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Abstract: The dynamic behaviour of railway track plays an important role in the generation of 

rolling noise as well as the development of rail corrugation. A semi-analytical model is 

presented that includes vertical, lateral and axial dynamics and takes account of the discrete 

supports provided by the sleepers. The rail is represented by a semi-analytical beam model that 

includes vertical and lateral bending, extension and torsion, with warping and shear-centre 

eccentricity. A receptance-coupling method is used to couple the rails, through damped springs 

that represent the rail pads, with a finite number of flexible sleepers that are in turn supported 

on an elastic foundation. The model also accounts for the coupling between the two rails 

through the sleepers. Results are presented in terms of the point mobilities in different 

directions, including the vertical-lateral cross mobility, as well as the track decay rates, and the 

results are validated by comparison with measurements. The inclusion of torsion and warping 

is shown to have a significant effect on the lateral rail mobility, leading to better agreement 

with the measured results. The response on one rail due to excitation on the other rail is also 

explored and the results agree well with the measurements. It is found that the coupling between 

the two rails has only a limited effect on the resultant track response. 
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Flexible sleepers; Coupling between rails 

 

1 Introduction 

The dynamic behaviour of railway track plays an important role in the generation of rolling 

noise [1, 2, 3] as well as in the development of rail corrugation [4, 5, 6]. Appropriate models 

can be used not only to understand the mechanisms of rolling noise generation and corrugation 

development, but also to study suitable mitigation strategies. Such models should contain 

sufficient detail to represent the physical phenomena whilst avoiding excessive computation 
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times. A typical ballasted track consists of two rails, attached through rail pads to discrete 

sleepers that are in turn supported by the ballast. Many authors have used analytical beam 

models to study the vertical dynamics of the track and have commonly assumed an equivalent 

continuous support, e.g. [2, 7]. Much less attention has been paid to the lateral vibration or the 

coupling between the vertical and lateral directions [8]. Thompson et al. [3, 7] used a 

Timoshenko beam on a two-layer foundation to model both the vertical and lateral track 

dynamics and estimated the cross receptance between vertical and lateral directions from the 

geometrical average of the vertical and lateral receptances, using an empirical scaling factor. 

The effect of the discrete nature of the support is most evident around the ‘pinned-pinned’ 

frequency, at which the sleeper spacing corresponds to half a bending wavelength in the rail. 

Grassie et al. [9] proposed a discretely supported track model, in which the sleepers were 

represented by lumped masses and the rail pads and ballast by damped springs. Compared with 

the continuously supported track model, a resonance peak was found at the pinned-pinned 

frequency for excitation between sleepers and a corresponding dip for excitation above a 

sleeper. Similar models were also applied to lateral [10] and longitudinal vibration [11]. 

Heckl [12] introduced a discretely supported track model in which an infinite Timoshenko 

beam was used to represent the vertical vibration of the rail, while a finite number of discrete 

supports were considered, which were replaced by point reaction forces acting on the infinite 

rail. Heckl [13] later developed a model of a Timoshenko beam, including torsional and 

extensional waves, with an infinite number of periodically spaced supports, and studied 

coupled waves in all three directions. 

At higher frequencies cross-sectional deformation of the rail becomes important [1]. Wu 

and Thompson [14, 15] developed multiple-beam models to explore the vertical and lateral 

response including an approximation for cross-sectional deformation. Discretely supported 

versions of the models were also developed [14, 16]. Bhaskar et al. [17] introduced an 

analytical model that accounted for the lateral and torsional motion of the rail. The rail head 

was represented as a beam, while the rail web and foot were represented by three plates, one 

for the web and one for the foot on each side of the web.  

