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Nonreciprocal electromagnetic devices play a crucial role in modern microwave and optical tech-
nologies. Conventional methods for realizing such systems are incompatible with integrated circuits.
With recent advances in integrated photonics, the need for efficient on-chip magnetless nonreciprocal
devices has become more pressing than ever. This paper leverages space-time engineered asymmet-
ric photonic bandgaps to generate optical isolation. It shows that a properly designed space-time
modulated slab is highly reflective/transparent for opposite directions of propagation. The corre-
sponding design is magnetless, accommodates low modulation frequencies, and can achieve very
high isolation levels. An experimental proof of concept at microwave frequencies is provided.

I. INTRODUCTION

Electromagnetic nonreciprocity plays a crucial role in
modern electronic and optical technologies. Historically,
breaking Lorentz reciprocity has been most often relying
on magnetically biased magnetoelectric [1, 2] and mag-
netoplasmonic [3–8] materials. However, magnetic ma-
terials are incompatible with integrated circuit technol-
ogy. Moreover, such magnet-based technologies are based
on bulky and expensive magnets. With the emergence
of integrated photonics [9–12], generating on-chip opti-
cal nonreciprocity has become of paramount importance,
and novel – magnetless – nonreciprocal technologies have
therefore become required.

Over the past few decades, extensive efforts have been
devoted to produce magnetless nonreciprocity, in or-
der to eliminate the aforementioned issues associated
with magnets and magnetic materials. An approach
consists in using unilateral components such as transis-
tors, which break Lorentz reciprocity from their semi-
conductor junction bias. This technology has been used
for several decades in microwave nonreciprocal compo-
nents and, more recently, in nonreciprocal metamateri-
als. Nonreciprocal transistor-based circulators [13–16],
nonreciprocal metamaterials based on transistor-loaded
unit cells [17–22], and nonreciprocal components based
on staggered switched delay lines [23] belong to this cate-
gory. However, despite being compatible with integrated
circuit technology, these devices suffer from relatively
poor power handling and noise figure [24]. Moreover,
their application at terahertz and optical frequencies is
impeded by the frequency limitation of transistor tech-
nology.

The Lorentz reciprocity theorem does not apply to
nonlinear materials. This fact has spurred considerable
efforts to achieve magnetless nonreciprocity and nonre-
ciprocal devices based on nonlinearity [25–30]. This ap-
proach leverages the spatial asymmetry in the electro-
magnetic field intensity of a spatially asymmetric nonlin-
ear permittivity profile for producing nonreciprocity. If

nonlinearity is introduced at locations where the forward
and backward waves have a significant difference in their
electromagnetic field intensity, the forward and backward
waves see different nonlinear permittivity terms and the
structure hence exhibits nonreciprocity. However, since
nonlinear effects only get pronounced at high signal lev-
els, nonlinear techniques provide nonreciprocity only over
a restricted signal power range. It was shown that in the
presence of high-level input signals in a nonlinear optical
isolator, some low-level signals get reciprocally transmit-
ted, so that the structure does not really operate as a
nonreciprocal optical component [31].

Balanced loss-gain media, also known as PT-
symmetric media [32–34], have been reported to exhibit
unidirectional properties [35–39]. However, the nonre-
ciprocity of the corresponding devices [34, 36] is due again
to nonlinearity rather than being a consequence of PT
symmetry. Linear PT media are constrained to be recip-
rocal according to Lorentz reciprocity theorem and can
not produce optical isolation [40, 41].

Space-time modulation is another approach to break
Lorentz reciprocity [42–46]. This approach is particularly
suited for producing nonreciprocity at optical frequen-
cies where transistor technology is unavailable. There
have been several proposals to achieve magnetless nonre-
ciprocity leveraging space-time variation. The technique
proposed in [42] uses oblique space-time interband tran-
sitions between two different modes of an optical waveg-
uide. However, generating efficient coupling between the
two waveguide modes, which are generally orthogonal,
requires complex asymmetric modulation schemes. The
techniques proposed in [43, 44] is based on counter rotat-
ing resonant modes with slightly shifted resonance fre-
quencies. However, although it can achieve nonreciproc-
ity over a subwavelength footprint, this approach requires
sophisticated synchronized optical sources [43, 44].

This paper introduces a novel concept for realizing op-
tical isolation: space-time engineered asymmetric pho-
tonic bandgaps. In this approach, space-time variation in
the permittivity of a medium is used to generate photonic
band structures that are asymmetrically aligned with re-
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spect to the direction of propagation. It is shown that,
with proper excitation, such a system can operate as a
nonreciprocal (or unidirectional) optical device, i.e. an
isolator. The modulation is uniform in the cross sec-
tion of the waveguide, as opposed to that in [42], which
leads to a much simpler structure. In addition, the re-
quired modulation frequency is relatively low, and may
thus be conveniently provided by acoustic waves. The
proposed approach may find applications in various in-
tegrated magnetless nonreciprocal optical systems. An
experimental proof-of-concept at microwave frequencies
is presented.

