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Abstract

INTRODUCTION: Experimental models are essential tools in neurodegenerative dis-

ease research. However, the translation of insights and drugs discovered in model

systems has proven immensely challenging, marred by high failure rates in human

clinical trials.

METHODS: Here we review the application of artificial intelligence (AI) and machine

learning (ML) in experimental medicine for dementia research.

RESULTS: Considering the specific challenges of reproducibility and translation

between other species or model systems and human biology in preclinical dementia
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research, we highlight best practices and resources that can be leveraged to quantify

and evaluate translatability. We then evaluate how AI and ML approaches could be

applied to enhance both cross-model reproducibility and translation to human biology,

while sustaining biological interpretability.

DISCUSSION:AI andML approaches in experimental medicine remain in their infancy.

However, they have great potential to strengthen preclinical research and translation

if based upon adequate, robust, and reproducible experimental data.

KEYWORDS

animal models, artificial intelligence, comparative biology, dementia, experimental models, FAIR,
in silico, in vitro, in vivo, iPSC, machine learning, neurodegeneration, preclinical, reproducibility,
translation

Highlights

∙ There are increasing applications of AI in experimental medicine.

∙ We identified issues in reproducibility, cross-species translation, and data curation

in the field.

∙ Our review highlights data resources and AI approaches as solutions.

∙ Multi-omics analysis with AI offers exciting future possibilities in drug discovery.

1 INTRODUCTION

The past decades have seen a steep rise in the availability of quan-

titative biological data within the context of experimental medicine.1

Preclinical experimental models for dementia research are no excep-

tion with large amounts of genomic, cellular, and functional pheno-

typing data generated and released in relation to neurodegenerative

diseases.2 As a testing ground for biological hypotheses and novel

drugs, these models are of crucial importance to the field. A multitude

of studies are published each year, with in vitro work spanning cell

culture,3–5 induced pluripotent stem cell (iPSC)-derived cultures,6–8

organotypic slice cultures,9,10,11 and organoids,12–15 while most pre-

clinical research using in vivo model systems focuses on rodents,

including transgenic animals,16 knock-ins,17,18 exposure models19,20

and more recently, multi-species models, such as human-mouse

chimeras.21 Other model species such as non-human primates offer

some advantages over murine models due to their phylogenetic simi-

larity with humans, longer lifespans, and natural presentation of histo-

logical, neuroanatomical, or cognitive features of disease pathology.22

Yet, despite this plethora of models, what stands out is the failure rate

of clinical trials for neurodegenerative disease treatments, particularly

in Alzheimer’s disease (AD).23 This raises questions not only about the

biological hypotheses underpinning drug discovery, but also the appro-

priateness of existing animal models and whether methods used to

translate insights from themodel tohumanbiology areup to the task.24

Improvements to clinical translation will require high quality experi-

mental work in robust and valid model systems, in which both exper-

imental screening and validation,25 as well as improved prediction of

clinical effectiveness harnessing artificial intelligence (AI) approaches

and machine learning (ML) will be important. In this position paper

we discuss AI approaches used in experimental medicine, specifically

focusing on approaches used to translate between model systems

and human disease biology. Any advanced data analytical approaches,

including ML, require robust and reproducible data as input, but

equally can contribute to improving reproducibility in experimental

research. This review discusses the key challenges of reproducibility,

cross-species translation, data curation, and interpretability of AI and

ML approaches. We provide recommendations and future directions

for driving forward progress in this relatively new field of application.

This review is one of a series of eight articles in a Special Issue on

“Artificial Intelligence for Alzheimer’s Disease and RelatedDementias”

published in Alzheimer’s & Dementia. Together, this series provides a

comprehensive overview of current applications of AI to dementia, and

futureopportunities for innovation to accelerate research. Each review

focuses on a different area of dementia research, including experi-

mental models (this article), drug discovery and trials optimization,26

genetics and omics,27 biomarkers,28 neuroimaging,29 prevention,30

appliedmodels and digital health,31 andmethods optimization.32

2 REPRODUCIBILITY

2.1 Defining reproducibility

Reproducibility is the extent to which the results of a study can be

recreated by applying the same analysis code and data used in the
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MARZI ET AL. 3

original study33 and can be stratified as computational, empirical

(data), and statistical.34 Complementing this, replicability is often dis-

cussed in concertwith reproducibility and refers to thedegree towhich

a future study employing the same method produces the same sci-

entific conclusions with independent analysis of new data. Both are

essential to generate findings that are robust and generalizable and

will be discussed collectively as reproducibility. Any advanced data

analytical approaches, includingML, will only yield accurate andmean-

ingful results if the underlying data are high quality and reproducible.

Conversely, ML approaches can be used to improve computational

aspects of reproducibility. Robust datasets should provide qualitatively

similar outputs across analytical approaches and should be general-

izable across studies.35 Publishing reproducible experiments will be

critical for meta-analysis of datasets across laboratories, will accel-

erate advancements, and maximize research investments. To address

this, the Turing Way project (the-turing-way.netlify.app) has provided

open access guidance on project design, communication, collabora-

tion, and ethics of reproducibility in data science. In addition, the FAIR

Guiding Principles for scientific data management and stewardship

have provided actionable recommendations to improve the Findability,

Accessibility, Interoperability, and Reuse of digital assets.36 Repro-

ducibility issues can also be inherent to the data type, for example,

issues associated with technical noise and bias in single cell genomics

data. Tools such as single-cell variational inference (scVI) use deep

neural networks and stochastic optimization to account for batch and

sensitivity effects when approximating gene expression distributions

across cell types.37 Deep learning strategies can also map single-

cell datasets onto existing references: single-cell architectural surgery

(scArches)38 allows integration across experimental models (including

mapping of disease-affected tissue onto control references).

