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Perspectives on Wilson Loops in Strongly-Coupled Yang-Mills Theories

by Jack David Holden

Strongly-coupled Yang-Mills theories encompass many of the most intriguing open
problems in physics, including colour confinement, the internal structure of neutron
stars, and a full comprehension of gauge/gravity duality. We continue the research
programme, conducted over many decades, of exploring the physics of strongly
coupled gauge theories, giving special attention to the use of Wilson loops as probes
of the physics of gauge theories.

We examine in particular a newly-recognised phase of Yang-Mills theories known as
‘partial confinement’. This is postulated to appear in the crossover region of the
quark-gluon plasma and to take an important role in gauge/gravity duality.

We present evidence that flux tubes form in the confined sector of the partially
confined phase. This is the first direct evidence for any statement about the dynamics
of the partially confined phase.

We furthermore argue that the partially confined phase can be distinguished from the
totally confined and deconfined phases with the use of global symmetries. This
permits the first acknowledgement of the partially confined phase in SU(N) gauge
groups of finite N, and offers more prospects for understanding the physics of any
manifestation of the partially confined phase in quantum chromodynamics.

Finally, we employ the AdS/CFT correspondence to examine renormalization group
flows in strongly coupled gauge theories on spherical defects harbouring
hypermultiplets of Dirac fermions and their scalar superpartners. We find that these
defects flow in the infrared to line operators that we determine to be Wilson and
Wilson-’t Hooft loops. We thus find a new UV completion of Wilson-’t Hooft loops,
simultaneously discovering an interesting example of cross-dimensional
renormalisation group flows on defects. There is hope that our results can be adapted
to allow experimental realisation in spherical graphene and fullerenes.
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4.5.4 Constructing explicit flows . . . . . . . . . . . . . . . . . . . . . . 130

4.6 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5 Concluding remarks 133

References 135



vii

Declaration of Authorship

I declare that this thesis and the work presented in it is my own and has been
generated by me as the result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree
at this University;

2. Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been
clearly stated;

3. Where I have consulted the published work of others, this is always clearly
attributed;

4. Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed myself;

7. Parts of this work have been published as:

Signed:.......................................................................... Date:..................





ix

Acknowledgements

I would like to express my deep thanks to my supervisor, Andy O’Bannon, who
accommodated my unusual circumstances as a remote PhD student, patiently
explained many topics in physics, guided me through the postdoctoral application
process, and even listened to me practice talks on some evenings and weekends. I
would like to thank him for his encouragement when I was pursuing my own ideas,
for his willingness to entertain and discuss my musings, and for directing me to
relevant areas in the literature that I could not have found without him.

I am likewise very grateful to my ‘unofficial supervisor’, Masanori Hanada, with
whom I have enjoyed many long sessions discussing physics, often benefitting from
his unique perspective and approach. He has proposed many projects and introduced
me to the very interesting topic of partial deconfinement. He also greatly encouraged
me when pursuing my own investigations. I am moreover thankful for his social
dexterity and skill at introducing me to other physicists.

I express gratitude to my other collaborators, John Estes, Vaibhav Gautam, Diego
Gutiez, Carlos Hoyos, Matthew Knaggs, Matthew Lippert, Enrico Rinaldi, and Ronnie
Rogers, for their help in completing the work contained here. I am especially grateful
to Ronnie his assistance with the use of Mathematica, finding solutions to differential
equations, and formatting plots nicely.

I would like to thank my examiners, Nick Evans and Pavel Buividovich, for agreeing
to conduct my viva and for carefully reading through this manuscript.

I am grateful to my sisters, Amy and Charlotte, for their continual kindness towards
me and their faithful fulfilment of their sororal duties. I also thank Louis, my cat, for
spending more time by my side over the course of my PhD than anyone else, and for
his general research assistance. I regret that I must now work alone.

Finally, I must express extreme gratitude to my parents. They have made many
personal sacrifices to provide for me, in their home, an environment in which I can do
my work. They have also granted me companionship, great patience, and endless
support.





xi

To my parents





1

Chapter 1

Introduction

Quantum field theory (QFT) provides the best available framework for describing
elementary particles. A class of QFTs known as Yang-Mills theories have proben to be
the most successful QFTs at modelling nature. The Standard Model of particle physics
is composed of Yang-Mills theory of three components (more precisely, irreducible
representations), SU(3)× SU(2)× U(1). Moreover, some Yang-Mills theories are
believed to furnish a description of theories of quantum gravity via gauge/gravity
duality.

However, having accurate elementary descriptions in the form of these Yang-Mills
equations is not sufficient for understanding or performing computations on the
Standard Model or mathematical models of quantum gravity in all circumstances - in
particular, when the coupling of the gauge fields is large. The formation of nuclear
matter via the confinement of quarks, the internal structure of neutron stars, and a full
understanding of AdS/CFT are all enticing mysteries that remain unsolved, despite
good reasons to believe they are fully and accurately described on an elementary level
by particular Yang-Mills theories, due to the strong coupling of the respective theories.

Much work has been conducted over the last five decades to expand our
understanding of Yang-Mills theories at strong coupling. This thesis is an attempt to
further these efforts. We will employ an extensive set of techniques in an attempt to
make general inferences about a newly-recognised partially deconfined phase, thought
to be exhibited by gauge theories at strong coupling. We will argue for universal
properties concerning global symmetries and the dynamics of such a phase. This
could see direct application to the crossover region of quantum chromodynamics
(QCD) and promises to increase our understanding of the mapping of degree of
freedom under gauge/gravity duality. In addition, we will employ holographic
methods to explore renormalization group flows on spherical defects in
strongly-coupled gauge theories, finding that these defects flow to Wilson loops in the
infrared (IR). This could be utilised to understand graphene and fullerenes.
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1.1 Gauge theories and Wilson loops

Yang-Mills theories are a special instance of gauge theories, which are theories
constructed under the principle of gauge invariance. Gauge theories arise naturally
when attempting to construct a manifestly Lorentz-invariant Lagrangian in 3 + 1
dimensions for a massless spin 1 particle while satisfying unitarity [1]. However, even
before the notion of the ‘unitarity’ existed in physical models or the group-theoretic
approach of Wigner was realised, a simple example of a gauge theory was known from
Maxwell’s equations for electromagnetism, and closely analogous ideas appear in the
equations and Riemann manifold structure underlying General Relativity. Gauge
theories can be motivated by an attempt to generalise Maxwell theory of a photon to
allow for interactions between gauge bosons, or equivalently to gauge invariance
under more general symmetry groups. Generalising Maxwell theory seems a natural
candidate to search for new self-consistent theories that might describe nature.

Maxwell theory can be characterised as a theory in which the Lagrangian description
contains an apparent local U(1) symmetry. The group U(1) is the simplest version of a
class of continuous groups - more precisely, groups that are also manifolds - known as
Lie groups. To enable us to a construct a Lagrangian that is symmetric under more
general Lie groups, we seek a set of objects that transform covariantly under the
group.

Consider a field ϕ(x) that transforms in some representation of the gauge group as
ϕ(x) → h(x)ϕ(x), where h(x) is an element of the representation that varies smoothly
across spacetime. The derivative ∂µϕ(x) does not transform covariantly under the
group. This is for the same reason that an arbitrary separation ϕ(y)− ϕ(x) is not
invariant under the group transformation: it maps to h(y)ϕ(y)− h(x)ϕ(x), and thus
varies for different choices of the function h. To obtain a gauge invariant expression,
we introduce the Wilson line, W(x, y), with the defining property,

h(x)W(x, y)h(y)−1 (1.1)

Then, we can define W(x, y)ϕ(y)− ϕ(x), which transforms like ϕ(x) under an
arbitrary gauge transformation. We can use this to construct a derivative operator Dµ

that transforms covariantly,

Dµϕ(x) ≡ lim
δxµ→0

W(x, x + δx)ϕ(x + δx)− ϕ(x)
δxµ

(1.2)

which has the property,

Dµϕ(x) → h(x)Dµϕ(x). (1.3)
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Any Lie group element continuously connected to the identity can be expressed as

h = exp
{

i ∑ αaTa} (1.4)

for some real numbers α and generators of the group Ta. Since we want the
point-operator W(x, x) to act as the identity, we can express the Wilson line locally as,

W(x, x + δx) = 1 + igAa
µTa

R + O(δx2) (1.5)

for expansion parameter Aa
µ and the generators Ta

R in an appropriate Lie algebra
representation. Using (1.4) to expand h(x) = 1 + iαaTa, we see that (1.3) can be
satisfied if we assert that the field Aa

µ(x) transforms under gauge transformations as,

Aa
µ(x) → Aa

µ(x) +
1
g

∂µαa(x)− f abcαb(x)Ac
µ(x) (1.6)

for f abc structure constants of the Lie Algebra. Thus, we have obtained an expression
for a derivative object that transforms locally as a Lie Group representation.

From now on, we will often suppress Lie algebra indices and write the Lie-algebra
valued field defined by Aµ(x) = Aa

µ(x)Ta.

The expansion (1.5) can be extended to obtain a closed-form expression for the Wilson
line at finite separations of the endpoints,

WC(x, y) = P exp
{

ig
∫ y

x
Aµ(z)dzµ(C)

}
, (1.7)

where C is a particular path in spacetime along which we take the integration variable
z and P is the path-ordering operator, defined as sorting the operators in ascending
order of their position along the path C, analogous to the time ordering operator in
Dyson’s equation. This path ordering operator is required as the generators do not
commute. Note that expectation values of physical quantities such as
⟨ϕ(x)WC(x, y)ϕ(y)⟩ will depend on exactly which path C is chosen. We can construct a
gauge-invariant quantity by taking the path C to be a loop, WC(x, x), and tracing over
the gauge indices, thereby obtaining a Wilson loop. However, we want our theory to be
local, and would like to build a manifestly-local Lagrangian. Loops extended in
spacetime are not local. We can, though, imagine taking an infinitesimally small
Wilson loop, which we can obtain by Taylor expanding (1.7),

Wloop
∂Σ = 1 + ig

∮
∂Σ

Aµdxµ + O(g2) = 1 + ig
∫

Σ
Fµνdσµν + O(g2) (1.8)
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where we have used Stokes’ theorem to introduce the local field Fµν. Consistent with
the notion of a small loop, we can also obtain Fµν by taking,

Fµν =
i
g
[Dµ, Dν]. (1.9)

We can now write down gauge-invariant, Lorentz-invariant, manifestly-local
Lagrangians with kinetic terms for the gauge fields. The simplest is,

L = −1
4

Fa
µνFaµν (1.10)

with a denoting the Lie algebra index, and with an implied trace over all repeated
indices. If we choose the gauge group to be U(1), this reduces to Maxwell theory. For
more general gauge groups, we obtain a Yang-Mills theory. It is conventional to
describe operators that transform nontrivially under the gauge group as being charged
under colour, with the index a spanning colour ‘space’.

However, when we try to use this Lagrangian in a quantum theory, treating all degrees
of freedom as physical, we encounter an obstacle. Any field Aa

µ that can be written as
a gradient, Aa

µ = ∂µΛa(x, t), carries zero action or energy. This would mean that fields
of arbitrary frequency can be exchanged without any energetic cost [2]. Similarly, it
can be shown that the Green’s function for these fields are not single-valued [1]. To
circumvent such pathologies, we can impose the condition that field configuration
related by Aa

µ → Aa
µ + ∂µΛa(x, t) + · · · should be considered physically identical, i.e.

that local gauge transformations describe the same physical configuration. Thus,
when taking the path integral in the quantised theory, we do not integrate over
configurations that are equivalent under such local gauge transformations. The local
gauge ‘symmetry’ should therefore be considered a redundancy in our description of the
physical theory, rather than a physical symmetry itself.

To this basic theory, we can add matter. For example, consider

LQCD − 1
4

Fa
µνFaµν + ∑

q
χ̄

q
i

(
iγµ(Dµ)ij − δijmq

)
χ

q
j (1.11)

for the gauge group SU(3), with fermions χ and χ̄ in the fundamental and
anti-fundamental representations, Dirac matrices γµ, colour indices i and j running
from 1 to 3, and a summation over the six quark flavours indices q with quark masses
mq. The summation over the colour indices a, i and j is here implicit. This is the
Lagrangian for QCD.
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1.2 Thermal gauge theory

We rarely have total information about a physical system, and generally only control a
few variables in a macroscopic ensemble such as temperature, total energy, chemical
potential, or total charge. All physical measurements must then be statistical in nature.
We know that the statistical information of a system is encoded in the partition
function, which in quantum systems is,

Zthermal = Tr e−βH (1.12)

for inverse temperature β and Hamiltonian H, with the trace taken over a basis of
quantum states. It is possible to express this as a path integral. To do this, we start
with the path integral partition function of QFT,

Z =
∫ ϕ f ,χ f

ϕi ,χi

exp
{

i
∫ T

0
dt
∫

d3xL[ϕ, χ]

}
(1.13)

for total time T, bosonic fields ϕ, fermionic fields χ, Lagrangian L, and initial and final
field configurations ϕi, χi and ϕ f , χ f , respectively [3]. Taking this expression and
setting T → −iβ and ϕi = ϕ f , χi = −χ f

1 gives us a path integral expression of the
same form as Tr e−βH. This means that we can introduce a temperature 1/β to a QFT
by Wick rotating to Euclidean time and then compactifying this by compactifying onto
a circle of circumference β, with periodic boundary conditions for bosons and
antiperiodic boundary conditions for fermions.

We can easily add chemical potentials µi associated with U(1) charges Qi by
generalising to,

Z = Tr e−βH−∑i µiQi =
∫ ϕi ,−χi

ϕi ,χi

exp

{
−
∫ β

0
dτ
∫

d3xL[ϕ, χ]− ∑
i

µiQi

}
(1.14)

Many of the most important open questions in physics can be reduced to the challenge
of computing the integral on the right-hand side of this equation, and its derivatives in
β and µi, for particular theories in the strong coupling regime.

The expression (1.14) describes the statistical system in the grand canonical ensemble
since we control temperature and chemical potential. We can Legendre transform to
enter into alternative descriptions. Particularly relevant to us will be the
microcanonical ensemble, in which we fix total energy instead of temperature. This
can significantly affect what physical information we can probe. To understand this,

1The necessity of antiperiodic boundary conditions for fermions can be seen by expanding the expo-
nent in powers of Grassman numbers. Periodic boundary conditions would give use the graded trace,
Tr(−1)Fe−βH , for fermion number F, which does have utility in supersymmetric systems, as we will see
in Chapter 3.



6 Chapter 1. Introduction

look at Fig. 1.1. The curves show the free energy extrema at each value of the energy
and temperature. The dotted saddle has negative heat capacity and is therefore never
favoured when we fix temperature: either the upper or the lower saddle will always
be dominant. However, if we fix energy at some value between the phases denoted by
the two solid-lines, this dotted-line saddle can become stable and dominant. In other
words, it becomes the free energy minimum under the constraint of fixed energy. The
relevance of this to us will be transparent in Sec. 1.3.

FIGURE 1.1: Saddles for a first order phase transition in the canonical ensemble. In
the canonical ensemble, in which we fix temperature, the local mininma of the free
energy are the solid blue and red lines. A first order phase transition occurs when
the free energy of one of these minima becomes lower than that of the other. The
dashed orange line has negative heat capacity and must therefore be unstable. It is a
saddle point but not a local minimum of the free energy in the canonical ensemble.
In contrast, in the microcanonical ensemble, we fix energy. At energies between the
red and blue saddles, such as that denoted by the dotted black line, the dashed orange

saddle is now a local minimum of the free energy and can be stable and dominant.

1.3 Confinement and deconfinement

The phenomenon of confinement is the most salient feature and most interesting open
problem in Yang-Mills theories and QCD in particular. This is the statement that
colour-charged matter, such as individual quarks and gluons, cannot appear as
asymptotic states [4; 3; 5; 6; 7]. This is observed empirically by the fact that the
measured spectrum of QCD consists only of colour-neutral bound states, i.e. hadrons,
such as mesons and baryons, whereas isolated quarks or gluons are not observed.
However, the confined phase generally lies in the strong coupling, non-perturbative
regime of the theory, where an analytic understanding is not yet possible. Lattice
computations have confirmed that the property of confinement emerges from the
equations (1.9) and (1.11), but offer little explanation as to why it is happening, and
certainly no mathematical rigorous proof that it does so.
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The dynamical origin of confinement is universally acknowledged to be chromoelectric
flux tube formation [4; 3; 5]. This is most easily described in the case of a quark and its
anti-quark forming a meson. Quarks source the non-abelian analogue of electric flux,
known as chromoelectric flux, which obeys Gauss’ law. In the confined phase, this
chromolectric flux is concentrated into a thin tube that stretches between the
quark-antiquark pair. By Gauss’ Law, the tension of this flux tube cannot dissipate
along its length. Consequently, the total energy of the string grows linearly with its
length, i.e. the separation of the particles.

This simple picture of confinement by flux tube formation is confirmed by lattice
computations and rare examples of Yang-Mills theories for which confinement is
analytically tractable, such as Seiberg-Witten theory and the Polyakov model[8; 9]. Yet
there is no agreement about why these flux tubes form in pure Yang-Mills or QCD,
and, again, no mathematical proof.

In the deconfined phase, by contrast, quarks and gluons are liberated to move
somewhat independently over short differences, forming a plasma known as the
quark-gluon plasma (QGP). Understanding the transition between confined and
deconfined phases is of crucial importance for the physics of heavy ion collisions,
neutron stars, and the early universe. For example, the universe was dominated by
the QGP for some time microseconds after the Big Bang until the temperature lowered
enough for confinement of quarks into nuclear matter [10]. In pure Yang-Mills, this is
a first order transition. In QCD, it is commonly believed not to be a strict transition,
but rather a smooth crossover. This assumption will be reexamined in Sec.1.3

The confined phase can be distinguished from the deconfined phase in many ways.
For example, in the ’t Hooft limit of infinite number of colours N, the confined phase
typically has entropy of order N0, arising from glueballs and other gauge-singlet
degrees of freedom, while the deconfined phase typically has entropy of order N2,
arising from deconfined gluons and other adjoint degrees of freedom. Such behavior
is generic, appearing for example in the strongly-coupled large-N gauge theories of
holography [11], as well as weakly-coupled gauge theories on spatial spheres,
described by matrix models [12; 13], among others.

In pure Yang-Mills theory at zero temperature, we can also probe the potential
resulting from linear flux directly using the Wilson loops. A Wilson Loop in the
fundamental representation can be thought of as the trajectory of a nondynamical
quark taken around the designated path C. Inserting the Wilson loop allows us to
measure the potential between a probe quark and an anti-quark in a gauge invariant
and precise way [3]. To see this, consider taking C to be a rectangle in spacetime,
describing a quark-antiquark pair created at an instance of time, propagated through
time at fixed spatial location, and then annihilated. This can be described in the
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(Wick-rotated) Hamiltonian formalism as,

⟨W(C)⟩ = ⟨0|F(L)e−Hτ F(L)†|0⟩, (1.15)

where F(L) is the operator that annihilates a nondynamical (i.e. very massive)
quark-antiquark pair separated by a distance L. Consider now taking L → ∞ and
T → ∞. Since the Hamiltonian H measures the energy of the state, for a state with
linear confinement, we expect H ∼ V(L) ∼ σL, for some string tension σ, to become
the dominant contribution. Therefore, in the confining phase, we expect,

⟨W(C)⟩ ∼ e−στL = e−σA(C) (1.16)

i.e. the area A(C) of the loop C appears at leading order in the exponent of the
expectation value. This property holds for more general paths C, and hence this
signature of confinement is known as the area law. When the potential energy from
the quark-antiquark pair grows more slowly than the separation L, as in the
deconfined phase, we instead expect contributions local to the path to dominate,
yielding a perimeter law. Note that, at finite temperature, we cannot take the strict
T → ∞ limit, since the (Euclidean) time direction has the finite (anti-)periodicity β,
and hence this prescription becomes mathematically inexact.

This characterisation also cannot be extended to Yang-Mills theories with dynamical
matter in the fundamental representation, such as QCD. The linear flux between
quarks persists only for a finite separation of the quark-antiquark pair. When the
energy contained in the string is sufficient, additional quark-antiquark pairs can be
produced from the vacuum. The strict L → ∞ limit therefore cannot be taken.

In fact, the flux tubes can be broken whenever the symmetry under the centre of the
gauge group (the subgroup that commutes with all other elements in the group) is
explicitly broken, as achieved by the presence of dynamical quarks. The flux tube can
be considered as being protected by the centre symmetry; it is the unbroken centre
symmetry that prevents the tube from breaking and leads to the linear potential.
Similarly, deconfinement in pure Yang-Mills, or Yang-Mills with only adjoint matter, is
concomitant with the spontaneous breaking of centre symmetry, as this signifies the
ability of flux tubes to break down. Centre symmetry offers one of the most precise
and useful definitions of confinement, and is applicable at finite temperature. We will
therefore discuss it extensively, along with its order parameter, the Polyakov loop, in
the following subsection.
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1.3.1 Polyakov loop

The Polyakov loop is a fundamental-representation Wilson loop taken around the
thermal circle, which renders it topologically nontrivial. It can be expressed by,

P(x) =
1
N

TrP exp
{

ig
∫ β

0
dτAµ(x, τ)

}
(1.17)

where we have chosen to normalise by the N appearing in SU(N). The Polykov loop
is charged under the centre symmetry. In theories with a centre symmetry, its
expectation value, P ≡ ⟨P⟩, is zero in the confined phase and non-zero in the
deconfined phase. This can be argued as follows.

As a type of Wilson loop, the Polyakov loop can be thought of as inserting a quark
along the designated path, the temporal circle. We can therefore express the insertion
of a quark and antiquark, held at fixed point in space and separated by a distance L, by

⟨P(x)P†(x + L)⟩ ∼ e−V(L)β (1.18)

where the asymptotic identification with the exponential potential and inverse
temperaturefollows the same argument used to obtain (1.16). Now consider taking
L → ∞. By the cluster decomposition principle, the expectation value for the Polyakov
loop should factorise, yielding,

lim
L→∞

⟨P(x)P†(x + L)⟩ → |⟨P(x)⟩|2 (1.19)

Combined with (1.18), we deduce,

⟨P⟩ ∼ e−V(L)β/2 ∼ e−Fquark , (1.20)

where we have interpreted a single Polyakov loop as the insertion of an individual
quark with accompanying free energy Fquark. In a confining phase, with potential
between quarks linear in their separation, we expect V(L) → ∞, and thus ⟨P(x)⟩ → 0.
In a deconfined phase, by contrast, we expect V(L) to be finite even as L → ∞, and
thus ⟨P(x)⟩ should be finite and non-zero. This implies that the Polyakov loop is an
order parameter for confinement, zero when confining and non-zero when
deconfining. A Polyakov loop expectation value of zero indicates that the insertion of
an isolated quark would cost an infinite amount of free energy, Fquark → ∞.

As noted in Sec 1.2, as bosons, the gauge fields Aµ(x) must be periodic over the
compact thermal direction. A standard gauge transformation Ω(x, τ) has the property
of periodicity Ω(x, τ) = Ω(x, τ + β), which of course leaves the periodicity of gauge
fields intact. However, we can extend the notion of gauge transformations to include
improper gauge transformations. These have the property Ω̂(x, τ) = hΩ̂(x, τ + β), for
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FIGURE 1.2: Eigenvalues, ψi = exp{iαi}, of the gauge holonomies around the ther-
mal cricle, represented on the unit circle, in the classical or weak coupling limit. The
sum, ∑ ψi = ∑ exp(iαi) gives the Polyakov loop. (a) The confined phase, with centre-
symmetric distribution invariant under ψi → e(2πik/N)ψi, k ∈ Z, and vanishing
Polyakov loop expectation value, P = ∑ ψi = 0. (b) The partially confined phase. A
subset of the eigenvalues (blue) are uniformly distributed, corresponding to the con-
fined sector and not contributing to the value of P, while the other eigenvalues (red)
correspond to the deconfined sector and have no uniformly-distributed subsection.
P is non-zero. (c) The completely deconfined phase, with no uniformly-distributed
subset. P is non-zero. Outside of the semiclassical limit, we must also consider fluctu-

ations.

h an element in the centre of the gauge group. Gauge fields Aµ(x) retain periodicity
under this gauge transformation since the fields transform in the adjoint , and, by
definition, the centre is the kernel of the adjoint action. Since Ω̂(x, τ) still describes a
gauge transformation everywhere locally, all local operators are unaffected by this
improper gauge transformation. Likewise, topologically trivial Wilson lines transform
trivially under its action. However, the Polyakov loop does transform nontrivially
under the the improper gauge transformation Ω̂(x, τ).

To see this explicitly, perform the improper gauge transformation on the definition
(1.17),

P(x) → P′(x) = TrPΩ̂(x, τ) exp
{

ig
∫ β

0
dτAµ(x, τ)

}
Ω̂†(x, 0) (1.21)

= h TrPΩ(x, 0) exp
{

ig
∫ β

0
dτAµ(x, τ)

}
Ω†(x, 0) (1.22)

= hP(x) (1.23)

Therefore, the Polyakov loop transforms as P(x) → hP(x) under the centre symmetry.
We can gain more insight by diagonalising the holonomy and the central elements of
the gauge group. Any element of the centre of SU(N) can then be written as a complex
number multiplying the identity, e2πik/N1, for k ∈ Z. Meanwhile, the holonomy
eigenvalues ψi also consist of a set of complex numbers on the unit circle, which can be
written in terms of the phases αi ∈ [−π, π) via ψi = eiαi . We can obtain the Polyakov
loop from the eigenvalues of the holonomy by summation over all eigenvalues, ∑i eiαi .
The eigenvalues are gauge-invariant up to permutation of their labels.
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The centre symmetric configuration is invariant under the action of e2πik/N , and is
therefore uniformly distributed. In the semiclassical or weak coupling limit, such
configurations are depicted by the left panel of Fig. 1.2. (Beyond the semiclassical
limit, we must also average over fluctuations, but the essential understanding is the
same.) The action of the centre can be visualised as the rotation of the circle by the
angle e2πik/N . This configuration is clearly invariant under this operation, thus
demonstrating the symmetry. It is clear that the Polyakov loop expectation value
associated with this configuration, P = ∑N−1

i=0 eiαi , must vanish due to this symmetry.

In contrast, the deconfined phase is shown in the right panel of Fig. 1.2. There is no
symmetry under the action of the centre, or rotation of the circle, indicating that the
centre symmetry is broken. Concomitantly, the Polyakov loop P = ∑N−1

i=0 eiαi is
nonzero.

It is possible to have a configuration in which some eigenvalues are uniformly
distributed while the others are not part of any uniformly-distributed sector. This is
depicted in the central panel of Fig. 1.2. It suggests a phase that shares properties of
both the confined and the deconfined phase. The phase described by this
configuration will be the subject of the next section.

1.4 Partial deconfinement

In recent years, evidence has emerged that, quite generally in large-N gauge theories,
a partially-confined, or equivalently partially-deconfined, phase can appear between
the completely-confined and completely-deconfined
phases [14; 15; 16; 17; 18; 19; 20; 21]. More specifically, in SU(N) gauge theories at
large N a phase can appear in which only an SU(M) sub-sector deconfines, where as
the energy E increases, M increases from M = 0 to M = N, at which points the phase
connects to the completely-confined and completely-deconfined phases, respectively.
We will often simply refer to the partially deconfined phase as “the partial phase”, and
will continue to refer to the “completely-deconfined” and “completely-confined”
phases simply as “deconfined” and “confined”.

In the partial phase, confined and deconfined degrees of freedom coexist, similar to
the coexistence of liquid water and ice at water’s freezing temperature. However,
unlike water, in the partial phase the coexistence occurs in the “internal” colour space,
where interactions are non-local, and hence can lead to non-trivial T dependence.2 In
fact, the underlying physics is more similar to Bose-Einstein condensate (BEC), where
the confined and deconfined phases are like the superfluid and normal fluid phases,
respectively, and the partial phase is like a two-fluid phase of N bosons split between

2In QCD, the change of the ratio between the numbers of flavors and confined colour degrees of free-
dom can lead to a nontrivial T dependence, even in the free limit [18].
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N − M in the superfluid and M in the normal fluid. The similarity to a BEC can be
made precise, because a BEC can be treated in terms of gauge theory: the
indistinguishability of the N bosons means their permutation symmetry, SN , is
gauged [20].

Crucially, in the large-N limit, the partial phase can be characterised in a
gauge-invariant manner by making use of the Polyakov loop eigenvalues introduced
in Sec. 1.3.1. In the large-N limit these eigenvalues can be treated as a continuum, and
their distribution, ρ(ψ), provides precise definitions of the confined, partial, and
deconfined phases. Cartoons of ρ(ψ) in these three phases appear in Fig. 1.3 for gauge
group SU(N), where the eigenvalues are all complex phases distributed on
ψ ∈ [−π, π]. These correspond to the densities of the configurations depicted in
Fig. 1.2 taken to the continuum limit.

In the confined phase, shown in Fig. 1.3 (a), the distribution is uniform: ρ(ψ) = 1
2π

when properly normalised. Recall that the centre symmetry acts as a permutation of
the eigenvalues, which in Fig. 1.3 is a discrete translational symmetry acting
horizontally, so a constant ρ(ψ) preserves the centre symmetry. Correspondingly, the
Polyakov loop expectation value vanishes, P = 0, because upon taking the trace, all
the phases cancel one another. In the partial phase, shown in Fig. 1.3 (b), ρ(ψ) becomes
non-uniform, indicating spontaneous breaking of the centre symmetry, and
correspondingly, P ̸= 0. The distribution remains ungapped, however, meaning
eigenvalues appear for all possible values on the interval ψ ∈ [−π, π]. Crucially,
min [ρ(ψ)] = 1

2π

(
1 − M

N

)
provides a gauge-invariant definition of the size M of the

deconfined subsector [20]. In the deconfined phase, shown in Fig. 1.3 (c), the
distribution is non-uniform, so again centre symmetry is spontaneously broken and
P ̸= 0, but now the distribution is gapped, as some eigenvalues near −π and π

disappear.

The order of the transition from confined to deconfined phase depends on the detailed
dynamics of each particular gauge theory. The two logical possibilities are either first
order, or second order or higher, i.e. continuous. By extension, where the partial phase
appears in the thermodynamic phase diagram depends on detailed dynamics. For
each of the two logical possibilities, Fig. 1.4 shows cartoons of the Polyakov loop
expectation value as a function of T. In the first order case, depicted in Fig. 1.4 (a), the
partial phase is the thermodynamically unstable phase between the confined and
deconfined phases. In this case, in the free energy the partial phase is the local
maximum between two local minima, and the transition occurs when the local
minima exchange roles as the global minimum. In the continuous case, depicted in
Fig. 1.4 (b), the partial phase is a stable phase that connects the confined and
deconfined phases. The same theory can exhibit both cases depending on the details
of the parameters, such as quark mass. In either case, the partial phase connects to the
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Figure 6: [Top] The distribution of Wilson line phases, uniform (left), non-uniform but not
gapped (middle) and gapped (right). [Bottom] The counterparts in gravity side. Uniform
black string (left), non-uniform black string (middle) and black hole (right).

L

black hole

uniform 

black string

β=1/T

Figure 7: A cartoon picture of phase diagram of 2d maximal SYM on spatial circle. Lc ⇠
�1/3 at high temperature, Lc ⇠ �1/2 at low temperature.
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FIGURE 1.3: Schematic depictions of the eigenvalue distributions, ρ(ψ), of the path-
ordered exponential of the gauge holonomy around the thermal circle in a Euclidean
gauge theory, in the ’t Hooft large-N limit. We assume an SU(N) gauge group, so the
eigenvalues are complex phases distributed on ψ ∈ [−π, π]. For such theories with
a centre symmetry, ρ(ψ) provides a gauge-invariant way to distinguish three phases,
as follows. (a) The confined phase, in which ρ(ψ) is uniform, so the centre symmetry
is unbroken, and hence the Polyakov loop expectation value vanishes, P = 0. (b) The
partial phase, in which ρ(ψ) is non-uniform, so the centre symmetry is spontaneously
broken and P ̸= 0. However, ρ(ψ) is ungapped. (c) The deconfined phase, in which
ρ(ψ) is non-uniform, so again the centre symmetry is broken and P ̸= 0, but now ρ(ψ)
is gapped. (a) and (b) are separated by a Hagedorn transition, while (b) and (c) are

separated by a Gross-Witten-Wadia (GWW) transition.

confined phase via a Hagedorn transition3, characterised by an exponential growth of
the density of states when approaching the transition from the confined phase, and
connects to the deconfined phase via a Gross-Witten-Wadia (GWW) transition, a
transition defined by the appearance of the gap in ρ(ψ). The order of the GWW
transition depends on the details of the dynamics.4

The concept of partial phases was originally motivated by holography, to explain the
field theory dual to certain phase transitions in the bulk gravity theory [14; 24]. For
instance, the small black hole phase in global AdS5 is conjectured to be dual to a
partial phase in N = 4 SYM on S1 × S3. If this is the case, then the point at which the
specific heat of the AdS black hole phase becomes negative would be a GWW point.

Partial confinement might also be invoked to describe the thermodynamic behaviour
of the QGP in QCD. Lattice computations at zero charge density show that the is no
first or second order confinement/deconfinement transition in the QGP. Instead, there
appears to be a smooth crossover between the phases. It is plausible that this
‘crossover’ actually represents a partially confined phase, interpolating between the

3This is expected to be a generic statement for theories at large N. The Hagedorn transition indicates the
endpoint of the fully confined phase and the onset of the quark-gluon plasma phase, and therefore a phase
that shares at least some properties of the deconfined phase. The Hagedorn transition appears explicitly
between the confined phase and what we identify as the partially-deconfined phase in [12; 13] using
perturbative field theory calculations in N = 4 SYM. In theories with a holographic dual, at zero string
coupling, the Hagedorn transition manifests as strings with Hagedorn behaviour, typically connecting a
string gas phase (confinement) with a small black hole phase (in our interpretation, partial confinement).
Since the Hagedorn transition is a description pertaining strictly only to free strings, the definition loses
precision in theories at finite N, but is still a useful characterisation.

4The original example of the GWW transition [22; 23] was in two-dimensional lattice Yang-Mills theory,
and the transition was of third order.
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FIGURE 1.4: Schematic depiction of the Polyakov loop expectation value, P, as a func-
tion of temperature T for a confinement/deconfinement transition that is (a) first order
or (b) second order or higher, i.e. continuous. The blue, orange and red curves rep-
resent the confined, partial, and deconfined phases, respectively. Either situation is a
logical possibility, and are thought to be parametrically connected though quark num-

ber and mass.

confined and deconfined phases. If this is the case, we might expect that there is a
transition of third order or higher, which is a possibility that has not yet been
discounted. This interpretation of the crossover region could synthesise the
relationship between chiral symmetry breaking5 and deconfinement in the QGP,
which has been a longstanding mystery in physics. This will be explained in
Chapters 2 and 3.

1.5 Outline of this thesis

In this chapter, we have introduced the partially confined phase, which we expect to
appear as a generic feature of strongly-coupled gauge theories. Some natural
questions remain that we have been omitted from the discussion. This is because
direct evidence concerning their resolution was lacking prior to the work presented in
this thesis.

The first question concerns the dynamics of the partially confined phase. We have
discussed flux tube formation and linear confinement in the confined phase, and the
dissolution of flux tubes in the deconfined phase. How does flux tube formation
manifest in the partially confined phase, if at all? In Chapter 2, we will argue that the
colours of the gauge group can be separated into a confined and a deconfined sectors,
and that the confined sector exhibits linear confinement, implying flux tube formation
in this part of the gauge group. This could allow us to identify a signature of the
partially confined phase that could be measured in the QGP.

5The finite quark masses in QCD explicitly break chiral symmetry. By ‘chiral symmetry breaking’ here,
we refer to the theory in the limit of massless quarks. We then considering QCD as a perturbation of this
theory with messy remnants of the chiral symmetry breaking
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The second question concerns potential characterisations of the partially confined
phase in terms of global symmetries. We have described an order parameter to
distinguish between the confined and deconfined phases, namely the Polyakov loop.
However, we have not discussed whether any order parameter exists to distinguish
the partially confined phase. Moreover, the characterisation we have given in terms of
the distribution of the Polyakov loop eigenvalue distribution (which is not strictly
gauge invariant and thus not an order parameter) applies only at large N, and we
would like to extend the notion of partial confinement to finite N. These problems will
be addressed in Chapter 3.

