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ABSTRACT 
The design of complex engineering systems, such as a gas turbine engine, is often decomposed into system design 
and subsystem/component design. Both the system and subsystem designs normally go through several design 
iterations. For each iteration, a series of analyses, simulations, optimisations and, at times, experiments are carried 
out to find the optimum. Traditionally, the data generated in one design iteration is not fed explicitly into the next 
iteration. This is because a new design iteration can often start with structural changes and the new design is 
considered to be topologically different from the previous design. Most existing design optimisation techniques 
cannot leverage the data across multiple design iterations and each design iteration has, therefore, to start almost 
from scratch. This paper presents a novel structural design process that is capable of accelerating both the 
component level and system level design by reusing data from previous design iterations. A case study of multiple 
design variables and topology changes in three components of a whole engine model (WEM) is carried out and it 
demonstrates that the proposed method employing surrogate modelling and data reuse technologies can 
significantly reduce analysis costs from one design iteration to the next. 

 

NOMENCLATURE 
DI  Design Iteration 

DOE  Design Of Experiment 

FBH  Front Bearing Housing 

HP  High Pressure 

IMC  Intercase 

IP  Intermediate Pressure 

LP  Low Pressure 

MAE  Mean Absolute Error 

R2  Coefficients of Determination 

RMSE  Root-Mean-Square Error 

TBH  Tail Bearing Housing 

UHBR  Ultra-High Bypass Ratio 

WEM  Whole Engine Model 

 

  



1 INTRODUCTION 

A whole gas turbine engine consists of many interacting components and simply combining the optimal individual 
components often may not lead to an optimal system [1]. Although it is preferable to analyse each component 
within a whole engine scenery, the large number of finite elements required to build a WEM inevitably leads to 
long simulation times. A reduced-order model, such as a medial surface model, has been proven to be able to 
accurately represent the WEM while reducing computational cost [2]. Figure 1 shows a medial surface model of 
an Ultra-High Bypass Ratio (UHBR) engine. It is used as the whole engine scenery for the case study presented 
in Section 2.2. In this paper, a medial surface model is also referred as 2D model as its elements are 2D, compared 
to a 3D model which is made of 3D elements e,g tetrahedral elements.  

 
Figure 1 UHBR whole engine model 

Although the simulation of a 2D WEM is much faster than a 3D WEM, it is still too computationally expensive 
to fully explore the design space by directly using the 2D WEM. Therefore design processes often focus on 
component design only, to be then verified at system level later. More advanced approaches could employ 
surrogate models constructed from a limited number of computational simulations to account for whole engine 
response while working on component design. In these cases, a design of experiment (DOE) is constructed and 
simulated to build surrogate models of the design objective function(s) and constraints with respect to the design 
variables. The design space, represented by these surrogate models, is then searched for an improved design. In 
these approaches the design variables are traditionally continuous and, once a topological change is made to the 
initial component design, the whole process needs to be repeated. The analysis of a new topology is independent 
of the existing results related to the previous topology although the two topologies are likely to be similar and 
there might be considerable correlations between their respective results. 

A surrogate model uses an approximate mathematical model to predict the behaviour of a complex engineering 
system. In the application considered in this paper, the surrogate model is also required to be able to handle 
categorical/integer-valued variables. This is because the aforementioned topological changes are not described by 
continuous variables. Among many existing types of surrogate models such as radial basis functions, support 
vector machines and Bayesian networks etc. [3][4], some are adapted to incorporate categorical/integer-valued 
variables [5][6]. Others argue that continuous surrogate-based optimization algorithms are well-suited for 
expensive discrete problems [7]. Kriging [8] is chosen as the surrogate model not only for its popularity and 
flexibility but also for its successful applications in aero engine design [9][10]. Over the years, variants of Kriging 
have been developed to handle multi-fidelity problems (co-Kriging) [11] and discrete variables (categorical-
Kriging) [12][13]. 