Betgen et al. [18] showed, in comparison with measurements and a detailed finite element 

(FE) model, that the analytical beam models of [3] were unable to capture some key 

characteristics of the response, particularly the vertical-lateral cross mobility and track decay 

rates. The lateral position of the vertical excitation force was shown to have a great influence 

on the cross mobility.  
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Kostovasilis et al. [19] introduced a semi-analytical rail model which accounts for vertical 

and lateral bending, extension and torsion. Although cross-section deformation was not 

considered, the inclusion of torsion and corrections for shear centre eccentricity and warping 

improved the lateral response of the track. In comparison with measurements and the results 

from a waveguide FE model, good agreement was found for the vertical and lateral mobilities 

for frequencies up to 3 kHz and for the decay rates up to 2 kHz. There was also generally good 

agreement between measurements and calculations for the cross mobility. 

Numerical methods can be used to include the effects of cross-sectional deformation in the 

track response. Thompson [20] modelled a short slice of rail on a continuous support using 

finite elements and used periodic structure theory to obtain the dispersion relationship and 

receptances. Knothe et al. [21] used the finite strip method, in which only the cross-section of 

the rail is discretised, to study the free wave propagation in a rail. Similarly, Ryue et al. [22] 

determined the waves propagating in a continuously supported rail up to 80 kHz using the 

waveguide FE method (also known as the 2.5D FE method). Nilsson et al. [23] used the 

waveguide FE and boundary element methods to calculate the vibration and sound radiation of 

an infinite continuously supported rail. A similar approach has been used for a continuously 

supported rail with multiple layer support [24]. 

To include discrete supports, Gry [25] used a method similar to the finite strip method to 

derive the vibrational response in terms of a sum of waves. Zhang et al. [26] established a 

model of a discretely supported track by combining the 2.5D FE method for the rail and Heckl’s 

receptance-coupling method [12] for discrete supports. The overall track mobilities and decay 

rates agreed well with measurements. 

Although many models represent the sleepers as a lumped mass, Grassie and Cox [27] 

modelled the sleepers as finite uniform Timoshenko beams supported by an elastic layer, while 

Nielson and Igeland [28] used beam finite elements to account also for the variable cross-

section. Grassie [29] proposed a simple uniform Timoshenko beam model for a freely 

suspended sleeper and a similar model was subsequently used in [3, 26] with the addition of an 

elastic layer to represent the ballast. 

In almost all published models of track vibration, either a single rail is considered, or 

symmetry is applied at the track centre. Betgen et al. [18] and Oregui et al. [30] used detailed 

FE models of a long section of track, including both rails, but the effect of the coupling through 

the sleeper was not investigated. 

In the present work, a semi-analytical model of a discretely supported track is introduced 

with the aim of better predicting the track dynamics without resorting to fully numerical models. 
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Infinitely long rails are modelled using the semi-analytical approach of Kostovasilis et al. [19], 

which considers vertical and lateral bending, torsion and warping, vertical/lateral coupling and 

axial dynamics. The present work develops the approach of Kostovasilis [19, 31] by including 

discrete supports, flexible sleepers and coupling with a second rail. The rails are connected to 

a finite number of sleepers through damped springs. The sleepers are represented by flexible 

beams, supported on a viscoelastic layer representing the ballast. The receptance-coupling 

method [12, 26] is used to couple the rails to the sleepers. The point mobilities and track decay 

rates are obtained using this model and compared with results from measurements. The 

inclusion of torsion and warping was introduced by Kostovasilis et al. [19] but their effect on 

the lateral track response is investigated here. Finally, the response of one rail to excitation on 

the other is presented. 

2 Modelling a discretely supported track 

Various methods are available to model the vibration of a track with discrete supports, Fig. 

1(a). The approach applied here is based on the advanced beam model of Kostovasilis et al. 

that includes bending, torsion, warping and extension [19]. This beam model is implemented 

in the discrete support framework proposed by Heckl [12]. This latter approach replaces the 

discrete rail supports by a set of point forces acting on an infinite free rail. To implement this 

method, the point and transfer receptances of the free rail are required, as well as the 

receptances of the sleepers and rail pads. In the current model, two rails are coupled to flexible 

sleepers, as shown in Fig. 1(b). 