We shift focus somewhat in Chapter 4. Employing the AdS/CFT correspondence, we
examine renormalization group flows on a class of 2 + 1-dimensional spherical defects
carrying hypermultiplets of Dirac fermions and their scalar superpartners in
strongly-coupled N = 4 SYM, finding that these flow to 0 + 1 dimensional Wilson-’t
Hooft loops in the infrared. We thus uncover a new ultraviolet completion of the
Wilson-’t Hooft loops, with hopes of applying our results to spherical graphene and
fullerenes. We speculate that these novel descriptions of Wilson loops could be
employed in gauge/gravity duality as probes to investigate the partially confined
phase.

Finally, we offer concluding remarks in Chapter 5.
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Chapter 2

Linear confinement in the
partially-deconfined phase

2.1 Introduction

A natural question proceeding from the discussion of partial confinement in the
introduction of this thesis concerns the dynamics of the the partially confined phase,
and specifically the nature of any linearly-confining flux tubes. Prior to the research
that is the focus of this chapter, only kinematic properties of the partially confined
phase had been explored, primarily based on the N-dependence of the free energy
and entropy. We expect, however, that another characterization of confinement — that
we cannot separate quarks without forming a color singlet — is valid for the confined
sector in the partially-deconfined phase as well. Up until now, there had been no direct
confirmation of this idea. In this chapter, we make solid progress regarding this point.

As a concrete example, we consider pure Yang-Mills theory, which for N ≥ 3 exhibits
a first-order confinement/deconfinement transition. There is a partially-deconfined
saddle separating two minima of the free energy (completely-confined phase and
completely-deconfined phase); see Fig. 2.1. Along this partially-deconfined saddle, the
size of the deconfined sector, M, varies, growing from zero near the completely
confined saddle to N near the completely deconfined saddle. Although this saddle is
thermodynamically unstable, it is connected to the stable saddle in QCD as N f

N or
quark mass are varied1 and we expect qualitative similarity between stable and
unstable saddles. In the string-condensation picture, only the SU(M) chromo-electric
strings are condensed. If we take a probe quark and antiquark from the deconfined
sector, then they can interact with condensed strings and should not have the
confinement potential. On the other hand, if we take probes from the confined sector,

1Pure Yang-Mills can be regarded as the heavy-quark-mass limit or N f
N → 0 limit.
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we expect the linear confinement potential, because there are no condensed strings in
this sector.

T

M

Completely deconfined

Completely confined

Partially confined

Partially deconfined

N

T

E/N2
Completely deconfined

Completely confined

Partially confined

Partially deconfined

T

P

Completely deconfined

Completely confined

Partially confined

Partially deconfined

1

FIGURE 2.1: Sketches of the temperature dependence of M, E
N2 and P for the

pure Yang-Mills theory. Blue, orange and red lines are completely-confined phase,
partially-deconfined saddle (equivalently, partially-confined saddle) and completely-
deconfined phase. The partially-deconfined saddle is the maximum of free energy at
fixed temperature. The size of the deconfined sector, M, varies along the partially-
deconfined saddle, growing from zero near the completely confined saddle to N
at the completely deconfined saddle. This is shown explicitly in the leftmost fig-
ure. See Ref. [16] for other examples including a thermodynamically stable partially-

deconfined phase.

We will test this statement by using a gauge fixing that separates confined and
deconfined sectors in a controlled manner. Specifically, we will consider the
strong-coupling lattice gauge theory at finite temperature and study the two-point
function of the Polyakov loop. There are several reasons we consider this theory. First
of all, partial deconfinement is a generic property of gauge theories with
confinement/deconfinement transition including this model. Secondly, we can use the
Eguchi-Kawai equivalence (large-N volume reduction) which makes our numerical
simulation tractable. Furthermore, for this particular setup, we can make a few
analytic predictions assuming the formation of the flux tube in the confined sector, and
we can confirm the prediction numerically. Recall from Sec. 1.3.1 that the Polyakov
loop two-point function decays exponentially in the completely-confined phase as

⟨TrP(x⃗) · TrP (⃗y)⟩ ∼ e−βσ|⃗x−y⃗|, (2.1)

where, again, β = T−1 is the inverse temperature and σ is the string tension. We will
perform a gauge fixing such that colors split into the confined and deconfined sectors,
respectively, and define the Polyakov loops in those sectors, TrPcon(x⃗) and TrPdec(x⃗).
Then, we show that TrPcon(x⃗) exhibits the exponential decay

⟨TrPcon(x⃗) · TrPcon(⃗y)⟩ ∼ e−βσ|⃗x−y⃗| (2.2)

with the same string tension σ. We also show that

⟨TrPcon(x⃗) · TrPdec(⃗y)⟩ ∼ e−βσ|⃗x−y⃗|. (2.3)
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We interpret the relations (2.2) and (2.3) as consequences of the formation of flux tubes
and linear confinement in the confined sector. For the strong-coupling lattice gauge
theory, we confirm these relations quantitatively, including the concrete value of the
string tension σ and the overall constant factor.

This chapter is organized as follows. In Sec. 2.2, we use the operator formalism to
explain partial deconfinement in the current setting. In Sec. 2.3, we define the lattice
action and set the simulation strategy. In Sec. 2.4, we determine the size of the
deconfined sector M at each simulation point by using the relation between M and the
phase distribution of the Polyakov loop [20]. In Sec. 2.5, we provide evidence of the
linear confinement potential in the confined sector of the partially-deconfined phase.
Theoretical considerations are provided in Sec. 2.5.1. Then, numerical evidence is
given in Sec. 2.5.2. We define the Wilson loop equivalent to the two-point function of
the Polyakov loop, and study it by using the Eguchi-Kawai equivalence in the large-N
limit.

2.2 Theoretical background

Hamiltonian formulation

The meaning of partial deconfinement in the context of this chapter is clearer if we
look directly at quantum states by working in the operator formalism. In this section,
we describe the partially-deconfined phase by using the Hamiltonian formulation by
Kogut and Susskind [25]. We consider the (3+1)-d Yang-Mills theory with U(N) gauge
group2. The adaptation of this theory to the path-integral formalism, as actually used
in our simulations, is described in Sec. 2.3. The purpose of this section is to explain
aspects of partial deconfinement using the string condensation picture [26; 27].

The Kogut-Susskind Hamiltonian consists of the electric and magnetic terms,

Ĥ = ĤE + ĤB. (2.4)

The electric part of the Hamiltonian becomes

ĤE =
1
2 ∑

n⃗

3

∑
µ=1

N2

∑
a=1

(
Êa

µ,⃗n

)2
. (2.5)

2In the central part of this chapter, we will be working in the large N limit. In this case, differences
in formulae and quantities between SU(N) and U(N)=U(1)× SU(N) differ only by terms suppressed by
1/N. However, many formulae can be written more compactly when using the U(N) gauge group, which
makes its use more convenient here and throughout this chapter.
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The magnetic term (plaquette) is dropped in the strong coupling limit [27]. The
commutation relations are

[
Û, Û

]
=
[
Û, Û†

]
=
[
Û†, Û†

]
= 0. (2.6)

[
Êa

µ,⃗n, Ûν,⃗n′
]
= δµνδ⃗n⃗n′τaÛν,⃗n′ ,

[
Êa

µ,⃗n, Û†
ν,⃗n′

]
= −δµνδ⃗n⃗n′Û†

ν,⃗n′τa, (2.7)

[
Êa

µ,⃗n, Êb
ν,⃗n′

]
= −i f abcδµνδ⃗n⃗n′ Êc

ν,⃗n′ , (2.8)

where f abc is the structure constant of U(N), and

N2

∑
a=1

τa
pqτa

rs =
δpsδqr

N
,

N2

∑
a=1

(τaτa)pq = δpq. (2.9)

The ground state of this string-coupling lattice gauge theory Hamiltonian |g.s.⟩
satisfies Êa

µ,⃗n|g.s.⟩ = 0 for any a, µ and n⃗. Hence, let us use the notation |E = 0⟩ to
denote the ground state.

The operator Ûµ,⃗n is interpreted as the coordinate of the group manifold U(N) for the
link variable on the site n⃗ in the µ-direction. The operators Û and Ê are defined on the
extended Hilbert space Hext that contains gauge non-singlet modes. A convenient
basis of Hext is the coordinate representation,

Hext = ⊗µ,⃗nHµ,⃗n ∼ ⊗µ,⃗n

(
⊕g∈U(N)|g⟩µ,⃗n

)
, (2.10)

where

Ûµ,⃗n|g⟩µ,⃗n = g|g⟩µ,⃗n g ∈ U(N). (2.11)

More precisely, we will consider only the Hilbert space of square-integrable wave
functions on U(N): Hµ,⃗n = L2(U(N)), where L2(U(N)) is the set of square-integrable
functions from U(N) to C. The ground state is the constant mode,

|E = 0⟩ = ⊗µ,⃗n|E = 0⟩µ,⃗n, |E = 0⟩µ,⃗n =
1√

volU(N)

∫
U(N)

dg|g⟩µ,⃗n. (2.12)

Namely, the wave function ⟨g|E = 0⟩ is constant.

Let G = ∏n⃗[U(N)]⃗n be the group of all local gauge transformations. Gauge
transformation by Ω̂ = ⊗n⃗Ω̂n⃗ is defined by

Ω̂
(
⊗µ,⃗n|g⟩µ,⃗n

)
= ⊗µ,⃗n

(
Ω̂n⃗|g⟩µ,⃗n

)
= ⊗µ,⃗n|Ωn⃗gΩ−1

n⃗ ⟩µ,⃗n. (2.13)
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Note that the ground state is gauge-invariant:

Ω̂|E = 0⟩ = |E = 0⟩. (2.14)

We can define the projection operator to the gauge-invariant Hilbert space Hinv as

π̂ =
1

VolG

∫
G

dΩΩ̂, (2.15)

where the integral is taken by using the Haar measure. By using this projection
operator, canonical partition function at temperature T can be written in two ways as

Z(T) = TrHinv

(
e−Ĥ/T

)
= TrHext

(
π̂e−Ĥ/T

)
. (2.16)

The latter expression is directly related to the path-integral formalism with gauge field
At, as shown in Appendix 2.C. The U(N)-element Ω corresponds to the Polyakov loop
in the path-integral formalism [20]. The insertion of π̂ means we should identify the
states connected by gauge transformation, as we identify field configurations
connected by gauge transformation in the classical theory. In other words, all states on
the gauge orbit are physically equivalent. This makes the meaning of ‘gauge fixing’ in
the extended Hilbert space clear: it selects a point from the gauge orbit, just as in the
path-integral formalism or even in the classical theory. In the SU(M)-deconfined
phase, we can take a gauge such that the upper-left M × M block is deconfined, as in
Fig. 2.2.

Strings and Interactions

A closed string is created by the Wilson loop Ŵ(closed)
C = Tr(Ûµ,n̂Ûν,n̂+µ̂ · · · ), where the

product of Û’s in the trace is taken along the closed path C. An open string is created
by the open Wilson line along an open path C′, denoted by Ŵ(open)

C′ , which is a product
of Û’s without trace. The closed string is gauge invariant.

Suppose that there is a closed loop without self-intersection (i.e. no link appears
twice). Then, the state |W(closed)

C ⟩ ≡ Ŵ(closed)
C |0⟩ is an energy eigenstate, and the energy

is L
2 , where L is the length of the loop (i.e., the number of links consisting the loop).

This can be seen as follows. Firstly, note that

∑
a

(
Êa

µ,⃗n

)2
Ŵ(closed)

C |E = 0⟩ = ∑
a

[
Êa

µ,⃗n,
[

Êa
µ,⃗n, Ŵ(closed)

C

]]
|E = 0⟩. (2.17)
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Êa
µ,⃗n commutes with Ŵ(closed)

C unless the latter contains Ûµ,⃗n or Û†
µ,⃗n. When Ûµ,⃗n is

contained,

∑
a

[
Êa

µ,⃗n,
[

Êa
µ,⃗n, Ŵ(closed)

C

]]
|E = 0⟩ = ∑

a
Tr
([

Êa
µ,⃗n,
[

Êa
µ,⃗n, Ûµ,n̂

]]
Ûν,n̂+µ̂ · · ·

)
|E = 0⟩

= ∑
a

Tr
(
τaτaÛµ,n̂Ûν,n̂+µ̂ · · ·

)
|E = 0⟩

= C(2)
R Tr

(
Ûµ,n̂Ûν,n̂+µ̂ · · ·

)
|E = 0⟩

= C(2)
R Ŵ(closed)

C |E = 0⟩, (2.18)

where C(2)
R ≡ ∑a τaτa is the quadratic Casimir operator. For U(N), we have C(2)

R = 1,
which we will assume from now on. The above equation holds also when Û†

µ,n̂ is

contained. Therefore, ĤE|W(closed)
C ⟩ = L

2 |W
(closed)
C ⟩. The same holds for any

multi-string states, including closed or open strings, as long as there is no intersection.

Next, suppose a link Ûµ,⃗n appears twice in the loop, while other links appear only
once. Let us write such a loop as Tr(V̂1Ûµ,⃗nV̂2Ûµ,⃗n). Then,

∑
a

[
Êa

µ,⃗n,
[

Êa
µ,⃗n, Tr(V̂1Ûµ,⃗nV̂2Ûµ,⃗n)

]]
|E = 0⟩

= 2Tr(V̂1Ûµ,⃗nV̂2Ûµ,⃗n)|E = 0⟩+ 2 ∑
a

Tr(V̂1[Êa
µ,⃗n, Ûµ,⃗n]V̂2[Êa

µ,⃗n, Ûµ,⃗n])|E = 0⟩

= 2Tr(V̂1Ûµ,⃗nV̂2Ûµ,⃗n)|E = 0⟩+ 2 ∑
a

Tr(V̂1τaÛµ,⃗nV̂2τaÛµ,⃗n)|E = 0⟩

= 2Tr(V̂1Ûµ,⃗nV̂2Ûµ,⃗n)|E = 0⟩+ 2
N

Tr(V̂1Ûµ,⃗n)Tr(V̂2Ûµ,⃗n)|E = 0⟩. (2.19)

Therefore,

ĤE
(
Tr(V̂1Ûµ,⃗nV̂2Ûµ,⃗n)|E = 0⟩

)
=

L
2

Tr(V̂1Ûµ,⃗nV̂2Ûµ,⃗n)|E = 0⟩+ 1
N

Tr(V̂1Ûµ,⃗n)Tr(V̂2Ûµ,⃗n)|E = 0⟩. (2.20)

The second term can be understood as the splitting of a string into two strings. In the
same manner, we can show that two strings can be joined to form one string at an
intersection,

ĤE
(
Tr(V̂1Ûµ,⃗n)Tr(V̂2Ûµ,⃗n)|E = 0⟩

)
=

L
2

Tr(V̂1Ûµ,⃗n)Tr(V̂2Ûµ,⃗n)|E = 0⟩+ 1
N

Tr(V̂1Ûµ,⃗nV̂2Ûµ,⃗n)|E = 0⟩. (2.21)

In general, such splitting and joining can take place at any intersection.
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Confinement

Let us consider low-energy gauge-invariant states consisting of a small number of
closed strings with total length L ∼ N0. Then, there is at most order N0 number of
intersections. The interaction (splitting or joining) at each intersection is suppressed
by 1

N , and hence the interaction is negligible at large N. The energy of the system is
simply L

2 . Such states are in the confined phase.

If we introduce a probe quark-antiquark pair connected by the open Wilson line, the
energy increases linearly as Eqq̄ =

L
2 . This leads to the linear confinement potential.

Deconfinement and string condensation

In the deconfined phase [26; 27], long strings with length of order N2 condense.
There are many intersections, and thus the 1/N-suppressed interactions
accompanying each intersection pile up and become non-negligible as a whole.
Intuitively, if we introduce a short open string, it interacts with a condensed long
string and forms a long open string, which allows us to separate quark and antiquark
without making the string longer.

Partial deconfinement

Let Ûdec be the SU(M)-subsector. The SU(M)-deconfined states can be constructed
by acting with long traces of Ûdec’s on |E = 0⟩ [17].3 By using the Wilson loops
restricted to the SU(M)-subsector

Ŵdec,C = TrSU(M)(Ûdec;µ,⃗nÛdec;ν,⃗n+µ̂ · · · ), (2.22)

we can construct multi-string states

Ŵdec,CŴdec,C′ · · · |E = 0⟩, (2.23)

and then we can take a linear combination of such states. Such states are
SU(M)-invariant, but not SU(N)-invariant. If we want to get an SU(N)-invariant state,
we can act with the projector π̂. We write the projection operator π̂ explicitly as

Z(T) =
1

Vol(G)

∫
G

dΩTrHext

(
Ω̂e−Ĥ/T

)
. (2.24)

Let Ûcon be the other N2 − M2 elements. Operators that consist of a number
L ∼ O(N0) of Ûcon’s increase the energy by L

2 . They cannot be joined to the condensed

3See Refs. [24; 28; 29] for more general characterization.
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strings. The energy eigenstate remains an energy eigenstate. Naturally, we expect that
the color flux in the confined sector forms a flux tube and exhibits the linear potential
Eqq̄ =

L
2 while the deconfined sector does not. We will discuss this later, together with

numerical results.

2.3 Methods

We will perform our simulations on a lattice-discretized model of U(N) Yang-Mills
theory. Our simulations will involve constraining specific quantities so that we can
remain in the partially-deconfined phase, and also so that we can separate the
confined and deconfined sectors. Specifically, we use the Eguchi-Kawai model, which
is equivalent to U(N) Yang-Mills theory in the large-N limit. The introduction of the
constraints amounts to the study of the microcanonical ensemble rather than canonical
ensemble, plus gauge fixing. Simulations of lattice gauge theories in the
microcanonical ensemble (where the energy is fixed, instead of the temperature) [30]
play a very important role in the numerical study of phase transitions [31].

2.3.1 The lattice regularization

2.3.1.1 Path-integral formulation

To set up our lattice model, we will begin with the path integral formulation. We
consider Yang-Mills theory on a d-dimensional spatial lattice with continuous time t.
We will focus on d = 3. Let n⃗ be the spatial points labeled by d integers, and Uµ,⃗n(t) be
the U(N) link variable on the link connecting n⃗ and n⃗ + µ̂. Here, µ̂ is the unit vector
along the µ-direction. The gauge transformation is defined by

Uµ,⃗n(t) → Λ−1
n⃗ (t)Uµ,⃗n(t)Λn⃗+µ̂(t). (2.25)

Here Λn⃗(t) and Λn⃗+µ̂(t) are N × N unitary matrices that describe the local gauge
transformation at points n⃗ and n⃗ + µ̂, respectively. We introduce a gauge field An⃗(t)
that transforms as

An⃗(t) → Λ−1
n⃗ (t)An⃗(t)Λn⃗(t) + iΛ−1

n⃗ (t)∂tΛn⃗(t). (2.26)

The covariant derivative DtUµ,⃗n, which transform as DtUµ,⃗n → Λ−1
n⃗ (DtUµ,⃗n)Λn⃗+µ̂, is

defined by

DtUµ,⃗n = ∂tUµ,⃗n − iAn⃗Uµ,⃗n + iUµ,⃗n An⃗+µ̂. (2.27)



2.3. Methods 25

We will work in the strong coupling limit, by which we mean that the action contains
only the electric term and not the magnetic term 4. Hence the Euclidean action at
temperature T = β−1 is5

S =
1

2g2 ∑
n⃗

∫ β

0
dtTr

(
(DtUµ,⃗n(t))(DtUµ,⃗n(t))†

)
. (2.28)

The operator Ω̂ in (2.24) corresponds to the Polyakov loop in the path-integral
formalism [20] (see Appendix 2.C). In the large-N limit, the distribution of the phases
of the Polyakov loop is related to the symmetry of the typical quantum states
dominating the partition function. The size of the deconfined sector M can be
determined from the distribution of the phases [20], as explained in Sec. 2.4.

2.3.1.2 Eguchi-Kawai reduction

In the large-N limit, some features of the strong-coupling lattice gauge theory do
not depend on the lattice size. Therefore, we can use the single-site model, which is
called the Eguchi-Kawai model, to learn about the infinite-volume theory. We use
conventions close to those in Ref. [32].

In the Eguchi-Kawai model, we have only one spatial point, so we drop n⃗ from the
expressions for the strong-coupling lattice gauge theory. We will employ the gauge
field A and unitary link variables Uµ, both of which are function of (Euclidean) time t.
The gauge transformation is defined by

Uµ → Λ−1UµΛ (2.29)

and

A → Λ−1AΛ + iΛ−1∂tΛ. (2.30)

The covariant derivative DtUµ, which transform as DtUµ → Λ−1(DtUµ)Λ, is defined
by

DtUµ = ∂tUµ − i[A, Uµ]. (2.31)

The Euclidean action is

S =
1

2g2

∫ β

0
dtTr(DtUµ)

2. (2.32)

4Empirically, many of the features of the lattice theory and confinement are the same in this strong
coupling limit as the continuum theory, which justifies this approach.

5We use the same symbol S for the action and entropy, assuming the risk of confusion is low.
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This action is invariant under the global (i.e. t-independent) U(1)d center symmetry
generated by

Uµ → eiθµUµ. (2.33)

As long as this symmetry is unbroken, the Eguchi-Kawai model and infinite-volume
lattice are equivalent, in the sense that various properly-normalized quantities agree.
This is the so-called Eguchi-Kawai equivalence [33].6

In the strong coupling limit, the center symmetry is not spontaneously broken. To
confirm this in our simulations as a sanity check, we calculated the Wilson loop
wrapped on the spatial direction,

1
Nntd

∑
µ,d

|TrUµ,t|. (2.34)

If the center symmetry is not broken, this quantity should be zero up to
1/N-suppressed terms. Our simulations affirmed this.

2.3.1.3 Gauge fixing

To make the separation to confined and deconfined phases easier, we take the
static diagonal gauge (used in Ref. [21] for the same purpose),

A =
1
β
· diag(α1, · · · , αN), −π < αi ≤ π. (2.35)

Associated with this gauge fixing, we add the Faddeev-Popov term

SF.P. = −∑
i<j

2 log
∣∣∣∣sin

(
αi − αj

2

)∣∣∣∣ (2.36)

to the action. This fixes SU(N) down to SN . In Sec. 2.3.2, we explain how the confined
and deconfined phases can be separated by fixing the residual SN symmetry
appropriately.

6In the original work by Eguchi and Kawai, all dimensions including time are reduced to a point. In
most references, ‘Eguchi-Kawai model’ and ‘Eguchi-Kawai equivalence’ are used for the original setup.
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2.3.1.4 Lattice regularization for the time dimension

Finally, we place this theory on the lattice in the time direction, too, with the below
action:

S =
N
2a

d

∑
µ=1

nt

∑
t=1

Tr
(

1N − Uµ,tVU†
µ,t+1V†

)
+ h.c. + SF.P., (2.37)

where V = diag(eiα1/nt , · · · , eiαN/nt). Here a is the lattice spacing, and β = ant is the
inverse temperature, β = T−1. This is the lattice action we use in our simulations. We
will focus on d = 3. (We will make one more alteration by adding terms that constrain
the Polyakov loop; see Sec. 2.3.2.)

2.3.2 Polyakov loop and constrained simulations

The Polyakov loop under the gauge fixing described above is P = 1
N TrP , where

P = diag(eiα1 , · · · , eiαN ). (2.38)

This is the quantity we will measure in the standard (unconstrained) simulation. In
addition, we will run two kinds of constrained simulation that make use of this
definition of the Polyakov loop.

2.3.2.1 The microcanonical ensemble and constrained simulation of the first kind

Via the Euclidean path integral, we can study the thermodynamic properties of a
theory in the canonical ensemble, in which temperature T is the controlling parameter.
If the confinement/deconfinement phase transition is of first order, however, it is more
convenient to study the microcanonical ensemble, in which the energy E is the
controlling parameter [34] .

In canonical thermodynamics, temperature is fixed and free energy is minimized. In
microcanonical thermodynamics, energy is fixed and entropy is maximized. Usually,
the partially-deconfined phase is unstable in the canonical ensemble, but can be stable
in the microcanonical ensemble. If the spatial volume is large and the transition is of
first order, the partially-deconfined phase will be unstable even in the microcanonical
ensemble. Some part of space is occupied by the completely-deconfined phase while
the rest is filled by the completely-confined phase, and the partially-deconfined phase
is realized only at the interface of these two phases. When the spatial volume is small,
such a spatial splitting can be avoided. This is sometime exemplified by gauge
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theories compactified on a sphere. For matrix models, including the Eguchi-Kawai
model, spatial splitting cannot take place because ‘space’ is just a single point. The
large-N volume independence connects the partially-deconfined phase in the
Eguchi-Kawai, which is microcanonically stable, to the partially-deconfined phase of
large-volume theory which is not stable even in microcanonical thermodynamics. The
Polyakov loop P increases monotonically with E (Fig. 2.1). Hence, by fixing P we also
fix E and can access the information of the microcanonical ensemble .

In general, using the Hamiltonian to define and fix the energy of quantum ensembles
leads to difficulties and ambiguities due to quantum fluctuations. Here, however, we
are in the large N limit, and can hence neglect such fluctuations. Instead, we have
argued that, in the thermodynamic limit, fixing some macroscopic variable (in this
case, the Polyakov loop) should amount to fixing the energy of the system (modulo
difficulties that can follow from the energy being multi-valued with respect to this
variable, which need not trouble us here due to the aforementioned monotonicity of
the Polyakov loop). The work presented in this chapter does not depend on the
precise meaning of energy in this system.

For the first constrained simulation, we add the following term to fix the Polyakov
loop:

∆S =


gP
2 (|P| − (Pfix + δ))2 (|P| > Pfix + δ)

0 (Pfix − δ ≤ |P| ≤ Pfix + δ)
gP
2 (|P| − (Pfix − δ))2 (|P| < Pfix − δ)

(2.39)

We take gP sufficiently large, so that the value of |P| is fixed to a small window
Pfix − δ ≤ |P| ≤ Pfix + δ. The purpose of this constraint is to probe the
partially-confined saddle, which is otherwise unstable in the canonical ensemble.
Essentially, we use the density-of-state method by fixing P, and hence E. The size of
the deconfined sector SU(M) will depend on our choice of |P|. The precise relation is
explained in Sec. 2.4. Note that the constraint term (2.39) does not require a specific
gauge choice (although we took the static diagonal gauge) and hence we can extract
information from the microcanonical thermodynamics in a gauge-invariant manner.

2.3.2.2 Fixing of residual gauge symmetry and constrained simulation of the
second kind

For the second kind of constrained simulation, we want to take this
SU(M)-partially-deconfined phase and separate the confined and the deconfined
degrees of freedom. As we will explain in Sec. 2.4, this can be achieved by, firstly,
taking the static diagonal gauge, and then fixing the remaining SN gauge redundancy
down to SM×SN−M by reordering the eigenvalues such that the N − M confined
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eigenvalues αM+1, · · · , αN constitute a uniform distribution. With this gauge fixing,
we separate N2 color degrees of freedom into the deconfined sector (M × M upper-left
block) and the confined sector, as depicted in Fig. 2.2 [21].

FIGURE 2.2: In the partially-deconfined phase (equivalently, partially-confined phase),
color degrees of freedom split into the confined and deconfined sectors. In this paper,

we use M to denote the size of the deconfined sector.

The most obvious approach to fixing SN in this way is, after having performed the
constrained simulation of first kind, to sort the resulting α’s appropriately. Here, we
take another approach which is technically simpler. We define

Pdec =
1
M

M

∑
j=1

eiαj (2.40)

and

Pcon =
1

N − M

N

∑
j=M+1

eiαj . (2.41)

We want to fix Pdec and Pcon to be Pfix and 0, respectively. Hence we will add

∆Sdec =


gP
2 (|Pdec| − (Pfix + δ))2 (|Pdec| > Pfix + δ)

0 (Pfix − δ ≤ |Pdec| ≤ Pfix + δ)
gP
2 (|Pdec| − (Pfix − δ))2 (|Pdec| < Pfix − δ)

(2.42)

and

∆Scon =

{
gP
2 (|Pcon| − δ)2 (|Pcon| > δ)

0 (|Pcon| ≤ δ),
(2.43)

taking gP sufficiently large. Fixing P = M
N Pdec +

N−M
N Pcon ensures we are on the

partially-confined saddle, while fixing Pcon to zero and Pdec to nonzero enforces the
gauge fixing. Note that Pcon = 0 does not necessarily guarantee the uniform phase
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distribution in the confined sector unless the relationship between M and Pfix is set
correctly following the procedures explained in Sec. 2.4. With the correct choice of M
and Pfix, this constraint is equivalent to the constraint of the first kind plus
permutations of phases. Some explicit checks are provided in Appendix 2.A.

2.4 The size of the deconfined sector in the
partially-deconfined phase

In this section, we explain how we can separate confined and deconfined sectors. The
starting point is the relationship between the operator formalism and the path-integral
formalism discussed in Appendix 2.C.

The canonical partition function is written as (2.24). Let us write the expression again:

Z(T) =
1

Vol(G)

∫
G

dΩTrHext

(
Ω̂e−Ĥ/T

)
. (2.44)

For the microcanonical ensemble, we can obtain a similar expression for the density of
states by inserting the projection operator π̂ = 1

Vol(G)

∫
G dΩΩ̂. As explained in

Appendix 2.C, this Ω corresponds to the Polyakov loop in the path-integral
formalism [20].

An energy eigenstate |E⟩ ∈ Hext contributes to the partition function as

e−E/T

Vol(G)

∫
G

dΩ ⟨E| Ω̂ |E⟩ . (2.45)

The SU(M)-partially-deconfined states are characterized by invariance under
SU(N − M) ⊂ SU(N) [20]. Namely,

Ω̂ |E⟩ = |E⟩ , Ω ∈ SU(N − M) ⊂ SU(N) (2.46)

for SU(M)-deconfined states. Specifically, by choosing the SU(N − M) to correspond
to the lower-right (N − M)× (N − M)-block, we can choose the SU(M)-deconfined
sector to be the upper-left M × M-block as in Fig. 2.2. This choice of embedding of
SU(N − M) into SU(N) fixes SU(N) down to SU(M)× SU(N − M). Ω takes the
following form:

Ω =

(
Pdec 0

0 Pcon

)
. (2.47)

Here, Pcon can be any element of SU(N − M), and the generic phase distribution in
this part is uniform in the limit of N − M → ∞. The phases of Pdec and Pcon are
α1, · · · , αM and αM+1, · · · , αN , respectively. From these, we can determine the
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distribution of the phases ρdec(α) and ρcon(α). The latter is constant,

ρcon(α) =
1

2π
, (2.48)

while the former is not and its smallest value is zero. For the model under
consideration, we can fix center symmetry in such a way that

ρdec(±π) = 0 . (2.49)

The full distribution is

ρ(α) =

(
1 − M

N

)
· ρcon(α) +

M
N

· ρdec(α)

=
1

2π
·
(

1 − M
N

)
+

M
N

· ρdec(α) . (2.50)

See Fig. 2.3. Constrained simulation of the second kind enforces this separation by
constraining Pdec to be the appropriate value for each M and setting Pcon to be zero. In
the large-N limit, this is equivalent to the constrained simulation of the first kind plus
sorting of the phases, because the distribution becomes continuous and
sample-by-sample fluctuation is suppressed.

For our numerical analysis via the Euclidean path integral, we prefer the Polyakov
loop to have the form (2.47) at any Euclidean time t so that the SU(M)-deconfined
sector is always in the upper-left M × M-block. The static diagonal gauge is suitable
for this purpose: because the gauge field At is constant, the Polyakov loop does not
depend on Euclidean time t. (If At is not static, the Polyakov loop can depend on t,
although the phases do not.) By appropriately fixing the residual SN symmetry, we
can have the same embedding visualized in Fig. 2.2 at any t.

The model under consideration has a first-order confinement/deconfinement
transition around Tc =

1
2 log(2d−1) [32]. It is easy to see the two-state signal when N is

not too large. When N is large, we can see one of two phases depending on the initial
configuration for the simulation.

In order to determine the size of deconfined sector for each N, let us take P to be real
and positive (i.e., P = |P|) configuration-by-configuration, by using the U(1) center
symmetry. For each fixed value of P, we collect many samples to determine the
distribution of the phases α, denoted by ρ(α). Because of (2.49) and (2.50), the
minimum value of ρ(α) (which should be at α = ±π) is related to the size of the
deconfined sector M by [20]

ρ(±π) =
1

2π

(
1 − M

N

)
.
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N−M

M

M

N−M

FIGURE 2.3: Sketches of the distribution of the phases of Polyakov loop in the
partially-deconfined phase. Constant offset comes from the confined Polyakov loop
Pcon while the non-uniform part comes from the deconfined Polyakov loop Pdec.

Note that this relation is precise in the large-N limit. After determining M for each P
and N, we can perform the constrained simulation of the second kind with
Pdec =

N
N−M P(M).

The constrained-simulation methods that we use in this work are essentially the same
as the one used in Ref. [21]. The only difference is that the models studied in Ref. [21]
had the simpler relation P = M

2N , which does not hold in the model under
consideration in this work. Therefore, we must determine the relationship between P
and M by numerically determining ρ(±π) in the constrained simulation of the first
kind.

In general, ρ(α) can be written as

ρ(α) =
1

2π
+

∞

∑
k=1

ρ̃k cos(kα). (2.51)

We determine the coefficients ρ̃k based on the simulation data, by using a Bayesian
inference procedure with the likelihood of the data α given by Eq. (2.51).
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Each of the nconfig configurations contains N phases α1, · · · , αN . At large N, we expect
any two samples to have exactly the same distribution. More precisely, the difference
between any two samples can be made arbitrarily small by taking N large enough.
The distribution of the phases then cannot depend strongly on any precise details of
the sample, such as the precise value of the other phases. Following, therefore, this
usual assumption of the self-averaging nature of the system at large N, we suppose
that each αi is obtained with a probability ρ(αi), regardless of the values of the other
phases. Then, for a given model distribution ρ(α) specified by a fixed set of
coefficients {ρ̃k}, the probability that {α} = (α1, · · · , αN) is obtained is simply the
product of the individual phases probabilities:

N

∏
i=1

ρ(αi). (2.52)

Taking into account all configurations (assumed to be independent), we obtain the
likelihood function for the data {α}, given the parameters {ρ̃k}:

L({α(1)}, · · · , {α(nconfig)}|{ρ̃k}) =
nconfig

∏
n=1

N

∏
i=1

ρ(α
(n)
i ). (2.53)

We use Bayes rule to compute the posterior distribution over the parameters {ρ̃k}
given a set of observations corresponding to the data {α(1)}, · · · , {α(nconfig)}. In
practice, we need to truncate the Fourier expansion in Eq. (2.51) at some order Λ,
setting ρ̃k = 0 for k > Λ, and we choose a uniform prior distribution centered around
zero and with bounds ±0.1. At fixed order Λ we compute the posterior over exactly Λ
parameters by using a dynamical Nested Sampling algorithm [35; 36] implemented in
the python library ultranest [37].

Ultimately, we do not care about the values of the model parameters {ρ̃k}, but we
want to use their posterior distribution to sample all models ρ(α) that are compatible
with the data. With these samples we have direct access to the expectation value of
ρ(π) = 1

2π

(
1 − M

N

)
, hence to the expectation value of M and its corresponding error

bar, given by the 16% and 84% quantiles of the posterior predictive distribution.

We tried a few different values of the Fourier expansion order Λ and found that
results are consistent within error bars for Λ ∈ {2, 3, 4, 5}. For our analysis we choose
to consider Λ = 3 out of simplicity.

The values of M for T = 0.29 obtained this way are summarized in Table 2.1. For each
fixed N and P, there is a weak dependence on the lattice size nt.

In this work, we are trying to study the partially-deconfined saddle. The temperature
of the saddle changes slightly with P, while we varied P at fixed T. We are implicitly
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P N nt M
0.2 16 16 7.44+0.12

−0.11
24 7.62+0.15

−0.16
32 7.56+0.11

−0.12
24 16 10.99+0.18

−0.18
24 11.13+0.19

−0.19
32 11.12+0.22

−0.22
32 16 14.51+0.21

−0.19
24 14.77+0.22

−0.22
32 14.91+0.21

−0.23
64 16 28.70+0.31

−0.31
24 29.04+0.31

−0.34
32 29.06+0.29

−0.29
96 16 42.78+0.40

−0.38
24 43.19+0.48

−0.49
0.25 16 16 10.06+0.09

−0.10
24 9.99+0.13

−0.13
32 10.18+0.14

−0.15
24 16 14.85+0.17

−0.16
24 14.92+0.17

−0.17
32 15.18+0.11

−0.12
32 16 19.52+0.18

−0.15
24 19.81+0.22

−0.23
32 19.92+0.19

−0.18
64 16 38.19+0.30

−0.28
24 38.77+0.37

−0.36
32 39.11+0.33

−0.34
96 16 56.50+0.35

−0.34
24 57.43+0.42

−0.40

TABLE 2.1: P vs M at T = 0.29. The central value of M is the median of the posterior
predictive distribution. The lower and upper bound are the 16% and 84% quantiles,

respectively.

