorithm 2. Lines 5-

20 are rules for constructing the IT-SBR in SPLIT relationships and lines 21-30 for forming the IT-SBR in

JOIN relationships.

The GAITN algorithm applies the rules if there is an activity (𝑔𝑎) that has XOR relationship with an

activity (𝑔𝑏) and OR relationships with other activities (𝑔𝑐1, 𝑔𝑐2, … , 𝑔𝑐𝑛) in the graph process model. Based

on lines 6-12, 𝑛𝑠𝑎𝑚𝑒𝐶𝑎𝑠𝑒𝐼𝐷 is a number of cases containing all activities (𝑔𝑐1, 𝑔𝑐2, … , 𝑔𝑐𝑛)

and 𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝐶𝑎𝑠𝑒𝐼𝐷 is a number of cases containing one or several activities of (𝑔𝑐1, 𝑔𝑐2, … , 𝑔𝑐𝑛). GAITN

constructs invisible tasks of stacked branching XOR-AND relationships if 𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝐶𝑎𝑠𝑒𝐼𝐷 is 0 and forms

invisible tasks of stacked branching XOR-OR relationships if 𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝐶𝑎𝑠𝑒𝐼𝐷 is greater than 0.

Algorithm 2. Algorithm to Discover Invisible Tasks of Stacked Branching Relationships (IT-SBR)

𝐈𝐧𝐩𝐮𝐭: 𝑎 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠 (𝐺) 𝑎𝑛𝑑 𝑎 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑐𝑎𝑠𝑒 𝐼𝐷 (kID) 𝑜𝑓 𝑎 𝑔𝑟𝑎𝑝ℎ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑚𝑜𝑑𝑒𝑙
𝐎𝐮𝐭𝐩𝐮𝐭: 𝑎𝑛 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑔𝑟𝑎𝑝ℎ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑚𝑜𝑑𝑒𝑙
1: IT ← 𝑖𝑛𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑡𝑎𝑠𝑘

2: 𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝐶𝑎𝑠𝑒𝐼𝐷 ← 0

3: 𝑛𝑠𝑎𝑚𝑒𝐶𝑎𝑠𝑒𝐼𝐷 ← 0

4: 𝒇𝒐𝒓 (𝑔𝑎 ∈ 𝐺) 𝒅𝒐

5: 𝒊𝒇 ((𝑔𝑎) − [: XORSPLIT] → (𝑔𝑏)) ∧ ((𝑔𝑎) − [: ORSPLIT] → (𝑔𝑐1, 𝑔𝑐2, … , 𝑔𝑐𝑛)) 𝒕𝒉𝒆𝒏

6: 𝒇𝒐𝒓(𝑘 ∈ kID) 𝒅𝒐

7: 𝒊𝒇 (∀(𝑔𝑐1, 𝑔𝑐2, … , 𝑔𝑐𝑛) − [∶ CASEID] → 𝑘) 𝒕𝒉𝒆𝒏

8: 𝑛𝑠𝑎𝑚𝑒𝐶𝑎𝑠𝑒𝐼𝐷 ← 𝑛𝑠𝑎𝑚𝑒𝐶𝑎𝑠𝑒𝐼𝐷 + 1

9: 𝒆𝒍𝒔𝒆 𝒊𝒇 (∃(𝑔𝑐1, 𝑔𝑐2, … , 𝑔𝑐𝑛) − [∶ CASEID] → 𝑘) 𝒕𝒉𝒆𝒏

10: 𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝐶𝑎𝑠𝑒𝐼𝐷 ← 𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝐶𝑎𝑠𝑒𝐼𝐷 + 1

11: 𝒆𝒏𝒅𝒊𝒇

12: 𝒆𝒏𝒅𝒇𝒐𝒓

13: 𝒊𝒇 𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝐶𝑎𝑠𝑒𝐼𝐷 = 0 𝒕𝒉𝒆𝒏

14: 𝐌𝐄𝐑𝐆𝐄 (𝑔𝑎) − [∶ XORSPLIT] → (𝑖: IT)
15: 𝐌𝐄𝐑𝐆𝐄 (𝑖: IT) − [∶ ANDSPLIT] → (𝑔𝑐1, 𝑔𝑐2, … , 𝑔𝑐𝑛)
16: 𝒆𝒍𝒔𝒆 𝒕𝒉𝒆𝒏

17: 𝐌𝐄𝐑𝐆𝐄 (𝑔𝑎) − [∶ XORSPLIT] → (𝑖: IT)
18 𝐌𝐄𝐑𝐆𝐄 (𝑖: IT) − [∶ ORSPLIT] → (𝑔𝑐1, 𝑔𝑐2, … , 𝑔𝑐𝑛)
19: 𝒆𝒏𝒅𝒊𝒇

