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Abstract— This paper develop novel approaches for designing ro-
bust transceivers and energy covariance in an IoT network powered
by energy harvesting. Our goal is to minimize the mean square error
(MSE) at the fusion center (FC) while considering the uncertainty of
channel state information (CSI). The proposed designs incorporate
both Gaussian and bounded CSI uncertainty models to model the
uncertainty in the CSI. Furthermore, two different optimal bit alloca-
tion scheme have been proposed for quantizing the measurements
from each sensor node (SeN). However, solving the resulting MSE
optimization problems with constraints on individual SeN power
and total bit rate proves to be challenging due to their non-convex
nature under both CSI uncertainty models. To address this chal-
lenge, we develop a block coordinate descent (BCD) based iterative framework. This framework leverages the block-
convexity of the optimization objective and provides efficient solutions for both uncertainty paradigms considered. By
making use of this analytical tractability, we obtain improved performance compared to the uncertainty-agnostic scheme
that disregards CSI uncertainty. We validate our approach through numerical simulations, which not only support our
analytical findings but also demonstrate the superior performance achieved with our method that accounts for CSI
uncertainty.

Index Terms— Bounded CSI uncertainty, decentralized estimation, Gaussian CSI uncertainty, Internet of Things, multiple
access channel, parameter estimation, quantization, robust transceiver design.

I. INTRODUCTION

Internet of Things networks (IoTNes) have extensive appli-
cations in sensing [1], monitoring [2], surveillance [3], etc.,
since they enable applications such as remote surveillance [4],
industrial automation [5], smart agriculture [6], and healthcare
[7]. However, IoTNes suffer from the limitation of a short
lifetime as the sensor nodes (SeNs) depend on batteries that are
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either costly or even infeasible to replace/ recharge due to the
harsh environment in which the SeNs are typically deployed.
A promising solution is energy harvesting (EH)-IoTNes, where
the SeNs harvest energy from the radio frequency (RF)
signals transmitted by the energy access points (EAPs) and
subsequently, utilize the acquired power for recording their
observations and transmitting them to the fusion center (FC)
[8].

In a typical linear decentralized setup [9], the IoTNe con-
sists of a large number of SeNs that monitor the geographical
area of interest and subsequently transmit their observations
over a wireless channel to the FC. In order to overcome the
performance loss arising due to the wireless fading channel
between each SeN and the FC, and also to efficiently utilize
the available power at the SeN, it is necessary to suitably
process the SeN observations prior to their transmission. The
SeNs transmit their pre-processed observations over a coherent
multiple access channel (MAC) to the FC [9]–[12]. This
requires determining the optimal transmit precoders (TPCs)
at each SeN that minimize the mean square error (MSE).
Moreover, it is equally important to optimally combine the
received signals at the FC to minimize the MSE of param-
eter estimation. In addition, since a wireless powered IoTNe
utilizes the energy harvested by the SeNs for its operation,
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TABLE I
CONTRIBUTIONS OF THIS PAPER IN CONTRAST TO EXISTING LITERATURE

Feature [12] [14] [15] [170] [18] [19] [20] [21] [225] [24] [26] Our work
Energy Harvesting IoTNe ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓✓✓
Vector Parameter Estimation ✓ ✓ ✓ ✓✓✓
Per SeN Power Constraint ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓✓✓
Coherent MAC ✓ ✓ ✓ ✓✓✓
Joint Transceiver and ✓ ✓ ✓✓✓
Energy Covariance Matrices
Quantized Transmission ✓ ✓ ✓✓✓
Gaussian CSI Uncertainty ✓✓✓
Bounded CSI Uncertainty ✓✓✓

one has to design the optimal energy covariance matrices for
each EAP. Furthermore, due to the limited bandwidth available
and to facilitate the error-resilient digital transmission of the
SeN observations, there is a need to quantize them. Finally,
in practice, perfect channel state information (CSI) cannot be
guaranteed at either the FC or the SeNs. Therefore one also has
to take the CSI uncertainty into account. Hence, for efficient
estimation in EH-IoTNes, it is critically important to design
robust joint transceivers and energy covariance matrices, so
that the resultant MSE is minimized at the FC in the presence
of CSI uncertainty, considering also quantized measurement
transmissions. The state-of-the-art is presented next.

A. Review of existing contributions

Wireless energy transfer (WET) [13] technology has facili-
tated the development of EH-IoTNes, where, the SeNs harvest
energy from the RF signals received from the EAPs in the
first phase and in the second phase, the SeNs sense/monitor
an event of interest and subsequently, transmit their obser-
vations to the FC for final estimation. Hence, researchers
have focussed extensively on developing efficient techniques
for energy harvesting and observation transmission in IoTNes
[14], [15]. Zhou et al. [16] have proposed optimal estimation
strategies under the deterministic and stochastic energy har-
vesting constraints with an objective to minimize the MSE
at the FC. Guo et al. [17] have proposed an energy-efficient
technique for sum throughput maximization in a clustered
IoTNe, where the relay nodes are powered by the energy
harvested from the RF signals transmitted by the SeNs. Xu et
al. in [18] have developed an efficient SeN selection scheme
considering the power required toward driving the circuit as
well as for sensing or acquiring observations. Moreover, an
interesting framework for joint energy and information beam-
forming has also been developed in their work for maximizing
the signal-to-noise ratio (SNR) at the FC. Venkategowda et al.
[19] conceives an alternating minimization based framework
to determine the optimal power split between the sensing
and data transmission operations. Venkategowda et al. [20]
have also developed a novel decentralized and distributed
transceiver design coupled with optimization of the energy
covariance matrices for efficient vector parameter estimation.
Knorn et al. [21] considered a IoTNe where the SeNs are
battery operated and can also harvest energy. Interestingly,
they can also share their energy with other ”needy” SeNs in
the IoTNe. An efficient estimation framework is developed

for distortion minimization at the FC. Knorn et al. [22] also
studied optimal power control for transmitting observations as
well as sharing their energy with the ”power-starved” SeNs
for spatially correlated vector parameter estimation in an EH-
IoTNe. The authors of [23] have conceived efficient unmanned
ariel vehicle (UAV) trajectory design algorithm where UAV
acts as remote charging device for the SeNs. Liu et al. [24]
have recently proposed a novel scheme for joint node selection
and beamforming toward transmit power minimization in an
intelligent reflecting surface (IRS) assisted IoT network. The
authors of [25] have developed an interesting joint transmit
and reflective beamforming scheme for secure parameter es-
timation in the presence of an eavesdropper. The authors of
[26] and [27] have exploited passive and active IRSs in an EH-
IoTNe, wherein the IRSs aid in the energy harvesting as well
as measurement transmission operations. However, they do not
consider random parameter estimation in presence of observa-
tion noise and CSI uncertainty. Wang et al. [28] have studied
an IRS-aided EH-IoT for random parameter estimation with
single antenna IoT devices, assuming the availability of perfect
CSI, which is impractical. Recently, the authors of [29] have
proposed an unsupervised deep learning-based scheme toward
spectral efficiency maximization in an industrial IoTNe. Cheng
et al. proposed two different joint collaboration and compres-
sion designs for sequential estimation and detection in [30] and
[31], respectively, of a random parameter in a wireless sensor
network. Fang et al. [32] developed novel strategies based
on two sleep scheduling policies with multiple vacations and
start up thresholds for reduction of the peak age of information
and power consumption reduction in an EH-IoTNe. However,
it is important to note that all the above contributions rely
on analog observation transmission, which would require an
infinite number of bits, and are thus impractical. Therefore,
quantization of the observations is desirable in a IoTNe, hence
works related to this are reviewed next.

