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Rate-Fairness-Aware Low Resolution RIS-Aided
Multi-User OFDM Beamforming
H. Yu1,2, H. D. Tuan2, A. A. Nasir3, E. Dutkiewicz2, and L. Hanzo4

Abstract—This paper investigates reconfigurable intelligent
surface (RIS)-aided OFDM network, where a multiple-antenna
aided base station (BS) transmits its downlink (DL) signals to
multiple single-antenna users via an RIS, which consists of a
considerable amount of low-resolution programmable reflecting
elements (PREs). Explicitly, we propose the joint design of the
multi-user (MU) beamformers and the RIS’s PREs for quality-
of-service target in terms of the individual users’ rates. In the
face of dispersive channels, we demonstrate that this poses a
large-scale mixed discrete continuous optimization problem of
intractable nature. We then tackle this challenge by developing
low-complexity iterative procedures, which invoke light-weight
closed-form expressions at each iteration, are developed for
its computational solution. The simulations demonstrate their
computational efficiency and additionally, reveal the deficiencies
of the conventional MU OFDM beamforming design based on
sum-rate maximization.

Index Terms—Reconfigurable intelligent surface, low bit-
quantization, multi-user OFDM, quality-of-service, multi-
objective beamforming, mixed discrete continuous optimization.

I. INTRODUCTION

Reconfigurable intelligent surfaces (RISs) are planar arrays
of large number of programmable reflecting elements (PREs)
and have emerged as an attractive wireless enabling technology
[1], [2]. RIS-aided signal processing has recently received
considerable research interest [3], [4]. However, the joint
design of the PREs and multi-user (MU) beamformers has
predominantly been limited to narrow-band scenario, when
maximizing the users’ sum rate (SR) [5]–[7] or their worst rate
(WR) [8]–[10]. As a beneficial optimization objective function
(OF), the geometric mean of the users’ rates (GM-rate) has
also been applied [11], [12] with the specific motivation of
improving the fairness of users’ rate. When maximizing the
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WR, the iterative optimization in [9] is based on convex prob-
lems of moderate dimension, which generate a sequence of
gradually improved feasible points. By contrast, the iterations
of [8], [10] are based on semi-definite relaxation (SDR) of
excessive dimensions, which still cannot even finding a feasi-
ble point. For wide-band scenarios, the authors of [13]–[16]
considered RIS-aided orthogonal frequency division multiple
access (OFDMA) systems having base station (BS) equipped
with a single-antenna, which assigns orthogonal bands for the
single-antenna users. But again, all these solutions are based
on iterating large-dimensional convex problems even for small-
sized cases and thus having limited practical applications. For
instance, the authors of [13] simulated a scenario of three
users, 16 bands, and 80 PREs, while the authors of [14]
simulated a scenario of two users, 32 bands, and 20 PREs.

OFDM is indeed the most popular protocol for combating
frequency-selective multi-path propagation [17], hence a RIS-
aided single-user single-input single-output (SISO) OFDM
systems has been considered in [18]–[20]. All these treatises,
along with [13]–[16] on OFDMA assumed the presence of
direct paths from the BS to users, but for this scenario RISs
hardly improve the system performance [9], [11], [12], [21].

While single-user OFDM is well documented [22], there
are still open puzzles in MU OFDM in terms of managing
the MU interference over each frequency band. As such, even
the problem of power allocation maximizing the SR for SISO
systems poses a large scale nonconvex optimization problem
[23], [24]. Our recent work [25] is the first paper, which
provides a computationally tractable solution for MU OFDM
beamforming to maximize the SR of multiple input single
output (MISO) systems. Furthermore, all the existing treatises
on MU OFDM aim for optimizing the system’s sum-rate.
Our preliminary analysis in [25, Figs. 5 & 6] shows that
maximizing the SR leads to zero rates for some users, i.e.
their rates over all frequency bands are zero. This means that
SR maximization leads to disconnect of some users and thus it
is unsuitable for maintaining fairness in MU communications.
The joint design of MU beamforming and RIS PREs for RIS-
aided MU OFDM to maximize the SR of MISO systems has
been documented in [26], which proposed to optimize one-by-
one all the PRE with all other PREs held fixed for handling
their constant modulus constraints.

Against the above background on RIS-less or RIS-aided
OFDM communications, this paper is the first contribution,
which aims for optimizing the rates of all users for the sake
of meeting their quality-of-service (QoS) target. Regarding
RISs, it also desirable that PREs having a low number of
quantization bit for their practical implementation [27], [28].
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As such, a large-scale mixed discrete-continuous optimization
problem is constituted by the joint design of PREs and beam-
forming, whose computational solution is unknown. Against
this backdrop, the paper’s contributions are three-fold:

• For solving the problem of maximizing the users’ WR,
an algorithm is developed, which iterates the convex
problems for generating gradually improved PREs and
MU beamformers;

• For solving the problem of maximizing the GM-rate, we
develop an algorithm, which iterates closed-form expres-
sion for gradually enhancing both the PREs and MU
beamformers for arbitrarily large networks. The iteration
leads to a Pareto-optimal solution that achieves both high
SR and high MR without an explicit QoS constraint in-
volved, and the simulation results verified the advantages
of our proposed GM rate optimization methods compared
to the proposed SR and WR methods. This algorithm is
also capable of solving the SR maximizing problem;

• Our simulations reveal that the conventional SR OF is
unsuitable for MU OFDM as it leads to assigning zero
rates to some users. By contrast, GM-rate optimization
is capable of avoiding this deficiency while providing a
good sum rate. As such GM-rate offers a Pareto optimized
solution to the multi-objective SR and WR .

In summary, we boldly and explicitly contrast our novel
contributions to the literature in Table I.

The paper is structured as follows. Our problem statements
along with the analysis of computational challenges is devoted
in Section II, while Section III develops a convex-solver based
universal algorithm for their solution. Section IV develops
closed-form expression based algorithms of scalable complex-
ity for solving the GM-rate and SR maximizing problem.
Followed by Section V, which takes into account realistic
antenna-wise power constraints. Our simulations are provided
in Section VI, which show that: (i) The convex-solver based
and closed-form based algorithms have similar performances,
so preference is given to the latter due its practicability in
solving large-scale problems of practical interest; (ii) The SR
maximization always leads to zero rates for some users, hence
it cannot be used for MU OFDM; (iii) GM-rate maximization
is not only scalably computable but it is also Pareto optimal
in maximizing both SR and WR OFs. Finally, Section VII
concludes the paper.

Notation. OX×Y represents a zero matrix of size X×Y , and
IX represents the identity matrix of size X×X . diag(z) repre-
sents a diagonal matrix of the size k×k with z1, z2, . . . , zk on
its diagonal for z = (z1, . . . , zk)T ; [A]2 represents AAH , and
〈A,B〉 = trace(AHB) for the matrices A and B. Accordingly,
||A|| =

√
trace(AHA) is the Frobenius norm of A. Only the

vector/matrix variables are printed in boldface. To indicate the
positive definite (positive semi-definite, resp.) for the Hermi-
tian symmetric matrix A, the notation A � 0 (A � 0, resp.) is
used. For notational simplicity, we also write 〈Z〉 = trace(Z).
λmax(A) is used to present the maximal eigenvalue of the
Hermitian symmetric matrix A. ez , (ez1 , . . . , ezk)T ∈ Ck
for z = (z1, . . . , zk)T ∈ Rk. ∠z denotes the argument of
a complex number z, i.e. z = e∠z for |z| = 1 and it is

fully characterized by ∠z ∈ [0, 2π). FM is the fast Fourier
transform (FFT) matrix of order M defined as

FM ,
1√
M

[e−2πkp/M ]k,p=0,1,...,M−1.