20: 𝒆𝒏𝒅𝒊𝒇

21: 𝒊𝒇 ((𝑔𝑎) ← [: XORJOIN] − (𝑔𝑏)) ∧ ((𝑔𝑎) ← [: ORJOIN] − (𝑔𝑐1, 𝑔𝑐2, … , 𝑔𝑐𝑛)) 𝒕𝒉𝒆𝒏

22: 𝑑𝑜 𝑙𝑖𝑛𝑒𝑠 6 − 12

23: 𝒊𝒇 𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝐶𝑎𝑠𝑒𝐼𝐷 = 0 𝒕𝒉𝒆𝒏

17

Algorithm 2. Algorithm to Discover Invisible Tasks of Stacked Branching Relationships (IT-SBR)

24: 𝐌𝐄𝐑𝐆𝐄 (𝑖: IT) − [∶ XORJOIN] → (𝑔𝑎)
25: 𝐌𝐄𝐑𝐆𝐄 (𝑔𝑐1, 𝑔𝑐2, … , 𝑔𝑐𝑛) − [∶ ANDJOIN] → (𝑖: IT)
26: 𝒆𝒍𝒔𝒆 𝒕𝒉𝒆𝒏

27: 𝐌𝐄𝐑𝐆𝐄 (𝑖: IT) − [∶ XORJOIN] → (𝑔𝑎)
28: 𝐌𝐄𝐑𝐆𝐄 (𝑔𝑐1, 𝑔𝑐2, … , 𝑔𝑐𝑛) − [∶ ORJOIN] → (𝑖: IT)
29: 𝒆𝒏𝒅𝒊𝒇

30: 𝒆𝒏𝒅𝒊𝒇

31: 𝒆𝒏𝒅𝒇𝒐𝒓

3.3.2 Constructing Invisible Tasks in Non-Free Choice for Stacked Branching Relationships

Algorithm 3 describes the rules for discovering Invisible Tasks in Non-Free Choice for Stacked

Branching Relationships (IT-SBR-NFC). There were three steps: discovering an NFC from an invisible

task to another activity (lines 3-7); forming an NFC from one activity to an invisible task (lines 8-12); and

describing the NFC relationship from one invisible task to another invisible task (lines 13-19). GAITN

searches for an activity (say 𝑔𝑐) that has a XORJOIN relationship and a XORSPLIT relationship with other

activities. An NFC from an invisible task to an activity (say 𝑔𝑎) is formed when the invisible task has a

XORJOIN relationship with 𝑔𝑐, 𝑔𝑐 has a XORSPLIT relationship with 𝑔𝑎 and the set of activities related

to the invisible task has the same Case ID as 𝑔𝑎. An NFC from an activity (𝑔𝑎) to an invisible task is formed

when 𝑔𝑐 has a XORSPLIT to the invisible task and a XORJOIN from 𝑔𝑎, and the set of activities related to

the invisible task has the same Case ID as 𝑔𝑎. GAITN discovers an NFC from one invisible task to another

invisible task if the invisible task has an XORSPLIT relationship to 𝑔𝑐, another invisible task has an

XORJOIN relationship from 𝑔𝑐, and the activities related to both invisible tasks have the same Case ID.

Algorithm 3. Algorithm to Discover IT-SBR in Non-Free Choice (IT-SBR-NFC)

𝐈𝐧𝐩𝐮𝐭: 𝑎 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠 (𝐺) 𝑜𝑓 𝑎 𝑔𝑟𝑎𝑝ℎ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑚𝑜𝑑𝑒𝑙
𝐎𝐮𝐭𝐩𝐮𝐭: 𝑎𝑛 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑔𝑟𝑎𝑝ℎ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑚𝑜𝑑𝑒𝑙
1: 𝑘 ← 𝑛𝑎𝑚𝑒 𝑜𝑓 𝑐𝑎𝑠𝑒 𝐼𝐷, IT ← 𝑖𝑛𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑡𝑎𝑠𝑘

2: 𝒇𝒐𝒓 (𝑔𝑎, 𝑔𝑏, 𝑔𝑐 ∈ 𝐺) 𝒅𝒐

3: 𝒊𝒇 ((𝑖: IT) − [: JOIN] → (𝑔𝑐) − [: SPLIT] → (𝑔𝑎)) 𝒅𝒐

4: 𝒊𝒇 ((𝑔𝑏) − [] → (𝑖: IT)) ∧ ((𝑔𝑎) − [∶ CASEID] → 𝑘 ← [∶ CASEID] − (𝑔𝑏))𝒕𝒉𝒆𝒏

5: 𝐌𝐄𝐑𝐆𝐄 (𝑖) − [∶ NONFREECHOICE] → (𝑔𝑎)
6: 𝒆𝒏𝒅𝒊𝒇

7: 𝒆𝒏𝒅𝒊𝒇

8: 𝒊𝒇 ((𝑔𝑎) − [: JOIN] → (𝑔𝑐) − [: SPLIT] → (𝑖: IT)) 𝒅𝒐

9: 𝒊𝒇 ((𝑖: IT) − [] → (𝑔𝑏)) ∧ ((𝑔𝑎) − [∶ CASEID] → 𝑘 ← [∶ CASEID] − (𝑔𝑏))𝒕𝒉𝒆𝒏

10: 𝐌𝐄𝐑𝐆𝐄 (𝑔𝑎) − [∶ NONFREECHOICE] → (𝑖)