 

 

(a) 

 

(b) (c) 

Fig. 1 (a) Side view of track model, where Ls is the sleeper spacing; Fi is the force transmitted at the ith discrete 

support; (b) front view of track model, showing two rails connected to the sleeper; (c) the coordinate system, 

shear centre S and centroid C of the rail cross-section 
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2.1 Semi-analytical rail model 

For a Vignole rail, e.g. 60E1, as used on mainline tracks, the rail cross-section is symmetric 

about the vertical mid-plane but is asymmetric about the horizontal mid-plane. Consequently, 

as shown in Fig. 1(c), the shear centre, through which the shear forces are considered to act, is 

not coincident with the centroid through which the inertial forces are considered to act. This 

introduces coupling between lateral bending and torsion.  

To represent the free rail, the semi-analytical beam model developed by Kostovasilis et al. 

[19] is used. This is briefly introduced here. The model uses Timoshenko beam theory for 

bending in the vertical and lateral directions, as well as rod theory in extension. It also includes 

non-uniform torsion and accounts for the shear-centre eccentricity.  

Assuming harmonic response in both space and time, with circular frequency 𝜔  and 

complex wavenumber 𝜉, the vibration at the centroid can be written as:  

𝐔 = Ũei𝜔𝑡e−i𝜉𝑥 (1) 

in which Ũ = [�̃�𝑥, �̃�𝑦, �̃�𝑧 , �̃�𝑥, �̃�𝑦, �̃�𝑧 , �̃�𝑤]
𝑇

 is a vector of complex amplitudes, consisting of 

seven components of vibration (three displacements, three rotations and warping) at the 

centroid. F is the corresponding vector of the external forces and moments, which is assumed 

to act at 𝑥 = 0 , and is given as 𝐅 = F̃ei𝜔𝑡𝛿(𝑥)  with F̃  the vector of the corresponding 

amplitudes in the wavenumber domain. 

The equation of motion can be written in the frequency-wavenumber domain as [19]: 

{(K0 − 𝜔2M) − i𝜉K1 − 𝜉2K2}�̃� = �̃� (2) 

where K0 is the stiffness matrix, K1 and K2 contain stiffness terms related to the first and second 

derivatives in the x direction and M is the mass matrix. The matrices in Eq. (2) are given in 

[19]. 

An external force at the excitation point (on the rail head or rail foot) can be applied in each 

of three directions. For a vertical distance 𝑧𝑒 between the excitation point and the centroid, and 

a lateral distance 𝑦𝑒, the external force vector for forces �̃�𝑥, �̃�𝑦, and �̃�𝑧 is given as 

�̃� = [�̃�𝑥, �̃�𝑦, �̃�𝑧 , (𝑧𝑒�̃�𝑦 − 𝑦𝑒�̃�𝑧), 𝑧𝑒�̃�𝑥, 𝑦𝑒�̃�𝑥, 0]
𝑇
 (3) 

Moment excitation can also be applied. Moreover, because of the lateral distance 𝑦𝑟  and 

vertical distance 𝑧𝑟  between an arbitrary response point and the centroid, the responses 

obtained at the centroid need to be multiplied with a transformation matrix, which is given in 

[19], to give the response at the rail head or foot. 
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To solve Eq. (2), the case of free vibration, �̃� = 𝟎, is first considered. This is a dual (non-

linear) eigenvalue problem in 𝜔 and complex wavenumber 𝜉. Eq. (2) is rewritten as: 

𝐀1𝐯 + i𝜉𝐀2𝐯 = 𝟎 (4) 

where 𝐯 = [�̃� i𝜉�̃�]𝑇, 

𝐀1 = [
K0 − 𝜔2M −K1

𝟎7×7 𝐈7×7
] (5) 

and 

𝐀2 = [
𝟎7×7 K2

−𝐈7×7 𝟎7×7
] (6) 

Eq. (4) can be solved to give complex wavenumbers 𝜉𝑛, which occur in pairs (±𝜉𝑛), and the 

corresponding (1×7) left eigenvectors U𝑛𝐿 , and (7×1) right eigenvectors, U𝑛𝑅 , for each 

frequency. To obtain the response in the spatial domain, the inverse Fourier transform is used: 

