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Liberato,∗,‡ Jérôme Faist,† and Giacomo Scalari∗,†

†Institute of Quantum Electronics, ETH Zürich, 8093 Zürich, Switzerland
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Abstract

It was recently demonstrated that, in deep subwavelength gap resonators coupled

to two-dimensional electron gases, propagating plasmons can lead to energy leakage

and prevent the formation of polaritonic resonances. This process, akin to Landau

damping, limits the achievable field confinement and thus the value of light-matter

coupling strength. In this work, we show how plasmonic reflectors can be used to create

an artificial energy stopband in the plasmon dispersion, confining them and enabling

the recovery of the polaritonic resonances. Using this approach we demonstrate a

normalized light-matter coupling ratio of ΩR
ω0

= 0.36 employing a single doped quantum

well with a resonator’s gap size of 250 nm equivalent to λ/3000 in vacuum, a geometry

in which the polaritonic resonances would not be observable in the absence of the

plasmonic reflectors.
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Introduction

The terahertz (THz) range combines material systems with large optical dipoles with ex-

tremely subwavelength resonant cavities obtained by exploiting metals in a lumped-circuit

approach.1,2 It is thus especially suited for the study of ultrastrong light-matter coupling phe-

nomena,3,4 in which the light-matter coupling, quantified by the vacuum Rabi frequency ΩR

becomes of the order of the bare frequency of the resonant light and matter modes ω0. The

Landau polariton platform,5,6 in which a photonic resonator is coupled to a two-dimensional

electron gas (2DEG) under applied magnetic field, has proven especially successful in ob-

taining values of the normalized coupling constant larger than one (ΩR

ω0
> 1, where ΩR

is the resonant vacuum Rabi frequency and ω0 the cyclotron frequency).7 and extremely

high cooperativity.8,9 These features made Landau polaritons an ideal testbed to explore

many strong-coupling phenomena, as the influence of enhanced vacuum fields on the DC

magnetotransport both in the linear10 and the integer Quantum Hall regimes,11 and the

dynamical manipulation of the real-space profile of the polaritonic electromagnetic field.12

Several demonstrations of few-electron systems have also been realized in Landau polariton

platforms.1,13,14

Reducing the modal volume of the electromagnetic resonator allows both to increase the

strength of the light-matter coupling and to reduce the number of involved electrons,15 thus

approaching the non-linear polaritonic regime. In standard nanophotonic platforms, both

metallic16 and dielectric,17 this strategy is known to break down for resonator features small

enough to excite propagative charge waves. In this case the standard local description of

light-matter coupling fails and more accurate nonlocal approaches have to be used.18,19

Our recent work20 demonstrated the existence of a related effect in Landau polaritons due

to the nonlocal excitation of propagative two-dimensional (2D) plasmons, limiting the possi-

bility of arbitrarily increasing the light-matter coupling by reducing the modal volume of the

photonic resonator. In the aforementioned Landau-polariton paper, the magnetoplasmons

which are collective inter-Landau level excitations are (ultra)strongly coupled to the elec-
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tromagnetic field confined in the gap of metamaterial complementary split-ring resonators

(cSRR). We observed the progressive broadening and amplitude reduction of the upper po-

lariton (UP) mode and the partial disappearance of the lower polariton (LP) branch by

reducing the gap of the coupled cSRRs below a critical length of the order of hundreds

of nanometers. This length is three orders of magnitude larger than the lengthscale rele-

vant for nonlocality in metals16 and one order of magnitude larger than the one relevant

for nonlocality in dielectrics.17 The observed phenomena cannot thus be due to the nonlo-

cal response of the cSRR. We discovered that the explanation lies instead in the nonlocal

response of the electron gas coupled to the cSRR to form the polaritons, and it is caused

by Landau damping due to the continuum of high-momenta propagative 2D magnetoplas-

mons excited by strongly subwavelength fields confinement. These propagating modes act

as loss channels and ultimately limit the achievable strength of the light-matter coupling,

which depends on the overlap between the photonic and the electronic eigenmnodes. As a

result, polaritonic modes can broaden or disappear, and the system enters a new regime of

discrete-to-continuum strong coupling.21–23 In this work we show how, by creating engineered

plasmonic reflectors around the gap of the resonator, thus creating an effective plasmonic

resonator, we can again confine these propagating waves and retrieve well-defined polariton

branches.