Note that FM is unitary (FMFHM = IM ) so FHM = (FM )−1 is
called the inverse FFT (IFFT) matrix.

Ingredient. For all p ∈ C, q > 0, and p̄ ∈ C, q̄ > 0, the
following inequality [29] is frequently used:

ln

(
1 +
|p|2

q

)
≥ ln

(
1 +
|p̄|2

q̄

)
− |p̄|

2

q̄
+ 2
<{p̄∗p}

q̄

− |p̄|2

q̄(|p̄|2 + q̄)
(|p|2 + q). (1)

By considering both sides of (1) as functions of (p,q), it can
be observed that the right hand side (RHS) of (1) matches its
left hand side (LHS) at (p̄, q̄). Consequently, the LHS of (1)
serves as a tight minorant of the RHS of (1) [30]. The process
of maximizing the RHS of (1) is known as tight minorant
maximization, which helps to find a better point than that at
(p̄, q̄) in order to maximize the LHS of (1).

II. PROBLEM STATEMENT

A RIS-aided communication system illustrated by Fig. 1 is
considered. Due to having no direct links between the K users
(UEs) k ∈ K , {1, . . . ,K} equipped with single-antenna and
Nt-antenna array BS, the RIS of N PREs , which is in direct
view of by both the BS and of the UEs is employed to support
their downlink.1

Base Station

...

RIS

Fig. 1: System model

The channel spanning from the BS to the RIS is assumed to
be frequency selective, which is characterized by the transfer
co-vector function of

H̄B-R(z) ,
L1−1∑
`=0

H̃B-R,`z
−`, (2)

where H̃B-R,` ∈ CN×Nt denotes the gain of the `-th multiple-
input multiple-output (MIMO) path and L1 is the memory of
the BS-RIS channel.

1Between BS and UEs, if the direct link exists, RISs are only marginally
useful [9], [11]
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TABLE I: Contrasting our novel contributions to the related OFDM literature.

Contents
Literature This work [18]–[20] [23], [24] [25] [26]

MU OFDM
√ √ √ √ √

RIS aided single user OFDM
√

RIS aided MU OFDM
√ √

SR maximization
√ √ √ √

WR maximization
√

Multi-objective optimization
√

Quantized PREs
√

Computationally tractable solution
√

Similarly, the channel between the RIS and UE k is also
assumed to be frequency-selective and characterized by the
transfer co-vector function

~R-k(z) ,
L2−1∑
`=0

h̃R-k,`z
−`, (3)

where h̃R-k,` ∈ C1×N denotes the gain of the `-th MISO path
and L2 is the memory of the RIS-UE channel.

Let diag(eθθθ) represent the matrix of PREs for θθθ =
(θθθ1, . . . , θθθN )T ∈ [0, 2π)N . We are concerned about quantized
PREs with b-bit resolution, formulated as:

θθθn ∈ B , {η 2π

2b
, η = 0, 1, . . . , 2b − 1}, n ∈ N , {1, . . . , N}.

(4)
Then, the projection of α ∈ [0, 2π] into B denoted by bαeb is
termed as its b-bit rounded value, i.e.

bαeb = ηα
2π

2b
(5)

with

ηα , arg min
η=0,1,...,2b−1

∣∣∣∣η 2π

2b
− α

∣∣∣∣ , (6)

which can be easily obtained, because ηα ∈ {η, η + 1} for
α ∈ [η 2π

2b
, (η + 1) 2π

2b
]. When b =∞, have:

α = bαe∞. (7)

The composite channel spanning from the BS to UE k is also
frequency selective and characterized by the transfer co-vector
function

~k(z) = ~R-k(z)R1/2
R-k diag(eθθθ)H̄B-R(z) (8)

= ~BR-k(z)diag(eθθθ)HB-R(z) ∈ C1×Nt , (9)

with

~BR-k(z) ,
√
βB-R

√
βR-khR-k(z)R1/2

R-k ∈ C1×N . (10)

where RR-k ∈ CN×N denotes the spatial correlation matrix,
which models the correlation between the RIS elements with
respect to user k [31]. In this paper, we adopt a simple
exponential model to describe the spatial correlation among
the scattering elements of the RIS [32], [33]. Similarly to the
seminal papers on RIS-aided communication networks [15],
[34]–[38], we assume having perfect channel state information,
which can be acquired using the channel estimation techniques
created for RIS-aided networks [39]–[44].

Assume that we have M = 2M sub-carriers. At the i-th
transmit antenna (TA) i ∈ Nt , {1, . . . , Nt}, each block of
information

xi ,

 xi(0)
. . .

xi(M − 1)

 ,
of length M is transmitted by OFDM having the block length
of M + L:

x̃i ,

xi,Txi,H
xi,T

 ∈ CM+L

with [
xi,H
xi,T

]
= FHMxi, xi,H ∈ CM−L, xi,T ∈ CL,

where the OFDM cyclic prefix (CP) length is set to L ≥
max{L1 +L2−1, L3} to avoid inter-block interference (IBI).
The block x̃i of length (M + L) is transmitted from the i-th
TA. By discarding the first L entries of the received block and
then applying the FFT, we obtain the received singal at each
subcarrier m ∈M , {0, . . . ,M − 1} for UE k as

yk(m) = ~k,m(θθθ)x(m) + nk(m), (11)

where we have:

x(m) ,

 x1(m)
. . .

xNt(m)

 ∈ CNt , (12)

and nk(m) is the background noise of power σ, and

~k,m(θθθ) = ~k(e2πm/M ) (13)

= ~BR-k,mdiag(eθθθ)HB-R,m (14)

with
HB-R,m , HB-R(e2πm/M ). (15)

~BR-k,m , ~BR-k(e2πm/M ). (16)

In MU beamforming, each x(m) ∈ CNt in (12) is defined as

x(m) =

K∑
k=1

wk(m)sk(m), (17)

where sk(m) ∈ C(0, 1) is the data symbol of UE k, and its
beamformer is

wk(m) ,

 wk,1(m)
. . .

wk,Nt(m)

 ∈ CNt , k ∈ K. (18)
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Thus, the received signal in (11) becomes

yk(m) = ~k,m(θθθ)

K∑
j=1

wj(m)sj(m) + nk(m). (19)

Let

w(m) ,

w1(m)
. . .

wK(m)

 ∈ CKNt ,

and w , {w(m),m ∈M}. The rate in nats/sec of sk(m) for
UE k is

rk,m(w(m), θθθ) = ln

(
1+

|~k,m(θθθ)wk(m)|2∑
j∈K\{k} |~k,m(θθθ)wj(m)|2 + σ

)
.