𝐔(𝑥) =
1

2π
∫ Ũe−i𝜉𝑥d𝜉

∞

-∞

 (7) 

The integration is performed using the contour integration approach. For 𝑥 ≥ 0, the integral 

solution is given by the sum of the residues of the poles lying in the lower half plane, Im(𝜉𝑛) <

0. These poles are the free wavenumber solutions 𝜉𝑛 obtained above. The solution in the spatial 

domain is obtained as: 

𝐔(𝑥) = −i ∑
U𝑛𝐿F̃

U𝑛𝐿𝐀′(𝜉𝑛)U𝑛𝑅
U𝑛𝑅e−i𝜉𝑛𝑥

Im(𝜉𝑛)<0

  for 𝑥 ≥ 0 (8) 

where 𝐀′(𝜉𝑛) = −2𝜉𝑛𝐊2 − i𝐊1 is the derivative of the dynamic stiffness matrix and x is the 

longitudinal distance between excitation and response points. 

2.2 Rail pad model 

The rail pad connects the rail to the sleeper dynamically. Measurements have shown that 

the rail pad damping is well approximated by using a dynamic stiffness with a constant loss 

factor [1].  

Each rail pad is considered here as a single damped spring in each direction. The dynamic 

stiffness of the rail pads has six components. 𝑘𝑥, 𝑘𝑦, 𝑘𝑧 are used to represent the longitudinal, 

lateral and vertical stiffness. For simplicity, the rotational stiffnesses are estimated from the 

translational stiffnesses, assuming a homogeneous material for the pad: 

𝑘𝑥𝑟 = 𝑘𝑦𝑟 =
𝑙𝑝

2

12
𝑘𝑧 (9) 
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𝑘𝑧𝑟 =
𝑙𝑝

2

12
𝑘𝑥 +

𝑙𝑝
2

12
𝑘𝑦 (10) 

in which it is assumed that the pad is square with length 𝑙𝑝. Consequently, the pad stiffnesses 

in longitudinal and lateral directions are assumed to be identical.  

2.3 Sleeper model 

The sleeper is represented as a finite uniform Timoshenko beam [29] of length L, and is 

assumed to be supported on a continuous viscoelastic foundation which represents the ballast. 

The modelling approach for the sleeper is similar to that described in Ref. [1], in which the 

receptance is obtained from a wave approach. As the sleeper cross-section is symmetric, the 

sleeper model can be seen as two separate models, one involving the axial sleeper response and 

vertical sleeper bending, and the other involving the torsional response and lateral sleeper 

bending. Note that the axial direction of the sleeper is coincident with the lateral direction of 

the rail, while the lateral direction of the sleeper is coincident with the axial direction of the 

rail. Thus, the receptance of the sleeper needs to be transformed to match the coordinate system 

of the rail when assembling the track model. 

In the sleeper model, there is coupling between its vertical and axial responses and between 

lateral and torsional responses; this originates from the foundation eccentricity, in which the 

ballast stiffness is assumed to act at the bottom of the sleeper. Finally, appropriate boundary 

conditions are applied to accommodate the finite length of the sleeper. The detailed modelling 

process is presented in [31]. 

Using the parameters listed in Table 1, the point mobilities (velocities for a unit force) of 

the sleeper at one rail seat and the transfer mobilities from one side to the other are obtained, 

as shown in Fig. 2. Results are shown for all three translational directions.  In all three directions, 

there is a highly damped resonance at around 100 Hz, in which the sleeper mass bounces on 

the ballast stiffness. A series of resonances of the flexible sleeper are seen above 400 Hz in the 

vertical and lateral directions. The first extensional mode occurs at 1 kHz. Compared with the 

point mobilities, the transfer mobilities in vertical and lateral directions are lower, whereas in 

the axial direction they are of similar magnitude. 
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Table 1 Parameters used for the calculations 