18

11: 𝒆𝒏𝒅𝒊𝒇

12: 𝒆𝒏𝒅𝒊𝒇

13: 𝒊𝒇 ((𝑖: IT) − [: JOIN] → (𝑔𝑐) − [: SPLIT] → (𝑗: IT)) 𝒅𝒐

14: 𝒊𝒇 ((𝑔𝑎) − [] → (𝑖: IT)) ∧ ((𝑔𝑏) ← [] − (𝑗: IT)) 𝒕𝒉𝒆𝒏

15: 𝒊𝒇 ((𝑔𝑎) − [∶ CASEID] → 𝑘 ← [∶ CASEID] − (𝑔𝑏)) 𝒕𝒉𝒆𝒏

16: 𝐌𝐄𝐑𝐆𝐄 (𝑖) − [∶ NONFREECHOICE] → (𝑗)
17: 𝒆𝒏𝒅𝒊𝒇

18 𝒆𝒏𝒅𝒊𝒇

19: 𝒆𝒏𝒅𝒊𝒇

20: 𝒆𝒏𝒅𝒇𝒐𝒓

4 Experiments

In the first experiment, we compared the quality of the process model discovered by the GAITN, GIT,

$, and Fodina algorithms, using the four measurements. In this experiment, we used four synthetic event

logs: L1, L2, solid medical waste handling simulation and medical record (Sarno et al., 2021).

We show the standard operating procedure (SOP) of solid medical waste handling in our case using

the Business Process Modeling Notation (BPMN) (Marin-Castro & Tello-Leal, 2021). In Fig 5, the activity

names are shown in their initials and the corresponding full names are given in the list next to the diagram.

The figure shows several relationships, such as sequence (denoted by →), XOR (denoted by a diamond

with X icon), OR (denoted by a diamond with O icon), invisible tasks (denoted by gray boxes), and the

NFC relationship (shown by a dotted line; for example, if activity PRB is executed in the following XOR

choice, activity SW must be selected). Appendix A provides a detailed explanation of the solid medical waste

handling simulation model.

19

Fig 5. Standard Operating Procedure for Solid Medical Waste Handling

To measure the scalability of algorithms, we added three real-life event logs: BPIC 2011 Hospital (B.

F. van Dongen, 2012), DomesticDeclarations (B. van Dongen, 2020), BPI Challenge 2012 (B. van Dongen,

2012a). The detail information of event logs is described in Table 3.

Table 3. Event Logs for Experiment

Event Log Total Events Total Cases Total Traces Reference

L2 – IT-SBR-NFC of

XOR-OR relationships
1.7 x 102

(170)
35 7 This paper (Fig 3)

L1 – IT-SBR-NFC of

XOR-AND relationships
2.0 x 102

(200)
35 7 This paper (Fig 3)

Medical Record Small
5.5 x 102

(552)
48 48 (Sarno et al., 2021)

Medical Record
3.0 x 103

(3,084)
306 303 (Sarno et al., 2021)

Solid Waste Handling
5.9 x 103

(5,941)
478 10 This paper (Fig 5)

DomesticDeclarations
5.6 x 104

(56,437)
10,500 99

(B. van Dongen,

2020)

BPIC 2011 Hospital Log
1.5 x 105

(150,291)
1,143 981

(B. F. van Dongen,

2012)

20

Event Log Total Events Total Cases Total Traces Reference

BPI Challenge 2012
2.6 x 105

(262,200)
13,087 4,366

(B. van Dongen,

2012b)

A process model discovered by the GAITN from the solid-waste handling event log is shown in Fig 6,

while other process models are presented in Appendix B. $ produces a timeout error from a log of a solid

waste handling; hence, the process model cannot be identified. GAITN has successfully discovered invisible

tasks, NFC, and IT-SBR-NFC, which are denoted by grey circles, red lines, and grey circles connected by red

lines, respectively. GIT misinterprets the stacked branching XOR-AND relationships and the stacked

branching XOR-OR relationships with OR relationships, while Fodina discovers the stacked branching XOR-

OR relationships as AND relationships. Neither GIT nor Fodina discovered IT-SBR-NFC.

The results of the first experiment and the average scores of the results are listed in Table 4. The

inability of forming a process model from solid waste-handling event log causes $ has lowest scores in

fitness, generalisation, and simplicity. GIT and Fodina get low precision scores because those algorithms

discover many traces that do not match the event log due to inability to form IT-SBR and IT-SBR-NFC.