(20)
The total rate of UE k is

ρk(w, θθθ) ,
M−1∑
m=0

rk,m(w(m), θθθ), (21)

while the total information delivery over the subcarrier m is

χm(w(m), θθθ) ,
K∑
k=1

rk,m(w(m), θθθ). (22)

Let P denote the total transmit power budget, the power
constraint is

(1 +
L

M
)

K∑
k=1

M−1∑
m=0

||wk(m)||2 ≤ P. (23)

Let us define the vector-valued function

ρ(w, θθθ) , [ρ1(w, θθθ), . . . , ρK(w, θθθ)]T . (24)

As regards to the joint design of the beamformer w and the
PREs θθθ, the following problems are popular: the SR problem

max
w,θθθ

fSR[ρ(w, θθθ)] ,
K∑
k=1

ρk(w, θθθ) s.t. (4), (23), (25)

and the WR problem

max
w,θθθ

fWR[ρ(w, θθθ)] , min
k=1,...,K

ρk(w, θθθ) s.t. (4), (23),

(26)
which has not been considered even in the RIS-less OFDM
literature due to its computational intractability. In addition to
the SR problem (25) and WR problem (26), we also consider
the GM-rate optimization problem

max
w,θθθ

fGM (ρ(w, θθθ)) ,

(
K∏
k=1

ρk(w, θθθ)

)1/K

s.t. (4), (23).

(27)
Our previous treatises [11], [12], [45] have shown that GM-
rate maximization leads to a Pareto optimal solution in opti-
mizing both the WR and SR.

All these problems constitute large scale mixed discrete
continuous optimization problem with unknown computational
solution. The next sections are devoted to their computation.

III. UNIVERSAL CONVEX SOLVER BASED ALGORITHMS

This section provides a new penalty optimization based
method is conceived for solving the problems (25), (26), and
(27) in unified framework by exploiting the fact that the OF
fA(ρ) associated with A ∈ {SR,WR,GM} are concave and
monotonically increasing in ρ. Let ~k,m(z) (ρk,m(w(m), z),
resp.) be defined from (14) ((21), resp.) with with eθθθ replaced
by z. We address (25), (26), and (27) inform of the following
penalty optimization problem

max
w,θθθ,z

f cA(w, θθθ, z) , fA[ρ(w, z)]−c||z−eθθθ||2 s.t. (4), (23),

(28)
where c > 0 is a penalty parameter, and A ∈
{SR,WR,GM}. Note that the discrete constraint (4) prevents
us from exploiting the exact penalty optimization of [9].

Assuming an initial feasible point (w(0), θ(0), z(0)) for (28),
let (w(ι), θ(ι), z(ι)) denotes its feasible point, obtained from
the (ι− 1)-st iteration.

A. Beamforming alternating iteration

We seek w(ι+1), so that the following holds:

f cA(w(ι+1), θ(ι), z(ι)) > f cA(w(ι), θ(ι), z(ι))

⇔ fA[ρ(w(ι+1), z(ι))] > fA[ρ(w(ι), z(ι))]. (29)

By using the inequality (1) for p = ~k,m(z(ι))wk(m),
q =

∑
j∈K\{k} |~k,m(z(ι))wj(m)|2 + σ, and

p̄ = ~k,m(z(ι))w
(ι)
k (m), q̄ = q

(ι)
k,m ,∑

j∈K\{k} |~k,m(z(ι))w
(ι)
j (m)|2 + σ, the following tight

concave minorant of rk,m(w(m), z(ι)) at w(ι)(m) is
obtained:

r
(ι)
k,m(w(m)) , a

(ι)
k,m + 2<{〈b(ι)k,m,wk(m)〉}

−c(ι)k,m
K∑
j=1

|~k,m(z(ι))wj(m)|2, (30)

with

a
(ι)
k,m , rk,m(θ(ι), w(ι)(m))−

|~k,m(z(ι))w
(ι)
k (m)|2

y
(ι)
k,m

− σc(ι)k,m,

b
(ι)
k,m ,

~k,m(z(ι))w
(ι)
k (m)

y
(ι)
k,m

~Hk,m(z(ι)),

0 < c
(ι)
k,m ,

|~k,m(z(ι))w
(ι)
k,m|2

y
(ι)
k,m

(
y
(ι)
k,m + |~k,m(z(ι))w

(ι)
k (m)|2

) .
(31)

By defining the following tight concave minorant of
ρk(w, z(ι)) at w(ι):

ρ
(ι)
k (w) ,

M−1∑
m=0

r
(ι)
k,m(w(m)), (32)

and then ρ(ι)(w) , [ρ
(ι)
1 (w), . . . , ρK(w)]T , we obtain

fA[ρ(ι)(w)] as a tight minorant of fA[ρ(w, z(ι))] at w(ι).
Thus, we generate w(ι+1) at the ι-th iteration by solving the
following problem:

max
w

fA[ρ(ι)(w)] s.t. (23). (33)
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Note that fA[ρ(ι)(w)] is either a concave function as a sum
or pointwise minimum or alternatively the GM of concave
functions ρ(ι)k (w) [30], so this problem is convex.

B. z-iteration

We look for the next iterative point z(ι+1), which should
ensure

f cA(w(ι+1), θ(ι), z(ι+1)) > f cA(w(ι+1), θ(ι), z(ι)) (34)

⇔ fA(ρ(w(ι+1), z(ι+1)))− c||z(ι+1) − eθ(ι) ||2 >
fA(ρ(w(ι+1), z(ι))− c||z(ι) − eθ(ι) ||2.

By using the inequality (1) with p = ~k,m(z)w
(ι+1)
k (m),

q =
∑
j∈K\{k} |~k,m(z)w

(ι+1)
j (m)|2 + σ, and

p̄ = ~k,m(z(ι))w
(ι+1)
k (m), q̄ = q

(ι+1)
k,m ,∑

j∈K\{k} |~k,m(z(ι))w
(ι+1)
j (m)|2 + σ, we obtain the

following tight concave minorant of rk,m(w(ι+1), z) at z(ι):

r̃
(ι)
k,m(z) , ã

(ι)
k,m +

2

y
(ι+1)
k,m

<{τ (ι)k,m~k,m(θθθ)w
(ι+1)
k (m)}

−c̃(ι)k,m
K∑
j=1

|~k,m(θθθ)w
(ι+1)
j (m)|2, (35)

with
τ
(ι)
k,m , (~k,m(z(ι))w

(ι+1)
k (m))∗ ∈ C,

and

ã
(ι)
k,m , rk,m(w(ι+1), z(ι))− σc̃(ι)k,m

−
|~k,m(z(ι))w

(ι+1)
k (m)|2

y
(ι+1)
k,m

,

0 < c̃
(ι)
k,m ,

|~k,m(z(ι))w
(ι+1)
k (m)|2

y
(ι+1)
k,m

(
y
(ι+1)
k,m + |~k,m(z(ι))w

(ι+1)
k (m)|2

) .
Thus, a tight concave minorant of ρk(w(ι+1), z) at z(ι) is

ρ̃
(ι)
k (z) ,

M−1∑
m=0

r̃
(ι)
k,m(z), (36)

and a tight concave minorant of fA(w(ι+1), z) at z(ι) is
fA[ρ̃(ι)(z)] for ρ̃(ι)(z) , [ρ̃

