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Aeroacoustics of deep cavity flows

by You Wei Ho

Flow-acoustic resonances occurring within deep cavities have been observed in various engi-
neering applications. These resonances occur when specific operating conditions cause airflows
over deep cavities to excite self-sustained oscillations that couple with least-damped acoustic
modes to generate intense aerodynamic noises. Consequently, these flow-acoustic resonances
can lead to extreme noise, violent unsteady structural loads and threaten the mechanical in-
tegrity of the system. Hence, it is important to understand the underlying physical mechanisms
of the aerodynamic noise generation in deep cavity flows. This thesis uses high-resolution large-
eddy simulations to investigate the flow-acoustic resonance in turbulent flows passing over deep
cavities at low-subsonic flow speeds across three distinct inclination angles. Several theoretical
methods, including Doak’s momentum potential theory, modal and non-modal analyses, are em-
ployed to gain insights into the intricate noise generation and amplification mechanisms within
orthogonal and inclined deep cavity flows. Accordingly, the work presented in this thesis is
structured into two main parts. The first part of this thesis investigates the flow-acoustic res-
onance in orthogonal deep cavity flow at three different flow speeds. The subsequent analysis
reveals strong evidence of efficient fluid-acoustic coupling between the shear layer oscillations
and the nearby depthwise acoustic modes in all cases, and the optimum Mach number at which
the pronounced acoustic response occurred is identified. Consequently, an improved frequency
prediction model tailored explicitly for orthogonal deep cavity flows at low subsonic flow as
a function of inflow boundary-layer property is proposed. The second part of this work in-
vestigates the flow-acoustic resonance in inclined and deep cavity flow across three distinct
inclination angles. Notably, a marked contrast in aeroacoustic behaviour between inclined and
orthogonal cavities is observed at the elevated flow speed, which do not follow the existing
flow-acoustic resonance theories. Specifically, inclined cavities display a markedly enhanced
resonance with the peak frequency being significantly lower in comparison to the orthogonal
cavity configuration. It is postulated that the amplified flow-acoustic resonances in inclined cav-
ities are linked to a low-frequency extension of the first hydrodynamic mode through enhanced
shear layer undulations when the acoustic particle displacement is comparable to the momentum
thickness. Experimental evidence supports this hypothesis. The elucidation of this hypothesis
holds potential in advancing our understanding and mitigation of flow-acoustic resonance in
inclined and deep cavity flows.
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Chapter 1

Introduction

()

FIGURE 1.1: A simplified deep cavity geometry representing an orthogonal off-take duct with
a closed duct valve. The panels (a-b) show the instant before and after the vortex impinge-
ments. The complex aeroacoustic process in deep cavity flows involves the noise generation
arises from the vortex impingement on the downstream corner (1), acoustic reflections from the
bottom wall (2), the fluid-acoustic coupling mechanisms (3), and the eventual noise propaga-
tion to the far-field (4), are visualised through the instantaneous pressure fields. The arrows in
black indicate the flow direction from the inlet (left) to the outlet (right), whereas the arrows in
white denote the direction of the acoustic propagation into and out of the off-take duct.
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1.1 Research motivation

Air transport is one of the safest and fastest-growing modes of transportation worldwide. The
UK and Europe have particularly witnessed a significant surge in air traffic in recent years, with
the projections estimating an anticipated escalation to 445 million annual airline passengers by
2020 (Department of Transport, 2013). However, this growth has come at the cost of increased
noise pollution, particularly around major airports and residential areas. The World Health Or-
ganisation (WHO) underscores the seriousness of this environmental concern, estimating that
noise pollution could result in approximately 1.6 million DALY (disability-adjusted life years)
across Western Europe (World Health Organization, 2011). These adverse health implications
encompass a spectrum of complications, ranging from sleep disorders and tinnitus to more se-
vere conditions such as ischaemic heart diseases and cognitive impairments in children. In the
year of 2000, the Advisory Council for Aviation Research and Innovation in Europe (ACARE)
was formed. ACARE comprises a group of experts from industry and research institutions, led
by Jean-Brice Dumont, EVP Airbus, and Co-Chairs from DLR and KLM. The mission of the
council is to address the challenges and opportunities facing the aviation sector in Europe and to
promote its sustainable development. Subsequently, ACARE introduced FlightPath 2050, pro-
viding a non-binding policy based on widely accepted expert opinion and forecast adopted by
policymakers and legislation to guide the industry’s efforts towards noise reduction. The policy
includes an aspiring target of reducing perceived aircraft noise by 65% compared to the levels
observed relative to the year 2000. Consequently, it is assumed that stringent regulations and
noise limitations will be enforced in the foreseeable future to minimize noise sources during
airplane certification. Therefore, the development of the situation has prompted manufacturers
to design turbofan engines capable of operating under quieter conditions to meet the stringent
requirements of airplane certification. Thus, the primary aim of mitigating noise generated by
turbofan engines becomes of utmost importance and warrants immediate attention within the
industry.

One of the primary sources of noise in a turbofan engine is associated with fan (Paruchuri,
2017) and jet noise (Proenca, 2018). These noise sources are considered the leading contributors
to the overall turbofan engine noise. In addition to fan and jet noises, another source of concern
is tonal noise generated by the off-take duct configuration situated within the bypass duct. The
off-take duct plays an important role in redirecting cool air from the bypass duct to regulate
the temperature of adjacent engine components. However, under certain operational conditions,
particularly when the off-take duct valve temporarily closes in situations where cooling is un-
necessary, it transforms into a deep cavity configuration with a substantial depth-to-length ratio
(e.g., D/L > 1). In this specific operating state, the viscous turbulent flow passing over the
cavity opening excites a self-sustained shear layer oscillation and coupled with the nearby least-
damped acoustic mode of the deep cavity. This aeroacoustic oscillation leads to the generation of
intense acoustic pressure fluctuations and is depicted schematically in figure 1.1. Consequently,
aeroacoustic fluctuations from multiple off-take ducts can significantly contribute to the total
noise level of the turbofan engine and can pose substantial risks to the structural integrity of
nearby engine components. However, addressing the noise issue in this seemingly simplistic
cavity configuration proves inherently challenging due to the intricate aeroacoustic phenomena
involved in deep cavity flows. These complexities serve as the primary motivation for this re-
search. Thus, this thesis aims to investigate the underlying physical mechanisms responsible for
noise generation and amplification in inclined and deep cavity flows.
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1.2 Aeroacoustics of deep cavity flows

Aeroacoustics is a branch of acoustics in the subject of fluid dynamics that studies noise genera-
tion and radiation resulting from either turbulent fluid motions or aerodynamic forces interacting
with solid surfaces. In recent decades, there has been extensive research into the mechanisms
behind sound generation in turbulent fluid flows, with the consensus being that the presence of
unsteady fluid motions inevitably leads to sound production (Lighthill, 1952). Subsequently,
several acoustic analogies have been proposed to take into account of sound generation by tur-
bulent flows in the presence of solid surfaces (Curle, 1955; Williams and Hawkings, 1969).
Despite recent progress in understanding the fundamental principles of sound generation, the
intricate nature of fluid-acoustic interactions continues to present challenges in accurately pre-
dicting sound sources. These challenges arise from the fact that seemingly simple flow con-
figurations can exhibit complex fluid flow characteristics, eluding straightforward analysis and
prediction. A notable example of a seemingly simple flow configuration that can exhibit such
complexities in flow behaviours is found in cavity flows. It is the central focus of this present
thesis.

The investigation of cavity flows is a fundamental problem in aeroacoustics that has attracted
significant scientific interest because it involves the self-sustained oscillation of shear layer insta-
bilities through distinct feedback mechanisms. Previous studies have comprehensively reviewed
the existing body of literature on cavity flows (Rockwell and Naudascher, 1978; Gloerfelt, 2009;
Tonon et al., 2011; Morris, 2011). Essentially, self-sustained oscillation can be classified by the
type of feedback that occurs into three main categories. The first classification pertains to an
incompressible cavity flow with a feedback mechanism that is purely hydrodynamic in nature
such that the pressure fluctuations induced from the downstream corner of the cavity travel up-
stream at an infinite speed via pseudo-sound. The second classification deals with the flow of
a compressible fluid over a shallow cavity through Rossiter’s feedback mechanism (Rossiter,
1964). At higher flow speeds or in deeper cavities, the acoustic perturbation generated by this
feedback mechanism can further excite an acoustic mode of the cavity, leading to self-sustained
resonances. Hence, a better understanding of these distinct flow types is essential for gaining
insights into the underlying physical phenomena.

Self-sustained oscillations resulting from compressible cavity flows generate significant noise
pollution and unwanted vibrations, leading to fatigue failures (Ziada and Lafon, 2014). These
phenomena have been extensively studied over several decades and are classified as “fluid-
resonant oscillations” by Rockwell and Naudascher (1978). Generally, this type of self-sustained
oscillation can be further classified into two groups: self-sustained resonance in shallow cavities
(Rowley et al., 2002) and those occurring in deep cavities (Tonon et al., 2011). In the case of
shallow cavities, the self-sustained oscillations are governed by the horizontal feedback mech-
anism described by Rossiter (1964) and are particularly prominent in aeronautic applications
involving high subsonic grazing flows. Specifically, the feedback process begins with small-
amplitude Kelvin-Helmbholtz instabilities in the shear layer impinging at the downstream edge
of the cavity and generating acoustic waves that travel upstream and further excite instabilities
in the shear layer. Consequently, this feedback loop results in vortex shedding near the upstream
corner at the characteristic frequency predicted by Rossiter (1964). In contrast, deep cavities ex-
hibit a completely different mechanism, where aeroacoustic instabilities couple with depthwise
acoustic modes to excite self-sustained resonances at low subsonic grazing flows.
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Particularly, these self-sustained resonances stemming from aeroacoustic instabilities in deep
cavity flows generate high-intensity pressure waves with discrete frequencies, resulting in detri-
mental effects such as noise pollution and structural fatigue in various engineering applica-
tions, including safety valves (Coffman and Bernstein, 1980; Galbally et al., 2015), closed side-
branches in gas transport systems (Bruggeman et al., 1989; Ziada, 2010), turbo-machineries
(Ziada et al., 2002; Aleksentsev et al., 2016), and riverine environments (Perrot-Minot et al.,
2020). These oscillations emerge as a consequence of the intricate feedback mechanism be-
tween the hydrodynamic and resonant acoustic fields (Peters, 1993a). Of particular significance
is the role played by the acoustic resonance as the primary upstream feedback mechanism for
amplifying the system oscillations and inducing flow tone lock-ins (Yang et al., 2009). In turn,
the stronger acoustic field organizes and modulates the shear layer separation and impingement.
Therefore, the shear layer oscillations and the acoustic mode occur at the same frequency in a
lock-in state over a range of flow velocities. As mentioned, this phenomenon distinguishes itself
from shallow cavity oscillations, where the commonly assumed Rossiter feedback mechanism
primarily enables the upstream acoustic feedback (Rossiter, 1964; Rowley and Williams, 2006).

The aeroacoustics of deep cavity flows have received considerable attention in scientific lit-
erature. Studies such as that by (Karamcheti, 1955; Plumblee et al., 1962; Rossiter, 1964;
East, 1966) have offered substantial evidence of generating pronounced acoustic responses near
depthwise acoustic modes inherent to these flows. This “fluid resonant oscillation” emerges
from the interaction between the excitation of the shear layer oscillation and the reinforcement
provided by the acoustic resonance. To elucidate the underpinnings of this process, it begins
with initial shear layer instabilities near the upstream separation corner giving rise to the gener-
ation of acoustic standing waves within the cavity upon interaction with the downstream corner.
The ensuing resonant acoustic field induces velocity perturbations, which, in turn, amplify the
instabilities within the shear layer, thus closing the feedback loop. In particular, this feed-
back loop proves consequential in deep cavity systems due to their susceptibility to depthwise
acoustic modes that exhibit minimal radiation losses (Koch, 2005; Duan et al., 2007; Tinar and
Rockwell, 2014b). As a result, the induced velocity perturbations by the resonance may further
intensify the shear layer instabilities, ultimately leading to the formation of highly coherent vor-
tex structures in deep cavity flows as documented by Tam (1978); Tonon et al. (2011); Ziada
and Lafon (2014); Tinar and Rockwell (2014a).

The acoustic modes in deep cavity flows can be separated into two distinct categories: the
nearly-trapped (localised) modes (Koch, 2005) and the non-trapped (global) modes (Duan et al.,
2007; Hein and Koch, 2008). As mentioned, these depthwise acoustic modes in deep cavities
play a crucial role in reinforcing the shear layer instabilities and can be further assumed as nearly
trapped or localised acoustic modes (Tonon et al., 2011). This assumption is primarily based on
the observation that the predominant acoustic energy generated by the aeroacoustic oscillation
accumulates in the form of a depthwise standing wave in the interior of the cavity, unaffected by
boundary conditions beyond the cavity, thereby displaying negligible radiation losses. Conse-
quently, the nearly-trapped mode generates a maximum acoustic velocity at the branch opening,
which maximises the acoustic power production of the convecting vortices in a direction normal
to the acoustic velocity oscillation, according to Howe’s energy corollary (Howe, 2002). There-
fore, these unique features of minimised radiation losses and efficient sound power production
render deep cavity systems highly susceptible to flow-acoustic resonances. Conventionally, in
quiescent flow, the frequency and mode shape of acoustic resonances are determined by comput-
ing the eigenmodes of the Helmholtz equation. However, recent numerical investigations have
uncovered evidence indicating a notable influence of mean flow on the nearly-trapped mode in
shallow cavities (Aly and Ziada, 2012). Consequently, whether the effect of mean flow on acous-
tic resonances observed in shallow cavity configurations applies to deep cavity configurations
remains an open area for further exploration.
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Typically, self-sustained resonances in deep cavities existed within distinct ranges of the
Strouhal number, each relating to various hydrodynamic modes of the flow field. These unique
hydrodynamic modes are characterised by the number of convecting vortex structures across the
cavity opening that satisfy the requisite streamwise phase criterion (Rowley et al., 2002; Tuna
and Rockwell, 2014; Ho and Kim, 2021b). It is commonly observed that self-sustained reso-
nances, triggered by the first hydrodynamic mode, lead to pronounced acoustic responses at a
Strouhal number around St ~ 0.4 (Tonon et al., 2011). In addition, weaker self-sustained reso-
nances can be excited by higher hydrodynamic modes (Yang et al., 2009), at Strouhal numbers
exceeding St ~ 0.8 (Tonon et al., 2011). Presently, it remains unclear why the sound source is
most effective when operating at the first hydrodynamic mode.

Recent studies on closed side branches have identified an additional oscillation mode at a
lower Strouhal number of St =~ 0.27. This oscillation mode is associated with the magnitude
of acoustic responses exceeding the dynamic pressure of the flow (Peters, 1993a; Ziada, 1994;
Dequand et al., 2003; Bravo et al., 2005; Yang et al., 2009). Within this flow regime, the resonant
acoustic field wields substantial influence over the coherence and trajectory of the resulting
vortex structure (Bruggeman, 1987; Kriesels et al., 1995; Dequand et al., 2003). As a result of
these complex dynamics, the amplification of instabilities and shear layer oscillations transition
into highly non-linear states, posing substantial challenges in accurately describing the fluid
resonant mechanism (Peters, 1993a). It is worth mentioning that Rowley et al. (2002) reported
an oscillation of the wake mode which bears a striking resemblance to the oscillation observed
in deeper cavities that exhibit higher levels of acoustic forcing (Kriesels et al., 1995), despite the
author opposing conclusion that the wake mode exists purely hydrodynamic in nature.

Bruggeman (1987) observed a similar aeroacoustic behaviour from flow-induced oscillations
in closed side branches and suggested that it may depend on the ratio of the acoustic particle
velocity associated with the depthwise standing-wave to the mean flow velocity. He proposed
three different levels of acoustic pulsation, with each level describing an increase in the influ-
ence of the acoustic resonance on the receptivity of the separated shear layer near the upstream
corner. The level of pulsation is expressed by the ratio of |u,|/ Uy, where |u,| is the amplitude
of the acoustic particle velocity at the cavity opening, and U, is the centerline velocity in the
main channel. At low pulsation levels (e.g. |uq|/U, < O(1073)), the acoustic perturbation is
insufficient to trigger the formation of coherent vortices from the separated shear layer near the
upstream corner. Consequently, the streamwise growth of the hydrodynamic perturbation in
the shear layer can be described by the linearised theory of an inviscid quasi-parallel free shear
layer (Michalke, 1972). At higher pulsation levels (e.g. |u,|/U, = O(1071)), the shear layer
undergoes roll-up into discrete vortices, and the amplitude of oscillations is determined by the
non-linearities (Peters, 1993b).

Bruggeman et al. (1989) proposed an alternative feedback mechanism for the fluid-resonant
oscillation based on Vortex Sound Theory (Howe, 2003). This mechanism involves the fol-
lowing process: acoustic forcing from the resonance on the shear layer at the upstream corner;
formation of coherent vortices due to instabilities in the separated shear layer; transfer of energy
from the local flow to the acoustic field through the interaction of convective vorticity and the
acoustic resonance; and net energy transfer to the acoustic field determining the amplitude and
phase of the feedback at the upstream corner. Based on this concept, the acoustic resonance
in the deep cavity is crucial in destabilizing the shear layer and reinforcing the vortex coales-
cences. Therefore, this alternative feedback mechanism, based on the energy transfer between
the vortical (hydrodynamic) and potential (acoustic) fields, offers an attractive explanation for
the lock-on” effect observed in deep cavity experiments (East, 1966; Yang et al., 2009).
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Recently, modal analysis techniques, such as global linear stability analyses, have gained
prominence as valuable tools for studying asymptotic long-time flow instabilities and gaining
insight into the underlying mechanisms of instability in fluid-flow systems (Theofilis, 2011;
Schmid and Brandt, 2014). Specifically, direct global modes resulting from this approach have
proven particularly effective in exploring the three-dimensional instability observed in both shal-
low cavity flows (Theofilis, 2000; Bres and Colonius, 2008; Yamouni et al., 2013b; Meseguer-
Garrido et al., 2014; Citro et al., 2015; Liu et al., 2016; Sun et al., 2017) and deep cavity flows
(Boujo et al., 2018). Furthermore, the combination of direct global modes and adjoint eigen-
vectors has proved valuable in identifying the structural sensitivity and locating the origin of
instability, also known as “wavemaker” regions, within the flow (Chomaz, 2005; Giannetti and
Luchini, 2007; Schmid and Brandt, 2014). Understanding these regions may be useful for under-
standing the underlying physical mechanisms of self-sustained resonance in deep cavity flows.
In addition, non-modal analyses, such as resolvent analyses (Trefethen et al., 1993) based around
turbulent mean flows (McKeon and Sharma, 2010) have become an essential approach for in-
vestigating the optimum forcing, response and their associated amplification in shallow cavity
flows (Sun et al., 2017; Liu et al., 2021) and deep cavity flows (Boujo et al., 2018). However,
there remains to be a notable gap in the literature concerning its use as an acoustic input-output
analysis based on the linear operator of acoustic perturbation equations (APEs) to investigate
acoustic energy amplification from harmonic forcing, such as Lamb vectors, to the harmonic
acoustic response. This presents a promising and unexplored area for research that warrants
further investigation and exploration.

To date, the majority of existing experimental studies have focused on the canonical problem
of a single deep cavity or a similar configuration such as those found in closed side branches
within piping systems (Ziada and Shine, 1999b; Forestier et al., 2003; Oshkai et al., 2005, 2008;
Hassan et al., 2007; Yang et al., 2009; Velikorodny et al., 2010; Ziada and Lafon, 2014; Wang
et al., 2018; Bourquard et al., 2021; Hanna and Mohany, 2023). Concurrently, numerical in-
vestigations in this domain have been actively pursued (Larchevéque et al., 2003; Thornber and
Drikakis, 2008; Salt et al., 2014; Sampath and Sinhamahapatra, 2016; Chen and Adams, 2017;
Pedergnana et al., 2021). However, it is important to emphasis that the existing numerical inves-
tigation on deep cavity flows with a fully turbulent inflow condition remains limited. Further-
more, despite significant progress in understanding the aeroacoustics of deep cavity flows, most
of the existing investigations thus far have primarily focused on orthogonal cavity geometries.
Consequently, our understanding of the corresponding noise generation and feedback mecha-
nisms inherent to inclined and deep cavities remains limited. Thus, it is important to conduct
further studies utilising high-fidelity numerical simulations to bridge these knowledge gaps.
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1.3 Research aims and objectives

Flow-acoustic resonance arising from turbulent flow passing through deep cavities are recog-
nized as a result of the interplay between hydrodynamic instabilities and the least-damped acous-
tic modes of the deep cavities. However, the current understanding of the noise generation and
feedback mechanisms inherent to inclined and deep cavity turbulent flows still needs to be im-
proved. As aresult, the primary aim of this thesis will address the existing gaps as highlighted in
the literature. Accordingly, this dissertation is structured around five main research objectives:

1. Investigate the nose generation and fluid-acoustic coupling mechanisms of self-sustained
resonances in orthogonal and inclined deep cavity flows.

2. Investigate the effect of flow speed on the excited acoustic and hydrodynamics modes in
orthogonal and inclined deep cavity flows.

3. Explore the noise amplification mechanism in orthogonal and inclined deep cavity flows
using acoustic input-output analysis.

4. Identify the stability, receptivity and sensitivity of the orthogonal and inclined deep cavity
systems.

5. Propose cost-effective frequency prediction for self-sustained resonance in inclined and
deep cavity flows.

1.4 Original contributions

This works investigates the aeroacoustics of orthogonal and inclined deep cavity flows grazed by
fully turbulent boundary layer generated from precursor simulations using wall-resolved high-
fidelity computational aeroacoustics (CAA) approach based on full 3-D compressible Navier-
Stokes equations. In addition, several postprocessing techniques including Doak’s momentum
potential theory, biglobal linear stability, receptivity and sensitivity analyses, and acoustic input-
output analysis are utilised to accomplish the aforementioned research aims and objectives.