II. PRINCIPLE OF OPERATION

Consider a conventional reciprocal structure, such as
for instance a Bragg grating or a waveguide filter, that
supports photonic bandgaps, as illustrated in Fig. 1(a).
As the structure is composed of reciprocal materials, the
bandgaps are perfectly horizontal in the dispersion dia-
gram, i.e. symmetric with respect to positive and nega-
tive Bloch-Floquet wavenumbers. In the bandgaps, the
Bloch-Floquet harmonics acquire an imaginary part in
their wavenumber and hence become evanescent. Thus,
when a wave incident on the structure is modulated at
a frequency falling within a gap, it excites a complex,
and hence evanescent, gap mode. This mode, marked
by a red dot in Fig. 1(a), decays exponentially. There-
fore, assuming a proper choice of parameters, almost no
power is transferred across the structure and, as a result
of energy conservation, almost all of the incident power
is reflected. Since the dispersion curves are symmetric
with respect the wavenumber axis, when the structure is
excited from the opposite end, the symmetric evanescent
Bloch-Floquet mode, marked by the blue dot in Fig. 1(a),
is similarly excited, and most of the power is reflected.

Now consider a structure with an oblique, and hence
asymmetric, bandgap, where the bandgap edges are dif-
ferent for the positive and negative directions, as shown
in Fig. 1(b). When such a structure is excited from the
left at the frequency corresponding to the horizontal line,
the evanescent mode, marked by the red dot, is excited.
If the structure is long enough, almost no power reaches
the opposite end of it and the wave is fully reflected. In
contrast, when the structure is excited from the right,
the mode marked by the blue dot in Fig. 1(b), i.e. a
propagating mode, is excited. Therefore, the incident
electromagnetic power is transferred to the other side of
the structure, and, assuming proper matching, is fully
transmitted across it.

Producing such asymmetric dispersion curves requires
a mechanism that breaks Lorentz reciprocity. In the next
section, we use a space-time varying medium for that
purpose. In such a medium, waves propagating in op-
posite directions perceive different dispersions, and the
medium is therefore nonreciprocal. Corresponding dis-
persion curves are thus tilted with a given slope and

excited 
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PBG medium

(a)

excited 
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excited 

from right

(b)

PBG medium

FIG. 1. Principle of nonreciprocal Bragg reflection based on
asymmetric photonic bandgaps. The red and blue colors rep-
resent forward and backward propagation, respectively. The
dashed curves correspond to the dispersion curves of the input
and output medium while the solid and dotted curves repre-
sent the real (β) and imaginary (α) parts of the wavenumber,
respectively, of the (central) photonic bandgap medium, as-
suming the harmonic time dependence ejωt. The horizontal
line corresponds to the excitation frequency, ω0. (a) In a re-
ciprocal system, the bandgap is symmetric with respect to
positive and negative directions. Red/blue dots correspond
to evanescent waves for excitation from the left/right. (b) In
a nonreciprocal system, the bandgap is tilted with a given
slope. Red/blue dots correspond to evanescent and propa-
gating waves, respectively, for excitation from the left/right.
In one direction, the wave is totally reflected; in the opposite
direction, it is fully transmitted.

hence form asymmetric bandgaps. We next analyze a
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finite space-time modulated slab and demonstrate its
asymmetric-bandgap nonreciprocity.

III. UNBOUNDED SPACE-TIME MEDIUM

Consider an infinite space-time one-dimensionally pe-
riodic medium with permittivity

ε(r, t) = ε0εr [1 +Mfper (t± z/vm)] , (1)

where fper is a periodic function and M is the mod-
ulation depth. This permittivity represents a periodic
Bragg structure whose spatial profile moves in time at
the modulation velocity vm. Related space-time periodic
media were first studied in the context of traveling-wave
parametric amplification and parametric energy conver-
sion [46–52]. The electric field in such a medium satisfies
the following wave equation [50]:

∇2E− µ0
d2

dt2
[ε(r, t)E] = 0. (2)

This equation admits solutions in the space-time Bloch-
Floquet form [50]

E = ej(ωt−βz)
∞∑

n=−∞
Ene

jn(ωmt−kmz), (3)

where ωm = 2π/T is the modulation frequency, T being
the period of the function fper, and km = ωm/vm. The
dispersion relation for the Bloch-Floquet waves in such
a medium is found by substituting (3) and (1) into (2).
The resulting equation reduces, after truncation, to a
matrix equation, Ax = 0, through the orthogonality of
the Fourier harmonics. Nullifying the determinant, i.e.
setting |A| = 0, which is generally done numerically, pro-
vides the dispersion diagram of the medium.

In the following, we assume that the space-time pro-
file or the periodic function, fper, has a sinusoidal form.
In this case, closed-form solutions can be derived for the
eigenmodes and corresponding eigenvectors. An exam-
ple of dispersion diagram for a space-time medium with
permittivity

ε(r, t) = ε0εr [1 +M cos (ωmt− kmz)] (4)

is plotted in Fig. 2. It may be easily shown that each
solution, (β, ω), corresponds to a mode formed by an in-
finite set of space-time harmonics, (β ± nkm, ω ± nωm)
distributed along the vector (km, ωm). As a result, the
Brillouin zone, represented by the dashed lines in Fig. 2,
is tilted. In contrast to a purely spatial Bragg dispersion,
the bandgaps appear asymmetric with respect to the pos-
itive (β > 0) and negative (β < 0) directions of propa-
gation, highlighted by the oblique green region in Fig. 2.
The yellow window corresponds to the required asymmet-
ric dispersion curve in Fig. 1(b). In the following section,
this asymmetry is leveraged to generate space-time en-
gineered optical isolation. However, accurate analysis of