GAITN gets the highest average scores of fitness, precision, generalisation, and simplicity among other

algorithms. This can be attributed to the fact that it can form OR, NFC, and IT-SBR-NFC relationships.

21

Fig 6. A solid medical waste handling process model obtained by the proposed method (GAITN)

Table 4. Quality Measurements of Obtained Process Models Discovered by Algorithms

Event Log Algorithm
Fitness

(0.0 – 1.0)

Precision

(0.0 – 1.0)

Generalisation

(0.0 – 1.0)

Simplicity

(0.0 – 1.0)

L1 – IT-SBR-NFC

of XOR-AND

relationships

Proposed method (GAITN) 1.000 1.000 0.930 1.000

GIT 0.857 0.083 0.929 0.909

 $ 1.000 0.250 0.933 0.813

Fodina 1.000 0.500 0.930 1.000

L2 – IT-SBR-NFC

of XOR-OR

relationships

Proposed method (GAITN) 1.000 1.000 0.930 1.000

GIT 0.857 0.083 0.933 0.909

 $ 0.143 0.036 0.920 0.750

Fodina 0.140 0.070 0.929 0.917

Solid Medical

Waste Handling
Proposed method (GAITN) 1.000 1.000 0.808 1.000

GIT 0.400 0.002 0.804 0.972

 $ - - - -

Fodina 0.800 0.444 0.806 0.944

Medical Record Proposed method (GAITN) 1.000 1.000 0.970 1.000

GIT
1.000 1.000 0.970 1.000

 $ 1.000 1.000 0.970 1.000

22

Event Log Algorithm
Fitness

(0.0 – 1.0)

Precision

(0.0 – 1.0)

Generalisation

(0.0 – 1.0)

Simplicity

(0.0 – 1.0)

Fodina 1.000 0.870 0.970 1.000

𝒙 Proposed method (GAITN) 1.000 1.000 0.910 1.000

GIT 0.779 0.292 0.909 0.948

 $ 0.536 0.322 0.706 0.641

Fodina 0.735 0.471 0.909 0.965

Note: - indicates that the algorithm cannot complete the task (timeout error), �̅� is the average

measurement value for each algorithm

In the second experiment, we compared the maximum activity that can be formed by GAITN, GIT,

$ and Fodina algorithms. As shown in Table 5, GAITN is the only algorithm that can process models up

to 2.6 x 105 events, while GIT, Fodina, and $ handled 1.5 x 105, 5.6 x 104 and 5.6 x 104, respectively. The

computing time of GIT and Fodina increased slowly; however, $ has a sharp increase in computing time

when the number of events reached 5.6 x 104 events. Fodina has the fastest computing time among other

algorithms; however, this algorithm cannot handle more 5.6 x 104 events. The increase in computing times

of GAITN, GIT, and $ in line with the increase in number of events. The computing time of Fodina is

more affected by the number of traces than number of events. The experiments show that GAITN can

handle more events than the other algorithms.

Table 5. Scalability: Computing Time of Discovery and Maximum Handled Events

Total Events

Computing Time of Discovery (s)

Proposed method

(GAITN)
$ GIT Fodina

1.7 x 102 0.340 0.153 0.340 0.168

2.0 x 102 0.342 0.158 0.342 0.170

5.5 x 102 0.849 0.417 0.849 0.590

3.0 x 103 2.978 1.235 2.978 0.780

5.9 x 103 8.381 3.351 8.381 0.350

5.6 x 104 11.971 519.890 11.971 0.650

1.5 x 105 32.385 - 32.385 -

23

Total Events

Computing Time of Discovery (s)

Proposed method

(GAITN)
$ GIT Fodina

2.6 x 105 45.274 - - -

Note: - indicates that the algorithm cannot complete the task (timeout error)

5. Conclusions

In this study, we have proposed an algorithm called GAITN, which utilises a graph database to model

invisible non-prime task, identify invisible tasks of stacked branching relationships (IT-SBR) in non-free

choice (IT-SBR-NFC) and form process models based on huge volumes of event logs. We have shown that

storing relationships in a graph database can simplify the rules of process discovery, because a relationship

can be constructed based on other discovered relationships. For example, using a graph database, the IT-

SBR was mined using obtained branching relationships, and IT-SBR-NFC construct was formed using IT-

SBR and XOR relationships. This also makes it easier to extend an algorithm, as shown in our case, where

we extend the GIT to the GAITN simply by adding rules that form IT-SBR and IT-SBR-NFC relationship

using relationships that can be discovered by the GIT. Experiments have shown that GAITN performs better

than GIT, $ and Fodina, based on fitness, precision, simplicity measures, and the maximum activity that

can be handled. The result also shows that our idea of splitting event logs and creating new rules of sequence

relationships allows GAITN to handle large event logs. GAITN enhances the model quality by its capability

to mine IT-SBR and ITS-BR-NFC and increases the scalability of process discovery by partitioning event

logs and merging snippets of the event log.