(ι)
1 (z), . . . , ρ̃

(ι)
K (z)]T . Thus, we

generate z(ι+1) by solving the following convex problem,
which verifies (34):

max
z

fA[ρ̃
(ι)
1 (z), . . . , ρ̃

(ι)
K (z)]− c||z− eθ

(ι)

||2, (37)

C. PREs iteration

We generate θ(ι+1) so that f cA(w(ι+1), θ(ι+1), z(ι+1)) >
f cA(w(ι+1), θ(ι), z(ι+1))⇔−||z(ι+1)−eθθθ||2 > −||z(ι)−eθθθ||2
by solving

max
θθθ
−||z(ι+1) − eθθθ||2 s.t. (4), (38)

the closed-form solution is obtained:

θ(ι+1)
n = bz(ι+1)

n eb, n ∈ N . (39)

Algorithm 1 SR, WR, GM-rate optimization

1: Initialization: Set ι = 0. Generate a random feasible
(w(0), θ(0), z(0)) for (28).

2: Repeat until convergence of the OF in (28): Calculate
w(ι+1) by solving (33), z(ι+1) by solving (37), and θ(ι+1)

by (39). Reset ι = ι+ 1.
3: Output (w(ι), θ(ι)) and the user rates ρk(w(ι), θ(ι)), k ∈
K.

D. Algorithm and convergene

Based on (33), (37) and (39), the pseudo-code to generate
a sequence of {(w(ι), z(ι), θ(ι))} is provided in Algorithm 1
so that

f cA(w(ι+1), z(ι+1), θ(ι+1)) > f cA(w(ι), z(ι), θ(ι)), (40)

which is convergent according to the Cauchy theorem.

IV. CLOSED-FORM EXPRESSION BASED ALGORITHMS FOR
GM-RATE AND SR MAXIMIZATION

The computational complexity of the convex problems
(33) and (37) is on the order of O[(KNtM)3] and O(N3),
respectively. Therefore, the computational complexity of each
iteration of Algorithm 1’s is O[(KNtM)3)+O(N3], which is
excessive since both M and N are large in real applications.
This section presents algorithms of scalable complexity for
solving the SR problem (25) and GM-rate problem (27) by
leveraging the smoothness of their objective functions.

The problem (27) is considered first. Starting from some
initial feasible point (w(0), θ(0)) of (27), let (w(ι), θ(ι)) be
its feasible point obtained from the (ι − 1)-st iteration. For
the nonlinear vector function ρ(w, θθθ) defined from (24),
the linearized function of the composite fGM [ρ(w, θθθ)] at
ρ(w(ι), θ(ι)) is defined by2

L(ι)(ρ(w, z)) ,
fGM [ρ(w(ι), θ(ι))]

K

K∑
k=1

ρk(w, θθθ)

ρk(w(ι), θ(ι))
. (41)

At the ι-th iteration, we seek a steep ascent (w(ι+1), θ(ι+1))
by considering the following problem:

max
w,θθθ
L(ι)[ρ(w, z)] s.t. (4), (23), (42)

which is equivalent to the following problem of weighted SR
maximization,

max
w,θθθ

f (ι)(w, θθθ) ,
K∑
k=1

γ
(ι)
k ρk(w, θθθ) s.t. (4), (23), (43)

for

γ
(ι)
k ,

max
k′∈K

ρk′(w
(ι), θ(ι))

ρk(w(ι), θ(ι))
, k ∈ K. (44)

2The derivation process is given in [11, Section II, Eq(7-12)]
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A. Beamforming alternating iteration

To seek w(ι+1), so that the following holds:

f (ι)(w(ι+1), θ(ι)) > f (ι)(w(ι), θ(ι)), (45)

we address the following problem

max
w

f (ι)(w, θ(ι)) ,
K∑
k=1

γ
(ι)
k ρk(w, θ(ι)) s.t. (23). (46)

By using the inequality (1) for p = ~k,m(θ(ι))wk(m),
q =

∑
j∈K\{k} |~k,m(θ(ι))wj(m)|2 + σ, and

p̄ = ~k,m(θ(ι))w
(ι)
k (m), q̄ = q

(ι)
k,m ,∑

j∈K\{k} |~k,m(θ(ι))w
(ι)
j (m)|2 + σ, we obtain the following

concave tight minorant of rk,m(w(m), θ(ι)) at w(ι)(m):

r
(ι)
k,m(w(m)) , a

(ι)
k,m + 2<{〈b(ι)k,m,wk(m)〉}

−c(ι)k,m
K∑
j=1

|~k,m(θ(ι))wj(m)|2, (47)

with

a
(ι)
k,m,rk,m(θ(ι), w(ι)(m))−

|~k,m(θ(ι))w
(ι)
k (m)|2

y
(ι)
k,m

−σc(ι)k,m,

b
(ι)
k,m ,

~k,m(θ(ι))w
(ι)
k (m)

y
(ι)
k,m

~Hk,m(θ(ι)),

0 < c
(ι)
k,m ,

|~k,m(θ(ι))w
(ι)
k,m|2

y
(ι)
k,m

(
y
(ι)
k,m + |~k,m(θ(ι))w

(ι)
k (m)|2

) .
(48)

Thus, a tight concave minorant of f (ι)(w, θ(ι)) at w(ι) is given
by:

f
(ι)
b (w) ,

K∑
k=1

γ
(ι)
k

M−1∑
m=0

r
(ι)
k,m(w(m))

=

K∑
k=1

γ
(ι)
k

M−1∑
m=0

a
(ι)
k,m

+2

K∑
k=1

γ
(ι)
k

M−1∑
m=0

<{〈b(ι)k,m,wk(m)〉}

−
M−1∑
m=0

K∑
k=1

wH
k (m)Ψ(ι)

m wk(m) (49)

with

0 � Ψ(ι)
m ,

K∑
j=1

γ
(ι)
j c

(ι)
j,m~Hj,m(θ(ι))~j,m(θ(ι)),m ∈M. (50)

Thus, w(ι+1) verifying (45) can be sought as the optimal
solution of the following convex problem of tight minorant
maximization of (46)

max
w

f
(ι)
b (w) s.t. (23), (51)

which results in the following closed-form solution:

w
(ι+1)
k (m) =


γ
(ι)
k (Ψ

(ι)
m )−1b

(ι)
k,m

if(1+ L
M )

M−1∑
m=0

K∑
k=1

||γ(ι)k (Ψ(ι)
m )−1b

(ι)
k,m||

2≤P

γ
(ι)
k (Ψ

(ι)
m + µINt)

−1b
(ι)
k,m otherwise,

(52)
where µ > 0 is chosen by bisection so that

(1 +
L

M
)

M−1∑
m=0

K∑
k=1

||γ(ι)k (Ψ(ι)
m + µINt)

−1b
(ι)
k,m||

2 = P. (53)