BZ

FIG. 2. Dispersion diagram for an infinite space-time modu-
lated medium with permittivity given by (4) and parameters
εr = 12.25, M = 0.5, ωm/ω0 = 0.13 and km/k0 = −2.27. The
dotted lines represent the limit of vanishingly small modu-
lation depth M → 0. The red vector, (kma, ωma/c), cor-
responds to the space-time modulation wavenumber and fre-
quency, where a = 2π/km is the spatial period and c is the ve-
locity of light. The dashed lines represent the Brillouin zone.
The highlighted green region represents an oblique bandgap.
The yellow window corresponds to the asymmetric bandgap
structure in Fig. 1(b).

the structure requires taking into account all of the dis-
persion diagram, including the regions located outside
the yellow window. We shall next develop an exact (full-
wave) modeling technique to calculate the scattering pa-
rameters for a space-time modulated slab. The proposed
method identifies all the modes excited inside the slab
and provides physical insight into the scattering mecha-
nism.

IV. SPACE-TIME MODULATED SLAB

The asymmetric bandgaps in the dispersion diagram of
a space-time-modulated slab may be leveraged for real-
izing optical isolation based on the principle explained
in Sec. II. Consider the periodic space-time modula-
tion (1) or (4) existing over a finite section of a back-
ground medium with permittivity εr, as shown in Fig. 3.
This structure may be analyzed with full-wave simula-
tion techniques that can handle space-time varying me-
dia, such as the finite difference time domain (FDTD)
method [53]. However, such an analysis does not provide
much insight into the operation mechanism. For gaining
such insight, we shall use the mode-matching analysis
technique.

In this technique, the structural modes and space-time
Bloch-Floquet harmonics, excited inside the slab, are
clearly identified. The electromagnetic fields in the in-
cidence region, in the region at the other side of the slab,
and the forward and backward propagating fields inside
the slab are represented as superpositions of all the pos-



4

sible modal solutions in each region with unknown co-
efficients, corresponding to the weighting factors of the
different modes. Details are provided in the next section.

forward excitation

backward excitation

FIG. 3. Scattering from a space-time modulated slab. A
finite part of a material with permittivity εr is spatio-
temporally modulated with the space-time varying permittiv-
ity (1) or (4). The structure responds differently when excited
from the left side or the right side, and is therefore nonrecip-
rocal. Top arrows represent forward excitation, where the
structure is excited from the left. Bottom arrows represent
backward excitation, where the structure is excited from the
right.

A. Mode-matching analysis

Consider a plane wave Ei = x̂ej(ωt−kz) incident on
the space-time modulated slab sandwitched between me-
dia with permittivity εr, as shown in Fig. 3, where
k = ω

√
εr/c. This wave will excite an infinite number

of modes inside the slab so as to satisfy the boundary
conditions on the two discontinuities delimiting the slab,
and each of them will be formed by an infinite number
of space-time harmonics. These modes are plotted in
Fig. 4(a), with red/blue dots corresponding to a given
excitation frequency. We now decompose the total field
of the forward problem (excitation from the left) into
modes with positive group velocities, represented by the
red dots,

E+(z, t) =

∞∑
p=−∞

a+p E
+
p (z, t), (5)

and the total field of the backward problem (excitation
from the right) into modes with negative group velocities,
represented by the blue dots,

E−(z, t) =

∞∑
p=−∞

a−p E
−
p (z, t). (6)

In (5) and (6), the terms a±p represent the unknown
modal coefficients, and each mode p is represented as

the space-time Bloch-Floquet expansion

E±p (z, t) = x̂ej(ωt−β
±
p z)

∞∑
n=−∞

E±p,ne
jn(ωmt−kmz), (7)

where βp represents the modal wavenumber, i.e. the pro-
jection of the dots onto the wavenumber (horizontal) axis.
Our convention for numbering positive (red) and negative
(blue) propagating modes is apparent in Fig. 4(a), with
the red/blue numbers corresponding to red/blue modes
excited at the frequency ω0. Each of these numbers corre-
spond to the index p in (5) and (6). In a space-time mod-
ulated medium, all the modes excited at ω0 are distinct,
as may be verified by transfer into the (oblique) Brillouin
zone as shown in Fig. 4(b). This transfer is achieved by
shifting the modes outside the Brillouin zone in Fig. 4(a)
by multiple integers of the oblique vector (kma, ωma/c)
until they fall in the Brillouin zone. In a conventional
static (or purely spatially modulated) Bragg structure,
all the red/blue points would fold back onto the same
red/blue point in the Brillouin zone, i.e. represent identi-
cal (linearly dependent) modes, so that all but one mode
may be discarded. In contrast, in a space-time mod-
ulated medium, the modes numbered in Fig. 4(a), are
distinct (linearly independent), corresponding to differ-
ent frequencies, and must all be taken into account for a
complete description of the physics.

