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Abstract—We show that a continuously nonuniform coupled-
line C-section phaser, as the limiting case of the step-
discontinuous coupled-line multisection commensurate and non-
commensurate phasers, provides enhanced bandwidth and di-
versity in real-time analog signal processing (R-ASP). Thephe-
nomenology of the component is explained in comparison withthe
step-discontinuous using multiple-reflection theory and asimple
synthesis procedure is provided. The bandwidth enhancement
results from the suppression of spurious group delay harmonics
or quasi-harmonics, while the diversity enhancement results from
the greater level of freedom provided by the continuous nature
of the nonuniform profile of the phaser. These statements are
supported by theoretical and experimental results.

Index Terms—C-sections, phaser, group delay engineering,
nonuniform transmission line, real-time analog signal processing.

I. I NTRODUCTION

Real-time Analog Signal Processing (R-ASP) is a potential
alternative to dominantly digital radio technology, givenits
high-speed, low-consumption and frequency-scalability ben-
efits [1]. The key component of a R-ASP system is the
phaser [1], [2]1, a device providing specified group delay
versus frequency response depending on the application, e.g.
linear for real-time Fourier transformers [3], staircase for spec-
trum sniffers [4] and Chebyshev for dispersion code multiple
access (DCMA) [5], [6].

Step-discontinuity coupled-line all-pass phasers represent a
common type of phasers [1], [2], [7], [8], but they suffer from
bandwidth restriction, due to the presence of spurious group
delay harmonics, and restricted dispersion diversity, in R-ASP.
This paper shows how these limitations can be mitigated by
using continuously nonuniform C-section phasers [6] as the
subwavelength section limit of step-discontinuity multi-section
coupled-line phasers [8].

II. STEP-DISCONTINUITY NONUNIFORM PHASERS

Figure 1 shows a general step-discontinuity nonuni-
form coupled-line phaser withM sub-sections of lengths
d1, d2, ..., dM and corresponding even- and odd-mode equiva-
lent circuits, denoted by the subscriptp (p =e,o resp.), where
ZL

e = ∞, ZL
o = 0. For small discontinuities, the total even/odd
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1The term “phaser” was explained in [1] and [2].
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Fig. 1. Non-commensurate C-section phaser (top), and corresponding even-
and odd-mode equivalent circuits (bottom).

reflection coefficients at the input are [9]

Γin
p = Γp,0 + Γp,1e

−j2βd1 + ...+ Γp,Me−j2MβdM , (1)

whereΓp,m is the reflection coefficient between sectionsm
andm+ 1 andβ is the (m-independent, assuming TEM sec-
tions) guided wavenumber. The total transmission scattering
parameter and group delay of the phaser follow as

S21 =
1

2
(Γin

e − Γin
o ) =

1

2

M−1
∑

m=0

(Γe,m − Γo,m) e−j2mβdm , (2)

τ(ω) = −
dφS21

dω
=

M−1
∑

m=0

(

−dφ(Γe,m−Γo,m)

dω
+

2mdm
v

)

, (3)

wherev = ω/β is the phase velocity.
Figure 2(a) shows that the group delay response of a single

C-section is periodic, with peaks located atβD = π(n+1/2),
for n = 0, 1, ...,∞ and having a group delay swing depending
on the coupling,C, and length,D, of the structure. Figure 2(b)
shows that in a commensurate cascadedM -section C-section,
the periodicity is increased by a factorM (M propagation-
coupled resonators) with up toM peaks depending on cou-
plings, due tocoherent multiple reflection [factore−j2mβd in
Eq. (2)]. DefiningBWmax as the frequency bandwidth support-
ing a non-periodic specified group delay response (restricted
by periodicity), one has from2βd = 2π whered = D/M
that BWmax = Mv/4D. This reveals that the bandwidth of
the phaser is increased by increasingM . Finally, Fig. 2(c)
shows that periodicity is lost in the case of non-commensurate
sections, due tocoherent multiple reflection [factore−j2mβdm

in Eq. (2)].

http://arxiv.org/abs/1603.00493v1
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Fig. 2. Response of step-discontinuity nonuniform phasers[7]. a) Single C-
section. b) Two commensurate sections. c) Two non-commensurate sections.