P N M at T = 0.29 M at T = 0.30 M at T = 0.31
0.2 16 7.62+0.15

−0.16 7.75+0.15
−0.15 7.83+0.16

−0.16
24 11.13+0.19

−0.19 11.31+0.19
−0.20 11.68+0.19

−0.20
32 14.77+0.22

−0.22 15.03+0.20
−0.20 15.23+0.22

−0.22
0.25 16 9.99+0.13

−0.13 10.36+0.15
−0.14 10.59+0.14

−0.14
24 14.92+0.17

−0.17 15.61+0.17
−0.16 15.95+0.16

−0.17
32 19.81+0.22

−0.23 20.50+0.18
−0.16 21.07+0.20

−0.19

TABLE 2.2: P vs M at three different temperatures for nt = 24. The central value of M
is the median of the posterior predictive distribution. The lower and upper bound are

the 16% and 84% quantiles, respectively.
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assuming that a slight difference of temperature does not have a significant effect if P
is fixed. The validity of this assumption requires that the saddle is insensitive with
respect to the temperature. To test this, we looked at the value of M for different
values of temperature at fixed P. See Table 2.2 for the relation between P and M for
T = 0.29, 0.30 and T = 0.31. The dependence on temperature is rather mild (mostly
compatible within error bars). Hence, we assume other quantities such as the string
tension are not sensitive to the small change of temperature. We leave an explicit
confirmation of this assumption as a future work.

2.5 Flux tube in partially-deconfined phase

2.5.1 Theoretical expectations

In this section, we demonstrate (2.2) and (2.3) using Eguchi-Kawai equivalence. The
Eguchi-Kawai model is easier for numerical purposes, but the lack of the spatial
dimensions forces us to rewrite the two-point functions on the left-hand side of (2.2)
and (2.3) to slightly different forms. We define the temporal Wilson loop with
temporal extent 0 < t0 ≤ β and spatial extent L in the lattice unit, as shown in See
Fig. 2.4. When t0 = β (Fig. 2.5), it is equivalent to the two-point function of the
Polyakov loop, as we will see shortly. Thanks to Eguchi-Kawai equivalence, we can
calculate this Wilson loop by using the Eguchi-Kawai model.

FIGURE 2.4: The temporal Wilson loop Wµ(L, t0) considered in this work. A spatial
Wilson line with length L is created, goes through Euclidean time evolution around
the temporal circle, and is then annihilated. By exchanging the role of time and space,
we can interpret this also as the propagation of an open string along the compactified

space over Euclidean time L. We will focus on the case of t0 = β.



36 Chapter 2. Linear confinement in the partially-deconfined phase

FIGURE 2.5: Temporal Wilson loop Wµ(L, β). Such a Wilson loop is equivalent to the
two-point function of Polyakov loops.

Let us elucidate the physical meaning of this loop. Let F† be a creation operator for
two heavy probe particles ϕ and χ connected by a Wilson line [3],

F̂†
µ(x⃗, L) = ϕ̂†

a (x⃗)Ûµ,ab(x⃗, x⃗ + Lµ̂)χ̂†
b(x⃗ + Lµ̂). (2.54)

Then Wµ(L, t0) is

Wµ(L, t0) =
1

Z(β) ∑
i
⟨Ei| e−(β−t0)Ĥ F̂µe−t0 Ĥ F̂†

µ |Ei⟩

=
1

Z(β) ∑
i

e−βEi ⟨Ei| F̂µe−t0(Ĥ−Ei) F̂†
µ |Ei⟩ . (2.55)

Note that the contribution from the mass of the probes is subtracted.

Let us write F†
µ |Ei⟩ as a linear combination of the energy eigenstates,

F̂†
µ |Ei⟩ = ∑

j
cij
∣∣Ej
〉

. (2.56)

Then,

Wµ(L, t0) =
1

Z(β) ∑
i,j

e−βEi |cij|2e−t0(Ej−Ei). (2.57)



2.5. Flux tube in partially-deconfined phase 37

Suppose the sum over all the states can be replaced by a typical energy eigenstate |Ei⟩.
Then,

Wµ(L, t0) ∼ ∑
j
|cij|2e−t0(Ej−Ei). (2.58)

If the minimum excitation above Ei increases linearly with L, we have
Wµ(L, t0) ∼ e−cL, with some constant c. We expect this to happen in the confined
sector, i.e., we expect Wµ,con(L, t0) ∼ e−cL. If only the low-energy states contribute, we
should have c ∝ t0σ, where σ is called the string tension. In the Eguchi-Kawai model,
by using the Polyakov line

P ≡ diag(eiα1 , · · · , eiαN ), (2.59)

we can write Wµ(L, β) as

Wµ(L, β) =
〈

Tr
(
P(Uµ(t))LP†(Uµ(t)†)L

)〉
. (2.60)

We can see the exponential decay of Wµ(L, β) in Fig. 2.6 for the completely-confined
case.

1
N Wµ(L, β) is equivalent to the two-point function of Polyakov loops, i.e.,

1
N

Wµ(L, β) = ⟨TrP(x⃗) · TrP(x⃗ + Lµ̂)⟩ . (2.61)

Here µ̂ is the unit vector along the µ-th dimension. One way to see this is to exchange
the roles of temporal and spatial directions. Namely, we interpret the µ-direction to be
imaginary time. Wµ(L, t0) is interpreted as the propagation along the imaginary time
direction of an open string with length t0 stretched along the spatial circle with
circumference β. When t0 = β and the color factors (Chan-Paton factors) at the
endpoints of the open string are summed over, we get a closed string, or equivalently,
the Polyakov loop. The 1/N factor arises between (2.60) and (2.61) because of the
insertion of the additional trace on the right hand side of (2.61) as we ‘split the string’
into two independent strings and are free to take an independent trace over each.

To see the properties of the confined and deconfined sectors separately, we define the
Polyakov line in the deconfined sector,

Pdec ≡ diag(eiα1 , · · · , eiαM , 0, · · · , 0), (2.62)

and that in the confined sector,

Pcon ≡ diag(0, · · · , 0, eiαM+1 , · · · , eiαN ). (2.63)
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By using these, we can define the counterparts of two-point functions in the lattice
gauge theory ⟨Pdec(x⃗)Pdec(⃗y)⟩, ⟨Pcon(x⃗)Pcon(⃗y)⟩ and ⟨Pcon(x⃗)Pdec(⃗y)⟩ as

Wµ,dec(L, β) ≡
〈

Tr
(
Pdec(Uµ(t))LP†

dec(Uµ(t)†)L
)〉

, (2.64)

Wµ,con(L, β) ≡
〈

Tr
(
Pcon(Uµ(t))LP†

con(Uµ(t)†)L
)〉

. (2.65)

and

Wµ,mix(L, β) ≡
〈

Tr
(
Pcon(Uµ(t))LP†

dec(Uµ(t)†)L
)〉

. (2.66)

We can also define Wµ,dec(L, t0), Wµ,con(L, t0) and Wµ,mix(L, t0) in a similar manner.

Because 1
N Wµ(L, β) is equivalent to the two-point function of Polyakov loops, and

because the connected part of the two-point function is suppressed at long distance
(L → ∞), we will have

lim
L→∞

1
N

Wµ(L, β) = |⟨P⟩|2. (2.67)

We expect Wµ,con(L, β) and Wµ,mix(L, β) to vanish at large L, and hence we expect

lim
L→∞

1
N

Wµ,dec(L, β) = |⟨P⟩|2. (2.68)

We expect that Wµ,con(L, β) and Wµ,mix(L, β) vanish in a very specific manner. We
expect the exponential decay at long distance with the same string tension as the
confined sector, i.e., we expect

1
N

Wµ,con(L, β) = Ccon(N, M) · exp (−σLβ) (2.69)

and

1
N

Wµ,mix(L, β) = Cmix(N, M) · exp (−σLβ) . (2.70)

To obtain (2.70), we can interpret the µ-direction to be the Euclidean time. Then,
closed string in the confined sector is created by Pcon and propagate distance L. Then
it is annihilated by Pdec. It is natural to expect that Pdec contains a small but nonzero
contribution from the lightest mode in Pcon because there is no reason that it is
forbidden, and hence, we expect to see the propagation of the closed string in the
confined sector that is associated with the decay factor exp (−σLβ).
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In the strong-coupling lattice gauge theory, with our normalization,

σ =
1
2

. (2.71)

Note that the large-N limit should be taken first. Approximately, we expect
Ccon(N, M) ≃

(
1 − M

N

)2
and Cmix(N, M) ≃ M

N

(
1 − M

N

)
. To give a stronger constraint

on Ccon(N, M) and Cmix(N, M), let us assume that these factors do not depend on the
size of the loops along the temporal direction, i.e.,

1
N

Wµ,con(L, t0) = Ccon(N, M) · exp (−σLt0) (2.72)

and

1
N

Wµ,mix(L, t0) = Cmix(N, M) · exp (−σLt0) . (2.73)

By definition, the sum of Wµ,con(L, t0 = 0) and Wµ,mix(L, t0 = 0) can be written as

Wµ,con(L, t0 = 0) + Wµ,mix(L, t0 = 0) =
〈

Tr
(

Πcon(Uµ(t))L1N(Uµ(t)†)L
)〉

= ⟨Tr (Πcon)⟩
= N − M, (2.74)

where Πcon = diag(0, · · · , 0︸ ︷︷ ︸
M

, 1, · · · , 1︸ ︷︷ ︸
N−M

). Therefore,

Ccon(N, M) + Cmix(N, M) = 1 − M
N

, (2.75)

if Ccon(N, M) and Cmix(N, M) do not depend on t0. In Sec. 2.5.2, we will confirm this
relation numerically.

2.5.2 Simulation results

In this subsection, we will show the simulation results. The expectation values of
W(L) used for the analyses are shown in Tables 2.9, 2.10, 2.11, and 2.12.

Completely-confined phase

Let us start with the unconstrained simulation at T = 0.25, where temperature is
sufficiently low such that the completely-confined phase is obtained in the large-N
limit. We took the lattice size nt = 24, and studied N = 16, 24, 32, 48, 64, 96 and 128.
We took the average over all spatial dimensions µ = 1, 2, 3 and studied
W = 1

3 ∑3
µ=1 Wµ. As we can see in the first panel of Fig. 2.6, the N-dependence of
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1
N W(L) can be fitted well to the fitting ansatz 1

N W(L) = a(L) + b(L)
N2 . We used N ≥ 24

to perform the extrapolation to N = ∞. We could achieve reliable extrapolations at
L = 1, 2, 3 and 4. For L ≥ 5, larger N are needed for reliable extrapolations.

Because the Eguchi-Kawai reduction is valid at N = ∞, we can compare the large-N
extrapolated values with the theoretical expectation (2.69) and σ = 1

2 , β = 1
T = 4, and

M = 0, i.e., 1
N W(L, β = 4) = exp(−2L). Note that Ccon(N, M = 0) = 1, because of

(2.75) and Cmix(N, M = 0) = 0. In the second panel of Fig. 2.6, 1
N W(L) for each N and

the large-N extrapolation are shown for L = 1, 2, 3, 4, 5. By fitting the large-N
extrapolated results at 1 ≤ L ≤ 4 to the ansatz a(L) = exp(−cL + d), we obtained
c = 2.0887(30) and d = 0.0011(31). Small deviations from exp(−2L) would be
finite-nt effects.

We can also probe the confined phase at T = 0.29 by constraining P to its confined
value, P = 0, as shown in Fig. 2.7. This is more comparable to the constrained
simulation, described below, that we perform at T = 0.29 to probe the partial phase,
but is here applied to examining the familiar completely-confined phase with its
well-established theory and predictions.

For this, we took the large-N and continuum (nt → ∞) limit at each L by performing a
weighted least-squares regression with the ansatz
1
N Wcon(L; nt) = acon(L) + b1,con(L)

N2 + b2,con(L)
nt

+ b3,con(L)
nt N2 . The weights were derived from

the error bars of the Monte-Carlo observables, where the integrated autocorrelation
time measured by the Madras-Sokal algorithm [38] is taken into account. Then acon(L)
gives the extrapolated value in the N, nt → ∞ limit. Fitting the ansatz
acon(L) = exp(−cconL + dcon), we obtain ccon = 1.738(29) and dcon = 0.022(31). This is
consistent with the theoretical expectation eσβL = e−

1
2×0.29 L ≃ e−1.724L.

Partially-deconfined phase

In Fig. 2.8, we show Wcon at T = 0.29, P = 0.2 and P = 0.25, which corresponds to
M
N ≃ 0.50 and M

N ≃ 0.61. We performed a two-dimensional weighted least-squares
regression to take the large N and continuum (nt → ∞) limits simultaneously. Note
that it is more difficult to take the large-N limit at larger L, and/or when either M or
N − M is small.

Motivated by (2.69) with Ccon(N, M) ≃
(
1 − M

N

)2
, we normalized the loop as

1
N Wcon(L)×

(
1 − M

N

)−2
. We will compare the loop normalized this way to

eσβL = e−
1

2×0.29 L ≃ e−1.724L.

The large-N and continuum extrapolations were estimated at each L by performing a
weighted least-squares regression with the ansatz
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FIGURE 2.6: T = 0.25 and nt = 24, without constraint. Temperature is sufficiently low
such that the completely-confined phase is realized automatically. For the extrapola-
tion to N = ∞, we used data points at N = 24, 32, 48, 64, 96, 128 for L = 1, 2, 3, 4 and
N = 48, 64, 96, 128 for L = 5. We used the fitting ansatz 1

N W(L) = a(L) + b(L)
N2 . By fit-

ting the large-N extrapolated results at 1 ≤ L ≤ 4 by the ansatz a(L) = exp(−cL + d),
we obtained c = 2.0887(30) and d = 0.0011(31). This fit is shown by the blue line.
The red line is exp(−2L), which is the theoretical expectation for long distance (large

L) and continuum limit (nt = ∞). A small disagreement would be finite-nt effects.
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FIGURE 2.7: T = 0.29 with the constraint P = 0, allowing us to probe the completely-
confined phase near the transition. We have extrapolated to the large N limit us-
ing N = 7, 10, 16, 24, 32, and to the continuum limit using nt = 16, 24, 32 for each

N, using the 2D interpolation 1
N Wcon(L) = acon(L) + b1,con(L)

N2 +
b2,con(L)

nt
+

b3,con(L)
nt N2 .

We fitted these interpolated values acon(L) for 1 ≤ L ≤ 4 to the ansatz acon(L) =
exp(−cconL + dcon), yielding ccon = 1.738(29) and dcon = 0.022(31). The fit is shown
along with error bounds by the blue line. The theoretical prediction (ccon = 1.724, and

dcon = 0 for M = 0) is given by the red line, which is mostly obscured by the fit.

1
N Wcon(L)×

(
1 − M

N

)−2
= acon(L) + b1,con(L)

N(N−M)
+ b2,con(L)

nt
+ b3,con(L)

nt N(N−M)
7. Then acon(L)

gives the extrapolated value of the Wilson loop in the N, nt → ∞ limit.

We plotted acon(L) in Fig. 2.8. We can perform one final linear regression with the
ansatz log(acon(L)) = −cconL + dcon to check the area law. Fitting to L ≤ 4, we obtain
ccon = 1.729(17) and ccon = 1.724(23) for P = 0.2 and P = 0.25, respectively, in good
agreement with the theoretical expectation, 1.724. The values of d were
dcon = 0.086(20) and dcon = 0.127(28). That they are not zero is not a problem; what
we expect instead is (2.75), which we will confirm shortly.

The mixed-correlator Wmix(L) is shown in Fig. 2.9. Motivated by (2.70) with
Cmix(N, M) ≃ M

N

(
1 − M

N

)
, we normalized the loop as 1

N Wmix(L)×
[M

N

(
1 − M

N

)]−1
. We

used a similar process as described for Wcon above, but using this different
normalisation. We find cmix = 1.731(21) and cmix = 1.708(20) for P = 0.2 and
P = 0.25, respectively, in good agreement with the theoretical expectation, 1.724. The

7In the completely-confined phase, we used N2 in the denominators of the regression. For the partial
phase, we used N(N − M) instead. We found that our data was much closer to being linear in 1

N(N−M)
,

both for data points taken at the same P but which differed slightly in M/N, and also when combining
points at different P and thus very different values of M/N.
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FIGURE 2.8: Confined subsector Wilson loop, Wcon, at T = 0.29, for P = 0.2 and
P = 0.25, respectively. We have extrapolated to the large N limit using N = 24, 32, 64,
and to the continuum limit using nt = 16, 24, 32 for each N, using the 2D interpolation

1
N(1− M

N )2 Wcon(L) = γcon(L) + β1
N2 + β2

nt
+ β2

nt N2 . We fitted these interpolated values

γcon(L) for 1 ≤ L ≤ 4 to the ansatz γcon(L) = exp(−cconL + dcon) and obtained
ccon = 1.729(17) and ccon = 1.724(23) for P = 0.2 and P = 0.25, respectively. The fit is

shown along with error bounds by the blue line.
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values of dmix were dmix = −0.076(24) and dmix = −0.109(23). Again, that they are not
zero is not a problem; we will confirm (2.75) next.

In Fig. 2.10, Wcon+Wmix
N−M is plotted. It is consistent with e−1.724L including the overall

normalization factor. We obtained c = 1.733(19) and d = 0.021(22) for P = 0.20, and
c = 1.718(18) and d = −0.006(21) for P = 0.25. Now d is consistent with zero.

To contrast with all of these, we also plotted the deconfined-correlator, Wdec, in
Fig. 2.11. Here, there is a total absence of any confining behaviour, in easy agreement
with our conjecture.

We observe that the confined-sector Wilson loop values for L ≥ 4 in the lower panel of
Fig. 2.8 all lie above the fitted line, indicating the presence of systematic errors. These
errors likely stem from imprecision in the separation between the confined and
deconfined sectors when constructing the confined-sector Wilson loop. This is a
difficulty we anticipate at finite N. Consequently, we see behaviour more redolent of
the deconfined sector at larger values of L.

In summary, we have observed that numerical data is consistent with nontrivial
theoretical predictions made about partial confinement, i.e., (2.69), (2.70), and (2.75). In
particular, the agreement between Wcon + Wmix and the theoretical prediction could be
confirmed without even performing a fit, as shown in Fig. 2.10. Although our data is
not good enough to determine the values of Wilson loops at L ≥ 5 at this moment, in
principle we can study arbitrary large L by taking N larger and collecting sufficiently
many statistics in Monte Carlo simulations.

Comments on temperature dependence

In the model under consideration, the partially-deconfined saddle is the maximum of
the free energy. The distribution of Polyakov line phases at the saddle changes with
temperature. Therefore, strictly speaking, we need to study multiple values of T,
choosing the value of P exactly on top of the saddle. However, we explicitly confirmed
that the expected behaviors (2.69), (2.70), and (2.75) at T = 0.29 at P = 0, 0.20 and 0.25,
which suggests that this relation holds near the critical point regardless of the value of
P, and hence also on the partially-deconfined saddle. It is straightforward to perform
the more complete analyses if more computational resources are available. We will
leave it for future work. See also comments at the end of Sec. 2.4.

2.6 Conclusion and discussion

In this chapter, we presented evidence for the formation of a flux tube and linear
confinement potential in the confined sector of the partially-deconfined saddle of pure
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FIGURE 2.9: Mixed subsector Wilson loop, Wmix, at T = 0.29, for P = 0.2 and P = 0.25,
respectively. We have extrapolated to the large N limit using N = 24, 32, 64, and
to the continuum limit using nt = 16, 24, 32 for each N, using the 2D interpolation

1
M(1− M

N )
Wmix(L) = γ(L) + β1

N2 + β2
nt

+ β2
nt N2 . We fitted the interpolated values γ(L)

for 1 ≤ L ≤ 4 to the ansatz γ(L) = exp(−cL + d). We find cmix = 1.731(21) and
cmix = 1.708(20) for P = 0.2 and P = 0.25, respectively. The fit is shown along with

error bounds by the blue line.
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FIGURE 2.10: Combined mixed and confined subsector Wilson loop, Wcon + Wmix, at
T = 0.29, for P = 0.2 and P = 0.25, respectively. We have extrapolated to the large N
limit using N = 24, 32, 64, and to the continuum limit using nt = 16, 24, 32 for each N,
using the 2D interpolation 1

M−N (Wcon +Wmix)(L) = γ(L) + β1
N2 +

β2
nt

+ β2
nt N2 . We fitted

these interpolated values γ(L) for 1 ≤ L ≤ 4 to the ansatz γ(L) = exp(−cL + d).
We obtained c = 1.733(19) and d = 0.021(22) for P = 0.20, and c = 1.718(18) and
d = −0.006(21) for P = 0.25. The fit is shown along with error bounds by the blue
line. The theoretical prediction is shown by the red and is mostly obscured by the fit.
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FIGURE 2.11: Deconfined subsector Wilson loop, Wdec, at T = 0.29, for P = 0.2 and
P = 0.25, respectively. We used the same scale as in Figs. 2.8, 2.9, and 2.10. The

potential is clearly nonconfining, and no fitting was attempted

Yang-Mills theory by taking strongly-coupled lattice gauge theory as a concrete
example.

It is natural to ask whether our findings are an artefact of the strong-coupling limit
taken for our lattice model. The strong-coupling limit allowed us to perform
Eguchi-Kawai reduction, greatly enhancing the efficiency of computation. Lattice
computations performed outside of this limit, with a full lattice extended in
spacetime, could check that our results apply more generally, but would require vastly
more resources.

It would also be interesting to investigate how to our results can be extended to finite
N. It is not clear how flux tubes will behave at at energy scales that lie between the
total deconfinement of an SU(M) sector and that of SU(M + 1), for example. Again,
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to check this on the lattice demands that we depart from the the regime in which
Eguchi-Kawai reduction can be employed.

The culmination of these considerations would be to understand the behaviour of flux
tubes in a partially confined phase of QCD. We might find consequences for the
spectrum and observations in QCD that could confirm the picture of the crossover
region as a partially deconfined phase. We might expect, for instance, the formation of
bound states of quarks, analogous to pions, in the confined sector. This is supported
by an argument advanced in Ref. [18], which posits that quarks in the confined sector
must form a bound state in order to satisfy the ’t Hooft anomaly matching associated
with chiral symmetry breaking in that sector.

In the holographic calculation of the Wilson loop [39], our results imply that different
worldsheets are preferred in the confined and deconfined sectors. We have not yet
understood how our results affect the conventional computations on the gravity side.

2.A Constrained simulations of the first kind and second kind
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FIGURE 2.12: Polyakov loop phase distributions for N = 64, nt = 32, P = 0.2, for
constraints of the first and second kind.

A potential objection to our approach might be the apparent unnaturalness of the
constraint simulation of the second kind. Here, we justify the second constraint as
being equivalent to fixing some of the gauge redundancy that remains after having
taken static diagonal gauge. The second constraint imposes uniformity on some
subset N − M of the eigenvalues of the Polyakov loop. In a general configuration at
finite N outputted by the Monte-Carlo simulation under the constraint of the first
kind, a subset of eigenvalues is not guaranteed to be exactly uniformly distributed in
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this way. However, at large N, the constraint of the second-kind and fixing of residual
gauge symmetry should be equivalent, with fluctuations away from the mean value
being suppressed. If the Polyakov eigenvalue distributions are identical between the
microcanonical (first-kind constrained) and second-constrained simulation, we can
use our method as an effective gauge fixing in the large-N limit. As we can see from
Fig. 2.12, constrained simulations with the 1st and 2nd constraints indeed give the
same distribution of the Polyakov-loop phases. Furthermore, as we can see Fig. 2.13,
the distributions of α1, · · · , αM and αM+1, · · · , αN exhibit the kind splitting depicted in
Fig. 2.3.
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FIGURE 2.13: Polyakov loop phase distributions for N = 32 and N = 64, nt = 24,
P = 0.2 (top) and P = 0.25 (bottom), for constraints of the second kind. In addition
to the distribution of all phases, the ‘deconfined part’ (α1, · · · , αM) and ‘confined part’

(αM+1, · · · , αN) are shown.

We can also check that the confined Polyakov loop correlator exhibits an area law in
the microcanonical ensemble, without the imposition of uniformity on the confined
subsector that is done in the constrained simulations of the second kind. We reasoned
that the Wilson loop obtained in the constrained simulation of the first kind must be
the sum of the contributions from Wcon, Wdec and Wmix, and that the constrained
simulation of second kind separates these pieces neatly. One may wonder whether
this method of explicit separation does something more and spoils the
partially-deconfined saddle. As a consistency check, we can subtract the
deconfined-sector Wilson loop computed from the second-kind simulations from the
first-kind Wilson loop to obtain a quantity with an area law, as expected from the
confined and mixed sectors. More advantageously, we can calculate,

Wsubtracted = Wfull,1st − Wdec,2nd − Wmix,2nd. (2.76)

This Wsubtracted should be the sum of Wcon and Wmix, and hence,
Wsubtracted = (N − M) exp(−σLβ) is expected.
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This demonstrates that the linear potential is not the result of an artifical imposition of
uniformity on the eigenvalues, but is present even in the constrained simulations of
the first kind. We also find by this analysis that the constraint of the second kind
approximates the gauge-fixed microcanonical ensemble well even at N = 16.
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FIGURE 2.14: The complete Wilson loop from first-kind simulations, the deconfined
Wilson loop from second-kind simulations, and their difference, nt = 32 and T = 0.29,

extrapolated to large N. Note that the continuum limit has not been taken.

In Fig. 2.14, we plotted Wsubtracted. As expected, by subtracting the contribution from
the deconfined sector, we find confining behaviour matching that of the mixed and
confined subgroups from second-kind simulations.

2.B Stability of the extrapolations

Small N effects

We collected data for N = 16, 24, 32, 64. For the large-N extrapolation of Wcon

(respectively, Wmix), we should use only the data points with sufficiently large N − M
(respectively, M and N − M). However, for P = 0.25, the N = 16 data seemed to
present a source of systematic error from finite N, M, and N − M effects. In particular,
for N = 16 and P = 0.25 we have N − M = 6. Such errors would not be captured by
the error bars. We can measure the contribution to the systematic error by removing
data at different values of N from the interpolation. The effect of this on the fitting
parameter c is shown in Tables 2.3, 2.4, and 2.5.



2.B. Stability of the extrapolations 51

P all N rmv. N = 16 rmv. N = 24 rmv. N = 32 rmv. N = 64
0.2 1.7248(59) 1.7343(74) 1.7271(59) 1.7221(64) 1.718(11)

0.25 1.7117(64) 1.7215(82) 1.7122(64) 1.7133(72) 1.692(12)

TABLE 2.3: Values of c for Wcon + Wmix with data for different N removed. With
nt = 16.

P all N rmv. N = 16 rmv. N = 24 rmv. N = 32 rmv. N = 64
0.2 1.7281(55) 1.7335(66) 1.7288(55) 1.7229(58) 1.729(11)

0.25 1.7170(78) 1.732(10) 1.7193(79) 1.7195(86) 1.682(15)

TABLE 2.4: Values of ccon for Wcon with data for different N removed. With nt = 16.

P all N rmv. N = 16 rmv. N = 24 rmv. N = 32 rmv. N = 64
0.2 1.7340(67) 1.7346(83) 1.7341(68) 1.7338(74) 1.737(13)

0.25 1.7066(72) 1.7116(91) 1.7059(72) 1.7062(80) 1.692(14)

TABLE 2.5: Values of cmix for Wmix with data for different N removed. With nt = 16.

P all N rmv. N = 16 rmv. N = 24 rmv. N = 32 rmv. N = 64
0.2 1.730(15) 1.733(19) 1.730(15) 1.729(17) 1.729(28)
0.25 1.703(14) 1.718(18) 1.703(14) 1.709(16) 1.663(27)

TABLE 2.6: Values of c for Wcon + Wmix with data for different N removed. Without
nt = 16.

It is easy to understand how the N = 16 data is distorting the results when we attempt
a linear fit. We demonstrate this in Fig. 2.15. The small value of N − M causes the
N = 16 point to be far separated from the others on the x axis. Consequently, it has a
large effect on the linear fit. There is also clear non-linear behaviour. For P = 0.2,
N − M is larger, and this explains why the distortion is not so severe. We could have
attempted a quadratic fit, but we see from Fig. 2.15 that this does not significantly
reduce the uncertainty, and potentially increases it. Therefore, we performed the
large-N extrapolations in the main text without using N = 16.

Small nt effects

We see a similar issue with respect to nt = 16. In Table 2.3 and Table 2.4, we see that c
for P = 0.25 is smaller than the theoretical value 1.724, whether N = 16 is removed or
not. We attribute this to the use of nt = 16. If we plot points at nt = 16, 24 and 32 with
fixed N and L by taking 1

nt
as the horizontal axis, we can see that those three points are

not always on a straight line and a linear fit is often very bad. This happens for both
P = 0.2 and P = 0.25. For the analyses in the main text, we did not include nt = 16 for
either P = 0.2 or P = 0.25. The effect of removing nt = 16 can be seen by comparing
Tables 2.3, 2.4, 2.5 with Tables 2.6, 2.7, 2.8.
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P all N rmv. N = 16 rmv. N = 24 rmv. N = 32 rmv. N = 64
0.2 1.742(14) 1.729(17) 1.741(14) 1.737(16) 1.779(29)
0.25 1.701(18) 1.724(23) 1.702(18) 1.707(19) 1.596(35)

TABLE 2.7: Values of ccon for Wcon with data for different N removed. Without nt = 16.

P all N rmv. N = 16 rmv. N = 24 rmv. N = 32 rmv. N = 64
0.2 1.721(17) 1.731(21) 1.719(17) 1.731(19) 1.691(31)
0.25 1.702(16) 1.708(20) 1.702(16) 1.703(17) 1.703(31)

TABLE 2.8: Values of cmix for Wmix with data for different N removed. Without nt =
16.
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FIGURE 2.15: Performing the large N extrapolation for the confined subsector P = 0.2
(left) and P = 0.25 (right) for L = 1. The continuum limit nt → ∞ has been taken.
We try a linear fit of all points (green), a linear fit that ignores N = 16 (red), and a
quadratic fit of all points (orange). The destabilising effect of the N = 16 (rightmost)
point in the P = 0.25 linear extrapolation is obvious and can be attributed to the small

value N − M = 6.

2.C Gauge fixing condition and separation of confined and
deconfined sectors

As a starter, let us recall how the operator formalism and path-integral formalism
are related (see e.g., [40] for the case of Hermitian variables). The thermal partition
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function of the Eguchi-Kawai model is

Z(T) =
1

[volU(N)]nt

∫ ( nt

∏
k=1

dgk

)
TrHext

(
ĝ(nt)e

− H(Ê,Û)
Tnt ĝ−1

(nt−1) ĝ(nt−1)

e−
H(Ê,Û)

Tnt ĝ−1
(nt−2) ĝ(nt−2) · · · ĝ−1

(1) ĝ(1)e
− H(Ê,Û)

Tnt

)
=

1
[volU(N)]nt

∫ ( nt

∏
k=1

dg(k)

) ∫ ( nt

∏
k=1

dU(k)

)

⟨U(nt)|ĝ(nt)e
− H(Ê,Û)

Tnt ĝ−1
(nt−1)|U(nt−1)⟩

× ⟨U(nt−1)|ĝ(nt−1)e
− H(Ê,Û)

Tnt ĝ−1
(nt−2)|U(nt−2)⟩

× · · · × ⟨U(1)|ĝ(1)e−
H(Ê,Û)

Tnt |U(nt)⟩. (2.77)

For H(Ê, Û) = 1
2 TrÊ2 + V(Û), we can rewrite each term in the product as follows.

⟨U(k)|ĝ(k)e−
H(Ê,Û)

Tnt ĝ−1
(k−1)|U(k−1)⟩

= ⟨g−1
(k)U(k)g(k)|e−

H(Ê,Û)
Tnt |g−1

(k−1)U(k−1)g(k−1)⟩

= e−
1

Tnt
V(g−1

(k−1)U(k−1)g(k−1))⟨g−1
(k)U(k)g(k)|e−

1
2Tnt

TrÊ2 |g−1
(k−1)U(k−1)g(k−1)⟩. (2.78)

By using

iϵ ≡ log
(

g−1
(k)U(k)g(k)g

−1
(k−1)U

−1
(k−1)g(k−1)

)
, (2.79)

we can relate |g−1
(k−1)U(k−1)g(k−1)⟩ and |g−1

(k)U(k)g(k)⟩ as

|g−1
(k)U(k)g(k)⟩ = eiTr(ϵÊ)|g−1

(k−1)U(k−1)g(k−1)⟩, (2.80)

and hence,

⟨g−1
(k)U(k)g(k)|e−

1
2Tnt

TrÊ2 |g−1
(k−1)U(k−1)g(k−1)⟩

= ⟨g−1
(k−1)U(k−1)g(k−1)|e−

1
2Tnt

TrÊ2−iTr(ϵÊ)|g−1
(k−1)U(k−1)g(k−1)⟩

= ⟨U|e−
1

2Tnt
TrÊ2−iTr(ϵÊ)|U⟩, (2.81)



54 Chapter 2. Linear confinement in the partially-deconfined phase

where U can be any element of the unitary group.8 Up to a normalization constant,
this can be written by using trace over the Hilbert space as

Tr exp

(
− 1

2ntT
∑

a
Ê2

a + i ∑
a

ϵaÊa

)

= e−
ntT

2 Trϵ2 × Tr exp

(
− 1

2ntT
∑

a
(Êa − intTϵa)

2

)
. (2.82)

The second term (Tr · · · ) becomes constant in the limit of ntT → ∞ when ntTϵ2 is of
order one (which is justified because of the first term e−

ntT
2 Trϵ2

), because the sum over
momentum modes can be identified with usual integral in flat space. Omitting the
second term and by approximating ϵ2 by |g−1

(k)U(k)g(k) − g−1
(k−1)U(k−1)g(k−1)|2, we obtain

e−
ntT

2 Tr[|g−1
(k)U(k)g(k)−g−1

(k−1)U(k−1)g(k−1)|2]e−V(g−1
(k)U(k)g(k))/(Tnt)

≃ e−L[Dt(g−1
(k)U(k)g(k)),(g−1

(k)U(k)g(k))]/(Tnt)

= e−L[DtU(k),U(k))]/(Tnt). (2.83)

Here we used

g(k−1)g
−1
(k) ≡ e−iA(k)/(ntT), (2.84)

and

U(k) − (g(k−1)g
−1
(k))

−1U(k−1)(g(k−1)g
−1
(k)) ≃

DtU(k)

ntT
. (2.85)

By taking nt → ∞ limit, we obtain

Z(T) =
∫
[dA][dU]e−

∫
dtL[DtU,U]. (2.86)

Note that g(nt) is the Polyakov loop. In the static diagonal gauge,

g(k) = diag(eikθ1/nt , · · · , eikθN/nt). (2.87)

In the confined sector, the distribution of the phases of the Polyakov loop is
uniform [20]. We fix the SN permutation symmetry such that the phase distribution
does indeed satisfy this property. This guarantees the neat separation into confined
and deconfined sectors at t = β (equivalently, t = 0).

Let us use the trace cyclicity in the extended Hilbert space and shift the initial time. In
the static diagonal gauge, this does not change the Polyakov loop. Therefore, exactly

8Because TrÊ2 commutes with the shift on the group manifold, the first line could be

⟨Wg−1
(k)U(k)g(k)|e

− 1
2Tnt

TrÊ2
|Wg−1

(k−1)U(k−1)g(k−1)⟩, where W is an arbitrary element of U(N).
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the same separation into confined and deconfined sectors holds at any t.

2.D Simulation algorithm

Several aspects of the simulation algorithm used for this study are similar to the
one used in Ref. [41], which was originally developed in unpublished work by one of
the authors (MH), Takashi Kaneko, Jun Nishimura, and Asato Tsuchiya in 2013.
Gauge configurations are generated using the Hybrid Monte-Carlo algorithm [42].