2.2 Reproducibility issues in stem cell
technologies

Acquiring high-quality ex vivo neural tissue samples directly from

human patients is usually either ethically infeasible or logistically

intractable. However, in recent years stem cell technologies such as

human iPSCs have allowed brain cell types to be derived from patient

biopsies, opening a new era for modeling neurodegenerative diseases.

iPSC models have allowed researchers to study disease mechanisms

and genotype-phenotype associations in cell type-specific, physiolog-

ically relevant human models. iPSCs are as genetically diverse as the

donors they are derived from, enabling researchers to study sporadic

disease and polygenic risk factors, while simultaneously presenting

major challenges in reproducibility. The Human Induced Pluripotent

Stem Cells Initiative (HipSci) reported that 5% to 46% of phenotype

variation is due to individual genetic background.39 Another source

of heterogeneity in iPSC models are somatic mutations that arise

from environmental factors, such as UV exposure, and through the

reprogramming process.40 Non-genetic contributions to heterogene-

ity include the differentiation protocols, as well as cell culture and

storage conditions. A study across five laboratories using standard-

RESEARCH INCONTEXT

1. Systematic review: Experimental models in dementia

research are important tools for fundamental medical

research and drug discovery. Here we reviewed chal-

lenges in preclinical experimental neurodegenerative

disease modeling and translation to clinic, highlight-

ing machine learning (ML) and artificial intelligence (AI)

approaches used to overcome these issues.

2. Interpretation: We identified four key challenges: a lack

of reproducibility, poor data curation, species divergence,

and insufficient interpretability. We offer recommenda-

tions and examples of how to address these challenges,

using careful experimental design and targeted ML/AI

approaches.

3. Future directions: While only recently adopted in pre-

clinical dementia research, AI and ML models have great

potential to improve prediction, diagnostics, and biolog-

ical understanding of neurodegenerative diseases. With

high quality, well-curated data and the specific adap-

tation of approaches including transfer learning, struc-

tural equation modeling (SEM), simulations and neural

networks, both reproducibility and cross-species trans-

lation could be improved, while continued efforts should

address the interpretability of thesemodels.

ized protocols on identical iPSC lines found that laboratory-based

sources of variation can overpower genotypic effects.41 The develop-

ment of multiple iPSC-derived cell type co-culture systems and 3D

organoids has allowed modeling of neurodegeneration at the tissue

and organ level. However, heterogeneity remains a major challenge

again due to genetic variability of iPSC lines, in addition to the com-

plexprotocols required formulti-cellularmodels that introduce further

layers of non-genetic variabilities. Encouragingly, studies have repro-

ducibly generated human brain organoids exhibiting consistent cell

type diversity and developmental trajectories.42 However, consistency

remains to be demonstrated for disease-relevant readouts. Challenges

to reproducibility may also arise if the origin of the iPSC is patient-

derived and allogeneic or genetically modified from a control group.

Finally, iPSCs fail to capture gene regulatory signatures caused by

environmental factors during a person’s lifetime.43

2.3 Challenges to reproducibility in mouse
models

Mice represent themost commonly used animal model in neurodegen-

erative disease research, complementing human and in vitro studies

with a relatively quick reproduction time, inbred strains that minimize

genetic heterogeneity, andeasy commercial availability acrossmultiple
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4 MARZI ET AL.

strains. For mouse studies the genetic background of the line can have

a major influence on reproducibility.44 For example, mice expressing

human amyloid precursor protein (hAPP) when backcrossed to dif-

ferent strains exhibit differences in viability,45 disease course,46 and

neuronal excitability.47 Specific genetic loci have since been identi-

fied that modify net amyloid-β (Aβ) accumulation in these lines.48,49

The Jackson laboratory recently crossed the 5xFAD mouse model of

AD onto diverse genetic backgrounds to explore the contribution of

genetic variation in AD. This approachmore closely mirrored variation

within humandisease and identifiedmarked effects of background-line

specific genetic variation on the molecular and behavioral phenotypes

of the AD model mice.50,51 Such efforts are beyond the scope of most

laboratories and may be prohibitively costly. However, we recommend

whole-genome sequencing (WGS) of new genetic mouse lines by the

host lab. To improve reproducibility, and to allow the identification and

further investigation of key background genetic modifiers of the dis-

ease phenotype, ideally sequencing should be repeated after extensive

backcrossingbyacademic laboratories, and ifmice arebred to congenic

lines by commercial suppliers.

3 TRANSLATING BETWEEN SPECIES

3.1 Quantifying translatability of model species

Translating biological insights from model systems, particularly non-

human species to human disease biology, is one of the primary

challenges in preclinical dementia research. Notably, reproducibility

is a prerequisite for animal use in drug-discovery pipelines: Poor

reproducibility and design of experiments undermine the practical

relevance of any model system, impairing clinical trial design and

translation.52 Beyond this, limitations of the models themselves fur-

ther complicate and restrict what can be learned about human disease.