Methods

Reflector design

In order to confine the broadened polaritonic mode whose energy is leaking out as a result

of polaritonic nonlocal effects, we aim to introduce a plasmonic bandgap structure: two

planar reflectors in the magnetoplasmon propagation path, similar to plasmonic Bragg re-

flectors,24,25 confining the 2D plasmons between them. To implement such a planar reflectors

for the magnetoplasmon waves, we need to introduce a spatial modulation of the plasmonic
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dispersion, akin to a modulation of the refractive index in optical Bragg reflectors. One

simple method is to introduce a modulation in the carrier density of the 2DEG by struc-

turing the 90 nm-thick gallium arsenide (GaAs) cap layer on top of a quantum well channel

with nominal doping ρ2DEG = 3.2× 1011cm−2, as illustrated in Fig. 1. This structure, made
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Figure 1: The scheme of the plasmonic reflector design. (a) The 3D image, taken
by atomic force microscopy, of the cSRR with a gap size of d = 250 nm on top a plasmonic
reflector (the periodic h = 20 nm trenches on the top of the 2DEG). The parameters d, w1,
w2, and w are 0.25, 1, 1, and 1.5 µm, respectively. (b) A scanning electron microscopy image
of the same structure shown in panel (a).

by etching shallow h = 20 nm trenches can define a stop-band in the transmission spec-

trum of the wave propagating across the 2DEG plane.24,25 By introducing a defect of width

w = 1.5 µm at the center of this periodic (2 periods) structure, modes can be also defined

inside the stop-band.

Such a periodic structure with a central defect around the sub-micron gap of the cSRR

should allow, by reconfining the 2D plasmons, to retrieve the contrast in the amplitude and

enhance the lifetime of the polaritonic modes, effectively decoupling them from the lossy

continuum of propagating plasmonic modes. The three dimensional image of the fabricated

resonator measured by atomic force microscopy is also exhibited in Fig. 1a, indicating the

important design parameters such as the resonator’s gap (d), the central defect’s width (w),

and the width of the periodic structure of the reflector (w1 and w2).
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Sample fabrication

To fabricate the plasmonic reflector, the trenches were initially defined using a direct laser

writing lithography with Heidelberg DWL66+. The trenches were etched by a highly diluted

etching solution (slow etchant solution: H2O, 1 : 3). The slow etchant solution itself was

made of (H2SO4 : H2O2 : H2O, 1 : 8 : 60) with an etch rate of ∼ 9 nm/s for semi-insulating

GaAs. The diluted solution had an etch rate of ∼ 3 nm/s for semi-insulating GaAs. Reducing

the etch rate was done to increase the etching time and its accuracy, to be able to etch only a

few tens of nanometers. The etch rates were evaluated by a Dektak surface step profiler (with

a 5 µm radius tip) and a scanning electron microscopy. After an aligning step, the cSRRs

were fabricated on top of the etched trenches with electron beam lithography using a bilayer

resist process with 450 nm 495K-PMMA-A4 and 90 nm Dow Corning XR-1541-006 electron

beam negative resist. The lithography step was followed by deposition of 4 nm titanium and

200 nm of gold and a lift-off process. After a set of finite element simulation to find the right

dimensions for reconfining the UP mode, a sample with a trench depth of h = 20 nm was

chosen and fabricated. Figure 1b shows a scanning electron microscopy image of the etched

trenches in the 2DEG with a cSRR on top. The resonators were aligned and written on the

etched substrate using electron-beam lithography.