B. PREs’ alternating iteration

The next iterative point θ(ι+1) is sought to satisfy

f (ι)(w(ι+1), θ(ι+1)) > f (ι)(w(ι+1), θ(ι)), (54)

we address the problem

max
θθθ

f (ι)(w(ι+1), θθθ) s.t. (4). (55)

By using the inequality (1) for p = ~k,m(θθθ)w
(ι+1)
k (m),

q =
∑
j∈K\{k} |~k,m(θθθ)w

(ι+1)
j (m)|2 + σ, and

p̄ = ~k,m(θ(ι))w
(ι+1)
k (m), q̄ = q

(ι+1)
k,m ,∑

j∈K\{k} |~k,m(θ(ι))w
(ι+1)
j (m)|2 + σ, we obtain the

following tight minorant of rk,m(w(ι+1), θθθ) at θ(ι):

r̃
(ι)
k,m(θθθ) , ã

(ι)
k,m +

2

y
(ι+1)
k,m

<{τ (ι)k,m~k,m(θθθ)w
(ι+1)
k (m)}

−c̃(ι)k,m
K∑
j=1

|~k,m(θθθ)w
(ι+1)
j (m)|2, (56)

with
τ
(ι)
k,m , [~k,m(θ(ι))w

(ι+1)
k (m)]∗ ∈ C,

and

ã
(ι)
k,m,rk,m(w(ι+1), θ(ι))−

|~k,m(θ(ι))w
(ι+1)
k (m)|2

y
(ι+1)
k,m

−σc̃(ι)k,m,

0 < c̃
(ι)
k,m ,

|~k,m(θ(ι))w
(ι+1)
k (m)|2

y
(ι+1)
k,m

(
y
(ι+1)
k,m + |~k,m(θ(ι))w

(ι+1)
k (m)|2

) .
Then we have:

diag(eθθθ) =

N∑
n=1

eθθθnΥn,

where Υn denotes a matrix of size (N × N) with only zero
entries, except its (n, n)-entry is 1.

We then use (14) to arrive at:

τ
(ι)
k,m~k,m(θθθ)w

(ι+1)
k (m)

= τ
(ι)
k,m

[
~BR-k,mdiag(eθθθ)HB-R,m

]
w

(ι+1)
k (m)

= τ
(ι)
k,m

N∑
n=1

τ
(ι)
k,m~BR-k,mΥnHB-R,mw

(ι+1)
k (m)eθθθn

=

N∑
n=1

b̃
(ι)
k,m(n)eθθθn , (57)



7

with 3

b̃
(ι)
k,m(n) = τ

(ι)
k,m~BR-k,mΥnHB-R,mw

(ι+1)
k (m), n ∈ N .

To expound further, we have:

|~k,m(θθθ)w
(ι+1)
j (m)|2

=
∣∣∣(~BR-k,mdiag(eθθθ)HB-R,m

)
w

(ι+1)
j (m)

∣∣∣2 . (58)

Furthermore,

~BR-k,mdiag(eθθθ)HB-R,mw
(ι+1)
j (m)

= ~BR-k,m

(
N∑
n=1

eθθθnΥn

)
HB-R,mw

(ι+1)
j (m)

=

N∑
n=1

q
(ι+1)
k,m,j(n)eθθθn , (59)

for

q
(ι+1)
k,m,j(n) = ~BR-k,mΥnHB-R,mw

(ι+1)
j (m), n ∈ N .

Based on (56), (57), (58), and (59), we arrive at:

r̃
(ι)
k,m(θθθ) = ã

(ι+1)
k,m + 2<{

N∑
n=1

b̃
(ι+1)
k,m (n)eθθθn}

−c̃(ι)k,m
K∑
j=1

∣∣∣∣∣
N∑
n=1

q
(ι+1)
k,m,j(n)eθθθn

∣∣∣∣∣
2

= ã
(ι+1)
k,m + 2<{

N∑
n=1

b̃
(ι+1)
k,m (n)eθθθn}

−c̃(ι)k,m
K∑
j=1

(eθθθ)HΦ
(ι+1)
k,m,je

θθθ, (60)

where

ã
(ι+1)
k,m , ã

(ι)
k,m − c̃

(ι)
k,m

∑
j∈K\{k}

|~B-k,mw
(ι+1)
j (m)|2,

d̃
(ι+1)
k,m ,

K∑
j=1

(
h̃B-k,mw

(ι+1)
j (m)

)
∗~BR-k,mΥnHB-R,mw

(ι+1)
j (m),

b̃
(ι+1)
k,m (n) ,

b̃
(ι)
k,m(n)

y
(ι+1)
k,m

− c̃(ι)k,md̃
(ι+1)
k,m , n ∈ N , (61)

and

Φ
(ι+1)
k,m,j(n, n

′) = (q
(ι+1)
k,m,j(n))∗q

(ι+1)
k,m,j(n

′), (n, n′) ∈ N ×N ,

where we have Φ
(ι+1)
k,m,j � 0. Therefore, a tight minorant of the

function f (ι)(w(ι+1), θθθ) at θ(ι) is

f (ι)c (θθθ) ,
K∑
k=1

γ
(ι)
k

M−1∑
m=0

r̃
(ι)
k,m(θθθ)

= ã(ι+1) + 2<{
N∑
n=1

b̃(ι+1)(n)eθθθn}

3In what follows b(i) is the i-th entry of b and [A](i, i) is the i-th diagonal
entry of A, and [A]∗(i, i) is the complex conjugate of [A](i, i)

−(eθθθ)HΦ(ι+1)eθθθ, (62)

for

ã(ι+1) ,
K∑
k=1

γ
(ι)
k,m

M−1∑
m=0

ã
(ι+1)
k,m ,

b̃(ι+1)(n) ,
K∑
k=1

γ
(ι)
k

M−1∑
m=0

b̃
(ι+1)
k,m (n),

0 � Φ(ι+1) ,
K∑
k=1

γ
(ι)
k

M−1∑
m=0

c̃
(ι)
k,m

N∑
j=1

Φ
(ι+1)
k,m,j .

(63)

Furthermore, (62) may be reformulated as (64), i.e. f̃ (ι)c (θθθ) is
a tight minorant of f (ι)c (θθθ) and thus it is still a tight minorant
of f (ι)(w(ι+1), θθθ) at θ(ι) [9]. Thus, θ(ι+1) satisfying (54) can
be sought as the optimal solution of the following problem of
tight minorant maximization of (55):

max
θθθ∈BN

f̃ (ι)c (θθθ), (65)

which admits the closed-form 4 solution of (66).

C. GM-rate optimization and convergence

The pseudo-code for the proposed procedure of steep de-
scent for computing (27) is provided in Algorithm 2. Instead
of seeking the optimal solution of the nonconvex problem
(27), we solve the iterations (52) and (66) and seek a descent
direction by aiming for a gradually improved feasible point
for (27). The rationale of this is reducing the computational
load while guaranteeing convergence, and the routine is also
used in the Frank-and-Wolfe method [46].