This paper focuses on data reuse from one design iteration to the next relying on the categorical-Kriging model 
application. As during a gas turbine engine design process, a large amount of analysis data is generated after each 
design iteration. The data can include both simulation and experimental results. Other work reported in literature 
explores the benefits of data reuse at different engineering phases. In [14], the data from engine production is 
linked back to the engine design stage to form the “digital twin”; in [15], the CAD/CAM data is reused for 
manufacturing cost estimation; and in [16], a similarity metric is proposed to measure the potential of data reuse. 



2 METHODOLOGY 

2.1 WORKFLOW  

This paper presents a novel computational method based on data reuse technologies that aims to exploit the 
correlation of the results between topological changes and reduce the analysis cost from one design iteration to 
the next (Figure 2). In order to reuse the data from a previous design iteration of a baseline topology, a smaller 
DOE is constructed from simulations of the updated topology. Instead of building surrogate models from this new 
DOE only, categorical Kriging models are built combining the set of results from the baseline DOE with the 
smaller DOE of the updated topology. The correlations of analysis results between design iterations are explored 
when building the categorical Kriging models. The details of Kriging and categorical Kriging (also called multi-
output Kriging) are discussed in depth in [13]. This paper focuses on their application in whole engine design 
process with data reuse. Using a generic UHBR engine as case study, the accuracy and consistency of the 
categorical Kriging models are presented in Section 3.2 and 3.3. Section 3.4 compares the results of two WEM 
optimisations with and without data reuse.  

 

 
Figure 2 Data-reuse to accelerate design study after topological design change 

2.2 CASE STUDY 

A generic UHBR engine (Figure 1) with a sea-level static load case is chosen as the case study. Three components, 
the FBH, intercase and TBH, are used as component design examples. To identify the design variables that have 
the largest impact on the engine performance under the specific load case, an OptiStruct freesize optimisation of 
the baseline 2D medial surface whole engine model is carried out. The optimisation objective is to reduce whole 
engine mass. The constraints are nine tip clearances across the engine, including fan, five compressor stages and 
three turbine stages. Figure 3 shows the optimisation results with locations of high sensitivity highlighted. Some 
of the locations can be identified as vane thickness, casing thickness and bearing locations etc. Five design 
variables from the identified, high-impact regions, are chosen for each component.  

 
Figure 3 OptiStruct freesize optimisation to identify important design variables for system performance 

(highlighted areas are those with the greatest reduction in element thickness) 



In addition to the five design variables, a topological change is introduced to each component to form a “baseline” 
geometry and an “updated” geometry. This resembles the scenario where design variables are optimised within a 
design iteration while a new topology starts a new design iteration. For the intercase, the baseline geometry uses 
a rib stiffener on the front casing (Figure 4(a)) and the updated geometry uses an iso-grid stiffener (Figure 4(b)). 
For the TBH, the number of vanes is increased from 5 to 12 (Figure 4(c) and (d)). For the FBH, the number of 
vanes is reduced from 30 to 20 (Figure 4(e) and (f)). Note that the engine component figures shown in this paper 
are simplified and not true to scale for confidentiality reasons. 

 

Baseline components Updated components 

  

(a) IMC with rib stiffener (b) IMC with iso-grid stiffener 

  

(c) 5-vane TBH (d) 12-vane TBH 

  

(e) 30-vane FBH (f) 20-vane FBH 
Figure 4 Topological component design changes 

Although the present study focuses on the optimisation of these three components, all the simulation results are 
obtained from a whole engine model. Engine mass is chosen as the design objective. Nine tip clearances are 
chosen as the constraints. The tip clearances are extracted from engine components other than the FBH, intercase 
and TBH. A MATLAB script is used to automatically generate the DOE which includes changing the design 
variables, 3D meshing the component, assembling the whole engine model, solving in Altair OptiStruct and 
extracting results. Kriging models are generated from the DOE results using the proprietary, Rolls-Royce, 
software suite CM02 [13]. 