Induced and genetically engineered models for Parkinson’s disease

(PD), AD, frontotemporal dementia (FTD), and amyotrophic lateral

sclerosis (ALS) recreate initial biochemical events, such as misfolded

protein aggregates, RNA toxicity or repeat expansion mutations,53–59

but often fail to reproduce the whole breadth of downstream cel-

lular and phenotypic responses. For AD, effects of drug treatment

are poorly predicted by current models, as highlighted by the diver-

gent outcomes presented by different models when treated with the

same drug; their efficacy varies by type of intervention and species,

with best results achieved for cholinergic/glutaminergic drugs.60 For

example, use of transgenic mice16 and macaques61 enabled predic-

tion of cognitive and behavioral improvements from administration of

donepezil.62 In the context of aging, dogs have been considered as

suitable models for preclinical studies of AD, to investigate effects of

dietary factors, behavior, and therapies targeting Aβ aggregation.63–65

To quantify the extent to which AD models can reflect human AD

pathologies, integrated omics platforms for studying themolecular sig-

natures of neurodegenerative diseases in preclinical models and post

mortemhumanbrains haveprovenuseful,66 and led to increasedunder-

standing of disease-specific cellular responses to disease. AD models

have provided valuable insights into disease mechanisms, yet their

translation rate to late-stage clinical trials has been extremely low,

likely due to the complexity of human pathogenesis.67–70 Drugs target-

ing N-methyl-D-aspartate (NMDA) and cholinergic receptors provide

only symptomatic treatments for patients,71 and phase II/III clinical

failures of anti-Aβ antibodies72,73 have led to a reevaluation of the Aβ
cascade hypothesis.74 However, promising recent results in stage III

clinical trials of lecanemab75 and donanemab76 have put monoclonal

Aβ antibodies back at center stage. At the same time concerns remain

regarding the efficacy and costs of anti-amyloid immunotherapy aswell

as adverse side effects, most commonly in the form of amyloid-related

imaging abnormalities (ARIA).77–79

3.2 Challenges to cross-species translation

Translating a drug or treatment from the bench to the bedside is a

considerable challenge. Lack of reproducibility within the same model,

or across other models, is a major impediment to translatability. As

discussed above, the adoption of rigorous standards should be a pri-

ority to make drug discovery more efficient and avoid wasted time

and resources.80 Similarly, negative results and replication failures are

often not reported even though they would help raise red flags early

on and would prevent other researchers from treading down futile

paths.81 Perhaps the greatest stumbling block in developing an effec-

tive drug for dementia remains our imperfect knowledge of dementia

biology. This is compounded by models that do not faithfully repro-

duce all aspects of a pathology, prompting over-interpretation and

over-extrapolation of experimental results. The appropriate choice of

an experimental model for the question at hand should involve not

only consideration of whether aspects of biology under investigation

are being captured (eg, is the neuronal circuitry conserved? To what

extent is the gene of interest conserved, expressed and part of the

same network?), but also involves practical and ethical considerations.

Model choice will also be affected by the type of research question:

A basic science biological experiment, for example, discovery of the

mechanism of action of a gene or protein, may require a different setup

than a pharmacological analysis—such as the quantification of a drug’s

bioavailability in the brain. A frequently neglected aspect is the role

of sex-related differences in dementia biology and incidence. Given

that women are more likely to be affected by AD, while prevalence

of PD is substantially higher in men, sex-related biological differences

are clearly relevant and need to be investigated rigorously.82,83 How-

ever, many rodent experiments are conducted in animals of one sex

only (often males) for practical reasons, leading to conceivably biased

findings and often overlooking the sex-specific efficacy of drugs.84 It

is therefore important to assess sex-balanced cohorts, both at pre-

clinical and clinical drug development stages. The correct use and

development of better preclinical models should prevent several pit-

falls of clinical phases in drug development, such as proper evaluation

of pharmacokinetics and pharmacodynamics.70
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MARZI ET AL. 5