Battiloro et al. [33] have studied quantization in decen-
tralized estimation of a time-varying parameter in a dynami-
cally time-varying propagation environment. Zhan et al. [34]
proposed a sub-optimal algorithm for the UAV trajectory
design where UAV acts as a mobile FC and collects the
quantized measurements from all the SeNs in an efficient way.
Biswas et al. [35] developed an innovative optimal sensing
and quantization rate allocation framework for detecting the
change in the signal under observation with minimal delay.
Sani and Vosoughi [36] proposed a two step procedure for
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decentralized estimation subject to individual SeN and total
bit-rate budget constraints. In the first step, the contribu-
tions of the observation and quantization noises as well as
of channel fading are separated in the MSE function and
then subsequently, both coupled and decoupled approaches
are derived for solving the resultant optimization problem
to achieve optimal resource allocation. Sani and Vosoughi
in [37] also presented various strategies for quantizing the
SeN observations affected by Gaussian additive and unknown
multiplicative observation noise. However, both [36] and [37]
considered an orthogonal MAC in their analysis, which is not
bandwidth efficient [9]. A technique is conceived for spatial
random field reconstruction in [38] by Nevat et al. subject
to power and total bit rate constraints. Distributed estimation
technique relying of probabilistic quantization which does
not have to know the probability density function (PDF) is
developed by Leung et al. [39]. Ciuonzo et al. [40] proposed
a distributed detection scheme using the Rao test where the
SeNs transmit their observation vectors using only a single bit
or a few bits. A major limitation of these works is that they
rely on the perfect CSI knowledge of all the SeN-FC links,
which is an unrealistic assumption only. Very few authors have
incorporated imperfect CSI in their analysis followed by the
development of robust designs. These are reviewed next.

A novel rate distortion theory based optimal quantization
scheme together with robust precoder design is proposed by
Rajput et al. [41] for the estimation of a temporally correlated
vector parameter using MSE minimization. Venakategowda et
al. [42] proposed robust precoding schemes under bounded
CSI uncertainty for scalar parameter estimation. However,
the design described of [42] is based on the zero-forcing
framework that results in noise enhancement at the FC. Zhu
et al. [43] have developed a novel robust beamforming design
for vector parameter estimation, once again for the bounded
CSI uncertainty model. Along similar lines, Liu et al. [44]
developed path-breaking linear robust transceiver designs for
decentralized and distributed estimation as well as for total
power minimization in the presence of CSI uncertainty. A
novel algorithm is conceived for joint channel estimation and
robust transceiver design in the context of sparse parameter
estimation in [45] under Gaussian CSI uncertainty. The authors
of [46] developed non-iterative robust transceiver designs for
MSE minimization and quality of service constraint based
designs considering Gaussian and norm ball CSI uncertainties.
However, the works in [41]–[46] have not considered an EH-
IoTNe in their analysis. In Table I we boldly and explicitly
contrast novel contributions to the salient works in the open
literature.

However, to the best of our knowledge, there is no literature
related to EH-IoTNes proposing techniques for the design of
robust transceivers and energy covariance matrices coupled
with optimal bit allocation for the quantization of each SeN’s
observations under CSI uncertainty. Hence we intend to fill
this knowledge gap. The next subsection elaborates on the
salient contributions of this work in more depth.

B. Our contributions
The novel contributions of this paper are as follows.

• Initially, we derive the expression for the mean squared
error (MSE) of a random parameter estimation by con-
sidering the Gaussian channel state information (CSI)
uncertainty model [47]. We demonstrate that the problem
of minimizing the resultant MSE is non-convex. There-
fore, we propose an iterative framework based on block
coordinate descent (BCD) to solve this problem. The
framework determines the optimal bit allocation, robust
receiver combiner (RC), TPCs and energy covariance
matrices.

• We first derive a closed-form expression for the optimal
quantization of the observation vector. Subsequently, we
derive a robust RC that minimizes the parameter esti-
mation MSE. Finally, we formulate the TPC and energy
covariance matrices design problem as a quadratically
constrained quadratic program (QCQP), which can be
solved using a suitable convex optimization tool.

• To provide a more comprehensive analysis, we extend
the optimal bit allocation, energy covariance matrices and
robust transceiver design to the bounded CSI uncertainty
model [48]. We again employ the BCD-based iterative
framework and solve two different epigraph-based opti-
mization problems iteratively. This approach allows us to
obtain the optimal bit allocation vector, energy covariance
matrices and robust transceivers.

• Finally, through simulation results, we demonstrate the
effectiveness of the proposed schemes and their superior
performance compared to the agnostic design that ignores
the CSI uncertainty.

The rest of the manuscript is organized as follows. Section-II
presents the system model of energy harvesting, sensing and
estimation of the parameter vector. Section-III develops the
framework for optimal bit allocation followed by our joint ro-
bust transceiver design relying on average MSE minimization
at the FC under Gaussian CSI uncertainty. Section-IV develops
our quantization and robust transceiver design for worst-
case MSE minimization under bounded CSI uncertainty. Our
simulation results are discussed in Section-V, while Section-VI
provides our conclusion.

Notation: The notation x ∼ N (0,Rx), for an n dimen-
sional real vector x, denotes that it follows the Gaussian dis-
tribution with mean 0 and covariance matrix Rx ∈ Rn×n. In
denotes an identity matrix of size n×n, while 1n×m denotes
a n × m matrix whose each element is equal to one. ||x||2
denotes the Euclidean norm of the vector quantity x, whereas
||X||F represents the Frobenius norm of the matrix X. Tr[.]
and E[.] denote the trace and statistical expectation operators,
respectively. Furthermore, X = diag [x1, x2, . . . , xK ] denotes
a diagonal matrix with elements xi for i = 1, 2, . . . ,K on
its principal diagonal. The operation a = vec(A) stacks the
columns of the m × n matrix A to form a column vector a
of dimension mn, whereas the operation vec−1

n (a) yields the
matrix A having n columns and an appropriate number of
rows.