Consider first the forward problem (excitation from the
left). The waves reflected and transmitted by the slab
may be represented as superpositions of plane waves in
the uniform medium with relative permittivity εr, propa-
gating in the −z and +z directions, respectively. In order
to satisfy the boundary conditions, these waves must in-
clude all the temporal frequencies generated inside the
slab, leading to the expansions

Er(z, t) = x̂

∞∑
p=−∞

arpe
j(ωpt+kpz), (8)

Et(z, t) = x̂

∞∑
p=−∞

atpe
j(ωpt−kpz), (9)

where ωp = ω + pωm, kp = ωp
√
εr/c and arp, a

t
p are

unknown coefficients.
The magnetic field corresponding to each excited slab

mode, namely E±p in (7), follows from the Maxwell-

Faraday equation, ∇×E = −µ0
∂
∂tH, leading to the

modal expansion

H±p (z, t) = ŷej(ωt−β
±
p z)

∞∑
n=−∞

H±p,ne
jn(ωmt−kmz), (10)

where

H±p,n =
β±p + nkm

µ0(ω + nωm)
E±p,n. (11)
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0 1-1-2

0 1 2-1

(a)

(b)

FIG. 4. Bloch-Floquet modes excited in the space-time mod-
ulated slab of Fig. 3, with the same parameters as in Fig. 2, by
an incident wave with frequency ω0. The horizontal dashed
line represents ω0 and the dots represent the corresponding
excited modes. The red dots represent the modes with a pos-
itive group velocity while the blue dots represent the modes
with a negative group velocity. The dashed lines delimit by
the (oblique) Brillouin zone. The green lines represent the
dispersion curves of the incident medium. (a) General rep-
resentation. (b) Modes or space-time harmonics transferred
into the Brillouin zone.

Application of the boundary conditions, i.e. continuity
of the tangential electric and magnetic fields at the slab
interfaces, leads then to a system of equations for the un-
known coefficients, whose solutions provide the reflected
and transmitted fields as well as the fields inside the slab.

B. Modal Distribution and Frequency Transitions

Consider a space-time modulated slab with dispersion
curves shown in Fig. 4(a), where the modulation fre-
quency is tuned such that the incident frequency excites
the gap mode (red index 0) in the forward direction and
a propagating mode (blue index 0) in the backward di-
rection, as shown in Fig. 4(a). As explained in the pre-

vious section, due to the tilt of the space-time diagrams,
an infinite number of slab modes are excited. The op-
eration of the device depends on the relative excitation
strength of these modes. When the structure is excited
from the left/right, these modes are excited with differ-
ent weighting factors, i.e. the structure is nonreciprocal.
This section quantifies the reflection and transmission,
and corresponding isolation, as well as the modes inside
the slab, for excitation the from the left/right.

forward

excitation

(a)

backward

excitation

(b)

FIG. 5. Magnitude of the modes excited in the space-time
modulated slab of Fig. 4 with L = 200λ. The normalized ex-
citation frequency is ω0 = 0.259c/a. (a) Slab excited from the
left. The gap mode (red index 0 in Fig. 4(a)) is excited dom-
inantly. All the other forward propagating modes (red) and
backward propagating modes (blue) are very weakly excited.
(b) Slab excited from the right. The dominantly excited mode
is a propagating mode (blue index 0 in Fig. 4(a)).
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1. Excitation from the left

Consider a space-time modulated slab with space-time
permittivity (4), background permittivity εr = 12.25,
modulation depth M = 0.02, temporal and spatial mod-
ulation frequencies ωm = 0.13ω0 and km = −2.27k0,
respectively, and length L = 200λ, excited at the nor-
malized frequency ω0 = 0.259c/a, where a is the spa-
tial period of the space-time modulated slab. The cor-
responding permittivity profile represents a sinusoidal
Bragg grating, whose permittivity perturbation propa-
gates towards the left inside the space-time modulated
region, with velocity vm = −|ωm/km|.

For excitation from the left, the amplitude of the
modes excited inside the slab, calculated by the mode-
matching analysis presented in the previous section, are
presented in Fig. 5(a). The red lines/diamonds corre-
spond to positive group velocity (forward propagating)
Bloch-Floquet modes, while the blue lines/circles corre-
spond to negative group velocity (backward propagating)
modes. It appears that mode p = 0 is much more excited,
by at least 50 dB, than the other ones, which indicates
that all the modes falling outside the highlighted yellow
window in Fig. 4(a) play an insignificant role, and that
the performance of the space-time modulated slab can
be closely predicted by the intuitive picture presented in
Fig. 1(b). The reason why the mode p = 0 is so much
more excited than the others is because it is the only one
that is close to the incident medium dispersion curve, as
seen in Fig. 4(a), and hence the only well phase- and
impedance-matched to the incident medium.

Moreover, Fig. 4(a) shows that this mode falls in a
bandgap of the modulated structure. It is thus evanes-
cent and exponentially decaying in the modulated struc-
ture, carrying almost no power to its right end. Since
the system is assumed to be lossless, the incident power
can only be reflected towards to input medium. This
is confirmed in Fig. 6(a), which plots the transmitted
and reflected amplitudes for different temporal frequency
harmonics. The transmission level is below −40 dB for
all frequency harmonics, and the power is almost fully
reflected at the blue-shifted frequency ω0 + ωm. This
is a space-time blue Doppler shift due to the fact that
the space-time varying medium profile has an opposite
(negative) phase velocity, vm = ωm/km, with respect to
the source on the left. This effect will be detailed in
Sec. IV B 3.