3 RESULTS 

3.1 SURROGATE MODELS OF “TRUE” SYSTEM RESPONSES 

 “True” system responses are needed to measure the accuracy of the categorical Kriging models generated from 
the proposed data-reuse methods. Kriging models of each component are constructed from a 50-point DOE of 
finite element simulations. Three components, intercase (IMC), FBH and TBH, are chosen here as component 
design examples as they are all key components for whole engine structural strength. Each component has ten 
Kriging models (mass and nine tip clearances). Table 1 to 3 lists the coefficients of determination (R2), root-
mean-square error (RMSE) and mean absolute error (MAE) of the least accurate model for each component. It 
can be seen that even the worst-case scenario model has high accuracy therefore these Kriging models are regarded 
as indicative of the “true” system responses in the following sections. It is worth noting that the FBH has a lower 
accuracy level; this is because the responses of the constraints are less sensitive to FBH variables, therefore the 
effect of noise is higher, decreasing the surrogate model quality. The DOEs in the following sections are 
constructed by sampling these Kriging models of “true” system responses instead of running extra FE simulations. 
This enables the performance of the data-reuse strategies to be statistically quantified. The results presented in 
this paper focus on the accuracy and consistency of the surrogate models built from new data-reuse methods. 

 
Table 1 IMC surrogate model accuracy 

 Krig min R2 Krig max RMSE Krig max MAE 

Baseline ICC 50pt FE DOE (true response) 0.9742 4.7049% 10.7842% 

Iso-grid ICC 50pt FE DOE (true response) 0.9738 4.8569% 13.4791% 
 

Table 2 TBH surrogate model accuracy 

 Krig min R2 Krig max RMSE Krig max MAE 

5-vane TBH 50pt FE DOE (true response) 0.9807 2.8686% 6.7598% 

12-vane TBH 50pt FE DOE (true response) 0.9754 3.5750% 9.2119% 
 

Table 3 FBH surrogate model accuracy 

 Krig min R2 Krig max RMSE Krig max MAE 

30-vane FBH 50pt FE DOE (true response) 0.8339 11.5286% 23.7311% 

20-vane FBH 50pt FE DOE (true response) 0.8299 11.4203% 24.2505% 

  

3.2 DATA-REUSE AT COMPONENT LEVEL 

The first set of examples demonstrates data-reuse at single component level. This essentially means only one 
component is updated while the rest of the engine remains the same. Two indicators of the Kriging model’s quality 
are accuracy and consistency. The accuracy refers to the Kriging model’s ability to predict the behaviour of the 
underlying engineering system. The consistency refers to whether the Kriging model is sensitive to the DOE used, 
as different DOEs can lead to differently performing models. The accuracy of the Kriging model is calculated by 
sampling the model at 1000 points and comparing these predictions with the “true” system responses. This is then 
repeated 25 times using different DOEs enabling a mean and a worst performance to be determined. The model’s 
consistency is judged by considering both the mean and the worst performance. 

Using the intercase as an example, Kriging models of the baseline design are constructed from a 20-point DOE. 
Using traditional methods, another 20-point DOE is needed when the topology is updated with the iso-grid 
stiffener. However, the proposed approach only requires a 5-point DOE of the new topology when reusing the 20-
point DOE of the original baseline topology in order to achieve the same level of accuracy and consistency. For 
comparison, the results of the Kriging models generated from the 5-point DOE of the updated geometry is also 



calculated. Table 4 lists the results for the baseline intercase, the updated intercase with and without data-reuse. 
As expected, the Kriging models from only a 5-point DOE are unreliable. But the categorical Kriging models, 
needing only 5 extra analyses, have similar accuracy and consistency as the original 20-point Kriging models.  