Spectroscopic measurements

The measurements are conducted in a THz time-domain spectroscopy (TDS) setup at cryo-

genic temperature T = 2.7 K as a function of an external out-of-plane magnetic field swept

between 0 and 4 T. In the THz-TDS setup, a pair of off-axis parabolic mirrors first are used

to collimate and focus the incident THz beam from a photoconductive switch26 on the sam-

ple. Then, through another pair of off-axis parabolic mirrors, the transmitted signal from the

sample is collected, collimated, and focused on a zinc telluride (ZnTe) crystal. Ultimately,

the THz signal is detected using an electro-optic detection scheme.27 Detailed information

about the THz-TDS setup is available in Ref.28
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Results and Discussion

Experimental results
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Figure 2: Recovering polaritons using plasmonic reflectors. (a) The measured trans-
mission of the coupled cSRR to inter-Landau level transitions in a 2DEG without and with
the plasmonic reflector (with h = 20 nm etching depth). The data without the reflector il-
lustrate the nonlocal effects (broadening of the UP mode and disappearance of the LP mode
for a finite value of the magnetic field), while the data with the reflector show normal polari-
tonic features, demonstrating the confinement of the 2D plasmons. The polariton branches
from the measurement of the sample with reflector are fitted by a Hopfield model (black solid
lines), extracting a normalized coupling of ΩR

ω0
= 36.3%. The red arrows mark the linear dis-

persions at multiple of the cyclotron frequency discussed in the main text. (b) Normalized
coupling versus the gap of the cSRR d. The dashed black line indicates the predicted depen-
dence of ΩR

ω0
on 1√

d
. The gray shading marks the region where the excessive broadening of

the UP due to Landau damping does not allow a measurement of the light-matter coupling.
The circle diameters are proportional to the fitting error. The results marked by red dots
are taken from Ref.,20 the blue one is the measurement performed in this paper. (c) Sections
of experimental data in panel (a) at three different values of the magnetic field, B = 0, 1
(anti-crossing), and 4T with (solid) and without (dashed) the plasmonic reflector.

Figure 2a shows the transmission measurement for the cSRR with d = 250 nm gap size

on a plasmonic reflector with h = 20 nm-deep trenches. The transmission measurement

without and with the reflectors in Fig. 2a clearly shows how the reflectors allow to mitigate
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the effects of nonlocality, showing well-defined LP and UP resonances extending toward zero

magnetic field as predicted by a standard local Hopfield theory with a normalized coupling

ΩR

ω0
= 36.3% (black solid lines).29 In Figure 2b we updated the plot from Ref.20 with the new

experimental point measured with the reflector. The values of ΩR

ω0
measured in our previous

publications (red dots) are plotted against the value of the central gap d, with the shaded

region indicating the nonlocal region in which the standard Hopfield model failed. With the

blue dot we mark instead the value ΩR

ω0
= 36.3% measured in this work. We can see how,

while the values measured in Ref.20 follow the 1√
d
dependency theoretically predicted by the

Hopfield model29 and marked in the figure with a black dashed line, the value measured in

the reflector sample is substantially smaller of what would be predicted for d = 250 nm and

more in line with what expected for a micron-sized gap. This phenomenon can be explained

by noticing that, while the fundamental electromagnetic mode of the cSRR is confined in

the central gap of width d = 250nm, the plasmonic reflectors confine the plasmons in the

central defect of width w = 1.5µm (Animated electric-field distribution are provided in Vi-

sualization 1-3). The coupling between light and matter is proportional to the integral of

the overlap between the photonic and plasmonic wavefunctions12 and the coupling strength

is thus limited by the looser plasmonic confinement. For a better comparison between the

polaritonic modes measured on the samples without and with the reflectors, sections of the

colormaps at three different values of the magnetic field, B = 0, 1 (anti-crossing), and 4T

are displayed in Fig. 2c.