II. SYSTEM MODEL

As seen in Fig. 1, we consider an EH-IoTNe having K SeNs
each equipped with Nt antennas, J-EAPs with Nj antennas
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Fig. 1. System model for energy harvesting, parameter sensing and estimation in an EH-IoTNe.

installed at each EAP, and a FC equipped with Nr antennas. In
this EH-IoTNe, the SeNs are powered by the energy harvested
from the radio frequency (RF) signals transmitted by the EAPs.
Toward this end, during the WET phase, the signal transmitted
by the jth EAP is denoted by xj ∈ RNj×1 with its covariance
matrix represented by Φj ∈ RNj×Nj . The power transmitted
from the jth EAP is constrained as Tr [Φj ] ≤ γT,j , for
j = 1, 2, . . . , J , where γT,j represents the total transmit power
budget of the jth EAP. Next, defining the channel between the
jth EAP and the kth SeN as Fkj ∈ RNt×Nj , the expression
for the total harvested power of the kth SeN, denoted by γh,k,
can be formulated as

γh,k = ζkE

∥∥∥ J∑
j=1

Fkjxj

∥∥∥2
F

 = ζk

J∑
j=1

Tr
[
FkjΦjF

H
kj

]
,

(1)
where 0 < ζk ≤ 1, represents the energy harvesting efficiency
of the kth SeN.

The observation vector zk ∈ Rlk×1 corresponding to the
kth SeN is modelled as

zk = Dkθ + ηk, (2)

where Dk ∈ Rlk×m and ηk ∼ N (0,Ψk) ∈ Rlk×1 denote
the observation matrix and noise vector, respectively, corre-
sponding to the kth SeN. The unknown parameter vector to
be estimated is denoted by θ ∈ Rm×1 and is assumed to
be distributed as N (0,Σθ). The dynamic sensing range of
each SeN is considered to lie in the closed interval [−W,W ]
[36], [49]. The lth element of the observation vector zk is
denoted by zl,k ∈ R, and is to be quantized using βl,k bits. The
corresponding step size ∆l,k is mathematically represented as

∆l,k =
2W

2βl,k − 1
. (3)

Furthermore, the corresponding quantization noise will be
uniformly distributed with its variance denoted by (∆l,k)

2

12 ,

which can be expressed as [36]

(∆l,k)
2

12
=

W 2

3 (2βl,k − 1)
2 ≈ W 2

3 (2βl,k)
2 . (4)

Since, zl,k is quantized using βl,k bits, the number of quan-
tization levels is equal to 2βl,k . The corresponding quantized
output zql,k takes values from the set Zl,k defined as

Zl,k ∈
{
zql,k,1, z

q
l,k,2, . . . , z

q

l,k,2βl,k

}
, (5)

where zql,k,n is defined as

zql,k,n =

(
2n− 1− 2βl,k

)
∆l,k

2
, (6)

where n = 1, 2, . . . , 2βl,k . If zl,k ∈[
zql,k,n − ∆l,k

2 , zql,k,n +
∆l,k

2

]
then zql,k = zql,k,n. Hence,

the quantized output zql,k follows:

zql,k =


W if zl,k ≥ W

zql,k,n ∈ Zl,k if −W < zql,k,n − ∆l,k

2 < zl,k

< zql,k,n +
∆l,k

2 < W

−W if zl,k ≤ −W.

(7)

The quantized counterpart of the observation vector zk in (2),
denoted by zqk, can be mathematically modeled as

zqk = Dkθ + ηk + ηq
k = Dkθ + ηe

k. (8)

The quantity ηq
k ∈ Rlk×1 denotes the ensuing quantization

noise which is uniformly distributed with zero mean and
covariance matrix Ψq

k ∈ Rlk×lk , that is represented as

Ψq
k = diag

[
W 2

3 (2β1,k)
2 ,

W 2

3 (2β2,k)
2 , . . . ,

W 2

3 (2βl,k)
2

]
. (9)

Furthermore, the quantization noise ηq
k ∈ Rlk×1 is uncor-

related with ηk [50]. The quantity ηe
k = ηk + ηq

k denotes
the effective noise after quantization which has a covariance
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matrix, given by Ψe
k = Ψk+Ψq

k ∈ Rlk×lk . Let us assume that
the total bit-rate budget to quantize each SeN’s observation is
B bits. This implies that the following constraint should be
satisfied:

K∑
k=1

lk∑
l=1

βl,k = 1Tβ ≤ B, (10)

where the quantity β ∈ RKl×1 is defined as β =
[β1,1, β2,1, . . . , βlK ,K ]T and l =

∑K
k=1 lk.

In order to combat the adverse effects of fading in the
channel between each SeN and the FC and due to the transmit
power limitation at each SeN in the EH-IoTNe, it is necessary
for each SeN to pre-processes its observation vector using the
TPC matrix Bk ∈ RNt×lk . Subsequently, each SeN transmits
the precoded observation over a coherent MAC to the FC for
receive combining. The vector y ∈ RNr×1 received at the FC
is given by

y =

K∑
k=1

HkBkDkθ +

K∑
k=1

HkBkη
e
k + ηFC, (11)

where Hk ∈ RNr×Nt denotes the wireless fading MIMO
channel matrix between the kth SeN and the FC, while the
vector ηFC ∼ CN (0,ΨFC) ∈ RNr×1 represents the FC noise.
Subsequently, at the FC, the RC matrix A ∈ RNr×m is used
to produce the estimate θ̂ = AHy of the unknown parameter
vector of interest θ as

θ̂ =

K∑
k=1

AHHkBkDkθ +

K∑
k=1

AHHkBkη
e
k +AHηFC.

(12)

The resultant MSE = Tr

[
E
[(

θ̂ − θ
)(

θ̂ − θ
)H]]

can be

expressed as

MSE = Tr

[
AH

(
K∑

k=1

HkBkDk

)
Σθ

(
K∑

k=1

HkBkDk

)H

A

+AH
K∑

k=1

HkBkΨ
e
kB

H
k HH

k A+AHΨFCA+Σθ

−AH
K∑

k=1

HkBkDkΣθ −

(
AH

K∑
k=1

HkBkDkΣθ

)H ]
.

(13)

The transmit power constraint of the kth SeN is given as
follows

tγc,k + tIE
[
∥Bkz

q
k∥

2
2

]
= tγc,k + tITr

[
Bk

(
DkΣθD

H
k +Ψe

k

)
BH

k

]
≤ tEγh,k,

(14)

where the quantities γc,k, tI and tE represent the power
consumption in the circuit, time duration of information trans-
mission and time duration of energy harvesting, respectively.
The total time duration is given by t = tI + tE . The
next section develops an iterative framework for optimal bit
allocation to quantize each SeN’s observations optimally for a
given bit-rate budget, robust transceiver and energy covariance
matrices design considering Gaussian CSI uncertainty.