Algorithm 2 Scalable-complexity GM optimization

1: Initialization: Set ι = 0. Generate random (w(0), θ(0))

meeting the constraint (23) and calculate γ(0)k by (44).
2: Repeat until convergence of the OF in (27): Calculate
w(ι+1) by (52) and θ(ι+1) by (66). Reset ι = ι+ 1.

3: Output (w(ι), θ(ι)) and user rates ρk(w(ι), θ(ι)), k ∈ K.

D. SR optimization algorithm

The SR problem can also be computed by adapting Algo-
rithm 2 for γ(ι)k ≡ 1 in (43), as it is summarized by Algorithm
3.

Algorithm 3 Scalable-complexity SR optimization

1: Initialization: Set ι = 0. Generate random (w(0), θ(0))
meeting the constraint (23).

2: Repeat until convergence of the OF in (25): Set γ(ι)k ≡ 1
and calculate w(ι+1) by (52) and θ(ι+1) by (66). Reset
ι = ι+ 1.

3: Output (w(ι), θ(ι)) and the user rates ρk(w(ι), θ(ι)), k ∈
K.

4[(Φ(ι+1) − µIN )eθ
(ι)

](n) is the n-th entry of (Φ(ι+1) − µIN )eθ
(ι)
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f (ι)c (θθθ) = 2<{
N∑
n=1

b̃(ι+1)(n)eθθθn} − (eθθθ)H(Φ(ι+1) − λmax(Φ(ι+1))IN )eθθθ + ã(ι+1) − λmax(Φ(ι+1))N

≥ f̃ (ι)c (θθθ)

= 2<{
N∑
n=1

(
b̃(ι+1)(n)−

N∑
n′=1

e−θ
(ι)

n′ Φ(ι+1)(n′, n) + λmax(Φ(ι+1))e−θ
(ι)
n

)
eθθθn}

+ã(ι+1) − (eθ
(ι)

)HΦ(ι+1)eθ
(ι)

− 2λmax(Φ(ι+1))N, (64)

θ(ι+1)
n = 2π − b∠(b̃(ι+1)(n)−

N∑
n′=1

e−θ
(ι)

n′ Φ(ι+1)(n′, n) + λmax(Φ(ι+1))e−θ
(ι)
n )eb, n ∈ N . (66)

V. PER-ANTENNA POWER CONSTRAINED OFDM
TRANSMISSION

In this section we consider the per-antenna power con-
straints as an alternative for the sum power constraint (23).
The per-antenna power-constraints can be expressed as:

(1 +
L

M
)

K∑
k=1

M−1∑
m=0

|wk,i(m)|2 ≤ P/Nt, i ∈ Nt, (67)

under which we concentrate on the GM-rate problem

max
w,θθθ

fGM [ρ(w, θθθ)] s.t. (4), (67). (68)

Starting from some initial feasible point (w(0), θ(0)) of (68),
let (w(ι), θ(ι)) be its feasible point obtained from the (ι− 1)-
st iteration. Accordingly, for γ(ι)k defined from (44) we iterate
the following problem instead of (43):

max
w,θθθ∈BN

f (ι)(w, θθθ) ,
K∑
k=1

γ
(ι)
k ρk(w, θθθ) s.t. (4), (67). (69)

A. Beamforming alternating iteration

Let r(ι)k,m(w(m)) be defined from (56), which is a tight
minorant of rk,m(w(m), θ(ι)). Then, a tight minorant of
f (ι)(w, θ(ι)) at w(ι) is defined by

f
(ι)
b (w) ,

M−1∑
m=0

f
(ι)
b,m(w(m)), (70)

where we have

f
(ι)
b,m(w(m)) ,

K∑
k=1

γ
(ι)
k r

(ι)
k,m(w(m)) (71)

=

K∑
k=1

γ
(ι)
k a

(ι)
k,m −

K∑
k=1

wH
k (m)Ψ(ι)

m wk(m)

+2

K∑
k=1

<{〈γ(ι)k b
(ι)
k,m,wk(m)〉}

with a(ι)k,m, b(ι)k,m, c(ι)k,m and Ψ
(ι)
m � 0 defined by (48) and (50).

Upon considering the last term in the RHS of (71), we used

the fact that
∑K
k=1 w

H
k (m)

(
λ(ι)INt −Ψ

(ι)
m

)
wk(m) in (72)

is convex quadratic in obtaining (73) from (72).
Therefore, we have (75) and (78). The function f̃

(ι)
b,m(w)

is still a tight minorant of f (ι)(w, θ(ι)). Hence the following
problem is solved to generate w(ι+1) verifying (45)

max
w

M−1∑
m=0

f̃
(ι)
b,m(w(m)) s.t. (67). (81)

Let

dk(m) ,

 dk,1(m)
. . .

dk,Nt(m)

 = γ
(ι)
k b

(ι)
k,m+

(
λ(ι)m INt −Ψ(ι)

m

)
w

(ι)
k (m)

(82)
Then we have (83). Thus, (81) is decomposed into Nt indpen-
dent subproblems as follows:

max
wk,i(m)

M−1∑
m=0

K∑
k=1

[
2<{d∗k,i(m)wk,i(m)}−λ(ι)m |wk,i(m)|2

]
s.t. (1 +

L

M
)
K∑
k=1

M−1∑
m=0

|wk,i(m)|2 ≤ P/Nt, (84)

where the closed-form solution of each subproblem takes the
following form:

w
(ι+1)
k,i (m)=


dk,i(m)/λ

(ι)
m

if (1 +
L

M
)

K∑
k=1

M−1∑
m=0

|dk,i(m)|2

(λ
(ι)
m )2

≤P/Nt

dk,i(m)/(λ
(ι)
m + µm) otherwise

(85)
with µm found by bisection, such that

(1 +
L

M
)

K∑
k=1

M−1∑
m=0

|dk,i(m)|2

(λ
(ι)
m + µm)2

= P/Nt. (86)

B. PREs alternating iteration

It is plausible that the PREs alternating iteration is still based
on the closed-form expression (66) .
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K∑
k=1

(wk(m))HΨ(ι)
m wk(m) = λ(ι)m

K∑
k=1

||wk(m)||2 −
K∑
k=1

wH
k (m)

(
λ(ι)m INt −Ψ(ι)

m

)
wk(m) (72)

≤ λ(ι)m

K∑
k=1

||wk(m)||2 +

K∑
k=1

(w
(ι)
k (m))H

(
λ(ι)m INt −Ψ(ι)

m

)
w

(ι)
k (m)

−2<{
K∑
k=1

(w
(ι)
k (m))H

(
λ(ι)m INt −Ψ(ι)

m

)
wk(m)}, (73)

for
λ(ι)m , λmax(Ψ(ι)

m ),m ∈M, (74)

f
(ι)
b,m(w(m)) ≥ ã(ι)m − λ(ι)m

K∑
k=1

||wk(m)||2 + 2

K∑
k=1

<{〈γ(ι)k b
(ι)
k,m +

(
λ(ι)m INt −Ψ(ι)

m

)
w

(ι)
k (m),wk(m)〉} (75)