1.5 Thesis Outline

The work of this dissertation has yielded two journal papers and one conference paper, one of
which is still under review. Therefore, this document will primarily follow the chronological
order of these works. Chapter 2 introduces the numerical methods and postprocessing tech-
niques employed. Chapter 3 investigate the self-sustained resonance in an orthogonal and deep
cavity at three different flow speeds. Chapter 4, investigate the effect of inclination angles on
the aeroacoustics of deep cavity flows. Lastly, Chapter 5 summarizes the main findings of this
thesis and presents several avenues for extending this work.






Chapter 2

Computational Methodology

This chapter introduces numerical methods employed to solve the three-dimensional compress-
ible Navier-Stokes equations. Furthermore, postprocessing techniques including linear stability
analysis based on linearised Navier-Stokes equations and acoustic intput-output analysis based
on acoustic perturbation equations are introduced in this chapter. The primary focus of the
present work involves utilizing the complete 3-D compressible Navier-Stokes equations, which
incorporate a source term for sponge layers and are expressed in a conservative form, sub-
sequently transformed onto a generalised coordinate system. To establish a nondimensional
framework, the governing equations are normalized based on freestream parameters. The nondi-
mensionalisation approach facilitate the subsequent analysis without relying on specific unit
systems.

2.1 Governing equations and numerical methods

This thesis employs in-house codes for performing large eddy simulation (LES) based on high-
order accurate compact finite difference schemes. Notably, these schemes have been previously
utilised to provide high-fidelity numerical investigations, as documented in Pérez-Torré and
Kim (2017); Turner and Kim (2017, 2019); Gelot and Kim (2020); Turner and Kim (2020);
Degregori and Kim (2021); Ho and Kim (2021b); Castro et al. (2021). In this work, the full
3-D compressible Navier-Stokes equations (with a source term for sponge layers included) are
used, which can be expressed in a conservative form, transformed onto a generalised coordinate

d d (Ej—Rel'M.F;d& oS
9 (2, 2 (Eji=Rew MoF; 05\ _ =S @.1)
ot \ J 861 J (9)(]' LJ

where the indices i = 1,2,3 and j = 1,2,3 denote the three dimensions. The vectors of the
conservative variables, inviscid and viscous fluxes, are given by:

system as:

>

Q= [p.pu,pv,pw,pe;]”
E; = [puj,(puu;+ 81;p), (pvu; + &;p). (pwu; + 8;p). (pec + p)u;]” (2.2)

T
Fj=10,71j, 7, 13, uiTji+ ¢, ,

with the stress tensor and heat flux vector written as:

. 8u,- Buj 2 au,- . u oT
“"“(axﬁ 7 ‘35”axi>’ U= = 1)Prax; @

where &; = {&, 1, {} are the generalised coordinates, x; = {x,y,z} are the Cartesian coordinates,
0;; is the Kronecker delta, u; = {u,v,w}, e, = p/[(y—1)p] +u;ju;/2 and y = 1.4 for air. The
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local dynamic viscosity u is calculated by using Sutherland’s law (White, 1991). In the current
set-up, &, 1 and § are aligned in the streamwise, vertical and spanwise directions, respectively.
The Jacobian determinant of the coordinate transformation (from Cartesian to the generalised)
is given by J~! = |d(x,y,2)/d(&,n,¢)| (Kim and Morris, 2002). The extra source term S
on the right-hand side of (2.1) is non-zero within the sponge layer only, which is described in
Kim et al. (2010a,b). In this paper, the freestream Mach and Reynolds numbers are defined as
Mo = Us/ao and Reew = PoolUoL/ o Where de = \/YPe/ Po is the ambient speed of sound
and U, = \/uZ +vZ + w2 is the speed of the freestream mean flow. The governing equations
are non-dimensionalised based on the streamwise cavity opening length L = 38 mm for length
scales, the ambient speed of sound a.. for velocities, L/ a.. for time scales and pwai for pressure,
unless otherwise notified. Temperature, density and dynamic viscosity are normalised by their
respective ambient values: 7., Poo and Uo.

The governing equations given above are solved by using high-order accurate numerical meth-
ods specifically developed for aeroacoustic simulation on structured grids. The flux derivatives
in space are calculated based on fourth-order pentadiagonal compact finite difference schemes
with seven-point stencils Kim (2007). Explicit time advancing of the numerical solution is car-
ried out by using the classical fourth-order Runge-Kutta scheme with the CFL number of 0.95.
Numerical stability is maintained by implementing sixth-order pentadiagonal compact filters for
which the cutoff wavenumber (normalised by the grid spacing) is set to 0.857. In addition to the
sponge layers used, characteristics-based non-reflecting boundary conditions based on Kim and
Lee (2000) are applied at the inflow and outflow boundaries to prevent any outgoing waves from
returning to the computational domain. Periodic conditions are used across the spanwise bound-
ary planes unless otherwise stated. Slip (no penetration) and no-slip wall boundary conditions
based on Kim and Lee (2004) are applied at the top and bottom channel walls respectively. The
computation is parallelised via domain decomposition and message passing interface (MPI) ap-
proaches. The compact finite difference schemes and filters used are implicit in space due to the
inversion of pentadiagonal matrices involved, which requires a precise and efficient technique
for the parallelisation to avoid numerical artefacts that may appear at the subdomain boundaries.
A recent parallelisation approach based on quasi-disjoint matrix systems (Kim, 2013) offering
super-linear scalability is used in the present paper. For further elaboration and complete algo-
rithmic details of the in-house codes, readers are referred to Turner (2019). To maintain brevity
in this theis, these details will not be reiterated here.

2.2 Doak’s Momentum Potential Theory

The pressure fluctuations around the cavity can be characterised into two main regions: local
hydrodynamic fluctuation near the cavity opening; and acoustic fluctuation around the cavity.
Therefore, it is essential to decompose these pressure fields into the hydrodynamic and acoustic
components to facilitate the investigations. To achieve this, we employ the momentum potential
theory (MPT) developed by Doak (1989). Specifically in Doak’s MPT, the momentum-density,
pu is separated into rotational and irrotational components through a Helmholtz decomposition.
The Helmholtz decomposition of pu may be written as:

pu=B—-Vy, V-B=0, (2.4)

where B and Vy are the solenoidal and irrotational components of pu, respectively. Substituting
(2.4) into the continuity equation yields a Poisson equation for the irrotational component, with
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a source term dependent on density fluctuations,

_9p

Viy =2,
v ot

(2.5)
For a single phase continuum fluid, y is separated into acoustic component (irrotational and
isentropic, denoted y,) and entropic component (irrotational and isobaric, Wg) components,
governed by the exact equations:

10 dp JE
V=it V=55 V= PO 2.6)

Considering the low Mach number in this study, the entropy (thermal) contribution is assumed
to be relatively small compared to the acoustic contribution, and therefore yz is not included in
the subsequent calculation. Then, the momentum equation in terms of the hydrodynamic and
acoustic components is obtained by substituting (2.4) into the momentum equation, expressed

2 5y v, [BTWETY

— Tjj + Vp =0. (27)

By taking the divergence of (4.2), the Poisson equation for the hydrodynamic pressure fluctua-
tion, ply:
V2ply = Su + S, (2.8)

and the Poisson equation for the acoustic pressure fluctuation, p/:
V2Dl = Sa+Sa, (2.9)

are derived. Accordingly, the hydrodynamic and acoustic pressure fluctuations are obtained by
solving the Poisson equations in (4.3) and (4.4), respectively. The numerical implementation is
described extensively in Unnikrishnan and Gaitonde (2016) and the evaluations of the linear (Sg
and S4) and the non-linear source terms (Sy and Sy) are detailed in Unnikrishnan and Gaitonde
(2020), which are not repeated here for brevity.

2.3 Biglobal linear stability and sensitivity analyses

Linear stability analysis is performed with respect to a turbulent mean flow field to uncover
the compressible global instabilities of the asymptotic time evolution of a given infinitesimal
perturbation. Firstly, the instantaneous conservative variables are represented by the column
vector, Q = [p, pu, pv, pw, pe,]T, and are separated using Reynolds decomposition into turbu-
lent mean state Q(x,y) and perturbation Q’(x,y,z,¢) as:

O(x,y,z.t) = O(x,y) + Q' (x,y,2.1). (2.10)

In the present work, the turbulent mean state, Q are obtained by temporal averaging time so-
lutions from the 3-D LES. By substituting (2.10) into the Navier-Stokes equations (2.1) and
the equation of state, the governing equations are linearised about the mean state and only the
linear terms of Q' were retained, which yielded the following set of linearised compressible
Navier-Stokes equations:

' E',—Re 'M.F'; 9§ '
8<Q>+ i < e ’a§’>:—“"°s @.11)

oar\J ) & J ox; LJ’
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along with the linearised equation of state:

. pT+pT’

2.12
v (2.12)

The transformation of the linearised Navier-Stokes equations in (2.11) to a generalised eigen-
value problem is achieved by introducing the modal perturbation of the form, such as:

0 (x,y,7,t) = O(x,y) expi(Bz — ot ) + complex conjugate. (2.13)

The possibility of performing this transformation is granted by the time-invariant characteris-
tics of the linear dynamical system being examined. Thus, the modal perturbation leads to a
generalised direct eigenvalue problem represented by:

L(Q;B)0 = 0AQ. (2.14)

Here, ® = ®, + w; represents a complex eigenvalue, with the real part of the eigenvalue, ®;,
determines the stationary or oscillatory characteristics, while the imaginary part indicates ei-
ther instability growth (@; > 0) or decay (w; < 0), at the spanwise wave-number specified by
B. Accordingly, the respective instability mode shape is recovered from the complex eigenvec-
tors, expressed as Q(x,y) = Q,(x,y) +iQ;(x,y). In the discrete adjoint framework, the adjoint
eigenmode can be derived from the conjugate transpose of the generalised eigenvalue problem
as denoted in (2.14), represented as:

LY(0:B)0" = 0*'ATQ". (2.15)

The resulting adjoint eigenvector, denoted as Q+, provides valuable information about the re-
ceptivity region of the field quantities, as discussed extensively in the works of Schmid (2007);
Luchini and Bottaro (2014). Additionally, the structural sensitivity of the eigenvalues, often re-
ferred to as the “wave-maker” region, can be determined by examining the spatially dependent
product of direct and adjoint modes, as described by Giannetti and Luchini (2007):

A

_do_ (0DH)"(0)
SL  (Q)HA(Q)

where 0L represents a perturbation introduced by additional feedback between the direct vari-
ables present in the linearised Navier-Stokes equations. Thus, the structural sensitivity, S, locate
the region within the flow where a localised feedback results in the most significant drift in the
eigenvalue. In the paper, non-slip and non-penetrating boundary conditions (e.g., zero veloc-
ity perturbation and wall-normal pressure gradient) are enforced along the viscous and slip wall
boundary conditions (e.g., zero wall-normal velocity perturbation) in the case of a slip wall. Fur-
thermore, non-reflecting characteristic boundary conditions based on Thompson (1987, 1990)
and damping sponge regions are used in combination to minimise artificial numerical reflections.
In addition, the isothermal condition is preserved for all wall boundaries. The approximation
of spatial derivatives was achieved using a standard second-order finite difference scheme. The
eigenvalues and eigenvectors of the linear operator were retrieved via the Krylov-Schur algo-
rithm (Stewart, 2002). All eigenmodes presented in this paper achieved convergence within a
tolerance level of ||wAQ — LQ|| < O(10~14).

(2.16)
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2.4 Acoustic input-output analysis

Recently, acoustic perturbation equations (APEs) proposed by Ewert and Schroder (2003) have
demonstrated their efficacy as a hybrid approach for predicting acoustic propagation within cav-
ity flows. This hybrid approach is achieved by utilising acoustic sources directly obtained from
the fluid simulations, as documented in recent studies conducted by Aly and Ziada (2012); Arya
and De (2021). In the scope of this research, we employed APEs as a linear operator to probe
the acoustic input-output behaviour of cavity systems based around on the time-averaged mean
flow states. In particular, we incorporated the “APE-4 formulation” into our analysis, which is
expressed as follows:

ap h
a—’;+é2- <pﬁ+u§2> = &%qe. (2.17)
ou’ p
£+V(a-ﬁ)+v<g) = qm (2.18)
where the noise sources are given by:
5 Ds'
ge=-V-(pu) + £ (2.19)
P
AN A\ '
R V.
gn=—(O@xu) +T'V§—s'VT — (VZ) + <pr> . (2.20)

The variables marked with a prime symbol denote fluctuating quantities, whereas those with
an overbar represent time-averaged values. Among the source terms, those encapsulating two
primed quantities are generally smaller than their counterparts and consequently, their contribu-
tion to the overall sources is considered negligible and thus omitted. In addition, considering the
high Reynolds number and relatively low Mach number flow discussed in this paper, the con-
tributions of viscosity and entropy to the sources are ignored. Consequently, the Lamb vector,
defined as (@ x u)’, is considered as the dominant source term. Applying these simplifications,
equations (2.17) and (2.18) are rewritten into a compact form, such as:

S L(g)+f', (2.21)

where L(7) denotes the linear operator about the mean flow state § = [p, i, v, w|” and f” rep-
resents the forcing input comprised of the Lamb vector. Similarly, modal perturbation (2.13) is
imposed to (2.21) to form an acoustic input—output dynamics such as:

G = [—i0I —L(g)] ' f = R(q:0) - (2.22)

Specifically, the input-output operator R(g; ®) relates the input forcing, fa,, to the output fields
as acoustic quantities, g, in the frequency space. Accordingly, the discretised input-output
operator is solved using singular value decomposition to determine the directions that span the
forcing input and the state output vectors, such as:

Ryo=UZV", (2.23)
where U = [U}, U, Us, ...] and V = [V, V5, V3, ... ] give the leading optimum sets of response

and the corresponding forcing mode vectors. The amplification gains of the leading optimum
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sets are determined by the corresponding singular values % = diag( oy, 0>, 03, ... ) that are ar-
ranged in descending order. Accordingly, the superscript in (2.23) indicates the Hermitian trans-
pose. Assuming deep cavity oscillations can be characterised by the first leading singular value,
which is plausible due to the presence of predominantly acoustic resonance, as demonstrated
later in the sections, then the leading optimum forcing-response set is sufficient to describes the
location of optimum forcing and the resultant acoustic response. Understanding of the result is
immensely useful in gaining insights of the noise generation mechanism in deep cavity flows
and subsequently, the application in flow controls. These finding will be discussed in detail.
Similarly, the analysis of acoustic modes in inclined and deep cavities, which may be influenced
by the mean flow field, is achieved by assuming modal perturbation (2.13), presented in the
homogeneous form of (2.22):

—iop+E- (pﬁ+uf)2> —0, (2.24)
C
—ioa+V (@-2)+V (f_;) =0, (2.25)

which can be rewritten in the form of a generalised eigenvalue problem to be solved by using
the same procedures outlined in subsection 2.3. Within this context, the real part of each com-
plex eigenvalue indicates the physical frequency, while its imaginary counterpart determines the
degree of radiation loss associated with the acoustic mode.

2.5 Definition of variables for statistical analysis

Data processing and analysis are performed upon the completion of the simulation. The main
property required in this study is the power spectral density (PSD) function of the pressure
fluctuations around the cavity. To facilitate the following discussions, we defined the pressure
fluctuations here as:

P'(xt) = px.1) = p(x), (2.26)

where p(x) is the time-averaged pressure field. Following the definitions used in Goldstein
(1976), the PSD functions of the pressure fluctuations (based on frequency and one-sided) are
then calculated by:

. Pl f.T)p (x f.T)
=1
Spp (x, f ) Tlggo T ,
where p is an approximate Fourier transform of p, respectively, based on the following defini-
tion:

2.27)

T .
p(ef.T) = / P ()20 dr, (2.28)
T

and, ‘x’ denotes a complex conjugate. Similarly, the magnitude and the respective phase of the
single-sided Fourier transform pressure field are calculated by

P f.T) =24/ Pl £.T)p (6. £.T). (2.29)

Im[p(x, £, T)] }
Re[p(x.f.T)] )
In the above equations, T represents the half-length of the time signals used for the approximate
Fourier transform. The same procedures and notation are used for other field quantities later in
this paper.

D,(x,f,T) = arctan{ (2.30)
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2.6 Description of problem and the computational set-up

The present thesis investigates orthogonal and inclined deep cavity sections enclosed within a
channel with a fixed channel height of 24. The deep cavity under investigation has a constant
length of L/h = 0.608 and a constant depth of D/h = 1.6. Additionally, three different incli-
nation angles are considered. The study further examines three distinct Mach numbers, namely
M., = (0.1,0.2,0.3), and corresponding Reynolds numbers based on the cavity opening length
of L = 0.038 m. The Reynolds numbers are set to Re. = (87,297,174,594,261,891). For this
thesis, the Mach numbers are calculated based on the ambient speed of sound (a.. = 340.2 m/s)
and the reference temperature (7., = 288 K) for air. Accordingly, separate precursor channel
simulations are conducted to generate the necessary turbulent inflow data for the subsequent
cavity simulations at the three different Mach numbers considered in this study.

2.7 Simulation set-up and discretisation of the problem
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FIGURE 2.1: Visualisations of the current computational domain of the inclined and deep cav-

ity configuration enclosed in a channel. Plotted here are: (a) the instantaneous non-dimensional

Q-criterion iso-surfaces (Q = 5) coloured by the non-dimensional vorticity magnitude (|@;|),

showing the three-dimensional vortices in the turbulent boundary layer; and, (b) a spanwise
view of the computational domain used in the current numerical investigation.

The inclined and deep cavity geometry and the computational domain used in this work are
shown in figure 2.1. The domain of investigation is composed of x/L € [—1.64,4.93] in the
streamwise direction, y/L € [—2.63,3.29] in the vertical direction and z/L € [0,0.822] in the
spanwise direction. The entire computational domain, the inner region (physical domain) where
meaningful simulation data are obtained, and the sponge layer zone are defined as:

D = {x|x/L € [~1.644,4934],y/L € [-2.632,3.289],z/L € [0,0.822]},
Donysical = {x|x/L € [—1.644,3.289],y/L € [-2.632,3.289],z/L € [0,0.822]}, b  (2.31)
@sponge = Do — 9physical-

The physical domain Z., consists of an inclined and deep cavity with an aspect ratio of D/L =
2.632 enclosed in a straight rectangular channel with a channel half-height of /L = 1.644.
The inlet is located at x/L = —1.664 upstream of the cavity, where the turbulent inflow data
is injected. The outflow boundary is placed at a relatively remote location downstream from
the cavity, which allows a sufficient distance for the vortices to dissipate. In the current study, a
precursor simulation is employed to generate the prerequisite turbulent inflow data for the cavity
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simulation. For M., = 0.1 and M., = 0.2, the precursor simulation domain size (L, X Ly X L;)
was set to 4099 X 1099 X 2099 With 360 x 120 x 180 grid points in the streamwise, vertical and
spanwise directions, respectively. For M., = 0.3, the precursor simulation domain size (L, X Ly X
L) was set to 4099 X 1099 X 2099 with 480 x 240 x 480 grid points in the streamwise, vertical
and spanwise directions, respectively. The initial boundary layer thickness 099 was determined
analytically based on Na and Lu (1973), and the channel flow was initialised with the turbulent
mean flow profile according to Spalding (1961). Periodic boundary conditions were applied
in the streamwise and spanwise directions, and an implicit pressure gradient was applied to
maintain the desired mass flow rate. The precursor simulation was completed when the mean
flow profile was converged, and the obtained instantaneous flow solutions were injected into the
cavity simulation through the inlet plane. Figure 2.2, figure 2.3, and figure 2.4 shows a close
agreement of the time-averaged turbulent velocity profile and the Reynolds stresses between
the current half-channel LES and the full-channel DNS results conducted from Re; ~ 1600 to
Re; = 3900. The turbulent inflow information for the current cavity simulation is listed in table
2.1.

Re., Re; M. S99/L 8*/L 0/L H

87,297 =~1600 0.1 0451 0.0462 0.0367 1.26
174,594 =~2600 0.2 0429 0.0431 0.0345 1.25
261,891 ~3900 0.3 0388 0.0370 0.0300 1.23

TABLE 2.1: Boundary layer parameters for current inclined and deep cavity simulations.
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FIGURE 2.2: (a) Time-averaged turbulent boundary layer profile; and, (b, ¢, d) Reynolds
stresses obtained from the current precursor half-channel LES (Re; ~ 1600) compared to the
full-channel DNS (Re; ~ 1000) by Lee and Moser (2015).

For M., = 0.1 and M., = 0.2, the channel region is discretised by 720 x 270 x 180 grid points
in the streamwise, vertical and spanwise directions, respectively. A total of 180 x 180 x 180
grid points are used in the streamwise, vertical and spanwise directions, respectively, in the
cavity region. Finally, for the M., = 0.3 case, the channel region was discretised with a total



2.7. Simulation set-up and discretisation of the problem 17

of 960 x 350 x 480 grid points in the streamwise, vertical, and spanwise directions. Within
the cavity region, 240 x 240 x 480 grid points were employed in the streamwise, vertical, and
spanwise directions. In all cases considered here, the mesh in the wall-normal direction is refined
close to the viscous wall y™ =~ 1 to ensure a sufficiently high level of near-wall grid resolution is
maintained throughout the viscous wall surfaces.
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FIGURE 2.3: (a) Time-averaged turbulent boundary layer profile; and, (b, ¢, d) Reynolds
stresses obtained from the current precursor half-channel LES (Re; ~ 2600) compared to the
full-channel DNS (Re; ~ 2000) by Lee and Moser (2015).
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FIGURE 2.4: (a) Time-averaged velocity profile of the turbulent boundary layer; and (b—d)
Reynolds stresses obtained from the current precursor half-channel LES (Re; ~ 3900), com-
pared with the full-channel DNS (Re; =~ 4200) by Lozano-Duran and Jiménez (2014)
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Chapter 3

The noise generation mechanisms of
orthogonal and deep cavity flows

The aeroacoustic source mechanism of an orthogonal and deep cavity, which has an aspect ratio
of D/L = 2.632 and is subjected to a turbulent boundary layer of 6 /L = 0.0345 at a Mach
number of 0.2, is investigated by using a high-order accurate large-eddy simulation. The pri-
mary aim of this study is to provide an improved understanding of the fluid—acoustic coupling
mechanism that triggers a self-sustained acoustic resonance in a deep cavity. Various analysis
methods, which include Doak’s momentum potential theory that allows for the separation of
hydrodynamic and acoustic components, are used to provide highly detailed investigations and
findings. The vortex dynamics near the cavity opening region is investigated as the potential
primary source of noise generation. In addition, the noise generation mechanism is quantita-
tively explained by the onset of the separation region near the downstream corner that ensues
from the synchronised shear layer—wall interaction. The current work extensively focuses on
the fluid—acoustic coupling mechanism, and it is found that the acoustic resonance favourably
modulates the hydrodynamic fluctuation near the upstream corner of the cavity. Furthermore,
the current study also suggests that non-linear interactions between fundamental acoustic reso-
nance and higher harmonics are plausible. Based on the discussions provided in this paper, a
semi-empirical model to predict the critical free stream velocity at which a strong fluid—acoustic
coupling occurs as a function of cavity geometry and inflow boundary-layer property is pro-
posed. Finally, effect of flow speed on hydrodynamic and acoustic modes in the orthogonal and
deep cavity is investigated.