The lattice action we consider is, before adding the constraint term for the Polyakov
loop,

S =
N
2a

d

∑
µ=1

nt

∑
t=1

Tr
(

1N − Uµ,tVU†
µ,t+1V†

)
+ h.c. + SF.P., (2.88)

where V = diag(eiα1/nt , · · · , eiαN/nt). Here, a is the lattice spacing and β = ant is the
inverse temperature, β = T−1. We will focus on d = 3. The Polyakov line phases
α1,2,··· ,N are constrained to be

−π < αi ≤ π. (2.89)

The Faddeev-Popov term SF.P. is given by

SF.P. = −∑
i<j

2 log
∣∣∣∣sin

(
αi − αj

2

)∣∣∣∣ . (2.90)

If we just impose the constraint −π < αi ≤ π as it is, then the simulation is not very
efficient – the ‘center of mass’ (∑i αi)/N randomly moves and hits ±π. For this
reason, we use the following trick.

Firstly, let us recall that αi and α̃i ≡ αi − C give the same weight for any C. Here, C
must satisfy min(α̃i) + C > −π and max(α̃i) + C ≤ π, because of the condition
−π < αi ≤ π. Hence C must sit in (−π − min(α̃i), π − max(α̃i)], whose interval is
2π − µ, where µ ≡ max(α̃i)− min(α̃i). Therefore, we can replace the integral over αi

with that over α̃i, with an additional Boltzmann weight

w(µ) =

{
2π − µ (µ < 2π)

0 (µ ≥ 2π).
(2.91)
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N W(1) W(2) W(3) W(4) W(5)
16 0.13755(41) 0.03427(40) 0.02506(39) 0.02809(38) 0.03269(38)
24 0.12955(19) 0.02357(17) 0.01213(16) 0.01244(16) 0.01442(15)
32 0.12674(17) 0.01977(13) 0.00752(13) 0.00700(11) 0.00791(11)
48 0.12548(17) 0.01751(13) 0.00460(12) 0.00334(10) 0.003483(96)
64 0.12505(13) 0.016542(97) 0.003288(88) 0.001946(74) 0.002086(68)
96 0.124261(79) 0.015867(63) 0.002493(52) 0.000944(49) 0.000910(42)
128 0.124144(98) 0.015631(76) 0.002248(63) 0.000742(51) 0.000517(48)

TABLE 2.9: Wilson loop for L = 1, 2, 3, 4, 5, unconstrained, nt = 24, T = 0.25.

For numerical calculations, this is not very nice because of the singularity at µ = 2π.
Instead, in the molecular evolution stage of the HMC algorithm, we use

w̃(µ) =

{
2π − µ + ε (µ < 2π)

εe−gα(µ−2π) (µ ≥ 2π),
(2.92)

with a large enough gα (say gα=100) and ε = g−1
α . For the Metropolis test, we use w(µ)

instead of w̃(µ). The detailed balance condition is not violated and the correct
path-integral weight is reproduced; see e.g., Ref. [43].

Permutation of Polyakov line phases in the constrained simulation of
second kind

When ∆Sdec and ∆Scon are added, the SN permutation symmetry is explicitly
broken to SM×SN−M. The ordering of the α’s — say αi1 < αi2 < αi3 < · · · — does not
change (or very rarely changes) in the HMC simulation, which can cause a problem
when the permutation symmetry is explicitly broken. To avoid this problem, we
choose αi and αj randomly from the deconfined and confined sectors and perform a
permutation using the Metropolis algorithm. Note that the i-th and j-th rows and
columns in Uµ have to be exchanged, too. We do this 10 times after each HMC steps.
This method is the same as the one used in Ref. [21].
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P N nt W(1) W(2) W(3) W(4) W(5)
0.2 16 16 0.19720(56) 0.04844(32) 0.03111(27) 0.03531(24) 0.04399(23)

24 0.20151(44) 0.05014(31) 0.03150(27) 0.03588(24) 0.04466(23)
32 0.20688(71) 0.05279(33) 0.03250(27) 0.03627(25) 0.04480(23)

24 16 0.18633(31) 0.03648(18) 0.01522(15) 0.01498(13) 0.01772(13)
24 0.19048(26) 0.03914(18) 0.01619(15) 0.01541(13) 0.01835(12)
32 0.19626(35) 0.04076(19) 0.01656(16) 0.01549(14) 0.01850(12)

32 16 0.18234(22) 0.03325(13) 0.01070(11) 0.00875(10) 0.010341(91)
24 0.18740(25) 0.03521(15) 0.01139(12) 0.00888(11) 0.01047(10)
32 0.19162(22) 0.03640(14) 0.01173(11) 0.009082(98) 0.010560(92)

64 16 0.17677(13) 0.029452(90) 0.006087(77) 0.002606(65) 0.002500(60)
24 0.18392(22) 0.03170(12) 0.006751(89) 0.003008(82) 0.002580(71)
32 0.18703(16) 0.032779(98) 0.006974(80) 0.002905(67) 0.002640(62)

0.25 16 16 0.2227(41) 0.05909(47) 0.04191(39) 0.04820(34) 0.05954(32)
24 0.2257(11) 0.06278(44) 0.04272(36) 0.04798(33) 0.05964(31)
32 0.22946(87) 0.06356(45) 0.04280(37) 0.04818(34) 0.05931(32)

24 16 0.20105(64) 0.04231(37) 0.02091(31) 0.02186(28) 0.02626(26)
24 0.21621(80) 0.04765(40) 0.02205(33) 0.02212(28) 0.02672(26)
32 0.21863(93) 0.04878(39) 0.02327(31) 0.02226(29) 0.02645(26)

32 16 0.19751(38) 0.03760(20) 0.01382(17) 0.01228(14) 0.01447(13)
24 0.20707(68) 0.04061(24) 0.01455(19) 0.01256(16) 0.01503(14)
32 0.21059(38) 0.04224(21) 0.01556(17) 0.01279(15) 0.01490(13)

64 16 0.18902(31) 0.03223(18) 0.00721(14) 0.00351(13) 0.00380(12)
24 0.19792(33) 0.03484(15) 0.00780(12) 0.003743(98) 0.003560(89)
32 0.20000(29) 0.03546(14) 0.00828(11) 0.004051(94) 0.003723(87)

TABLE 2.10: Wcon for L = 1, 2, 3, 4, 5, constrained, T = 0.29.

P N nt W(1) W(2) W(3) W(4) W(5)
0.2 16 16 0.13990(48) 0.02331(27) 0.00490(21) 0.00277(19) 0.00344(17)

24 0.14753(37) 0.02590(26) 0.00598(21) 0.00303(19) 0.00356(17)
32 0.14991(55) 0.02700(26) 0.00601(21) 0.00315(19) 0.00401(17)

24 16 0.14023(36) 0.02299(17) 0.00422(14) 0.00149(13) 0.00146(11)
24 0.14921(25) 0.02529(18) 0.00494(14) 0.00155(13) 0.00181(11)
32 0.14864(33) 0.02598(17) 0.00490(15) 0.00183(13) 0.00155(12)

32 16 0.14380(21) 0.02357(13) 0.00407(11) 0.001061(97) 0.000705(88)
24 0.15052(23) 0.02533(15) 0.00464(12) 0.00098(11) 0.000932(95)
32 0.15165(21) 0.02624(13) 0.00468(11) 0.001279(93) 0.000807(84)

64 16 0.14602(14) 0.023551(93) 0.003613(78) 0.000382(71) -0.000016(65)
24 0.15021(27) 0.02512(12) 0.004036(95) 0.000452(80) 0.000090(75)
32 0.15327(17) 0.02607(10) 0.004283(83) 0.000645(72) 0.000065(64)

0.25 16 16 0.13695(84) 0.02376(27) 0.00531(22) 0.00275(19) 0.00354(18)
24 0.14873(49) 0.02639(27) 0.00559(22) 0.00311(20) 0.00402(18)
32 0.15251(45) 0.02780(28) 0.00648(23) 0.00347(20) 0.00382(18)

24 16 0.14656(39) 0.02502(26) 0.00480(21) 0.00180(19) 0.00157(17)
24 0.14711(50) 0.02594(25) 0.00530(21) 0.00172(18) 0.00172(16)
32 0.15323(41) 0.02773(26) 0.00584(21) 0.00191(19) 0.00167(16)

32 16 0.14674(22) 0.02455(13) 0.00443(11) 0.001313(97) 0.000991(91)
24 0.15044(30) 0.02625(15) 0.00466(12) 0.00118(11) 0.001140(97)
32 0.15446(20) 0.02732(14) 0.00523(11) 0.00139(10) 0.000989(90)

64 16 0.14876(21) 0.02429(13) 0.00388(11) 0.000710(98) 0.000189(90)
24 0.15305(19) 0.02606(10) 0.004208(88) 0.000703(74) 0.000110(66)
32 0.15572(18) 0.027028(99) 0.004563(80) 0.000816(71) 0.000190(65)

TABLE 2.11: Wmix for L = 1, 2, 3, 4, 5, constrained, T = 0.29.
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P N nt W(1) W(2) W(3) W(4) W(5)
0.2 16 16 0.31420(51) 0.19824(28) 0.18637(25) 0.19100(22) 0.19865(21)

24 0.31659(41) 0.19991(30) 0.18692(24) 0.19110(22) 0.19882(21)
32 0.32003(52) 0.20061(29) 0.18713(24) 0.19126(22) 0.19927(21)

24 16 0.33554(37) 0.21962(20) 0.20452(17) 0.20506(15) 0.20854(14)
24 0.33592(29) 0.22067(19) 0.20486(17) 0.20536(15) 0.20895(13)
32 0.34119(37) 0.22169(20) 0.20528(17) 0.20555(15) 0.20885(14)

32 16 0.32265(26) 0.20719(14) 0.19100(12) 0.19007(11) 0.19192(10)
24 0.32574(25) 0.20918(16) 0.19166(13) 0.19041(12) 0.19206(11)
32 0.32924(24) 0.20992(14) 0.19185(12) 0.19072(11) 0.192287(95)

64 16 0.32819(16) 0.21602(11) 0.198914(93) 0.196599(80) 0.196673(80)
24 0.33471(53) 0.21786(13) 0.19951(12) 0.19681(10) 0.196764(92)
32 0.33630(20) 0.21869(11) 0.199764(96) 0.196940(84) 0.196834(77)

0.25 16 16 0.30670(34) 0.19424(23) 0.18135(19) 0.18456(17) 0.19108(16)
24 0.30748(33) 0.19576(23) 0.18229(19) 0.18534(17) 0.19154(17)
32 0.30880(33) 0.19676(23) 0.18264(19) 0.18571(18) 0.19191(16)

24 16 0.29786(28) 0.18699(20) 0.17150(17) 0.17095(15) 0.17347(14)
24 0.30475(37) 0.18914(21) 0.17190(17) 0.17158(15) 0.17376(14)
32 0.30477(29) 0.18926(22) 0.17214(17) 0.17185(15) 0.17418(14)

32 16 0.29571(16) 0.18425(11) 0.167607(92) 0.166404(79) 0.167424(75)
24 0.30153(20) 0.18604(12) 0.16829(10) 0.166629(91) 0.167586(88)
32 0.30259(16) 0.18686(11) 0.168547(90) 0.166706(79) 0.167646(75)

64 16 0.29883(16) 0.18903(11) 0.171897(94) 0.169310(87) 0.169291(81)
24 0.30404(15) 0.190567(90) 0.172290(74) 0.169675(74) 0.169527(63)
32 0.30702(16) 0.191836(92) 0.172973(74) 0.169992(67) 0.169785(68)

TABLE 2.12: Wdec for L = 1, 2, 3, 4, 5, constrained, T = 0.29.
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Chapter 3

Global symmetries and partial
deconfinement

3.1 Introduction

In Sec. 1.3, we proposed that the partially confined phase could be identified in the
large N limit by the distribution of eigenvalues ρ(ψ). Because the centre symmetry is
preserved in the confined phase and broken in the partial and deconfined phases, the
Polyakov loop expectation value, P, can act as an order parameter to distinguish the
former from the latter. Meanwhile, the gap in ρ(ψ) can distinguish between the partial
and deconfined phases. However, this gap is not associated with any symmetry, and
hence is not an order parameter. The question therefore arises of whether any order
parameter can distinguish the partial and deconfined phases.1 To date, the only
proposals for such order parameters are in holography, and rely in part on arguments
about black holes (namely Gregory-Laflamme instabilities of small black holes in
AdS) [44; 15], but a completely generic proposal remains absent.

In this chapter, we propose an order parameter that can distinguish the partial and
deconfined phases. In short, we argue that if a global symmetry is spontaneously
broken in the confined phase and preserved in the deconfined phase, then that global
symmetry should be broken in the partial phase. As a result, the transition from the
deconfined to the partial phase should be accompanied by spontaneous breaking of
the global symmetry, and hence these two phases can be distinguished by an order
parameter. We present two examples in which this occurs, and then argue that such
behaviour is generic.

1An intuitive way to understand this transition in terms of symmetry is to relate it to the breaking and
restoration of gauge symmetry [17; 20; 24]. However, recall that gauge symmetry is a sort of redundancy,
unlike a global symmetry. Here we want to find a more conventional (and less-controversial) characteri-
sation, based on global symmetry.
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Our first example is N = 1 supersymmetric (SUSY) Yang-Mills (SYM) theory with
gauge group SU(N) on S1 × R3 with periodic boundary conditions for both the
gluons and gluino, and with a non-zero gluino mass. We also introduce a non-zero
θ-angle, θ = π, in which case a mixed CP-centre symmetry anomaly forces CP
symmetry to be spontaneously broken in the confined phase [45]. When θ = 0, CP
symmetry is preserved in both the confined and deconfined phases [45]. We work at
weak coupling, in the so-called Abelian large-N limit, which is distinct from the ’t
Hooft large limit, as we discuss in section 3.2. We also present some finite-N
numerical results, though we consider relatively large N ≥ 30.

Our second example is a strongly-coupled SU(N) YM theory on S1 times a
three-dimensional spatial lattice. We work in the ’t Hooft large-N limit and employ
Eguchi-Kawai reduction to a single site in space. We then add quarks in a probe limit,
so that to leading approximation the centre symmetry is not explicitly broken, while
chiral symmetry is spontaneously broken in the confined phase but restored in the
deconfined phase.

P
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T

Global symmetry

breaks here

Figure 2: Schematic depiction of the Polyakov loop expectation value, P , as a function
of temperature T for a confinement/deconfinement transition that is (a) first order or
(b) second order or higher, i.e. continuous. The blue, orange and red curves represent
the confined, partial, and deconfined phases, respectively. The theories we study in this
paper have first-order transitions, as in (a). We find that the global symmetry that is
spontaneously broken in the confined phase, namely CP or chiral symmetry, is also broken
in the partial phase. As a result, the transition from the deconfined to partial phases is
characterised by the spontaneous breaking of this global symmetry, as indicated in (a).

gauge group SU(N) on S1 ⇥R3 with periodic boundary conditions for both the gluons and
gluino, and with a non-zero gluino mass. We also introduce a non-zero ✓-angle ✓ = ⇡, in
which case a mixed CP-center symmetry anomaly forces CP symmetry to be spontaneously
broken in the confined phase [7]. When ✓ = 0, CP symmetry is preserved in both the
confined and deconfined phases [7]. We work at weak coupling in the so-called Abelian
large-N limit, which is distinct from the ’t Hooft large limit, as we discuss in section 2.

Our second example is a strongly-coupled SU(N) YM theory on S1 times a three-
dimensional spatial lattice. We work in the ’t Hooft large-N limit and employ Eguchi-Kawai
(EK) reduction to a single site in space. We then add quarks in a probe limit, so that to
leading approximation the center symmetry is not explicitly broken, while chiral symmetry
is spontaneously broken in the confined phase but restored in the deconfined phase.

In each case we perform large-N saddle point calculations and reproduce known results
for the confinement/deconfinement transition, which is first order in both theories, so that
P behaves as shown in fig. 2 (a). Our new results are numerical solutions for the unstable
saddles connecting the confined and deconfined phases, which using ⇢( ) we identify as
the partial phase. We also numerically compute the order parameters for CP and chiral
symmetry, respectively, and show that in each case this global symmetry is spontaneously
broken in the partial phase. As a result, in the transition from deconfined to partial phase,
the global symmetry breaks spontaneously, as we have indicated in fig. 2 (a).
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paper have first-order transitions, as in (a). We find that the global symmetry that is
spontaneously broken in the confined phase, namely CP or chiral symmetry, is also broken
in the partial phase. As a result, the transition from the deconfined to partial phases is
characterised by the spontaneous breaking of this global symmetry, as indicated in (a).
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(b)

FIGURE 3.1: Schematic depiction of the Polyakov loop expectation value, P, as a func-
tion of temperature T for a confinement/deconfinement transition that is (a) first order
or (b) second order or higher, i.e. continuous. The blue, orange and red curves repre-
sent the confined, partial, and deconfined phases, respectively. The theories we study
in this paper have first-order transitions, as in (a). We find that the global symmetry
that is spontaneously broken in the confined phase, namely CP or chiral symmetry,
is also broken in the partial phase. As a result, the transition from the deconfined to
partial phases is characterised by the spontaneous breaking of this global symmetry,

as indicated in (a).

In each case we perform numerical calculations, which for the lattice YM theory are in
the ’t Hooft large-N limit, while for N = 1 SYM, some are genuine finite-N
calculations. In each case, we reproduce known results for the
confinement/deconfinement transition, which is first order in both theories, so that P
behaves as shown in Fig. 3.1 (a). Our new results are numerical evaluations for the
unstable saddles connecting the confined and deconfined phases, where we identify
the partial phase using the Polyakov eigenvalue distribution. We also numerically
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compute the order parameters for CP and chiral symmetries, respectively, and show
that in each case this global symmetry is spontaneously broken in the partial phase.
As a result, in the transition from deconfined to partial phase, the global symmetry
breaks spontaneously, as we have indicated in Fig. 3.1 (a).

In short, our two examples share the following behaviour. In the confined phase, the
centre symmetry is preserved but another global symmetry, namely CP or chiral
symmetry, is spontaneously broken. In the deconfined phase, the centre symmetry is
spontaneously broken, but the other global symmetry is preserved. In the partial
phase, both symmetries are spontaneously broken. In these examples, we therefore
prove that the partial phase is distinguished by global symmetries from both the
confined and deconfined phases, and in particular, we identify an order parameter to
distinguish the deconfined and partial phases, as mentioned above.

Furthermore, we conjecture that such behaviour may be generic, and can be used to
identify, or even define, partial phases, in theories with both a centre symmetry and a
global symmetry that is spontaneously broken in the confined phase but preserved in
the deconfined phase. Specifically, the partial phase could be defined as the phase in
which both of these symmetries are spontaneously broken. Such a definition, using
symmetries alone, would obviously have advantages. In particular, such a definition
could apply for any N, not just the large-N limit. Indeed, our finite-N numerical
results for N = 1 SYM provide some compelling evidence for this.

However, we can provide more general plausibility arguments for this conjecture. For
instance, we expect that whatever strong-coupling physics breaks chiral symmetry in
a confined phase should occur also in a partial phase’s confined subsector. As a result,
if chiral symmetry is preserved in the deconfined phase, then chiral symmetry can
provide an order parameter distinguishing deconfined and partial phases. Anomalies
may provide a more rigorous argument, being independent of coupling strengths and
invariant under renormalisation group flows, including flows induced by T. For an
anomaly-matching argument that chiral symmetry should be partially broken in the
partial phase, see ref. [18]. Another example is N = 1 SYM with θ = π, where an
anomaly forces CP symmetry to be spontaneously broken at T = 0 [45]. As a result, as
we raise T, CP symmetry must remain spontaneously broken in the confined phase.
Presumably, in the partial phase the same anomaly arguments extend to the confined
subsector, and hence CP symmetry must be spontaneously broken, as indeed we
observe. Such arguments should generalise to any theory where an anomaly forces
spontaneous symmetry breaking in the confining vacuum: we expect the symmetry to
remain spontaneously broken in any T > 0 phase that has a confined subsector, and if
the symmetry is preserved in the deconfined phase, then this symmetry can provide
an order parameter distinguishing deconfined and partial phases.
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This chapter is organised as follows. In Sec. 3.2 we study mass-deformed N = 1 SYM
on S1 × R3, in Sec. 3.3 we study the EK reduction of strongly-coupled YM with probe
quarks, and in Sec. 3.4 we conclude with a summary and outlook for future research.
Two appendices contain technical results useful for our study of N = 1 SYM.

3.2 Weakly-coupled, softly-broken massive N = 1 SYM on
S1 × R3

In this section, we consider N = 1 SU(N) SYM on Euclidean S1 × R3, with a
non-zero gluino mass, which breaks SUSY. The action for this theory is

SSYM =
∫

dx0 d3 x⃗
[

1
4g2 tr(FµνFµν)− iθ

8π2 tr(Fµν F̃µν) +
2i
g2 tr(Ψ̄σ̄µDµΨ) +

m
g2 (tr(ΨΨ) + c.c.)

]
,

(3.1)
with x0 the S1 coordinate, x⃗ the R3 coordinates, g the gauge coupling, θ the
theta-angle, Fµν the field strength of the SU(N) gauge field Aµ, called the gluon,
where µ, ν = 0, 1, 2, 3, F̃µν the Hodge dual of Fµν, Ψ an adjoint Weyl fermion, called the
gluino, where DµΨ = ∂µΨ + i[Aµ, Ψ], and m the gluino mass.

If m = 0 then the theory has N = 1 SUSY. Although the fields in the action are then
massless, a mass gap is dynamically generated at the scale Λ, given at two-loop order
by [46; 47]

Λ3 ≡ 4π

3N
M3

PV Im τ(MPV) exp
[

2πi τ(MPV)

N

]
, (3.2a)

τ ≡
(

4π i
g2 +

θ

2π

)
, (3.2b)

with MPV a Pauli-Villars mass and τ(MPV) the running coupling in eq. (3.2b)
evaluated at MPV. If m ̸= 0, then all SUSY is broken, and in particular if m → ∞ then
the theory reduces to pure SU(N) YM theory.

The theory in eq. (3.1) has a ZN centre symmetry for all values of N, g, θ, and m, and
has CP symmetry for all N, g, and m, but only for certain values of θ. To see why,
recall that the term 1

8π2 tr(FF̃) in eq. (3.1) is CP-odd and topological, and that the
integral of this term takes integer values. As a result, θ is periodic, θ ∼ θ + 2π, and
transforms under CP as θ → −θ. The theory thus has CP symmetry only when θ = 0
or θ = π mod 2π. In what follows, for brevity we will restrict to θ ∈ [0, π], leaving the
2π periodicity implicit.

The theory in eq. (3.1) has a mixed CP-centre symmetry anomaly. Assuming that the
vacuum is gapped and confining for all θ, when θ = π this anomaly forces the
vacuum to break CP symmetry spontaneously [45], an effect known as the Dashen
phenomenon [48].
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We denote the S1 circumference as L. If we write the generating functional of
connected correlation functions as a path integral, we have two options for boundary
conditions around the S1. First are “thermal” boundary conditions, namely a periodic
boundary condition for the gluon and an anti-periodic boundary condition for the
gluino. The resulting path integral computes correlators in a thermal state at
temperature T = 1/L. For example, the path integral with no operator insertions gives
the partition function, i.e. the exponential of minus the free energy over T. If we could
compute such a path integral, then we could identify phase transitions from the free
energy. However, such a path integral is prohibitively difficult to calculate:
perturbative methods are unreliable because deconfinement occurs when T ∼ Λ and
so the theory is strongly coupled, and lattice methods are unreliable because we want
θ = π, but any θ ̸= 0 has a “sign problem” due to the i multiplying θ in eq. (3.1),
which comes from the Wick rotation to Euclidean signature.

Following ref. [49], we thus choose the second option for boundary conditions,
namely periodic boundary conditions around the S1 for both the gluon and gluino.
These boundary conditions preserve SUSY, which at first may not seem helpful. If
SUSY is preserved then the path integral with no operator insertions is a Witten
index [50; 51], which counts SUSY ground states. For gauge group SU(N), this
theory’s Witten index is simply SU(N)’s dual Coxeter number, N. Moreover, the
Witten index is invariant under any continuous deformation that preserves SUSY,
including continuous changes in 1/L. As a result, no phase transitions can occur as a
function of 1/L: the theory is always in a confined phase, with centre symmetry
preserved, and CP symmetry preserved when θ = 0, explicitly broken when
θ ∈ (0, π), and spontaneously broken when θ = π.

However, following ref. [49], we will break SUSY softly by introducing a small gluino
mass, m ≪ Λ, so that the path integral is no longer a Witten index, and in particular
can vary as a function of 1/L, allowing for the possibility of phase transitions.
Actually, strictly speaking, given our boundary conditions, any changes in symmetries
will be quantum phase transitions, occurring at T = 0, and hence arising from quantum
rather than thermal fluctuations. Nevertheless, again following ref. [49], to guide our
intuition we will think of 1/L as temperature, treat the path integral as a measure of
“free energy”, and refer to any symmetry changes simply as “phase transitions”.

Crucially, when m ≪ Λ, SUSY still provides enough control to compute the path
integral, at least in combination with approximations that we will describe in detail in
sec. 3.2.1, including L small enough to justify perturbation theory in g(1/L) ≪ 1, and
energy small enough to justify an effective description, i.e. to integrate out all but the
lightest modes. In these limits, for any N and θ a deconfinement transition occurs as L
shrinks, so that centre symmetry breaks spontaneously at some critical L, i.e. some
critical “temperature”. The deconfinement transition is first order when N > 2 and
second order when N = 2 [52]. When θ = 0 or θ = (0, π), CP symmetry is unchanged
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in the deconfinement transition, remaining preserved or explicitly broken,
respectively. However, when θ = π, CP symmetry is restored at some critical L, which
for N > 2 is the same critical L as deconfinement, but when N = 2 is a smaller critical
L. Indeed, the main result of ref. [49] is that when N = 2, as L shrinks deconfinement
occurs before CP restoration, producing, for some range of L, a phase with
spontaneously broken centre and CP symmetries. From our perspective, this is a
partial phase.

In sec. 3.2.1 we will work in the limits mentioned above: m ≪ Λ, small L, and low
energy. In particular, following refs. [53; 54; 47; 52; 55; 56] we will perform a
dimensional reduction on the S1, retaining sufficiently light modes, and obtaining an
effective theory on R3. If we then take the so-called Abelian large-N limit, explained
below, then the extrema of that effective theory’s potential give the free energy of the
original theory on S1 × R3. In sec. 3.2.2, we will review known solutions for locally
stable minima describing the confined phase for any N, and the deconfined phase in
the Abelian large-N limit. In sec. 3.2.3 we will present novel solutions for locally
unstable maxima describing the partial phase in the Abelian large-N limit. Our main
result will be that in the partial phase, tr(Fµν F̃µν) has a non-zero expectation value,
⟨tr(Fµν F̃µν)⟩ ̸= 0, indicating spontaneous breaking of CP symmetry. As a result,
⟨tr(Fµν F̃µν)⟩ provides a gauge-invariant order parameter distinguishing the
deconfined and partial phases.

3.2.1 The Effective Theory on R3

In this subsection we will briefly review the derivation of the effective theory of
refs. [52; 54; 47; 55], reviewed recently in ref. [56]. The derivation consists of
Kaluza-Klein (KK) reducing all fields on the S1 and integrating out all modes except
the lightest modes, thus obtaining an effective theory of these light modes in R3. Our
goal is to derive this effective theory’s (bosonic) potential, V , whose extrema give the
free energy of the original theory on S1 × R3. We will begin with m = 0, and exploit
the full power of SUSY to derive the effective theory in R3. We will then break SUSY
softly, by introducing m ≪ Λ, and compute V to order m, and in the limit of weak
coupling, as mentioned above.

In the KK reduction from S1 × R3 to R3, the gluon’s S1 component, A0, reduces to a
KK tower of adjoint scalars in R3, including a massless adjoint scalar. In fact, we can
gauge away the massive adjoint scalars: via gauge transformations we make A0

constant over the S1. We can also gauge transform A0 to be diagonal in SU(N). Doing
so makes the Polyakov loop operator diagonal, with each diagonal entry being pure
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phase,

⟨Pei
∮

dx0 A0⟩ = ⟨eiLA0⟩ =


eiϕ0

. . .

eiϕN−1

 , (3.3)

where P denotes path-ordering, each phase ϕi is 2π periodic, ϕi ∼ ϕi + 2π for
i = 0, . . . , N − 1, and because the gauge group is SU(N), ∑N−1

i=0 ϕi ≡ 0 mod 2π. The
only remaining gauge invariance is the Weyl group, which for SU(N) is the
permutation group, SN . We use SN permutations to order the phases,

0 ≤ ϕN−1 ≤ ϕN−2 ≤ · · · ≤ ϕ0 ≤ 2π, (3.4)

modulo their periodic identifications. With these choices we have fixed the gauge
completely. We next collect these phases into an N-component vector,

ϕ = (ϕ0, ϕ1, · · · , ϕN−1), (3.5)

which in the effective theory on R3 is an adjoint Higgs field.

In the KK reduction, the gluon’s spatial components reduce to a KK tower of vector
fields in R3, including massless SU(N) gauge fields and their massive KK partners.
The gluino reduces to a KK tower of fermionic fields, which when m = 0 are the
superpartners of the vector fields and the adjoint Higgs field, ϕ. We integrate out all
the massive KK fields, obtaining an effective theory of the massless fields alone,
namely the massless SU(N) vector, a massless three-dimensional Dirac fermion, and
ϕ, which together comprise a three-dimensional N = 2 vector multiplet.

A non-trivial Higgs field ϕ breaks the gauge group SU(N) to a subgroup. Following
refs. [52; 54; 47; 55; 56], we assume that all the phases ϕi are distinct, so that the gauge
group breaks to the maximal Abelian subgroup, SU(N) → U(1)N−1. Such a vacuum
is generic, compared to vacua where some ϕi are the same, and hence SU(N) breaks to
a subgroup with at least one non-Abelian factor. In the maximal Abelian case, the
off-diagonal entries of the SU(N) gauge field, also known as the W-bosons, acquire
masses ≥ 2π

NL , whereas the diagonal gauge field entries comprise a number N of
massless U(1) gauge fields in R3. We integrate out the W-bosons, obtaining an
effective theory of the massless fields alone, namely the N U(1) gauge fields, the
adjoint Higgs field ϕ, and their fermionic superpartners. These fields interact with
coupling strength g( 2π

NL ), that is, the running coupling “frozen” at the scale of the
lightest W-boson. As mentioned above, we assume 2π

NL ≫ Λ, so that g( 2π
NL ) ≪ 1.

Henceforth, g will always denote g( 2π
NL ).

Again following refs. [52; 54; 47; 55; 56], we collect the N U(1) gauge fields into an
N-component vector of Abelian gauge fields, A. We then Hodge dualise in R3 to
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obtain an N-component scalar field, σ, the “scalar photon”. Explicitly, we define σ via
dσ ≡ 4πL

g2 (∗dA). Both ϕ and σ come from a compact gauge group, so the components
of each are 2π periodic.

The massless sector now consists of σ, ϕ, and their fermionic superpartners. Together,
these comprise a number N of three-dimensional N = 2 chiral superfields. We collect
these into an N-component N = 2 chiral superfield, X = (X0, X1, . . . , XN−1), whose
lowest component is an N-component complex scalar, z, built from ϕ and σ:

z ≡ i [τ(ϕ − ϕW) + σ] , (3.6)

where ϕW is proportional to the SU(N) Weyl vector: (ϕW)j =
2π
N (N − 1 − j) for

j = 0, 1, . . . , N − 1. SUSY requires the bosonic part of the effective action to take the
form [54]

Seff =
∫

d3 x⃗
[
K(X, X†)|ΘΘΘ̄Θ̄ +W(X)|ΘΘ + W̄(X†)|Θ̄Θ̄

]
, (3.7)

where Θ and Θ̄ are the fermionic coordinates of superspace, K(X, X†) is the Kähler
potential, and W(X) is the superpotential. The bosonic potential is then

V =

(
∂2K

∂dz ∂dz†

)−1 ∣∣∣∣∂W∂z

∣∣∣∣2 . (3.8)

In the effective theory of refs. [52; 47; 55; 56], the Kähler potential includes a trivial,
classical contribution, plus perturbative loop corrections. In what follows, we will
need only the trivial, classical contribution, for which the bosonic fields’ kinetic terms
are simply

K(X, X†)|ΘΘΘ̄Θ̄ =
g2

16π2L
|dz|2 =

1
g2L

|dϕ|2 + g2

16π2L
|dσ +

θ

2π
dϕ|2. (3.9)

Generically, in any SUSY theory the superpotential, W , is a sum of two contributions,
one perturbative and one non-perturbative. In this case, the classical superpotential
vanishes, and SUSY non-renormalisation theorems subsequently guarantee that all
perturbative contributions vanish.

The non-perturbative contribution to W is non-zero due to so-called
monopole-instantons, which come from the KK reduction of instantons.
Monopole-instantons have non-zero Chern number, and hence non-zero topological
charge, and an index theorem then implies that they have two fermionic zero
modes [57]. They can therefore contribute to W . The resulting form of W is
determined, up to an overall constant, by holomorphy in X, single-valuedness under
the periodic shifts in σ, and the R-symmetry. A calculation of Ψ’s two-point correlator
then fixes the overall constant. Detailed discussions of the monopole-instantons and
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their contribution to W , appear in refs. [52; 54; 47; 55; 57; 56]. We only need the final
result for W , which is

W(X) =
LMPV

g2

(
N−1

∑
j=0

e(Xj−Xj+1) + e2πiτ+(X0−X1)

)
. (3.10)

The monopole-instanton operators are

Mj ≡ exp
(
(zj − zj+1) + i

θ

N

)
, (3.11)

where for j = N − 1 we define zj+1 = zN ≡ z0. Crucially, the Mj are not all
independent: their definition in eq. (3.11) implies the constraint,

M0 × M1 × · · · × MN−1 = eiθ . (3.12)

Evaluating W in eq. (3.10) on the lowest component of X shows explicitly how the
monopole-instantons contribute:

W(z) =
LMPV

g2 e−i θ
N

[
N−1

∑
j=0

Mj + e2πiτ M0

]
. (3.13)

Plugging K from eq. (3.9) and W from eq. (3.13) into eq. (3.8) gives us the bosonic
potential,

V = V0

N−1

∑
j=0

|Mj − Mj−1|2, (3.14a)

= V0

N−1

∑
i=0

[
Mj M∗

j − Mj M∗
j−1 − Mj−1M∗

j + Mj−1M∗
j−1

]
, (3.14b)

where the overall constant is most compactly written in terms of Λ in eq. (3.2a),

V0 ≡ 9 N2

(4π)2
L3 Λ6

g2 . (3.15)

Although the superpotential W in eq. (3.13) received contributions from individual
monopole-instantons, Mj, the bosonic potential V in eq. (3.14) receives contributions
only from bound states of monopole-instantons with anti-monopole-instantons, such
as Mj M∗

j . These so-called “bions” have zero net topological charge, and hence have no
fermionic zero modes. A microscopic analysis shows that these bions are held
together by fermion exchange [58].

Using eqs. (3.6) and (3.11) we can determine how the monopole-instantons Mj

transform under centre and CP symmetries. A centre symmetry transformation
simply permutes the Polyakov line phases, ϕj → ϕj+1, with ϕN+1 ≡ ϕ0. A CP
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symmetry transformation sends θ → −θ, leaving everything else in Mj unchanged.
We thus find

centre: Mj → Mj+1,
CP: Mj → M∗

j .

As a result, centre symmetry is preserved only when all the Mj take the same value,
and CP symmetry is preserved only when all the Mj are real-valued. The bion
contributions to V in eq. (3.14) provide a repulsive interaction for the ϕj, and hence
ultimate produce centre symmetry and confinement. The potential in eq. (3.14) also
clearly preserves CP symmetry.

We now introduce a small gaugino mass, m ≪ Λ, to break SUSY softly. In this case,
we can write V as a sum of two contributions, one perturbative and one
non-perturbative, where each contribution consists of the SUSY result plus terms
scaling with powers of m.

When m ≪ Λ, the perturbative contribution to V (sometimes called the
Gross-Pisarski-Yaffe potential [59]) becomes non-zero, but turns out to be
O(m2V0 g6 N2) [49; 52; 47]. In our limit g ≪ 1, this will be sub-leading compared to
the non-perturbative contribution described below, so we will henceforth ignore the
perturbative contribution to V .