The drawbacks of using graph database in the graph-based process mining algorithm is the computing

time increases significantly when processing large amounts of events. In future work, we aim to as a pre-

processing stage or optimise Cypher Query Language (CQL) to reduce computing time of the GAITN.

Conflict of Interest

No potential conflict of interest is reported by the authors.

Ethical Approval and Consent to Participate

24

Ethical approval was not required, because the event logs were public datasets or simulated event logs based

on public process models.

References

Anugrah, I. G., Sarno, R., & Anggraini, R. N. E. (2015). Decomposition using Refined Process Structure

Tree (RPST) and control flow complexity metrics. 2015 International Conference on Information &

Communication Technology and Systems (ICTS), 203–208.

https://doi.org/10.1109/ICTS.2015.7379899

Back, C. O., Manataki, A., & Harrison, E. (2020). Mining patient flow patterns in a surgical ward.

HEALTHINF 2020 - 13th International Conference on Health Informatics, Proceedings; Part of 13th

International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC

2020, Biostec, 273–283. https://doi.org/10.5220/0009181302730283

Battineni, G., Chintalapudi, N., & Amenta, F. (2020). Model discovery, and replay fitness validation using

inductive mining techniques in medical training of CVC surgery. Applied Computing and Informatics.

https://doi.org/10.1016/j.aci.2020.01.001

Beeson, I., Green, S., Sa, J., & Sully, A. (2002). Linking Business Processes and Information Systems

Provision in a Dynamic Environment. Information Systems Frontiers, 4(3), 317–329.

https://doi.org/10.1023/A:1019910722321

Berger, S., van Dun, C., & Häckel, B. (2022). IT Availability Risks in Smart Factory Networks – Analyzing

the Effects of IT Threats on Production Processes Using Petri Nets. Information Systems Frontiers.

https://doi.org/10.1007/s10796-022-10243-y

Choueiri, A. C., & Portela Santos, E. A. (2021). Discovery of path-attribute dependency in manufacturing

environments: A process mining approach. Journal of Manufacturing Systems, 61, 54–65.

https://doi.org/https://doi.org/10.1016/j.jmsy.2021.08.005

Choueiri, A. C., Sato, D. M. V., Scalabrin, E. E., & Santos, E. A. P. (2020). An extended model for

remaining time prediction in manufacturing systems using process mining. Journal of Manufacturing

Systems, 56, 188–201. https://doi.org/https://doi.org/10.1016/j.jmsy.2020.06.003

De Roock, E., & Martin, N. (2022). Process mining in healthcare – An updated perspective on the state of

the art. Journal of Biomedical Informatics, 127(November 2021), 103995.

https://doi.org/10.1016/j.jbi.2022.103995

Erdogan, T. G., & Tarhan, A. (2018). Systematic Mapping of Process Mining Studies in Healthcare. IEEE

Access, 6, 24543–24567. https://doi.org/10.1109/ACCESS.2018.2831244

Francis, N., Green, A., Guagliardo, P., Libkin, L., Lindaaker, T., Marsault, V., Plantikow, S., Rydberg, M.,

Selmer, P., & Taylor, A. (2018). Cypher: An Evolving Query Language for Property Graphs.

Proceedings of the 2018 International Conference on Management of Data, 1433–1445.

https://doi.org/10.1145/3183713.3190657

Guo, Q., Wen, L., Wang, J., Yan, Z., & Yu, P. S. (2015). Mining Invisible Tasks in Non-free-choice

Constructs. In Lecture Notes in Computer Science (pp. 109–125). Springer International Publishing.

https://doi.org/10.1007/978-3-319-23063-4_7

Hamdani, A., & Abdelli, A. (2020). Towards modelling and analyzing timed workflow systems with

complex synchronizations. Journal of King Saud University - Computer and Information Sciences,

25

32(4), 491–504. https://doi.org/10.1016/j.jksuci.2019.08.007

Hua, X., Huang, M. C., & Liu, P. (2018). Hadoop Configuration Tuning with Ensemble Modeling and

Metaheuristic Optimization. IEEE Access, 6, 44161–44174.

https://doi.org/10.1109/ACCESS.2018.2857852

Imran, M., Ismail, M. A., Hamid, S., & Nasir, M. H. N. M. (2022). Complex Process Modeling in Process

Mining: A Systematic Review. IEEE Access, 10(September), 101515–101536.

https://doi.org/10.1109/ACCESS.2022.3208231

Kim, K. S., Pham, D. L., Park, Y. I., & Kim, K. P. (2022). Experimental verification and validation of the

SICN-oriented process mining algorithm and system. Journal of King Saud University - Computer

and Information Sciences, 34(10), 9793–9813. https://doi.org/10.1016/j.jksuci.2021.12.013

Kurniati, A. P., Kusuma, G., & Wisudiawan, G. (2016). Implementing Heuristic Miner for Different Types

of Event Logs. International Journal of Applied Engineering Research, 11(8), 5523–5529.