, f̃
(ι)
b,m(w(m)), (76)

where

ã(ι)m ,
K∑
k=1

γ
(ι)
k a

(ι)
k,m +

K∑
k=1

(w
(ι)
k (m))H(λ(ι)m INt −Ψ(ι)

m )w
(ι)
k (m). (77)

M−1∑
m=0

f
(ι)
b,m(w(m)) ≥ ã(ι) −

M−1∑
m=0

λ(ι)m

K∑
k=1

||wk(m)||2

+2

M−1∑
m=0

(
K∑
k=1

<{〈γ(ι)k b
(ι)
k,m +

(
λ(ι)m INt −Ψ(ι)

m

)
w

(ι)
k (m),wk(m)〉}

)
(78)

, f̃
(ι)
b,m(w), (79)

where

ã(ι) ,
M−1∑
m=0

ã(ι)m . (80)

f̃
(ι)
b,m(w) = ã(ι) −

M−1∑
m=0

λ(ι)m

K∑
k=1

||wk(m)||2 + 2

M−1∑
m=0

(
K∑
k=1

<{〈dk(m),wk(m)〉}

)

= ã(ι) −
M−1∑
m=0

λ(ι)m

K∑
k=1

||wk(m)||2 + 2

M−1∑
m=0

K∑
k=1

Nt∑
i=1

<{d∗k,i(m)wk,i(m)}

= ã(ι) +

Nt∑
i=1

[
−
M−1∑
m=0

λ(ι)m

K∑
k=1

|wk,i(m)|2 + 2

(
M−1∑
m=0

K∑
k=1

<{d∗k,i(m)wk,i(m)}

)]
. (83)

C. Algorithm

The pseudo-code for (85) and (66) is provided by Algorithm
4.

VI. NUMERICAL EXAMPLES

In this section, we evaluate the effectiveness of the proposed
algorithms. The numerical values of the main simulation
parameters are provided by Table II, which are mainly taken
from [21], [32]. The Rician factor of the small-scale fading
channel gain HB-R of the BS to RIS and the RIS to UE k

gain hR-k is set to 10 dB. [RR-k]n,n′ = ejπ(n−n
′) sin φ̃k sin θ̃k

represents the spatial correlation matrix, where the azimuth
and elevation angle for UE k are φ̃k and θ̃k, respectively.
For the channel from BS to RIS, the number of taps is
set to L1 = 2, and for the channel of RIS to UE k, the
number of taps is set to L2 = 4 as the distance between
the nearby edge user and the RIS is relatively short. The
BS is deployed at the coordinates of (20, 0, 25)m, the RIS is
positioned at (0, 30, 40)m, and at the right-hand-side of RIS
and the obstacles, all UEs are randomly placed in a 30m×30m
square area. The following legends are used to identify the
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Algorithm 4 Per-antenna power-constrained GM-rate opti-
mization

1: Initialization: Set ι = 0. Generate random (w(0), θ(0))

meeting the constraint (67) and calculate γ(0)k by (44).
2: Repeat until convergence of the OF in (68): calculate
w(ι+1) by (85) and θ(ι+1) by (66). Reset ι = ι+ 1.

3: Output (w(ι), θ(ι)) and the user rates ρk(w(ι), θ(ι)), k ∈
K.

proposed implementations:

• CVX SR, CVX WR and CVX GM represent the perfor-
mance of SR, WR and GM-rate optimization based on a
universal convex solver assisted Algorithm 1, respective-
ly;

• Closed-form GM and 3-bit closed-form GM denote the
b = ∞ and b = 3 performance of GM-rate optimization
based on Algorithm 2, respectively;

• Closed-form SR and 3-bit closed-form SR correspond
to the b =∞ and b = 3 performance of SR optimization
based on Algorithm 3, respectively;

• Per-antenna GM and 3-bit per-antenna GM indicate
the b = ∞ and b = 3 performance of GM-rate op-
timization based on the per-antenna power-constrained
Algorithm 4, respectively.

• Closed-form GM w. random θ and Per-antenna GM w.
random θ depict the performance of Closed-form GM
and Per-antenna GM under random PREs, respectively.

A. Illustrative validation based on a simple example

Owing to the high computational complexity of the univer-
sal convex solver based Algorithm 1, a simple example relying
on (Nt,K,M,N) = (3, 3, 8, 100) and P = 25 dBm is used
for analyzing and comparing the SR and WR achieved by the
proposed algorithms.

Figure 2 depicts the typical convergence behavior of the
proposed algorithms, with the objective function value nor-
malized using a min-max normalization strategy to facilitate
comparison. Upon examination, it is apparent that the CVX
SR and CVX GM algorithms demonstrate an accelerated
convergence. Remarkably, all of the proposed algorithms are
capable of attaining 70% of their respective optimal solutions
within a span of 10 iterations.

Figures 3 and 4 plot the sum-rate versus the number of
BS antennas Nt and and the number of RIS elements N ,
respectively. We can observe that the achievable sum-rate
improves upon increasing Nt or N . Similarly, Figures 5 and
6 plot the worst-rate versus Nt and N , respectively and we
can also witness the improvement in the worst-case user-rate
upon increasing Nt or N .

Fig. 3 and Fig. 4 plot the SR versus the number of
antennas Nt and the number of RIS elements N , respectively.
Furthermore, Fig. 5 and Fig. 6 demonstrate the WR attained
versus Nt and N , respectively. Remarkably, we observe an
improvement in the both SR and WR upon increasing Nt or
N . Observe that:

• As expected, CVX SR and Closed-form SR achieve the
highest SR, but the lowest (zero) WR. Therefore, SR is
a deficient optimization objective for MU OFDM as it
offers inadequate services for some users maximizing the
SR;

• CVX WR attains the best WR but the worst SR, i.e.
WR maximization sacrifices the SR to achieve the highest
WR;

• CVX GM and Closed-form GM achieve both compet-
itive SR and WR, i.e. GM-rate maximization achieves
Pareto optimality for the multi-objective SR and WR
optimization. More importantly, it provides rate-fairness
for all users;

• Per-antenna GM achieves a lower SR and WR than
Closed form GM, because the per-antenna power con-
straints (67) is much stricter than the sum-power con-
straint (23);

• Convex-solver based Algorithm 1 and Closed-form based
Algorithm 2 have similar performance, but the complexity
of the former is much higher compared to that of the
latter.
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Fig. 2: Convergence for SR, WR and GM algorithms.
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Fig. 3: SR vs. the number of antennas, Nt.

B. Performance Analysis
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TABLE II: Main parameters

Parameter Numerical value
Bandwidth 100MHz
Noise power density −174 dBm/Hz
Antenna gain GBS of the BS 5 dBi
Antenna gain GRIS of the RIS elements 5 dBi
BS-to-RIS path-loss βB-R under dB-R GBS +GRIS − 35.9− 22 log10(dB-R) (in dB)
RIS-to-UE path-loss βR-k under dR-k GRIS − 33.05− 30 log10(dR-k) (in dB)
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Fig. 4: SR vs. the number of RIS elements, N .
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Fig. 5: WR vs. the number of antennas, Nt.