3.1 Pressure fluctuations and oscillation frequencies

The self-sustained oscillation in deep cavities is often described as a fluid-resonant oscillation,
in which the shear layer oscillation couples with a depthwise acoustic mode of the cavity. When
this happens, a distinct large-scale vortical structure will be reinforced by the acoustic reso-
nance, and its interaction with the downstream corner promotes a maximum conversion of local
flow energy into acoustic energy. This process is captured in the current computational results.
The iso-contour of the pressure fluctuation illustrated in 3.1(a) shows a low-pressure region
caused by the concentrated vorticity (not shown) near the cavity opening, and the wall-pressure
contours indicate the predominance of compressive acoustic waves inside the cavity before the
vortex impingement. Furthermore, a noticeable low-pressure region near the top surface of the
downstream wall that ensues from the separated flow is observed and will be scrutinised later in
3.2. Subsequently, figure 3.1(b) shows the instant when the vortical structure induces a sufficient
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downwash velocity to reattach the flow downstream. The reattachment of the flow causes the
separation region to disappear. A rapid alteration of the pressure fluctuation in the cavity follows
afterwards to signify subsequent rarefaction wave emissions.

(a) l .

%, -0.008 0.008

FIGURE 3.1: A large-scale vortical structure identified using iso-contour of instantaneous pres-

sure fluctuation. Note that the flow is from left to right. The convection of the large-scale vor-

tical structure and the associated change in wall-pressure fluctuation; (a) prior to the impinge-

ment; and, (b) after the impingement on the downstream corner, illustrate the aerodynamic
noise emissions.

In this section, the focus is placed on the acoustic waves that manifest as the pressure fluctuates
in the cavity. To realise this, the simulation is performed for 608000 time steps to attain a non-
dimensional time of 100 for the wall-pressure at the cavity base to reach a steady-periodic state.
Figure 3.2(a) shows the time signals of the wall-pressure fluctuation measured on the cavity base
at three different streamwise positions, which converge to a similar solution after approximately
ta./L = 100. Subsequently, Fourier transform is carried out on an additional non-dimensional
time of approximately 540 samples (every 0.325 time unit) of the computational data over a
total duration of non-dimensional time of 175, which corresponds to approximately 13 periods
of the fundamental frequency. The resulting time signals are approximately periodic in time and
any steady component is removed prior to the Fourier transform. Different windowing functions
were attempted and the results show the comparable spectrum composition.

Figure 3.2(b) shows the respective PSD of the wall-pressure signals where a fundamental fre-
quency peak was observed at fL/a. = 0.077 and the rest were superseded by higher harmon-
ics. The invariance of the spanwise-averaged wall-pressure fluctuation with respect to different
streamwise locations on the cavity base can be understood by the fact that the wavelength of
the acoustic field is much longer than the streamwise characteristic length of the cavity (i.e.
Aqa >> L). Therefore, the cavity is assumed to be acoustically compact and the acoustic waves
in the cavity can be modelled by a one-dimensional depthwise standing wave. This is a rea-
sonable approximation in deep cavity configurations as the depth is usually longer than that in
the streamwise direction. The pressure fluctuations around the cavity are characterised into two
main regions, which are a local hydrodynamic fluctuation near the cavity opening and an acous-
tic fluctuation around the cavity. Therefore, it is essential to decompose these pressure fields
into the hydrodynamic and acoustic components to facilitate the investigations. To achieve this,
we employed the momentum potential theory (MPT) developed by Doak (1989). Essentially, in
Doak’s MPT, the momentum density pu is separated into rotational and irrotational components
through a Helmholtz decomposition. Subsequently, the hydrodynamic and acoustic pressure
fluctuations are obtained by solving the Poisson equations in (4.3) and (4.4), respectively. The
numerical implementation is described extensively in Unnikrishnan and Gaitonde (2016) and the
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FIGURE 3.2: (a) Spanwise averaged of wall-pressure fluctuation time signals; and, (b) the
corresponding PSD obtained at three different streamwise locations on the cavity base surface
at x/L=0(—), x/L=0.5(---); and, x/L = 1.0 (----). The fundamental frequency is
denoted by f1, and the higher harmonics are represented by f> =2 f; and f3 = 3 f1, respectively.

evaluations of the linear (Sy and S4) and the non-linear source terms (Sy and Sy) are detailed in
Unnikrishnan and Gaitonde (2020), which are not repeated here for brevity.

Accordingly, the MPT is performed to decompose the pressure fields around the cavity into the
hydrodynamic and acoustic components. Figure 3.3 shows snapshots of the spanwise-averaged
instantaneous pressure fluctuation around the cavity region captured at four points in time sepa-
rated by T /4 between two adjacent points, where T = 1/ fi is the period of the oscillation at the
fundamental frequency. Some discussions on the results shown in figure 3.3 can be made in rela-
tion to the acoustic pressure averaged over the bottom surface of the cavity, which is determined
as:

1 /
x(t) :AT,/A Py (xp,1)dA, (3.1)

where y, = —2.632L and A, = L.L are the vertical coordinate and surface area of the cavity
base, respectively. Figure 3.3(a) shows the beginning of the oscillation cycle of ), where a large-
scale vortex (represented by the low-pressure region) is located near the downstream corner, as
shown in figure 3.3(e). At this instant, a complete destructive interference between the reflected
compressive and the incident rarefaction acoustic waves results in a pressure equilibrium (e.g.
x = 0) in the cavity. Subsequently, downward deflection of the shear layer and the formation
of discrete low-pressure spots near the upstream corner are observed. The former event marks
the beginning of the constructive interference of rarefaction acoustic waves in the cavity and the
latter event signifies the formation of small-scale vortices near the upstream corner.

The interaction of the prior large-scale vortex with the downstream corner intensifies as the
distinct low-pressure region is located closer to the downstream wall. This generates additional
rarefaction waves, which constructively interfere with those reflected from the cavity base. Con-
sequently, the wall-pressure fluctuation reduces until a minimum ¥ is exerted on the cavity base,
as shown in figure 3.3(b). Concurrently, the coalescence of newly formed vortices into organ-
ised structures synchronises with the continual downward deflection of the shear layer near the
upstream corner, as observed in figure 3.3(f). This is followed by the emergence of a local high-
pressure region near the downstream wall caused by the impeded shear layer that signifies the
inception of stagnated flows.

As the flow field is severely retarded by the downstream corner, a highly stagnated region is
established, and this is accompanied by an increase in pressure fluctuation near the downstream
wall, as shown in figure 3.3(g). Similarly, the shear layer—wall interaction also amplifies the
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FIGURE 3.3: Snapshots of the spanwise averaged instantaneous pressure fluctuations around

the cavity with superimposed streamlines to signify the shear layer undulations across the cavity

opening with a time interval of T /4 between two successive plots from (a) to (d) for the acoustic

component, pg; and, from (e) to (h) for the hydrodynamic component, p}{, where T is the period
of the oscillation cycle of .

low-pressure region at the top surface of the downstream wall owing to flow separation. At
this moment, a complete destructive interference between the incident compressive acoustic
waves and the rarefaction waves reflected from the cavity base is observed, as shown in figure
3.3(c). Subsequently, this is followed by the successive constructive interference in the cavity
accompanied by an increase in the wall-pressure fluctuation. The newly-formed vortices near
the upstream corner undergo a series of amalgamations into a large-scale vortex is represented
by the distinct low-pressure region shown in figure 3.3(g).

Figure 3.3(d) shows the instant when the averaged acoustic wall pressure ) acting on the cav-
ity base is a maximum, owing to the complete constructive interference of compressive acoustic
waves. At this time, the shear layer slowly detaches from the downstream corner, which al-
leviates the high-pressure region from the flow stagnation. Simultaneously, the arrival of the
newly-formed large-scale vortex induces sufficient downwash velocity to reattach the flow near
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the downstream corner, which causes the low-pressure region that stems from the separation
bubble to disappear, as shown in figure 3.3(h). Accordingly, a complete destructive interference
occurs when the large-scale vortex impinges onto the downstream corner to complete a single
oscillation cycle of x.
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FIGURE 3.4: Contour plots of spatial variation of the acoustic pressure fluctuation calculated

by |Py|cos(P,, (x, f) — Py (x, f)), and the distribution of the acoustic wall-pressure fluctuation

(—), curve-fitted cosine function (- - -) and the total wall-pressure fluctuation (----) in the

depthwise direction along the upstream wall (e.g. x/L = 0) at (a, b) f = f1; (¢, d) f = f»; and,

(e,f) f = f3. Note that O (x, f) represents the phase of the Fourier transform of x defined in
4.1).

Subsequently, the Fourier transform is performed to investigate the pressure fields associated
with the hydrodynamic and acoustic components around the cavity at the tonal frequencies. The
spatial distribution of the Fourier transformed acoustic pressure fluctuation is shown in figure
3.4. Notably, the acoustic wall-pressure fluctuation p4 along the upstream wall shows that the
amplitude increases along with the cavity depth, and the mode shape bears a close resemblance
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FIGURE 3.5: Spatial variation of the hydrodynamic pressure fluctuation near the cavity opening

region, calculated by |Py|cos(®,, (x,f) — D,y (x0.f)) at (@) f = fi; () f = f2; and, (c)
f = f3, where @, (xo, f) refers to the phase information at the upstream corner.

to a one-quarter acoustic standing wave at the fundamental frequency. In addition, a curve-fitted
cosine function reveals the wavelength of the standing wave is in close agreement with the depth
of the cavity. Thus, this result confirmed that the fundamental frequency peak is the consequence
of the first depthwise acoustic resonance in the current cavity configuration. Furthermore, the
transition to a higher acoustic mode is also apparent at higher harmonics, despite the magnitudes
being significantly weaker, as revealed in figure 3.4(d, e). This may be attributed to the fact that
smaller vortices that arise from the pairing process at the increased passage frequency, as shown
in figure 3.5(b, c¢), are generally weaker than a single large-scale vortex (Ziada, 1994; Bravo
et al., 2005). In addition, highly damped oscillations outside of the cavity resonant frequency
range may weaken the overall fluid—acoustic coupling mechanism (Koch, 2005).

In short, these spectral results reveal that the current cavity configuration facilitates an efficient
conversion of the hydrodynamic energy to acoustic energy at the resonant frequency. Therefore,
the possibility of a fluid—acoustic coupling between the shear layer and the standing wave re-
mains an interesting point to study. Before investigating this in more detail, it may be helpful
first to discuss the hydrodynamic field near the cavity opening in Section 3.2, followed by the
subsequent interaction with the acoustic resonance later in Section 3.3.

3.2 Hydrodynamic field and the associated noise generation mech-
anism

In this section, the hydrodynamic field across the cavity opening will be discussed in detail. The
previous discussion has indicated that the location of the large-scale vortex plays a primary role
in the acoustic wave emission process. Therefore, an accurate assessment of the position and the
actual path travelled by the vortical structure, which are functions of time, is important in this
investigation. Generally, the location of the vortical structure can be extracted by using the pres-
sure minima technique. Figure 3.5 shows the real part of the Fourier transformed hydrodynamic
pressure fluctuation around the cavity opening region at the tonal frequencies, and the number
of vortices (e.g. low-pressure region) increases following the passage frequencies. Furthermore,
the streamwise amplification of the hydrodynamic pressure arising from the coherent vortex for-
mation at the tonal frequencies is observed in figure 3.6. However, an accurate quantification
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FIGURE 3.6: Streamwise variation of the magnitude of Fourier transformed hydrodynamic
pressure fluctuation, |Py(x, f)| along the cavity opening (e.g. y/L = 0) at (a) f = fi, (b)
f=rand (o) f = f3.

of the hydrodynamic mode based on the number of discrete low-pressure spots is difficult to
justify owing to the possible influence from the separation region near the downstream corner.
To overcome this, the location of the vortical structure is identified by the equivalent Q-criterion.
According to Bradshaw (1981), this is given by:

1
Q= ¢&jEji— 5 o ~ =V2py/pe = 0. (3.2)

where € = %(8u,~/ dx;j+ du;/dx;) is the rate of strain, @ is the vorticity of the velocity field
and V?py is the Laplacian of the hydrodynamic pressure field. The advantage of this formu-
lation has two folds, firstly (4.7) provides a link between the velocity gradient field and the
hydrodynamic pressure field to better locate the position of the vortex. Second, the strain-rate
and vorticity fields provide physical interpretations of the velocity field, which are useful in
qualifying the following noise generation mechanism.

Figure 3.7 shows an oscillation cycle of ¥ similar to that of figure 3.3, with particular attention
given to the vortex dynamics near the cavity opening region. Plotted is the Q-criterion, where Q
is calculated from (4.7), and superimposed are streamlines to signify the shear layer oscillation
near the cavity opening. The instant when the large-scale vortex impinges on the downstream
corner is shown in figure 3.7(a). Note that the large-scale vortex core location prior to the im-
pingement is slightly below the cavity opening line (e.g. y/L < 0). Consequently, the interac-
tion of the vorticity field with the front surface of the downstream wall necessitates an imaginary
mirror image of an opposite vorticity field to satisfy the no-slip boundary condition at the wall.
The presence of near-wall vorticity translates into a low hydrodynamic pressure field because
V2py > 0. This induces rarefaction acoustic waves that destructively interfere with the reflected
compressive acoustic waves in the cavity. Simultaneously, the separated shear layer emanated
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FIGURE 3.7: The vortex dynamics near the cavity opening region. Plotted is the contour of
the Q-criterion, Q calculated from (4.7) and the superimposed streamlines to signify the gross
deflection of the shear layer. For the corresponding pressure fields, see figure 3.3.

from the upstream corner develops small-scale vortices caused by the Kelvin—Helmholtz insta-
bilities before the coalescence into coherent vortices under the influence of acoustic forcing.

As the large-scale vortex fully impinges on the front surface of the downstream wall, the
vorticity field acting on the wall is amplified, and this necessitates an imaginary mirror image of
a stronger opposite vorticity field to counteract the imposed vorticity field. As a result, additional
rarefaction acoustic waves are generated, which interfere constructively with the acoustic waves
reflected from the cavity base. This is followed by a downward deflection of the shear layer near
the downstream corner, which leads to the formation of a secondary vortex as the large-scale
vortex is stretched and swept down into the cavity, as shown in figure 3.7(b). The formation
of the separated boundary layer induces a compressive pressure field (e.g., V2py < 0) on the
front surface of the downstream wall, similar to the vortex—ring/wall interaction reported by
Naguib and Koochesfahani (2004). Also, the shear layer—wall interaction forms a region of a
high-strain-rate field (e.g. Q > 0) on the downstream wall owing to stagnated flow, and a high
vorticity field (e.g. Q < 0) on the top surface of the downstream wall that ensues from the flow
separation. These concurrent events mark the beginning of emission of the overall compressive
acoustic waves.

As the shear layer is further displaced downward near the downstream corner, as shown in
figure 3.7(c), the strain rate intensifies in response to a higher degree of flow stagnation, which
corresponds to further emissions of compressive acoustic waves. Similarly, a large amplitude
low-pressure region is formed near the edge of the top surface of the downstream corner owing
to excessive flow separation. At the same time, the newly formed vortices near the upstream
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corner begin to form a large-scale vortical structure (represented by Q < 0) through additional
vortex pairings, which is visually similar to the ’collective interaction’ according to Ho and
Nosseir (1981).

As the shear layer slowly detaches from the downstream corner, the high-strain-rate region
caused by the stagnated flow is gradually alleviated, and the high vorticity region reduces as
the flow reattaches. Further development of the vortical structure stemming from the additional
vortex pairings is observed, as shown in figure 3.7(d). This is followed by the impingement
of the newly formed large-scale vortex on the downstream front surface of the wall, as shown
in figure 3.7(a). As a result, a low-pressure region is exerted onto the downstream wall, and
the separation region disappears completely when the flow is fully reattached. This type of
vortex—corner interaction, where the vortical structure impinges directly onto the downstream
wall, is known to produce an intense pressure fluctuation similar to a dipole source (Tang and
Rockwell, 1983).
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FIGURE 3.8: Distribution of spanwise averaged instantaneous streamwise velocity in and

around the separation bubble near the top surface of the downstream wall at the indicated time

instants in figure 3.9. The contours (left) are superimposed with streamlines to visualise the

deflection of the shear layer; and (right) are superimposed with instantaneous velocity vectors

and the dashed lines are used to indicate the surfaces of separation bubble by iso-lines at which
the streamwise velocity is zero (e.g. u = 0).
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In the current investigation, the separation bubble formation is synchronized with the acoustic
pressure fluctuation in the cavity and is dependent upon the vertical displacement of the shear
layer near the downstream corner. To illustrate this, a few representative parameters are first
introduced. The upper and lower surfaces of the separation bubble are defined by the iso-lines
of zero streamwise velocity (e.g. u = 0). Then, the area of the separation bubble region (Agp) is
defined by integrating the wall-normal distance along these iso-lines in the streamwise direction.
Accordingly, the similarity in time variation of Agp and the averaged wall-pressure fluctuation )
are shown in figure 3.9. From figure 3.8, the periodic pulsation of the separation bubble around
the downstream corner of the cavity indicates there is a significant change in flow momentum
(both vertically and horizontally), which results in a strong periodic wall-pressure fluctuation
that translates into sound emissions. Therefore, it is speculated that the onset of the separation
bubble as a consequence of the shear layer undulation could be used as an indication of the
acoustic emission process.
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FIGURE 3.9: Time variation of the separation bubble area, Asp (shown by the histogram)
caused by flow separation/reattachment near the top surface of the downstream corner. Plotted
also is the averaged acoustic wall-pressure fluctuation exerted on the cavity base, ¥ (—) to
signify the following flow events: the minimum point (a) indicates the beginning of the down-
ward deflection of the shear layer, leading to the formation of low-pressure region ensued from
the flow separation at the top surface of the downstream corner. The equilibrium point (g) in-
dicates the disappearance of separation region due to the reattached flow by the arrival of the
large-scale vortex near the downstream corner.

From the discussion above, it is clear that the interaction of the large-scale vortex (vorticity
field) with the downstream corner mainly contributes to the rarefaction (low-pressure) acous-
tic waves inside the cavity. In contrast, the stagnation (strain-rate field) and separation flow
caused by the undulation of the shear layer near the downstream corner are jointly responsible
for compressive (high-pressure) acoustic wave emission inside the cavity. Therefore, it may be
possible to describe the aerodynamic noise generation owing to the unsteady loading near the
downstream corner in terms of a surface source according to Curle (1955). Another possible ex-
planation of the noise generation mechanism can be attributed to the shear layer deflection across
the cavity opening (Elder, 1980). Specifically, Dai et al. (2015) suggested that the shear layer
oscillation couples with the cavity acoustic mode through an explicit force-balance relationship
between the two sides (i.e., cavity opening and the cavity base). Accordingly, figure 3.10(a, b)
shows the space—time contour plots of the rate of change of decomposed vertical momentum
density across the cavity opening (e.g. y/L = 0), where the solenoidal component B, induced
by the large-scale vortex is highly localized in space compared with the uniformly distributed ir-
rotational component V. By integrating the vertical momentum density rate d(pv) /dr across
the cavity opening in the streamwise direction, the total mass flow rate i is separated into the
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solenoidal and irrotational components by:
dniy
dt

dniyg 1 (L
— (1) = — B =0) dx.
1) = - [ B ey = 0) d

1 L
= —_—— VvV =
(t) o /0 Wi (x,y =0) dx,

(3.3a)

(3.3b)

From figure 3.10(c), it is apparent that the rate of change of the acoustical mass flow rate across
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FIGURE 3.10: Space-time contour plots of (a) the solenoidal (hydrodynamic) component;
(b) the irrotational (acoustic) component of the rate of change of vertical momentum-density,
d(pv)/dr across the cavity opening (e.g. y/L = 0); and, (c) the force-balance relationship
between the averaged acoustic wall-pressure fluctuation at the cavity base, x(z) (—), rate
of change of acoustical mass flow rate, dni(t)/dt (- - -) and hydrodynamic mass flow rate,

dnmig (t)/dt (----) across the cavity opening.

the cavity opening is proportional to the acoustic force exerted on the cavity base, that is:

dnig

7(’)“%0)-

(34

A similar relationship was inferred for shallow cavity flows by Rowley et al. (2002). Further-
more, the present result shows that the force exerted across the cavity opening is predominantly
associated with the acoustic component, which may be useful in explaining the synchronized

oscillation of the shear layer with the acoustic field in the cavity.
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3.3 Fluid-acoustic coupling mechanism

In Section 3.1, it is evident that the fundamental resonant frequency with a mode shape similar
to a one-quarter wave is presented in the cavity. Therefore, one needs to determine whether an
effective coupling mechanism exists between the shear layer and the acoustic resonance to facil-
itate this formation. As mentioned, past investigations have indicated the acoustic resonance has
a deterministic role on shear layer oscillation, particularly near the receptivity of the shear layer
(e.g., upstream corner). Therefore, a better understanding of the phase relationship between the
region of maximum receptivity of the shear layer and the acoustic resonance is crucial in this
investigation. One plausible way to achieve this is to invoke the one-dimensional plane wave
approximation, whereby the standing wave induces acoustic particle velocity primarily in the
vertical direction. This approximation is justified for the current cavity configuration based on
our previous observation in Section 3.1, where the acoustic pressure field bears a close resem-
blance to a one-quarter vertical standing wave. Accordingly, the Fourier transform is performed
on the space—time vertical velocity fluctuation across the cavity opening, and the respective
magnitude |V (x, f)| and phase @, (x, f) at the tonal frequencies are plotted in figure 3.11.