Marin-Castro, H. M., & Tello-Leal, E. (2021). An end-to-end approach and tool for BPMN process

discovery. Expert Systems with Applications, 174(January 2020), 114662.

https://doi.org/10.1016/j.eswa.2021.114662

Namaki, S., Fontanili, F., Lamine, E., & Okongwu, U. (2022). Stable heuristic miner : Applying statistical

stability to discover the common patient pathways from location event logs. Intelligent Systems with

Applications, 14. https://doi.org/10.1016/j.iswa.2022.200071

Oussous, A., Benjelloun, F.-Z., Ait Lahcen, A., & Belfkih, S. (2018). Big Data technologies: A survey.

Journal of King Saud University - Computer and Information Sciences, 30(4), 431–448.

https://doi.org/10.1016/j.jksuci.2017.06.001

Pika, A., Wynn, M. T., Budiono, S., Hofstede, A. H. M. T., van der Aalst, W. M. P., & Reijers, H. A.

(2020). Privacy-preserving process mining in healthcare. International Journal of Environmental

Research and Public Health, 17(5). https://doi.org/10.3390/ijerph17051612

Saad, M., Zhang, Y., Tian, J., & Jia, J. (2023). A graph database for life cycle inventory using Neo4j.

Journal of Cleaner Production, 393, 136344.

https://doi.org/https://doi.org/10.1016/j.jclepro.2023.136344

Sarno, R., Sungkono, K., Johanes, R., & Sunaryono, D. (2019). Graph-Based Algorithms for Discovering

a Process Model Containing Invisible Tasks. International Journal of Intelligent Engineering and

Systems, 12(2), 85–94. https://doi.org/10.22266/ijies2019.0430.09

Sarno, R., Sungkono, K. R., Taufiqulsa’di, M., Darmawan, H., Fahmi, A., & Triyana, K. (2021). Improving

Efficiency for Discovering Business Processes Containing Invisible tasks in Non-free Choice. Journal

of Big Data, 8(113). https://doi.org/10.21203/rs.3.rs-71558/v1

Šestak, M., & Turkanovic, M. (2023). Extended Property-level k -vertex Cardinality Constraints Model for

Graph Databases. Journal of King Saud University – Computer and Information Sciences, 35, 126–

138. https://doi.org/10.1016/j.jksuci.2023.03.013

Syring, A. F., Tax, N., & van der Aalst, W. M. P. (2019). Evaluating Conformance Measures in Process

Mining Using Conformance Propositions. In Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 11790 LNCS (pp.

192–221). https://doi.org/10.1007/978-3-662-60651-3_8

van der Aalst, W. (2011). Process mining: discovering and improving Spaghetti and Lasagna processes.

26

IEEE Symposium on Computational Intelligence and Data Mining, 1–7.

https://doi.org/10.1109/cidm.2011.6129461

van der Aalst, W. (2016). Process Mining (2nd ed.). Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-662-49851-4

van Dongen, B. (2012a). BPI Challenge 2012. Eindhoven University of Technology.

https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

van Dongen, B. (2012b). BPI Challenge 2012. https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-

75976070e91f

van Dongen, B. (2020). BPI Challenge 2020: Domestic Declarations. 4TU.Centre for Research Data.

https://doi.org/10.4121/uuid:3f422315-ed9d-4882-891f-e180b5b4feb5

van Dongen, B. F. (2012). BPIC 2011 Hospital Log. https://doi.org/10.4121/uuid:3926db30-f712-4394-

aebc-75976070e91f

vanden Broucke, S. K. L. M., & De Weerdt, J. (2017). Fodina: A robust and flexible heuristic process

discovery technique. Decision Support Systems, 100, 109–118.

https://doi.org/10.1016/j.dss.2017.04.005

Waspada, I., Sarno, R., & Sungkono, K. R. (2020). An Improved Method of Parallel Model Detection for

Graph-Based Process Model Discovery. International Journal of Intelligent Engineering and Systems,

13(2), 127–138. https://doi.org/10.22266/ijies2020.0430.13

Weber, P., Backman, R., Litchfield, I., & Lee, M. (2018). A Process Mining and Text Analysis Approach

to Analyse the Extent of Polypharmacy in Medical Prescribing. 2018 IEEE International Conference

on Healthcare Informatics (ICHI), 1–11. https://doi.org/10.1109/ICHI.2018.00008

Wen, L., van der Aalst, W. M. P., Wang, J., & Sun, J. (2007). Mining process models with non-free-choice

constructs. Data Mining and Knowledge Discovery, 15(2), 145–180. https://doi.org/10.1007/s10618-