When SUSY is broken, the non-perturbative contribution to V again comes from
monopole-instantons with no fermion zero modes. However, m lifts the fermion zero
modes of the monopole-instantons and anti-monopole instantons, Mj and M∗

j , so that
these can now contribute individually, rather than only via bions. In other words,
(anti-)monopole-instantons with non-zero topological charge can now contribute.
Indeed, to leading non-trivial order in m, the result of refs. [52; 47; 55] for the bosonic
potential is

V = V0

N−1

∑
j=0

|Mj − Mj−1|2 − V0
γ

2

[
1 − g2 N

(4π)2 log
(

M∗
j Mj

)] (
Mj + M∗

j

)
, (3.16)

where we have defined

γ ≡ 32π2

3N2
m

L2Λ3 , (3.17)

which is a measure of the inverse circumference, L. In what follows, we will treat γ as
a proxy for temperature, or more precisely, because γ ∝ L−2, as a proxy for T2. We will
also re-scale the bosonic potential by V0,

V ≡ V/V0, (3.18)
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and henceforth we will work only with the re-scaled bosonic potential, V, rather than
V .

While the bion contributions to V provide a repulsive interaction for the ϕj, thus
encouraging centre symmetry and confinement, in contrast, the individual
monopole-instanton contributions provide an attractive interaction for the ϕj,
encouraging them to bunch up and break centre symmetry, signaling deconfinement.
As the “temperature” γ increases, the latter contributions increase until a
deconfinement transition occurs that is first order when N > 2 and second order when
N = 2, as mentioned above [49; 52; 47; 55; 56].

We will work with coupling g sufficiently weak that the kinetic terms, including those
for the bosons in eq. (3.9), are negligible, and the potential in eqs. (3.16) and (3.18)
reduces to

V =
N−1

∑
j=0

|Mj − Mj−1|2 −
γ

2

N−1

∑
j=0

(
Mj + M∗

j

)
. (3.19)

Eq. (3.19) is the effective action that we will use in all that follows. The weak-coupling
limit also justifies a saddle-point approximation, where for us the extrema of the
effective action are the extrema of V in eq. (3.19), subject to the constraint in eq. (3.12).
These extrema coincide with the “free energy” of the mass-deformed N = 1 SU(N)
super Yang-Mills on R3×S1, so we will use the symbol V to denote this free energy as
well.

This effective action is valid for any N, however for a precise definition of the partial
phase we need a continuous eigenvalue spectrum, which requires N → ∞. Crucially,
as observed in ref. [47], this effective theory breaks down in the standard ’t Hooft
large-N limit, N → ∞ with g2N is fixed, because the W-boson masses, which are
∝ 1/(NL), approach zero. In the ’t Hooft large-N limit we would thus need to modify
the effective action to include these “extra” massless degrees of freedom.

Instead of the ’t Hooft large-N limit, following refs. [47; 49] we will take the so-called
Abelian large-N limit: N → ∞ with the W-boson masses fixed, so that in particular
L ∝ 1/N → 0, that is, we shrink the S1. The hierarchy of scales thus remains
m ≪ Λ ≪ 2π/(NL). To emphasise how the ’t Hooft and Abelian large-N limits are
different: the former has g ∝ 1/N2 → 0 with any L, while the latter has any g with
L ∝ 1/N → 0. In other words, the ’t Hooft large-N limit says nothing about L, while
the Abelian large-N limit says nothing about g.

3.2.2 Review: Confined and Deconfined Phases

In this subsection we will discuss the two extrema of the effective theory with action V
in eq. (3.19) that were discovered in ref. [49]. These extrema are minima describing the
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confined and deconfined phases. In the next subsection we will present our new
results for the maximum that connects these minima, and which describes the partial
phase.

A central challenge in extremising V in eq. (3.19) is implementing the constraint in
eq. (3.12). We can deal with this constraint in several ways. A simple approach is to
treat M0 as a function of M1, M2, · · · , MN−1, as M0 = eiθ

M1×···×MN−1
. In that case, for

j > 0, we easily find ∂M0
∂Mj

= −M0
Mj

. The saddle-point equation, ∂V
∂Mj

= 0, can then be
written as

2M∗
j − M∗

j+1 − M∗
j−1 +

M0

Mj
(M∗

1 − M∗
0) +

M0

Mj
(M∗

N−1 − M∗
0)−

γ

2
+

γ

2
M0

Mj
= 0. (3.20)

3.2.2.1 Confined phase

Ref. [49] found the saddle point solution of eq. (3.20) describing the confined
phase, valid for any N (not just large N):

M0 = M1 = M2 = · · · = MN−1 = eiθ/N . (3.21)

The free energy of the confined phase is then

V|conf = −Nγ cos(θ/N). (3.22)

To see that the solution in eq. (3.21) describes the confined phase, we use the
definitions of zj and Mj in eqs. (3.6) and (3.11), respectively, to find an expression for
the Polyakov loop phases ϕj in terms of the Mj,

ϕj − ϕj+1 =
2π

N
− g2

4π
log |Mj|. (3.23)

In eq. (3.21), |Mj| = 1 for all j, hence from eq. (3.23) we have ϕj − ϕj+1 = 2π
N . This

saddle-point solution therefore possesses a uniform Polyakov phase distribution, and
thus unbroken centre symmetry, indicating that this is indeed the confined phase. The
distribution is normalised, having height 1

2π .

As an order parameter for the CP symmetry we will use ∂V
∂θ , which in the effective

theory is proportional to the expectation value of a CP-odd operator, namely the
instanton density: ∂V

∂θ ∝ ⟨tr(Fµν F̃µν)⟩. From eqs. (3.21) and (3.22) we find

∂V
∂θ

∣∣∣∣
conf

= γ sin (θ/N) . (3.24)

When θ = 0, the CP symmetry is not explicitly broken, and the Mj in eq. (3.21) are
purely real, hence CP symmetry is not spontaneously broken. Correspondingly,
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∂V
∂θ

∣∣∣
con

= 0. When θ ∈ (0, π), CP symmetry is explicitly broken, and unsurprisingly, all

the Mj in eq. (3.21) are complex, and ∂V
∂θ

∣∣∣
con

̸= 0. When θ = π, the CP symmetry is not
explicitly broken, but all the Mj’s in eq. (3.21) are complex, hence CP symmetry is

spontaneously broken. Correspondingly, ∂V
∂θ

∣∣∣
con

= γ sin(π/N) ̸= 0.

The results above are valid for any N. If we take the Abelian large-N limit, then
remembering from eq. (3.17) that γ ∝ N−2, we find that V|conf ∼ N−1, while
∂V
∂θ

∣∣∣
conf

∼ N−3. These large-N scalings are in fact generic, as we will see below.

3.2.2.2 Deconfined phase

Following ref. [49], we find the saddle point solution describing the deconfined phase
only in the Abelian large N limit, as follows.

To deal with the constraint in eq. (3.12), we will assume that M0 is much smaller than
all the other Mj, that is, M0 ≪ Mj for all j > 0. As we will see later, this is
self-consistent only for sufficiently large temperature γ. With this assumption, the
saddle-point equation as written in eq. (3.20) simplifies to

2M∗
j − M∗

j+1 − M∗
j−1 −

γ

2
= 0. (3.25)

To solve eq. (3.25), we take all the Mj’s to be real-valued, which among other things
ensures that the solution will preserve CP symmetry. We also take the Abelian large-N
limit with N sufficiently large to justify a continuum approximation, and retain only
contributions at leading order in N. Specifically, we treat t ≡ j

N − 1
2 as a continuous

“time” parameter, and we use a notation X(t) ≡ Mj. Using the periodicity
X(t) = X(t + 1) we can take t ∈ [−1/2, 1/2]. Furthermore, since our temperature
parameter γ ∝ N−2 from eq. (3.17), we also define for convenience a re-scaled
temperature parameter that will remain order N0 in the Abelian large-N limit,

γ̃ ≡ N2γ. (3.26)

With these approximations and definitions, eq. (3.25) becomes a simple second-order,
linear, ordinary differential equation,

X′′(t) = − γ̃

2
, (3.27)

where X′(t) ≡ dX
dt . The solution of eq. (3.27) is quadratic in t,

X(t) = A + Bt − γ̃

4
t2, (3.28)
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with integration constants A and B. Plugging the solution in eq. (3.28) and our
approximations and definitions into the effective action V in eq. (3.19), we find

V =
1
N

∫ +1/2

−1/2
|X′|2dt − γ̃

N

∫ +1/2

−1/2
Xdt + X(−1/2)2 + X(1/2)2. (3.29)

The last two terms come from |M1 − M0|2 and |MN−1 − M0|2, which have to be
treated separately because we assumed M0 to be an outlier. Assuming that X is of
order N0, the first two terms in eq. (3.29), i.e. the terms involving integrals over t, are
actually sub-leading in N, while the last two terms are dominant. We already
minimised the former by solving eq. (3.27), so to be consistent we must also minimise
the latter, meaning we take

X(−1/2) = X(1/2) = 0. (3.30)

These boundary conditions fix the integration constants A and B, so that the
saddle-point solution in eq. (3.28) becomes

X(t) =
γ̃

16
(
1 − 4t2) . (3.31)

The corresponding free energy is

V|deconf = − 1
48

γ̃2

N
. (3.32)

This conforms to the generic behaviour V ∼ N−1 mentioned at the end of sec. 3.2.2.1.

We now need to check when M0 ≪ Mj for j > 0, and hence the solution is
self-consistent. To do so, we follow ref. [49], and estimate M0 by integrating log(X(t))
over t ∈ [−1/2, 1/2], which gives the continuum version of ∑j>0 ln Mj, and then
exponentiating and using M0 = eiθ/(M1 . . . MN) to obtain

M0 ≃ eiθ

N

(
4e2

γ̃

)N−1

, (3.33)

where because we assumed all the Mj are real, including M0, in eq. (3.33) θ = 0 or π.
For M0 to be vanishingly small, we demand 4e2

γ̃ < 1, or equivalently
γ̃ > 4e2 = 29.556 · · · . In other words, we need the temperature γ̃ ≡ N2γ to be
sufficiently large, as advertised.

Let us now show that the centre symmetry is spontaneously broken. Eq. (3.33) gives

− g2

4π
ln |M0| ∼ − g2

4π
N log

(
4e2

γ̃

)
, (3.34)



3.2. Weakly-coupled, softly-broken massive N = 1 SYM on S1 × R3 73

which indeed can be much bigger than that of all the other Mj. Defining for
convenience

ϵ ≡ N
g2

4π
, (3.35)

and using eq. (3.23), we find a finite spacing between the Polyakov loop phases ϕ1 and
ϕ0,

ϕ0 − ϕ1 ≃ −ϵ log
(

4e2

γ̃

)
, (3.36)

which is ≥ 0 in our limit 4e2

γ̃ < 1. As a result, the saddle point solution in eq. (3.31)
describes a distribution of Polyakov line phases with a gap, and thus the centre
symmetry is broken, indicating that this is indeed the deconfined phase. The gap
closes as 4e2/γ̃ → 1. As we will see in subsection 3.2.3, 4e2/γ̃ = 1 can be regarded as
the GWW transition point.

The rest of the distribution behaves as follows. The solution X(t) starts at zero when
t = − 1

2 , goes all the way up to γ̃
16 > 1 when t = 0, and then comes down to zero when

t = 1
2 . As a result, as t increases ln(X(t)) is initially negative, then at some point turns

positive, and then becomes negative again. If X(t) < 1 then ϕj − ϕj+1 < 2π
N , namely

the distribution is more dense. If X(t) > 1 then ϕj − ϕj+1 > 2π
N , namely the

distribution is more sparse. In short, the Polyakov phases grow sparser as j increases.

As mentioned below eq. (3.25), this saddle-point solution assumed all the Mj are real,
and hence CP symmetry is not spontaneously broken. Correspondingly, the V in
eq. (3.29) or (3.32) does not depend on θ at all. As a result, ∂V

∂θ = 0, and hence our order
parameter for CP symmetry breaking vanishes, ⟨tr(Fµν F̃µν)⟩ = 0.

3.2.3 Partial phase

In this subsection, we will find new solutions of the effective theory with action V in
eq. (3.19) that describe a partial phase. We will begin with the Abelian large-N limit,
and with θ = 0, where we will find an unstable partial phase connecting the confined
and deconfined phases. Of course, when θ = 0 in this theory, CP symmetry is
unbroken in both the confined and deconfined phases. We will find that CP symmetry
is unbroken in the partial phase as well. We then consider θ = π, where CP symmetry
is broken in the confined phase and restored in the deconfined phase. We will find
that when θ = π, CP symmetry is broken in the partial phase.

We will then perform numerical computations with finite N, although we restrict to
numerically large values N ≥ 30. Our finite-N results are similar to those of the
Abelian large-N limit. In particular, we will identify a partial phase that connects the
confined and deconfined phases and, when θ = π, exhibits spontaneous breaking of
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CP symmetry. Our numerical results thus support our conjecture that the partial
phase can be distinguished from both confined and deconfined phases by global
symmetries, even at finite N.

3.2.3.1 Abelian large-N limit

We begin with the Abelian large-N limit, where we will use the continuous time
parameter t and Mj → X(t), as defined in sec. 3.2.2.2. We will begin with θ = 0, and
will assume the Mj are all real, so that CP symmetry is unbroken. The large-N
continuum limit of eq. (3.20) can then be written as

X′′(t) =
X(−1/2)

X(t)

(
X′′(−1/2) +

γ̃

2

)
− γ̃

2
, (3.37)

where for convenience we choose X(−1/2) to be the minimum of the configuration.
We must find solutions of eq. (3.37) that are periodic, X(t) = X(t + 1), and that obey
the continuum version of the constraint in eq. (3.12),

∫ +1/2

−1/2
dt log X(t) = iθ, (3.38)

with θ = 0.

For given initial values X(−1/2) and X′′(−1/2), we solve eq. (3.37) numerically by
the second-order Taylor method, reviewed in appendix 3.A. Actually, we numerically
solve an equivalent equation, obtained by multiplying eq. (3.37) by 2X′(t), integrating
from time 0 to t, and then taking the square root:

X′(t) = ±
√

X(−1/2) log
( X(t)

X(−1/2)

)
(2X′′(−1/2) + γ̃)− γ̃(X(t)− X(−1/2)),

(3.39)

where we used X′(−1/2) = 0 to set the integration constant. This is a consequence of
our convention Mj = MN−j and the smoothness of the solution. Since we chose
X(−1/2) as the minimum, we use the + branch of the root in eq. (3.39) in all of our
computations.

For a particular choice of X(−1/2) and X′′(−1/2) we check for the periodicity
condition by integrating eq. (3.39) numerically to obtain the half-period τ,

τ =
∫ Xmax

X(−1/2)

dX√
X(−1/2) log

(
X

X(−1/2)

)
(2X′′(−1/2) + γ̃)− γ̃(X − X(−1/2))

. (3.40)
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A solution with the required periodicity will have τ = 1
2 . For fixed X(−1/2), we use

Newton’s method to find X′′(−1/2) such that τ = 1
2 is satisfied to high precision.

For a given value of X(−1/2), therefore, we finally need to satisfy the constraint in
eq. (3.38). To do so, we use the bisection method, varying upper and lower bounds on
X(−1/2) until the corresponding solution X(t) satisfies eq. (3.38) to high precision. By
choosing the initial upper and lower bounds on X(−1/2) to be between 0 and 1, we
are able to avoid the confined and deconfined solutions reviewed in subsection 3.2.2.

Given a numerical solution for X(t), we can straightforwardly compute the on-shell
action V. Fig. 3.2 shows our numerical results for NV as a function of the
“temperature” γ̃, together with the results for NV in the confined phase eq. (3.22) and
in the deconfined phase from eq. (3.32). (Appendix 3.A describes in detail how we
determine the numerical uncertainties in V and X(−1/2).) In fig. 3.2 we observe the
“swallow-tail” shape characteristic of a first-order phase transition, with the partial
phase as the unstable branch connecting the confined and deconfined branches.

30 40 50 60
Temperature 

60

50

40

30

20

10

N
V

confined
deconfined
partial

FIGURE 3.2: Free energy V times N versus “temperature” γ̃ in the Abelian N = ∞
limit, for any θ. We show NV of the confined phase from eq. (3.22) (blue line), the
deconfined phase from eq. (3.32) (red line), and our numerical results for the partial
phase (gold plus signs). We find the “swallow-tail” shape characteristic of a first-order
phase transition, with the partial phase as the unstable branch connecting the confined

and deconfined branches.

When θ = 0, CP symmetry is preserved in all three phases. To study the spontaneous
breaking of CP symmetry we need to set θ = π, and compute our order parameter,
∂V
∂θ ∝ ⟨tr(Fµν F̃µν)⟩. Crucially, however, in the Abelian large-N limit, generically
V ∼ N−1, while ∂V

∂θ ∼ N−3, as we saw for example in the confined phase of sec. 3.2.2.1,
and as we will find for the partial phase below. In other words, our results for NV in
fig. 3.2 are in fact the leading contribution in the Abelian large-N limit for any value of
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θ. We therefore do not need to re-compute NV for θ = π: the result is the same as in
fig. 3.2.

For θ = 0 we assumed the Mj were real-valued, hence ∂V
∂θ = 0. If θ ̸= 0, then we expect

∂V
∂θ ∼ N−3. Generically, the magnitudes |Mj| ∼ N0, hence their leading contribution to
∂V
∂θ will be unchanged in going from θ = 0 to θ = π. In other words, to compute ∂V

∂θ

when θ ̸= 0, we can use our existing solutions for the magnitudes |Mj|. By extension,
if θ ̸= 0, then ∂V

∂θ can be non-zero only due to the phases of the Mj. We thus need to
compute the phases of the Mj, in the Abelian large-N limit.

Writing Mj = |Mj|eiφj , from V in eq. (3.19) we find

∂V
∂φj

= |Mj|
(
2|Mj+1| sin

(
φj − φj+1

)
+ 2|Mj−1| sin

(
φj − φj−1

)
+ γ sin

(
φj
))

, (3.41)

while the constraint in eq. (3.12) becomes

N−1

∑
j=0

φj = θ. (3.42)

The confined phase satisfies this constraint with φj = θ N−1 for all j, while in the
deconfined phase all of the θ dependence is in φ0 = θ. Generically, the partial phase
satisfies this constraint with all φj being different, but with φj ∼ N−1 for all j. Using
the constraint, we can write the equation of motion of each φj as

∂V
∂φj

=
∂V
∂φ0

, (3.43)

that is, because of the constraint, all ∂V/∂φj take the same value, namely ∂V/∂φ0.
Large-N counting in this equation of motion provides another way to see φj ∼ N−1 for
all j, assuming γ̃ is an order N0 distance from the GWW transition, so that |Mj| ∼ N0.

As mentioned above, when θ ̸= 0, to compute ∂V
∂θ we can use the solutions for the |Mj|

at θ = 0, so the only new contribution is from the φj. We can thus write

∂V
∂θ

= ∑
j

∂φj

∂θ

∂V
∂φj

. (3.44)

Taking ∂/∂θ of the constraint in eq. (3.42) gives us

∑
j

∂φj

∂θ
= 1. (3.45)

Using eqs. (3.43) and (3.45), we can re-write eq. (3.44) as

∂V
∂θ

=
∂V
∂φj

, (3.46)
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that is, to obtain ∂V
∂θ we can just compute ∂V/∂φj for any one value of j. If we choose

j = 0, then

∂V
∂θ

= |M0| (2|M1| sin(φ0 − φ1) + 2|MN−1| sin(φ0 − φN−1) + γ sin(φ0)) . (3.47)

From eq. (3.47) we can argue that the order parameter will jump discontinuously at
the GWW transition, as we expect for a first-order transition. In general, as we
approach the GWW transition we expect ϕ0 → π and ϕ±1 → 0, so that the partial
phase matches onto the deconfined phase. In eq. (3.47), as we approach the GWW
transition, naı̈vely we expect each sine function to approach zero, and hence ∂V

∂θ → 0,
indicating restoration of CP symmetry, as expected. Additionally, as we approach the
GWW transition, we expect |M0| → 0 tends towards zero, further suppressing ∂V

∂θ .
Our finite-N results in the next subsection will indeed exhibit such behaviour,
although |M0| will never precisely reach zero (but will decrease at the GWW
transition as N increases). However, as mentioned above, in the Abelian large-N limit,
φj ∼ N−1 for all j, including j = 0, so as we approach the GWW transition we will not
see φ0 → π smoothly. Instead, in the GWW transition, φ0 will jump discontinuously
from φ0 ∼ N−1 in the partial phase to φ0 = π in the deconfined phase, and
correspondingly ∂V

∂θ will jump discontinuously. In the Abelian large-N limit, the CP
symmetry restoration transition at the GWW point will therefore be first order.

To solve for the φj in the Abelian large-N limit, we expand the sine functions in
eq. (3.41) to linear order, and then take the continuum limit and introduce the time
parameter t from sec. 3.2.2.2, with φj → φ(t), so that eq. (3.43) becomes a differential
equation for φ(t). In this equation, X(t) and its derivatives appear. To leading order in
N we can use our existing θ = 0 solutions for these, which allows us to write φ(t)’s
equation of motion as

φ′′(t) =
−4XX′φ′ + 2X(−1/2)2φ′′(−1/2) + γ̃(Xφ − X(−1/2)φ(−1/2))

2X2 . (3.48)

A solution φ(t) must also be periodic, φ(t + 1) = φ(t), and obey the continuum
version of the constraint in eq. (3.42)

∫ 1/2

−1/2
dt φ(t) = θ. (3.49)

For given values of φ(−1/2) and φ′′(−1/2), we solve eq. (3.48) numerically using the
second-order Taylor method, in analogy to what we did for X(t) above (and reviewed
in Appendix 3.A). To guarantee that φ(t) is periodic in t and obeys the constraint in
eq. (3.49), we fix values of φ(−1/2) and φ′′(−1/2), as follows. We first choose
φ(−1/2) = 1, and use the bisection method to determine φ′′(−1/2) such that the
extreme values of φ(t) occur at the terminating values of t, i.e. φ′(± 1

2 ) = 0. This
guarantees that the solution φ(t) will be periodic. To guarantee that the solution obeys



78 Chapter 3. Global symmetries and partial deconfinement

the constraint in eq. (3.49), we observe that eq. (3.48) is linear in φ(t), and hence
remains unchanged under a re-scaling of φ(t). We thus simply re-scale φ(−1/2) and
φ′′(−1/2) until the constraint in eq. (3.49) is satisfied. Explicitly, if c ≡

∫
dt φ(t), then

we re-scale φ(−1/2) → φ(−1/2) θ
c and φ′′(−1/2) → φ′′(−1/2) θ

c .

For a given solution φ(t), we computed ∂V
∂θ in two different ways, as a cross-check.

The first way was using the continuum version of eq. (3.46). The second way begins
by observing that if we re-scale θ → ξ θ then we can obtain the new solution for φ(t)
simply by re-scaling φ(t) → ξφ(t). Furthermore, we observe that in the continuum
version of V, in the terms involving an integral over t, φ and φ′ enter quadratically,

V ∋ Vφ ≡
∫

dt
(

X2φ′2 +
1
2

γ̃Xφ2
)

. (3.50)

We can thus evaluate ∂V/∂θ at any θ by extracting the coefficient of the φ terms, Vφ,
evaluated at θ, as

∂V
∂θ

=
2
θ

Vφ

∣∣
θ

. (3.51)

We have checked that numerical results obtained from eq. (3.46) or eq. (3.51) agree to
great numerical accuracy.

Fig. 3.3 shows our numerical results for ∂V
∂θ times N3 at θ = π as a function of the

“temperature” γ̃ in the partial phase. We see clearly that ∂V/∂θ ∝ ⟨tr(Fµν F̃µν)⟩ ̸= 0,
indicating spontaneous CP symmetry breaking. We also see that as we approach the
GWW transition point, γ̃ → 4e2 ≈ 29.556 . . ., the order parameter ∂V

∂θ does not
approach zero, indicating a first-order CP symmetry restoring transition, as
mentioned above. Fig. 3.3 also shows our finite-N numerical results, which we
describe in the next subsection.

3.2.3.2 Finite N numerics

In this subsection we will perform numerical calculations in the effective theory with
action V in eq. (3.19), with finite N ≥ 30. Our goal will be to identify a partial phase.
However, as mentioned in sec. 1.3, our definition of the partial phase is valid in the
large-N limit (’t Hooft, Abelian, or otherwise), where we have a continuous
distribution of Polyakov phases. Namely, we define the partial phase from the
breaking of centre symmetry plus no gap in the distribution. Our numerics have finite
N, and hence a discrete distribution. How then do we define the partial phase? Our
working definition is the following. Eq. (3.23) allows us to write the eigenvalue
density around any given ϕj as

(
2π − Ng2/(4π) log |Mj|

)−1. A gap occurs if the
minimum of this eigenvalue density is zero. Using centre symmetry permutations we
will always make M0 the smallest of the Mj, so any gap will occur at
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FIGURE 3.3: Numerical results in the partial phase for ∂V
∂θ ∝ ⟨tr(Fµν F̃µν)⟩ times N3 in

the limit θ → π − 0 as a function of “temperature” γ̃, for N = 30 (purple crosses),
50 (green plus signs), 70 (orange 3-point star), and ∞ (black 3-point star). The er-
ror bars are invisibly small on the scale of the plot. In all cases, we see clearly that
⟨tr(Fµν F̃µν)⟩ ̸= 0 and hence CP symmetry is spontaneously broken in the partial phase.
We also see that the finite-N results smoothly approach the N = ∞ result as γ̃ in-

creases.

(
2π − Ng2/(4π)2 log |M0|

)−1. This can vanish only if |M0| becomes exponentially
small. In our new solutions we will explicitly find that |M0| < 1, but that |M0| is not
exponentially small at a finite distance from the GWW transition point. As a result, the
distribution of the Polyakov line phases will not be gapped, which we use to identify a
partial phase.

As further evidence that our numerical solutions describe a partial phase, we will also
check the eigenvalues of the Hessian of V, whose components are ∂2V

∂Mj∂Mk
, ∂2V

∂M∗
j ∂Mk

, and
∂2V

∂M∗
j ∂M∗

k
. At minima of V, all eigenvalues of the Hessian are positive, as occurs for the

confined and deconfined phase solutions. We expect the partial phase solution to be a
local maximum of V, with one negative eigenvalue in the Hessian, and all others
positive. This is because in the partial phase at fixed temperature, when we change the
energy we expect the free energy to decrease. In all the solutions we present below, we
confirmed this expectation numerically, as we will discuss.

In appendix 3.B we collect some numerical data useful for anyone who wishes to
reproduce our results.

Finite N numerical methods

We will use a combination of two numerical methods to find finite-N solutions for the
Mj. The first is to solve the saddle-point equation in eq. (3.20), ∂V

∂Mj
= 0, via gradient
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descent. To do so, we define a function Φ1(M1, · · · , MN−1) as

Φ1(M1, · · · , MN−1) ≡
N−1

∑
j=1

∣∣∣∣ ∂V
∂Mj

∣∣∣∣2
=

N−1

∑
j=1

∣∣∣∣2M∗
j − M∗

j+1 − M∗
j−1 +

M0

Mj
(M∗

1 − M∗
0) +

M0

Mj
(M∗

N−1 − M∗
0)−

γ

2
+

γ

2
M0

Mj

∣∣∣∣2 .

(3.52)

Solving eq. (3.20) is then equivalent to solving Φ1(M1, · · · , MN−1) = 0. To do so, we
minimise Φ1(M1, . . . , MN−1) via gradient descent. Specifically, we choose some initial
conditions for the Mj and then iteratively update them as Mj → Mj − ϵ ∂Φ1

∂M∗
j
, with

some small step size ϵ. A drawback of this method is that generic initial conditions
lead to the confined or deconfined solutions reviewed in subsection 3.2.2. We thus
combine this first method with a second method that can generate suitable initial
conditions for the first method, to avoid this problem.

The second method starts with V in eq. (3.19), and implements the constraint in
eq. (3.12) not by replacing M0 = eiθ/(M1 . . . MN−1), as we have done so far, but by
introducing a Lagrange multiplier κ, so that instead of extremising V we extremise
V + κ

(
∑j log Mj − iθ

)
. This is equivalent to solving

Mj
∂V

∂Mj
= Mj

(
2M∗

j − M∗
j−1 − M∗

j+1 −
γ

2

)
= −κ, (3.53)

and simultaneously solving

N−1

∑
j=0

log Mj − iθ = 0. (3.54)

The confined and deconfined solutions have κ = γN
2 eiθ/N and κ = 0, respectively.

Clearly, κ measures the size of the confined sector. Intuitively, fixed-γ gives the
canonical ensemble, while fixed-κ gives the microcanonical ensemble. By re-writing
eq. (3.53) as

2M∗
j − M∗

j+1 − M∗
j−1 −

γ

2
= − κ

Mj
, (3.55)

and then taking a sum over j and solving for γ, we find

γ =
2κ

N

N−1

∑
j=0

M−1
j . (3.56)

We then use the following strategy to find partial-phase solutions. We begin with
θ = 0, and we choose values for N and κ. As an initial condition, we use a discretised
version of the deconfined solution in eq. (3.31), at the GWW transition point. In that



3.2. Weakly-coupled, softly-broken massive N = 1 SYM on S1 × R3 81

solution, both the Mj and κ are real-valued, and together with N, determine γ via
eq. (3.56). We then solve eq. (3.55) via gradient descent. In particular, we define a
function

Φ2(M1, · · · , MN) ≡
1
2 ∑

j

(
2Mj − Mj+1 − Mj−1 −

γ

2
+

κ

Mj

)2

+
1
2

(
N

∑
j=1

log Mj

)2

=
1
2 ∑

j

(
2Mj − Mj+1 − Mj−1 −

κ

N

N

∑
k=1

M−1
k +

κ

Mj

)2

+
1
2

(
N

∑
j=1

log Mj

)2

=
1
2 ∑

j

(
2Mj − Mj+1 − Mj−1 +

κ

Mj

)2

− κ2

2N

(
N

∑
j=1

M−1
j

)2

+
1
2

(
N

∑
j=1

log Mj

)2

, (3.57)

so that eq. (3.55) is equivalent to Φ2(M1, · · · , MN) = 0, and we solve this latter
equation via gradient descent. We found that if our initial κ is to large, then the
gradient descent converges to the confined solution in eq. (3.21), but if we start with
sufficiently small κ we find partial-phase solutions. With one solution for the partial
phase, we can increase κ slightly, and use the solution as an initial condition for a new
gradient descent. By iterating this procedure, we obtain solutions for a range of κ

values. We then turn on a small θ for fixed N and γ, and use the θ = 0 partial-phase
solution as an initial condition for the first method. By combining the two methods in
this way, we found partial-phase solutions for a range of N, γ, and θ, including θ = 0
and θ = π.

As mentioned above, to provide additional evidence that our solutions describe a
partial phase, we also numerically computed the Hessian of V, whose explicit
components are

∂2V
∂Mj∂Mk

= −M0

Mk

(
M∗

1 + M∗
N−1 − 2M∗

0 +
γ

2

)( δjk

Mk
+

1
Mj

)
, (3.58a)

∂2V
∂M∗

j ∂Mk
= 2δkj − δk,j+1 − δk,j−1 +

M0

Mk
(δ1j + δN−1,j) +

M∗
0

M∗
j
(δ1k + δN−1,k) + 2

M0M∗
0

Mk M∗
j

,

(3.58b)

and a similar expression for ∂2V
∂M∗

j ∂M∗
k
. At minima of the free energy V, all eigenvalues of

the Hessian are positive, as occurs for the confined and deconfined solutions in
eqs. (3.21) and (3.31), respectively. We expect the partial phase solution to be a local
maximum of V, with one negative eigenvalue in the Hessian, and all the other
eigenvalues positive. For all numerical solutions used below, we confirmed this
expectation explicitly.
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Finite-N numerical results at θ = 0
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FIGURE 3.4: (a) θ = 0 numerical results for the |Mj| versus j for N = 30 in the partial
phase, for γ̃ = 45 (red crosses) and 70 (black 3-point stars). Notice that |M0| is small
but non-zero. (b) Using eq. (3.23), with g2 = 0.1, we converted the results of (a) into
the Polyakov loop eigenvalue distribution 2πρ(ϕj) =

2π
ϕj−ϕj+1

versus j. The eigenvalue
distribution is not flat, indicating spontaneous breaking of centre symmetry, and is not
gapped, indicating that the phase is not deconfined. We thus identify these as partial

phase solutions.

For θ = 0, fig. 3.4 shows typical numerical solutions for the Mj and the corresponding
distribution of Polyakov loop eigenvalues, 2πρ(ϕj) =

2π
ϕj−ϕj+1

, in the partial phase,
with γ̃ = 45 and 70. For both values of γ̃, the eigenvalue distribution is not flat,
indicating spontaneous breaking of the centre symmetry, and is not gapped,
indicating that this phase is not deconfined. In particular, at γ̃ = 45, observe that M0 is
small, but non-zero. We will explore |M0| in more detail momentarily.

Fig. 3.5 shows our numerical results for the free energy V times N as a function of γ̃

with N = 30 and θ = 0. We see the swallow-tail shape characteristic of a first-order
phase transition, with the partial phase appearing as the unstable branch connecting
the confined and deconfined branches. In particular, the partial phase always has the
highest free energy, and hence is always thermodynamically dis-favoured.

The phase diagram fig. 3.5, which has N = 30, is qualitatively similar to the phase
diagram in fig. 3.2, which has N = ∞, suggesting that as we increase N, fig. 3.5 may
evolve continuously into fig. 3.2. In other words, our numerical results suggest that
the N → ∞ limit of V is smooth. We provide additional evidence for this in fig. 3.6,
which shows NV versus 1/N for several values of γ̃, and strongly suggests that as N
increases, NV smoothly approaches the N = ∞ result. This also provides further
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FIGURE 3.5: (a) θ = 0 numerical results for N times the free energy V as a function of
γ̃ for N = 30, showing the confined phase (blue line), deconfined phase (red crosses),
and partial phase (gold plus signs). We clearly observe a first-order transition, with the
partial phase as the unstable branch connecting the confined and deconfined phases.
(b) θ = 0 numerical results for log(∆NV) versus γ̃ for N = 30, where ∆NV is the
difference in NV between the partial and deconfined phases, ∆NV ≡ N(V|partial −
V|deconf). Clearly the partial phase has higher free energy than the deconfined phase

near the transition between them (which at N = ∞ is the GWW transition).
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FIGURE 3.6: Our θ = 0 numerical results for N times the tree energy V versus 1/N for
N = 30, 50, 70, 100, ∞, or equivalently 1/N = 0.0333 . . ., 0.02, 0.0142 . . ., 0.01, 0, for
several values of γ̃. These results suggest that the N → ∞ limit of V is smooth at each

fixed γ̃.
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evidence that our numerical solutions describe a partial phase, since they appear to
connect smoothly to our N = ∞ partial phase solutions.
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FIGURE 3.7: (a) θ = 0 numerical results for |M0|, magnified by a factor of 103 for clarity,
as a function of γ̃, for N = 30, in the deconfined phase (red crosses) and partial phase
(gold plus signs). |M0| in the deconfined phase becomes zero in the large-N limit.
The gold plus signs have larger values, showing that our solutions indeed describe a

partial phase. (b) Close-up of (a) near the transition point.

Fig. 3.7 shows |M0|, magnified by a factor of 103 for clarity, as a function of γ̃ near the
transition to the deconfined phase (which at N = ∞ is the GWW transition). Clearly,
|M0| is small, but not exponentially small, near the transition point. In particular, |M0|
is non-zero, justifying our interpretation of these solutions as the partial phase.

When θ = 0 all the Mj are real and CP symmetry is preserved in all phases. As a
result, our order parameter for CP symmetry breaking, ∂V

∂θ ∝ ⟨tr(Fµν F̃µν)⟩, vanishes in
all phases when θ = 0. To see the spontaneous breaking of CP symmetry in the partial
phase, we turn next to θ = π.

Finite-N numerical results at θ = π

For θ = π, fig. 3.8 shows typical numerical solutions for the |Mj| and the
corresponding distribution of Polyakov loop eigenvalues, in the partial phase, with
γ̃ = 45 and 70. The results are qualitatively similar to the θ = 0 case in fig. 3.4,
although a key difference is that when θ = π, the Mj’s can have non-zero phases and
hence CP symmetry can be spontaneously broken, as we will discuss in detail
momentarily.

We next want to calculate V and ∂V
∂θ , both at θ = π. To do so numerically, we

calculated V at three values of θ near π, namely θ = 3.14159, 3.14155, and 3.14149, and
then extrapolated to θ = π by fitting to a form V(θ) = a · (θ − π) + b and numerically
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FIGURE 3.8: (a) θ = π numerical results for the |Mj| versus j for N = 30 in the partial
phase, for γ̃ = 45 (red crosses) and 70 (black 3-point stars). Notice that |M0| is small
but non-zero. (b) Using eq. (3.23), with g2 = 0.1, we converted the results of (a) into
the Polyakov loop eigenvalue distribution 2πρ(ϕj) = 2π

ϕj−ϕj+1
versus j. These results

are qualitatively similar to those at θ = 0 in fig. 3.4.

extracting the coefficients a and b. In this was we obtained V and ∂V
∂θ = a at θ = π. We

performed a similar extrapolation for |M0| as well.

