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Ligand modelling is an essential element of drug discovery. To accurately

simulate chemical and physical phenomena, it is necessary to employ molecular

models that provide reliable results in a timely fashion. The gold standard

method in ligand modelling remains quantum mechanics (QM). Owing to the

high computational cost of QM methods, their use in ab initio simulations is

limited to all but the simplest systems. Molecular mechanics force fields (MM

FFs) have also been around for decades. They stand as the cheapest alternative

to QM methods, despite their widely-known accuracy limitations. A promising

new alternative to FFs are the machine-learning (ML) potentials. ML potentials

are molecular models based on artificial intelligence, seemingly more flexible

and accurate than FFs, although more computationally costly.

For a given FF functional form, the quality of the parameterisation is crucial and

determines how accurately observable properties can be computed from simula-

tions. Whilst accurate FF parameterisations are available for biomolecules, the

parameterisation of novel drug candidates is particularly challenging, as these

may involve functional groups and interactions for which accurate parameters

are not available. To address the problem of FF accuracy, we developed ParaMol,

software that has the capability of reparameterising class I FFs with a special

focus on druglike molecules. We demonstrate that, within the constraints of a FF
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functional form, ParaMol can derive near-ideal FF parameters. Additionally, we

illustrate the best practices to follow when employing specific parameterisation

routes; the sensitivity of different fitting data sets, such as relaxed dihedral

scans and configurational ensembles, to the parameterisation procedure; and the

features of the various weighting methods available to weight configurations.

Monte Carlo (MC) and molecular dynamics (MD) simulations can be performed

using FFs, ML potentials, or QM methods. The higher the level of theory used in

MD or MC simulations, the more reliable the structural information extracted

from them will be, despite the increase in computational cost. To combine the

accuracy of ab initio simulations with the efficiency of classical ones, we present

a multilevel MC method that allows quantum configurational ensembles to be

generated while keeping the computational cost at a minimum. We show that

FF reparameterisation is an efficient route to generate FFs that reproduce QM

results more closely, which in turn can be used as low-cost models to approach

the gold standard QM accuracy. We demonstrate that the MC acceptance rate is

strongly correlated with various phase space overlap measurements, constituting

a robust metric to evaluate the similarity between any two levels of theory. As

more advanced applications, we apply the nMC-MC algorithm to generate

the QM/MM distribution of a ligand in aqueous solution and present a self-

parameterising version of the method.

Recently, ML potentials have emerged as an alternative to FFs. However, owing

to their newness, there are many unanswered questions concerning their applica-

bility that must be addressed. To this end, we present a comparative study that

evaluates the performance of a ML potential, a traditional FF, and an optimally

tuned FF in the modelling of a set of 10 γ-fluorohydrins that exhibit a complex

interplay between intra- and intermolecular interactions in determining con-

former stability. For this set of molecules, we benchmark the performance of each

molecular model, evaluating their energetic, geometric, and sampling accuracy

relative to quantum mechanical data, both in the gas phase and chloroform solu-

tion. We also assess the performance of the aforementioned molecular models in

estimating J-coupling constants by comparing their predictions to experimental
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data available in chloroform. We then discuss and highlight the strengths and

weaknesses of each model, providing guidelines for future development of FFs

and ML potentials.

The complexity and scope of the problems addressed in this thesis preclude com-

plete or definitive solutions. Even so, we believe the outcomes of this work may

have implications in different areas of chemistry and biology, especially for those

interested in modelling the conformational landscape of small organic molecules.

The overall conclusions of this thesis are: FFs can be reliably parameterised in an

automated fashion using ParaMol; optimally tuned FFs can work as gateways to

generate QM ensembles, at least for small molecules in the gas phase; despite

the ability of ML potentials to reproduce their training data, the transferability

of ML potentials to other domains is limited, and conventional FFs still play an

important role in molecular simulations.
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sation (GAFF.MOD). . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Appendix A.18 Flowchart representing the workflow of the ParaMol’s
built-in task that automatically identifies and optimises soft di-
hedrals. The green arrows denote conditionals for which the
evaluated condition is true, whereas the red arrows denote condi-
tionals for which the evaluated condition is false. . . . . . . . . . . 248

Appendix B.1 Convergence of the self-parameterising nMC-MC cal-
culation for octahydrotetracene. Top panel: Plot of the values
of each term included in the objective function at the beginning
(dashed lines) and end (solid lines) of each iteration. XE corre-
sponds to the potential energy term, XF to the forces term, and
θL2 to the regularisation term. Bottom panel: Plot of the RMSD of
the parameters as a function of the iteration number. . . . . . . . . 251