The levels of the transmitted and reflected power may
be controlled by tuning the modulation depth and the
length of the slab. For a given modulation depth, it is
always possible to reduce the transmitted power to a de-
sired level by increasing the length of the slab. Notice
that the reflected power is slightly greater than unity.
This is not at odds with energy conservation since en-
ergy is pumped into the space-time varying medium.

forward

excitation

(a)

backward

excitation

(b)

FIG. 6. Reflection and transmission (outside the modulated
slab) for the space-time modulated slab with the same param-
eters as in Fig. 5. (a) Slab excited from the left. The domi-
nantly excited evanescent gap mode decays exponentially and
conveys no power to the transmitted region. All of the power
is reflected. The reflected wave is blue-shifted. (b) Slab ex-
cited from the right. The dominantly excited propagating
mode transfers all its energy to the other end. Almost all the
power is transmitted at the fundamental frequency (ω0).

2. Excitation from the right

For excitation from the right, the amplitudes of the
modes excited in the slab are plotted in Fig. 5(b). The
negative group velocity (backward propagating) mode
p = 0 is excited much more, by at least 40 dB, than
the others, because it is much better matched to the in-
cident wave. As seen in Fig. 4(a), this slab mode is a
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propagating one, and it therefore carries almost all the
power to the other end. Hence, the structure is expected
to be highly transparent. This is confirmed in Fig. 6(b).
Almost all the power is transmitted at the incident fre-
quency, and the reflected power from the slab is below
−40 dB for all the harmonics. The amount of reflected
power is proportional to the mismatch between the space-
time modulated and incident media, which is in turn pro-
portional to the modulation depth.

3. Explanation of the Doppler shift in the reflected wave

Although not including any matter motion, the slab
medium in Fig. 3 supports space-time perturbation mo-
tion (4). This is why the wave reflected from the bandgap
structure experiences the temporal frequency shift ob-
served in Fig. 6(a). We shall next show that this shift,
from ω0 to ω0 + ωm, and hence of magnitude ωm, corre-
sponds to the conventional relativistic Doppler shift for a
wave reflected from a moving medium with the velocity
vm,

∆ω =

(
1 + |vm|/c
1− |vm|/c

− 1

)
ω0. (12)

Figure 7 shows the dispersion diagram for an infinites-
imal modulation depth and the corresponding geometri-
cal parameters related to the frequency shift in Fig. 6(a).
Note that at the bandgap corresponding to the spatial
and temporal frequencies (β0, ω0), the forward harmonic
n = 0 crosses the backward harmonic harmonic n = −1.
Since the backward harmonic n = −1 is a version of the
backward harmonic n = 0 that is shifted by the vector
−(km, ωm), the endpoint of the vector (β0, ω0)+(km, ωm)
lies at the intersection of the backward dispersion curve
n = 0 and the forward dispersive curve n = −1, as shown
in Fig. 7. This leads to the geometrical relation

|km| = 2β0 + |ωm|/c (13)

highlighted in the figure. Therefore the velocity of the
space-time medium reads

|vm| =
|ωm|
|km|

=
|ωm|

2β0 + |ωm|/c
. (14)

Substituting (14) into (12) results in the observed fre-
quency shift, ∆ω = |ωm|, which shows that perturba-
tion motion leads to the same Doppler effect as matter
motion. Note that this is true only in the absence of
dispersion, corresponding to the straight line condition
of (14), while introducing dispersion would allow one de-
part from (12) and engineer the Doppler shift.

The frequency shift may also be explained in terms of
intraband photonic transitions between the forward and
backward propagating modes of a single-mode waveg-
uide. For small modulation depth (M � 1), instead of

0
0 -1 -1 -2 -3-2

FIG. 7. Dispersion diagram and geometrical parameters in
the limit M → 0 for explaining the Doppler shift of the re-
flected wave in Fig. 6(a). The solid lines represent the disper-
sion curves of the background medium and c represents the
velocity of light in this medium. The green bands correspond
to the infinitesimal gaps.

considering the exact periodic problem involving the infi-
nite set of space-time harmonics, the problem may be ap-
proximated as follows. As an electromagnetic wave with
momentum and frequency (k0, ω0) in the background
medium penetrates into the space-time modulated sec-
tion, the space-time medium provides the extra momen-
tum and energy corresponding to ±(km, ωm) to the wave.
If the resulting momentum and energy (k0±km, ω0±ωm)
correspond to a mode of the waveguide, coupling to
this mode occurs and the incoming waveguide mode is
then gradually transformed into the waveguide mode at
(k0 ± km, ω0 ± ωm). In contrast, if (k0 ± km, ω0 ± ωm)
does not correspond to a mode of the waveguide, the
corresponding wave passes through the space-time mod-
ulated region almost unaffected. This interband tran-
sition picture and the associated coupled mode analy-
sis are accurate only for very small modulation depths,
and should therefore be considered with great care in the
case of strong modulations, as it ignores the rich spec-
tral features of the electromagnetic band structure of the
space-time modulated system. Nonetheless, this expla-
nation provides an alternative intuitive understanding of
the Doppler frequency shift described above.