Further exacerbating these challenges is the lack of a controlled

ontologywhen describing or annotating results of amodel experiment,

relating these terms across species. This can include, for example, the

mouse phenotypes that correspond to specific symptoms of AD or

PD in humans. The Human Phenotype Ontology (HPO)85,86 and its

counterparts in non-human species aim to catalogue the full breadth

of clinical, behavioral, morphological, functional, physiological, and

cellular phenotypes observed in each species. All terms in these

ontologies are logically organized in a controlled hierarchical struc-

ture, which helps reduce ambiguity when comparing results within

and across species. TheUnifiedPhenotypeOntology (uPheno)87,88 fur-

ther extended this by providing mappings between homologous terms

across species, including human, mouse, frog, zebrafish, fly, worm,

and fission yeast. Adopting these standardized ontologies will help

minimize misinterpretations, enable downstream meta-analyses, and

provide extensive labelled training datasets for more complex ML

models. uPheno and other ontologies can be accessed and searched

through public resources such as Bioportal.89,90

3.3 Strategies and positive examples of
translation

In thinking about how insights from models of neurodegeneration can

be translatedmore effectively and considering improvements over the

years, it stands out that we still lack a model which recapitulates any

given neurodegenerative disease in its entirety. To effectively trans-

late between models of disease, experimental design must account for

disease-relevant factors such as developmental age, biomarker choice,

and appropriateness of model species. There is a critical need for iden-

tifying dementia biomarkers present in both preclinical models and

patients. An informative and quantifiable biomarker would enable ear-

lier diagnosis, assessment of disease progression, and evaluation of

treatment efficacy. Advances have been made in peripheral biomark-

ers. For example, serum tau protein levels correlate with cognitive

impairment in AD and with progression of pathology in a transgenic

mousemodel of AD,91 although they lack the accuracy and consistency

of imaging-based primary biomarkers. Positron emission tomography

(PET) imaging studies using 18F-fluorodeoxyglucose (FDG) have illus-

trated consistent patterns in AD patients and various mouse models

of AD,92,93 although there are concerns that rodent models are too

small for imaging studies to be translatable. Another class of systems

which may prove vital in advancing preclinical models for dementia

research are humanized animal models, wherein human genes are

introduced into amousegenome, or humancells are grafted intomouse

tissue. A humanized mouse model of ALS expressing human fused

in sarcoma (FUS) protein has already proved to better recapitulate

the disease in mice, namely, exhibiting midlife-onset progression of

motor-neuron degeneration not seen in previous models. The use of

the FUS Delta14 mouse has already yielded novel insights into ALS

development, demonstrating that neurodegeneration occurs even in

the absence of FUS protein accumulation.94

3.4 How evolution impedes (and promotes)
translation

Augmenting many of the above challenges is the fact that animal

models are highly evolutionarily divergent from humans. Humans last

shared a common ancestor with macaques ∼30 million years ago

(MYA), with rodents ∼90 MYA, with zebrafish ∼430 MYA, and with

fruit flies ∼800 MYA.95 The degree of homology (conserved features)

varies across anatomical regions, cell types, pathways, and genes.96,97

For example, while it is well-established that the nervous system is

homologous across vertebrates and invertebrates, even rodents and

macaques do not possess all brain regions, cell types, and connec-

tions present in humans.98 Furthermore, brain structures central to

dementia pathology, such as the hippocampus,99,100 striatum,101 and

prefrontal cortex,102,103 have undergone extensive anatomical and

molecular reorganization, strongly indicating equally drastic changes

in function.98 At the level of genes, mice share only a subset of iden-

tifiable 1:1 orthologs with humans (around 75%),103,104 a problem that

is further exacerbated in more distant species (Figure 1). This means

that biomarkers and cell type markers discovered in one species may

notbe readily applicable toanother. It also implies that the introduction

of transgenically humanized animal models may only partly alleviate

this issue, as the broader genetic background in which the humanized

genes are acting is still drastically different. The degree of evolution-

ary conservation varies across molecular pathways105 and cell types

(eg, neurons,106 astrocytes,107 microglia,108,109 oligodendrocytes110).

Therefore, systematic and quantitative investigation is first needed to

assess a feature’s degree of conservation, and thus validity, when using

a given species to model human biology,111 including in the develop-

ment of novel dementia therapeutics.

At the same time, interspecies variation can be a powerful source of

information to fuel ML models, because each species reflects billions

of years of natural experiments. State-of-the-art protein folding mod-

els such as AlphaFold2112 and ESMFold113 use multi-species protein

sequences to help accurately predict 3D protein structure. Another

application of ML models is to predict the effect of genetic variants by

learning the mapping between DNA sequence and functional genomic

annotations. Specifically, PrimateAI114 and its successor PrimateAI-

3D115 predict whether genetic variants observed in humans are likely

to be deleterious or benign based on whether the variant is com-

mon in non-human primate populations. The underlying premise being

that if a variant is tolerated in species closely related to humans, it

is more likely to be benign in humans as well. In this way data from

non-human species can be a valuable source of information for human

clinical research. Other genetic variant to function prediction models

includingEnformer,116 Basenji,117 anda semi-superviseddeep learning

approach proposed by Mourad118 implementing a convolutional neu-

ral network within a graph neural network (CNN-GNN) all observed

significantly boosted performance when training on data from multi-

ple species, as opposed to a single species. The developers of Nvwa,119

a deep learning model designed to learn DNA sequence motifs con-

trolling cell type-specific gene expression, also observed a boost in
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6 MARZI ET AL.

F IGURE 1 Genes shared between humans and non-human species. Phylogenetic tree annotated with the percentage of human genes that
have 1:1 orthologs in each species (shown numerically and as the filled proportion of each circle). The absolute number of 1:1 orthologs shared
with humans are plotted as the color of each circle. Constructed using the orthogeneR package.92 Key: Anolis carolinensis, green anole; Bos taurus,
cattle; Caenorhabditis elegans, roundworm; Canis lupus familiaris, dog;Danio rerio, zebrafish;Drosophila melanogaster, fruit fly; Equus caballus, horse;
Felis catus, cat;Gallus gallus, chicken;Homo sapiens, human;Macaca mulatta, rhesus macaque;Monodelphis domestica, gray short-tailed opossum;
Musmusculus, housemouse;Ornithorhynchus anatinus, platypus; Pan troglodytes, chimpanzee; Rattus norvegicus, brown rat; Saccharomyces cerevisiae,
baker’s yeast; Schizosaccharomyces pombe, fission yeast; Sus scrofa, pig; Xenopus tropicalis, western clawed frog.
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MARZI ET AL. 7

performance when the model was trained on multiple closely related

species at once. Others like the melanoma enhancer prediction model

DeepMEL120 successfully trained on cancer cell lines in one species

(human) to predict in another species (dog), which can be considered

a form of transfer learning.

4 RESOURCES

4.1 Existing major initiatives

In order to facilitate systematic and quantitative analyses of cross-

model and -species translatability, we describe a variety of resources

that can be applied to experimental modeling of dementia (Table 1).

Available databases include atlases of gene expression and genetic

variation in humans and some animal models, as well as phyloge-

netic resources. However, the rapid increase in knowledge relating to

somatic genomic and gene regulatory variation requires an additional

level of detail and curation to identify disease-specific determinants.