Appendix B.2 Comparison between the nMC-MC acceptance rates
obtained for FFs reparameterised using data sets containing struc-
ture sampled at either 300 K or 500 K. The FFs used to calculate the
acceptance rates were derived employing non-Boltzmann weight-
ing without any regularisation. The error bars correspond to the
standard deviation of the results of 4 different nMC-MC samplers.
Each sampler performed a total of 2× 105 nMC-MC sweeps. . . . 252

Appendix B.3 hMC acceptance rates for the set of molecules used in
Chapter 6. The FFs were derived employing uniform weighting
with (dark blue) or without (light blue) L2 regularisation. The
training data set contained configurations sampled at 500 K. The
errors bars correspond to the standard deviation of the results of
4 different nMC-MC samplers. Each sampler performed a total of
2× 105 nMC-MC sweeps. . . . . . . . . . . . . . . . . . . . . . . . 253



LIST OF FIGURES xxi

Appendix B.4 hMC acceptance rates for the set of molecules used
in Chapter 6. The FFs were derived employing non-Boltzmann
weighting with (dark blue) or without (light blue) L2 regularisa-
tion. The training data set contained configurations sampled at
500 K. The errors bars correspond to the standard deviation of the
results of 4 different nMC-MC samplers. Each sampler performed
a total of 2× 105 nMC-MC sweeps. . . . . . . . . . . . . . . . . . . 253

Appendix B.5 Top panel: Distribution of the C5-C4-N3-C1 dihedral
of acetanilide as obtained in SCC-DFTB-D3 MD and nMC-MC
simulations. Lower panel: Distribution of the C5-C4-N3-C1 di-
hedral of acetanilide as obtained in MD simulations using the
original GAFF and the non-Boltzmann-weighted L2-regularised
BAT-LJQ FF. The SCC-DFTB-D3, GAFF, and BAT-LJQ MD were
simulated during 10 ns (snapshots collected every 1 ps), and the
nMC-MC sampler performed a total of 2× 106 MC sweeps. The
temperature of the simulations was 300 K. . . . . . . . . . . . . . . 254

Appendix B.6 Configurational distributions of the C2-C1-C4-C5 vs.
C3-C1-C4-C6 dihedrals for biphenyl. The SCC-DFTB-D3 MD was
simulated during 10 ns (snapshots collected every 1 ps), and the
GAFF and BAT-LJQ MD were simulated during 100 ns (snapshots
collected every 10 ps). The nMC-MC sampler performed a total of
4× 106 MC sweeps. The temperature of the simulations was 300 K.255

Appendix B.7 Configurational distributions of the C4-C2-O1-C5 vs.
C2-O1-C5-C6 dihedrals for diphenyl ether. The SCC-DFTB-D3
MD was simulated during 10 ns (snapshots collected every 1
ps), and the GAFF and BAT-LJQ MD were simulated during 1
µs (snapshots collected every 100 ps). The nMC-MC sampler
performed a total of 2× 106 MC sweeps. The temperature of the
simulations was 500 K. The distributions at 300 K are not show as
they were very far from convergence. . . . . . . . . . . . . . . . . 256

Appendix B.8 Top panel: Distribution of the C7-C5-S2-N1 dihedral
of sulfanilamide as obtained in SCC-DFTB-D3 MD and nMC-
MC simulations. Lower panel: Distribution of the C7-C5-S2-N1
dihedral of sulfanilamide as obtained in MD simulations using the
original GAFF and the non-Boltzmann-weighted L2-regularised
BAT-LJQ FF. The SCC-DFTB-D3 and BAT-LJQ MD were simulated
during 10 ns (snapshots collected every 1 ps), and the GAFF MD
was simulated during 1 µs (snapshots collected every 100 ps). The
nMC-MC sampler performed a total of 2923640 MC sweeps. The
temperature of the simulations was 300 K. . . . . . . . . . . . . . . 257

Appendix C.1 Scatter plots of the relative conformer energies (∆∆E)
versus the RMSD of atomic positions. Each point was obtained
by performing a geometry optimisation using GAFF, GAFF.MOD,
or ANI-2x, starting from all QM minima within 12.552 kJ mol-1 (3
kcal mol-1) from the global minimum. The QM reference is the
MP2/6-311++G(2d,p) level of theory. . . . . . . . . . . . . . . . . . 260



xxii LIST OF FIGURES

Appendix C.2 Populations in the gas phase of the conformers with
IMHBs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Appendix C.3 Top panel: Distributions of the hydrogen bond (HB)
lengths as obtained from the ANI-2x-RESP/CHCl3 MD simula-
tions (solid lines), and HB lengths of the geometries optimised at
ωB97X/6-31G*/PCM (dashed lines). Bottom panel: Distributions
of the hydrogen bond (HB) lengths as obtained from the GAFF-
RESP/CHCl3 MD simulations (solid lines), and HB lengths of
the geometries optimised at MP2/6-311++G(2d,p)/PCM (dashed
lines). Only conformers with IMHBs are represented. . . . . . . . 262