Note that the linear dispersions corresponding to optical transitions at multiples of the cy-

clotron frequency (indicated with red arrows in Fig. 2a), also reported in a previous work,20

are unaffected by the presence of the reflector structure, appearing at the same place in both

panels.
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Theoretical and numerical analysis

In order to confirm our interpretation we have simulated the transmission spectra of the

coupled system with and without the reflector structure as a function of the magnetic field

using a finite element method. Results are shown in Fig. 3. Given the difficulty of precisely

modeling the modulation of the 2DEG’s density due to the partial etching of the cap layer

(only 20 out of 90 nm of the cap layer are etched, ensuring the 2DEG extends over the

whole structure), we simulated trenches etched both to h = 80 nm and to the full h = 90 nm,

the latter corresponding to having the gold in the cSRR directly in contact with the 2DEG

and thus to a hard border for the 2D plasmon propagation. The normalized coupling fitted

with the standard, local Hopfield model to the simulated data with nominal parameters are

ΩR

ω0
= 40.5% for h = 80 nm and ΩR

ω0
= 41.9% for h = 90 nm. The results obtained from

the simulations both with and without the reflectors match the experimental ones, with the

upper polariton substantially narrower in the presence of the reflector, and even more for

the totally etched cap layer. The simulated electric field distribution of the upper polariton

at finite magnetic fields (marked with star symbols in the top row) are also demonstrated in

the bottom row of Fig. 3, showing partially/fully confinement of the excited magnetoplasma

waves in the presence of the plasmonic reflector. To visually demonstrate the propagation

of the plasma waves, the animated versions of field distribution plots, where the phase of

the incident field is changing, are provided in Visualizations 1-3. Moreover, an additional

mode starts appearing at 405GHz at zero magnetic field in the simulation with the partially

etched cap layer.

While this extra mode is only barely visible the simulation performed with the 2DEG

extending below the full structure, it becomes much better defined in the simulation with

a totally etched cap layer, in which also a second extra mode at 834GHz becomes visible.

To understand the nature of these modes we start writing down the dispersion for the 2D
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Figure 3: Finite element simulation of the coupled structure without and with the
reflector structure. a-c: The simulated transmission spectra as a function of magnetic field
are shown for the coupled cSRRs with a gap of d = 250 nm (a) without the reflector structure
and with the reflector structure and a cap layer etched to (b) h = 80 nm and (c) h = 90 nm.
Similar to the observed measured data in Fig. 2a, the upper polariton in the sample without
the reflector is broadened (panel a). The upper polariton is substantially narrower in the
spectrum of the simulated structures with the reflector (in both partially/totally etched
caps). In the case of the 90 nm etched cap layer, where a hard boundary is created for the
2D plasmon propagation, three plasmonic modes starting from 405, 620, and 834 GHz at zero
magnetic field appear in the transmission spectrum (panel c). The polariton branches are
fitted by a Hopfield model (black solid lines), extracting a normalized coupling of ΩR

ω0
= 40.5%

(panel b) and ΩR

ω0
= 41.9% (panel c). d-f: The electric field distribution of the upper polariton

mode marked in the top row (black star symbol). The 2D plane is located at the plane of
the 2DEG (z = z2DEG). The plot corresponding to the coupled cSRR without the reflector
(panel d) clearly demonstrates the excitation of plasmonic waves and the nonlocal effect.
However, in the structures with the reflector, the plasmonic reflector confines the plasmons
in the central defect of width w = 1.5µm, partially for a cap layer etched to h = 80 nm
(panel e) and fully for the one etched to h = 90 nm (panel f).
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plasmons for a homogeneous 2DEG, which has form