007-0065-y

Wen, L., Wang, J., van der Aalst, W. M. P., Huang, B., & Sun, J. (2010). Mining process models with prime

invisible tasks. Data & Knowledge Engineering, 69(10), 999–1021.

https://doi.org/10.1016/j.datak.2010.06.001

Yan, Z., Sun, B., Chen, Y., Wen, L., Hu, L., Wang, J., Yang, M., & Wang, L. (2019). Decomposed and

parallel process discovery: A framework and application. Future Generation Computer Systems, 98,

392–405. https://doi.org/https://doi.org/10.1016/j.future.2019.03.048

Zayoud, M., Kotb, Y., & Ionescu, S. (2019). β Algorithm: A New Probabilistic Process Learning Approach

for Big Data in Healthcare. IEEE Access, 7, 78842–78869.

https://doi.org/10.1109/ACCESS.2019.2922635

Zheng, W., Du, Y., Wang, S., & Qi, L. (2019). Repair Process Models Containing Non-Free-Choice

Structures Based on Logic Petri Nets. IEEE Access, 7, 105132–105145.

https://doi.org/10.1109/ACCESS.2019.2932260

27

APPENDIX A

A Solid Medical Waste Handling Simulation Model

A.1. Purpose of the model

This study presents a discrete event simulation (DES) model to simulate a standard operating procedure

(SOP) for Solid Medical Waste Handling and generates an event log based on the simulation. Fig 5 presents

the SOP of Solid Medical Waste Handling.

A.2. Model output

The output is an event log that records the executed activities of all traces in the simulation model.

A.3. Software or programming language

DES model is developed using Anylogic 8.7.5 Personal Learning Edition

A.4. Model Structure

The DES model is shown in Fig 7.

Fig 7. A simulation model in Anylogic Software

28

APPENDIX B

Table 6. Process Models from solid-waste handling event log

GIT

$

No process model because the algorithm cannot process the event log (timeout)

Fodina

29

Table 7. Process Models from L1 event log

Traces of

Event Log

L1 = { (A,B, C, D, F, H), (A, B, D, C, F, H), (A, C, B, D, F, H), (A, C, D, B, F, H),

(A, D, C, B, F, H), (A, D, B, C, F, G), (A, E, G, H) }

GAITN

GIT

$

Fodina

30

Table 8. Process Models from L2 event log

Traces of

Event Log

L2 = { (A, B, C, F, H), (A, B, D, F, H), (A, C, B, F, H), (A, C, D, F, H), (A, D, C, F,

H), (A, D, B, F, G), (A, E, G, H) }

GAITN

GIT

$

Fodina

Conflict of Interest

No potential conflict of interest is reported by the authors.

Conflict of Interest

Author Agreement

Submission of work requires that the piece to be reviewed has not been previously
published. Upon acceptance, the Author assigns to the Journal of King Saud
University - Science (JKSUS) the right to publish and distribute the manuscript in part
or in its entirety. The Author's name will always be included with the publication of
the manuscript.

The Author has the following nonexclusive rights: (1) to use the manuscript in the
Author's teaching activities; (2) to publish the manuscript, or permit its publication, as
part of any book the Author may write; (3) to include the manuscript in the Author's
own personal or departmental (but not institutional) database or on-line site; and (4) to
license reprints of the manuscript to third persons for educational photocopying. The
Author also agrees to properly credit the Journal of King Saud University - Science
(JKSUS) as the original place of publication.

The Author hereby grants the Journal of King Saud University - Science (JKSUS) full
and exclusive rights to the manuscript, all revisions, and the full copyright. The
Journal of King Saud University - Science (JKSUS) rights include but are not limited
to the following: (1) to reproduce, publish, sell, and distribute copies of the
manuscript, selections of the manuscript, and translations and other derivative works
based upon the manuscript, in print, audio-visual, electronic, or by any and all media
now or hereafter known or devised; (2) to license reprints of the manuscript to third
persons for educational photocopying; (3) to license others to create abstracts of the
manuscript and to index the manuscript; (4) to license secondary publishers to
reproduce the manuscript in print, microform, or any computer-readable form,
including electronic on-line databases; and (5) to license the manuscript for document
delivery. These exclusive rights run the full term of the copyright, and all renewals
and extensions thereof.

I hereby accept the terms of the above Author Agreement.

Author :- Date :-

Editor in Chief:- Ahmed H. Alghamdi Date:-

Riyanarto Sarno

Author Agreement

Author Agreement

Submission of work requires that the piece to be reviewed has not been previously
published. Upon acceptance, the Author assigns to the Journal of King Saud
University - Science (JKSUS) the right to publish and distribute the manuscript in part
or in its entirety. The Author's name will always be included with the publication of
the manuscript.