Appendix C.4 Experimental and ANI-2x radial distribution functions
(RDFs) of bulk chloroform. The experimental data is reproduced
from Refs. 5 and 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . 263



xxiii

List of Tables

5.1 ParaMol default prior width values for each parameter type. . . . 104
5.2 Dihedral force constants (kJ mol-1) derived using the MM-relaxed/QM-

relaxed approach. The fittings were performed using the ωB97X-
D/6-31G* PES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3 RMSE of the energies (kJ mol-1) / Average RMSE of the atomic
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Chapter 1

Project Motivation and Thesis

Outline

Ligand modelling is a key aspect of many disciplines in chemical sciences.7 Vari-

ous areas of intensive research in the field, such as free energy calculations,8,9

molecular docking,10,11 and conformational analysis,12,13 require frequent mod-

elling of different types of ligands. These applications are of paramount impor-

tance to the pharmaceutical industry, since many stages of the drug discovery

pipeline heavily rely on theoretical analysis and computer simulation. Lead

optimisation, in particular, when performed following a rational approach, can

greatly benefit from the structural and energetic information that can be ex-

tracted from in silico experiments. These computational techniques can produce

either novel predictions or corroborate data obtained from other sources.14–16

Computational experiments not only have the advantage of being faster17 to

perform than in vitro and in vivo experiments but also of having a substantially

lower cost, making their optimisation the way forward towards cheaper and

more efficient drug discovery.18

The study of the conformational dynamics of molecules free in solution is essen-

tial for predicting molecular properties and guiding the rational development
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of new pharmaceutical compounds. The latter application is of utmost impor-

tance for the pharmaceutical industry, as knowledge of the unbound state is

vital to understand the fundamentals of molecular recognition.12,19–22 Besides

the displacement of water from protein binding sites,23–25 one of the main phe-

nomena that impacts binding affinity is the reorganisation of the unbound state

ligand upon binding to its target, a process that is influenced by the change

in intramolecular energy of the ligand in adopting the bioactive conformer, as

well as the associated loss of entropy.22 Minimisation of the free energy penalty

associated with this structural change is vital to optimising ligand potency,

requiring knowledge of the physical interactions that control conformational

preferences and methods for conformational analysis if a rational strategy is to

be employed.22 There is a wide range of experimental structural information on

pharmaceutical compounds bound to their protein targets.26,27 However, as it has

been emphasised in various studies, the conformations of unbound compounds

are still poorly characterised.12,20,21,28 Therefore, the scientific community must

put effort into developing tools that allow fast and reliable characterisation of

unbound molecular conformers as these can potentially provide the so-called

”missing link” in structure-based drug discovery.20,28

The work presented in this thesis concerns the development of methods for

accurate and efficient simulation of the conformational landscape of ligands. Re-

liable molecular simulations require two fundamental components: a molecular

model that describes the physics underlying a system of interest, and a method

to extensively sample its conformational space. The development of sampling

methods is an area of intensive research,29–34 as nowadays it is still difficult

to thoroughly sample the conformational space of molecules. The sampling

problem is more significant the more costly a molecular model is, leading to a

negative correlation between accuracy and sampling efficiency. The current in-

ability to use quantum mechanical (QM) methods to simulate ligands is entirely

due to their computational cost. Unless quantum computers bring significant

speed-ups to electronic structure calculations, the routine use of QM methods

for simulating the conformational dynamics of molecules remains a mirage. The
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quest towards quantum accuracy in ligand modelling is thus an ongoing effort

that has no simple solution. It is, however, the gold standard to achieve to obtain

reliable predictions from simulations. The way forward to solve this conundrum

must necessarily involve developing and improving cheap molecular models

that approximate the quantum level of theory. Molecular mechanics force fields

(MM FFs) have been around for decades. They stand as the cheapest alternative

to QM methods, despite their widely-known accuracy problems. FFs demand a

constant improvement effort, justified by their ability to simulate large systems

at long time scales. A promising new alternative to FFs are the machine-learning

(ML) potentials. ML potentials are molecular models derived using artificial

intelligence, seemingly more flexible and accurate than FFs, though more compu-

tationally costly. Owing to their newness, there are many unanswered questions

concerning their applicability. These must be addressed if the ML potentials are

to become the de facto alternative to FFs in ligand modelling.