Sleeper parameters Vertical Axial to sleeper Lateral to sleeper  

Equivalent dimensions, m h = 0.185 L = 2.5 w = 0.245 

Second moment of area, m4 Ip,z = 1.27×10-4 – Ip,y = 2.24×10-4 

Shear coefficient κz = 0.83 – κy = 0.83 

Sleeper spacing, m 0.65   

Young’s modulus E, GPa 57.0   

Density ρ, kg/m3 2648   

Poisson’s ratio ν 0.2   

Damping loss factor η 0.0083   

Polar moment of area Ip, m4 3.51×10-4   

Torsional constant J, m4 2.70×10-4   

Ballast parameters 

(per unit length along the sleeper) 

   

Ballast stiffness, MN/m2 68 58 58 

Ballast damping, kNs/m2 82 68 68 

 

  

(a) (b) 

Fig. 2 Mobilities of the sleeper; the directions identified correspond to local sleeper coordinates. (a) Point 

mobilities at one rail seat; (b) transfer mobilities to the other rail seat 

2.4 Receptance-coupling approach 

Following the method of Refs [12, 26], the infinite rail is coupled to a finite number of 

sleepers through the rail pads, see Fig. 1(a). This approach is extended here to use the beam 

model of Kostovasilis et al. [19] and to include both rails. The rail pads are assumed to be 

massless so that the same forces act on both the rail and sleepers but in opposite directions. The 

two rails are denoted left and right and it is assumed that the external force Fe is applied to the 

left rail. 
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The vectors of displacement on the rail foot of the left and right rail at the connection points 

with the rail pads (three displacements and three rotations) are denoted u𝑟𝐿  and u𝑟𝑅 . The 

corresponding displacement vectors on the sleepers are denoted u𝑠𝐿 and u𝑠𝑅. If there are N 

sleepers, these vectors have dimension 6N×1. These are combined into 12N×1 vectors u𝑟 =

[u𝑟𝐿
T  u𝑟𝑅

T]T and u𝑠 = [u𝑠𝐿
T  u𝑠𝑅

T]T. F𝐿 and F𝑅 are the corresponding vectors of interaction 

forces at the left and right connection points, which are combined into a single force vector 

𝐅 = [F𝐿
T  F𝑅

T]
T

. The sleepers are represented by 12N×12N matrices of receptances 

(displacement for a unit force) 

𝛂𝑠 = [
α𝐿

𝑠 α𝐿𝑅
𝑠

α𝑅𝐿
𝑠 α𝑅

𝑠 ] (11) 

in which α𝐿
𝑠  is the matrix of receptances of the sleepers at the points connected to the left rail, 

which are given by  

𝛂𝐿
𝑠 = [

⋱ 0
𝛂𝐿,𝑖

𝑠

0 ⋱

] (12) 

where 𝛂𝐿,𝑖
𝑠  is the 6×6 receptance matrix for a single sleeper. Similarly, α𝑅

𝑠  are the matrices of 

receptances of the sleeper at the points connected to the right rail and α𝐿𝑅
𝑠 , α𝑅𝐿

𝑠  contain the 

transfer receptances between the left and right connection points. 

Similarly, the connection points on the left rail are described by the matrix α𝐿
𝑟 and those on 

the right rail by α𝑅
𝑟 , giving a combined receptance matrix for both rails as: 

𝛂𝑟 = [
α𝐿

𝑟 𝟎

𝟎 α𝑅
𝑟 ] (13) 

The rail pads are represented by a 12N×12N diagonal matrix of receptances 𝛂𝑝. 

Considering all the connection points on both rails, the equations of motion can be written 

in matrix form as: 

𝐮𝑟 = 𝛂𝑒
𝑟𝐹𝑒 − 𝛂𝑟𝐅 (14) 

u𝑟 − u𝑠 = 𝛂𝑝𝐅 (15) 

u𝑠 = 𝛂𝑠𝐅 (16) 

where 𝛂𝑒
𝑟 is the vector of transfer receptances of the rail from the external force 𝐹𝑒 at a position 

on the left rail head to the responses at the connection points (for positions on the right rail it 

contains zeros). Combining Eq. (15) and (16) gives  

𝐮𝑟 = (𝛂𝑝 + 𝛂𝑠)𝐅 (17) 

Substituting this into Eq. (14) and rearranging, the rail displacements at the connection 

points can be obtained as: 



10 

 

𝐮𝑟 = (𝐈 + 𝛂𝑟(𝛂𝑝 + 𝛂𝑠)−1)−1𝛂𝑒
𝑟𝐹𝑒 (18) 

where I is the unit matrix.  