Since the convex-solver based Algorithm 1 has high com-
putational complexity, it is unattractive for practical scenarios.
Hence from now we shall analyse the performances of the
Algorithm 2, 3, and 4, which are closed-form based. Un-
less stated otherwise, (Nt,K,M,N) = (10, 10, 64, 100) and
P = 35 dBm are set.

Fig. 7 illustrates the SR performance versus Nt attained
by the closed-form based algorithms. Explicitly, Fig. 7 shows
that the Closed-form SR has the best performance, Closed-
form GM has better performance than Per-antenna GM, and
their 3-bit resolution counterparts follow the same trend. As
expected, all the proposed infinite PRE-resolution algorithms
have better performance than their 3-bit counterparts, and
the performance of the algorithms advocated improve upon
increasing the number of BS antennas.
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Fig. 6: WR vs. the number of RIS elements, N .
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Fig. 7: SR vs. the number of antennas, Nt.

Fig. 8 plots the WR achieved by the proposed closed-form
based algorithms. Closed-form GM and Per-antenna GM
achieve higher WR than Closed-form SR, and their 3-bit
resolution counterparts follow the same trend. Furthermore, the
WR achieved by Closed-form SR and 3-bit closed-form SR
are close to zero, demonstrating that SR based algorithms are
incapable of providing adequate rates for all users. Moreover,
the WR achieved does get better with the increase of of BS
antennas number.

Fig. 9 allows us to examine the rate distribution pattern
under (Nt, N, P ) = (10, 100, 35dBm). Observe that Closed-
form SR and its 3-bit resolution counterparts are incapable of
avoiding zero rate be assigned to some users, hence demon-
strating the superiority of the GM rate based algorithms.

To validate the fact that the GM-rate based algorithms have a
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Fig. 8: WR vs. the number of antennas, Nt.
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Fig. 9: Rate distribution for Nt = 10.

better rate distribution, Table III and Table IV provide the min-
rate/max-rate and variance/(mean rate)2 versus the BS anten-
nas number for the proposed algorithms, respectively. Table III
shows that Closed-form GM has the best overall performance,
and the min-rate/max-rate of SR based algorithms remains
zero, which confirms the inability of avoiding zero rate for
each UE. Table IV shows that Closed-form GM has the best
performance, Closed-form SR has the worst rate distribution,
even though its SR is better than Closed-form GM and Per-
antenna GM. Their 3-bit resolution counterparts follow the
same trend, confirming the advantage of employing GM-rate
optimization and the efficiency of the proposed b-bit resolution
algorithms.

Furthermore, we utilize Jain’s fairness index (JFI) to assess
the user fairness as defined by [47]:

JFI =
(
∑K
k=1 ρk(w, θθθ))2

K
∑K
k=1 ρk(w, θθθ)2

. (87)

The users’ Jain fairness index for the proposed algorithms is
provided in Fig. 10. Observe that the Jain’s fairness index for
Closed-form GM, Per-antenna GM and their 3-bit resolution
counterparts is around 0.45, while for Closed-form SR and
for its 3-bit resolution counterpart is around 0.1. Furthermore,

it can be observed that Jain’s fairness index is not a monotonic
function of BS antennas number.
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Fig. 10: JFI vs. the number of antennas, Nt.

Next, we examine the SR and WR upon varying RIS
elements number N in Fig. 11 and Fig. 12, respectively. Fig.
11 shows that Closed-form SR has the best SR, Closed-
form GM has a better SR than Per-antenna GM, and the
performance of all the proposed algorithms improves with
the increas of RIS elements number. In Fig. 12, it can be
observed that Closed-form GM has the highest WR, while
the WR of Closed-form SR remains zero, and their 3-bit res-
olution counterparts follow the similar trend. The superiority
of Closed-form GM can also be observed in Fig. 13 and Fig.
14, which plot the SR and WR upon varying the transmit
power budget P at the BS, respectively. Moreover, the above
results also show the efficiency of the proposed 3-bit resolution
counterparts.

40 60 80 100 120
10

30

50
150

195

240

285

Fig. 11: SR vs. the number of RIS elements, N .

Finally, Fig. 15 and Fig. 16 allow us to analyze the SR
and WR performance achieved by the b-bit resolution algo-
rithms under different values of b. Similar to our previous
observations, b-bit closed-form SR has the best SR, while
b-bit closed-form GM has the highest WR. Fig. 15 and
Fig. 16 also provides compelling evidence that the proposed
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TABLE III: Min-rate/max-rate ratio vs. the number of antennas at the BS

Number of
antennas

Closed-form
SR

Closed-form
GM

Per-antenna
GM

3-bit Closed
-form SR

3-bit Closed
-form GM

3-bit per
-antenna GM

Nt = 7 0 0.0610 0.0543 0 0.0563 0.0476
Nt = 8 0 0.0502 0.0469 0 0.0466 0.0478
Nt = 9 0 0.0333 0.0309 0 0.0339 0.0318
Nt = 10 0 0.0478 0.0387 0 0.0425 0.0440
Nt = 11 0 0.0544 0.0519 0 0.0556 0.0525

TABLE IV: Variance/(mean rate)2 ratio vs. the number of antennas at the BS

Number of
antennas

Closed-form
SR

Closed-form
GM

Per-antenna
GM

3-bit Closed
-form SR

3-bit Closed
-form GM

3-bit per
-antenna GM

Nt = 7 8.9187 2.0324 2.0900 8.9123 1.9498 2.0245
Nt = 8 8.9296 1.7176 1.8052 8.6725 1.7773 1.7919
Nt = 9 8.8278 2.3709 2.4188 8.8334 2.3602 2.4222
Nt = 10 8.9999 2.0904 2.1953 8.9775 2.1694 2.2157
Nt = 11 8.8164 1.8045 1.8626 8.7687 1.7713 1.8069
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Fig. 12: WR vs. the number of RIS elements, N .

31 33 35 37 39
15

45

75
145

185

225

265

305

345

Fig. 13: SR vs. transmit power budget at the BS, P .

Closed-form GM and Per-antenna GM algorithms signifi-
cantly outperform their counterparts, the Closed-form GM w.
random θ and Per-antenna GM w. random θ, respectively.
This clearly demonstrates the superiority of our proposed
algorithms. Furthermore, the WR of b-bit closed-form SR
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Fig. 14: WR vs. transmit power budget at the BS, P .

remains zero, which confirms its inability of avoiding the zero
rates for each UE. Moreover, the WR and SR achieved by b-
bit closed-form GM and b-bit per-antenna GM for b ≥ 2
are close to their infinite resolution counterparts, confirming
the superiority of the proposed b-bit algorithms.

VII. SUMMARY AND CONCLUSIONS

The rate-fairness provided by MU OFDM has been an open
problem in the literature due its computational intractability.
The problem becomes much more computationally challeng-
ing for RIS-aided MU OFDM due its large-scale mixed dis-
crete continuous optimization nature. This treatise has opened
a new way of addressing the rate-fairness of MU OFDM by de-
veloping closed-form based algorithms of scalable complexity
for solving the GM-rate optimization problem. Indeed, GM-
rate maximization has been shown to attain both a competitive
worst rate and sum rate, yielding the multi-objective WR and
SR optimization problem arrives at a Pareto optimal solution.
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