For the space-time modulated problem considered in
the Sec. III, the dispersion curves of the single mode back-
ground medium and the corresponding momentum and
energy, ±(km, ωm), provided by the space-time medium,
are plotted in Fig. 8(a), for excitation from the left. As
(k0 + km, ω0 +ωm) corresponds to a backward propagat-
ing mode of the background medium, the incident for-
ward propagating mode gradually transforms to a blue-
shifted backward propagating mode, i.e. reflects with a
frequency up-shift exactly equal to ∆ω = ωm. In con-
trast, for a wave exciting the space-time modulated re-
gion from the right, the corresponding momentum and
energy, ±(km, ωm) provided by the space-time medium,
is plotted in Fig. 8(b). As (k0+km, ω0+ωm) does not cor-
respond to a mode of the background medium, it passes
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through the space-time region almost unaffected.

forwardbackward

in

out

mode available:

ST intraband transition

(a)

forwardbackward

in, 

out

no mode available:

no transition

(b)

FIG. 8. Explanation of the frequency up-shift in the reflected
field in terms of intraband photonic transitions. The dashed
lines correspond to the dispersion curves of the background
medium. The arrows represent the momentum end energy
provided by the space-time modulated region, ±(km, ωm).
(a) Left excitation: the forward propagating mode gradu-
ally transforms into a backward propagating mode with fre-
quency ω0 + ωm and is reflected. (b) Right excitation: the
propagating mode passes through the space-time section as
(k0 ± km, ω0 ± ωm) does not correspond to any waveguide
mode.

To see how the forward propagating wave is trans-
formed into a backward propagating wave at an up-
shifted frequency when the structure is excited from the
left, it is instructive to inspect the electric and mag-
netic field profiles of the dominantly excited gap mode.
The electric field profile for the gap mode [red index 0
in Fig. 4(a)] and the corresponding temporal frequency
spectrum are plotted in Fig. 9(a) and Fig. 9(b), respec-
tively. This evanescent mode has two dominant fre-
quency harmonics, one at ω0 and one at ω0 + ωm, where
ω0 is the incident frequency and ωm is the modulation
frequency. The remaining frequency harmonics are at
least 50 dB weaker, and may hence be safely ignored.
The ratio of the magnetic to the electric field η0H/E for
each harmonic, i.e. the corresponding effective refrac-
tive index, normalized to the refractive of the incident
region n0 =

√
εr, is plotted in Fig. 10. The harmonic at

the fundamental frequency (ω0) is forward propagating,

nω > 0, and completely matched to the incident medium,
i.e. ηω = η0 = 1/

√
εr. The harmonic at frequency ω0+ωm

has a negative effective refractive index nω+ωm
= −n0.

Therefore, this harmonic propagates backward, while be-
ing also fully matched to the incident medium. The blue-
shift mechanism is schematically explained in Fig. 11.
As the incident wave and the forward harmonic are fully
matched and have the same frequency, ω0, the incident
wave excites this harmonic without any reflection at fre-
quency ω0. The forward harmonic is evanescent and ex-
ponentially decays inside the slab. As it decays, it is
converted to the backward propagating harmonic, which
exponentially grows towards the interface with frequency
ω0 + ωm. This effect is clearly seen in the time domain
simulation of the gap mode (see animation in supple-
mental material [54]). The backward harmonic, which
is also fully matched to the incident region, then excites
the reflected wave at frequency ω0 + ωm when it hits the
interface, without any back-reflection inside the slab.

V. COMPARISON WITH MOVING SYSTEM

It should be noted that asymmetric photonic bandgaps
can also be produced in moving photonic crystals [55].
Consider a moving photonic crystal slab with a gap at fre-
quency ω0 in its reference frame. Assume that the crystal
moves with constant velocity towards to the left, and that
a wave impinges on it from the left with frequency ωF . In
the reference frame of the moving photonic crystal, this
incident wave is blue-shifted by the frequency amount ∆ω
corresponding to the relativistic Doppler effect, and it
would be reflected if this blue-shifted frequency fell in the
bandgap of the reference frame of the photonic crystal,
or if ωF +∆ω = ω0. In other words, for a static observer,
the bandgap would appear red-shifted to the frequency
ωF = ω0 − ∆ω. Similarly, in the reference frame of the
moving photonic crystal, a wave incident from the right
with frequency ωB would be perceived as red-shifted by
the frequency amount ∆ω, and it would be reflected if
ωB − ∆ω = ω0, i.e. to the frequency ωB = ω0 + ∆ω
for the static observer the gap is blue shifted. Thus, in
the reference frame of the static observer, the photonic
bandgaps are asymmetric.

Similar to space-time modulated media, such asymme-
try might be leveraged for the realization of nonreciprocal
optical devices [55]. However, despite similarities, mov-
ing media and space-time modulated systems have very
distinct natures. A moving medium produces a drag ef-
fect (Fizeau drag). As a result, forward and backward
harmonics appear to propagate with different group ve-
locities in the reference frame of a static observer. In
contrast, space-time modulated media do not alter the
group velocities of the forward and backward harmon-
ics, compared to the group velocities in the unmodulated
medium. Moreover, in the case of a moving (isotropic)
medium, the material parameters appear bianisotropic
to a static observer due to the drag effect [56–58]. This
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(a)

(b)

FIG. 9. Electric field pattern and frequency spectrum of the
gap mode for excitation from the left. (a) Electric field pat-
tern for the evanescent gap mode, corresponding to the red in-
dex 0 in Fig. 4(a). (b) Frequency harmonics of the evanescent
gap mode plotted in (a). This mode has only two significant
harmonics, at frequencies ω0 and ω0 + ωm.

complexity is eliminated by Lorentz transformation to
the reference frame of the moving medium, where the
medium becomes static and hence again isotropic. In
contrast, space-time modulation does not alter the con-
stitutive relations, i.e. an space-time modulated isotropic
material would remain isotropic. However, there is gener-
ally no frame of reference that can transform a space-time
modulated medium to a completely static medium.