Fig. 3.9 shows our numerical results for the free energy V times N as a function of γ̃

with N = 30 and θ = π. We again see the swallow-tail shape characteristic of a
first-order phase transition, with the partial phase appearing as the unstable branch
connecting the confined and deconfined branches. Again the partial phase always has
the highest free energy, and hence is always thermodynamically dis-favoured.

Fig. 3.10 shows |M0|, magnified by a factor of 103 for clarity, as a function of γ̃ near the
transition to the deconfined phase (which at N = ∞ is the GWW transition). Similar to
the θ = 0 case in fig. 3.7, we again see that |M0| is small, but not exponentially small,
near the transition point, and in particular |M0| is non-zero, justifying our
interpretation of these solutions as the partial phase.

Of course, a key difference between the θ = 0 and θ = π cases is that in the former all
of the Mj were real-valued while in the latter the Mj acquire non-zero phases,
indicating spontaneous breaking of CP symmetry. Fig. 3.11 illustrates this difference,
showing our numerical results for both |Mj| and arg(Mj) = φj as a function of j in the
partial phase, for θ = π and various γ̃. The evolution of the |Mj| is consistent with
what we observed in figs. 3.4 and 3.8. However, we now see that in the partial phase
with θ = π, generically all the arg(Mj) = φj are non-zero. We also see that as we
approach the deconfined phase, all of the arg(Mj) approach zero except for arg(M0),
which approaches arg(M0) = θ = π, so that the partial solutions connect to the
deconfined solution (recall eq. (3.33)).
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FIGURE 3.9: (a) θ = π numerical results for N times the free energy V as a function of
γ̃ for N = 30, showing the confined phase (blue line), deconfined phase (red crosses),
and partial phase (gold plus signs). We find a first-order transition, similar to the θ = 0
case in fig. 3.5. (b) Our θ = π numerical results for log(∆NV) versus γ̃ for N = 30,
with ∆NV defined as in fig. 3.5. Clearly the partial phase has higher free energy than
the deconfined phase near the transition between them (which at N = ∞ is the GWW

transition).
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FIGURE 3.10: (a) θ = π numerical results for |M0|, magnified by a factor of 103 for
clarity, as a function of γ̃, for N = 30, in the deconfined phase (red crosses) and partial
phase (gold plus signs). |M0| in the deconfined phase becomes zero in the large-N
limit. The gold plus signs have larger values, showing that our solutions indeed de-

scribe a partial phase. (b) Close-up of (a) near the transition point.
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FIGURE 3.11: (a) θ = π numerical results for |Mj| as functions of j, in the partial phase,
at γ̃ = 32.2 (gray crosses) 32.4 (blue 3-pont star), 45 (red 3-point star), and 70 (black
3-point star). (b) θ = π numerical results for arg(Mj) as functions of j, in the partial
phase, at the same γ̃ as in (a). Generically the Mj have non-zero phases, indicating
spontaneous breaking of CP symmetry. As we decrease γ̃ we see that arg(M0) grows,

to meet the value of the deconfined phase, arg(M0) = θ = π.

Our numerical results for ∂V
∂θ ∝ ⟨tr(Fµν F̃µν)⟩ (times N3) with θ = π and N = 30, 50, 70

appear in fig. 3.3, alongside our N = ∞ results from subsection 3.2.3.1. In all cases we
see that ∂V

∂θ ̸= 0 in the partial phase, indicating spontaneous breaking of CP symmetry.
This is our main result, that CP symmetry distinguishes the partial and deconfined
phases, even at finite N. Moreover, at large N we saw that ∂V

∂θ was finite at the GWW
transition, and hence jumped discontinuously between the partial and deconfined
phases, indicating a first-order transition. In contrast, at finite N we see in fig. 3.3 that
∂V
∂θ smoothly approaches zero at the transition to the deconfined phase, suggesting a
second-order transition. However, as N increases we observe that the slope of ∂V

∂θ

increases, strongly suggesting that the slope diverges as N → ∞, thus connecting the
finite- and large-N calculations.

In summary, we have demonstrated that, in weakly-coupled, softly-broken N = 1
SYM on S1 × R3, at both infinite and finite N a partial phase exists that connects the
confined and deconfined phases, and has broken centre and CP symmetries. As a
result, order parameters exist that can distinguish the partial phase from both the
confined and deconfined phases. In particular, ∂V

∂θ ∝ ⟨tr(Fµν F̃µν)⟩ can distinguish the
partial and deconfined phases, a phenomenon that to our knowledge is novel.

3.3 Chiral symmetry in strongly-coupled lattice gauge theory

In this section, we consider U(N) YM theory on an anisotropic lattice, with d = 3
spatial dimensions with lattice spacing as, and a compact Euclidean time direction
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with lattice spacing at. We will use the same setup as described in Chapter 2,
specifically the lattice action (3.59), which we repeate here,

S =
N
2a

d

∑
µ=1

nt

∑
t=1

Tr
(

1N − Uµ,tVtU†
µ,t+1V†

t

)
+ h.c., (3.59)

This describes Eguichi-Kawai-reduced lattice-regularised U(N) YM theory in the
strong coupling limit, dropping magnetic terms, in the large N ’t Hooft limit. The
validity of Eguichi-Kawai (EK) equivalence requires two other conditions: unbroken
discrete spatial translational symmetry in the large-volume theory, and centre
symmetry unbroken by a Wilson line in a spatial direction in the single-site theory.

This setup come with some subtleties. For example, since we reduce to a single site,
our results are valid only in the ’t Hooft large-N limit. However, to do numerics we
must use link variables of finite size, hence we must work with finite N. We will use
large but finite N, namely N = 8, . . . , 32. Notice this is qualitatively different from our
finite-N results for softly-broken N = 1 SYM in sec. 3.2.3.2: those were genuinely
finite N, while here our starting point, namely the action in eq. (3.59), is an accurate
description of the large-volume YM theory only at N = ∞. We will discuss other
subtleties with our limits in what follows.

Our order parameter for the confinement/deconfinement transition will be the
Polyakov loop, P, defined on the lattice as P = 1

N TrP , where

P = V1V2 · · ·Vnt . (3.60)

Although P can be complex, the complex phase can be shifted by a centre symmetry
transformation, which acts on the Polyakov loop as P → eiαP, where in the large-N
limit, α is an arbitrary real number. In the following, we will use the centre symmetry
to make P real-valued and non-negative, so strictly speaking, our P =

∣∣ 1
N TrP

∣∣. Using
this order parameter, we will observe a first-order transition as T increases, from a
confined to a deconfined phase. In this transition the centre symmetry will be
spontaneously broken. We will also find an unstable partial phase connecting the
confined and deconfined phases. In the partial phase the centre symmetry will be
spontaneously broken.

We will add to this model fermions in the fundamental representation, i.e. quarks. In
general, fundamental-representation fields explicitly break centre symmetry. To
suppress this explicit breaking, we will take a fourth limit, namely the probe limit: we
will introduce a number N f of quarks, keep N f fixed as N → ∞, and work only to
leading order in N f /N. In the probe limit, the explicit breaking of centre symmetry is
invisible in the pure glue sector, so the confinement/deconfinement transition will be
unchanged. However, as in ordinary YM theory, the probe quarks exhibit chiral
symmetry breaking in the confined phase, and chiral symmetry restoration in the
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deconfined phase. The order parameter for this transition is the chiral condensate. We
will numerically compute the eigenvalue distribution of the probe Dirac operator and
use the Banks-Casher relation [60] to extract the value of the chiral condensate. Our
main result in this section will be that chiral symmetry is broken in the partial phase,
and hence the chiral condensate provides an order parameter that can distinguish the
partial and deconfined phases.

In sec. 3.3.1 we present our numerical results for the confinement/deconfinement
transition in this model, including novel results for the partial phase. In sec. 3.3.2 we
present our numerical results for the probe Dirac operator’s eigenvalue spectrum,
where our main result is that chiral symmetry is spontaneously broken in the partial
phase.

We acknowledge here that the use of fermion eigenvalue distributions in quenched
lattice gauge theory to detect chiral symmetry breaking and a chiral condensate is a
controversial topic. Some arguments have been advanced suggesting that a significant
contribution to the accumulation of near-zero eigenvalues is can sometimes be
attributed to finite-volume topological effects, specifically instantons and
anti-instantons, rather than indicating a true chiral condensate [61; 62; 63; 64].
Therefore, the density of eigenvalues near zero cannot be naively trusted as a
signature of a chiral symmetry breaking in the continuum-limit, infinite-volume
theory. Introducing full dynamical quarks, or using a different implementation of
probe fermion (such as staggered fermions instead of overlap fermions), can cause the
peak of low-value eigenvalues to vanish, revealing the apparent chiral symmetry
breaking to be an artifact of the quenched, finite-volume approximation.
Consequently, it is not always entirely clear whether one is truly measuring a property
of the underlying gauge configuration or merely a property of the probe itself.

3.3.1 Confinement/deconfinement transition

We will apply the Hybrid Monte Carlo method [42] to the single-site lattice action in
eq. (3.59). Without probe quarks, the cost for configuration generation is not so large,
unless we make N and/or nt large. We will work with N = 8, . . . , 32 and nt = 24.

As we will show shortly, for the current theory in the canonical ensemble the
confinement/deconfinement transition is first order. As a result, the partial phase is
the maximum of the free energy, and therefore has the smallest weight in the ensemble,
and hence is not efficiently sampled using the standard Monte Carlo method. To
sample configurations at fixed values of P efficiently, we performed a constrained
simulation, in which we fixed the value of the Polyakov loop. Specifically, we
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modified the action S in eq. (3.59) by adding a term, S → S + ∆S, where

∆S =


gP
2 (P − (Pfix + δ))2 (P > Pfix + δ)

0 (Pfix − δ ≤ P ≤ Pfix + δ)
gP
2 (P − (Pfix − δ))2 (P < Pfix − δ)

, (3.61)

where we chose the dimensionless constant gP to be large enough that the value of P is
fixed to a small window Pfix − δ ≤ P ≤ Pfix + δ.

Ideally, to study the partial phase we should find the maximum of the free energy as a
function of T. If we fix P, then as P in the partial phase decreases, T increases slightly.
We instead fixed T near the confinement/deconfinement transition temperature Tc,
and then dialed the value of P. In particular, we studied the distribution of the
Polyakov line phases at T = 0.29, 0.30, and 0.31, and did not see significant
T-dependence in the distribution of Polyakov line phases.

As mentioned above, EK reduction requires both translational symmetry in spatial
directions, and unbroken centre symmetry in spatial directions. As also mentioned
above, a subtlety arise with EK reduction, in the partial phase. To see why, consider
taking the infinite-volume limit of the spatial directions in our theory. In this limit, the
confined and deconfined phases preserve spatial translational symmetry, hence they
pose no problem for the EK reduction. However, the partial phase is a local maximum
of the free energy, hence a state in which the partial phase uniformly fills all of space is
unstable, even in the micro-canonical ensemble: such a state should in principle
separate into regions of confined or deconfined phase, thus breaking spatial
translational symmetry. Since we will use the single-site approximation, we will be
blind to this effect, that is, we will study states with fixed energy that, in the
continuum and infinite-volume limits, correspond to the partial phase uniformly
filling all of space.

In the strong-coupling limit, centre symmetry in spatial directions is not
spontaneously broken, hence EK reduction is valid. To confirm this, we numerically
computed Wilson loops in spatial directions, and verified that they approach zero as
N increases. To be explicit, the action in eq. (3.59) is invariant under a global (i.e.
t-independent) centre symmetry transformation in each spatial direction, which at
large N is a U(1) transformation for each spatial direction. These leave Vt untouched
but act on Uµ,t as Uµ,t → eiαµUµ,t with each αµ an arbitrary real number. If centre
symmetry in all spatial directions is unbroken, then the Wilson lines Tr Uµ,t will be
zero in all directions. For EK reduction to be valid, this must be the case at least at
large N. We numerically calculated

W ≡ 1
3Nnt

3

∑
µ=1

nt

∑
t=1

|TrUµ,t|, (3.62)
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for all the solutions we use below, and verified that W approaches zero as N increases.

We now present our results for the confinement/deconfinement transition in this
theory. As shown in ref. [32], for this theory with arbitrary spatial dimension d, simple
state counting reveals a first-order phase transition around Tc =

1
2 log(2d−1) , which in

our d = 3 case is Tc =
1

2 log(5) ≃ 0.31. We easily confirmed this numerically. Fig. 3.12
shows our numerical results for the Polyakov loop, P. In particular, Fig. 3.12 (a) shows
our numerical results for P as a function of T, for N = 32 and nt = 24. We observe a
strong hysteresis, consistent with a first-order transition at Tc =≃ 0.31. Fig. 3.12 (b)
shows the simulation history of P at T = 0.31, for N = 32 and nt = 24. We see that the
confined and deconfined phase both exist rather stably, which also indicates a
first-order phase transition. Fig. 3.12 (c) shows P at T = 0.25, in the confined phase, for
nt = 24 and N = 8, 16, 24 and 32. We see that P approaches zero as N increases, as
expected for the confined phase.
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FIGURE 3.12: Numerical results for the Polyakov loop, P, in the theory with action
in eq. (3.59). As discussed below eq. (3.60), our P is always real and non-negative.
(a) Mean Polyakov loop versus temperature T, for N = 32 and nt = 24. We observe
strong hysteresis around Tc ≃ 0.31, consistent with a first-order transition. The cold
start (blue crosses) and hot start (red plus signs) simulations had initial temperatures
T = 0.2 and T = 0.45, respectively. The simulations were then thermalised before 200
configurations taken for data collection. (b) The simulation history of P for N = 32
and nt = 24 at T = 0.31, for a cold start (blue) and hot start (red). The horizontal axis
is the Monte Carlo time. We observe that tunneling between the two phases is strongly
suppressed. The fluctuations are larger in the confined phase because T = 0.31 is close
to the endpoint of the confined phase. (c) The simulation history of P for N = 8, 16, 24

and 32, with nt = 24, at T = 0.25. As N becomes larger, P approaches zero.

Fig. 3.13 shows our numerical results for the distribution of Polyakov line phases,
ρ(ψ), versus ψ, for N = 32 and nt = 24. Fig. 3.13 (a) shows our results for ρ(ψ) in the
deconfined phase, as we lower T through Tc ≃ 0.31 and towards the GWW transition.
We observe a gap that shrinks and approaches zero as T approaches the GWW
transition, as expected. We also observed that in the confined phase ρ(ψ) is uniform,
up to 1/N-corrections. Fig. 3.13 (b) shows the evolution of ρ(ψ) in fixed-P simulation
at T = 0.29, the lowest T of the deconfined phase, i.e. near the GWW transition. As P
decreases, we see that the gap closes at P ≃ 0.35, and for P < 0.35 the gap is gone, but
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ρ(ψ) is not uniform. We thus identify these P ≤ 0.35 configurations as partial phase
solutions.

(A) (B)

FIGURE 3.13: Numerical results for the distribution of Polyakov loop phases, ρ(ψ), as
a function of |ψ|, in the theory with action in eq. (3.59), for N = 32 and nt = 24. We use
|ψ| because, if the number of samples is sufficiently large, ρ(ψ) is symmetric about ψ =
0. (a) The deconfined phase, as T decreases through the confinement/deconfinement
transition temperature Tc ≃ 0.31, where the free energies of confined and deconfined
phases coincide. We see a gap at ψ = π that shrinks as T decreases, as expected. (b)
Fixed-P simulations at the lowest T in the deconfined phase, T = 0.29, i.e. near the
GWW transition. Specifically, we fixed P with δ = 5 × 10−3 in eq. (3.61), with 400
configurations for each P. We see that as P decreases, the gap closes at P ≃ 0.35, so we

identify P ≤ 0.35 as the partial phase.

All of our results above are consistent with a first-order confinement/deconfinement
transition in which the partial phase appears as the unstable branch connecting the
confined and deconfined branches, similar to what we saw for softly-broken N = 1
SYM in sec. 3.2.

3.3.2 Chiral symmetry

We now introduce a massless probe quark and study chiral symmetry breaking.
We use the naı̈ve lattice fermion, with action2

S f =
1
2

nt

∑
t=1

[
1
a

(
ψ̄tγ

tVtψt+1 − ψ̄t+1γtV†
t ψt

)
+ ∑

µ

(
ψ̄tγ

µUµψt − ψ̄tγ
µU†

µψt

)]
. (3.63)

Let us write this action as S f = ψ̄Dψ, where D is the Dirac operator. The eigenvalues
of D are purely imaginary, with two-fold degeneracy. Specifically, they have the form
±iλ, where λ is real and non-negative. We want to compute the distribution of

2Notice we have no reason to worry about doublers for our current purposes.
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eigenvalues of the Dirac operator, which we denote ρ(D)(λ). We normalise this density
as
∫ ∞

0 dλρ(D)(λ) = 4Nnt.

As mentioned above, fields in the fundamental representation explicitly break the
centre symmetry, but we suppress this effect by working in the probe limit, i.e.
working in the ’t Hooft large-N limit with N f fixed, and keeping the leading order in
N f /N ≪ 1. In that case, roughly speaking the quark is influenced by the pure glue
sector, but the pure glue sector is unaffected by the quark, i.e. the quark’s
“back-reaction” on the pure glue sector is suppressed. As a result, introducing the
probe quark does not affect the results of sec. 3.3.1.

Our quarks are massless, hence the quark sector classically has
U(N f ) = U(1)× SU(N f ) chiral symmetry. When N is finite the U(1) factor is
anomalous, however the one-loop diagram that produces this anomaly is suppressed
in the probe limit. We expect the chiral symmetry to be spontaneously broken in the
confined phase and restored in the deconfined phase. The corresponding order
parameter is the chiral condensate, ⟨ψ̄ψ⟩, which we expect to be non-zero in the
confined phase and zero in the deconfined phase.

As discussed in ref. [18], anomaly-matching arguments suggest that chiral symmetry
is spontaneously broken also in the partial phase, and specifically in its confined
subsector. Our goal here is to compute ⟨ψ̄ψ⟩ in the partial phase solutions of sec. 3.3.1,
to determine whether chiral symmetry is indeed spontaneously broken. To do so, we
will numerically compute ρ(D)(λ), and use the Banks-Casher relation [60], which
states that ρ(D)(0) ∝ ⟨ψ̄ψ⟩.

Computing D’s eigenvalues, and hence ρ(D)(λ), is the most
computationally-demanding part of our numerical calculations for this theory. We
calculated D’s eigenvalues using the linear algebra package LAPACK.

When the centre symmetry breaks spontaneously, the eigenvalues of D are sensitive to
the complex phase of the Polyakov loop. Because we want to interpret our probe
quarks as an approximation to dynamical (i.e. non-probe) quarks, we have no reason
to pick a specific phase. Instead, we need to perform a centre-symmetry
transformation Vt → eiαVt and average over α. In our simulation, for each
configuration we chose ten random values of α from [0, 2π), and used eiαVt instead of
Vt to calculate D’s eigenvalues.3

Fig. 3.14 shows our numerical results for 1
N ρ(D)(λ) for various T in the deconfined

phase for N = 8, 12 and 16. For all of these N, we clearly observe that ρ(D)(0) = 0, and

3Because configurations related by the U(1) centre symmetry transformation have the same path-
integral weight, such an averaging is, in principle, automatic. In our simulation, because we used the
same step size for the U(1) and SU(N) directions, the auto-correlation along the U(1) direction is large.
We therefore used such a trick to average over the U(1) direction with a reasonable number of configura-
tions.
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FIGURE 3.14: The density of Dirac eigenvalues, ρ(D)(λ), divided by N, for N = 8,
12, and 16, nt = 24, and T = 0.4 and 0.5, i.e. in the deconfined phase, with 500
configurations (5000 sets of eigenvalues) for each. Error bars are estimated by using
5-bin Jackknife with bin width 0.02. We see in all cases that ρ(D)(λ) → 0 as λ → 0,
indicating ⟨ψ̄ψ⟩ = 0 and hence that chiral symmetry is preserved, as expected. (b)
Close-up of (a), showing that the slope near λ = 0 increases as T increases. (c) The
same, but for T = 0.35, 0.40, 0.50, and 0.60, showing again that the slope near λ = 0

increases as T increases.
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FIGURE 3.15: (a) The density of Dirac eigenvalues, ρ(D)(λ), divided by N, for N = 8,
12, 16, and 24, nt = 24, and T = 0.25, i.e. in the confined phase. We see in all cases that
ρ(D)(λ) approaches a non-zero value as λ → 0, indicating ⟨ψ̄ψ⟩ ̸= 0 and hence that

chiral symmetry is spontaneously broken, as expected. (b) Close-up of (a).

hence ⟨ψ̄ψ⟩ = 0 and chiral symmetry is preserved, as expected. Furthermore, by
comparing 1

N ρ(D)(λ) for N = 8, 12 and 16, we find no significant N-dependence, so in
the N → ∞ limit we again expect 1

N ρ(D)(λ) = 0, and hence ⟨ψ̄ψ⟩ = 0 and chiral
symmetry restoration. Notice the slope of 1

N ρ(D)(λ) as λ → 0 increases as T
approaches the GWW-point.

Fig. 3.15 shows our numerical results for 1
N ρ(D)(λ) at T = 0.25 in the confined phase.

In contrast to the deconfined phase, here we find that 1
N ρ(D)(0) ̸= 0, and hence

⟨ψ̄ψ⟩ ̸= 0 and chiral symmetry is spontaneously broken, as expected. In fact, 1
N ρ(D)(λ)
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FIGURE 3.16: The density of Dirac eigenvalues, ρ(D)(λ), divided by N, for N = 12,
16, and 24, nt = 24, and T = 0.29, for various fixed values of P: (a)-(d) have P = 0.1,
0.2, 0.25, 0.3, respectively, which are all in the partial phase, while (e) and (f) have
P = 0.35 and 0.4, respectively, which are in the deconfined phase. In the partial phase,

the behaviour is qualitatively similar to the confined phase in fig. 3.15.
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FIGURE 3.17: (a) The density of Dirac eigenvalues, ρ(D)(λ), divided by N, for N = 24,
nt = 24, T = 0.29, and various P above and below the GWW point, P ≃ 0.35. In
the partial phase, P ≲ 0.35, the behaviour is similar to the confined phase in fig. 3.15,
whereas when P ≳ 0.35, the behaviour is similar to that in the deconfined phase in
fig. 3.14. (b) The same, but for P = 0.1 and 0.2 only, and now including T = 0.25 with

no P-constraint, i.e. the confined phase, to highlight the similarity.

exhibits a small maximum and then a steep slope down as λ → 0, both of which
increase as N increases.

Fig. 3.16 shows our numerical results for 1
N ρ(D)(λ) at T = 0.29, near the GWW

transition, for N = 12, 16, and 24, and various P below and above the GWW point at
P ≃ 0.35. Figs. 3.17 shows the same, for a larger range of P, and also shows T = 0.25,
which is the confined phase.

In fig. 3.16 we see a clear difference as P increases through P ≃ 0.35. When P ≲ 0.35,
which is the partial phase, our results are similar to those of the confined phase in
fig. 3.15. In particular, 1

N ρ(D)(λ) exhibits a small maximum and a steep slope near
λ = 0, and most importantly, 1

N ρ(D)(0) ̸= 0, hence ⟨ψ̄ψ⟩ ̸= 0 and chiral symmetry is
spontaneously broken. This is our main result. In contrast, when P ≳ 0.35, which is
the deconfined phase, our results are qualitatively more similar to those in fig. 3.14,
including a less pronounced maximum and slope near λ = 0. Moreover, as P increases
we see that 1

N ρ(D)(0) approaches zero, suggesting chiral symmetry restoration.

Our results are insufficient to determine whether, as we increase P, the GWW
transition and chiral symmetry breaking occur simultaneously, although that is a
natural expectation. In any case, we have shown that complete confinement is not
necessary for chiral symmetry breaking. Most importantly, we have demonstrated our
main point in this section: for at least some range of P in the partial phase, chiral
symmetry is spontaneously broken, and hence ⟨ψ̄ψ⟩ is an order parameter that can
distinguish the partial and deconfined phases.
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3.4 Conclusion and discussion

In this chapter, we studied the partially-deconfined phase in two large-N YM theories,
namely weakly-coupled, softly-broken N = 1 SYM with θ = π and strongly-coupled
lattice YM. In each case, we showed that in the partial phase both centre symmetry
and a second global symmetry, either CP symmetry or chiral symmetry, respectively,
are spontaneously broken. As a result, in each case an order parameter exists that can
distinguish the partial phase from both the confined and deconfined phases. For
N = 1 SYM we also presented finite-N numerical evidence for the same phenomenon.

Our results raise some immediate questions for the two YM theories we studied. For
example, in N = 1 SYM the adiabatic continuity conjecture [52] proposes that the
phase transitions that occur in the softly-broken N = 1 SYM theory are smoothly
connected to those in the pure YM theory, i.e. that the phase structure is preserved
with respect to increasing the gaugino mass. Do our results for the partial phase
extend to larger gaugino masses? Could we find the same global symmetry breaking
pattern and a GWW point at large gaugino mass values, or infinite gaugino mass, i.e.
in pure YM with θ = π? If so, then such agreement would provide a more stringent
test of the adiabatic continuity conjecture than the existing tests, many of which could
just be coincidences.

Looking farther afield, our numerical results, combined with anomaly-based
arguments such as those in refs. [45; 49], motivate the conjecture that the partial phase
can be defined by spontaneous breaking of global symmetries in general, and in
particular may apply for any N, not just for large N. Indeed, our results suggest that
the novel phase found in ref. [49], for the weakly-coupled, softly-broken N = 1 SYM
with θ = π with gauge group SU(2), is a partial phase. Spontaneous breaking of
global symmetries may provide a definition of the GWW transition beyond the
large-N limit, and a definition that, in practical terms, may be easier to calculate in
many theories.

Spontaneous breaking of global symmetries also means the partial phase’s spectrum
will be distinct from both the confined or deconfined phases, implying the existence of
a either a Nambu-Goldstone boson, if the global symmetry is continuous (like chiral
symmetry in our lattice YM example), or domain walls if the global symmetry is
discrete (like CP symmetry in our N = 1 SYM example). An obvious and important
task is thus to formulate effective field theory descriptions of partial phases, and to
explore their physical consequences.

The partial flux tubes and possible bound states in the confined sector discussed in
Chapter 2 fits well with the idea that chiral symmetry is spontaneously broken at the
complete deconfinement/partial deconfinement phase transition point. We expect the
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bound states to induce a chiral condensate in the confined sector, which should be
sufficient to break the chiral symmetry.

An especially important question is whether global symmetries can be used to
identify partial phases in theories closer to QCD, including N = 3, θ = 0, and physical
quark masses. If a partial phase exists, then a crucial question is what observable
effects it may have for the quark-gluon plasma created in heavy ion collider and the
early universe, as well as for neutron stars and many other systems. The observable
effects of a global symmetry breaking could be very important for this.

Recall that the partial phase has been proposed to explain the field theory AdS/CFT
dual to certain phases in the bulk gravity, such as the small black hole phase in global
AdS5, differentiated from the big black hole by its negative specific heat. Following
the findings of this chapter, an obvious question is whether probe fermions added to
the dual N = 4 SYM exhibit any global symmetry breaking at the point at which the
specific heat becomes negative. This could provide compelling evidence for the
conjecture, and a better understanding of the holographic mapping in general. A
closely related question is whether a partial phase appears in the deconfinement
transition observed in the index of N = 4 SYM on S1 × S3 [65].

3.A Second order Taylor method for softly-broken N = 1
SYM large-N numerical calculations

The second order Taylor method of solving an initial value problem is the natural
extension of the Euler method to a second order Taylor expansion. That is, using
analytic expressions for the first and second derivatives at the i-th iteration,
X′

i ≡ X′(Xi) and X′′
i ≡ X′′(Xi), from eqs. (3.37) and (3.39) respectively, we find the

value of the (i + 1)-th iteration by second order Taylor expansion,

Xi+1 = Xi + X′
i δt + X′′

i
δt2

2
, (3.64)

for small δt. The local truncation error is O(δt3), rather than the O(δt2) associated
with Euler’s method, and we avoid incurring large errors near the minimum,
Xi = X(−1/2), where X′ is zero but X′′ is very large. Moreover, in our case, near the
GWW transition point, typical solutions exhibit a sharp gradient. To handle these
sharp gradients, we limit the maximum change δX(t) at each step of the Taylor
method to 1% of the current magnitude of X(t) by decreasing the step size δt as
necessary.

Numerical uncertainties in V and M0 (as reported for large N in appendix 3.B.1), arise
from three places: from errors in the numerical integration of the constraint eq. (3.38),



3.A. Second order Taylor method for softly-broken N = 1 SYM large-N numerical
calculations 99

from the numerical integration of the continuum limit of eq. (3.19) when calculating V,
and from the approximations made by the second order Taylor method. Uncertainties
in the numerical integrals are calculated using concave and convex properties of the
integrands. Below, we discuss how we determine uncertainties arising from the
second order Taylor approximation and compose these with the errors from numerical
integration. We assume throughout that floating point precision errors are negligible.

We can write the exact relation,

Xexact
i+1 = Xi + X′

tδti +
∫ ti+1

ti

ds
∫ s

ti

du X′′(u) (3.65)

By differentiating eq. (3.37) we find that the third derivative is always negative
between the start and end points (defined by X′ = 0). We therefore have
X′′(ti) ≥ X′′(t) ≥ X′′(ti+1) for ti ≤ t ≤ ti+1, and from this we can derive upper and
lower bounds, XUB

i+1 and XLB
i+1, on Xexact

i+1 , namely

XUB
i+1 ≡ Xi + X′

i δti + X′′
i

δt2
i

2
≥ Xexact

i+1 (3.66a)

XLB
i+1 ≡ Xi + X′

i δti + X′′
i+1

δt2
i

2
≤ Xexact

i+1 (3.66b)

These hold even if δt is not small. The upper bound XUB coincides with our definition
eq. (3.64). The approximate value of Xi+1 found at each iteration of our original
computation is thus an overestimate. Since the terminating value of X will be reached
sooner, the parameter τ = ∑i δti evaluated in this way is underestimated. More
precisely, for the choices of X0 = X(−1/2) and X′′

0 = X′′(−1/2) that give the correct
solution as δt → 0, the maximum of X is obtained slightly below τ = 1/2 due to the
discretisation effect at finite δt.

To obtain lower bounds on Xi, and subsequently an upper bound on the value of τ,
we use eq. (3.66b). We use the values of Xi obtained in our first computation, and
solve the quadratic equation to obtain values of δti at each iteration i such that
eq. (3.66b) is satisfied. For any given X0 and X′′

0 , each δti, and hence their sum τ, will
be overestimated by this procedure. We thus have a lower bound on X(t) and upper
bound on τ.

We can find bounds on our evaluation of the second constraint, eq. (3.38), by feeding
both the upper and lower bounds on Xi into the numerical integration, and
compounding each result with the uncertainty introduced by the integration.

Next, we find the uncertainty in X0 and X′′
0 . For any given value of X0 and X′′

0 , we
have a range of uncertainty around the computed values of τ and the constraint. If we
can obtain values of X0 and X′′

0 such that the most pessimistic part of these uncertainty
ranges lies just around the target values (1/2 for τ and 0 for the constraint), then we
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obtain bounds on X0 and X′′
0 . We must do this for each of the four combinations of

signs, i.e. above and below 1/2 and 0 for τ and the constraint, respectively.

We achieve this using the 2D Newton-Raphson method, as follows. We define

c ≡
∫ 1/2

−1/2
dt log X(t), (3.67)

so that the constraint in eq. (3.38) is satisfied when c = iθ, which for us means c = 0.
We then compute the values ∂τ

∂X0
, ∂τ

∂X′′
0

, ∂c
∂X0

, and ∂c
∂X′′

0
, and construct the matrix,

M̂ =

(
∂c

∂X′′
0

− ∂τ
∂X′′

0

− ∂c
∂X0

∂τ
∂X0

)
.

We can then calculate ∆X0 and ∆X′′
0 as(

∆X0

∆X′′
0

)
=

1
(det M̂)

M̂

(
τ − 1

2

N

)
.

We then update the values of X0 and X′′
0 as X0 → X0 − ∆X0 and X′′

0 → X′′
0 − ∆X′′

0 ,
respectively. We repeat this such that X0 and X′′

0 approach the solution of τ = 1/2 and
c = 0, until sufficiently good precision is achieved. We repeat this for all four
combinations of signs for τ − 1/2 and c. We thus obtain upper and lower values of X0

and X′′
0 .

Finally, we find errors on V by combining all the previous uncertainties with the
uncertainties from the numerical integration, which are calculated using concave and
convex properties of the integrand.

3.B Numerical data for the partial phase in softly-broken
N = 1 SYM

In this appendix we summarise the numerical data that we used for the
partial-phase saddle in mass-deformed N = 1 SYM. For finite N, we performed the
minimisation procedure described in sec. 3.2.3.2 until the values cease to change
within the machine precision. One should not take last few digits too seriously,
because there can be round-off errors.