The rail displacements 𝐮𝑟 are used to obtain the interaction forces F by inverting Eq. (17). 

The displacement at an arbitrary point k on the left rail can finally be calculated as 

𝑢𝐿,𝑘
𝑟 = 𝛼𝐿,𝑘𝑒

𝑟 𝐹𝑒 − 𝛂𝐿,𝑘
𝑟 𝐅𝐿 (19) 

where 𝛂𝐿,𝑘
𝑟  is a vector of transfer receptances of the free rail, giving the response at the point 

k to a unit force at each rail pad location on the rail foot; 𝛼𝐿,𝑘𝑒
𝑟  is the transfer receptance of the 

free rail from the external force 𝐹𝑒 to the response point k. By applying a unit force on the rail 

head, in each direction in turn, the responses 𝑢𝐿,𝑘
𝑟  correspond to the receptances of the 

assembled track. They can be expressed as mobilities by using 𝑌 = i𝜔𝑢𝑘
𝑟 . Similarly, the 

responses at an arbitrary point k on the right rail to excitation on the left rail are given by 

𝑢𝑅,𝑘
𝑟 = −𝛂𝑅,𝑘

𝑟 𝐅𝑅 (20) 

A similar model can be used with a single rail, in which case reduced matrices 𝛂𝑟 = α𝐿
𝑟, 

𝛂𝑝 = α𝐿
𝑝
 and 𝛂𝑠 = α𝐿

𝑠  are used. 

3 Track response results 

3.1 Point and transfer mobility 

The receptance-coupling method described in Section 2.4 is applied to obtain the response 

of the discretely supported railway track. At this stage only a single rail is included. To ensure 

the waves generated are sufficiently attenuated at the ends of the finite supported region, 121 

rail supports are included in the longitudinal direction. The rail type is CEN 60E1. Table 2 lists 

the parameters used for the rails and rail pads, which are mainly derived from [19], although 

the rail pad properties are adjusted to match the measurements described below. The 

parameters for the sleepers and ballast were given in Table 1. The frequency range used in the 

calculations is from 50 Hz to 6000 Hz, with a constant spacing with 1 Hz interval.  
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Table 2 Parameters used for the calculations 

Rail parameters Vertical Lateral Longitudinal 

Rail bending stiffness, MNm2 6.38 1.08 – 

Shear coefficient  κz = 0.393 κy = 0.538 – 

Rail loss factor 0.02 0.02 0.02 

Young’s modulus E, GPa 210   

Density ρ, kg/m3 7850   

Rail mass per unit length, kg/m 60   

Poisson’s ratio ν 0.3   

Polar moment of area Ip, m4 3.550×10-5   

Torsional constant J, m4 2.212×10-6   

Warping constant Iw, m6 2.161×10-8   

Warping product moment of area, m5  Iwy = 0 Iwz = 1.6971×10-7 – 

Shear centre eccentricity, m ez = 0.033 ey = 0 – 

Rail pad parameters    

Pad stiffness, MN/m 300 40 40 

Pad damping loss factor 0.25 0.25 0.25 

Rail pad width lp, m – 0.150 0.150 

Foot to centroid distance zf, m 0.081 –  

 

For a vertical force, the excitation position is at the centre of the rail head (position 1 in Fig. 