III. C ONTINUOUSLY MODULATED NONUNIFORM PHASERS

To synthesize the nonuniform coupled-line functionC(z)
(0 < Cmin < C(z) < Cmax < 1) for the specified group delay
response, one may use the Fourier series expansion

C(z) = a0 +

Q
∑

q=1

[aq cos(2πqz/d) + bq sin(2πqz/d)] , (4)

and search for the appropriate unknown expansion
coefficients aq and bq. The corresponding nonuniform
even and odd characteristic impedances are
Z0e/o(z) = Z0(

√

1± C(z))/(1∓ C(z)) [9]. We shall satisfy
the local matching condition,

√

Z0e(z)Z0o(z) = Z0, ∀z,
whereZ0 is the ports characteristic impedance. The even and
odd impedances at the input of themth subsection,Z in

p,m, are
related to those of the(m+ 1)th subsection,Z in

p,m+1, by

Z in
p,m = Zp,m

Z in
p,m+1 + jZp,m tan(βdm)

Zp,m + jZ in
p,m+1 tan(βdm)

. (5)
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Fig. 3. Realization of a broad-band phasing (negative linear chirp) specifi-
cation (D = 37 mm= 0.353λg,1GHz). (a) Continuously nonuniform phaser,
covering the 1 to 20 GHz bandwidth. (b) Step-discontinuity nonuniform
commensurate and non-commensurate phasers with 10 sections, restricted to
the 1 to 5 GHz bandwidth.

Iteratively computingZ in
p,m from m = M to m = 1 pro-

vides the even and odd reflection coefficients at the input
of the overall even and odd structures viaΓin

p = (Z in
p,1 −

Z0)/(Z
in
p,1+Z0). The corresponding group delay of the phaser

follows using (3), and is injected into the fitness function
F = 1/(ωh−ωl)

∫ ωh

ωl

∣

∣τ(ω)− τs(ω)

∣

∣ dω, for alignment ofτ(ω)
with the specified functionτs(ω).

Figure 3 compares the performance of the continuously
modulated nonuniform phaser with those of step-discontinuity
nonuniform phasers. The goal is to a achieve negative linearly
chirped response of at least30 ps swing over the largest
possible bandwidth between 1 and 20 GHz2. Due to its zero
subsection length (d/λ → 0), the continuously modulated
phaser exhibits, according to Sec. II, an infinite periodicity,
and reaches therefore the complete specified bandwidth. In
contrast, the bandwidth of the step-discontinuous phasersis
restricted by spurious peaks due to excessive subsection length.
The oscillations in the group delay curves, more visible in
the continuously nonuniform case due to smaller large-scale
variations, correspond to the resonances of the overall C-
section structures (βD = π, i.e. ∆f = 1.11 GHz). These
oscillations may be suppressed by using cascaded non-uniform
C-sections, which also allows to increase the group delay
swing, as shown in Fig. 4.

Let us finally demonstrate the dispersion diversity of the
phaser by specifying 1st order to 4th order Chebyshev group
delay responses. This benefits comes from the virtually un-
limited degrees of freedom of the continuously nonuniform
structure, in contrast to its super-wavelength step-discontinuity

2Note that the area under theτ(ω) curve is constant for a given
lengthD [2].
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Fig. 4. Nonuniform C-section cascading solution for suppressed oscillations
and larger group delay swing. a) Failure of a single continuously nonuniform
C-section to reach∆τ > 1 ns. b) Resolution of issue mentioned in a) by
cascading two C-sections (D1 = 82 mm andD2 = 52 mm).
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Fig. 5. Realization of Chebyshev first four orders group delay responses,
using the synthesis technique presented at the beginning ofSec. III. a) Nonuni-
form coupling functionC(z) [Eq. (4)]. b) Group delay response [Eq. (3)].

counterparts. Illustrative results are shown in Fig. 5 for Cheby-
shev group delay specifications, while experimental validations
for the 1st and2nd orders are presented in Fig. 6.

IV. CONCLUSIONS

We have shown that a continuously nonuniform coupled-
line C-section phaser provides enhanced bandwidth and pro-
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Fig. 6. Experimental results compared with full-wave results (CST Mi-
crowave Studio) for Chebyshev phaser in stripline technology (layouts shown
as insets). a)1st order group delay. b)1st order S-parameters. c)2nd order
group delay. d)2nd order S-parameters.

file diversity compared to step-discontinuity coupled-line C-
section phasers. Such a phaser, that may be further cascaded
for oscillation suppression and delay swing enhancement, is
a promising device for in real-time analog signal processing
(R-ASP). It may be for instance applied to Dispersion Code
Multiple Access (DCMA), a recently proposed novel multi-
plexing wireless technology [5], where the number of channels
is equal to the number of available phaser responses and cross-
channel interference is minimized using Chebyshev dispersion
profiles.
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