ωP (k) =

√
ke2ρ2DEG

2m∗ϵ0ϵ̄(k)
, (1)

where ρ2DEG is the 2DEG density, m∗ the electron effective mass, and ϵ̄(k) is the background

effective dielectric function, in general k-dependent, describing the screening of surrounding

dielectric and/or metallic gates in the system.30 The analytical expression for the dielectric

function was derived by Chaplik31 in his study of the optical response of plasma oscillations

in 2DEG systems capped by a dielectric barrier of thickness l, both in the presence and

absence of a metallic gate. By calculating the potential energy of the charges in a crystal

lattice, and thus the elastic constants matrix determining their oscillation frequencies, he

found, for the two different configurations, effective dielectric functions, respectively, of the

form

ϵAu(k) =
ϵr
2
[1 + coth (kl)] , (2)

and

ϵAir(k) =
ϵr
2

[
1 +

1 + ϵr tanh(kl)

ϵr + tanh(kl)

]
, (3)

with ϵr the background dielectric constant of GaAs. In particular, the presence of a metallic

plane in close proximity to the top of the 2DEG (kl ≪ 1) leads the dispersion to diverge

from its standard square-root-dependence and to acquire a linear acoustic behaviour

lim
kl→0

ωP (k)|ϵ̄=ϵAu
≈

√
k2e2lρ2DEG

m∗ϵ0ϵr
. (4)

Several different metal-dielectric-2DEG configurations have been experimentally32,33 and the-

oretically34 studied, including stripe and disk gates35,36 as well as lateral metallic gates,37,38
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all generally leading to plasmonic dispersions interpolating between a linear and a square

root dependence over the wavevector k. In our geometry, assuming the plasmon is localised

in the defect of width w, it would be covered by gold except over the resonator gap of width d.

We thus approximate the effective dielectric function with the weighted linear superposition

ϵ̄(k) =
w − d

w
ϵAu(k) +

d

w
ϵAir(k). (5)

Doing so, and using the nominal parameters (ϵr = 13, ρ2DEG = 3.2× 1011 cm−2, l = 90 nm,

w = 1.5 µm, d = 250 nm) leads to the first four plasmonic modes at frequencies 0, 336,

606, and 828 GHz. Taking into account that, as in the case of standard Bragg reflectors

microcavities, the effective localization length would differ from the width of the defect w, and

that exact modeling of the 90 nm etched sample simulations would require us to consider the

residual coupling between the different plasmonic modes and the photonic resonator,12 the

agreement is good enough to allow us to identify the extra modes as higher lying plasmonic

resonances of the plasmonic resonator.

Conclusion

Our recent paper demonstrated how Landau damping due to the continuum of propagating

2D plasmons can strongly modify the polaritonic spectrum of a device in which a 2DEG is

coupled to a cSRR with sub-wavelength field confinement.20 In this work we showed how the

polaritonic features can be recovered by confining the plasmons using a plasmonic resonator.

The proposed design is based on periodic one-dimensional structures on both sides of a

central defect, to reflect the propagative magnetoplasmon waves and confine them close to

the gap of the cSRR photonic resonator. Both theoretical and experimental results confirm

we succeeded to confine the plasmons and we observed polaritonic resonances in a geometry

in which they were not visible in the absence of the plasmonic reflectors. Still, as in our

system the mode volume of the plasmonic resonator is substantially larger than the photonic
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mode volume of the cSRR, the value of the normalized light-matter coupling, given by the

overlap between the two, saturates and we could not substantially increase the strength

of the light-matter coupling. We note that finite element simulations of a similar systems

performed in Ref.,12 in which the quantum well was laterally etched in a strip providing a

perfect in-plane confinement to the plasmons, showed features which can be related to the

experimental results presented in this paper. In such a simulation it is in-fact possible to

see the plasmon localised not in the resonator gap but over the whole quantum well strip,

while still being able to observe normal polaritonic resonances. Our result could be further

improved by optimizing the reflector structure and can be extended to more general photonic

resonator (e.g., direct SRR6 or Bragg mirrors9), offering a generic solution to overcome the

nonlocality-induced losses.
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