3.B.1 θ = 0

γ̃ N V
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35 30 −0.8478043903335438
50 −0.5102166657650717
70 −0.3595906166171574
100 −0.25107574410395184

40 30 −1.0649718464701392
50 −0.6332206873888775
70 −0.45061468574478286
100 −0.3145884066304803

45 30 −1.2785511307705075
50 −0.761118429321458
70 −0.5420426727252557
100 −0.3787049502744858

50 30 −1.4907670060318092
50 −0.8894724152036553
70 −0.6342449477861769
100 −0.44359705462577126

55 30 −1.702131639184869
50 −1.0181099952602852
70 −0.7266752877179159
100 −0.5084837953775918

N = 30, 50, 70 and 100, partial phase, θ = 0
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γ̃ V M0

34.105 −0.8077784649468457 1.6912265451456194 × 10−3

34.11 −0.808006900961617 1.825013252705753 × 10−3

34.12 −0.8084628031642389 1.9478656004707329 × 10−3

34.13 −0.8089179187701646 2.036195524651749 × 10−3

34.15 −0.8098264888913062 2.1755532782433296 × 10−3

34.2 −0.8120911012726231 2.4397435964616405 × 10−3

34.3 −0.8166006952471729 2.8419172665191623 × 10−3

34.4 −0.8210917533707988 3.1768860264097065 × 10−3

34.6 −0.8300338142941242 3.759119403517365 × 10−3

34.8 −0.8389351432399467 4.281329673944455 × 10−3

35.0 −0.8478043903335438 4.7702137949790195 × 10−3

36.0 −0.8918117613679025 6.995520728491199 × 10−3

37.0 −0.9354339738397822 9.08813053438817 × 10−3

38.0 −0.9787946802571408 1.1156329329176953 × 10−2

39.0 −1.0219599197166551 1.3242392404282448 × 10−2

40.0 −1.0649718464701392 1.5370757634584244 × 10−2

45.0 −1.2785511307705075 2.722990757508838 × 10−2

50.0 −1.4907670060318092 4.288292912186151 × 10−2

55.0 −1.702131639184869 6.710582512934164 × 10−2

60.0 −1.9116692104565214 0.10823277553764502
65.0 −2.1161089139314724 0.18747909204305171
70.0 −2.311793371129293 0.3079225504046863

N = 30, partial phase, θ = 0

γ̃ NV M0

30 −18.74626162(8) 6.3142(0)× 10−49

31 −19.98133943(4) 5.55392(3)× 10−16

32 −21.2204182(5) 5.20898(7)× 10−10

33 −22.4637859(1) 1.62375(1)× 10−7

34 −23.711824(6) 3.72298(3)× 10−6

35 −24.9650239(7) 2.64232(4)× 10−5

36 −26.2238647(7) 1.0095981(8)× 10−4

37 −27.4886645(9) 2.6907652(0)× 10−4

38 −28.7595114(5) 5.726169(6)× 10−4

39 −30.0362787(7) 1.04973585(9)× 10−3

40 −31.3186700(6) 1.7345736(7)× 10−3

41 −32.6062631(6) 2.6581096(1)× 10−3

42 −33.8985461(4) 3.8491581(7)× 10−3

43 −35.1949437(6) 5.3352114(3)× 10−3

44 −36.4948366(6) 7.1430956(1)× 10−3

45 −37.7975750(8) 9.2994790(6)× 10−3

46 −39.1024887(4) 1.183127(7)× 10−2

47 −40.4088940(9) 1.47659901(3)× 10−2

48 −41.7160994(9) 1.81319999(2)× 10−2
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49 −43.0234090(4) 2.19588494(7)× 10−2

50 −44.3301255(2) 2.62775163(4)× 10−2

51 −45.6355526(2) 3.11206952(7)× 10−2

52 −46.9389962(8) 3.65231002(2)× 10−2

53 −48.2397661(0) 4.25217969(9)× 10−2

54 −49.5371762(1) 4.91565774(0)× 10−2

55 −50.8305458(6) 5.64703882(0)× 10−2

56 −52.1191999(9) 6.4509830(3)× 10−2

57 −53.4024695(7) 7.3325746(4)× 10−2

58 −54.6796918(6) 8.2973921(7)× 10−2

59 −55.9502105(9) 9.3515928(8)× 10−2

60 −57.2133759(5) 0.105020155(6)

Large N, partial phase, θ = 0

3.B.2 θ ∼ π

γ̃ θ V ReM0 ImM0

32.2 3.14159 −0.7170743511036082 −1.3600120580223471 × 10−3 2.5812519554220423 × 10−4

3.14155 −0.7170743628838336 −1.3609155565518565 × 10−3 2.4784827954029973 × 10−4

3.14149 −0.7170743795687697 −1.3624561102521084 × 10−3 2.2927790368880996 × 10−4

32.21 3.14159 −0.717533767794569 −1.3321141681612805 × 10−3 4.350584609566822 × 10−4

3.14155 −0.7175337879330195 −1.3326243195853749 × 10−3 4.3165909238074365 × 10−4

3.14149 −0.717533817841014 −1.3334057063425766 × 10−3 4.264017413306071 × 10−4

32.22 3.14159 −0.7179929889543566 −1.3043571146458457 × 10−3 5.57310975551346 × 10−4

3.14155 −0.7179930147641919 −1.3047479039944685 × 10−3 5.552750211788038 × 10−4

3.14149 −0.717993053301827 −1.305339812640364 × 10−3 5.5217786311380666 × 10−4

32.23 3.14159 −0.7184520170186798 −1.276726078298016 × 10−3 6.562673111173997 × 10−4

3.14155 −0.7184520473852677 −1.2770527104979121 × 10−3 6.5481765509790115 × 10−4

3.14149 −0.7184520928099734 −1.2775455721013584 × 10−3 6.526246943145053 × 10−4

32.24 3.14159 −0.7189108543080747 −1.2492167707726551 × 10−3 7.413419732325752 × 10−4

3.14155 −0.7189108885694004 −1.2495016117582143 × 10−3 7.402186698172351 × 10−4

3.14149 −0.7189109398649564 −1.2499306258614793 × 10−3 7.385239606680516 × 10−4

32.25 3.14159 −0.7193695030812562 −1.2218263069640964 × 10−3 8.169019109646184 × 10−4

3.14155 −0.719369540783399 −1.2220810489925724 × 10−3 8.159864591338513 × 10−4

3.14149 −0.719369597258429 −1.2224643426274118 × 10−3 8.146073893530602 × 10−4

32.3 3.14159 −0.721659994897846 −1.0865777302750799 × 10−3 1.1133356734658564 × 10−3

3.14155 −0.7216600459096133 −1.0867518649578847 × 10−3 1.112865030557661 × 10−3

3.14149 −0.7216601223879526 −1.08701339135787 × 10−3 1.1121579353577529 × 10−3

32.35 3.14159 −0.7239460866385014 −9.539872225466342 × 10−4 1.336510099405864 × 10−3

3.14155 −0.7239461474331051 −9.541226194560151 × 10−4 1.3361958057500578 × 10−3

3.14149 −0.7239462385992684 −9.543258607049511 × 10−4 1.3357239597633632 × 10−3

32.4 3.14159 −0.7262280139802966 −8.238336317452523 × 10−4 1.5198967085948667 × 10−3
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3.14155 −0.7262280826292161 −8.239449058808901 × 10−4 1.519661261553193 × 10−3

3.14149 −0.7262281855836519 −8.241119012794183 × 10−4 1.5193078955209953 × 10−3

32.45 3.14159 −0.7285059915660974 −6.95920795442486 × 10−4 1.6772622461292543 × 10−3

3.14155 −0.7285060668033074 −6.960151327319915 × 10−4 1.6770737855282707 × 10−3

3.14149 −0.7285061796442005 −6.96156691043507 × 10−4 1.67679098903428 × 10−3

32.5 3.14159 −0.7307802155542057 −5.700733563845978 × 10−4 1.815922434919294 × 10−3

3.14155 −0.7307802964681885 −5.701549451005102 × 10−4 1.8157648292755948 × 10−3

3.14149 −0.7307804178268624 −5.702773652676167 × 10−4 1.8155283552895594 × 10−3

32.55 3.14159 −0.7330508657711814 −4.46133941861139 × 10−4 1.9403360418338673 × 10−3

3.14155 −0.7330509516677158 −4.462054880739285 × 10−4 1.940200026377375 × 10−3

3.14149 −0.7330510805020409 −4.463128344139536 × 10−4 1.9399959606733754 × 10−3

32.6 3.14159 −0.7353181075532847 −3.2396082753576216 × 10−4 2.0534664742781557 × 10−3

3.14155 −0.7353181978832048 −3.240242052503035 × 10−4 2.053346256161984 × 10−3

3.14149 −0.7353183333689319 −3.2411929223816873 × 10−4 2.05316590012776 × 10−3

32.7 3.14159 −0.7398429640031353 −8.441353218502272 × 10−5 2.2536927081194666 × 10−3

3.14155 −0.7398430619362288 −8.446433117245173 × 10−5 2.2535937029615045 × 10−3

3.14149 −0.7398432088284732 −8.454054168750659 × 10−5 2.2534451813331 × 10−3

32.8 3.14159 −0.7443558729386548 1.4945625418492055 × 10−4 2.427763658793177 × 10−3

3.14155 −0.7443559772114889 1.4941476202572692 × 10−4 2.427677878174378 × 10−3

3.14149 −0.7443561336144284 1.4935251527640314 × 10−4 2.42754919912249 × 10−3

33.0 3.14159 −0.7533494785206036 6.029864611902578 × 10−4 2.722097577747968 × 10−3

3.14155 −0.7533495928971548 6.029579386735867 × 10−4 2.722026565347336 × 10−3

3.14149 −0.7533497644568607 6.029151504548835 × 10−4 2.721920043916067 × 10−3

33.5 3.14159 −0.7756774553170565 1.6768822556210576 × 10−3 3.2794358050263086 × 10−3

3.14155 −0.7756775865578464 1.6768711746605895 × 10−3 3.2793770628401324 × 10−3

3.14149 −0.7756777834149097 1.6768545514918272 × 10−3 3.2792889492241932 × 10−3

34.0 3.14159 −0.7978302202388292 2.6962105102698835 × 10−3 3.707440095081149 × 10−3

3.14155 −0.7978303624083353 2.6962083806895687 × 10−3 3.707383288903868 × 10−3

3.14149 −0.797830575658689 2.696205185554002 × 10−3 3.707298079813313 × 10−3

35.0 3.14159 −0.8417550290603878 4.652679404706676 × 10−3 4.397709927810709 × 10−3

3.14155 −0.8417551856349794 4.652686740494166 × 10−3 4.397650104350867 × 10−3

3.14149 −0.8417554204929414 4.652697743717927 × 10−3 4.397560369302386 × 10−3

40.0 3.14159 −1.0573792156622257 1.4412981881233673 × 10−2 7.189654944745767 × 10−3

3.14155 −1.0573794090113 1.441300645625501 × 10−2 7.189564703253496 × 10−3

3.14149 −1.0573796990302957 1.4413043318185594 × 10−2 7.189429340916259 × 10−3

45.0 3.14159 −1.2699610845858604 2.580531090072105 × 10−2 1.0251017087791112 × 10−2

3.14155 −1.2699613031848664 2.580534712424157 × 10−2 1.025088921290766 × 10−2

3.14149 −1.2699616310781705 2.5805401458661206 × 10−2 1.0250697400390536 × 10−2

50.0 3.14159 −1.4812961563094476 4.094947544666873 × 10−2 1.4243699194655928 × 10−2

3.14155 −1.4812963972886606 4.0949524558640515 × 10−2 1.424352143939323 × 10−2

3.14149 −1.4812967587517454 4.094959822543871 × 10−2 1.42432548062422 × 10−2

55.0 3.14159 −1.6918402420861214 6.4604328760748135 × 10−2 2.0052826308490346 × 10−2

3.14155 −1.691840503923804 6.460439236308307 × 10−2 2.0052575094367473 × 10−2

3.14149 −1.6918408966740976 6.460448770552378 × 10−2 2.00521982780708 × 10−2

60.0 3.14159 −1.9005649352418637 0.10809898207091294 2.8902218845528007 × 10−2
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3.14155 −1.9005652175955352 0.10809905918554755 2.890185488245071 × 10−2

3.14149 −1.9005656411193246 0.10809917465036076 2.890130889764398 × 10−2

65.0 3.14159 −2.104169423293366 0.18387620479734793 4.060558125607354 × 10−2

3.14155 −2.1041697270523865 0.18387629641317327 4.060506857755586 × 10−2

3.14149 −2.104170182683694 0.18387643368075676 4.060429953799894 × 10−2

70.0 3.14159 −2.298983857096773 0.30372551405890685 5.480071091863914 × 10−2

3.14155 −2.29898418298924 0.30372562079881626 5.480001782656032 × 10−2

3.14149 −2.298984671820188 0.30372578090795543 5.4798978188303415 × 10−2

N = 30, partial phase at finite θ
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γ̃ θ V ReM0 ImM0

31.6 3.14159 −0.4155123088833649 −1.8782005991409765 × 10−4 6.330578970860719 × 10−4

3.14155 −0.4155123251919556 −1.8784922965670887 × 10−4 6.330043923677622 × 10−4

3.14149 −0.4155123496523715 −1.878929966005143 × 10−4 6.32924113843514 × 10−4

31.7 3.14159 −0.4181552328004205 −4.600790872308327 × 10−5 7.559655923117715 × 10−4

3.14155 −0.41815525200604925 −4.602804756640492 × 10−5 7.559296156993012 × 10−4

3.14149 −0.4181552808128721 −4.605826079233592 × 10−5 7.558756446524675 × 10−4

31.78 3.14159 −0.4202649022150887 6.326245956469611 × 10−5 8.332766036474448 × 10−4

3.14155 −0.42026492316425357 6.324671926096537 × 10−5 8.332471502032584 × 10−4

3.14149 −0.4202649545866925 6.322310593859195 × 10−5 8.33202967268706 × 10−4

31.802 3.14159 −0.42084439582102184 9.275084219401403 × 10−5 8.522634299284915 × 10−4

3.14155 −0.420844417187829 9.273606185621027 × 10−5 8.522352193851644 × 10−4

3.14149 −0.4208444492367917 9.271388887576544 × 10−5 8.521929013447016 × 10−4

31.82 3.14159 −0.4213183239133828 1.1671237306609559 × 10−4 8.671909558256232 × 10−4

3.14155 −0.4213183456054398 1.1669831738462748 × 10−4 8.671636395208687 × 10−4

3.14149 −0.4213183781423188 1.1667723159806762 × 10−4 8.671226631305268 × 10−4

31.85 3.14159 −0.42210780928338515 1.5633301651780533 × 10−4 8.909669581169569 × 10−4

3.14155 −0.4221078314876758 1.5632006291092861 × 10−4 8.909409280614963 × 10−4

3.14149 −0.42210786479296847 1.5630063057297492 × 10−4 8.909018814793864 × 10−4

31.9 3.14159 −0.42342256294940883 2.215471299404181 × 10−4 9.278918024374619 × 10−4

3.14155 −0.4234225859345137 2.2153576841864933 × 10−4 9.278674695536766 × 10−4

3.14149 −0.4234226204111069 2.2151872465800584 × 10−4 9.278309692573936 × 10−4

32.5 3.14159 −0.4391174957274477 9.496371234248153 × 10−4 1.2294221709574773 × 10−3

3.14155 −0.43911752431471013 9.496345451950141 × 10−4 1.229403158143993 × 10−3

3.14149 −0.4391175671948034 9.496306776463555 × 10−4 1.2293746389938343 × 10−3

34.0 3.14159 −0.4779612628170003 2.601455269143662 × 10−3 1.653288813560361 × 10−3

3.14155 −0.4779612968106036 2.601457687671169 × 10−3 1.6532672341409855 × 10−3

3.14149 −0.4779613478001801 2.6014613153755284 × 10−3 1.6532348650414865 × 10−3

45.0 3.14159 −0.7592450724009824 1.734899931471533 × 10−2 4.515391915490412 × 10−3

3.14155 −0.7592451200935519 1.7349010423645999 × 10−2 4.5153349993345975 × 10−3

3.14149 −0.7592451916312689 1.734902708674579 × 10−2 4.515249625049745 × 10−3

50.0 3.14159 −0.8874198012140362 3.0056225594155026 × 10−2 6.954488692854987 × 10−3

3.14155 −0.887419853467416 3.005624166450025 × 10−2 6.954400874243307 × 10−3

3.14149 −0.887419931846239 3.0056265769649566 × 10−2 6.954269146282227 × 10−3

N = 50, partial phase at finite θ
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γ̃ θ V ReM0 ImM0

31.325 3.14159 −0.2918407654541345 7.98026871679131 × 10−5 4.424333155597573 × 10−4

3.14155 −0.291840773245185 7.979585621482465 × 10−5 4.42420336394707 × 10−4

3.14149 −0.29184078493135135 7.978560880788008 × 10−5 4.42400866869941 × 10−4

31.35 3.14159 −0.2923040923705275 1.0278346984026125 × 10−4 4.550621221981385 × 10−4

3.14155 −0.29230410035776927 1.0277720816889515 × 10−4 4.550497714063126 × 10−4

3.14149 −0.29230411233824344 1.0276781494419844 × 10−4 4.5503124467492855 × 10−4

31.4 3.14159 −0.29323011303276025 1.4803076391381091 × 10−4 4.78144033280332 × 10−4

3.14155 −0.29323012137172827 1.4802545804784515 × 10−4 4.781326262086492 × 10−4

3.14149 −0.29323013387982394 1.480174987299652 × 10−4 4.781155153336815 × 10−4

31.5 3.14159 −0.29507983238035607 2.360576804307633 × 10−4 5.175995910049874 × 10−4

3.14155 −0.2950798412980503 2.3605377995782924 × 10−4 5.175893000261233 × 10−4

3.14149 −0.2950798546742728 2.360479289004306 × 10−4 5.175738634434299 × 10−4

31.75 3.14159 −0.29969279644826335 4.455054068316847 × 10−4 5.921697420074003 × 10−4

3.14155 −0.29969280636979745 4.455035033503333 × 10−4 5.921603720842227 × 10−4

3.14149 −0.29969282125181285 4.45500648040117 × 10−4 5.921463172458622 × 10−4

32.0 3.14159 −0.30429298401236626 6.449889616569478 × 10−4 6.4801563646402665 × 10−4

3.14155 −0.30429299459764153 6.449881034089653 × 10−4 6.480063166785355 × 10−4

3.14149 −0.3042930104752741 6.449868159820404 × 10−4 6.479923370314297 × 10−4

32.5 3.14159 −0.3134658092525986 1.0279762018595526 × 10−3 7.34053348582117 × 10−4

3.14155 −0.313465820704502 1.0279764159264388 × 10−3 7.340435347025221 × 10−4

3.14149 −0.31346583788207316 1.0279767369974029 × 10−3 7.340288139099266 × 10−4

33.0 3.14159 −0.3226126313086142 1.4010179461914722 × 10−3 8.042442954538322 × 10−4

3.14155 −0.322612643339618 1.4010187169395665 × 10−3 8.042338161760316 × 10−4

3.14149 −0.3226126613858309 1.4010198732807868 × 10−3 8.04218097538276 × 10−4

34.0 3.14159 −0.3408572002751646 2.142071796713208 × 10−3 9.269612602029794 × 10−4

3.14155 −0.3408572131130061 2.1420731847348127 × 10−3 9.269493944101995 × 10−4

3.14149 −0.34085723236945964 2.142075266736319 × 10−3 9.269315957258254 × 10−4

35.0 3.14159 −0.3590631133644247 2.895574207226948 × 10−3 1.042688775208161 × 10−3

3.14155 −0.3590631268061734 2.8955759853564587 × 10−3 1.0426755056744041 × 10−3

3.14149 −0.3590631469684751 2.8955786523457916 × 10−3 1.0426556014402968 × 10−3

40.0 3.14159 −0.45000014388659393 7.225957517480029 × 10−3 1.6925857932954413 × 10−3

3.14155 −0.45000015953462313 7.225960775567354 × 10−3 1.6925643698951656 × 10−3

3.14149 −0.45000018300629346 7.225965662618408 × 10−3 1.6925322347811091 × 10−3

45.0 3.14159 −0.5413574476911213 1.3626015882620472 × 10−2 2.697613400021317 × 10−3

3.14155 −0.5413574651378426 1.3626021051768908 × 10−2 2.6975792579866846 × 10−3

3.14149 −0.5413574913075072 1.3626028805361086 × 10−2 2.6975280449202055 × 10−3

50.0 3.14159 −0.6334972947003091 2.6550506491932127 × 10−2 4.66305021094182 × 10−3

3.14155 −0.6334973137359372 2.6550514317777956 × 10−2 4.662991057611511 × 10−3

3.14149 −0.6334973422889246 2.6550526056381325 × 10−2 4.662902327597171 × 10−3

N = 70, partial phase at finite θ
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Chapter 4

Holography and RG flows on
Wilson Loops and Defects

In this chapter, we will make use of an especially fertile and adaptable method of
approaching strongly coupled field theories known as gauge/gravity duality
[66; 67; 68]. This allows us to represent certain strongly coupled field theories as
equivalent, or dual, theories of weakly coupled gravity in one dimension higher.
While this duality remains a conjecture, there is bountiful evidence in its support, and
we will assume its reliability. We will exclusively use the best-understood example of
AdS/CFT, namely the equivalence between ten-dimensional type IIB supergravity
(SUGRA) on AdS5 × S5 and (3 + 1)-dimensional N = 4 supersymmetric (SUSY)
Yang-Mills theory (SYM), with gauge group SU(Nc), in the ’t Hooft large-Nc limit, and
with large ’t Hooft coupling [66; 69; 70].

We will employ this duality to analyse 2 + 1-dimensional spherical defects, R × S2, in
strongly-coupled N = 4 SYM. We will demonstrate that these run under
renormalisaton group (RG) flow to spherically-symmetric (0 + 1)-dimensional gapless
fields that, when integrated out of the N = 4 SYM path integral, produce straight
superconformal Wilson or Wilson-’t Hooft loops. We deduce, therefore, that these
spherical defects furnish a new UV completion of the Wilson and Wilson-’t Hooft
loops [39; 71; 72; 73; 74; 75; 76], thereby offering an entirely new description of Wilson
loops as the IR limit of such defects. Our results also suggest that, generically in gauge
theories, conformal line operators may appear in the IR when defect matter on a
sphere supports spherically-symmetric zero-energy states.

We speculate that, as new descriptions of Wilson loops, these defects themselves
might act as useful probes and order parameters in some situations. In particular, we
might hope to use them in future work to learn more about the partially confined
phase and its holographic manifestation.
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While the above is of intrinsic interest for understanding strongly coupled gauge
theories and Wilson loops, there is an additional motivation for this construction that
concerns the physics of graphene and fullerenes.

Calculations attempting to elucidate the physics of graphene using various techniques
have been performed in refs. [77; 78; 79; 80; 81; 82; 83; 84]. The main result agreed upon
in all of these is that free, massless Dirac fermions on R × S2 with B = 0 are gapped,
while a magnetic monopole producing B ̸= 0 normal to the S2 give gapless modes.

However, a fundamental problem is that graphene and similar materials do not give
rise to free (2 + 1)-dimensional Dirac fermions, but rather to (2 + 1)-dimensional Dirac
fermions coupled to (3 + 1)-dimensional Maxwell theory. In other words, such
materials are codimension-one “defects” in Maxwell theory. The resulting interactions
can generate energy gaps, break degeneracies, and/or trigger fermion pairing,
producing condensates that may break symmetries.

“Traditional” methods for answering such questions are often practically useless. For
example, in graphene the effective fine structure constant is order one [85], making
perturbation theory unreliable. For questions about physics with Q > 0 and/or out of
equilibrium, such as electronic transport, the sign problem [86] makes quantum Monte
Carlo and similar numerical methods unreliable. In short, for many important
questions about these materials, currently no reliable method exists to calculate the
answers.

We therefore turn to AdS/CFT. Like (3 + 1)-dimensional Maxwell theory,
(3 + 1)-dimensional N = 4 SYM is a CFT: the ’t Hooft coupling is exactly marginal for
any N. We will be able to introduce a (2 + 1)-dimensional spherical defect in this
theory to which Dirac fermions accompanied by scalar superpartners (thus forming
hypermultiplets) are restricted. These fields couple to the gauge field and one or more
adjoint scalars of N = 4 SYM, or more precisely, to their pullbacks to the
(2 + 1)-dimensional defect [87; 88; 89; 90]. Such defect flavor fields have global U(N f )

flavor symmetry, of which the overall diagonal U(1) ⊂ U(N f ) is the hypermultiplet
number. We will introduce non-zero charge density Q and magnetic field B for this
U(1), as well as a hypermultiplet mass, M.

In this way, we hope to model spherical graphene and fullerenes, capturing the
consequences of Dirac fermions being strongly coupled to gauge fields of the
surrounding CFT, in the presence of a magnetic field and non-zero charge density.

Before we introduce the AdS/CFT correspondence, we will explain the field theory
description of the problem in more detail. We consider Dirac fermions and their scalar
superpartners consigned to a sphere of two spatial dimensions, placed in the
background of a strongly-coupled N = 4 SU(N) SYM theory at large N, to which the
hypermultiplet on the sphere is coupled. We introduce N f flavours of this
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hypermultiplet, all sharing the same mass, to the sphere. The theory therefore has a
U(N f ) flavour symmetry. We split U(N f ) = U(1)× SU(N f ). This U(1) symmetry is
the quark number (equivalently, the baryon number multiplied by N f ). We introduce
a non-zero quark number-density (or quark charge) to the sphere. We also add a
radial, non-dynamical background magnetic field, proportional to the field’s volume
form. Our calculations remain at zero temperature throughout. We perform RG flow
on this system to arrive at the IR description, which we find to be various kinds of
Wilson-’t Hooft loops depending on the initial quark number density and magnetic
field strength.

4.1 AdS/CFT

We will now introduce the duality between N = 4 SU(N) SYM and Type IIB
superstring theory in AdS5 × S5 [66; 67; 68]. This relation is usually motivated by
considering a stack of a number N parallel D3 branes, embedded in flat ten
dimensional space. In the low energy (E ≪ 1/

√
α′, where α′ is the squared string

length, α′ = l2
s ) and weakly coupled (perturbative) region, D branes can be fully

characterised as objects on which open strings end, and their dynamical behaviour
inferred from that of open strings. Each end of an open strings can end on different
branes on the stack, and we thus obtain a U(N) symmetry, with open strings
transforming adjointly. The effective string coupling for a stack is gsN, and we
therefore demand gsN ≪ 1 for the validity of this description.

Since closed strings form naturally in a theory with open string and D branes, the full
action for the D brane involves that of open strings, closed strings, and the interactions
between open and closed strings. We may write the effective action as,

S = Sopen + Sclosed + Sint (4.1)

In analogy with the Nambu-Goto action for fundamental strings, the local contribution
to the bosonic part of the open string action for the D brane can be written,

SDBI = −TD3

∫
d4ξ STr

√
−det(g + 2πα′F), (4.2)

where STr denotes the symmetric trace over the gauge indices, g is the induced metric
on the brane, F is the U(N) gauge field on the stack of branes, and the integral is over
the worldvolume coordinates ξ. The prefactor is the tension of the brane,
TD3 = 1

(2π)3(α′)2gs
.

There are also topological contributions to the bosonic part of the open string action
known as the Wess-Zumino action. This term allows strings and D branes to be
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dissolved in another D brane, thus sourcing charge in the brane. It won’t be crucial for
the current discussion, but will be important later.

We now consider the low energy limit, which can be obtained by expanding the action
in α′ and then taking α′ → 0. The closed strings decouple from the open strings, while
the closed string action becomes that of free gravitons. Meanwhile, (4.2) becomes the
action of 4D N = 4 SYM. We thus have a field theory in 4D, and a decoupled theory of
free gravtitons in flat 10D.

We now consider a different description of the stack of D branes. It has also been
shown that the D branes are solitonic solutions of supergravity, and that an alternative
description of their dynamics can be given in terms of supergravity. The supergravity
perspective is valid when gs ≪ 1 and the energy scale E ≪ 1/

√
α′, such that only

massless modes are relevant.

The supergravity solution describing this stack of D3 branes is then given by,

ds2 = f−1/2(−dt2 + dx2
1 + dx2

2 + dx2
3) + f 1/2(dr2 + r2dΩ2

5) (4.3)

C4 = (1 − f−1)dx0 ∧ dx1 ∧ dx2 ∧ dx3 + · · · (4.4)

f = 1 + L4/r4 (4.5)

where C4 is an RR 4-form potential with associated self-dual field strength F5 = dC4,
the ellipsis denotes terms in the potential that ensure this self-duality and which we
do not show, dΩ5 is the unit metric on a 5-sphere, and L is a length scale linked to the
number of branes in the stack, N, by,

L4 = 4πgsα
′2N. (4.6)

To compare this to the low energy open string description that we outlined above, we
should take the strict low energy limit again. We must be careful with the meaning of
this in a theory with nontrivial metric. An observer held at constant coordinate r
measures an energy Er related to that measured by an observer at infinity by,

Er = f 1/4E (4.7)

It is the energy at infinity that matches the notion of energy used in the field theory.
Therefore, we now consider taking the low energy limit as perceived by an observer at
infinity. We can again achieve a low energy limit by keeping E fixed while taking
α′ → 0.

Strings are redshifted according to (4.7), and so high energy strings sufficiently close
to the D3 branes will not decouple under this limit. In fact, as we take the low energy
limit carefully, we can see two sectors of closed strings that decouple from one
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another1: firstly, free massless strings in flat spacetime, and secondly, strings
arbitrarily close to the D3 branes that can have arbitrarily high energies, described by
a full Type IIB string theory. A precise calculation shows that the absorption cross
section of the D3 brane stack with respect to the strings approaching from large r with
energy ω goes as σ ∼ ω3L8, and so vanishes as we take ω → 0 [67]. (This, in turn, is
because the wavelength of the scattering strings becomes much larger than the
gravitational curvature exerted, which, in this supergravity description, is how the
interaction of the D brane is represented.) Also, of course, as the energy scale E is
reduced, strings of a certain energy must lie ever closer to r = 0 in order not to be
integrated out.

This motivates us to consider a near-horizon limit, ‘zooming in’ to the region around
r ∼ 0 so that we can make sense of the sector of the theory close to the horizon. We
consider values of r ≪ L. We want to keep the energy in this region fixed under this
process (in string units), so that we can continue to have a full string theory here and
keep this sector of the theory intact. This means we must keep Ep

√
α′ fixed. We also

want to keep the energy at infinity fixed, since this is the the notion of energy
corresponding to that used in the open string picture and will permit us to compare
both theories. From (4.7), at small α′ we have E ∼ Epr/

√
α′. Together, therefore, this

demands we perform the near-horizon limit by taking r → 0 with r
α′ held fixed. This is

the Maldacena limit. Taking this limit, the metric and RR potential become,

dss =
r2

L2 ηµνdxµdxν +
L2

r2 dr2 + L2dΩ2
5

C4 =
r4

L4 + · · · (4.8)

The metric describes AdS5 × S5, with radius of the S5 and radius of curvature for AdS5

each of L.

For this description to be accurate, we require that the AdS radius of curvature, L, be
must larger than the string length, ls =

√
α′. Using (4.6), we see that this implies,

L4

l4
s
∼ gsN ≫ 1. (4.9)

Since we also require gs to be small, we must take N to be large.

Therefore, we have a theory of IIB string theory in AdS5 × S5, combined with a
decoupled free gravity theory in flat space. Recall that the first description consisted
of an N = 4 SYM theory and a decoupled free gravity theory in flat space. These
should both describe the same theory, but in different regions of the ’t Hooft coupling,
gsN. It is natural to suppose that we can remove the decoupled gravity theories from
each description and retain an equivalence. This then implies that we can describe

1with a caveat regarding the decoupling of the diagonal U(1), mentioned below
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N = 4 SYM theory at strong (’t Hooft) coupling by a theory of supergravity at weak
coupling. This ‘strong to weak’ aspect of the duality is a very useful feature, making
computations on strongly coupled field theories tractable.

This construction cannot be considered a proof since it dealt with string theory only in
a perturbative way. It therefore remains a conjecture, though it has survived many
tests for consistency.

It is important to note that the gauge group of N = 4 SYM is SU(N), not U(N). The
reason for this was not made clear in the above argument. It turns out that, in the large
N and Maldacena limits, the diagonal U(1) of U(N) decouples from the SU(N)

degrees of freedom in the SYM theory. Commonly in field theory, couplings
corresponding to different irreducible representations in the theory have different
runnning behaviour under renormalisation group flow. In this case, the coupling
corresponding to the U(1) representation does not share the property of asymptotic
freedom, and so decouples from the theory as we take the near-horizon (i.e. infrared)
limit. From the perspective of the gravity theory, the U(1) degrees of freedom
correspond to non-propagating boundary modes. Regardless, in the large N limit, the
difference between SU(N) and U(N) theories becomes negligible, differing only by
terms suppressed by powers of N.

The lower-dimensional gauge theory will be referred to as ‘the field theory’, or, for
reasons to be explained below, ‘the boundary theory’, while the higher-dimensional
theory containing gravity will sometimes be referred to as ‘the bulk’.

4.1.1 UV/IR connection

A very important aspect of the AdS/CFT duality is revealed when we inquire as to
how the extra dimension of the bulk theory is encoded in the field theory. The answer
is suggested already by the need, when taking the low energy limit of the field theory,
to correspondingly take the near horizon limit. That is, the extra dimension in the bulk
theory represents the energy scale of the boundary theory.

We can see this more explicitly. At a given value of the radial direction r, according to
4.8, the time at the boundary τ in terms of the local proper time t is,

dτ =
r
R

dt (4.10)

From this, we can infer the relation between the local energy in the bulk, Elocal, and the
energy in the boundary theory, EYM, to be,

EYM =
r
R

Elocal (4.11)
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Consider processes in the bulk that share the same local energy scale but that differ in
the radial depth at which they occur. The greater this radial depth, the lower is the
energy of the corresponding boundary theory process being described. We can
examine the extreme limits. Approaching the boundary of AdS space, we see

r → ∞ =⇒ EYM → ∞, (4.12)

showing that the UV of the field theory is described close to the boundary in the bulk.
In contrast, as we approach the stack of D3 branes near the Poincaré horizon,

r → 0 =⇒ EYM → 0, (4.13)

and so we probe lower energies in the field theory by approaching the horizon in the
bulk, far from the boundary.

This association between the depth of the bulk process and the energy of the field
theory is known as the UV/IR connection. It is a very salient feature of AdS/CFT and
will be extremely useful for us. It allows us to consider motion in the radial direction
as an RG-flow on the field theory. We will use this aspect of AdS/CFT later to infer the
IR effective theory that emerges from a strongly coupled gauge theory that we have
defined in the UV. This is often a very difficult task using only field theory techniques
and without the benefit of AdS/CFT.

The UV/IR connection is also why we can think of the full UV field theory as ‘living at
the boundary’ of AdS. This is an image that proves very fruitful at encapsulating the
details of the AdS/CFT correspondence.

4.2 Field-operator correspondence and symmetry
representations

The AdS/CFT correspondence constructed above proposes an exact equivalence
between the boundary and bulk theories. This implies the existence of a bijective map
between the physical degrees of freedom of each theory. Since a CFT has no
asymptotic states or an S-matrix, the most natural proposal is to relate operators in the
boundary theory to fields in the bulk theory.

The physical symmetries of each side of the duality must be identical. Both theories
have PSU(2, 2|4) symmetry. The bosonic part of this is SO(6)× SO(4, 2). In the field
theory, the SO(6) is the R symmetry of N = 4 SYM, while the SO(4, 2) is composed of
Lorentz transformations, SO(3, 1), enhanced by conformal transformations.
Meanwhile, in the gravity theory, the AdS space is invariant under SO(4, 2)
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isometries, while the S5 is invariant under SO(6) rotations. We also have
supersymmetry on each side.

We should expect corresponding fields and operators to be in matching
representations of the symmetries. This principleallows us to deduce the precise
dictionary between fields and operators.

Scalar, vector and tensor operators in the boundary theory will map, respectively, to
scalar, vector, and tensor fields in the bulk theory. In N = 4 SYM and its dual, it can be
shown that the SO(6) R symmetry currents of the field theory map to gauge field
fluctuations that result from Kaluza-Klein reduction of the S5, while the
energy-momentum tensor of the field theory maps to metric fluctuations in the AdS.

As another example, we can decompose scalar fields in the bulk into irreducible
representations of SO(6) by Kaluza-Klein reduction and expansion in spherical
harmonics on the S5. We can then associate these to (composite) gauge-invariant
operators in the boundary theory whose symmetries and representations are known
from field theory analysis. If, for example, we find the duals of 1/2 BPS scalar
operators in this way, we can subsequently associate all the superconformal
descendants of the operators with appropriate descendants in the gravity theory.

We can formalise this field-operator correspondence with the proposal that deforming
the field theory by ∫

ddxϕ0(x)O(x), (4.14)

for field theory operator O and classical source field values ϕ0(x), should correspond
to solving the gravity equations in the bulk for the corresponding field ϕ(r, x) with
(appropriately-renormalised) boundary value ϕ0(x). If we allow the extension of
AdS/CFT to hold for the full string theory, beyond the supergravity limit, we can
express this as 〈

exp
(∫

ddxOϕ0

)〉
CFT

= Zstring|ϕ(x,r)
r→∞−−→ϕ0(x)

(4.15)

relating expectation values in the field theory to the partition functions of the bulk. In
fact, this equation could be considered the most concise and complete expression of
the AdS/CFT correspondence.

The asymptotic limit of this relation as we approach the boundary will suffice for our
purposes. Consider, therefore, any bulk field ϕ, in any representations of the
symmetries, that obeys the bulk equations of motion. Since these equations of motion
are typically second-order differential equations (such as the Klein-Gordon equation),
the asymptotic solution near the boundary generically has two independent solutions.
Here, we introduce the radial parameter z, defined as z = 1/r, such that z → 0 takes
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us to the boundary of AdS. Then, as z → 0, we will have a solution of the form,

ϕ(x, z) ∼ ϕ0(x)z∆− + ϕ+z∆+ + ... (4.16)

where we take ∆+ ≥ ∆− by definition. For any bulk field denoted by ϕ, we will be
able to deduce by dimensional analysis that ϕ0 can be identified as the source for the
corresponding field theory operator, while ϕ+ can be recognised as the vacuum
expectation value for the operator.2. This prescription will need only minor
modification when we consider insertions of probe branes and boundary defects
below.

4.3 Probe D branes

We would like to learn how to extend the AdS/CFT correspondence to introduce more
matter content into the field theory. Introducing more D branes of some dimension, p,
after having taken the near-horizon limit is one method of achieving this.

Recall that open strings are able to end on D branes. Consider placing a set of N f

parallel Dp brane close to the stack of D3 branes. We can now imagine that states of
open strings stretching between the D3 stack and the Dp branes, 3-p and p-3 strings,
can be excited. We can also expect string states that begin and end on the new Dp
branes, p-p strings. Each end of an open string transforms in the fundamental or
anti-fundamental representation. From the perspective of the stack, then, and
ultimately the field theory, the strings that have one end on the D3 stack might appear
to be introducing fundamental matter to our theory.

This vague impression can be substantiated [91; 92]. If we stay within the probe limit,
defined by ensuring N f /N → 0 as we take N → ∞, then we do not have to consider
the back-reaction of the new Dp branes on the geometry, nor consider the
consequences of the RR fields they source. This is a very useful simplification. We can
then describe the above proposal rigorously. We take the near horizon limit as before
by replacing the stack with the background (4.8). Into this background, we insert the
new Dp branes. Its dynamics will be described by the DBI and Wess-Zumino actions.
Now, however, the induced metric is non-trivial, and because of the background RR
field, the Wess-Zumino term is also generally non-trivial. Analogous to the stack of D3
branes, the N f coincident D branes will introduce a U(N f ) symmetry into the theory.
This is then akin to introducing N f flavours of fundamental representation matter, or
quarks, to our theory. To more easily differentiate the number N f of Dp branes
describing flavour from the number N of D3 branes in the stack, we shall often denote

2We will not encounter bulk fields with negative mass and so do not need to discuss the Breitenlohner-
Freedman bound
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the latter by Nc ≡ N, where the subscript denotes that we can think of Nc as the
number of colours in the gauge theory.