 
Table 4 Data-reuse for IMC design 

                          Model accuracy 

Kriging method 

mean  worst 

R2 RMSE MAE R2 RMSE MAE 

20pt DOE of baseline IMC  0.98 1.98% 1.49% 0.73 11.37% 8.17% 

5pt DOE of iso-grid IMC 0.60 13.55% 10.97% 0.01 41.76% 33.70% 

20pt baseline + 5pt iso-grid IMC 
categorical Kriging 

0.98 2.06% 1.59% 0.74 11.56% 8.65% 

 

Similar results are obtained from the TBH and FBH designs (Table 5 and 6). In all cases, the results show that the 
proposed approach only requires a small number of DOE points of the new topology to achieve the same level of 
prediction accuracy when reusing baseline analysis data. Note that the worst-case scenario numbers from the 
different components are less aligned. However in all cases there is a significant improvement in consistency 
when data is reused. 

 
Table 5 Data-reuse for TBH design 

                          Model accuracy 

Kriging method 

mean  worst 

R2 RMSE MAE R2 RMSE MAE 

20pt DOE of 5-vane TBH 0.99 0.84% 0.64% 0.97 3.55% 2.75% 

5pt DOE of 12-vane TBH 0.61 13.48% 10.83% 0.01 36.49% 29.21% 

20pt 5-vane + 5pt 12-vane TBH 
categorical Kriging 

0.97 3.16% 2.46% 0.37 30.02% 24.73% 

 
Table 6 Data-reuse for FBH design 

                          Model accuracy 

Kriging method 

mean  worst 

R2 RMSE MAE R2 RMSE MAE 

20pt DOE of 30-vane FBH 0.98 1.29% 0.98% 0.50 13.00% 9.94% 

5pt DOE of 20-vane FBH 0.46 14.88% 11.97% 0.01 39.73% 32.54% 

20pt 30-vane + 5pt 20-vane FBH 
categorical Kriging 

0.96 3.28% 2.61% 0.40 34.83% 28.84% 

3.3 DATA-REUSE AT SYSTEM LEVEL 

In practice, it is often the case that multiple components are updated simultaneously by different component design 
teams. Therefore the whole engine scenery does not stay the same. This example investigates such a case, in which 
both the intercase and the TBH are topologically changed. The example is simulated from the intercase designer’s 
perspective, which means that the intercase is modelled as 3D whereas the rest of the engine is modelled as 2D. 
The intercase is changed from a rib stiffener to an iso-grid stiffener and the number of TBH vanes is increased 
from 5 to 12. The medial mesh of the new TBH is generated and replaces the old TBH in the whole engine model 
(Figure 5 (b)). The 3D mesh of the new intercase (Figure 5 (a)) is then integrated with the updated whole engine 
scenery.  

 



  

(a) 3D IMC with iso-grid (b) 2D 12-vane TBH 
Figure 5 Two components are updated at the same time 

There are now three categories:  
 Cat1: 20pt baseline 3D IMC + baseline 2D TBH 
 Cat2: 5pt new 3D IMC + baseline 2D TBH 
 Cat3: 5pt new 3D IMC + new 2D TBH 

Analysis results of Cat1 and Cat2 can be obtained from single component designs as described in previous section. 
As Cat3 represents a new whole engine configuration, a new 50-point DOE is obtained to construct the Kriging 
models of the “true” system responses. The accuracy of these Kriging models is in line with the data listed in 
Table 1, with minimum R2 above 0.95. The “true” system responses are then sampled 5 times to build the Kriging 
models of Cat3. Table 7 lists the performance of Kriging models for each individual category. 

 
Table 7 System level Kriging models 

                          Model accuracy 

Kriging method 

mean  worst 

R2 RMSE MAE R2 RMSE MAE 

20pt baseline 3D IMC + baseline 
2D TBH (cat 1) 

0.98 2.08% 1.63% 0.74 11.56% 8.65% 

5pt DOE of new 3D IMC + baseline 
2D TBH (cat 2) 

0.60 13.55% 10.97% 0.01 41.76% 33.70% 

5pt DOE of new 3D IMC + new 2D 
TBH (cat 3) 

0.63 12.87% 10.43% 0.01 40.02% 33.09% 

In this example, the target is to predict the behaviour of the new whole engine model (Cat3) with data reuse. There 
are two historical data sets (Cat1 and Cat2) that can be reused. It is still assumed that the baseline design requires 
a 20-point DOE and any subsequent topology update only requires 5 extra points. There are three different 
combinations involving Cat3. Table 8 lists the performance of categorical Kriging models from different 
combinations of each category. 
  