Limited proteomic information is available for proteins identified

as being involved in the pathogenesis of dementia, although this is

supported in part by detailed compilations of types of protein post-

translational modifications, many of which are dependent on manual

curation. Since protein conformation is directly related to protein func-

tion, there is a critically important role for structural biology databases

to predict secondary and tertiary structures of disease-associated pro-

teins and their interactors. Recent breakthroughs by models such as

AlphaFold2112 and ESMFold (Evolutionary Scale modeling)113 have

enabled the prediction of near-perfect 3D protein structure predic-

tion at scale acrossmany species. Precomputed predictions formillions

of proteins have already been deposited in public databases, such as

theAlphaFoldProtein StructureDatabase112,121 and theESMMetage-

nomic Atlas,113,122 rapidly accelerating a wide variety of biomedical

research fields.123 Combining verified structures of biologically rel-

evant proteins with information available in pharmacological and

pathway databases is essential for the identification of new potentially

druggable targets. Harmonizing these databases will promote more

sophisticated design of small molecules and other therapies targeting

specific proteins or pathways and thereby expedite drug development.

Validating biomarkers for dementia, whether identified by imaging or

biochemical means, brings with it the challenge of determining which

are the most accurate and informative predictors of disease progres-

sion and/or response to therapeutic intervention. It will thus become

increasingly important to establish detailed and accurate databases

that can be linked to each other as well as to electronic health records

of individuals to advance the prospect of personalized medicine for

dementia.

4.2 Resource gaps and how to fill them

Validating new models and biomarkers is an essential part of the

diagnostic and therapeutic discovery process. However, benchmarks

for validation are not always readily identified. When human data

are available, were they collected at the same time points, both in

terms of age and disease progression? Are they reproducible across

labs, and across populations? When using animal and in vitro mod-

els, how do you match developmental and aging stages with human

progression?147 Are benchmarks reproducible across models, genetic

backgrounds, and different laboratories? How can data from in vitro

experiments best be linked with model organisms and to human dis-

ease? To answer some of these questions, closer integration of the

available data ondisease pathogenesis needs to bepursued,withmeta-

data on timelines, genetic background and other relevant variables

pertaining to models and experiments that are not always systemati-

cally and accurately reported. Better patient stratification and quality

control of genetic and functional metadata recording would increase

the selection accuracy of optimum benchmarks. It would also enhance

information determining the choice of a specific model for a given

hypothesis to be tested. For example, whether the model accurately

recapitulates the neural circuit or the signaling pathway in question

will considerably affect the choice of model. Integration of the var-

ious existing datasets, coupled with a user-friendly database query

mechanism, would be ideal to facilitate the design of high-quality

experimental studies relevant to human disease.

5 USING ML TO SOLVE REPRODUCIBILITY AND
TRANSLATION CHALLENGES

5.1 Structural equation modeling

Despite widespread adoption and necessity of experimental models in

preclinical research, they present significant limitations both in terms

of reproducibility of resultswithinmodels, and translation frommodels

to humanpatients.148,149 Various computational approaches, including

ML, have been implemented to address each of these issues. Here we

highlight several approaches that have been used to enhance repro-

ducibility and translation, including those that haveyet tobeadopted in

dementia research. Amore comprehensive overviewofML/AImethod-

ology can be found in the methods optimization paper from the same

series.32 Mathematical and statistical modeling of experimental mod-

els based on prior domain knowledge (eg, structural equationmodeling

[SEM]) is an approach that can be used to support hypothesis gen-

eration and testing, provide insight into biological mechanisms, and

predict the effects of interventions.150 In contrast to conventional

deterministic approaches in SEM, in which fixed, predefined param-

eters determine predicted outcomes, probabilistic simulation-based

modeling allows researchers to operationalize and test the effects of

uncertainty at multiple levels within the model system. This includes

inputs (eg, drug uptake or sequestering), model structure (eg, variation

in body size or genetic background), and experimental measurements

(eg, behavioral outcomes,molecular assay readouts).151–153 Simulation

has been used within preclinical mouse models of metabolic disease

to predict disease onset and progression and to more accurately esti-

mate the impact of pharmacological interventions,154,155 though these
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8 MARZI ET AL.

TABLE 1 Major initiatives to share datasets applicable to experimental modeling of dementia.

Resource Description Link Reference

ADKnowledge Portal Data, analyses, and tools from theNational

Institute on Aging’s Alzheimer’s Disease

Translational Research Program

https://adknowledgeportal.synapse.org 124

AlphaFold Protein structure database https://alphafold.ebi.ac.uk/ 112

AlzGene Human AD variants http://www.alzgene.org 125

Alzforum AD related biomarkers, genes, mutations, risks,

rodent models, therapeutics, tools

https://www.alzforum.org/databases

Clinico-Genomic Database

(CGDB)

Detailed, curated, electronic health records linked

with comprehensive genomic profiling data of

over 300 cancer related genes for over 60,000

oncology patients

https://www.roche.com/about/priorities/

personalised_healthcare/combining-data-

to-advance-personalised-healthcare.html

Dementias PlatformUK Online environment to work with some of the

richest cohort data optimized for dementia

research.

https://www.dementiasplatform.uk/ 126

ESMFold Protein structure prediction using a large language

model

https://esmatlas.com/ 113

FlyBase D. melanogaster resources http://flybase.org 127

GeneOntology Gene function compendium http://geneontology.org 128

Genotype-Tissue Expression

(GTEx)

Human genotype-tissue expression https://gtexportal.org/home/ 129

GnomAD Human genetic variation https://gnomad.broadinstitute.org 130

Human Integrated Protein-

Protein Interaction

Reference (HIPPIE)