III. QUANTIZATION AND ROBUST TRANSCEIVER DESIGN
UNDER GAUSSIAN CSI UNCERTAINTY

Due to several restrictions, such as the limited pilot over-
head, quantization error, feedback latency, and so on, in prac-
tice it is typically not possible to get perfect information about
the underlying channels between each SeN and the FC. Hence,
there is a pressing need to design resilient transceivers that
account for CSI uncertainty in order to offset the performance
loss caused by imperfect channel state information (CSI). In
such a scenario, the true channel Hk between each SeN k and
the FC, can be represented as

Hk = Ĥk +∆Hk, (15)

where Ĥk denotes the available estimate and ∆Hk represents
the estimation error matrix. In the Gaussian CSI uncertainty
framework, each element of ∆Hk is considered to be dis-
tributed as CN

(
0, σ2

H

)
, where σ2

H is termed the uncertainty
variance. The following lemma is used to derive the expression
of the average MSE from the MSE expression given in (13).

Lemma 1: Consider the matrix G ∈ RNr×Nt , represented
as G = Ĝ + ∆G, where the matrix Ĝ is the available CSI
estimate and the elements of the matrix ∆G are independent
and identically distributed Gaussian random variables with
mean 0 and variance σ2

G. Then for any matrix E of appropriate
dimension, the following results hold

E∆G

[
GEEHGH

]
= ĜEEHĜH + σ2

GTr
[
EEH

]
INr

,

E∆G

[
ĜEEH∆GH

]
= E∆G

[
∆GEEHĜH

]
= 0. (16)

Substituting the true channel Hk according to (15) in the MSE
expression in (13), and further employing the results given in
Lemma 1, one obtains the expression for the average MSE as

MSE = Tr

AH

(
K∑

k=1

ĤkBkDk

)
Σθ

(
K∑

k=1

ĤkBkDk

)H

A


+Tr

[
AHσ2

HTr
[ K∑
k=1

Bk

(
DkΣθD

H
k +Ψk

)
BH

k

]
A
]

− 2Tr

[
AH

K∑
k=1

ĤkBkDkΣθ

]
+Tr [Σθ] + Tr

[
AHΨFCA

]
+Tr

[
AH

K∑
k=1

ĤkBkΨkB
H
k ĤH

k A

]
. (17)

The energy covariance matrices Φj , ∀ j, are simultaneously
determined to improve the harvested energy. The challenge of
designing the ideal transceiver that minimises the MSE in (17)
while respecting the individual SeN power limitation in (14)
and the total bit-rate constraint, can be formulated as

minimize
A,{Bk}K

k=1,{Φj}J
j=1,β

MSE

subject to tγc,k + tITr
[
Bk

(
DkΣθD

H
k +Ψe

k

)
BH

k

]
≤ tEγh,k, k = 1, 2, . . . ,K,

1Tβ ≤ B
Tr [Φj ] ≤ γT,j , and Φj ⪰ 0, ∀j.

(18)
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The optimization problem in (18) is non-convex, since the
objective is non-convex in terms of the optimization variables
A, {Bk}Kk=1, {Φj}Jj=1, β which renders it intractable. In
order to handle the non-convexity of the optimization objective
in (18), the block coordinate descent (BCD)-based alternating
minimization framework that exploits the block convex nature
of the optimization problem in (18) can be invoked. Hence,
a BCD-based iterative framework is employed next to find
the optimal bit allocation for the quantization of the SeNs’
observations, followed by designing robust transceivers and
energy covariance matrices that minimize the resultant MSE
at the FC. The procedure of optimal bit allocation is described
next in detail.

A. Optimal quantization of SeN observations for the
Gaussian CSI uncertainty scenario

This subsection takes the limited bandwidth nature of
the IoTNe into consideration and develops a scheme for
optimally allocating the available bit-rate budget among the
SeNs for quantizing the SeN observations. Substituting Ψe

k =
Ψk + Ψq

k into the MSE expression of (17) and extract-
ing the terms that depend only on the quantization noise
covariance matrix Ψq

k for each SeN k, one can observe
that only the terms Tr

[
AH

∑K
k=1 ĤkBkΨ

q
kB

H
k ĤH

k A
]

and

Tr
[
AHσ2

HTr
[∑K

k=1 BkΨ
q
kB

H
k

]
A
]

depend on the quan-
tization noise. Exploiting the property Tr(PHQPR) =
vec(P)H

(
RT ⊗Q

)
vec(P), these terms can be recast as

Tr

[
AH

K∑
k=1

ĤkBkΨ
q
kB

H
k ĤH

k A

]

=

K∑
k=1

Tr
[
AHĤkBkΨ

q
kB

H
k ĤH

k A
]
=

K∑
k=1

ãTk x̃k, (19)

Tr

[
AHσ2

HTr

[
K∑

k=1

BkΨ
q
kB

H
k

]
A

]

= κ

K∑
k=1

Tr
[
BkΨ

q
kB

H
k

]
=

K∑
k=1

āTk x̃k, (20)

where κ = σ2
HTr

[
AHA

]
and the vector quantities ãTk ∈

R1×l2k , āTk ∈ R1×l2k , x̃k ∈ Rl2k×1 are defined as

ãk =

[(
BH

k ĤH
k A

)T
⊗AHĤkBk

]T
vec [Im] (21)

āk =
[(
BH

k

)T ⊗Bk

]T
vec [Im] (22)

x̃k = vec [Ψq
k] . (23)

Since most of the entries of the vector x̃k are zero, we define
a new vector xk that is derived by extracting the non-zero
values of x̃k. Subsequently, the elements corresponding to the
indices of the non-zero entries of x̃k are extracted from both
the vectors ãk as well as āk and then added together to obtain
the vector ak. Therefore, the expressions in (19) and (20) can

be equivalently written as
K∑

k=1

(
ãTk + ãTk

)
x̃k =

K∑
k=1

aTk xk = aTx, (24)

where we have a = [aT1 ,a
T
2 , . . . ,a

T
K ]T ∈ RKL×1 and

L =
∑K

k=1 l
2
k. Furthermore, the structure of the vector xk ∈

RKL×1 is given as

xk =

[
W 2

3
4−β1,k ,

W 2

3
4−β2,k , . . . ,

W 2

3
4−βlk,k

]
, (25)

for 1 ≤ k ≤ K. The expression in (24) can be further
simplified as

aTx =
W 2

3
aT 4−β. (26)

Hence, the optimization problem that minimizes the MSE
derived in (26) above, subject to the total bit budget, can be
readily formulated as

minimize
β

W 2

3
aT 4−β

subject to 1Tβ ≤ B.
(27)

The above optimization problem is convex in nature. As a
result, to solve the aforementioned optimization problem, one
can use the Karush-Kuhn-Tucker (KKT) framework [51], and
the closed-form solution for the optimal bit allocation variable
βl,k can be derived as

βl,k =
B
Kl

− 1

ln(4)

[[
1

Kl

Kl∑
i=1

ln

(
al,kW

2

3
ln(4)

)]

−ln(al,kln(4))

]
. (28)

The next subsection describes the procedure for deriving the
optimal RC matrix with quantized SeN observations.