At the resonant frequency, the streamwise amplification follows an almost linear fashion to
reach up to x/L = 0.55 before reducing to a local minimum and rising to a concentrated peak
near the downstream corner, as shown in figure 3.11(a). The former reduction is caused by the
nonlinear saturation mechanism, which prevents the unbounded growth of the vortex strength.
The latter is caused by the intensified strain-rate field generated by the shear layer—wall inter-
action discussed in Section 3.2. In addition, the cosine of the phase difference cos|[®,(x, f1) —
®, (x, f1)], as shown in figure 3.11(a), reveals a region of frequency modulation where the
velocity fluctuation near the upstream corner remains highly synchronized with the averaged
acoustic wall-pressure fluctuation at the cavity base ). This demonstrates the important point
that the vertical velocity oscillation in the separated shear layer is highly controlled by the depth-
wise acoustic resonance. Subsequently, the modulated shear layer oscillation and the subsequent
amalgamation of vortices at the resonance state are manifested through the linear amplification
regime.

At the first harmonic frequency, an exponential streamwise amplification of the vertical ve-
locity fluctuation is observed near the upstream region (e.g. x/L < 0.15). It is then followed
by the transition to a linear amplification rate up to x/L = 0.6 before the onset of nonlin-
ear saturation, as shown in figure 3.11(c). The former exponential amplification rate can be
explained by the lack of acoustic reinforcement owing to the out-of-phase relationship (e.g.
cos[D, (x, f») — Py (x, f2)] < 0) near the upstream region (e.g. x/L < 0.15), as shown in fig-
ure 3.11(d). Therefore, the formation of coherent vortices is retarded and results in a free
shear layer oscillation that may be described by the linear theory (Michalke, 1972). The tran-
sition to a linear amplification begins when the vertical velocity fluctuation is in-phase (e.g.
cos[D, (x, f2) — Py (x, f2)] > 0) near x/L ~ 0.15. In this linear amplification regime, the hy-
drodynamic instabilities are amplified and evolve into coherent vortex structures in response to
the synchronized acoustic forcing. Subsequently, this is followed by an onset of the nonlinear
saturation before rising to a concentrated velocity peak near the downstream corner caused by
the intensified strain-rate field.

At the second harmonic frequency, the exponential streamwise amplification near the up-
stream region is replaced by a primary linear amplification, as shown in figure 3.11(e), which
implies an acoustic reinforcement based on the evidence provided above. This is apparent in
figure 3.11(f) where the vertical velocity fluctuation near the upstream region is highly in-phase
with  at both the resonant frequency (e.g. cos[®,(x, f3) — Py (x, f1)] > 0) and the second har-
monic frequency (e.g. cos[®,(x, f3) — Py (x,f3)] > 0). Similarly, it is also noticeable that the
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FIGURE 3.11: Streamwise variation of magnitude and phase of the Fourier transformed vertical
velocity fluctuation, V(x, f ) across the cavity opening (e.g. y/L = 0) at (a, b) f = f1; (¢, d)
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transition to a secondary linear amplification occurs when the vertical velocity fluctuation be-
gins to oscillate in synchrony with the acoustic field near x/L ~ 0.25. As a result, this additional
reinforcement translates into a larger linear amplification. Accordingly, the vertical velocity
fluctuation is amplified further before being suppressed by the nonlinear saturation followed by
a concentrated velocity peak caused by the intensified strain-rate field.

Additionally, it is worth investigating how the acoustic forcing magnitude in terms of the
acoustic particle velocity varies at each tonal frequency. Based on the mode shapes of the stand-
ing waves observed in figure 3.4, the induced acoustic particle velocity at the cavity opening can
be approximated by the isentropic Euler equations according to Rienstra (2015) and is given by:

ds _ _Vra, (3.5)

dt o}
where v4 represents the induced acoustic particle velocity and p,4 is the decomposed acoustic
pressure field. By considering a sinusoidal fluctuation of the acoustic pressure and incompress-
ibility, we obtain:
_
- 2nf’
an estimated acoustic particle velocity magnitude of approximately |v4|/Us ~ 3.7 x 102 for the
fundamental frequency, |va|/U.. & 7.8 x 10~ for the first harmonic frequency, and |v4|/Us =
3.7 x 10~* for the second harmonic frequency. At the fundamental resonant frequency, the
acoustic particle velocity magnitude corresponds to a “moderate pulsation level” category, in
which the nonlinear effects reinforce a concentration of the vorticity shed at the upstream corner
into a large-scale vortex (Bruggeman et al., 1991), which aligns with figure 3.7. Coincidentally,
the Strouhal number based on momentum thickness Stg = 10 /U.. = 0.0148 is close to the sub-
harmonic of the most-amplified frequency of a turbulent free shear layer Stg = 0 /U.. = 0.024
Ho and Huang (1982). This may allow an enhanced vortex to merge in the forced shear layer
through the “collective interaction mechanism”, according to Ho and Huang (1982). At higher
harmonics, the values of the acoustic particle velocity magnitude correspond to “low pulsation
levels”, in which the linear theory is applicable to explain the exponential amplification of the
free shear layer perturbation at the first harmonic frequency observed in figure 3.11(c), with the
exception of the second harmonic frequency shown in figure 3.11(e). Therefore, it is postulated
that the transition from a free shear layer oscillation (e.g., exponential amplification) to the for-
mation of coherent vortices (e.g., linear amplification) necessitates the condition of a favourable
phase relationship between the hydrodynamic and acoustic particle velocity fluctuations (e.g.
cos[ Dy (x, f) — Dy (x, )] > 0).

va (3.6)

3.4 Convection speed of coherent vortical structures

As discussed earlier, the streamwise phase variation of the hydrodynamic pressure fluctuation is
not a reliable measurement of the hydrodynamic mode due to the influence from the separation
region near the downstream corner. Therefore, inspired by the reasoning in Section 3.2, the
Q-criterion, where Q is calculated from (3.8), is used. Accordingly, the Fourier transform is per-
formed and the respective magnitudes |Q(x, f)| are plotted in figure 3.12. The frequency-space
contour in figure 3.12(a) shows that the concentrations of the Q-criterion near the upstream cor-
ner are mostly energetic near the fundamental frequency and much weaker at higher harmonics.
Additionally, figure 3.12(b—d) depict the propagation pathways of coherent vortical structures
across the cavity opening at the tonal frequencies, where the elevations are slightly below the
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FIGURE 3.12: (a) Contour plot of the space-frequency variation the Fourier transformed Q-
criterion magnitude, |Q(x, f)| across the cavity opening (e.g. y/L = 0), and the respective
spatial variation of |Q(x, f)| at (a) f = f1; (b) f = fa; and, (¢) f = f3.

cavity opening line. To account for the variation in elevation, the phase measurement is per-
formed along a line in the streamwise direction where the elevation is determined by the location
of maximum magnitude. Figure 3.13(a) shows the streamwise phase variation of @ (x, 1) and
the respective P (x, f1) across the cavity opening. It is evident that Q remains highly in-phase
with ) near the upstream corner before completing an approximate single oscillation cycle.
This result confirms two important points. First, the formation of small-scale vortices is highly
in-phase with the acoustic forcing near the upstream region, suggesting strong evidence of fre-
quency modulation by the acoustic resonance in the cavity (e.g. cos[®g(x, fi) — Py (x, f1)] = D).
Second, the phase criterion A®, (x, fi ) = 27 needs to be satisfied for a self-sustained oscillation
of the first hydrodynamic mode, in accordance with (Rockwell and Naudascher, 1979; Knisely
and Rockwell, 1982; Rockwell, 1983; Tuna and Rockwell, 2014). Similar descriptions are also
applicable to the higher harmonics, as shown in figure 3.13(b, ¢). Based on the linear disper-
sion relation, the phase variation corresponds to an average vortex convection speed ratio of
k=U./U. = 0.386 at each tonal frequency. This value is close to the suggested values for deep
cavities, such as k = 0.3 by Graf and Durgin (1993), k = 0.38 by Ma et al. (2009), and k = 0.4
by (Nelson et al., 1983; Bruggeman, 1987; Bruggeman et al., 1991).

3.5 Prediction of the critical freestream velocity

The primary aim of this investigation is to devise a semi-empirical model to predict the criti-
cal free stream velocity at which the incoming turbulent boundary layer couples with a depth-
wise acoustic resonance in deep cavities. The motivation is driven by the fact that the physical
mechanism, which involves the depthwise resonance of deeper cavities with high aspect ratios
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FIGURE 3.13: Streamwise phase variation of the Q-criterion, ®g (x, f ) (—) and the respective

Laplacian of hydrodynamic pressure field, @5 (x, f) (---) at (a) f = fi; (b) f = f2; and, (c)

f = f3. Note here that the phase, g (x, f) and @4 (x, f) are both calculated based on the phase
reference of @, (x, f).

(D/L > 1), is still relatively under-examined. Therefore, in this section, a brief review of past
attempts on the development of prediction models for cavity flows will be discussed. Based on
the observations outlined in this paper, a prediction model of the critical free stream velocity
that incorporates the cavity depth is proposed.

The physical mechanism that describes the self-sustained oscillation was first introduced by
the feedback mechanism, according to Rossiter (1964). Rossiter observed that shallow cavities
(with L/ D ranging between 1 and 4) tend to generate aerodynamic tonal noises and then pro-
posed an empirical formula to explain the feedback process. In terms of the Helmholtz number,
it is given by:

L n—o
j::’ = - 1, 3.7
Uc+

where 7 is the hydrodynamic mode. The empirical constant ¢ is proposed to account for an ad-
ditional emission delay and the ratio Kk = U,/ U is proposed to simplify the model by assuming
a constant vortex convection velocity across the cavity opening. Thus, the physical interpreta-
tion of Rossiter’s feedback mechanism contained in (3.7) can be described as the summation of
time duration for the downstream propagation of a vortex at a constant convection velocity, and
the subsequent upstream propagation of an acoustic wave at the speed of sound.

However, it is worth noting that the constants in Rossiter’s formula (3.7) were determined
empirically and justified heuristically. First, according to the authors’ opinion, the empirical
constant ¢ is introduced without a strong justification. Second, the assumption that vortices
propagate at a universal averaged speed ratio of k¥ = 0.58 deserves further scrutiny. In fact, as
shown in Section 3.4, the averaged vortex convection velocity is estimated to be k¥ = 0.386,
which is an underestimation of the value suggested by Rossiter (1964), and the use of o@ = 0
seems to improve the prediction as demonstrated by several deep cavity investigations (Forestier
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FIGURE 3.14: (a) Relationship between the period of fundamental resonant frequency and the

aspect ratio of the cavities; and, (b) the relationship of Strouhal number with the momentum

thickness of the approaching boundary layer. The symbols indicate the results from: (W) Ahuja

and Mendoza (1995); (@) Block (1976); (&) 111 et al. (1997); (A) Erickson and Durgin (1987);

(V) Forestier et al. (2003); (#) Current LES; (©) Hassan et al. (2007); (®) McGrath and Olinger

(1996); (0) Yang et al. (2009). Note that some of the results were excluded in (b) due to the
lack of boundary layer information.

et al., 2003; Larchevéque et al., 2003; Hassan et al., 2007; Ma et al., 2009). Therefore, it is
speculated that the necessity for reducing « is likely to be caused by the overestimation of
the vortex convection velocity. As such, the idea of the empirical constant ¢ and the universal
convection velocity ratio k, which are dependent on neither geometric property nor the incoming
flow characteristic, may be inadequate to explain the feedback mechanism associated with deep
cavity flows.

In contrast to shallow cavities, however, the depthwise dimension of deeper cavities dictates
the acoustic resonant frequency. East (1966) realized this with his experiments and proposed an
empirical formula to predict the depthwise resonant frequency of deep cavities. By considering
the depthwise characteristic length of the deep cavities, the formula is given by:

nbD a

~ [1+b(D/L)) 69

oo

where a = 0.25, b = 0.65 and ¢ = 0.75 were determined empirically from his experiments. East
(1966) highlighted that the fundamental frequency of deep cavities is highly sensitive to the
aspect ratio of the cavity, which is not considered by Rossiter’s formula. On the ground of this,
the results from past investigations on deep rectangular cavities were gathered for comparison
with the current numerical result to reconfirm this observation.

Accordingly, figure 3.14(a) shows that the majority of the resonant frequencies of deep cav-
ities reside in the region close to the frequencies predicted by the classical one-quarter wave
theory, with an acoustic pressure node at the cavity base and a pressure antinode near the cavity
opening. This indicates that the resonant frequency of the deep cavity is primarily determined
by the depth and less influenced by the streamwise characteristic length. Therefore, by a linear
fit of the experiment and the current numerical results, the depthwise fundamental frequency,
f1, of deep cavities is found to be:

AL 1

- 3.9
e D/L+g 39)
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where € = 0.68, accounts for an end correction as obtained in figure 3.14(a). Subsequently,
figure 3.14(b) shows the decrement of Strouhal number with the increased non-dimensional
momentum thickness, which can be attributed to a reduced vortex convection speed owing to
the thickened boundary layer thickness according to Yamouni et al. (2013a). By a linear fit of
the experiment and the current numerical results, the relationship between the Strouhal number
of the first hydrodynamic mode fjL/U., and the non-dimensional momentum thickness 6 /L

can be related by:

L
fUL —ay+516/L. (3.10)

where a; = 0.39 and b; = —0.18 are obtained from figure 3.14(b). Accordingly, the conver-
sion of the hydrodynamic energy to the acoustic counterpart will be maximum when Rossiter’s
feedback mechanism is in-phase with the depthwise acoustic resonance (East, 1966; Yang et al.,
2009; Yamouni et al., 2013a). This criterion is met when the first hydrodynamic mode matches
with a depthwise acoustic mode of the cavity. Therefore, a maximum oscillation will be pro-
duced when the (hydrodynamic) frequency predicted in (3.10) coincides with the (acoustic) fre-
quency predicted in (3.9). Consequently, the critical turbulent free stream velocity at which the
first hydrodynamic mode occurs concurrently with the first depthwise acoustic mode is obtained
in non-dimensional form by dividing (3.9) with (3.10) as:

1
(4D/L—|—81)(d1—|—b19/L>,

Meer = (.11

where the aspect ratio D/ L and the upstream turbulent momentum thickness 6 /L correspond to
a single value of the critical free stream Mach number. Previous investigations on the deep cavity
configuration have suggested that the first hydrodynamic mode often provides the most intense
noise source (Erickson et al., 1986; Ziada and Shine, 1999a; Kriesels et al., 1995; Arthurs and
Ziada, 2009). Appropriately, in situations where 6 /L < 0.2 is satisfied and the fundamental
acoustic resonance is of interest, the prediction from (3.11) is of practical importance owing
to the simplicity of the formula to predict the critical turbulent free stream velocity. This is
particularly useful in minimizing the future occurrence of flow-induced resonance in the early
development stage.

3.6 Effect of flow speed on hydrodynamic and acoustic modes

The analyses presented in previous sections have explored the aeroacoustic characteristics asso-
ciated with a single large-scale vortical structure traversing through the opening of an orthogonal
and deep cavity at a Mach number of M., = 0.2. However, to further deepen our understanding,
it is pertinent to investigate the transition to a higher hydrodynamic mode involving the pres-
ence of multiple convecting vortices at different flow velocities. Subsequently, the thesis aims to
explore the intricate relationship between the vorticity-induced acoustic waves at different hy-
drodynamic modes and the acoustic mode within the cavity, and the possibility of a depthwise
feedback process influencing this interaction. Consequently, this section focuses on elucidating
the influence of flow speed on both the acoustic and hydrodynamic modes in orthogonal and
deep cavity flows.

To achieve this study, two additional simulations were conducted, employing orthogonal and
deep cavities with an identical geometric configuration, as illustrated in Figure 2.1. Preceding
this, precursor channel simulations were performed to generate turbulent inflows at two distinct
freestream velocities, namely M. = 0.1 and M., = 0.3, corresponding to Reynolds numbers
of Re.. = 87,297 and Re.. = 261,891, respectively. Subsequently, the cavity simulations were
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FIGURE 3.15: PSD of pressure fluctuation, p’ measured on the base surface of the deep and
orthogonal cavity (a), for different freestream velocity, Mo = 0.1 (---), Mo = 0.2 (—), and
M., = 0.3 (----). The measured quantities are normalised by their respective freestream velocity
(b), for reasonable comparisons between cases of different flow speeds. The vertical dashed
lines (- - -) indicate the tonal frequencies observed in the current cavity configurations.

carried out until a steady-periodic state of the wall pressure at the base of the cavity was attained.
Following this, a Fourier transform was applied to the pressure time signal for a total non-
dimensional time equivalent to approximately 13 periods of the fundamental frequency. Figure
3.15 depicts the spectra of wall pressure fluctuations measured at the base of the orthogonal and
deep cavity for M., = 0.1 and M., = 0.3, which are then compared with the previous case of
M., = 0.2. The comparison yields several noteworthy observations.

Firstly, the pressure spectra comparison in Figure 3.15(a) demonstrates that the cavity flow
at M., = 0.2 produces the most pronounced acoustic response. The case of M., = 0.3 follows
this, while the weakest oscillation is observed in the case of M. = 0.1. These observations
suggest that the optimal acoustic response from the deep and orthogonal cavity is achieved at
a flow speed of M., = 0.2. Therefore, it is reasonable to assume that any deviation from this
optimal flow speed of M., = 0.2 attenuates the acoustic response of the orthogonal and deep
cavity. Secondly, it is noteworthy that the peak Helmholtz frequencies are closely clustered
around an approximate value of fL/d.. =~ 0.08, despite a decrease in flow speed from M., = 0.2
to M., = 0.1. Contrarily, a distinct change in oscillatory behaviour is observed when the flow
speed increases to M., = 0.3, wherein the peak frequency abruptly shifts to a higher harmonic
at fL/a. ~ 0.254, approximately three times larger than the former frequency. It is hypothe-
sised that the increased in frequency is due to the heavily damped acoustic mode excited by the
inherent instability or the broadband turbulence of the separated shear layer since it is linearly
unstable to disturbances at Strouhal number smaller than f0/L < 0.04, according to Michalke
(1972).

These observations demonstrate the occurrence of the ’lock-on” phenomenon, for which the
peak frequency of the acoustic response synchronizes with the fundamental and second acoustic
modes of the deep cavity, independent from the variation of flow speed. Similarly, figure 3.15(b)
shows the pressure spectra with frequency here represented in Strouhal number. The presence of
two distinct Strouhal numbers, namely St ~ 0.385 and St ~ 0.8, aids in identifying the hydrody-
namic mode of the cavity oscillation. Specifically, the lower Strouhal number (e.g., St ~ 0.385)
indicates excitation of the first hydrodynamic mode in the M., = 0.2 case, aligning with the ear-
lier discussions. Conversely, the second hydrodynamic mode, represented by a higher Strouhal
number (e.g., St ~ 0.8), is excited in both the M., = 0.1 and M., = 0.3 cases, respectively.
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FIGURE 3.16: Contour plots of spatial variation of the magnitude of Fourier transformed pres-
sure fluctuation, p’, at three different Mach numbers: (a) M.. = 0.1; (b) M.. = 0.2; and (c)
M., = 0.3, at the respective peak frequency as shown in figure 3.15.

Figure 3.17 illustrates the comparative analysis of the magnitude and phase of the Fourier
transformed pressure fluctuation across three distinct flow velocities at the tonal frequencies.
Upon examining the pressure fluctuations within the cavity, it becomes evident that the first
depthwise acoustic mode is sustained at flow speeds of M., = 0.1 and M., = 0.2, while the
second depthwise acoustic mode persists at M., = 0.3. Moreover, an examination of the phase
variation of the pressure fluctuation, primarily associated with the hydrodynamic component in
the proximity of the cavity opening region, reveals similarities between M., = 0.1 and M., = 0.3.
In both instances, a shorter streamwise wavelength is observed compared to M. = 0.2. A sim-
ilar inference can also be drawn from the magnitude of the pressure fields, where the distance
between the crest and trough resulting from interferences approximates the length of the os-
cillation wavelength. These preliminary observations suggest that the hydrodynamic mode in
M., = 0.1 and M., = 0.3 exhibits a distinct, similar mode shape, despite the threefold increase
in flow velocity from M., = 0.1 to M., = 0.3. Therefore, further investigation is warranted to
elucidate the criterion for the onset of the corresponding mode. As a result, the subsequent anal-
ysis focuses on examining the characteristics of the hydrodynamic flow fields, with particular
attention paid to the vortex dynamics near the cavity opening.