Human protein-protein interaction networks http://cbdm-01.zdv.uni-mainz.de/
∼mschaefer/hippie/

131

Model AD Explorer Gene expression and pathology data fromAD

mousemodels developed by theMODEL-AD

consortium

https://sagebio.shinyapps.io/

MODEL_AD_Explorer/

Mouse Genomes Project Catalog of all forms of genetic variation between

the common laboratorymouse strains and

construction and annotation of reference

genomes for the key strains

https://www.sanger.ac.uk/data/mouse-

genomes-project/

132

MRC-Wellcome Trust

HumanDevelopmental

Biology Resource

Tissue bank of human embryonic and fetal tissues

since 1999

https://www.hdbr.org/ 133

Neuro C-BIG Repository

(Canada)

Collection of biospecimens, longitudinal clinical

and neuropsychiatric information, imaging and

genetic data from patients with neurological

disease as well as healthy controls

https://cbigr-open.loris.ca/ 134

orthogene R package for easy and comprehensivemapping of

orthologous genes across hundreds of species

https://github.com/neurogenomics/

orthogene

104

Open Targets Drug target identification and prioritization https://www.opentargets.org 135

PhosphoNET Repository of known and predicted information on

human phosphorylation sites, their evolutionary

conservation, the identities of protein kinases

that may target these sites and related

phosphosites

http://www.phosphonet.ca/ 136

PhosphoSitePlus Information and tools for the study of protein

post-translational modifications including

phosphorylation, acetylation, andmore

https://www.phosphosite.org/ 137

Protein LysineModifications

Database (PLMD)

Lysinemodifications http://plmd.biocuckoo.org/ 138

(Continues)
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TABLE 1 (Continued)

Resource Description Link Reference

quantification of

Post-Translational

Modifications (qPTM)

database

Database of 6 types of PTMs in 4 different

organisms including human, mouse, rat and

yeast

http://qptm.omicsbio.info/ 139,140

Reactome Pathway database https://reactome.org 141

RSCB Protein Data Bank 3D structure data for large biological molecules

(proteins, DNA, and RNA)

https://www.rcsb.org 142

scArches Python package to computationally integrate

scRNA-seq datasets into existingMLmodels

https://github.com/theislab/scarches 38

UK Biobank Biomedical database containing in-depth genetic

and health information from half a million UK

participants

https://www.ukbiobank.ac.uk/ 143

UK Brain Banks Network Various tissue resources, supplies tissue samples

to academic and industry researchers

https://brainbanknetwork.ac.uk/

UKCRC Tissue Directory and

Coordination Centre

(TDCC)

UK’s only register of sample collections that

covers multiple diseases

https://biobankinguk.org/

UK StemCell Bank Facilitates the use and sharing of

quality-controlled stem cell lines

https://www.nibsc.org/ukstemcellbank 144

UniPep Library of putative glycopeptides http://www.unipep.org/ 145

WormBase Genetics, genomics and biology of C. elegans and
related nematodes

https://wormbase.org/ 146

approaches have not yet been extended to experimental models of

dementia.

5.2 (Semi-)supervised ML approaches

Relative to both deterministic SEM and probabilistic simulations, ML

approaches deviate even further from reliance on predefined model

assumptions and manual parameter assignment.156 Instead, ML gen-

erates an in silico model of the experimental system learned primarily,

if not entirely, from data. Regarding the issue of reproducibility,

supervised and semi-supervised ML has been applied to learn more

robust generalizations when mapping experimental inputs to outputs.

Read-across structure activity relationships (RASAR) was trained on

hundreds of thousands of animal toxicology experiments to learn the

relationship between binarized chemical fingerprints and safety out-

come metrics, achieving an average prediction accuracy greater than

that of any single animal experiment.157 Other ML approaches have

been used to address the issues of translatability by predicting exper-

iment outcomes in humans from matched in vivo or in vitro model

data. Efforts such as the systems biology verification (sbv) project’s

IMPROVER Species Translation Challenge aimed to advance meth-

ods for cross-species translation but were met with limited success in

part due to insufficient training data.158 Later attempts trained vari-

ous ML architectures on matched pairs of mouse models and human

disease samples to predict disease-associated gene signatures in the

latter.159–161 However, this paired interspecies case-control approach

is limited by the time it takes to manually curate such datasets. It also

presupposes the a priori validity of the animal model when learning

model-to-humanmappings.

High-quality data with large sample sizes are not always available in

human cohorts. Another variant of supervised ML uses transfer learn-

ing, which is often a generalML architecture for pretraining amodel on

a larger dataset that is less specific to your task (eg, histological images

from a large cohort of animal models) to learn basic features com-

mon to all data of that modality (eg, anatomical borders, cell contours,

subcellular features), and then fine-tuning the model with a smaller

but more task-specific dataset (eg, disease-associated pathologies in

post mortem histological samples). Substantial progress has recently

been made in applying AI-based strategies towards rapid and accu-

rate quantification of hallmark AD and PD pathologies at both the

micro- (eg, microscopy) and macro- (eg, magnetic resonance imaging)

scales.162–164 Transfer learning is also more regularly being applied to

omics data. For example, Stumpf et al. (2020) employed this strategy to

first train a cell type classifier using single-cell transcriptomic profiles

from mouse bone marrow, and then accurately predict human bone

marrow cell types.165

5.3 Unsupervised ML approaches

Unlike supervised learning, unsupervised ML aims to learn an in silico

model of thedatausingonly thedata itself (without theneed for labels).