Solving for the dynamics of any new matter that we have introduced amounts to
solving the equations of motion for for the Dp-brane in this background.For p > 3, p-p
strings are found to decouple and become nondynamical in the Maldacena limit,
which removes additional dynamics from the theory, leaving the fundamental matter
introduced by the p-3 and 3-p strings. Since we are in Type IIB string theory, it is most
straightforward to restrict to p = 3, 5, and 7.

The exact set of matter representations introduced to our boundary theory depends on
the dimension p and the embedding that we select for the Dp branes, and can be
deduced from the symmetries and representations of fluctuations. If we choose to
align the Dp branes to extend along all the four dimensions spanned by the D3 brane,
we can expect open strings to be able to be excited between the stack and the Dp
branes at any point along the stack, and thus at any point in the boundary field theory.
If, however, there is a direction along the stack that we do not also wrap with the Dp
branes, the dimensions along which 3-p and p-3 strings can be excited will
accordingly be reduced. Then, we can expect the boundary theory to have
fundamental matter restricted to some region of lower dimension, depending on the
exact embedding. Likewise, if we choose an embedding solution that increases the
separation between the Dp and the D3 branes, we increase also the excitation energy
for the 3-p and p-3 strings, corresponding to a greater mass for the corresponding
matter in the boundary theory. Both these properties of the D brane embeddings can
vary with respect to the radial coordinate of the bulk theory.

Solving for the profile of the D brane embedding at different radial distances in the
bulk amounts to performing RG flow on the field theory. In particular, in Poincaré
coordinates, we can consider the IR limit of the theory as taking place at the Poincaré
horizon. If we expect the matter introduced by our theory to be massless in this IR
limit, we can expect the D brane to reach all the way to the Poincaré horizon. Open
strings of arbitrarily small length and energy can then be excited, implying that the
field theory is gapless. Alternatively, if we expect this matter to be massive, the D
brane should terminate at some finite radial distance from the Poincaré horizon. Open
strings representing the fundamental matter then have a minimum excitation energy,
and the corresponding matter in the field theory must be massive.

Similarly, the region of the field theory over which the the fundamental matter can be
excited can change under RG flow. This corresponds to varying the embedding of the
D branes along the dimensions over which the D3 stack extends. It could even be
possible for the dimension of this region to change. Indeed, we present an example
below of a 2 + 1 dimensional defect in the UV, described by a D5 brane in the bulk,
flowing to a 0 + 1 dimensional object in the IR, as seen by the narrowing of the D5
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brane along the non-radial AdS dimensions. Furthermore, the fact that this brane
reaches the Poincaré horizon will demonstrate that the theory living on this defect is
gapless.

4.4 Maldacena-Wilson loops

Since we are dealing with gauge theories, we would especially like to know how to
compute the Wilson loops in the gravitational dual picture. As noted in Chapter 1, the
fundamental Wilson loop can be thought of as the holonomy associated to a very
massive quark taken along a designated path, C. We can introduce a massive
fundamental particle, which we regard as a quark, to an N = 4 SYM theory by
Higgsing the theory. This will be shown to be the same as introducing fundamental
matter via a D3 probe brane in the sense discussed in the previous section [39; 71; 67].

4.4.1 Fundamental Maldacena-Wilson loops

We start by considering N + 1 coincident D3 branes in the stack, giving us U(N + 1)
SYM as the worldvolume theory. We now place one of the D3 branes at some radial
distance U (in string units) from the stack, and at some arbitrary point on the S5. This
‘breaks the gauge symmetry’ U(N + 1) → U(N)× U(1). Open strings can now exist
between the stack of N D3 branes and the isolated D3 brane, with an associated
excitation mass of m = U/2π. This appears, therefore, to describe the Higgs
mechanism in terms of D branes, with open strings behaving as W bosons that have
gained a mass. These ‘W bosons’ transform in the fundamental representation of the
gauge group and source the gauge field, and can thus take the role of quarks in our
Wilson line. To render these quarks nondynamical, we can take m → ∞, which will
mean moving the isolated D3 brane to the boundary of AdS.

The open strings do not just source the gauge field, however, as they can also pull on
the D3 brane stack in transversal directions. Transverse displacements are described
by scalar fields. Therefore, there is also a coupling of the W bosons to these scalar
fields. Writing out the full U(N + 1) Lagrangian shows that the stretched open strings
couple to the operator,

W(C) = Tr
[
P exp

(∮
C

iAµ ẋµ + n⃗ · Φ⃗
√

ẋ2

)]
(4.17)

where n⃗ is a unit vector on the S5, Φ⃗ encodes the six scalar fields in the field theory, C is
our choice of path over which we take the values of the integral x, and the derivative
is respect to the path parameter. This is known as the Maldacena-Wilson loop.
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When we take the near horizon limit, we again replace the stack of D3 branes by the
background (4.8). The Maldacena-Wilson loop is then described in the bulk by open
strings ending at the boundary along C and obeying the Nambu-Goto action in the
bulk under this AdS5 × S5 background.

Applying (4.15) to this situation implies that we can deduce the vacuum expectation
value of the Maldacena-Wilson loop by evaluating the partition function, or action, of
the corresponding bulk description. In the supergravity regime, with large ’t Hooft
coupling gsN, the leading contribution to the action is made by the area of the
worldsheet of the open strings as measured according to the AdS metric. In our limits,
gs → 0 and α′ → 0, we neglect nontrivial worldsheet topologies and fluctuations away
from saddle point approximations. The dominant contribution to the action is
therefore the worldsheet that solves the classical equations of motion in the bulk, or
equivalently the worldsheet with minimal area, and that ends on C at the boundary.

To calculate the Wilson loop expectation value, we would therefore calculate
something like,

⟨W(C)⟩ ∼ e−Scl[∂Σ=C] (4.18)

where Scl is the classical action, proportional to the minimal area, of the string
worldsheet Σ with boundary C on the boundary of AdS. However, since the area of a
worldsheet that reaches to the boundary of AdS diverges, this expression is also
divergent. This can generally be resolved by taking the Legendre transform of the
action, following arguments that we should properly be giving the open string end
Neumann, rather than Dirichlet, boundary conditions [93]. However, it is often
sufficient to regularise and subtract the action given by a different embedding ending
on the same C.

We can easily extend this discussion to describe not just Wilson loops, but also ’t Hooft
loops and Wilson-’t Hooft loops. Whereas a Wilson loop describes the path of an
electrically-charged quark sourcing gauge fields, a ’t Hooft loop can be thought of as
describing the path of magnetically charged monopole. A Wilson-’t Hooft loop
describes the path of a dyonic particle, carrying both electric and magnetic charge. We
can describe Wilson-’t Hooft loops by replacing fundamental strings in the above
discussion with (p,q)-strings, which is a bound state of p fundamental strings and q
D1 branes.

In this chapter, we will focus on straight, infinitely long Maldacena-Wilson lines.
These are gauge invariant when we include the point at infinity. In the bulk, these
describe a single string with one endpoint on the AdS5 boundary, hanging straight
down into the bulk. More precisely, the string is extended along an AdS2 subspace of
AdS5, thus breaking SO(4, 2) → SO(1, 2)× SO(3), where SO(1, 2) comes from
conformal transformations that preserve the straight line and SO(3) comes from
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rotations around the straight line. The string sits at a point on the S5, thus breaking
SO(6)R → SO(5)R. These straight strings also have the property of being maximally
superconformal, retaining half of the Poincaré supersymmetries and half of the
superconformal supersymmetries, making them 1/2-BPS. In the next subsection, we
will describe Wilson lines valued in higher representations of the gauge group that
share all these same symmetries.

4.4.2 Symmetric-representation Maldacena-Wilson loops and D3 branes

The above discussion concerned Wilson and Wilson-’t Hooft loops in the fundamental
representation. It is possible to obtain dual descriptions of Wilson loops in higher
representations. One might imagine that higher representations can be formed by
layering multiple fundamental strings on top of each other, or winding the string
multiple times along the same path to obtain multiply-wound Wilson loops. However,
it is difficult to know how to calculate such an object: the Nambu-Goto action applies
only to a single string, and computing interactions become infeasible when the
worldsheets lie coincident. However, it is known that multiple fundamental strings
can polarise, or ‘blow up’, into a D brane with fundamental strings dissolved in it via
the Myers effect [94]. It might therefore be proposed that D branes, such as D3 branes,
with the correct embedding might describe higher representations of Wilson loops,
and indeed this has been verified explicitly in [76; 95; 72].

In this section we review the D3-brane solutions that are holographically dual to
symmetric-representation, maximally-superconformal Wilson lines and which will
emerge in the IR of our defect RG flows. There are similar solutions for D5-branes
describing anti-symmetric representations, but these will not appear in our defect RG
flows and so we will not review them here. We will work in a gauge in which the
AdS5 × S5 solution of type IIB supergravity is

ds2 =
L2

z2

(
−dt2 + dr2 + r2ds2

S2 + dz2)+ L2 (dθ2 + sin2 θ ds2
S4

)
,

C4 =
L4

z4 r2dt ∧ dr ∧ ω(S2) + L4 f (θ)ω(S4), (4.19)

f (θ) =
3
2

θ − sin(2θ) +
1
8

sin(4θ),

where ω(S2) = sin ϕ1 dϕ1 ∧ dϕ2 is the volume form on the field theory S2, ω(S4) is the
volume form on the internal S4 appearing in the metric, and θ ∈ [0, π]. Notice that we
have chosen a gauge in which the component of C4 with legs on the S5 vanishes at the
north pole θ = 0. This is appropriate for configurations wrapping an S4 that can
collapse at the north pole. For configurations that wrap an S4 that can collapse at the
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south pole θ = π, the components of the C4 on the S5 would be

f (θ) → f̃ (θ) =
3
2
(θ − π)− sin(2θ) +

1
8

sin(4θ). (4.20)

Each gauge choice is smooth over different patches of the S5 surrounding the north
and south poles respectively. At the intersection they are equivalent up to a gauge
transformation

C4 → C4 −
3π

2
ω(S4). (4.21)

A Wilson-’t Hooft line in a totally symmetric representation of SU(Nc) is dual to a
probe D3-brane solution that wraps an S2 inside AdS5, is point-like on the S5, and
carries both fundamental string and D1-brane charges [72; 75; 76]. Here we review the
construction of these solutions.

The relevant terms in the D3-brane action are

SD3 = −TD3

∫
d4ξ
√
−det(g + 2πα′F) + TD3

∫
P[C4], (4.22)

where TD3 = (2π)−3α′−2g−1
s is the D3-brane tension with gs the string coupling, ξ are

the coordinates on the brane, F is the field strength for a U(N f ) world-volume gauge
field A, STr is a symmetrised trace over gauge indices, and g and P[C4] are the
pullbacks of the bulk metric and C4, respectively. We parameterise the D3-brane by
ξ = (t, z, ϕi), where ϕi are the coordinates on S2 appearing in equation (4.19), and
make the ansatz that the D3-brane sits at a constant location on the S5, has r = r(z),
and has world-volume field strength

F =
L2

2πα′ E(z)dt ∧ dz +
L2

2πα′B ω(S2), (4.23)

where ω(S2) = sin ϕ1 dϕ1 ∧ dϕ2 is the volume form on the S2, E(z) is proportional to a
radial electric field sources by the dissolved fundamental string charge, and B is
proportional to a constant radial magnetic field sourced by the dissolved D1-brane
charge.

Substituting the ansatz into the D3-brane action and integrating over the angles on the
S2 we obtain

SD3 = −N3

∫
dz

1
z4

[√
(1 + r′2 − z4E2) (r4 + z4B2)− r2r′

]
. (4.24)

where N3 = 2
π Nc

∫
dt. The equations of motion for Aϕi are solved automatically by

the ansatz, while if we write the D3-brane action (4.24) as SD3 = N3
∫

dr L, then the
equation of motion for At implies that ∂L/∂E = Q for some integration constant Q.
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Solving for the electric field, we obtain

E =
Q
√

1 + r′2√
r4 + z4(Q2 + B2)

. (4.25)

Here, Q determines the number k of dissolved fundamental strings, while the
magnetic field B is proportional to the number n1 of dissolved D1-branes,

k =
∫

S2

δSD3

δE
=

4Nc√
λ

Q, n1 =
1

2π

∫
S2

F =

√
λ

π
B, (4.26)

where E =
√

λ E/2π is the canonical world volume electric field.

We now Legendre transform the action (4.24) to eliminate E in favour of Q, yielding
an action for r(z) only

S̃D3 ≡ SD3 −N3

∫
dz QE = −N3

∫
dz

1
z4

[√
(1 + r′2) [r4 + z4(Q2 + B2)]− r2r′

]
.

(4.27)
The equation of motion for r(z) following from S̃D3 admits the solution

r = κz, κ =
√

Q2 + B2 =

√
λ2

16N2
c

k2 +
π2

λ
n2

1 , (4.28)

where in the final equality we have used equation (4.26) to rewrite the proportionality
coefficient κ in terms of the dissolved string and D1-brane charges. This is the solution
that describes the Wilson-’t Hooft line in a totally symmetric representation of
SU(Nc). The resulting induced brane metric is AdS2 × S2, with AdS radius of
curvature L

√
κ2 + 1.

4.5 Defect D5-branes

We will conduct our investigation of spherical defects by employing D5-branes. The
D3-D5 model, in which the probe D5-branes are dual to a flat, planar
(2 + 1)-dimensional defect carrying an N = 2 hypermultiplet was one of the first
holographic defect models constructed [96; 87].

In the 10-dimensional flat space limit, a stack of the Nc D3-branes and N f D5-branes
are arranged as shown in Table 4.1. The D3-D5 intersection is ND = 4, and as a result,
the system preserves N = 2 SUSY. Turning on a mass for the multiplet corresponds to
separating the branes in the 7-9 directions.

In the decoupling limit, the D3-brane spacetime is AdS5 × S5, as in (4.19). The probe
D5-branes spans a flat (2+1)-dimensional plane in the boundary space, the radial
direction, and an S2 ⊂ S5.
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0 1 2 3 4 5 6 7 8 9
Nc D3 x x x x
N f D5 x x x x x x

TABLE 4.1: The embedding of the D3 and defect flavor D5-branes in the flat space
limit.

Here we are interested in spherical, rather than planar, defects. We parameterise
AdS5 × S5 (4.19) using spherical coordinates in the AdS and write the S5 in terms of
two S2s:

ds2 =
L2

z2

(
−dt2 + dr2 + r2ds2

S2 + dz2)+ L2
(

dϑ2 + sin2 ϑ ds2
Ŝ2 + cos2 ϑ ds2

S2
⊥

)
,

C4 =
L4

z4 r2dt ∧ dr ∧ ω(S2) + L4g(ϑ)ω(Ŝ2) ∧ ω(S2
⊥),

The function g(ϑ) is determined by the condition dC4 = ∗dC4. We will not need the
explicit function in what follows. We have distinguished the two internal S2s by a hat
and a perpendicular symbol. The D5-brane wraps the hatted two-sphere, Ŝ2, and is a
point on the transverse two-sphere S2

⊥. The relevant terms in the D5-brane action are

SD5 = −TD5

∫
d6ξ STr

√
−det(g + 2πα′F) + 2πα′TD5

∫
Tr (P[C4] ∧ F) , (4.29)

where TD5 = (2π)−5α′−3g−1
s is the D5-brane tension, ξ are the coordinates on the

D5-brane, F is the field strength for a U(N f ) world-volume gauge field A, STr is a
symmetrised trace over gauge indices, and g and P[C4] are the pullbacks of the bulk
metric and C4, respectively.

We parameterise the stack of D5-branes with six of the bulk spacetime coordinates
ξ ∈ (t, z, ϕi, ϕα), where ϕi are the two angles on the S2 inside AdS5 and ϕα are the two
angles on the Ŝ2 inside the S5. The embedding of the stack of D5-branes is then
specified by the two N f × N f matrices r(ξ) and ϑ(ξ).

We will take as our ansatz that these embedding functions depend only on z and are
proportional to the identity matrix,

r = r(z)1N f , ϑ = ϑ(z)1N f . (4.30)

For the gauge field strength we make the ansatz

F =
L2

2πα′ E(z)1N f dt ∧ dz +
L2

2πα′B 1N f ω(S2) +
L2

2πα′ q1N f ω(Ŝ2). (4.31)

This consists of three pieces: a radial electric field proportional to E(z) sourced by
dissolved fundamental strings, a constant radial magnetic field proportional to B
sourced by dissolved D3-branes, and an internal flux proportional to q also sourced by
dissolved D3-branes. We denote the number of D3-branes sourcing the magnetic field
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by n̂3 and the number sourcing the internal flux by n3. We have chosen the naming
scheme so that n̂3 is the number of D3-branes wrapping the Ŝ2, while n3 is the number
wrapping the S2. They are related to the flux (4.31) by

n̂3 =
1

2π

∫
S2

TrF =

√
λN f

π
B, n3 =

1
2π

∫
Ŝ2

TrF =

√
λN f

π
q. (4.32)

There are also D1-branes sourced by the Chern-Simons term C2 ∧ F ∧ F. This term
vanishes for our background and was omitted from (4.29). The number of D1-branes
is given by

n1 =
1

8π2

∫
S2×Ŝ2

Tr(F ∧ F) =
λN f

2π2 Bq =
n3n̂3

2N f
. (4.33)

Evaluated on the ansatz in equations (4.30) and (4.31), the D5-brane action (4.29)
becomes

SD5 = −N5

∫
dz
[

1
z2

√
1 + r′2 + z2ϑ′2 − z4E2

√
r4

z4 + B2
√

sin4(ϑ) + q2 − r2r′

z4 q
]

, (4.34)

where N5 = (4π)2L6N f T5
∫

dt.

We write the D5-brane action (4.34) as SD5 = N5
∫

dzL and introduce the integration
constant Q defined by ∂L/∂E = Q, which determines E as

E =
Q
√

1 + r′2 + z2ϑ′2

z2

√
(sin4(ϑ) + q2)

(
r4

z4 + B2
)
+ Q2

. (4.35)

The integration constant Q is proportional to the number k of dissolved fundamental
strings, given by Gauss’ law

k =
∫

S2

∫
Ŝ2

δSD5

δE
=

4N f Nc

π
Q, (4.36)

where E =
√

λ E/2π is the canonical world volume electric field. It is also common to
make use of a parameter known as the filling fraction, which we simply define here as,

ν =
4Q
B
√

λ
. (4.37)

We now perform a Legendre transform S̃D5 = SD5 −N5
∫

dr QE to eliminate E from
the action in favour of Q, yielding an action for just the scalar fields r(z) and ϑ(z). The
Legendre transformed action is

S̃D5 = −N5

∫ dz
z2

(√(
sin4 ϑ + q2

) ( r4

z4 + B2

)
+ Q2

√
1 + r′2 + z2ϑ′2 − qr2r′

z2

)
. (4.38)
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Extremizing S̃D5 with respect to r and ϑ leads to the equations of motion(
Σ
z2 r′ − qr2

z4

)′
=

2(sin4 ϑ + q2)r3

z6Σ
− 2qrr′

z4 , (4.39a)

(
Σ ϑ′)′ = 2 sin3 ϑ

z2Σ

(
r4

z4 + B2
)

cos ϑ, (4.39b)

where we have defined

Σ(z) ≡

√√√√(
sin4 ϑ + q2

) ( r4

z4 + B2
)
+ Q2

1 + r′2 + z2ϑ′2 . (4.40)

The equations of motion following from (4.38) admit solutions near the conformal
boundary at z → 0 with asymptotic expansions,

r(z) =R + qz − 1 + q2

3R
z2 +

q(2 + 2q2 + 3M2R2)

6R2 z3

− (5 + 22q4 + 9q2(3 + 2M2R2)− 54MqR3C)
54R3 z4 +

2q(1 + q2)2

135R4 z5 log z

+Dz5 + ... (4.41)

ϑ(z) =
π

2
− Mz − Cz2 + ...,

with the integration constants (R,D, M, C). R is the spherical radius of the dual
spherical defect. The constant D is related to the expectation value of the displacement
operator. The integration constants M and C appearing in the near-boundary
expansion of ϑ(z) are related to the source for and expectation value of an operator
with the canonical dimensions of a fermion bilinear in the defect theory.

The deep IR admits a wide range of asymptotic expansions and we focus on solutions
corresponding to point-like defects, such as the Wilson and Wilson-’t Hooft lines of
section 4.4. We categorise the different types of solutions by their behaviour in the
deep IR (z → ∞), i.e. as the D5-branes approach the Poincaré horizon of AdS5:

• Type 3: The D5-branes approach a profile similar to a D3-brane dual to a
symmetric representation Wilson-’t Hooft line, discussed in section 4.4.2.

• Type 1: The D5-branes approach a profile similar to a (p, q) string dual to a
dyonic Wilson line in the fundamental representation, discussed in section 4.4.1.

• Type 3̂: The D5-branes approach a profile of a D3-brane wrapping the internal
two-sphere Ŝ2.
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Solution type
(IR D-brane)

AdS5 S5

3̃
(D3-brane)

r

z

UV (z = 0)

IR (z = ∞)

R

r0

UV
π
2

IRθ0 θ

1
(D1-brane)

r

z

UV (z = 0)

IR (z = ∞)

R

r0

UV
π
2

IR

θ

3
(D3-brane)

r

z

R

UV (z = 0)

to IR
r ∝ z

UV
π
2

IR

θ

TABLE 4.2: Cartoons of the different classes of probe D5-brane embeddings discussed
in this chapter. The D5-branes wrap an S2 inside AdS5, and an S2 inside S5, repre-
sented by the blue circles in the right-hand column. The cartoons show how these
wrapped spheres evolve as we move from the UV region near the boundary of AdS5

to the IR region near the Poincaré horizon.

4.5.1 Type 3: D5-branes flowing to symmetric representation Wilson lines

The D3-branes of section 4.4.2 corresponding to symmetric representations are
characterized by a scaling relation of the form r = κz, with the D3-brane a point on the
internal S5. We find solutions in the deep IR which asymptote to these D3-brane
embeddings, with the asymptotic expansions in the variable s = [log(z/z0)]−1/2 ≪ 1,

r
z
= κ +

κ

4
(κ2 + 1)

(
1 −

√
1 − q2κ4

(B2 + κ4)2

)
s2 + O(s4)

ϑ =
qκ

2
√
B2 + κ4

s + O(s3), (4.42)

with higher terms involving powers of s and log s and we have introduced

κ =
√
(Q/q)2 + B2. (4.43)
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Real solutions exist only for B2 + κ4 ≥ qκ2. Up to a choice of the sign (and selection of
the reference value z0), all coefficients are fixed by the equations of motion.

Solutions corresponding to Wilson lines have no magnetic charge, n1 = 0. This is
achieved by setting B = 0. The condition for real solutions simplifies to Q2 ≥ q3.

Solutions corresponding to ’t Hooft lines have no electric charge, k = 0. This is
achieved by setting Q = 0. The condition for real solutions simplifies to
q2 ≤ (1 + B2)2.

For such solutions, in the deep IR the induced metric on the world-volume of the
D5-branes becomes approximately that of AdS2 × S2, warped with an S2 that shrinks
to zero size as z → ∞,

gab dξadξb ≈ L2

z2

[
−dt2 +

(
κ2 + 1

)
dz2]+ L2κ2ds2

S2 +
L2κ2q2

4(B2 + κ4) log(z/z0)
ds2

S2 , (4.44)

where the radius of curvature of the AdS2 is L
√

κ2 + 1. To determine the
one-dimensional scaling dimensions of the operators dual to r and θ we consider
small fluctuations about the fixed point,

r(z) = κz +
[
(Q/q)2 + B2 + 1

]1/2
z δr(z), θ(z) = δθ(z). (4.45)

The Legendre transformed action (4.38) quadratic in the fluctuations is then3

S̃(2)
D5 = −1

2
κqN5

∫
dz
[
δr′2 + δθ′2 +O(z−3)

]
. (4.46)

This is proportional to the canonically normalised action for two massless scalar fields
in AdS2, and so r and θ are dual to marginal operators on the symmetric
representation Wilson-’t Hooft line.

A second class of solutions with collapsing S2 in the IR, similar to (4.42), can be
written as,

r
z
= κ +

κ

4
(κ2 + 1)

(
1 +

√
1 − q2κ4

(B2 + κ4)2

)
s2 + rIRsγ + O(s3)

ϑ =
qκ

2
√
B2 + κ4

s + rθsγ+1 + O(s3), (4.47)

where rIR is a free parameter, rθ is determined by rIR and the equations of motion, and

γ = 2 + 2

√
1 − κ4q2

(B2 + κ4)
2 (4.48)

3We have dropped a boundary term −z−1δr2 from the action.
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Again, real solutions exist only for B2 + κ4 ≥ qκ2. This covers a broad set of solutions
due to the free parameter, rIR.

4.5.2 Type 1: D5-branes flowing to (p, q)-strings

The equations of motion (4.39) also admit solutions for which both the internal Ŝ2

inside the S5 and the S2 wrapped by the brane in AdS5 collapse at the Poincaré
horizon, thus asymptoting to a (p, q) string. The IR expansion for this set of solutions
is,

r = r0 +
r2

0
z0

e−1/s2

(
q√

B2q2 + Q2
+ s4 q

√
B2q2 + Q2

32B2

)

+
r3

0

z2
0

e−2/s2
(

q2

B2q2 + Q2 − s4 4B2q2 − Q2

80B4

)
+ O(s5) + O(e−3/s2

)

ϑ =

√
B2q2 + Q2s

2B + s3c3 + s3 log(s)

√
B2q2 + Q2(B2(6 + q2) + Q2)

8B3

+ e−4/s2

(
s3 r4

0

z4
0

√
B2q2 + Q2

80B3

)
+ O(s5) + O(e−5/s2

) (4.49)

where r0 is a free positive parameter. Although c3 is undetermined by the local
equations of motion, we find that its effect is merely to vary the scale z0, and it can
therefore be set to any value without influencing the physics.

This corresponds to type 1 solutions, as depicted in Table 4.2, which are dual to
Wilson-’t Hooft lines in the fundamental representation. Solutions corresponding to
Wilson lines, which have no magnetic charge, are obtained by setting B = 0, while ’t
Hooft lines, which have no electric charge, can be achieved by setting Q = 0.

4.5.3 Type 3̂: D5-branes flowing to D3-branes wrapping Ŝ2

For B ̸= 0 with the ansatz r = r0 + O(1/z), ϑ = ϑ0 + O(1/z), we require
ϑ0 = 0,±π/2. The solution with constant ϑ = π/2 gives,

r = r0 −
1
z

qr2
0√

B2(1 + q2) + Q2
+

1
z2

(1 + 5q2)r3
0

5(B2(1 + q2) + Q2)
+ O(1/z3) (4.50)

where r0 is a constant of integration.

This solution describes a D5 brane for which the S2 wrapped by the brane in AdS5 is
collapsing near the Poincaré horizon. The wrapping of the internal Ŝ2 remains
constant and on the equator of S5 at all radial values. The D5 brane is thus
asymptoting to a D3 brane wrapping an internal Ŝ2. This is an example of a Type 3̂
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solution, as depicted in Table 4.2. Since ϑ is constant, the value MR, which is
multiplied by ϑ′(z), always vanishes for such solutions.

4.5.4 Constructing explicit flows

We construct explicit numerical solutions for D5-brane embeddings of the different
types discussed in the previous subsections by continuing the large-z
expansions (4.42), (4.47), (4.49), or (4.50) to higher order in 1/z. We then use these
expansions to set boundary conditions for the equations of motion (4.39) which we
then integrate to small z. We can then perform a fit to the small-z asymptotics (4.41) to
determine the UV coefficients (R,D, M, C) for a given solution.

In figure 4.1 we show some example solutions for fixed values of the charges q = 1,
B = 1 (corresponding to a flux Φ = 2

√
λ), and vanishing filling fraction ν = Q = 0.

The dotted blue, purple, and green curves show solutions of type 3, as described in
section 4.5.1, for which the D5-brane flows to a D3-brane that becomes a point on the
internal S5 in the IR. The green curve corresponds to the special solution (4.42), while
the other colours correspond to different values of rIR in the large-z expansion (4.47).
The dashed red, orange, and yellow curves show solutions of type 1, as described in
section 4.5.2, for which the D5-brane flows to a (p, q)-string in the IR. The different
colours correspond to different values of the parameter r0 appearing in the large-z
expansion (4.49). The solid black line shows a solution of type 3̄, described in
section 4.5.3, for which the D5-brane flows to a D3-brane wrapping the internal Ŝ2 in
the IR. The UV of each solution generally corresponds to a different value of the
dimensionless combination MR.

In figure 4.2 we show the range of values of MR spanned by the different types of
solutions described here, for B = 1, corresponding to a magnetic flux Φ = 2

√
λ, and

two different values of the internal charge, q = 1 and q = 5/2. We can always choose
orientation of the Ŝ2 within the S5 such that the value of MR is nonnegative.

For sufficiently small q we find that there is a solution of one of the types we describe
for any given value of MR and any filling fraction ν. The solutions of types 1 and 3
each span a range of MR since their IR expansions (4.49) and (4.47) both contain a free
parameter, rIR and r0, respectively.

For sufficiently large q we find that there is a region of the (MR, ν) plane not covered
by any of the solutions we have found. This region appears when the filling fractions
are such that the IR expansions for the type 3 solutions contain complex terms.
Concretely, the IR expansions in equations (4.42) and (4.47) contain terms proportional
to
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(A) r embeddings (B) θ embeddings

FIGURE 4.1: Example D5 embeddings for magnetic flux Φ = 2
√

λ, q = 1, and vanish-
ing filling fraction, ν = 0. Each curve corresponds to a different value of the dimen-
sionless combination MR. The solid black curve shows a solution of type 3̄, which
flows to a D3-brane wrapping the internal S2 in the IR. The dashed curves show a
solution of type 1, which flow to (p, q) strings dual to fundamental representation
Wilson-’t Hooft loops in the IR. The dotted lines show solutions of type 3, which flow
to D3 brane dual to symmetric representation Wilson-’t Hooft line. Amongst these, the

green dotted line corresponds to the special solution (4.42).

3̂ 3c

1 3

0 1 2 3 4

−10
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MR

ν
√
λ 1 ?

3
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0 1 2 3
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MR

ν
√
λ

FIGURE 4.2: Partial phase diagrams for the D5-brane flows for fixed value of the flux,
Φ = 2

√
λ (corresponding to B = 1), and internal charges q = 1 (left) and q = 5/2

(right). Cartoons of the different embeddings corresponding to these phases are shown
in table 4.2. The grey region in the figure on the right covers a region for which we

have not found solutions.

√
1 − q2κ4

(B2 + κ4)2 . (4.51)

When q is sufficiently large and Q sufficiently small, i.e. when

q2 >
(B2 + κ4)2

κ4 (4.52)

the argument of this square root becomes negative, causing the type 3 solutions to
become complex and therefore unphysical. For B = 1, q = 5

2 , this corresponds to
|Q| < 5

2 , or equivalently to |ν| < 10√
λ

. This region is shown in grey in the right panel of
Fig. 4.2.
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4.6 Conclusion and discussion

We began with strongly-coupled SU(Nc) N = 4 supersymmetric Yang-Mills (SYM)
theory at large Nc on (3 + 1)-dimensional Minkowski space, R1,3. We introduced a
number N f ≪ Nc of (2 + 1)-dimensional hypermultiplets containing Dirac fermions
and their scalar superpartners in the fundamental representation of SU(Nc) on
R × S2, and subjected these to non-zero charge density Q and magnetic field B. Using
holographic techniques, we then deduced the IR effective theory, finding
(0 + 1)-dimensional gapless defect fields that, when integrated out, give rise to
superconformal Wilson or Wilson-’t Hooft lines of N = 4 SYM in the fundamental or
totally symmetric representations of SU(Nc).

Our results demonstrate the interesting phenomenon of a defect changing dimensions
under RG flow, along with the holographic description of this process. Our
calculations suggest that, generically in gauge theories, conformal line operators may
appear in the IR when defect matter on a sphere supports spherically-symmetric
zero-energy states. Moreover, we can hope to apply our findings to spherical
graphene and fullerenes, giving evidence that gapless Dirac fermions exist at
nonzero-magnetic fields and charge density even when strongly coupled to gauge
fields in the surrounding four dimensional theory.

The spherical defects considered here provide a new UV completion of Wilson loops,
introducing an entirely new description of Wilson loops as IR limits of these defects.
This suggests that these defects themselves might serve as useful probes or order
parameters for phases of gauge theories. Surface defects in the field theory and their
corresponding expressions in the bulk have recently been proposed as proper
substitutes for the Polyakov loop as an order parameter for the deconfinement
transition in supersymmetry-preserving theories [97]. It is possible that the spherical
defects we have introduced here could be used in AdS/CFT as probes to investigate
the holographic manifestations of partial confinement.

It would be interesting to examine these D5 brane embeddings at finite temperature,
building a more complete phase diagram. An open problem remains as to the missing
D5-brane embedding solutions in some region of the boundary parameters, leaving
lacunae in the zero-temperature phase diagrams, as in Fig. 4.2.

Similar computations for the case of a spherical defect described by D7 branes have
been performed and are awaiting publication alongside the results for the D5 brane
set forth in this chapter.
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Chapter 5

Concluding remarks

In this thesis, we have used a variety of techniques to investigate the physics of
strongly coupled Yang-Mills theories. Here, we summarise our findings and suggest
some outlook for the future.

In Chapter 2, we argued that the colour space of a partially confined phase can
separated into a confining sector and a deconfining sector, and that linear confinement
is exhibited within the confining sector. This needs further investigation to confirm
that this is a general property of the partially confined phase and not simply an
artefact of the strong coupling limit of our lattice. We would also like to extend our
results to finite N. However, our results raise the prospect of very interesting,
measurable dynamical behaviour in QCD, perhaps suggesting a new kind of bound
state in the spectrum. Moreover, our findings stimulate more interest in the
holographic description of the partially confined phase, particularly concerning the
holographic calculation of the Wilson loop in the partially confined phase.

In Chapter 3, we argued that spontaneous breaking of global symmetries may provide
a definition of the partial/complete deconfinement transition. As a result, the partially
confined phase can be distinguished from the confined and deconfined phases by an
order parameter. This characterisation can also be applied at finite N, offering the first
known examples of the partially confined phase outside of the large N limit. An
especially important question remaining is whether global symmetries can be used to
identify partial phases in theories closer to QCD, including N = 3, θ = 0, and physical
quark masses. The observable effects of global symmetry breaking could be very
important for understanding physical consequences of the partial phase in QCD.
Global symmetry breaking might also be employed to identify the partially confined
phase in the dual gravity description.

Clearly, the partially confined phase deserves further study and needs to be
understood in greater detail, with the ultimate goal being a comprehensive
understanding of any exhibition of the partially confined phase in QCD.
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Finally, in Chapter 4, we used holographic duality to show that gauge fields in flat
space coupled to certain matter fields on a spherical defect admit defect-localized
renormalisation group flows to superconformal line operators in the infra-red, arguing
that this might be a generic feature of some classes of spherical defects in gauge
theories. We consequently found a new UV completion of Wilson-’t Hooft loops. It is
natural to seek other defects that flow to Wilson-’t Hooft lines in the IR, and to explore
whether a complete classification of all such objects can be established. Moreover, it is
easy to multiply intriguing suggestions for new defects to examine. For example, the
renormalization group flows of a defect shaped like a circle, S1 × R, or a torus,
S1 × S1 × R, merit investigation. We can also consider much more complicated
shapes in a higher-dimensional field theory using a setting such as AdS7 × S4.

It would be valuable to strengthen the connection between our results and real-world
spherical graphene and fullerenes to allow us to form predictions that could be
measured experimentally. It would also be intriguing to explore whether we can use
these new defects as probes in other settings, perhaps using them to investigate partial
confinement and its holographic dual.

Analysis of strongly coupled gauge theories continues to be highly fruitful and
surprising, even after decades of research. Not only is the solution to known
conundrums, such as colour confinement and the constitution of neutron stars, known
to be hidden behind mastery of strongly coupled gauge theories, but our findings here
suggest that there is much remaining to be discovered that might not have been
anticipated. We can expect further study of strongly-coupled gauge theories to
continue to yield interesting results and surprises.
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