B. Receiver Combiner design
Using the quantized SeN observations and assuming the

TPCs {Bk}Kk=1 to be known, the optimization problem of
designing the ideal RC matrix A minimising the average MSE
in (17) is an unconstrained quadratic optimization problem. As
a result, the optimal RC matrix is obtained by differentiating
the average MSE expression in (17) with respect to the RC
matrix A and equating it to zero, where we have

A =

[(
K∑

k=1

ĤkBkDk

)
Σθ

(
K∑

k=1

ĤkBkDk

)H

+ΨFC + σ2
H

K∑
k=1

Tr
[
BkDkΣθD

H
k BH

k

]
INr

+

K∑
k=1

ĤkBkΨ
e
kB

H
k ĤH

k

+ σ2
H

K∑
k=1

Tr
[
BkΨ

e
kB

H
k

]
INr

]−1 K∑
k=1

ĤkBkDkΣθ.

(29)

To obtain the optimal TPC matrices for a known RC matrix
A with quantized SeN observations, one can modify the op-
timization objective in (18) and formulate a new optimization
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problem in terms of the optimal TPC and energy covariance
matrices, as described next in detail.

C. Transmit Precoder design

Upon defining the vector quantity bk = vec (Bk) ∈
RNtlk×1 and employing the following properties Tr(XHX) =
vec(X)Hvec(X) = ||vec(X)||22 and vec(XYZ) =(
ZT ⊗X

)
vec(Y) [52], the first term in (17) can be recast

as

Tr

AH
K∑

k=1

ĤkBkDkΣ
1
2

θ Σ
H
2

θ

(
K∑

k=1

ĤkBkDk

)H

A


=

∣∣∣∣∣
∣∣∣∣∣

K∑
k=1

(
Σ

1
2

θ G
T ⊗AHĤk

)
bk

∣∣∣∣∣
∣∣∣∣∣
2

2

. (30)

Upon exploiting the property Tr(PHQPR) =
vec(P)H

(
RT ⊗Q

)
vec(P), the various terms of (17)

can be further simplified and the average MSE expression
can be recast as

MSE
(
{bk}Kk=1

)
=

∣∣∣∣∣
∣∣∣∣∣

K∑
k=1

(
Σ

1
2

θ D
T
k ⊗AHĤk

)
bk

∣∣∣∣∣
∣∣∣∣∣
2

2

+

K∑
k=1

bH
k Ωkbk − 2ℜ

(
K∑

k=1

cHk bk

)
, (31)

where we have Ωk =
(
αEk +Uk + Sk + σ2

HTk

)
∈

RlkNt×lkNt . Furthermore, the scalar quantity α =
σ2
HTr

(
AHA

)
and the different matrices Ek ∈ RlkNt×lkNt ,

Uk ∈ RlkNt×lkNt , Sk ∈ RlkNt×lkNt , Tk ∈ RlkNt×lkNt are
defined as

Ek =
[[
DkΣθD

H
k

]T ⊗ INt

]
(32)

Uk =
[
Ilk ⊗ ĤH

k AAHĤk

]
(33)

Sk =

[[
ĤH

k AAHHk

]T
⊗Ψe

k

]
(34)

Tk =
[
[Ψe

k]
T ⊗ INt

]
, (35)

where we have ck = vec
(
ĤH

k AΣθD
H
k

)
∈ RlkNt×1. In

a similar manner, one can also suitably modify the power
constraint in (14). Hence, the final problem of determining the
optimal MSE TPC matrices and energy covariance matrices
can be readily formulated as

minimize
{bk}K

k=1,{Φj}J
j=1

MSE
(
{bk}Kk=1

)
subject to tγc,k + tIb

H
k Γkbk ≤ tEγh,k, ∀k

Tr(Φj) ≤ γT,j , and Φj ⪰ 0, ∀j,

(36)

where we have Γk =
((

DkΣθD
H
k +Ψe

k

)T ⊗ INt

)
∈

RlkNt×lkNt . Due to the convex nature of the optimization
problem in (36) it can be solved efficiently using a suitable
interior point method [53]. After solving the above opti-
mization problem, one obtains the optimal TPC vectors bk

for k = 1, 2 . . . ,K and energy covariance matrices Φj for

Algorithm 1 Robust joint transceiver, energy covariance ma-
trices and quantization under Gaussian CSI uncertainty.

1: Input: Observation vector y(n), RC matrix A(n − 1),
precoding matrices {Bk(n− 1)}Kk=1, maximum iterations
nmax = 20 and desired accuracy ϵ = 0.0001, total bit
budget B.

2: Initialization: n = 1, initialize A(0) randomly, Bk(0) =√∑J
j=1

γT,k||Fk,j ||2F
NtNj

1NtNj for k = 1, 2, . . . ,K.

3: while ∥ θ̂
(n)

− θ(n) ∥2≥ ϵ and n < nmax do
4: Find the optimal number of bits βopt

l,k using (28) for each
l and k.

5: Evaluate the RC matrix A(n) using (29).
6: Evaluate the optimal precoding vectors {bk(n)}Kk=1 and

energy covariance matrices {Φj(n)}Jj=1 using (36).
7: Compute the matrices Bk = vec−1

Nt
(bk), ∀ k.

8: update n = n+ 1.
9: end while

10: Output: βopt
l,k , A, {Bk}Kk=1 and {Φj}Jj=1.

j = 1, 2 . . . , J . Furthermore, the optimal precoding matrices
Bk corresponding to each SeN k can be derived by exploiting
the relation vec−1

Nt
(bk). Algorithm 1 summarizes the proposed

iterative approach conceived for optimal bit allocation and
robust joint transceiver and energy covariance matrix design.
Remark: One can also follow an alternative approach where
initially the SeN observations are quantized using uniform bit
allocation and subsequently, a BCD based iterative algorithm
is employed, which yields the optimal MSE TPC and RC
matrices upon convergence. Finally, the optimal bit allocation
is derived by minimizing the corresponding portion of the
MSE expression, which depends on the quantization noise
covariance matrix for the TPC and RC matrices obtained from
the BCD algorithm. The proof of the theoretical convergence
for this approach is given in subsection-IV-C.
The next Section develops a scheme for optimal bit allocation
followed by our robust transceiver and energy covariance
matrix design for the scenario, where the CSI uncertainty is
bounded.

IV. QUANTIZATION AND ROBUST TRANSCEIVER DESIGN
UNDER BOUNDED CSI UNCERTAINTY

In this scenario of bounded CSI uncertainty, the channel
between the kth SeN and the FC can be modeled similar
to (15), where the channel estimation error vector defined as
∆hk = vec [∆Hk] ∈ RNrNT×1 satisfies

∆hH
k Qk∆hk ≤ ϵ2H , (37)

with ϵH representing the channel uncertainty radius and
Qk ∈ CNrNT×NrNT is a positive definite matrix. Using the
definition of Frobenius norm, i.e., Tr

[
XXH

]
= ||X||2F , the



8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2023

MSE expression in (13) can be equivalently written as

MSE =

∣∣∣∣∣
∣∣∣∣∣
(

K∑
k=1

AHHkBkDk − I

)
Σ

1
2

θ

∣∣∣∣∣
∣∣∣∣∣
2

F

+

K∑
k=1

∣∣∣∣∣∣AHHkBk (Ψ
e
k)

1
2

∣∣∣∣∣∣2
F
+
∣∣∣∣∣∣AHΨ

1
2

FC

∣∣∣∣∣∣2
F
. (38)

The next subsection derives the optimal bit allocation for the
quantization of each SeN’s observations assuming that the
transceivers are known.