 
Table 8 System level data-reuse for IMC design 

                          Model accuracy 

Kriging method 

mean  worst 

R2 RMSE MAE R2 RMSE MAE 

cat1+cat2+cat3 0.93 4.22% 3.30% 0.15 21.06% 17.28% 

cat2+cat3 0.71 11.12% 8.95% 0.01 37.28% 30.42% 

cat1+cat3 0.95 3.89% 3.04% 0.49 20.89% 17.15% 

It can be seen that combining Cat1 and Cat3 leads to the best results for both accuracy and consistency. Although 
the results are not as good as in single component examples, reusing analysis data still greatly improves the 
resulting models’ quality. 

3.4 OPTIMISATION OF AN UPDATED WEM 

In most engineering design applications, the purpose of accurate surrogate modelling is not only for prediction 
but also for optimisation. The Kriging and cat-Kriging models of the whole engine with three updated components 
are optimised to reduce the total mass of the three components of interest (FBH, IMC and TBH). The optimisation 
parameters are the 15 design variables used before (5 from each component). The range for each variable is ±40% 
of baseline value. The constraints are 9 tip clearances with no more than 1% increase from the baseline value. To 
demonstrate the benefit of data reuse, Kriging and cat-Kriging models are employed within a surrogate-based 
optimisation where results from infill points at the location of optima predicted by the surrogates are iteratively 
added to each surrogate model. The search of the resulting surrogate models employs a genetic algorithm with 
this search and the construction of the surrogates at each iteration performed using the proprietary, Rolls-Royce, 
optimisation suite, CM02 [13]. Figure 6 plots the total mass as percentage of the baseline value against the number 
of surrogate model update iterations. For both the Kriging and cat-Kriging, each point represents a new sample of 
the updated whole engine model. However, the cat-Kriging also reuses the sampling points of the old whole engine 
model.  

 
Figure 6 WEM optimisation with and without data reuse  

(solid lines – average performance; shaded areas - 95% confidence bounds)  

Due to the stochastic nature of genetic algorithm, both optimisations are repeated multiple times to assess their 
overall performances. In Figure 6, the solid lines are the average optimisation results of the Kriging (black) and 
cat-Kriging (red) models. The shaded areas represent the 95% confidence bounds, i.e. the result of a single 
optimisation has 95% chance falling into the shaded area.  It can be seen that the optimisation of both models 
reaches a similar optimum, i.e. around 17% of mass reduction is achievable through optimisation. However, the 
cat-Kriging model with data reuse converges much faster than the simple Kriging model.    

4 CONCLUSION AND FUTURE WORK 

A novel computational method based on data reuse technologies is presented and validated. By reusing analysis 
results of previous design iterations, only a small number of simulations are needed to build a surrogate model 
with a high level of prediction accuracy. A case study of multiple design variables and topology changes in three 



subsystems demonstrates that surrogate modelling and data reuse technologies can significantly reduce analysis 
costs from one design iteration to the next. 

The results indicate that though reusing analysis data generally improves the surrogate models’ quality, the level 
of improvement can vary with the type of data being reused. Therefore some analysis to select the most appropriate 
data to reuse in the model can be beneficial. The future work will investigate how to carry out this type of analysis. 
Some research work is also needed to understand better how far the updated model can differ from the baseline 
while still having the benefits in re-using old data. The work so far has been based on a subsystem designer’s 
perspective. In the future it might be useful to apply similar approach on system level in order to assist the decision 
making in whole engine design. Another area of interest for future developments is in understanding the 
correlation evolution going further with the iterations and how to get benefit in re-using better-correlated older 
data. 
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