1(c)). Fig. 3 compares the calculated point mobilities of the track with results measured on a 

test track of length 32 m, for vertical excitation at mid-span between sleepers and directly above 

a sleeper. Very good agreement is obtained below 4 kHz. Pronounced differences can be seen 

between the results for the two excitation points, especially in the frequency range between 

500 Hz and 2000 Hz. For the vertical mobility at mid-span, three obvious peaks can be 

identified. The first peak at 100 Hz corresponds to the resonance of the rail and sleeper mass 

on the vertical ballast stiffness, while the second peak at 470 Hz is the resonance of the rail 

mass on the vertical rail pad stiffness. There are also some oscillations due to the bending 

modes of the sleepers. The peak at 980 Hz is the vertical ‘pinned-pinned’ frequency; a dip 

appears just above this frequency in the mobility above the sleeper.  
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(a) (b) 

Fig. 3 Vertical point mobility of the track. (a) Above sleeper; (b) mid-span 

For the lateral force, the excitation position is at the side of the rail head (position 2 in Fig. 

1(c)). The lateral point mobility is shown in Fig. 4(a) and corresponding measured results in 

Fig. 4(b). A distinct peak can be observed in the lateral mobility at 140 Hz, corresponding to 

the resonance of the rail and sleeper mass on the lateral ballast stiffness. The peak at 470 Hz at 

mid-span is the lateral ‘pinned-pinned’ resonance and that at 670 Hz is the torsional ‘pinned-

pinned’ resonance. Dips are found at these two frequencies in the mobility above the sleeper. 

The large oscillations in the measured results between 600 and 1500 Hz are due to the finite 

length of the test track, as there is a low decay rate in this frequency region. Apart from this, 

there is satisfactory agreement between measurements and calculations. 

  

(a) (b) 

Fig. 4 Lateral point mobility of the track. (a) Predicted; (b) measured 

Fig. 5(a) shows the predicted axial mobility at mid-span and above a sleeper for excitation 

at the centre of the rail head (position 1 in Fig. 1(c)). This rises to a peak at 200 Hz, which is 

the cut-on frequency of longitudinal waves. Above this frequency it is approximately flat, apart 

from the influence of the sleeper modes, until rising to a sharp peak at 5 kHz, which is the cut-

on of the higher order wave of the Timoshenko beam. 
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Fig. 5(b) shows the predicted cross mobility (lateral response due to a vertical force) at a 

position with an offset of 10 mm from position 1 and at a position with an offset of 20 mm. For 

the offset of 10 mm, results are shown at mid-span and above a sleeper. The characteristics are 

very similar to the vertical and lateral point mobilities, with clear differences between mid-

span and above a sleeper at the pinned-pinned resonances. For the larger offset, the magnitude 

of the cross mobility increases at all frequencies. 

  

(a) (b) 

Fig. 5 Predicted mobility of the track excited at different positions. (a) Axial mobility; (b) vertical-lateral cross 

mobility 

3.2 Decay rate 

The track decay rate is determined from the transfer mobilities at different positions along 

the rail [32]. The overall decay rate in each one-third octave band is evaluated from predicted 

transfer mobilities according to the standard measurement method as [33]: 

Δtot =
4.343

∑
|𝑌(𝑥𝑛)|2

|𝑌(𝑥0)|2
𝑥max
𝑥=0 𝛿𝑥𝑛

 
(21) 

where 𝑌(𝑥𝑛) is the transfer mobility in one-third octave bands at a distance 𝑥𝑛 away from the 

excitation point, 𝑌(𝑥0) is the mobility at the excitation point and 𝛿𝑥𝑛 is the distance between 

the midpoints of each grid interval on either side of the location n.  

The vertical decay rate is plotted in Fig. 6(a), and the lateral one in Fig. 6(b). These results 

are compared with measurements obtained on the same test track by Kostovasilis et al. [19]. 
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(a) (b) 

Fig. 6 Track decay rate compared with measured results from [19]. (a) Vertical direction; (b) lateral direction 

Although the track was the same, the measured decay rates were obtained in warmer weather, 

which results in the rail pad being softer. Thus, the pad stiffnesses used in these calculations 

are adjusted to 120 MN/m for the vertical direction and 100 MN/m for the longitudinal and 

lateral directions, as given in [19]. At low frequencies, the vertical decay rate is high due to the 

blocking effect of the support stiffness. It drops at around the cut-on frequency of the rail 

vertical bending wave, which is around 300 Hz for these parameters. The lateral decay rate 

drops at a lower cut-on frequency. The agreement with measurements is very good up to 2 kHz, 

but at higher frequencies the measurements rise more rapidly due to cross-section deformation 

of the rail, which is not included in the model. 