A. Optimal quantization of SeN observations for
bounded CSI uncertainty scenario

Assuming that the RC and TPC matrices are known, this
subsection develops a strategy for the optimal allocation of
the given bit-rate budget to each SeN in the network, which
ultimately results in the optimal quantization of the SeN
measurements. To this end, upon substituting Ψe

k = Ψk+Ψq
k,

into (38), one obtains

MSE =

∣∣∣∣∣
∣∣∣∣∣
(

K∑
k=1

AHHkBkDk − I

)
Σ

1
2

θ

∣∣∣∣∣
∣∣∣∣∣
2

F

+
∣∣∣∣∣∣AHΨ

1
2

FC

∣∣∣∣∣∣2
F

+

K∑
k=1

∣∣∣∣∣∣AHHkBkΨ
1
2

k

∣∣∣∣∣∣2
F
+

K∑
k=1

∣∣∣∣∣∣AHHkBk (Ψ
q
k)

1
2

∣∣∣∣∣∣2
F
.

(39)

It can now be readily observed from the MSE expression above

that only the term
K∑

k=1

∣∣∣∣∣∣AHHkBk (Ψ
q
k)

1
2

∣∣∣∣∣∣2
F

depends on the

quantization noise covariance matrix, which can be further
optimized to minimize the resultant MSE at the FC. This term
can be written equivalently as

K∑
k=1

∣∣∣∣∣∣AHHkBk (Ψ
q
k)

1
2

∣∣∣∣∣∣2
F
= ||eq||22 , (40)

where the vector eq ∈ Rm̃×1 is defined as

eq =


vec
(
AHH1B1 (Ψ

q
1)

1
2

)
...

vec
(
AHHKBK (Ψq

K)
1
2

)
 , (41)

with m̃ = m(m+Kl +Nr). Once again, on account of CSI
uncertainty, substituting Hk = Ĥk +∆Hk in (41), the vector
eq can be recast as

eq = êq +

K∑
k=1

Eq
Hk

Q
−T/2
k Q

1/2
k ∆hk, (42)

where the matrix Eq
Hk

∈ Rm(m+Kl)×NrNt and the vector êq ∈
Rm̃×1 are defined as

Eq
Hk

=


0Kl(k−1)m×NtNr(
Bk (Ψ

q
k)

1
2

)T
⊗AH

...
0(Klk+1)m×NtNr

.

 , (43)

êq =


vec
(
AHĤ1B1 (Ψ

q
1)

1
2

)
...

vec
(
AHĤKBK (Ψq

K)
1
2

)
 . (44)

Hence, the optimization problem to minimize the quantity eq

subject to a total bit-rate budget constraint B can be readily
formulated as

minimize
β

||eq||22

subject to 1Tβ ≤ B.
(45)

The above optimization can be further modified using the
epigraph form as [51]

minimize
β

τ q

subject to ||eq||22 ≤ τ q

1Tβ ≤ B.

(46)

The first constraint in the above optimization problem in (46)
can further be written as τ q − ||eq||22 ≥ 0, which can also be
modified as [

τ q (eq)
H

eq Im̃

]
≥ 0. (47)

Substituting the value of eq from (42), one obtains[
τ q (êq)

H

êq Im̃

]
≥ −

K∑
k=1

[
0

(
Eq

Hk
vec (∆Hk)

)H(
Eq

Hk
vec (∆Hk)

)
0m(m+Kl)×m(m+Kl)

]
.

(48)

Furthermore, upon employing the following Lemma-2, one
can recast the above constraint in the form of a linear matrix
inequality (LMI).

Lemma 2: Given the matrices P and {Mk,Nk}Kk=1 with
P = PH , the semi-infinite LMI of the form [54]

P ⪰
K∑

k=1

(
MH

k XkNk +NH
k XH

k Mk

)
, ∀k,Xk : ∥Xk∥ ≤ ϵk

(49)

holds if and only if there exist non-negative real numbers
µ1, . . . , µK such that

P−
K∑

k=1

µkN
H
k Nk −ϵ1M

H
1 · · · −ϵKMH

K

−ϵ1M1 µ1I · · · 0
...

...
. . .

...
−ϵKMK 0 · · · µKI

 ⪰ 0.

(50)
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The matrix norm in this lemma is the spectral norm. But,
in our problem formulation, since Xk is a vector quantity,
the spectral norm is equal to the Frobenius norm. Hence,
employing Lemma-2, one can write (48) in the form of an
LMI, as shown next. Upon comparing (48) and (49), Eq. (48)
can be recast as

Σ −ϵH (Mq
1)

H · · · −ϵH (Mq
K)

H

−ϵHMq
1 µ1I · · · 0

...
...

. . .
...

−ϵHMq
K 0 · · · µKI

 ⪰ 0, (51)

where the matrices Σ ∈ Rm̃+1×m̃+1, Wq ∈ Rm̃+1×m̃+1,
Mq

k ∈ RNrNt×(K+2)N2
t and Nq

k ∈ R1×m̃+1 are defined as

Σ =

 τ q −
K∑

k=1

µk (êq)
H

êq Im̃

 (52)

Pq =

[
τ q (êq)

H

êq Im̃

]
(53)

Mq
k =

[
0NFCNS×1 Q

−T/2
k

(
Eq

Hk

)H]
(54)

Nq
k = [−1 0NrNt×m̃]

T
. (55)

Hence, the final optimization problem to determine the bit al-
location vector β toward quantization of the SeN observations,
subject to a total bit-rate constraint, can be formulated as

minimize
β

τ q

subject to (51), and 1Tβ ≤ B.
(56)

Once, the optimal bit allocation vector is derived, the next sub-
section discusses the robust transceiver and energy covariance
matrices design for this bounded CSI uncertainty scenario.