Accordingly, the Fourier transform is performed on the Q-Criterion, and the respective mag-
nitudes for three different Mach numbers are plotted in Figure 3.20. As previously discussed,
the spatial distribution of the magnitude and the streamwise phase variation of the coherent vor-
tical structures bear close resemblance in M., = 0.1 and M., = 0.3 cases. In these instances,
the spatial distribution of the magnitude of the Q-Criterion is primarily concentrated along the
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FIGURE 3.17: Contour plots of spatial variation of the cosine of the phase of Fourier trans-

formed pressure fluctuation, p’, at three different Mach numbers: (a) M. = 0.1; (b) M.. = 0.2;

and (¢) M., = 0.3, at the respective peak frequency as shown in figure 3.15. Note here that the
phases @, are calculated based on the phase reference of ®,.

cavity opening line (e.g., y = 0), indicating that the coherent vortices traverse the cavity opening
region in a near-parallel fashion. Conversely, in the M., = 0.2 case, a significant portion of the
Q-Criterion’s magnitude is distributed slightly below the cavity opening line (y < 0), implying
a downward trajectory of the coherent vortex into the cavity, as depicted in Figure 3.7. These
observations suggest that the first hydrodynamic mode follows a downward trajectory into the
cavity, while the second hydrodynamic mode predominantly travels in parallel across the cavity
opening.

To expand on this, the streamwise phase variation of Q-Criterion is examined across the cavity
opening for each flow speed, and these results are presented in Figure 3.19. This study reveals
that the phase variation of the coherent structures completes approximately two cycles of os-
cillation, that is A®g (x,f1) = 4m for Ms = 0.1 and M., = 0.3, while only a single oscillation
cycle is completed for M., = 0.2 (e.g. ADy(x,f1) = 27m). Hence, it is reconfirmed that the
first hydrodynamic mode, characterized by a single vortex traversing the cavity opening, must
satisfy the phase criterion for a complete oscillation cycle in M., = 0.2. Conversely, a second
hydrodynamic mode, characterized by two vortices traversing the cavity opening, must satisfy
the phase criterion of two complete oscillation cycles in both M., = 0.1 and M. = 0.3 cases. The
distinct vortex trajectories and their influence on the overall hydrodynamic behaviour are fur-
ther discussed in the context of the averaged convection speed of the coherent vortical structures
along the cavity opening, as calculated using the linear dispersion relation for three different
flow speeds, with the results listed in Table 3.1.
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FIGURE 3.18: Contour plots of the magnitude of Fourier transform Q-Criterion, |®| at dif-

ferent flow speeds: (a) M = 0.1, and (b) M. = 0.2, (¢) M. = 0.3, at the respective peak

frequency. Note here that the phases ®g are calculated based on the phase reference of @, .

The trajectory of the vortical structures is traced by monitoring the maximum value of |Q(x, f)|

near the cavity opening. The tracked trajectory is superimposed onto the time-averaged stream-
wise velocity contour plot for visual comparison.

M. fL/a. fL/U. A®y, /28 M,=U./dw K.=U./Us

0.1 0.079  0.790 ~ 2.00 0.039 0.395
02 0.077 0.385 ~ 1.00 0.074 0.385
03 0254 0.846 ~ 2.00 0.127 0.423

TABLE 3.1: Averaged convection speed of vortical strictures of orthogonal deep cavity at each
tonal frequency calculated based the phase variation of Q-Criterion using the linear dispersion
relation at three different Mach numbers.

The presented data in Table 3.1 reveals several noteworthy trends. Notably, an observation
can be made that the computed convection speed ratio of the coherent vortices for each Mach
number consistently falls below the hypothesized value of K. = 0.57, as suggested by the well-
known Rossiter’s formula documented in Rossiter (1964). Instead, the calculated convection
speeds of the vortices demonstrate a remarkable similarity across all examined cases, main-
taining an slower average speed ratio of approximately K. = 0.4. This consistency suggests
the possibility of a constant averaged convection speed in orthogonal and deep cavity flows at
low subsonic flow conditions, which may serve as a useful practical approximation. However,
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FIGURE 3.19: The streamwise phase variation of the Fourier-transformed Q-Criterion,

Py (x, f), measured across the cavity opening (e.g. y = 0) at the respective tonal frequency

for deep cavities at three different Mach numbers: (a) M. = 0.1, and (b) M. = 0.2, and (c)

M., = 0.3 at the respective tonal frequency. Note that the spatial variation of @ (x, f) is calcu-
lated based on the phase reference of @, (x, f).

further investigation remains necessary to comprehend the factors influencing the observed con-
vection speed disparities. Specifically, it is worth highlighting here that the large-scale vortex
structure exhibits the slowest convection speed at M., = 0.2. To explore the potential influence
of vortex trajectory on convection speed, the local convection speed at various streamwise posi-
tions along the tracked trajectory is calculated using linear dispersion relation. Additionally, the
time-averaged streamwise velocity field along the tracked trajectory is measured, as illustrated
in figure 3.20. Subsequently, a comparison is made between the local convection speed and the
time-averaged streamwise velocity field as a function of streamwise distance is plotted in figure
4.15.

In general, the computed local convection speed ratios demonstrate a strong alignment with
the time-averaged streamwise velocity, indicating a direct influence of the spatial distribution of
the time-averaged velocity on the streamwise convection speed of the coherent vortices across
the cavity opening. In particular, the streamwise variation of the convection speed ratio of
the coherent vortices shown in figure 4.15(a, c¢) yields several useful insights. For instance,
it can be observed that the coherent vortices at the second hydrodynamic mode in M. = 0.1
and M.. = 0.3 experience a similar initial deceleration, resulting in an approximate reduction
of convection speed ratio to U./U. = 0.3, primarily due to the separation of the shear layer
near the upstream corner. Subsequently, these vortices undergo acceleration as they follow a
nearly parallel trajectory, wherein the time-averaged mean flow approaches U.. = 0.4 just ahead
of the downstream corner. This acceleration is then followed by a deceleration region as the flow
impinges on the downstream corner. In contrast, the convection speed of the single large-scale
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FIGURE 3.20: Contour plots of the time-averaged streamwise velocity, U at different Mach

numbers: (a) M. = 0.1, (b) Mo = 0.2, and (¢) M. = 0.3 at the respective peak frequency. The

trajectory of the vortical structures is traced by monitoring the maximum value of |Q(x, /)| near

the cavity opening. The tracked trajectory is superimposed onto the time-averaged streamwise
velocity contour plot for visual comparison.

vortex is noticeably slower, with a streamwise-averaged convection speed ratio of approximately
Uc.avg /U = 0.3, as shown in figure 4.15(b). This reduced speed can be attributed to the absence
of an acceleration region, primarily resulting from the downward trajectory of the large-scale
vortex into the cavity. Hence, the convection speed of the large-scale vortex in M. = 0.2 should,
in fact, be significantly slower than the second hydrodynamic mode, thus contradicting the trend
observed in Table 3.1.

On further analysis, it appears that the observed discrepancy in the calculated K. value pri-
marily stems from the presumption that the formation of coherent vortices occurs precisely at
the upstream corner at x = 0 and impinge exactly on the downstream corner at x = 1. While the
latter hypothesis is reasonably supported by the observation that coherent vortices complete an
oscillation cycle upon reaching the downstream walls, the former assumption, which suggests
the instantaneous formation of coherent vortices at the upstream corner at x = 0, warrants fur-
ther investigation. To gain clarity regarding this matter, it would be beneficial to refer to Figure
3.22, which provides insight into the streamwise distribution of the cosine of the streamwise
phase difference between the Q-Criterion, denoted as ®g, and the acoustic force, denoted as x,
across the cavity opening. Notably, the presence of depthwise acoustic resonance induces suf-
ficient acoustic forcing, thereby facilitating the creation of a region characterized by a constant
phase near the upstream corner before the occurrence of shear layer separation (for instance,
x < 0.1 for both the M., = 0.1 and M., = 0.3 cases). As a result, this region of constant phase
serves as a precursor for the immediate formation of vortices near the upstream corner, thereby
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FIGURE 3.21: The local variation of the convection speed of the coherent vortices calculated
using the streamwise phase variation of the Q-Criterion, ®p measured across the orthogonal
cavity opening in the streamwise direction at three different Mach numbers: (a) M. = 0.1, (b)
M., = 0.2, and (¢) M., = 0.3 at the respective peak frequency. The local convection speed of
the coherent vortices (—) is consistent with the respective time-averaged streamwise velocity
(----), particularly in the region of 0.2 < x < 0.9 before the impingement on the downstream
corner. The considerable slow-down experienced by the large-scale vortical structure in M., =
0.2 (b) illustrates the considerable variation and the influence of the time-averaged mean flow
on the local convection speed of the coherent vortices.

reducing the effective streamwise travel distance required for coherent vortices to complete a
full oscillation cycle. Moreover, in the case of M., = 0.2, an even larger modulated region of
constant phase is observed (e.g., x < 0.2), which leads to a substantial reduction in the stream-
wise distance required for the large-scale vortex to complete a single cycle of oscillation. In the
absence of this acoustic resonance, a higher convection speed of the vortex would therefore be
necessary. Consequently, the tonal oscillation observed in the M., = 0.2 case can be attributed
to the modulated region resulting from the lock-in mechanism, despite the reduced convection
speed of the large-scale vortex.

Thus far, our current understanding suggests that the occurrence of cavity oscillations primar-
ily occurs at two distinct Strouhal numbers: approximately St ~ 0.4 and St ~ 0.8, which corre-
spond to the first and second hydrodynamic modes, respectively. However, the specific criteria
that govern the transition to higher acoustic modes remain unclear. To address this knowledge
gap, we conducted an eigenanalysis on the linear operator of acoustic perturbation equations
(APE) to uncover the first three depthwise acoustic modes of the orthogonal and deep cavity
geometry, based on the time-averaged mean flow fields derived from the LES, as illustrated in
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FIGURE 3.22: The unity from the cosine of the streamwise phase difference of the Q-Criterion,

@, and the acoustic force () near upstream corner highlights the acoustic-coupling process

in orthogonal cavity of three different Mach numbers: (a) M = 0.1, (b) Ms = 0.2, and (c)

M., = 0.3 at the respective peak frequency. In the most severe case, the fluid-acoustic coupling

process modulates the shear layer oscillation and facilitates the formation of a region of constant

phase (e.g. x $ 0.2 in M., = 0.2) to reduce the effective streamwise travel distance required for
the coherent vortices to complete the oscillation cycle.

Figure 3.23. The first depthwise acoustic mode, situated at a frequency of fL/a. = 0.08, rep-
resents the least-damped mode (i.e., eigenvalue that is closest to the y-axis), and is insensitive
to the influence of time-averaged flow fields. In contrast, the second depthwise acoustic mode
is identified at a higher frequency of fL/a. = 0.25 and is heavily damped (i.e., farther from the
y-axis).

Equipped with the aforementioned finding, it can be postulated that the peak frequency com-
ponent of the observed acoustic response in the M., = 0.2 case primarily arises from the ex-
citation of the least-damped fundamental acoustic mode. In particular, it is the presence of
this least-damped fundamental acoustic mode that modulates the oscillation of the shear layer,
thereby facilitating the subsequent formation of coherent vortex structures at the first hydrody-
namic mode. Additionally, it is suggested that the presence of the fundamental acoustic mode in
the M., = 0.1 case encourages the excitation of a second hydrodynamic mode for satisfying the
required phase criterion (AP (x, fi) = 47). This phase criterion is necessary for completing a
single oscillation cycle at the frequency fixated by the fundamental acoustic mode, while also
considering the averaged vortex convection speed ratio of K. = U,/ Us = 0.4 as obtained from
table 3.1. Similarly, the promotion of the second hydrodynamic mode in the cavity flow for
M., = 0.3 case is encouraged by the second acoustic mode at fL/a. = 0.25 through the fluid-
acoustic coupling process. Finally, it is noteworthy that the absence of a nearby acoustic mode
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FIGURE 3.23: (a) PSD of pressure fluctuation, p’ measured on the base surface of the deep

and orthogonal cavity (a), for different freestream velocity, M, = 0.1 (- --), Moo = 0.2 (—),

and M., = 0.3 (----) is reproduced from figure 3.15 for direct comparison with () the first

three least-damped acoustic modes obtained from the APEs at M., = 0.1 (W), M., = 0.2 (&),

M., = 0.3 (V). The vertical dashed lines (- - -) indicate the tonal frequencies observed in the
current cavity configurations.

in the frequency at around fL/a. = 0.04 and fL/a. = 0.12 may explain the suppression of the
first hydrodynamic mode in the cavity flow for the M., = 0.1 and M., = 0.3 cases, as previously
observed in the pressure spectra.

The preceding passage extensively discusses the occurrence of tonal peaks observed in the
pressure spectra at three different flow speeds. However, it is essential to gain a deeper un-
derstanding of whether the hydrodynamic modes that occur at specific Strouhal numbers (e.g.,
St ~ 0.4 and St ~ 0.8) can be self-sustained through streamwise feedback via pseudo-sound
without the presence of depthwise acoustic resonance. To address this, a biglobal linear stabil-
ity analysis of the cavity systems was performed, employing linearised Navier-Stokes equations
based on time-averaged mean flow fields obtained from the LES. Two different sets of boundary
conditions were applied at the cavity floor: (a) reflecting wall boundary condition and (b) ane-
choic non-reflecting boundary condition. Figure 3.24 demonstrates that the unstable mode ob-
tained from the biglobal linear stability analysis with reflecting wall boundary condition agrees
with the tonal peak observed in the pressure spectra in all the cases considered. Furthermore, re-
placing the reflecting wall boundary condition with an anechoic boundary condition at the base
of the orthogonal deep cavity stabilizes the unstable mode. This observation highlights the crit-
ical role of fluid-acoustic coupling between the oscillation of the shear layer and the depthwise
acoustic resonance in the deep cavity. Consequently, the self-sustained oscillation observed in
orthogonal and deep cavity flows is primarily destabilized through the feedback from the depth-
wise acoustic resonance and not by the established view of global instability through pressure
feedback from upstream propagating acoustic waves to the convective Kelvin-Helmholtz insta-
bility in the shear layer.

In addition to these insightful findings, it is also important to delve into the amplitude of
cavity oscillations, as shown in the pressure spectra in Figure 3.15. Previous visualisations
consistently show that fluid flows over an orthogonal and deep cavity generates highly coherent
vortices. With these vortices being predominant in the subsonic flow regimes studied here, the
Lamb vector (represented by @ X u) emerges as the primary noise source according to Ewert and
Schroder (2003). Therefore, the spatial distribution of the magnitude of Fourier-transformed
Lamb vector source term is examined near the cavity opening region at the peak frequencies
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FIGURE 3.24: Eigenspectra of the linearised Navier-Stoke equations LLNSE(Q; B = 0) with

acoustic resonance (W), and without acoustic resonance (&) at M., = 0.1 (a), M., = 0.2 (b),

M. = 0.3 (c), respectively. The vertical dashed lines (- - -) indicate the tonal frequencies ob-
served in the current cavity configurations.

for three different Mach number cases, as shown in Figure 3.25. The results indicate that the
highest overall magnitude of the Lamb vector generated by cavity oscillation is observed in the
M., = 0.3 case. Remarkably, this finding is contrary to the peak acoustic response observed
at M., = 0.2. This discrepancy between the magnitude of Lamb vector source term and the
acoustic response underscores a non-proportional direct correlation, necessitating consideration
of additional analysis for clarification.

The first apparent plausible factor that leads to this discrepancy may be stemmed from a
weaker amplification of the acoustic response by the third depthwise acoustic mode compared
to that of the least-damped fundamental acoustic mode. It is worth recalling that the normalized
pressure spectra of cavity oscillations in figure 3.15(b), showing both cases at M., = 0.1 and
M., = 0.2, which are excited by the fundamental depthwise acoustic mode, consistently exhibit
greater magnitudes than the case at M., = 0.3 excited by the third depthwise acoustic mode.
Secondly, it is suspect that the cancellation of the Lamb vector source by the opposite phase (e.g.,
blue and red regions) is more significant in the second hydrodynamic mode (e.g., M. = 0.1 and
M., = 0.3), while comparably to a lesser degree in the first hydrodynamic mode (e.g., Mo = 0.2).

To validate these hypotheses, an acoustic input-output analysis was performed on the lin-
ear operator of the acoustic perturbation equations (APE) based on time-averaged flow fields
obtained from the LES. The primary objective of this analysis was to obtain the acoustic am-
plification rate and the forcing-response mode shapes. These can be directly compute to the
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FIGURE 3.25: Contour plots of spatial variation of the magnitude of Fourier transformed Lamb
vector in y-direction, |Ly , at three different Mach numbers: (a) M., = 0.1; (b) M., = 0.2; and
(c) M. = 0.3, at the respective peak frequency as shown in figure 3.15.

magnitude of the acoustic response through the low-rank behaviour of the APE’s linear op-
erator, as illustrated in Figure 3.26. For a more detailed discussion on acoustic input-output
analysis, readers are encouraged to consult Chapter 4. Accordingly, figure 3.28(a, b) shows the
respective leading gain, o] and the dot product of the optimum forcing with the Lamb vector
source term obtained from the LES. Consequently, it is observed that the reduced acoustic re-
sponse at M., = 0.3 is caused directly by the reduced gain amplification due to the excitation of
the damped third depthwise acoustic mode. Besides, the reduced acoustic response in the sec-
ond hydrodynamic mode in both M., = 0.1 and M., = 0.3 cases can be explained by the reduced
magnitude in the dot product of the optimum forcing and the Lamb vector source term due to
a greater souce-sink cancellation, as shown in figure 3.27(a,c). Finally, the optimum acoustic
response at M., = 0.2 is facilitated by the optimum gain amplification by the first least-damped
depthwise acoustic mode and the larger magnitude of the dot product of optimum forcing and
the Lamb vector source term of the first hydrodynamic mode due to a lesser source-sink cancel-
lation, as shown in figure 3.27(b).
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FIGURE 3.26: The low-rank behaviour of the input-output operator is visualised through the
first three leading magnification rates; oy (W), 0> (A), and o3 (#) for three different Mach
numbers: (a) M = 0.1; (b) M. = 0.2; and (¢) M., = 0.3, respectively. The vertical dashed line
(- - -) indicates the tonal frequency observed in the LES, while the horizontal dashed line (- - -)
represents the corresponding leading amplification rate o at that particular tonal frequency.

3.7 Summary

A detailed understanding of the physical mechanism of the aerodynamic noise generation of a
deep cavity in acoustic resonance with an aspect ratio of D/L = 2.632 at Re., = 174,594 sub-
jected to an incoming turbulent boundary layer at a free stream velocity of M., = 0.2 has been
achieved by using a high-order accurate large-eddy simulation. The first part of the investigation
concerns pressure fluctuations around the cavity that are separated into the hydrodynamic and
the acoustic components using Doak’s MPT. Accordingly, the decomposed acoustic pressure
fluctuation illustrates the instant alteration of acoustic pressure fluctuation inside the cavity with
a synchronised shear layer oscillation across the cavity opening. Furthermore, the decomposed
hydrodynamic pressure field captured the formation of a large-scale low-pressure region from
the small-scale low-pressure spots near the upstream corner and its eventual impingement onto
the downstream corner. In addition, the Fourier transformed hydrodynamic pressure fluctuation
near the cavity opening indicates that the number of vortices (e.g. hydrodynamic mode) in-
creases following the passage frequencies, and the respective streamwise amplification at each
tonal frequency across the cavity opening through the coherent vortex formation is visualised.
The formation of the separation region caused by the flow reversal and the mass exchange rate
across the cavity opening could also help describe the aerodynamic noise generation.

The current work studied the fluid—acoustic coupling mechanism between the separated shear
layer oscillation near the upstream corner and the acoustic resonance in the cavity. It is found
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FIGURE 3.27: The spatial distribution of the real part of the component-wise multiplication

between the leading optimal forcing mode, v;, and the input forcing, ]‘w, in the streamwise

direction (top row of the contour plots) and the vertical direction (bottom row of the contour

plots) for three different Mach numbers: (a) Mo = 0.1; (b) M = 0.2; and (¢) M. = 0.3,

respectively. Note that the phase of the cycle (as shown in the contour plots) is selected such

that the imaginary part of the integrated volume forcing is zero to accentuate the source-sink
cancellation effect.

that the vertical velocity fluctuation is mostly in-phase with the acoustic forcing near the up-
stream corner, highlighting the efficient fluid-acoustic coupling process. It is observed that the
non-linear interactions between the vertical velocity fluctuation at higher harmonics and the
fundamental acoustic resonance are plausible. Thus, this may indicate that the birth of higher
harmonics may result from the ‘modulated instability wave’ by the strong acoustic forcing at
the fundamental frequency. The next part of the study estimated the averaged convection speed
of the coherent vortices across the cavity opening, which is determined by calculating the phase
variation of the Q-criterion from upstream to the downstream corner of the cavity. Finally, a
semi-empirical model to predict the critical free stream velocity at which a strong fluid-acoustic
coupling occurs, as a function of cavity geometry and inflow boundary-layer property, is pro-
posed. This is particularly useful in predicting the future occurrence of flow-induced resonance
in the early development stage.