Within the domain of single-cell omics (eg, genomics, transcriptomics,

epigenomics, proteomics, and multi-omics) there has been an explo-

sion of such methods.166,167 Specific unsupervised ML frameworks
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like autoencoders and generative adversarial networks (GANs) have

been used extensively for dimensionality reduction, data denoising

(eg, dropout correction), artifact removal (eg, batch, species), fea-

ture selection (eg, differential gene expression), data labelling (eg,

cell type, disease state), data integration (eg, across datasets and/or

omicsmodalities), clustering, data visualization, and other downstream

analyses.166–169

Unsupervised ML methods can also be applied to the problem

of reproducibility. Despite the large number of cells, the number of

donors in a given single-cell dataset is usually quite low (often just a

few individuals per study). This small effective sample size of “large”

datasets can introduce inflated false positive rates (eg, differentially

expressed genes between cases and controls) when trying to repro-

duce the results in other datasets derived from different individuals

using traditional statistics.170–172 Here too, ML can be of great util-

ity. Resources like the scArches database38 store models previously

trained on one or more datasets (eg, an unsupervised dimensionality

reduction model trained on a large single-cell dataset of cell lines from

controls). Other users can then download these pretrained models

and apply them to their own smaller datasets (eg, embedding single-

cell data from a cohort from AD and control group cell lines into the

same low-dimensional space as the large dataset). In this example of

unsupervised transfer learning, models can learn patterns acrossmany

datasets, increasing the effective sample size and the likelihood that

the results will generalize to new unseen datasets. It also obviates

the need for direct access to all of the pretraining datasets, which

can be non-trivial to acquire and reprocess. Similar transfer learning

approaches have been used to successfully predict the effect of novel

drug-inducedperturbations in cancer cell lines frompreviously learned

latent embeddings.173,174 Recently, several models trained on a large

corpusof scRNA-seqdata (eg, single-cellGenerativePre-TrainedTrans-

former [scGPT],175 single-cell bidirectional encoder representations

from transformers [scBERT],176 Geneformer177), have been put for-

ward as generalist base models to be fine-tuned by users with smaller,

more targeted datasets. The goal of such resources is to make trans-

fer learning both more robust and easily accessible to the research

community.38

Finally, unsupervised learning methods can be flexibly combined

with supervised ML, simulations, SEM and/or traditional statistical

approaches to form innovative solutions to problems inadequately

addressed by any one method. GNNs are particularly adept at utilizing

supervised and/or supervisedMLarchitectures and canefficiently han-

dle hierarchical or semi-structureddata.178 Specifically, theyhavebeen

used to predict pathway-specific diseasemechanisms,179 protein func-

tion across multiple species,180 disease-associated disruptions in brain

connectivity,181 AD status,182,183 rare disease gene targets,184 and

drug response,185,186 aswell as to integratemulti-modal data.187,188 In

this way, ML can be used to aid in the design, reproduction, interpre-

tation, and translation of studies in experimental models even prior to

investment of extra time and resources in new experiments or clinical

trials.

5.4 Interpretability and trust in ML approaches

Despite their many advantages, a major hurdle for the widespread

adoption of cutting-edge ML approaches is the lack of trust in black-

box predictions,189 particularly in healthcare environments where

there are concerns of patient safety and privacy.190,191 This lack of

trust is not entirely unfounded, as ML algorithms exploit patterns in

data, even if they are not relevant to the problem of interest.192 To

minimize this risk, there is increasing focus on making models more

easily interpretable,193 less biased,194 and less susceptible to adver-

sarial attacks.195 Interpretability is a particularly difficult challenge

as improvement in this domain is often (though certainly not always)

accompanied by decreased predictive performance.196 Nevertheless,

advances continue to be made by way of text-based explanations,

visualizations, explanations by example or simplification, and feature

relevance.194,197 These techniques have increasingly been applied

to biomedical sciences and healthcare,178,198,199 such as for drug

discovery200,201 andpredictionof drug-drug interactions.202 Advances

have particularly been reported in the domain of medical imaging

analysis,203 employing techniques such as visual attention,204 saliency

maps,205 and SHapley Additive exPlanations (SHAP)206 for dementia

diagnosis basedonneuroimagingdata.Overall, the adoptionof explain-

able and interpretable AI for dementia-related applications, however,

remains scarce to date, leaving ample opportunities for progress.

5.5 Future applications

Recent advances in AI, driven by composite deep learning models with

near human-like intelligence, have the potential to change the land-

scape of neurodegenerative research in the future. The success of

these approaches often relies on large-scale, high-dimensional, uni-

form datasets, which are required for training complex algorithms. For

experimental researchers, generating such datasets is both costly and

time consuming. To keep up with the pace at which AI is advancing,

rather than wait for large uniform datasets to be created, researchers

should focus on developing novel, composite methods for large het-

erogeneous datasets, integrated from different sources, such as those

recently developed in the single-cell genomics field.175–177,37,38 Focus-

ing on developing methods that do not rely on high-dimensional uni-

form data will ensure experimental research into neurodegenerative

disease advances alongside AI.