B. Robust Transceiver and Energy Covariance Matrices
design

This subsection develops an iterative framework for de-
signing the robust transceiver and energy covariance matrices
for MSE minimization at the FC relying on quantized SeN
observation transmission. To this end, exploiting the property
that ||X||2F = ||x||22, one can recast the MSE expression in
(38) as

MSE = ||e||22 , (57)

where the vector e ∈ Rm̃×1 is defined as

e =



vec
(∑K

k=1 A
HHkBkDkΣ

1
2

θ

)
− vec (Σθ)

vec
(
AHH1B1 (Ψ

e
1)

1
2

)
...

vec
(
AHHKBK (Ψe

K)
1
2

)
vec
(
AHΨ

1
2

FC

)


. (58)

Now, substituting Hk = Ĥk +∆Hk in the above expression,
and exploiting the property vec (XYZ) =

(
ZT ⊗X

)
vec (Y),

one can rewrite the expression for the vector e as

e = ê+

K∑
k=1

EHk
Q

−H/2
k Q

1/2
k ∆hk, (59)

where the quantities ê ∈ Rm̃×1 and EHK
∈ Rm(m+Kl)×NrNt

are defined as

ê =



vec
(∑K

k=1 A
HĤkBkDkΣ

1
2

θ

)
− vec (Σθ)

vec
(
AHĤ1B1 (Ψ

e
1)

1
2

)
...

vec
(
AHĤKBK (Ψe

K)
1
2

)
vec
(
AHΨ

1
2

FC

)


, (60)

EHk
=



((
BkDkΣ

1
2

θ

)T
⊗AH

)
0Kl(k−1)m×NtNr(
Bk (Ψ

e
k)

1
2

)T
⊗AH

...
0(Klk+1)m×NtNr


. (61)

Hence, the optimization problem of minimizing the MSE in
(57) subject to per SeN power constraints is given by

minimize
A,{Bk}K

k=1,{Φj}J
j=1

||e||22 (61a)

subject to tγC,k + tITr(Bk

[
DkΣθD

H
k +Ψe

k)B
H
k

]
≤ tEγH,k, ∀k, (61b)
Tr [Φj ] ≤ PT,j , and Φj ⪰ 0, ∀j. (61c)

The above optimization problem is intractable as it stands.
Hence, employing the epigraph form of [51], the above
optimization problem can be modified as

minimize
A,{Bk}K

k=1,{Φj}J
j=1,τ

τ

subject to ||e||22 ≤ τ

(61b), and (61c).

(62)

The first constraint in (62) can further be recast as the linear
matrix inequality (LMI) below

τ − ||e||22 =

[
τ eH

e Im̃

]
≥ 0. (63)

Substituting the value of e from (59) into the above LMI, one
obtains[

τ êH

ê Im̃

]
≥ −

K∑
k=1

[
0 (EHk

vec (∆Hk))
H

(EHk
vec (∆Hk)) 0m(m+Kl)×m(m+Kl)

]
.

(64)
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It can be seen that (64) is similar to (49), and hence, the
expression in (64) can be recast as

 τ −
K∑

k=1

µk êH

ê I

 −ϵHMH
1 · · · −ϵHMH

K

−ϵHM1 µ1I · · · 0
...

...
. . .

...
−ϵHMK 0 · · · µKI


⪰ 0,

(65)

where the matrices P ∈ Rm̃+1×m̃+1, Mk ∈ RNrNt×(K+2)N2
t

and Nk ∈ R1×m̃+1 are defined as

P =

[
τ êH

ê Im̃

]
,

Mk =
[
0NrNt×1 Q

−T/2
k EH

Hk

]
, Nk = [−1 01×m̃]

T
.

(66)

Hence, the final optimization problem is

minimize
A,{Bk}K

k=1,{Φj}J
j=1

τ

subject to (65), (61b), and (61c).
(67)

The above optimization problem is once again non-convex in
nature due to coupling of the optimization variables. Hence,
BCD-based iterative framework can be invoked where the
optimization problem to determine robust combining matrix A
for the given TPC matrices {Bk}Kk=1 and energy covariance
matrices {Φj}Jj=1 is

minimize
A,{Bk}K

k=1,{Φj}J
j=1

τ

subject to (65).
(68)

Moreover, the optimization problem to drtermine optimal TPC
and energy covaraince matrices for a given RC matrix A can
be formulated as

minimize
{Bk}K

k=1,{Φj}J
j=1

τ

subject to (65), (61b), and (61c).
(69)

Algorithm 2 summarizes the proposed approach. The next
subsection provides a theoretical proof of the algorithm’s
convergence.

C. Convergence analysis

This subsection proves the theoretical convergence of the
proposed scheme where initially uniform bit allocation based
quantization is performed, followed by BCD-based optimal
transceiver design. On convergence, optimal bit allocation is
performed, which further minimizes the MSE for the given
transceivers. Since, the problem designing the optimal RC and
TPC matrices in (18) and (36) for the Gaussian, and (67) for
the bounded CSI uncertainty models, are convex in nature, the

Algorithm 2 Robust joint transceiver, energy covaraince ma-
trices and quantization under bounded CSI uncertainty.

1: Input: Observation vector y(n), RC matrix A(n − 1),
precoding matrices {Bk(n− 1)}Kk=1, maximum iterations
nmax = 20 and desired accuracy ϵ = 0.0001, total bit
budget B.

2: Initialization: n = 1, initialize A(0) randomly, Bk(0) =√∑J
j=1

γT,k||Fk,j ||2F
NtNj

1NtNj for k = 1, 2, . . . ,K.

3: while ∥ θ̂
(n)

− θ(n) ∥2≥ ϵ and n < nmax do
4: Find the optimal bit allocation vector β from (56).
5: Evaluate the RC matrix A(n) using (68).
6: Evaluate the optimal precoding matrices {Bk(n)}Kk=1

and energy covariance matrices {Φj(n)}Jj=1 by solving
(69).

7: update n = n+ 1.
8: end while
9: Output: β, A, {Bk}Kk=1 and Σj for j = 1, 2 . . . , J .

following inequalities hold:

MSE
(
{A}(n), {Bk}(n), {Φj}(n)

)
≥ min

A
MSE

(
A|{Bk}(n), {Φj}(n)

)
= MSE

(
A(n+1), {Bk}(n), {Φj}(n)

)
≥ min

Bk,Φj

MSE
(
Bk,Φj |{A}(n+1)

)
= MSE

(
{Bk}(n+1), {Φj}(n+1), {A}(n+1)

)
. (70)

The sequence MSE
(
{A}(n), {Bk}(n), {Φj}(n)

)
is monoton-

ically decreasing and it is lower bounded by zero. This proves
that the algorithm converges.

D. Computation Complexity Analysis

The overall computational complexity of the proposed
scheme for the scenario with Gaussian CSI uncertainty mod-
elling is O

(
(KNtl + JN2

j )
3.5
)
+O(N3

r ), where the first term
arises from the worst case complexity of the optimization
problem in (36) assuming lk = l for all the SeNs in
the EH-IoTNe [28]. The second term can be attributed to
the complexity incurred in the computation of the robust
combining matrix using (29). Furthermore, for the scenario
with bounded CSI uncertainty, the overall complexity is
O
(
(N3

rm
6)
)
+O

(
(N2

t K
2l2 + J2N2

j )N
2
rm

2
)
, where the first

term arises from the computational complexity of deriving
optimal robust combining matrix A. Whereas the second
term represents the computational requirement of determining
optimal precoding and energy covariance matrices {Bk}Kk=1,
and {Φj}Jj=1, respectively [56].