Following up on this, the last part of the study investigated the influence of flow speed on
fluid-acoustic resonance in an orthogonal and deep cavity. The results revealed that the self-
sustained oscillation produces a varying magnitude in acoustic response and excites distinct
hydrodynamic and acoustic modes at three different flow speeds. Specifically, it was reaffirmed
that the most intense oscillation occurs at M., = 0.2. The attenuated response at other speeds,
especially M., = 0.3 is directly attributed to the diminished gain amplification resulting from the
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FIGURE 3.28: (a) The magnitude of the integrated volume forcing, represented by |F @], and

(b) The first leading gain, denoted as o7, of the input-output operator of the APEs. (c) The

reconstructed acoustic response measured at the cavity base, |p/,pg|. is obtained from the 1-
rank approximation computed using equation (4.11).

excitation of the highly damped third depthwise acoustic mode. Moreover, in both M., = 0.1
and M., = 0.3 cases, the reduced acoustic response can be explained by a greater source-sink
cancellation of the second hydrodynamic mode. Conversely, at M., = 0.2, the optimal acoustic
response is facilitated by the highest gain amplification achieved by the least-damped depthwise
fundamental acoustic mode, along with reduced source-sink cancellation of the first hydrody-
namic mode. Additionally, the destabilising role of acoustic resonances in deep cavity flows is
highlighted using biglobal linear stability, where it was demonstrated that the eigenmodes are
effectively stabilised when an anechoic boundary condition was replaced at the bottom wall of
the deep cavity.
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Chapter 4

Flow-acoustic resonance in inclined
and deep cavities

This section presents numerical investigations of flow-acoustic resonance in inclined and deep
cavities using wall-resolved large-eddy simulations. The study focuses on cavities with an as-
pect ratio of D/L = 2.632 under three different inclination angles (o = 90°, 60°, and 30°).
Additionally, two Mach numbers, 0.2 and 0.3, are considered in this section, with particular em-
phasis on the intriguing behaviours exhibited by inclined cavities at M., = 0.3. A fully turbulent
boundary layer generated from an independent precursor simulation is employed upstream of
the cavities. The momentum thickness of the turbulent boundary layer is 6 /L = 0.030. The ini-
tial results from these simulations suggest a significant difference in the flow-acoustic resonance
characteristics between the inclined and orthogonal cavities despite their identical aspect ratio
and inflow condition used. The discrepancy is especially pronounced at M., = 0.3, where the
inclined cavities produce significantly stronger resonance, and the peak frequency (St ~ 0.27)
is considerably lower compared to the orthogonal cavity configuration. Notably, this Strouhal
number of St ~ 0.27 was neither accounted for by Rossiter (1964), nor was it predicted by
the semi-empirical formula proposed in Chapter 3. This study employs acoustic input-output
and linear stability analyses to account for the newly observed aeroacoustic behaviours. The
acoustic input-output analysis reveals that the inclined cavities yield stronger acoustic responses
due to the higher amplification rate of the least-damped acoustic mode and reduced source-sink
cancellation of the first hydrodynamic mode. Furthermore, the linear stability analysis identi-
fies the most unstable mode within the inclined cavity systems, pinpointing the region slightly
downstream of the separation corner as particularly susceptible to hydrodynamic instabilities.
Based on these observations with existing experimental evidence, we suggest that the amplified
flow-acoustic resonances in inclined cavities at St ~ 0.27 could be linked to a low-frequency
extension of the first hydrodynamic mode through the enhanced shear layer undulation when
the acoustic particle displacement is comparable to the momentum thickness.

4.1 Pressure fluctuations and oscillation frequencies

The self-sustained oscillation observed in inclined and deep cavities is a fluid-resonant oscil-
lation in which the shear layer oscillation couples with an acoustic mode of the cavity to rein-
force large-scale vortical structures, thereby altering the flow field and generating highly intense
acoustic pressure fluctuations. This process involves the efficient conversion of local flow energy
into acoustic energy, as visualised in Figure 4.1.
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FIGURE 4.1: The large-scale vortical structures are identified through iso-contours of instan-

taneous pressure fluctuations. Note that the flow direction is from left to right. The surface

contours of wall-pressure fluctuations reveal the prominent acoustic field emanating from deep
cavities with the inclination angles of @ = 90° (a), 60° (b), and 30° (c), respectively.
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FIGURE 4.2: The spanwise-averaged time signal of the pressure fluctuations measured on the

base surface of the deep cavities with the inclinations: &« = 90° (----), 60° (—), and 30° (- - -).

The measurements were recorded at free-stream Mach numbers of M., = 0.3 (a) and M., = 0.2
(b), respectively.

This section investigates the aeroacoustic behaviour of wall-pressure fluctuations in deep cav-
ities subjected to three distinct inclination angles at two specific Mach numbers, resulting in a
total of six simulations. Initially, simulations are conducted at a Mach number of M., = 0.3 for
four million time steps, corresponding to 220 non-dimensional time units. Subsequent to this
period, a steady-periodic state of the wall-pressure signal is achieved at the base of the cavity in
all inclinations, as shown in Figure 4.2(a). Accordingly, the Fourier transform is performed on
the pressure time signals using an additional non-dimensional time of approximately 740 sam-
ples (every 0.164-time unit) of the computational data over a total duration of a non-dimensional
time of 120, encompassing around ten periods of the lowest fundamental frequency. The result-
ing time signals are approximately periodic, and any steady component is removed prior to the
Fourier transform. Different windowing functions have been attempted, and the results show
comparable spectrum compositions. Subsequently, the simulation procedures are repeated us-
ing a turbulent inflow dataset at a Mach number of M., = 0.2 as discussed in Chapter 3, and the
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FIGURE 4.3: Power spectral density (PSD) of the spanwise-averaged time signal of wall-

pressure fluctuations measured on the base surface of the deep cavities with the inclinations:

a =90° (----), 60° (—), and 30° (- --) at free-stream Mach numbers, M., = 0.3 (a), and
M., = 0.2 (b), respectively.

corresponding time signal of the acoustic responses from each inclination is presented in Figure
4.2(b). Evidently, the pressure signals from the cavities clearly display periodic oscillations,
underscoring the self-sustaining nature of inclined and deep cavity flows at both M., = 0.2 and
M. =0.3.

The power spectra of wall-pressure fluctuations at M., = 0.2 are depicted in figure 4.3(b). The
figure illustrates that each cavity case (@ = 30°, 60°, and 90°) exhibits a primary resonance
at the fundamental frequency (St ~ 0.385), which is closely related to the first Rossiter mode
as predicted by the Rossiter semi-empirical formula proposed in Rossiter (1964). Previously,
the optimal Mach number for the orthogonal cavity geometry (D/L = 2.632) with the inflow
condition (6 /L = 0.0345) was believed to be M., = 0.2, a conclusion drawn from discussions
in Chapter 3. Accordingly, this optimal condition was understood to represents a lock-in event
between the Rossiter’s streamwise feedback and the depthwise acoustic resonance mode. There-
fore, any deviation from this Mach number was anticipated to produce a less optimal acoustic
response. This assumption was indeed corroborated by the attenuated acoustic response ob-
served in the orthogonal cavity at M., = 0.3, as shown in figure 4.3(a). On the contrary, the
oscillations in inclined cavities at M., = 0.3 displayed an entirely unexpected behaviour. Firstly,
the strongest peak frequency shifted to a lower value of St = 0.27 in the inclined cases (¢t = 30°
and 60°). It is noteworthy that previous studies on orthogonal deep cavities (Yang et al., 2009)
and on closed side branches (Peters, 1993a; Ziada, 1994; Dequand et al., 2003) also reported
a critical resonance occurring at St ~ 0.27, which do not follow the existing flow-acoustic res-
onance theories. More strikingly, the inclined cavities at M. = 0.3 demonstrated a significant
increase in the peak amplitude by nearly 30dB stronger than the orthogonal cavity configuration.
This enhanced amplitude even surpassed that seen under what was previously deemed the “opti-
mal” condition for orthogonal cavity at M., = 0.2, as evident in Figure 4.3. Herein, the primary
objective of this paper is to delve into the physical mechanisms underlying these unexpected
and pronounced acoustic responses from the inclined cavities at M., = 0.3.

Figure 4.4 shows snapshots of the spanwise-averaged instantaneous pressure fluctuations cap-
tured at four points in time separated by 7' /4, where T = 1/ f,, is the period of the oscillation at
the tonal frequency observed in the pressure spectra shown in Figure 4.3(a). The snapshots illus-
trate how the shear layer deflection synchronises with the instantaneous pressure fluctuations in
inclined and deep cavities. For brevity, the subsequent analysis will primarily focus on the time
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variation of the instantaneous pressure fluctuations in the o¢ = 60° inclined cavity. Accordingly,
valuable discussions on the visualisations presented in Figure 4.4 can be made regarding the
acoustic pressure averaged over the bottom surface of the inclined cavity, which is determined

as:
1

A
where x; and A, denote the Cartesian coordinates on the surface area of the cavity base, respec-
tively.

x(1) /A p'(xp.1)dA, “.1

Figure 4.4(a) shows the beginning of an oscillation cycle of ¥, during which a distinct large-
scale vortex is located slightly above the cavity opening as revealed by the low-pressure zone
near the downstream corner. At this juncture, a nearly complete destructive interference tran-
spires between the reflected compressive waves and the incident rarefaction acoustic waves,
resulting in an acoustic pressure equilibrium within the cavity (i.e., ¥ = 0). Subsequently, the
initial downward deflection of the shear layer becomes apparent, accompanied by the emergence
of individualised low-pressure regions close to the upstream corner. The former occurrence de-
notes the inception of constructive interference of rarefaction acoustic waves within the cavity,
while the latter event signifies the generation of small-scale vortices near the upstream corner.

As the large-scale vortical structure continues its movement beyond the downstream wall,
the vortex-corner interaction becomes more pronounced, generating further rarefaction waves.
These waves interfere constructively with the rarefaction waves reflected off from the base of
the cavity, resulting in a further reduction of the acoustic pressure fluctuations within the cavity
until the acoustic pressure exerted on the cavity base reaches its minimum value, as depicted
in Figure 4.4(b). Following this, a distinct low-pressure region is observed near the upstream
corner from the merging of newly formed vortices with the downward deflection of the shear
layer. At this point, the gradual emergence of a localised and non-negative pressure region close
to the downstream corner is observed. This observation is attributed to the impeded shear layer,
which indicates the onset of stagnated flows.

As the flow field is severely retarded by the downstream corner, a highly stagnated region is
established, and this is accompanied by an increase in pressure fluctuations near the downstream
corner, as illustrated in figure 4.4(c). At this instant, a complete destructive interference tran-
spires between the incident compressive acoustic waves and the rarefaction waves reflected from
the base of the cavity. Subsequently, recurrent constructive interferences occur within the cav-
ity until the averaged acoustic wall-pressure )y exerted on the cavity base reaches its maximum
value due to the complete constructive interference of compressive acoustic waves, as shown in
figure 4.4(d). As the shear layer gradually detaches from the downstream corner, the flow stag-
nation lessens. A complete destructive interference ensues as the large-scale vortex convects
downstream and slowly ejects out from the cavity, thereby completing a single oscillation cycle
of x.

The preceding discussions implicitly discern two distinct regions of pressure fluctuations,
namely, the local hydrodynamic fluctuation near the cavity opening and the acoustic fluctuation
enveloping the cavity. The difference between the two components is further elucidated by the
magnitude and phase distributions of the Fourier-transformed pressure fluctuations. Accord-
ingly, figure 4.5 reveals that the pressure field in the interior of the cavity appears to be primarily
stationary (e.g. constant phase), with a maximum magnitude (e.g. a pressure node) positioned
at the cavity base in all inclinations. These observations align with the inherent nature of depth-
wise acoustic resonances, thereby confirming that the pressure field in the interior of the cavity is
primarily associated with a depthwise acoustic resonance. Furthermore, the depthwise acoustic
resonances observed in this study are highly localised in the cavities and are consistent with the
definition of “trapped acoustic mode” (Koch, 2005). It is worth pointing out that the presence
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FIGURE 4.4: Snapshots of the spanwise-averaged instantaneous pressure fluctuations with su-

perimposed streamlines to signify the shear layer undulation across the cavity opening with a

time interval of 7/4 between two successive plots from (a) to (d), where T is the period of the

oscillation cycle of x. The first, second and third columns correspond to deep cavities with the
inclinations: @ = 90°, ov = 60° and o = 30°, respectively.
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FIGURE 4.5: The spatial distribution of the Fourier-transformed pressure fluctuations at the

tonal frequency for deep cavities with the inclinations: o@ = 90° (a), a = 60° (b), o = 30° (c),

respectively. The top row of the contour plots represent the magnitude, |p’|, while the bottom

row of the contour plots represent the cosine of the phase, cos(®,y (x, f) — @y (x, f)). Note that
®, (x, f) represents the phase of the Fourier transform of  defined in (4.1).

of hydrodynamic modes can be discerned near the cavity opening by the streamwise phase shift
of the pressure fluctuations due to the convective nature of the vortices.

To facilitate investigations, we decompose the pressure fluctuations around the cavity into
their hydrodynamic and acoustic components using momentum potential theory (MPT) devel-
oped by Doak (1989). Essentially, Doak’s MPT separates the momentum density, pu, into rota-
tional and irrotational components through a Helmholtz decomposition. Then, the momentum
equation in terms of the hydrodynamic and acoustic components is obtained as:

i(B—Vl//)—FV- (B_V"’LfB_v"’)

- Tj| +Vp=0. 4.2)

By taking the divergence of (4.2), the Poisson equation for the hydrodynamic pressure fluctua-
tions, pj:
V2ply = Sy + Su, (4.3)

and the Poisson equation for the acoustic pressure fluctuations, p/:
V2p)y = Sa +S4, 4.4

are derived. Accordingly, the hydrodynamic and acoustic pressure fluctuations are obtained by
solving the Poisson equations in (4.3) and (4.4), respectively. The numerical implementation
is described extensively in Unnikrishnan and Gaitonde (2016); Ho and Kim (2021b) and the
evaluations of the linear (Sy and S4) and the non-linear source terms (Sy and Sy ) are detailed in
Unnikrishnan and Gaitonde (2020), which are not repeated here for brevity.
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FIGURE 4.6: The top row of the contour plots represents the spatial distribution of the magni-

tude of decomposed Fourier-transformed pressure gradient associated with the hydrodynamic

component |dpg /dy|(x, f), while the bottom row of the contour plots shows the respective

acoustic component |dp4 / dy|(x, f), at their respective tonal frequencies for deep cavities with
the inclinations: & = 90° (a), @ = 60° (b), a = 30° (c), accordingly.

Figure 4.6 shows the pressure gradients in hydrodynamic and acoustic components, and their
spatial distribution between orthogonal and inclined cavities exhibits striking disparities. In
particular, the acoustic pressure gradient appears to be more concentrated near the downstream
corner in inclined cavities, while the acoustic pressure gradient is symmetrically distributed
in the orthogonal cavity. This discrepancy in the spatial distribution of the acoustic pressure
gradient is a critical observation in elucidating the noise generation process, as later discussed
in section 4.4. Furthermore, the difference in magnitude insinuates that the resonant acoustic
field within inclined cavities may exhibit a more significant acoustic particle velocity than the
orthogonal cavity. In light of this, the induced acoustic particle velocity along the cavity opening
region is approximated as being proportional to the acoustic pressure gradient using isentropic
Euler equations (Rienstra, 2015), as expressed by:

dvy __lapa
dt  p ady’

(4.5)

where 7, represents the estimated acoustic particle velocity and p, is the decomposed acoustic
pressure field. By considering a modal fluctuation of the acoustic pressure and spatially aver-
aging the acoustic particle velocity across the cavity opening, we obtain an averaged acoustic
particle velocity that oscillates through the cavity opening, as given by:

1 =L 1 dp,
V, = — — .

(4.6)

At tonal frequencies, cavities with inclinations of (&« = 90°, 60°, and 30°) exhibit an average
acoustic particle velocity through the cavity opening of (|v4|/Us. ~ 9.3 x 1073, 2.5 x 10~! and
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o Herps = fresL/a Heapes = fapesL/a AHe/Hepgs

30° 0.0827 0.0917 10.9%
60° 0.0827 0.0823 0.5%
90° 0.254 0.256 0.8%

TABLE 4.1: Comparison of the tonal frequencies observed in the LES and the computed acous-

tic modes from the APEs for deep cavities with three different inclinations. The frequency of

the acoustic modes were found to closely align with the tonal frequencies from LES for all in-

clinations, except for the o = 30° inclined cavity. This discrepancy may suggest the beginning
of subsidence of an acoustic resonance.

1.1 x 1071, respectively. In the inclined cavities, this amplitude of the acoustic field corresponds
to “high pulsation levels”, wherein the resonant field alters the vortex trajectory, forcing the
vortex to enter and eject out from the cavity as opposed to adhering to the parallel path of the
unperturbed shear layer (Peters, 1993a). Conversely, the oscillation in the orthogonal cavity is
categorised by “low pulsation levels”, where the subdued undulation of the shear layer and the
nearly parallel trajectory of vortices may be traced back to a less efficient flow-acoustic coupling
process.
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FIGURE 4.7: (a) Power spectral density (PSD) of the spanwise-averaged wall-pressure fluc-

tuations with frequency expressed as Helmholtz number, He; and (b) First three least-damped

acoustic modes obtained from the APEs. The deep cavity with the inclinations: a = 90° (W),

60° (A), and 30° (V) are represented accordingly. The vertical dashed lines (- - -) indicate the
tonal frequencies observed in the current cavity configurations.

Figure 4.7(a) showcases a similar pressure spectrum of cavity oscillations as in figure 4.3(a),
with the frequency here represented as the Helmholtz number, He = fL/a.., for comparison
with the first three least-damped acoustic modes of the cavities shown in figure 4.7(b). These
acoustic modes are the eigenvalues of the linear operator of acoustic perturbation equations
(APEs), as detailed in Subsection 2.4. Accordingly, the computed acoustic modes are com-
pared with the tonal frequency of the cavity oscillations from the LES. Table 4.1 reveals that the
computed acoustic modes matched closely with the tonal frequencies from the LES in all incli-
nations, except for the o = 30° inclined cavity case, where the slight discrepancy may suggest
the initial acoustic resonance subsidence.

Based on this discussion, the weak resonance in the orthogonal cavity appears to be excited
by the second Rossiter mode and the third depthwise acoustic mode. The other resonances,
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FIGURE 4.8: Depthwise variation of the magnitude of Fourier transformed pressure gradient,

|dp/dy| along the upstream wall for total (—), acoustic (- - -); and, hydrodynamic (----)

pressure fluctuations, at their respective tonal frequencies for different inclinations, (a) & =

90°, (b) ox = 60°, (c) ox = 30° at M, = 0.3. The scaled pressure gradient of the Helmholtz

acoustic resonance (------) matches favourably with the acoustic mode shape obtained directly
from the LES.

which are more robust, are excited by the first hydrodynamic mode and the first least-damped
acoustic mode, where the former is indescribable by the Rossiter mechanism. Principally, we
can describe that when acoustical resonating modes with a high-quality factor are available, the
acoustical energy produced by the vortex shedding can accumulate in the cavity, and the induced
acoustics particle velocity/displacement drives the vortex shedding process at a frequency close
to the resonance frequency of the acoustic mode. The efficient fluid-acoustic coupling occurs
when the first depthwise acoustic with the least damping is excited by the first hydrodynamic
mode, which allows minimal radiation losses and efficient sound power production to tune the
deep cavity systems to strong flow-induced oscillation in acoustic resonance.

As shown in figure 4.6, the pressure fluctuations across the flow region induced by unsteady
vortex shedding at the downstream corner produce acoustic standing waves in cavities which
can be described by using a one-dimensional wave approximation. Accordingly, the depthwise
variations of the magnitude of Fourier transformed pressure gradient associated with the hy-
drodynamic and acoustic components for three different inclinations are shown in figure 4.8.
In each inclination case, the acoustic wall-pressure gradient, dp4 /dy along the upstream wall,
shows that the amplitude increases along with the cavity depth toward the upstream corner and
bears a close resemblance to a depthwise acoustic standing-wave. The direct eigenfunction (e.g.
the mode shape of a nearby acoustic mode) of the linear operator of APEs matches favourably
with the wavelength of the acoustic standing wave from the cavity oscillations and confirms
this observation. Additionally, inclined cavity flows excite stronger oscillations compared to the
orthogonal counterpart, which may occur since least damped oscillations at the cavity funda-
mental resonant frequency range may strengthen the overall fluid-acoustic coupling mechanism
(Koch, 2005). These findings indicate the presence of acoustic resonance in the current cavity
configurations. As indicated above, the oscillation frequency in the inclined cavity flows may be
independent of the inclination angle. This observation implies that the acoustically forced global
instability of the self-sustained oscillation in inclined cavities may be motivated by a mechanism
independent of the Strouhal number.

The wall pressure gradient associated with the hydrodynamic component intensified near the
cavity opening in all inclinations. Particularly, this is evident in inclined cavities where a dis-
tinct maximal at y/L = 0.2 is observed. The presence of favourable and adverse wall pressure
gradients located slightly below the upstream corner may explain the efficient inward and out-
ward deflection of the shear layer in inclined cavities, and to a lesser degree, for the orthogonal
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cavity case. Based on the observation, the presence of an inclined cavity wall may facilitate
the generation of a stronger vorticity field by the deflected shear layer near the upstream corner.
This will be discussed in the next section.

In short, deep cavity flows with different inclinations display vastly different aeroacoustic re-
sponses in the presence of the same inflow condition. The pressure spectral reveals the tremen-
dous increase in the magnitude of the acoustic response by a 30 dB difference from orthogonal to
inclined cavities. Furthermore, the depthwise distribution of wall pressure fluctuation indicates
that the acoustic resonance of different modes is sustained in all cases considered here. Partic-
ularly, the least-damped fundamental depthwise acoustic mode is sustained in inclined cavities,
while the comparatively damped third depthwise acoustic mode is sustained in the orthogonal
cavity. The excitation of the least-damped acoustic mode in inclined cavities minimises the
radiation loss and facilitates an efficient conversion between the hydrodynamic and acoustic en-
ergy compared to the orthogonal cavity. Therefore the possibility of an intensified fluid-acoustic
coupling between the shear layer and the acoustic fields in inclined cavities remains an inter-
esting point to study. Before investigating this in more detail, it is helpful first to discuss the
hydrodynamic velocity field near the cavity opening in Section 4.2, followed by the subsequent
interaction with the acoustic resonance later in Section 4.3.

4.2 Hydrodynamic fields and the associated noise generation mech-
anisms

In this section, we will discuss the hydrodynamic fields near the cavity opening in detail. As
mentioned, the location of the coherent vortical structure is crucial to the acoustic emission
process. Therefore, an accurate description of the position and the path travelled by the vortical
structure, which is a function of time, is essential for this investigation. Generally, the location of
the vortical structure can be approximated by using the pressure minima technique, as shown in
section 4.1. However, it is challenging to justify an accurate quantification of the hydrodynamic
mode based on the number of discrete low-pressure spots (Ho and Kim, 2021b). To ovecome
this limitation, the location of the vortical structure is identified using the equivalent Q-criterion
(Bradshaw, 1981), which is given by:

1 i
~0? ~ V2 /pe =0, 4.7)

Q= &jgji— 5

where &;; = %(8u,-/ dx;j+ du;j/dx;) represents the rate of strain, @; denotes the vorticity of the
velocity field, and V2 pj is the Laplacian of the hydrodynamic pressure field. This formulation
offers two advantages: firstly, equation (4.7) provides a link between the velocity gradient field
and the hydrodynamic pressure field to better locate the position of the vortex. Secondly, the
strain-rate and vorticity fields provide physical interpretations of the velocity field, which are
useful in qualifying the following noise generation mechanism. (Naguib and Koochesfahani,
2004).