3.3 Effect of torsion and warping on the track response 

The beam model used includes the effects of torsion and warping on the lateral responses 

[19]. To investigate their effects, results are obtained from the current model with and without 

torsion and warping. The track parameters from Table 1 are used and the excitation and 

response points are the same as considered above. 



15 

 

 

 

(a) (b) 

 

(c) 

Fig. 7 Lateral results with or without torsion and warping. (a) Lateral point mobility above a sleeper, (b) 

Lateral point mobility at mid-span, (c) lateral track decay rate 

The vertical point mobility and decay rate are unaffected by the inclusion of torsion and 

warping, so are not shown here. Fig. 7(a-b) shows the lateral point mobility above a sleeper 

and at mid-span, Fig. 7(c) shows the corresponding track decay rate. The inclusion of torsion 

and warping both have significant effects on the lateral response over the whole frequency 

range. The inclusion of torsion lowers the cut-on frequency of the lateral wave from 200 Hz to 

150 Hz, which can be seen in both the mobility and the decay rate. The inclusion of warping 

then leads to a further increase in the magnitude of the mobility. The dip related to the lateral 

pinned-pinned resonance can be found even when only lateral bending is considered but the 

one related to the rotational pinned-pinned resonance is only found when warping is introduced. 

3.4 Transfer mobility under excitation on the other rail 

The model is now used to predict the response of the right rail to a force on the left rail. The 

same parameters are used as shown in Table 1. For the vertical direction, the excitation is at 

position 1 on the left rail and the response is at position 1 on the right rail. For the lateral 
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direction, the excitation is at position 2 on the left rail head and response is at position 2 on the 

right rail head. 

Fig. 8 compares the transfer mobility with the point mobility for both vertical and lateral 

directions for excitation above a sleeper. The magnitudes of the point and transfer mobilities 

have a roughly constant difference at low frequency but the difference increases at high 

frequency. Nevertheless, there are some narrow frequency regions where the difference 

between point and transfer mobilities is rather small, for example around 400 Hz and 1 kHz for 

the vertical direction. 

In Fig. 8 the predicted transfer mobility between the two rails is also compared with the 

corresponding measured results obtained on the test track. Good agreement can be seen 

between the measured and calculated mobilities. As the transfer mobility between the two rails 

is much lower than the point mobility, the coupling between the two rails is found to have little 

effect on the track mobilities on the excited rail or on the track decay rates. 

  

(a) (b) 

Fig. 8 Comparison of the predicted transfer mobility between two rails with the measurement and with the 

predicted point mobility, all results for excitation above a sleeper. (a) Vertical direction; (b) lateral direction. 

4 Conclusions 

A model of a discretely supported track is developed, which accounts for vertical and lateral 

bending, extension and torsion, with warping and shear-centre eccentricity. Coupling between 

the two rails is also included. The point mobilities in different directions are compared with 

measurements and found to show good agreement. The track decay rates are also investigated 

and found to agree well with measurements up to 2 kHz. The vertical-lateral cross mobility is 

shown to depend on the lateral offset of the vertical forcing point. 

The inclusion of torsion and warping in the rail model has a significant effect on the lateral 

track mobility. The cut-on frequency of the lateral wave and the overall response amplitude are 
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both modified, and the lateral mobility shows better agreement with measurements when these 

effects are included. 

The effect of coupling between the two rails connected through the sleepers is also 

investigated. The transfer mobilities between the two rails agree well with measurements. They 

are found to be much smaller than the point mobilities apart from some narrow frequency 

regions. Consequently, that the track mobilities on the excited rail and the track decay rates are 

largely unaffected by the coupling with the second rail.  
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