V. SIMULATION RESULTS

The elements of the wireless fading channels Fj for each
EAP j and Hk for each SeN k are generated as N (0, 1).
The unknown parameter of interest θ is generated according



RAJPUT et al.: ROBUST FINITE-RESOLUTION TRANSCEIVERS FOR DECENTRALIZED ESTIMATION IN ENERGY HARVESTING AIDED IOT NETWORKS 11

Parameter Value
Number of SeNs (K) 15
Number of EAPs (J) 4
Number of antennas at each SeN (Nt) 2
Number of antennas at each EAP (Nj ) 4
Number of antennas at the FC (Nr) 2
Number of elements in the parameter vector θ (m) 2
Energy harvesting efficiency for each SeN k (ζk) 0.75
Circuit power consumption for each SeN k (γc,k) −47 dBm
Observation SNR (SNROB) 10 dB
SNR at the FC (SNRFC) 20 dB

TABLE II
SUMMARY OF THE SIMULATION SETUP

to N (0, Im), where m = 2. The number of antennas at each
EAP and SeN are set to 4 and 2, respectively, while the FC is
equipped with 2 antennas. The observation SNR denoted by
SNROB is set as 10 dB, while the SNR at the FC, denoted
as SNRFC, is considered to be 20 dB. The total time t is set
to 1 and divided equally between the energy harvesting and
information transfer intervals, i.e., tI = tE = 0.5. The energy
harvesting efficiency for each SeN k is set to ζk = 0.75.
The circuit power consumption at each SeN k is assumed
to be γc,k = −47 dBm. The number of SeNs and EAPs
considered are K = 15 and J = 4, respectively. Furthermore,
from the performance comparison point of view, the perfect
and imperfect CSI plots have been obtained by extending the
algorithm in [20] for a quantized sensor observation scenario.
A concise summary of the simulation setup is given in Table
II.

The convergence performance of the two approaches pro-
posed in Section-III for the case of Gaussian CSI uncertainty
is shown in Fig. 2. In Approach 1, the robust transceivers are
initially obtained for the uniform bit allocation based quantized
SeN observations, and then the optimal bit allocation is derived
for the given transceivers. On the other side, with Approach 2,
optimal bit allocation is performed first and subsequently, the
robust transceivers are designed. The result indicates that both
the approaches produce almost similar MSE performance. It
can be readily inferred that the robust design outperforms the
uncertainty agnostic or imperfect CSI-based design.

Fig. 3 compares the MSEs of the proposed optimal bit-rate
allocation based quantization in Section-III and uniform bit
allocation based scheme wherein the total bit-rate budget is
distributed equally among the SeNs. As it becomes evident
from the figure, the optimal bit allocation based intelligent
quantization scheme outperforms the uniform bit allocation
based quantization scheme. It can also be observed form the
figure that the proposed robust design performs quite similar to
the perfect CSI scenario, which demonstrates the effectiveness
of the conceived design.

Fig. 4 characterizes the MSE performance of the proposed
robust joint transceiver and energy covariance matrices relying
on the optimal bit allocation based quantization procedure
developed in Section-III versus the different transmit power
levels gleaned from each EAP in the network. It can be
observed that the proposed robust design outperforms the
imperfect CSI-based design in terms of its MSE and indeed,
it approaches the perfect CSI-based design. This confirms the
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Fig. 2. MSE versus number of iterations for the Gaussian CSI uncer-
tainty model.
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Fig. 3. MSE versus number of bits for the Gaussian CSI uncertainty
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Gaussian CSI uncertainty model.
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Fig. 6. MSE versus number of iterations for the bounded CSI uncer-
tainty model.

advantages of the robust design proposed.
Fig. 5 displays the MSE performance of the robust design

conceived versus the channel uncertainty variance σ2
H for

different bits-per-sample values. As expected, the MSE perfor-
mance improves as the number of bits per sample increases.
It can once again be seen that the proposed scheme performs
close to the perfect CSI based scheme and outperforms the
uncertainty agnostic design. It is also clear that as the power
transmitted from the EAP increases, the SeNs can harvest more
energy and therefore the estimation performance improves.

Fig. 6 depicts the convergence performance of the iterative
approach developed in Section-IV for the bounded CSI un-
certainty model. It can be readily observed that the proposed
approach converges after 10 iterations and offers a better MSE
performance than the uncertainty agnostic design. Fig. 7 plots
the MSE performance of the optimal bit allocation based
quantization scheme with the uniform bit allocation scheme.
It can once again be deduced that the optimal bit allocation
scheme outperforms the uniform bit allocation scheme. As
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Fig. 7. MSE versus number of bits for the bounded CSI uncertainty
model.
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Fig. 8. MSE versus transmitted power from each EAP for the bounded
CSI uncertainty model.

expected, the performance gap is significant for a lower
number of bits and decreases as the number of bits increases.

Fig. 8 demonstrates the MSE performance of the proposed
algorithm for robust joint transceiver and energy covariance
matrix design as a function of the different transmit power
levels from each EAP in the EH-IoTNe. It can be seen
that the proposed robust design offers significant MSE per-
formance improvement over the imperfect CSI based design
and performs similarly to the ideal perfect CSI based design.
Furthermore, as the uncertainty radius grows, the performance
gap between the suggested robust and uncertainty agnostic de-
sign increases dramatically, demonstrating again the proposed
robust design’s efficacy.

Fig. 9 shows the MSE performance of the suggested robust
design versus the channel uncertainty radius ϵH for various
values of the number of SeNs in the EH-IoTNe. Once again, it
is clear that the suggested scheme outperforms the uncertainty
agnostic design and does not deviate much from a perfect CSI-
based scheme. It can also be shown that when the number
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Fig. 9. MSE versus varying channel uncertainty bound (ϵH ) for the
bounded CSI uncertainty model.

of SeNs increases, the estimation performance inevitably gets
better because there are more observations available at the FC.

VI. CONCLUSIONS

In this paper, considering an energy harvesting IoTNe,
BCD-based iterative approaches were developed for optimal
bit allocation and robust transceiver design based on MSE
minimization at the FC. The proposed schemes also take
into account the inadequacy of the available CSI, which
has been characterized using both Gaussian and bounded
uncertainty models. For the Gaussian CSI uncertainty model,
closed-form expressions for optimal bit allocation and the
RC matrix were derived, and a QCQP-based optimization
problem was formulated and solved in order to determine
the robust TPC matrices. In addition, for the scenario of
bounded CSI uncertainty, two distinct optimization problems
were formulated in order to derive the optimal bit allocation
and robust transceivers, respectively. Explicit theoretical con-
vergence results were proved for the proposed approaches. Our
simulation results demonstrated the superiority of the proposed
robust designs over their conventional uncertainty-agnostic
counterpart, in which only the estimated channel is used to
design the transceivers and the energy covariance matrices,
with no consideration of the CSI uncertainty.
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