Large-scale population cohorts are likely to facilitate the develop-

ment of massive uniform datasets that lend themselves to application

of AI approaches. UK Biobank has collected genetic information and

deep phenotyping data on half a million individuals in the UK.207 In

the context of neurodegeneration, there is an important argument to

facilitate brain donation from UK Biobank participants in the future,

so that phenotypic data can be linked to neuropathological mea-

sures and genetic variation. Complementing this, WGS data collected

to screen for genetic disorders as a part of the Newborn Genomes
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Programmemay be instrumental in accelerating the diagnostic process

of infants born with rare genetic conditions.208 Automated AI anal-

ysis pipelines could streamline the process of detecting rare genetic

variants or phenotypic associations. For example, pathogenic vari-

ants could be filtered and ranked using deep phenotype integration

based on natural language processing of the medical literature. In

the context of dementia, the detection of variants known to increase

risk of AD could be used as a proxy for testing family members. In

the long run, ML could be used for evaluating genotype–phenotype

correlations,209 biomarker identification,210 to predict individual dis-

ease risk and gene function.211 This improved knowledge of disease

biology could then be experimentally validated in model systems to

develop better diagnostics and therapeutics.

Generative large language models (LLMs) are generalist AI models

trained on a massive corpus of text to achieve convincing natu-

ral language capabilities with an extensive breadth of knowledge.

Open-access implementations of LLMs, including OpenAI’s chatGPT,

Google’s Bard, Bing, orMeta’s LLaMA, have recently gainedmuch pub-

lic interest. Iterations of thesemodels are rapidly evolving, even as they

continue to be applied to awide variety of real-world problems, includ-

ing biology212 and medicine.213,214 Several examples that have been

specifically trained to synthesize, mine, or infer biomedical knowledge

are Flan-PaLM/Med-PaLM (instruction fine-tuned/ medical Pathways

Language Models),215 BiomedGPT (Biomedical Generative Pre-

trained Transformer),216 PubMedGPT/BioMedLM,217 GeneGPT,218

BioGPT,219 PubMedBERT,220 BioLinkBERT,221 Galactica,222 and

BioMegatron.223 These approaches have even been adapted for

non-language based biological data (eg, scRNA-seq).175,176 While

static versions of LLMs trained on a snapshot of data from a particular

time point are prone to hallucinations (ie, providing real-sounding

but objectively false answers), this can be partly ameliorated through

the addition of internet-search capabilities. Open-source projects like

AutoGPT224 seek to extend this even further by forcing the model to

query itself in order to identify what information it is currently lacking

to answer the user’s question, enabling a semi-automated loop of

knowledge gathering and knowledge synthesis. While there are plenty

of remaining challenges to address, LLMs are uniquely positioned

to offer human-understandable justifications for their reasoning by

querying them with natural language, just as one would with another

human. For example, one may ask an LLM to predict whether a partic-

ular drug will have a side effect of motor impairment in mice, whether

this side effect will also occur in humans, and to provide well-cited

justifications for its reasoning. In combination with proper validation,

human oversight, and ethical implementation, LLMs are likely to open

entirely new avenues of biomedical research and healthcare at scale.

5.6 Key recommendations

To improve the quality and scope of the application of AI to experimen-

talmodels of neurodegenerative diseases and overcomemajor existing

challenges (Figure 2), wemake four key recommendations:

Enhancing reproducibility across model systems and experiments: To

enhance applications of AI and ML approaches in model systems,

reproducibility should become a priority, driven by large enough, well-

controlled experiments, that allow the statistical study and resolution

of biases and artifacts. Conversely, ML approaches including simu-

lations can improve model reproducibility in experimental research,

as can pretrained unsupervised clustering methods in the context of

single-cell genomics.

Improving upon small and disjointed datasets: AI and ML methods

often require large and high-dimensional training datasets to yield

robust and appropriately fitted models. We recommend increasing

experimental sample sizes and enhancing integration of existing data

resources with biological and clinical data to facilitate this. Numerous

data resources are already openly available spanning genomics, pro-

teomics, phylogeny, and clinical databases. These should be expanded

and leveraged forMLanalyses in experimental dementia research.Ulti-

mately, we should aim to generate massive, uniform datasets, while

continuing to develop methods to deal with heterogeneity in the

meantime.

Accounting for species divergence through evolution: Inherent dif-

ferences in biology between species, some driven by millions of

years of evolution, complicate translation of biological insights

from animal models to human disease. We recommend using infor-

mation on evolutionary distances in combination with transfer

learning or autoencoder approaches to improve cross-species

translation.

Enhancing interpretability and transparency of AI/ML approaches: As

with applications of AI and ML more generally, there is a risk for

opacity and distrust in the methods, especially where clinical data

are concerned. A focus on addressing these issues by adapting exist-

ing approaches and continued research advances in this domain are

needed to increase trust andmodel interpretability.

6 CONCLUSIONS

Animal models are an important tool for assessing mechanisms of neu-

rodegenerative disease in complex in vivo settings and prioritizing

therapeutic approaches. However, promising drugs in animal mod-

els have repeatedly shown high failure rates in human clinical trials.

Here we reviewed challenges to translation from model to human,

including issues surrounding reproducibility, with the aim of making

recommendations to enhance reproducible research and translatabil-

ity via the adoption of AI approaches. Successful applications of AI

and ML in the domain of experimental dementia research are limited;

however, other biomedical research fields have witnessed promis-

ing advances. Such methodological developments and applications

can be adapted to research questions in neurodegeneration, building

on existing and novel high-dimensional datasets, including single-cell

and spatial omics, proteomics, metabolomics, and biomarker profiles.

With the projected growth of quantitative data on preclinical models

for dementia research, we are optimistic that increased translational
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F IGURE 2 Key challenges which need to be overcome to enhance the application of machine learning (ML) and artificial intelligence (AI)
approaches for experimental models in dementia research.

efficiency and improved model reproducibility can be enhanced by

appropriate and careful application of AI and ML approaches in the

field.
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