VI. ISOLATION, MODULATION AND
BANDWIDTH

The proposed spacetime system can achieve very high
isolation levels even for extremely weak modulations.
This is achieved by a sufficiently long space-time mod-

−2 −1 0 1 2
(ω−ω0)/ωm

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

n
/
n

0

FIG. 10. Effective refractive index for the different harmonics
of the gap mode plotted in Fig. 9. Each point represents the
effective refractive index corresponding to the ratio η0Hn/En

for the frequency harmonic ωn = ω0 +nωm. The harmonic at
frequency ω0 has a positive refractive index (forward propa-
gating), and is fully matched to the incident region. The har-
monic at frequency ω0 + ωm has a negative refractive index
(backward propagating), and is fully matched to the incident
region.

ulated region. Isolation levels for different modulation
depths and slab lengths are plotted in Fig. 12. As the
modulation becomes weaker, longer space-time sections
are required to get the desired isolation levels. Note that
for each modulation depth, isolation saturates at a spe-
cific level as the length of the space-time modulated sec-
tion is increased. This saturation is caused by coupling to
the undesirable modes of the space-time slab (red indices
−1, 1,−2, 2, . . . in Fig. 4(a)), whose level represent an ef-
fective noise floor to the desired wave. For weaker modu-
lations, coupling to the undesirable modes is weaker, and
therefore higher isolation levels are achievable.

The required modulation frequency for creating the re-
quired asymmetric bandgaps is relatively low. It is pro-
portional to the width of the bandgap, which is directly
proportional to the modulation depth. For lower mod-
ulation levels, the bandgaps are narrower, and therefore
it takes a smaller modulation frequency to misalign the
forward and backward gaps. For very small modulation
depths (M � 1), the width of the first bandgap can be
approximated as ∆ω/ω0 = 2M/ [π(1−M)] [59]. There-
fore, a modulation frequency in the order of ωm = ∆ω =
2M/ [π(1−M)] is sufficient to displace the bandgaps to
as to achieve nonreciprocity. Decreasing the modula-
tion depth, reduces the required modulation frequency
as much as desired. For modulation depths smaller than
10−7, optical isolation may be achieved through ultra-
sound waves. However, the isolation bandwidth would be
proportionally small, and the length of the device would
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forward harmonic

backward harmonic

slab’s interface

re!ected wave

incident wave

FIG. 11. Transformation of an incident forward propagat-
ing wave to an up-shifted backward propagating wave. An
incident field with frequency ω0 impinges on the slab from
the left side. The only 2 significant harmonics of the gap
mode, at frequencies ω0 and ω0 + ωm, are represented at the
right side, where ωm is the modulation frequency. The in-
cident wave is fully matched to the evanescent harmonic at
frequency ω0, therefore it excites this harmonic without back-
reflection. The excited evanescent harmonic at frequency ω0

decays exponentially inside the slab, and its energy is trans-
ferred to the backward propagating harmonic at frequency
ω0 + ωm, whose energy increases exponentially as it reaches
the slab interface. The backward propagating harmonic is
fully matched to the incident region. It excites the reflected
wave at frequency ω0 +ωm without any back-reflection inside
the slab.

FIG. 12. Isolation versus modulated slab length for different
modulation depths. For weaker modulations, longer space-
time sections are required to achieve a specific amount of iso-
lation. For each modulation depth, the isolation saturates at
a specific level due to coupling to the undesired propagating
modes, which act as a noise floor. For weaker modulations,
coupling to undesired modes is weaker and higher isolation
levels are achievable.

be proportionally long. In such a case, the waveguide
may be folded into a space-time modulated ring resonator

for device footprint reduction [42].
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The nonreciprocity operation bandwidth is directly
proportional to the width of the bandgap since nonre-
ciprocity is produced by the bandgaps. The isolation
versus frequency for different modulation depths is plot-
ted Fig. 13. The lengths of the space-time slabs are cho-
sen according to the saturation isolation knee points in
Fig. 12. For modulation depths M = 0.1, M = 0.01
and M = 0.001, the bandwidth is less than 5%, 1% and
0.1%, respectively. A given bandwidth and isolation level
may be achieved from an interplay between the modula-
tion depth, and the length of the space-time modulated
section.

FIG. 13. Isolation versus frequency for different modulation
depths and slab lengths corresponding to the knee points in
Fig. 12. The bandwidth is directly proportional to the mod-
ulation depth.

VII. UP AND DOWN CONVERSION
REFLECTION MIXER

As the forward excited wave is fully reflected at a
shifted frequency, the structure can also operate as
a reflection-type optical mixer. Assuming modulation
propagation to the left, the incident signal is up-shifted if
the structure is excited from the left at the first bandgap,
and down-shifted when the structure is excited from the
right at the second bandgap, as depicted in Fig. 14. The
amount of frequency shift is directly proportional to the
modulation frequency. The mixing operation is almost
perfect as the incident power is almost fully transferred
to the desired up- or down-shifted frequency, without
generating undesirable harmonics and inter-modulation
products.