The Author has the following nonexclusive rights: (1) to use the manuscript in the
Author's teaching activities; (2) to publish the manuscript, or permit its publication, as
part of any book the Author may write; (3) to include the manuscript in the Author's
own personal or departmental (but not institutional) database or on-line site; and (4) to
license reprints of the manuscript to third persons for educational photocopying. The
Author also agrees to properly credit the Journal of King Saud University - Science
(JKSUS) as the original place of publication.

The Author hereby grants the Journal of King Saud University - Science (JKSUS) full
and exclusive rights to the manuscript, all revisions, and the full copyright. The
Journal of King Saud University - Science (JKSUS) rights include but are not limited
to the following: (1) to reproduce, publish, sell, and distribute copies of the
manuscript, selections of the manuscript, and translations and other derivative works
based upon the manuscript, in print, audio-visual, electronic, or by any and all media
now or hereafter known or devised; (2) to license reprints of the manuscript to third
persons for educational photocopying; (3) to license others to create abstracts of the
manuscript and to index the manuscript; (4) to license secondary publishers to
reproduce the manuscript in print, microform, or any computer-readable form,
including electronic on-line databases; and (5) to license the manuscript for document
delivery. These exclusive rights run the full term of the copyright, and all renewals
and extensions thereof.

I hereby accept the terms of the above Author Agreement.

Author :- Date :-

Editor in Chief:- Ahmed H. Alghamdi Date:-

Kelly Rossa Sungkono

Author Agreement

Submission of work requires that the piece to be reviewed has not been previously
published. Upon acceptance, the Author assigns to the Journal of King Saud
University - Science (JKSUS) the right to publish and distribute the manuscript in part
or in its entirety. The Author's name will always be included with the publication of
the manuscript.

The Author has the following nonexclusive rights: (1) to use the manuscript in the
Author's teaching activities; (2) to publish the manuscript, or permit its publication, as
part of any book the Author may write; (3) to include the manuscript in the Author's
own personal or departmental (but not institutional) database or on-line site; and (4) to
license reprints of the manuscript to third persons for educational photocopying. The
Author also agrees to properly credit the Journal of King Saud University - Science
(JKSUS) as the original place of publication.

The Author hereby grants the Journal of King Saud University - Science (JKSUS) full
and exclusive rights to the manuscript, all revisions, and the full copyright. The
Journal of King Saud University - Science (JKSUS) rights include but are not limited
to the following: (1) to reproduce, publish, sell, and distribute copies of the
manuscript, selections of the manuscript, and translations and other derivative works
based upon the manuscript, in print, audio-visual, electronic, or by any and all media
now or hereafter known or devised; (2) to license reprints of the manuscript to third
persons for educational photocopying; (3) to license others to create abstracts of the
manuscript and to index the manuscript; (4) to license secondary publishers to
reproduce the manuscript in print, microform, or any computer-readable form,
including electronic on-line databases; and (5) to license the manuscript for document
delivery. These exclusive rights run the full term of the copyright, and all renewals
and extensions thereof.

I hereby accept the terms of the above Author Agreement.

Author :- Date :-

Editor in Chief:- Ahmed H. Alghamdi Date:-

Bhakti S. Onggo

Author Agreement

Submission of work requires that the piece to be reviewed has not been previously
published. Upon acceptance, the Author assigns to the Journal of King Saud
University - Science (JKSUS) the right to publish and distribute the manuscript in part
or in its entirety. The Author's name will always be included with the publication of
the manuscript.

The Author has the following nonexclusive rights: (1) to use the manuscript in the
Author's teaching activities; (2) to publish the manuscript, or permit its publication, as
part of any book the Author may write; (3) to include the manuscript in the Author's
own personal or departmental (but not institutional) database or on-line site; and (4) to
license reprints of the manuscript to third persons for educational photocopying. The
Author also agrees to properly credit the Journal of King Saud University - Science
(JKSUS) as the original place of publication.

The Author hereby grants the Journal of King Saud University - Science (JKSUS) full
and exclusive rights to the manuscript, all revisions, and the full copyright. The
Journal of King Saud University - Science (JKSUS) rights include but are not limited
to the following: (1) to reproduce, publish, sell, and distribute copies of the
manuscript, selections of the manuscript, and translations and other derivative works
based upon the manuscript, in print, audio-visual, electronic, or by any and all media
now or hereafter known or devised; (2) to license reprints of the manuscript to third
persons for educational photocopying; (3) to license others to create abstracts of the
manuscript and to index the manuscript; (4) to license secondary publishers to
reproduce the manuscript in print, microform, or any computer-readable form,
including electronic on-line databases; and (5) to license the manuscript for document
delivery. These exclusive rights run the full term of the copyright, and all renewals
and extensions thereof.

I hereby accept the terms of the above Author Agreement.

Author :- Date :-

Editor in Chief:- Ahmed H. Alghamdi Date:-

Muhammad F. Haykal