Figure 4.9 shows an oscillation cycle of y similar to that of figure 4.4, with particular attention
given to the vortex dynamics near the cavity opening region. Plotted is the Q-criterion, Q cal-
culated from (4.7), and superimposed with streamlines to signify the shear layer oscillation near
the cavity opening. Similarly, we examine the vortex dynamics in the o¢ = 60° inclined cavity to
facilitate the following discussion. Figure 4.9(a) shows the moment when the large-scale vortex
(characterised by Q < 0) is positioned marginally above the cavity opening line (i.e., y > 0), due
to the maximum outflow from the cavity. Consequently, the interaction of the vorticity field with
the downstream corner necessitates an imaginary mirror image of an opposite vorticity field to
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FIGURE 4.9: Snapshots of the spanwise-averaged instantaneous Q-Criterion with superim-

posed streamlines to signify the shear layer undulation across the cavity opening with a time

interval of T/4 between two successive plots from (a) to (d), where T is the period of the os-

cillation cycle of x. The first, second and third columns correspond to deep cavities with the

inclinations: o = 90°, a = 60° and o = 30°, respectively. For the corresponding pressure
fields, see figure 4.4.
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FIGURE 4.10: Snapshots of the hydrodynamic pressure fluctuation, pj, near the cavity opening

region with superimposed streamlines to signify the shear layer undulation with a time interval

of T/4 between two successive plots from (a) to (d), where T is the period of the oscillation

cycle of x. The first, second and third columns correspond to deep cavities with the inclinations:

a=90°, o =60° and ox = 30°, at M., = 0.3 respectively. For the corresponding pressure fields,
see figure 4.4.
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satisfy the no-slip boundary condition at the wall. The presence of vorticity near the wall results
in a low hydrodynamic pressure field, as indicated by V?py > 0, as shown in figure 4.10(a).
This low hydrodynamic pressure field acting on the wall generates rarefaction acoustic waves,
which interfere destructively with the compressive acoustic waves reflected within the cavity.

As the large-scale vortex approaches closer to the downstream corner, the vorticity field acting
on the wall is amplified. Consequently, the amplified vorticity field necessitates the presence of
an imaginary mirror image of a stronger opposite vorticity field, which results in the generation
of additional rarefaction acoustic waves. These waves undergo constructive interference with
the acoustic waves reflected from the base of the cavity until the large-scale vortex stretches
and ejects completely from the cavity, as shown in figure 4.9(b). The complete ejection of
the vortex is immediately followed by a rapid downward deflection of the shear layer near the
upstream corner, accompanied by the emergence of small-scale vortices (e.g. low hydrodynamic
pressure spots) within the separated shear layer, as shown in figure 4.10(b). These small vortices
subsequently grow and merge, ultimately forming a single large-scale vortex near the upstream
corner, as depicted in figure 4.9(c).

Further downward deflection of the shear layer near the downstream corner formed a region
of the high strain-rate field (e.g. O > 0) on the downstream wall due to stagnated flow, and a
compressive hydrodynamic pressure field is generated as shown in figure 4.10(c). Furthermore,
at this instant represents the maximum mass flow into the cavity. As the shear layer slowly
detaches from the downstream corner, the upward deflection of the shear layer generates a strain
rate field (e.g. Q > 0) on the front surface of the downstream corner ensuing from the upward
momentum flux, as shown in the figure 4.9(d). Similarly, a low-pressure region is gradually
formed near the edge of the top surface of the downstream corner due to flow separation. At the
same time, the newly formed vortices near the upstream corner amalgamate to form a large-scale
vortical structure (represented by Q < 0) through additional vortex pairings, which are visually
similar to the schematic drawing of the “collective interaction” provided by Ho and Nosseir
(1981).

In addition, the observed shear layer oscillation and the non-parallel trajectory of the large-
scale vortex in the inclined cavity oscillation are also similar to those observed in deeper cavities
within gas flows in pipes with closed side branches, as reported by Kriesels et al. (1995). Draw-
ing from this observation, we suggest that the deflection of the shear layer near the upstream
corner is primarily controlled by the forcing generated by the time-varying mass flow rate pass-
ing through the cavity opening. Accordingly, the mass forcing through the cavity opening,
denoted as dm/dt, is decomposed into solenoidal and irrotational components by performing
an integration of the rate of change of vertical momentum-density across the cavity opening in
the streamwise direction, such as:

dm‘A 1 L

—)=—" |V —0,1)d 4.
7 (1) dt/o va(xy =0,1) dx, (4.82)
dniy 1 (L

5= /0 s (6 = 0,1) dx (4.8)

Figure 4.11(a, b) shows the solenoidal component, dB,/dt, induced by the large-scale con-
vective vortex. It is characterised by a highly localised spatial distribution, in contrast to the
uniformly distributed irrotational component, dVyy /dt, which is induced by the depthwise
acoustic resonance. Additionally, the deflection of the shear layer near the upstream corner
is quantified by monitoring the vertical coordinate of the streamtrace near the location where
x = 0.2. Figure 4.11(c) displays the time variation of the vertical coordinate of the streamtrace
near the upstream corner. The results reveal that the deflection of the shear layer is closely syn-
chronised with the irrotational component of the mass forcing induced by the depthwise acoustic
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FIGURE 4.11: The space-time contour plots of (a) the solenoidal (hydrodynamic) component;

(b) the irrotational (acoustic) component, of the rate of change of vertical momentum-density,

d(pv)/dr across the cavity opening (e.g. y/L = 0); and, (c) the time variation of integrated

vertical momentum-density rates across the cavity opening associated with acoustic (- - -), hy-

drodynamic (----) fields, and y-coordinate of the shear layer oscillation measured near the
upstream corner at x = 0.2 (—) for the o = 60° inclined and deep cavity.

resonance. This finding highlights the dominant influence of the spatially coherent depthwise
acoustic resonance on the shear layer oscillation. Therefore, it is plausible to suggest that the
shear layer oscillation could be mainly controlled by the spatially coherent irrotational compo-
nent of the vertical momentum-density induced by the depthwise acoustic resonance.

4.3 Fluid-acoustic coupling mechanism and convection speed of co-
herent vortical structures

In Section 4.1, it is evident that the fundamental resonant frequency with a mode shape similar
to a one-quarter wave is presented in the cavity. Therefore, it bears the question of whether
an effective coupling mechanism exists between the shear layer and the acoustic resonance to
facilitate this formation. As mentioned, past investigations have indicated the acoustic resonance
has a deterministic role on shear layer oscillation, particularly near the receptivity of the shear
layer (e.g. upstream corner). Therefore, a better understanding of the phase relationship between
the region of maximum receptivity of the shear layer and the acoustic resonance is crucial in this
investigation. One plausible way to achieve this is to invoke the one-dimensional plane wave
approximation, whereby the standing-wave induces acoustic particle velocity primarily in the
vertical direction. This approximation is justified for the current cavity configuration based on
our previous observation in Section 4.1, that the acoustic pressure field bears a close resemblance
to a one-quarter vertical standing-wave.



4.3. Fluid—acoustic coupling mechanism and convection speed of coherent vortical structur6$

(@) 0.06 ®) 0.18 (©) 0.09
- < 0.06F
£
"L
&)
r X< 0.03r
0 L 1 L 0 n 1 n 1 1 0 L 1 1
0 025 0).{5 075 1 0.25 OJ.CS 075 1 0 025 O).CS 0.75
(@) (b) (c)
| In-phase . In-phase | In-phase
I [ I
s 0 s 0 s 0
8 8 8
Qo o [
-1k -1r -1r
Out-of-phase Out-of-phase Out-of-phase

0 025 0;(5 075 1 0 025 0);5 075 1 0 025 0);5 075 1

FIGURE 4.12: Streamwise variation of the magnitude (first row) and cosine of phase (second

row) of the Fourier transformed decomposed vertical velocity fluctuations, V (x, f) across the

cavity opening (e.g. y/L = 0) for a = 90° orthogonal cavity (a), & = 60° inclined cavity (b),
and o = 30° inclined cavity (¢) at Mo = 0.3.

Accordingly, Fourier transform is performed on the space-time vertical velocity fluctuation
across the cavity opening and the respective magnitude, |V (x, f)| and phase, ®,(x, f) at the
tonal frequencies are plotted in figure 4.12. In the orthogonal deep cavity, the streamwise ampli-
fication follows almost a linear fashion reaching up to x/ L 2 0.75 before reducing to a local min-
imum and rising to a concentrated peak near the downstream corner. Similarly, the streamwise
amplification in inclined cavity flows reaches a maximum of around x/L = 0.5 before reducing
to a local minimum and rising to a concentrated peak near the downstream corner. Based on the
visualisation of the vortex dynamics and the shear layer oscillation, it is reasonable to suggest
that the former reduction is caused by the destructive interference of the induced downwash
velocity by the coherent vortices and the upwash generated by the shear layer oscillation. The
latter concentrated peak near the downstream corner is caused by the vortex-wall interaction,
which intensified considerably in inclined cavities. Particularly, it is worth highlighting that the
location at which the minimum velocity fluctuation (e.g. x/L ~ 0.85) is the furthermost away
from the downstream corner in o = 30° inclined cavity case, suggesting the greatest vortex-
wall interaction. In addition, the cosine of the phase difference, cos[®, (x, fi) — Py (x, f1)] as
shown in figure 4.12(a, b) reveals a region of acoustic modulation where the velocity fluctuation
near the upstream corner remains highly synchronised with the averaged acoustic wall-pressure
fluctuation at the cavity base, y. This indicates the obvious point that the depthwise acoustic
resonance highly controls the vertical velocity oscillation in shear layer separation. Therefore,
there is strong evidence of the fluid-acoustic process due to the perfect synchronisation near the
upstream corner between the vertical velocity fluctuation and the acoustic forcing generated by
the resonance. Furthermore, the formation of coherent vortices that are highly in-phase with the
acoustic forcing near the upstream region (e.g., cos[®g(x, f,,) — @y (x, f,)] = 1), as shown in
figure 4.13, further reconfirm this fluid-acoustic coupling process.
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FIGURE 4.13: The streamwise phase variation of the Fourier-transformed Q-Criterion,

Py (x, f), measured across the cavity opening (e.g. y = 0) at the respective tonal frequency

for deep cavities with inclinations: o = 90°, a = 60° and o = 30°, respectively. Note that the
spatial variation of ®¢(x, f) is calculated based on the phase reference of @, (x, f).

Based on the work of Rockwell and Naudascher (1979); Knisely and Rockwell (1982); Rock-
well (1983); Tuna and Rockwell (2014), it has been established that a self-sustained oscillation
of an n hydrodynamic mode requires a phase criterion of (e.g. APy (x, f,) = 27n). This study
reaffirms this phase criterion, as shown in figure 4.13. Subsequently, the average convection
speed, U,, is calculated using linear dispersion relation based on the streamwise phase variation
of the Q-Criterion.

o fL/aw APy, /2n M.=U./0o. K.=U;/Us

30°  0.0828 ~ 1.00 0.0828 0.276
60°  0.0828 ~ 1.00 0.0828 0.276
90°  0.2548 ~ 1.00 0.1274 0.424

TABLE 4.2: Average convection speed ratio, K, = U, /U, of the vortical structures at each

tonal frequency is calculated based on the streamwise phase variation of the Q-Criterion using

the linear dispersion relation, considering the free-stream Mach number of M., = 0.3 for deep
cavities with inclinations: o = 90°, @ = 60° and o = 30°, respectively.

Table 4.2 reveals a significant disparity in the averaged convection speed ratio in orthogonal
and inclined cavities, with the latter demonstrating a slower convection speed despite employ-
ing the identical inflow condition. Figure 4.14 clearly depicts this difference by comparing the
magnitude of the Fourier-transformed Q-Criterion, |Q|, with the time-averaged streamwise ve-
locity, #. Accordingly, it is found that the tracked trajectory of the coherent vortices display
an almost horizontal trajectory along the cavity opening in the orthogonal cavity. However, in
the case of inclined cavities, the large-scale vortex structure descends deeper into the cavity and
subsequently experiences a reduced streamwise velocity before its eventual ejection. Therefore,
these discrepancies in the vortex trajectory yield two important observations.

Firstly, the coherent vortices in the orthogonal cavity (with a St = 0.85) traverse the cavity
opening at a faster average convection speed due to their nearly parallel trajectory. Secondly, the
large-scale vortical structure in inclined cavities (with a St ~ 0.27) convects at a slower average
convection speed due to its downward trajectory into the interior of the cavity. Furthermore,
the large discrepancy between the local convection speed and the time-averaged streamwise
velocity implies significant unsteady influence is exerted by the acoustic resonant field on the
large-scale vortex convection, as shown in figure 4.15. Consequently, these findings emphasise
and possibly explain the potential relationship between the convection speed of the coherent
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vortices (determined by their trajectory) and the Strouhal number of the cavity oscillation. These
factors are crucial when predicting the frequency of cavity oscillations using a semi-empirical
formula that requires an estimation of the averaged convection speed.
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FIGURE 4.14: The top row of the contour plots represents the spatial distribution of the mag-

nitude of the Fourier-transformed Q-Criterion, |Q(x, f )| , while the bottom row of the contour

plots showcases the spatial distribution of the time-averaged streamwise velocity. The inclina-

tions are shown in (a) @ = 90°, (b) ox = 60°, and (c) o0 = 30°, respectively. The trajectory of

the vortical structures is traced by monitoring the maximum value of |Q(x, f)| near the cavity

opening. The tracked trajectory is superimposed onto the time-averaged streamwise velocity
contour plot for visual comparison.
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FIGURE 4.15: The local variation of the convection speed of the coherent vortices calculated

using the streamwise phase variation of the Q-Criterion, ®y measured across the orthogonal

cavity opening in the streamwise direction at three different inclinations: o = 90° (a), @ =

60° (b), and o = 30° for M., = 0.3 at the respective peak frequency. The local convection

speed of the coherent vortices (—) is largely inconsistent with the respective time-averaged

streamwise velocity (----), particularly in the region of 0.2 < x < 0.8 before the impingement
on the downstream corner.
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4.4 Aeroacoustic sources and noise generations

Section 4.2 presented findings showing how the depthwise acoustic resonance in inclined cav-
ities primarily controls the synchronised deflection of the shear layer near the upstream corner.
This physical phenomenon enables the generation of vorticity that, when combined with reso-
nant acoustic fields, results in a dominant noise source according to the Vortex Sound Theory
(Howe, 2003). The relationship between vortex shedding and sound generation has been estab-
lished in the seminal work by Howe (1998). In particular, an essential aspect of this relationship
is the calculation of the instantaneous acoustic source power, I'I, which can be estimated using
the following approximation:

I~ —pm//x(wxu)-ua dx, (4.9)

where o is the vorticity vector and u, refers to the acoustic particle velocity vector. The triple-
dot product ((@ x u) - u,) provides quantitative insight into the local energy transfer between
the hydrodynamic and acoustic fields. Precisely, the integrand captures the transfer of acoustic
energy to hydrodynamic energy (e.g. (@ x u) - u, > 0) and vice-versa. Consequently, the self-
sustained oscillations can only occur if the integral in (4.9) yields a positive value throughout
an acoustic cycle. Therefore, this condition, in turn, necessitates a favourable phase relationship
between the Lamb vector, (w x u), and the acoustic field, u,. In the ensuing discussion, we
present the temporal evolution of the Lamb vector within the acoustic velocity to elucidate this
energy exchange mechanism.

Figure 4.16 shows the temporal evolution of the Lamb vector and the acoustic particle veloc-
ity field within the inclined cavity at an inclination angle of a = 30° in a single acoustic cycle.
Particularly, figure 4.16(a-b) illustrates the first half of the acoustic cycle, that is the acous-
tic absorption phase, during which the hydrodynamic instabilities in the shear layer absorb the
acoustic energy, resulting in the formation of a coherent vortex structure. Moreover, the residual
vorticity near the downstream corner, originating from the previous cycle, is observed to absorb
a non-negligible amount of acoustic energy. Subsequently, figure 4.16(c-d) depicts the second
half of the acoustic cycle, that is the acoustic production phase, wherein the generated vortic-
ity is now in-phase with the acoustic particle velocity field until its eventual ejection from the
cavity in the same direction as the acoustic particle velocity. Conversely, figure 4.17 shows the
respective acoustic production and absorption cycle in the oo = 60° inclined cavity, which shares
considerable similarities with the o¢ = 30° inclined cavity. However, two noticeable differences
can be identified between the two cases. Firstly, the vortex structure in the o = 60° inclined cav-
ity exhibits an enhanced spanwise coherence, contributing to a more significant Lamb vector.
Furthermore, the diminished residual vorticity near the downstream corner reduces the absorp-
tion of acoustic energy. Therefore, the greater coherence of vorticity and the decreased acoustic
absorption potentially explain the stronger acoustic response observed in the o = 60° inclined
cavity.

The preceding discussion based on Vortex Sound Theory provides an acceptable explanation
for the intensified acoustic response observed in the inclined cavity at an inclination of o = 60°.
To probe further into the intrinsic mechanism of noise generation within the cavity flow sys-
tem, an acoustic input-output analysis (as outlined in Subsection 2.4) is conducted. The central
aim is to establish a direct quantitative link between the Lamb vector and the magnitude of
the acoustic response by uncovering the corresponding amplification rates and forcing-response
mode shapes of the input-output operator of the APEs. Accordingly, figure 4.18 showcases the
first three leading amplification rates of the input-output operator across varying frequencies. It
is apparent that the first leading amplification rate significantly surpasses the second and third
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FIGURE 4.16: The time evolution of the Lamb vector (@ X u) in the vertical direction is exam-
ined for a single acoustic cycle for the a = 30° inclined cavity. The contour plots capture two
key time instants: (a) when the instantaneous acoustic source power, I, reaches its maximum,
and (c¢) when it reaches its minimum. The contour plots (b,d) indicate the time junctures when

the instantaneous acoustic source power becomes zero (e.g. II = 0). Here, the superimposed
streamline represents the instantaneous acoustic particle velocity field.

leading amplification rates at the tonal frequencies in all inclinations. This key observation
underscores the low-rank behaviour of the cavity oscillations investigated in this study. This
low-rank behaviour, therefore, enables a rank-1 approximation of the input-output operator of
APEs, wherein the first rank sufficiently describes the acoustic response of the cavity system,
such as:

Rq,w =UXV* = Zciuivi ~ O1Uv]. (4.10)

In this formulation, u; and v; represent the leading optimal forcing and response mode, while
o specifies the gain of the leading forcing-response pair. Thus, this facilitates a quantitative
link between the input forcing, f,,, (e.g. Lamb vector) and the corresponding output acoustic
field quantities, g, (e.g. acoustic pressure) which can be represented such as:

Go =Riof o~ O1u1vi - fo = 0111 Fy. 4.11)

Accordingly, figure 4.19 shows the spatial distribution of the magnitude of the reconstructed
acoustic pressure field for cavities with all inclinations, computed based on the first-rank ap-
proximation. Notably, the reconstructed acoustic pressure fields exhibit favourable agreements
with those directly obtained from the LES. This notable finding substantiates the assertion that
the first-rank reconstruction of the acoustic pressure field adequately reproduces the results ob-
tained for cavities with all inclinations from the present LES.
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FIGURE 4.17: The time evolution of the Lamb vector (@ X u) in the vertical direction is exam-

ined for a single acoustic cycle for the o = 60° inclined cavity. The contour plots capture two

key time instants: (a) when the instantaneous acoustic source power, I, reaches its maximum,

and (c) when it reaches its minimum. The contour plots (b,d) indicate the time junctures when

the instantaneous acoustic source power becomes zero (e.g. II = 0). Here, the superimposed
streamline represents the instantaneous acoustic particle velocity field.

Figure 4.20(a, b) compares the integrated volume forcing, Fy, and the leading gain, o7, from
the input-output operator of the APEs for cavities with all inclinations. Upon closer examina-
tion, we observe distinct characteristics that contribute to the variations in the acoustic response
among the cavity cases. Namely, the diminished acoustic response of the orthogonal cavity can
be attributed to two main factors: the reduced amplification of the leading gain and the pro-
nounced source-sink cancellation. Specifically, the reduced amplification of the leading gain
in the orthogonal cavity can be linked to the excitation of the third depthwise acoustic mode,
which is heavily damped. Furthermore, the pronounced source-sink cancellation observed in
the orthogonal cavity is primarily caused by the excitation of the second hydrodynamic mode.
In particular, this mode consists of multiple vortices that exhibit strong interactions between
the source and sink regions, leading to destructive interference and decreased integrated volume
forcing, as visualised in figure 4.21(a). Therefore, the acoustic response in the orthogonal cavity
is reduced.

In contrast, the inclined cavities exhibit stronger acoustic responses due to two crucial factors.
Firstly, the first least-damped depthwise acoustic mode in these inclined cavities has a higher
amplification rate than that of observed in the orthogonal cavity. Secondly, the inclined cavities
experience a reduced source-sink cancellation due to the weaker interaction between the source
and sink regions produced by the single large-scale vortex structure, as visualised in figure
4.21(b,c). The reduced source-sink cancellation enhances the integrated volume forcing and
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FIGURE 4.18: The low-rank behaviour of the input-output operator is visualised through the
first three leading magnification rates; ¢; (W), 6, (&), and o3 (®) for deep cavities with in-
clinations: o = 90° (a), @ = 60° (b), and a = 30° (c), respectively. The vertical dashed line
(- - -) indicates the tonal frequency observed in the LES, while the horizontal dashed line (- - -)
represents the corresponding leading amplification rate o at that particular tonal frequency.

produces a stronger acoustic response. These important factors produce the contrasting acoustic
responses between the orthogonal and inclined cavities, as shown in figure 4.20(c). In addition,
it is worth mentioning that the acoustic amplification rate at @ = 30° inclined cavity is much
higher, as shown in figure 4.18, which is stipulated to be associated with an efficient scattering
from the sharper downstream corner as compared to the orthogonal cavity configuration. This
may explain the observation of the comparable acoustic response of inclined cavities, despite the
fact that the tonal frequency peak observed in the LES differs from that of the acoustic resonance
frequency predicted by the APEs in o = 30° inclined cavity.