VIII. EXPERIMENTAL DEMONSTRATION

The space-time modulated system was realized at mi-
crowave frequencies in the form of a space-time varying

BZ

FIG. 14. Operation of the space-time modulated slab as a
reflection-type mixer. When the structure is excited from
the left at the down-tilted forward bandgap, the wave is fully
reflected and blue-shifted. When the structure is excited from
the right at the up-tilted backward bandgap, the wave is fully
reflected and red-shifted.

artificial microstrip transmission line shown in Fig. 15.
In order to provide spatio-temporal control on the dis-
tributed capacitance of the transmission line, it is loaded
with an array of sub-wavelengthly spaced shunt varac-
tors. The bias line at the bottom provides a DC bias
VDC plus a propagating RF bias,

V (z, t) = VDC + Vm cos(ωmt+ kmz) (15)

to the varactors, where ωm is the modulation frequency.
The bias phase velocity vm = ωm/km is related to the
bias line per-unit-length capacitance (Cav) and induc-
tance (Lav) by vm = 1/

√
LavCav. The varactors are

reverse biased and act as voltage controlled capacitors.
They thus add the space-time varying distributed capac-
itance

C(z, t) = Cav + Cm cos(ωmt+ kmz) (16)

to the signal transmission line. The structure in Fig. 15
therefore emulates a material with space-time varying
permittivity (4), with background permittivity εr ∝ Cav

and modulation depth M = Cm/Cav.
Figure 15 shows a photograph of the space-time vary-

ing microstrip line. The modulation circuit is comprised
of 39 unit cells of antiparallel varactors, uniformly dis-
tributed along the microstrip line, with the subwave-
length period p = 5 mm, corresponding to p/λm ≈ 1/19.
Therefore, effectively, the structure represents a medium
with the continuous permittivity (4). The corresponding
dispersion curves are plotted in Fig. 16, where the hori-
zontal line represents the excitation frequency. The inci-
dent frequency is chosen to excite the evanescent mode
marked by the red dot in the forward direction and the
propagating mode marked by the blue point in the back-
ward direction. The corresponding length at this fre-
quency is L = 6λ0.



12

RF biasmatched 

load

forward 

excitation

backward 

excitation

(a) signal transmission line

bias transmission line

varactorsground

port 1 port 2

RF biasto matched

 load

(b)

FIG. 15. Experimental realization of the space-time vary-
ing system in the form of a space-time varying artificial mi-
crostrip transmission line. (a) Schematic of the system, with
distributed-capacitance varactors modulated by a radio wave
emulating (4). (b) Photograph of the fabricated structure.
The varactors were are the BB833 from Infineon Technolo-
gies, with capacitance ratio Cmax/Cmin = 12. The structure
is L = 8 inches long and is excited at ω0 = 2π × 2.5 GHz.
The substrate is RT6010 from Rogers with permittivity 10.2,
thickness h = 100 mil and tan δ = 0.0023.

excited 

from right

excited 

from left

FIG. 16. Dispersion diagram corresponding to (16) with pa-
rameters ωm = 2π × 0.675 GHz, km = 415.79 rad/m and
M = Cm/Cav = 0.15 in the structure of Fig. 15. The yellow
window corresponds to the asymmetric bandgap structure in
Fig. 1(b). The red and blue dots represent the dominantly
excited mode for forward and backward excitations, respec-
tively.

The scattering parameters are plotted in Figs. 17(a)
and 17(b) for forward and backward excitations, respec-
tively. The evanescent mode decays by 10.5 dB before
reaching the end of the structure, corresponding to -
10.5 dB transmission in Fig. 17(a). The rest of the
power is reflected at the up-shifted frequency ω0 + ωm =
2π × 3.175 GHz. In the backward direction the incident

forward

excitation

(a)

(b)

backward

excitation

FIG. 17. Experimental (solid lines) vs. theoretical (dashed
lines) results for the isolator in Fig. 15 for the same param-
eters as in Fig. 16. (a) Forward excitation: the wave is al-
most fully reflected at the blue-shifted frequency ω0 + ωm =
2π × 3.175 GHz with a transmission level less than −10 dB.
(b) Backward excitation: the backward incident wave is fully
transmitted at ω0 = 2π×2.5 GHz. For clarity, the theoretical
results are shifted by 0.1ωm.

wave is almost fully transmitted. Therefore, the isolation
level is 10.5 dB. Higher isolation levels may be achieved
by increasing the length of the structure. The small dis-
crepancy between theory and experiment are attributed
to the metallic and dielectric losses in the experiment
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that have not been accounted for in the theory.

IX. CONCLUSIONS

Space-time modulation has been introduced as a tech-
nique to tilt the band structure of photonic crystals,
resulting in asymmetrically-aligned photonic bandgaps

for opposite directions of propagation. Such space-time
modulated slabs have been excited at the frequency cor-
responding to a photonic bandgap, exciting the evanes-
cent bandgap mode in the forward direction while excit-
ing a propagating mode in the opposite direction. Using
a full-wave modal analysis, it has been shown that in the
forward direction all the energy is reflected at a Doppler
shifted frequency. In the opposite direction, the incident
wave is fully transferred to the other end of the space-
time modulated slab by strongly coupling to one of its
propagating modes, hence realizing an optical isolator
and a reflection-type mixer.
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