4.5 Stability, receptivity and sensitivity of cavity systems

In Section 4.4, the least-damped acoustic modes of the deep cavity geometries were identified
through the direct computation of the least unstable mode of the APEs. In this section, the
stability, receptivity, and sensitivity of the cavity systems are further investigated by performing
computations of the direct and adjoint instability modes using the linearised Navier-Stokes equa-
tions. Through this analysis, the mode shape of the instability is characterised, and the localised
region that is most receptive and sensitive to external forcings can be identified. Specifically,
bi-global linear stability analyses are conducted based on the time-averaged mean flow fields
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FIGURE 4.19: The first row of the contour plots shows the spatial distribution of the magnitude

of the reconstructed acoustic pressure field for cavities with inclinations: o = 30° (a), & = 60°

(b), and ox = 90° (c), respectively. The second row of line plots demonstrates that the depthwise

distribution of wall-pressure fluctuations measured along the upstream cavity wall from the

LES (—), compared favourably with the reconstructed acoustic pressure field from the rank-1
approximation of the APEs (- - -).
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FIGURE 4.20: (a) The magnitude of the integrated volume forcing, represented by |F @], and

(b) The first leading gain, denoted as o7, of the input-output operator of the APEs. (c) The

reconstructed acoustic response measured at the cavity base, |p/,pg|. is obtained from the 1-
rank approximation computed using equation (4.11).
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FIGURE 4.21: The spatial distribution of the real part of the component-wise multiplication

between the leading optimal forcing mode, v;, and the input forcing, f‘w, in the streamwise

direction (top row of the contour plots) and the vertical direction (bottom row of the contour

plots) for deep cavities with inclinations: o = 90° (a), a = 60° (b), and @ = 30° (¢), respec-

tively. Note that the phase of the cycle (as shown in the contour plots) is selected such that the

imaginary part of the integrated volume forcing is zero to accentuate the source-sink cancella-
tion effect.

obtained from the LES. Figure 4.22 presents the results of the bi-global linear stability analy-
sis, showing the frequency (real part) and growth rate (imaginary part) of the leading unstable
mode obtained from the eigenspace of the linear operator for inclined and deep cavities. The
comparison revealed that the frequency of the leading unstable mode closely matched the tonal
peak frequency observed in the LES for cavities with all inclinations. This suggests that the
aeroacoustic phenomena discussed in the previous sections can be attributed to unstable global
modes. Furthermore, we examined the spatial distribution of the amplitude of the direct modes,
represented as |p|, and compared them to those obtained from the LES. Remarkably, the results
exhibited a close resemblance, providing further support to the subsequent discussion presented
in this section.

Figure 4.23 shows the spatial distribution of the disturbance (direct eigenfunction) and the re-
ceptivity (adjoint eigenfunction) of the vertical momentum. It is observed that the amplification
of disturbances along the cavity opening captures the progressive strengthening of the vortex as
it convects downstream. In contrast, the receptivity of the vertical momentum is predominantly
localised near the upstream corner of the cavity. Physically, this adjoint global mode suggests
that the optimal region in space, where the acoustic forcing has the most substantial effect on
the dynamics of the unstable global mode, is located near the upstream separation corner. This
finding is consistent with the results of a study on a orthogonal deep cavity conducted by Boujo
et al. (2018).

However, the substantial spatial discrepancy between the direct and adjoint fields demon-
strates the non-normality of the linearised Navier-Stokes equations (Trefethen et al., 1993;
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FIGURE 4.22: The top row of the scatter plots shows the eigenspectra of the linearised Navier-

Stokes equations L(Q; = 0) for deep cavities with the inclinations: @ = 90° (a), ot = 60°

(), and o = 30° (c), respectively. The vertical dashed line (- - -) indicates the tonal frequency

observed in the LES. The bottom row of the contour plots presents the corresponding magnitude

of the pressure disturbance, |(p)|, which exhibits favourable agreement with those obtained
directly from the LES. Refer to figure 4.5 for the comparison.

Chomaz et al., 1991; Giannetti and Luchini, 2007). Consequently, analysing the instability pro-
cess that sustains the cavity oscillation based exclusively on stability and receptivity analyses is
inadequate. To address this limitation, we employ the concept of a stability core, analogous to
a “wake-maker”, which examines the spatial region where a modification can induce the most
significant change in the eigenvalue due to localised feedbacks (Giannetti and Luchini, 2007).
Specifically, we investigate the structural sensitivity of the eigenvalue, whereby the changes in
the frequency and growth rate of the eigenvalue of the global mode are determined by evaluating
the real and imaginary parts of the sensitivity tensor denoted as S, as discussed in subsection 2.3.

Accordingly, the stability core is identified by analysing the imaginary component of the
structural sensitivity tensor. The findings, illustrated in the top row of the contour plots in figure
4.24, show that the imaginary component of S by additional feedback associated with the stream-
wise momentum feedback is predominantly distributed near the upstream corner of the cavity
opening (e.g., x/ L = 0.2). This observation signifies that the application of positive streamwise
momentum feedback in this critical region has the potential to effectively destabilise the flow
(e.g., 0a; > 0). In contrast, the bottom row of the contour plots in figure 4.24 demonstrate that
introducing positive vertical momentum feedback to instigate flow instabilities is less effective
near the upstream corner of the cavity opening in all cavity cases. Therefore, the results suggest
that the instabilities are most effectively destabilised by the positive feedback of a streamwise
momentum at the localised region slightly downstream from the separation corner of the cavity.
This region represents the area where the flow is most susceptible to hydrodynamic instabilities,
providing a theoretical underpinning for previous successful efforts to suppress cavity oscilla-
tions using active or passive flow control near the upstream separation corner (III et al., 2008;
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FIGURE 4.23: The top row of the contour plots shows the magnitude of the vertical momentum

disturbance, |(pv)|, while the bottom row of the contour plots presents the vertical momentum

receptivity, |(pv) ™|, of the most unstable mode for deep cavities with the inclinations: @ = 90°

(a), ¢ = 60° (b), and o = 30°, respectively. The difference in spatial distribution between

the direct (disturbance) and adjoint (receptivity) modes highlights the non-normality of the
linearised Navier-Stokes equations.

Lawson and Barakos, 2011; Saddington et al., 2016).

However, an important question inspired by Rockwell and Naudascher (1978) remains unan-
swered: Can the unstable mode observed at specific Strouhal numbers in the current LES results
(e.g., St = 0.27 in inclined cavities and St ~ 0.85 in the orthogonal cavity) be self-sustained
solely through streamwise feedback via pseudo-sound (Ffowcs, 1969), without the presence of
the acoustic resonance? To address this question, we conducted structural sensitivity analyses
of pressure perturbations by overlapping the direct and adjoint pressure modes. Figure 4.25 re-
veals that the positive value of the imaginary component of S is predominantly distributed in the
interior of the cavity, thereby indicating that the pressure feedback is primarily associated with
the depthwise acoustic resonance. Therefore, this finding indicates that introducing a positive
acoustic pressure feedback in the interior of the cavity is important in destabilising the unsta-
ble mode. Similarly, it can also be suggested that the unstable mode may be stabilised if the
acoustic pressure feedback produced by the acoustic resonance is suppressed. This observation
indirectly emphasises the critical role of depthwise acoustic resonance in destabilising the flow
and enabling self-sustained oscillations in inclined and deep cavities. Therefore, it can be rea-
soned that the hydrodynamic feedback via pseudo-sound solely without the acoustic resonance
may be insufficient to sustain the unstable cavity modes observed in this study.
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FIGURE 4.24: The imaginary part of the structural sensitivity, S identifies the region of the
flow where introducing 8L perturbation by additional positive feedback associated with the
streamwise momentum feedback (first row of the contour plots), and the vertical momentum
feedback (second row of the contour plots) has the greatest destabilising effect on the deep
cavity flows with the inclinations: o = 90° (a), oc = 60° (b), and a = 30°, respectively.
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FIGURE 4.25: The imaginary part of the structural sensitivity, S identifies the region of the flow

where introducing §L perturbation by additional positive pressure feedback has the greatest

destabilising effect on the deep cavity flows with the inclinations: a = 90° (a), a = 60° (b),
and o = 30°, respectively.

4.6 The critical oscillation at St ~ (0.27

The preceding discussions thus far have focused on elucidating the aeroacoustics of cavity oscil-
lations, with limited attention given to the influence of incoming flow properties. To address this,
we utilise the insights gained from receptivity and sensitivity analyses to quantify the impact of
the acoustic forcing near the upstream corner of the cavity on the cavity oscillation frequency. In
particular, the impact of the acoustic forcing is quantified by evaluating the peak acoustic parti-
cle displacement resulting from the depthwise acoustic resonance, as expressed by the following



4.6. The critical oscillation at St ~ 0.27 77

equation:
_ Il

) = , 4.12
ot (4.12)

Here, |p| represents the magnitude of the Fourier-transformed pressure fluctuations measured
at the cavity bottom, while @ denotes the angular frequency corresponding to the tonal peak
frequency observed in the pressure spectra of the LES results. According to Bagwell (20006),
the occurrence of lock-in oscillation requires an acoustic particle displacement on the order of
the momentum thickness. To investigate the validity of this criterion, we conduct a comparative
study by contrasting our current LES results with prior experimental data on deep cavity flows.
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FIGURE 4.26: The scatter plot shows the ratio of acoustic particle displacement, denoted as
6,, calculated using equation (4.12), to the momentum thickness of the approaching boundary
layer, denoted as 0, measured at x = —0.2 at three distinct deep cavity flow regimes. The
symbols in the plot represent data from various studies: Yang et al. (2009) (&), Forestier et al.
(2003) (m), Ho and Kim (2021b) (@), as well as results obtained from current LES at M., = 0.2
(0©) and M., = 0.3 (@), respectively. The horizontal line in the scatter plot suggests the minimum
value of 6,/ 6 that is considered plausible for the intensified self-sustained resonance in deep
cavity flows at the frequency of St ~ 0.27.

Figure 4.26 presents the acoustic particle displacement to momentum thickness ratio at the
three distinct self-sustained resonance regimes. It is demonstrated that the self-sustained reso-
nance in the current orthogonal cavity case at M., = 0.3 closely resides at the third resonance
regime (e.g. St ~ 0.85), belonging to the second hydrodynamic mode and is characterised by a
relatively small acoustic particle displacement to momentum thickness ratio. Additionally, none
of the oscillations in the inclined cavities at M., = 0.3 was found to correspond to the second
interval (e.g., St ~ 0.385), which, as reported by Ho and Kim (2021b), is closely associated with
the first hydrodynamic mode. However, a prior investigation conducted on an orthogonal deep
cavity configuration by Yang et al. (2009) revealed an oscillation with a frequency of approx-
imately St ~ 0.27, remarkably coinciding with the frequency of the intensified self-sustained
resonances observed in our present inclined cavity flows. Furthermore, it was observed that this
self-sustained resonances necessitates an acoustic particle displacement to momentum thickness
ratio surpassing a minimum threshold of |6,|/6 > 3.28. Based on these observations with ex-
isting experimental evidence, we suggest that the amplified flow-acoustic resonances in inclined
cavities at St ~ 0.27 could be linked to a low-frequency extension of the first hydrodynamic
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mode (St ~ 0.385) through the enhanced shear layer undulation when the acoustic particle dis-
placement is comparable to the momentum thickness.

4.7 Summary

In conclusion, this chapter presented numerical investigations of flow-acoustic resonance in
inclined and deep cavities using wall-resolved large-eddy simulations. The study focused on
cavity configuration with an aspect ratio of D/L = 2.632 under three distinct inclination angles
(a =90°, 60°, and 30°) and at two different Mach numbers (M., = 0.2 and 0.3), amounting to
a total of six unique simulations. The initial finding of this study revealed distinct periodic os-
cillations in inclined cavities at both M., = 0.2 and M., = 0.3, providing strong evidence for the
intrinsic self-sustaining nature exhibited by flows within inclined and deep cavities. However,
despite their identical aspect ratio, the simulations demonstrated significant differences in the
flow behaviour between inclined and orthogonal cavities.

Initially, the power spectra analysis of wall-pressure fluctuations at M., = 0.2 revealed a pri-
mary resonance closely associated with the fundamental frequency (St ~ 0.385) for all inclina-
tion angles (o = 30°, 60°, and 90°). These frequencies are closely predicted by the Rossiter
formula, indicative of the oscillations are excited by the first Rossiter mode. However, the
self-sustained oscillations in inclined cavities at M., = 0.3 exhibited an entirely unexpected be-
haviour. Firstly, the strongest peak frequency shifted to a lower value of St = 0.27 in the inclined
cases (o = 30° and 60°), contrasting with existing flow-acoustic resonance theories. Secondly,
the inclined cavities at M., = 0.3 demonstrated a significant increase in the peak amplitude by
nearly 30dB stronger than the orthogonal cavity configuration. This observed amplitude even
surpassed that seen under what was previously deemed the “optimal” condition for orthogonal
cavity at M. = 0.2. Herein, the primary objective of this paper is to delve into the physical
mechanisms underlying these unexpected and pronounced acoustic responses from the inclined
cavities at M., = 0.3.

This study employed acoustic input-output and linear stability analyses to investigate the
mechanism of noise generation in inclined cavity flows. The acoustic input-output analysis re-
vealed that inclined cavities exhibited stronger acoustic responses due to the higher amplification
rate of the least-damped depthwise acoustic mode and the reduced source-sink cancellation. Fur-
thermore, the orthogonal cavity experienced an attenuated acoustic response primarily due to the
significant source-sink cancellation occurring in the second hydrodynamic mode and the lower
amplification rate resulting from the excitation of a heavily damped third acoustic mode. Fur-
thermore, linear stability analyses identified the most unstable mode within the cavity systems,
pinpointing the region slightly downstream of the separation corner as particularly susceptible
to hydrodynamic instabilities. Sensitivity analysis demonstrated that streamwise momentum
feedback effectively destabilised the flow near the upstream corner and confirmed the destabil-
ising influence of least-damped acoustic modes on flow-acoustic resonances. Based on these
observations with existing experimental evidence, we suggest that the amplified flow-acoustic
resonances in inclined cavities at St ~ 0.27 could be linked to a low-frequency extension of the
first hydrodynamic mode through the enhanced shear layer undulation when the acoustic particle
displacement is comparable to the momentum thickness.
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Chapter 5

Conclusions and future work

5.1 Summary of findings

The phenomenon of flow-acoustic resonance in inclined and deep cavity flows poses significant
challenges in various engineering applications due to its efficient conversion of hydrodynamic
and acoustic energy. This complex process involves the interaction of shear layers, which de-
velop near the upstream corner as a result of flow separation, with acoustic waves supported by
nearly-trapped acoustic modes within the deep cavities. As a result of this interplay, powerful
acoustic waves radiate into the far field, and local hydrodynamic fluctuations induce dynamic
loading, potentially leading to mechanical failures of nearby components. Therefore, minimiz-
ing the aerodynamic noise generated by this fluid-acoustic resonance is crucial, considering its
detrimental implications. Previous research on deep cavity flows has offered invaluable exper-
imental evidence, particularly regarding the lock-on phenomenon, a distinctive feature of deep
cavity flows. Although numerous experimental and numerical studies have been conducted, a
systematic study elucidating the noise generation and amplification mechanisms inherent in in-
clined and deep cavity turbulent flows is still lacking. To address this gap, this research offers a
comprehensive quantitative analysis of the aeroacoustics of inclined and deep cavity flows. For
this purpose, this research employed high-fidelity numerical simulations of the 3D compressible
Navier-Stokes equations with realistic turbulent inflows generated using wall-resolved precursor
channel simulations that compared favourably with existing DNS solutions. Through this ap-
proach, the study provided in-depth numerical investigations into the aeroacoustics of inclined
and deep cavity flows.

In the first part of the thesis, a comprehensive understanding of the aerodynamic noise gen-
eration mechanism in a deep cavity with an aspect ratio of D/L = 2.632 at Re.. = 174,594,
subjected to a turbulent boundary layer at a free stream velocity of M., = 0.2, has been achieved.
The study initially focused on pressure fluctuations around the cavity, which were decomposed
between hydrodynamic and acoustic components using Doak’s Momentum Potential Theory.
The analysis of the decomposed acoustic pressure fluctuations unveiled momentary changes in
the acoustic pressure within the cavity, synchronized with oscillations in the shear layer over
the cavity opening. Subsequently, the research delved deeper into elucidating the intricate cou-
pling mechanism between the separated shear layer oscillations near the upstream corner and the
acoustic resonance within the cavity. A significant emphasis was placed on discerning the ef-
ficient fluid-acoustic coupling process, where it was observed that vertical velocity fluctuations
were predominantly in-phase with the acoustic forcing near the upstream corner. Furthermore,
the study uncovered the potential origins of higher harmonics, resulting from the modulated
instability wave’ influenced by the acoustic forcing at the fundamental frequency. Convection
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speeds of coherent vortices were analyzed, leading to the proposal of a semi-empirical model
designed to predict the critical free stream velocity required for strong fluid-acoustic coupling
based on the inflow boundary-layer properties. In addition, the research delved into the influ-
ence of flow velocity on fluid-acoustic resonance in orthogonal and deep cavity. The investi-
gation revealed that self-sustained oscillations exhibited distinct acoustic responses at different
flow velocities, with the most pronounced amplification occurring at M., = 0.2. The results also
underscored the reduced amplification at speeds such as M., = 0.3, attributable to the excita-
tion of a highly-damped third depthwise acoustic mode. Conversely, in cases like M. = 0.1
and M., = 0.3, an attenuated acoustic response was explained by the predominant source-sink
cancellation of the second hydrodynamic mode. Contrarily, the optimal acoustic response at
M., = 0.2 was facilitated by the maximum amplification of the least-damped depthwise fun-
damental acoustic mode and reduced source-sink cancellation of the first hydrodynamic mode.
Lastly, this research highlighted the destabilizing impact of acoustic resonances in deep cavity
flows, as evidenced by the biglobal linear stability analysis.

In the second part of the thesis, a series of numerical investigations were performed to explore
flow-acoustic resonance within inclined and deep cavities. These investigations focused on in-
clined and deep cavities with a fixed aspect ratio of D/L. = 2.632. The study considered three
different inclination angles (o = 30°, 60°, and 90°) and two distinct Mach numbers (M. = 0.2
and 0.3). The six unique deep cavity simulations showed pronounced periodic oscillation at both
Mach numbers, highlighting the self-sustaining nature of flows in these cavity configurations.
Despite identical aspect ratios, significant flow behaviour disparities between inclined and or-
thogonal cavities emerged. Initially, the power spectra of wall-pressure fluctuation at M., = 0.2
showed a primary resonance at the fundamental frequency (St =~ 0.385) for all inclination an-
gles, aligning with the Rossiter formula prediction. However, inclined cavities at M., = 0.3
revealed totally unexpected behaviours. Firstly, the strongest peak frequency shifted to a lower
value of St = 0.27 in the inclined cases (@ = 30° and 60°). More strikingly, the inclined cav-
ities at M., = 0.3 demonstrated a significant increase in the peak amplitude by nearly 30dB
stronger than the orthogonal counterpart. This enhanced amplitude even surpassed that seen un-
der what was previously deemed the “optimal” condition at M., = 0.2. The study aimed to un-
ravel the underlying physical mechanisms responsible for these pronounced acoustic responses.
Utilizing acoustic input-output and linear stability analyses, it was revealed that inclined cav-
ities exhibited enhanced acoustic responses due to higher amplification rates of least-damped
depthwise acoustic modes and reduced source-sink cancellation of the hydrodynamic mode. In
contrast, the orthogonal cavity displayed an attenuated responses, primarily due to significant
source-sink cancellation of the second hydrodynamic mode and lower amplification rate from
exciting heavily damped third acoustic modes. Subsequently, the analysis identified the region
downstream of the separation corner as particularly susceptible to hydrodynamic instabilities.
Sensitivity analysis affirmed the destabilizing impact of least-damped acoustic modes on flow-
acoustic resonances and the destabilization of flows near upstream corners through streamwise
momentum feedback. Drawing upon these observations and existing experimental evidence, we
suggest that the amplified flow-acoustic resonances in inclined cavities at St ~ 0.27 are linked
to a low-frequency extension of the first hydrodynamic mode through the enhanced shear layer
undulation when the acoustic particle displacement is comparable to the momentum thickness.



5.2. Future work arising from this study 81

5.2 Future work arising from this study

This work offers a multitude of promising avenues for further exploration. The essence of this
thesis lies in investigating the fundamental physics of the aeroacoustics of deep cavity flows
through simplified rectangular deep and inclined cavity configurations. In particular, a com-
prehensive understanding of the underlying noise generation and amplification mechanisms in
simplified orthogonal and inclined deep cavity configurations at low subsonic flows is provided
in this thesis. However, it is essential to progress towards more realistic geometries that accu-
rately emulate practical situations. To this end, pursuing realistic configurations includes ex-
amining deep cylindrical cavity geometries with varying inclinations at transonic flow regimes.
Furthermore, the work presented here considers a periodic boundary condition in the spanwise
direction. It may be interesting to incorporate a viscous nonslip wall boundary condition in the
spanwise direction to understand better the spanwise wall effects on the formation and the coher-
ence of the vortical structures in deep cavity flows. Finally, the work presented here highlighted
the importance of the fluid-acoustic coupling process in the inclined and orthogonal deep cavity
flows. Therefore, future progress on active or passive flow control techniques with special at-
tention to the upstream corner and cavity floor to suppress coherent vortex formation before the
separation of the shear layer will be another promising avenue for further exploration.
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