This project was divided into three main research studies. The first study ad-

dressed the problem of FF accuracy. It consisted in the development of methods

to parameterise molecules by fitting to ab initio data. It led to the development

of ParaMol, software that aims to ease the process of FF parameterisation. The

second study tackled the sampling problem at the QM level. It involved the

development of a multilevel Monte Carlo (MC) method capable of generating

quantum configurational ensembles while keeping the computational cost at

a minimum. This approach aimed to combine the computational efficiency of

FFs with the accuracy of the QM level. The third and final study focused on

benchmarking and comparing the performance of ML potentials and FFs. It

aimed to determine the current strengths and pitfalls of each model and evaluate

the levels of accuracy that can be attained. Given their relevance, we believe that

the applications and results presented in this thesis may have implications in

different areas of chemical sciences with biological relevance, especially for the

drug design community.
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1.1 Outline

This thesis is structured in such a way that each chapter aims to be self-contained.

The general theoretical aspects on which this work is based are first presented,

with a special focus on discussing the fundamental aspects of quantum mechan-

ics, statistical mechanics, simulations methods, and molecular mechanics. We

then proceed to present the theory, methods, results, discussions, and conclu-

sions of the three research studies that form the novel core of this thesis. The

background theory and motivation for these studies are presented at the begin-

ning of the respective chapters. A brief outline of the contents of each chapter is

stated in what follows.

Chapter 2 presents the basic theory underlying quantum mechanics. QM meth-

ods were recurrently used in this work, as they provide a reference to which

the accuracy of FFs and ML potentials can be compared. Thus, this chapter is

concerned with the fundamental principles of QM, especially those important

for performing QM calculations within a chemical context. After introducing the

Born-Oppenheimer approximation, two fundamental electronic structure meth-

ods, viz., Hartree-Fock (HF) and density functional theory (DFT), are discussed

at length. We then end the chapter with a brief review of the common basis sets

used in electronic structure calculations.

Chapter 3 gives an overview of the theory of statistical mechanics, relating it to

that of standard simulation methods. The basic properties of thermodynamic

ensembles are discussed, and the two main simulation methods used throughout

this thesis, viz., molecular dynamics (MD) and MC, are reviewed. The most

relevant thermostats and barostats used by these simulation methods are also

presented. We finalise with a brief review of enhanced sampling methods.

Chapter 4 presents the fundamentals of molecular mechanics, as this classical

framework forms the core of the molecular models used in this thesis. We review

the most important classes of FFs and thoroughly discuss their functional forms.

Particular emphasis is given to the complexities of class I FFs, such as the general
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AMBER force field (GAFF), since this FF class was used as the starting point

from which more accurate models were developed. Usual schemes employed to

calculate long-range interactions are also discussed, and finally an overview of

FF parameterisation methods is presented.

Chapter 5 comprises the first research study of this thesis. It presents the theory,

development, and implementation of ParaMol, software that we developed,

which aims to ease the process of FF parameterisation. ParaMol has a special

focus on the parameterisation of bonded and nonbonded terms of druglike

molecules by fitting to ab initio data. We demonstrate the capabilities of the

software by deriving bonded parameters of three widely-known drug molecules:

aspirin, caffeine, and a norfloxacin analogue. Additionally, we illustrate the

best practices to follow when employing specific parameterisation routes; the

sensitivity of the fitted parameters to the fitting procedure; and the features of

the various weighting methods available to weight configurations used in the

fitting.

Chapter 6 introduces a multilevel MC method that allows quantum configu-

rational ensembles to be generated while keeping the computational cost at a

minimum. We present the theory and algorithm of the methodology and apply

it to a set of relevant druglike molecules. We show that FF reparameterisation

is an efficient route to accelerate QM-level sampling and discuss the implica-

tions and features of the method. As more advanced applications, we present

a self-parameterising version of the algorithm, which combines sampling and

FF parameterisation in one scheme, and adapt the MC method to generate the

QM/MM distribution of a ligand in aqueous solution.

Chapter 7 attempts to answer the question: ”does a machine-learnt potential per-

form better than an optimally tuned traditional force field?”. Having developed

a method to parameterise druglike molecules in Chapter 5, and an algorithm

to generate quantum configurational ensembles at a low computational cost in

Chapter 6, we apply these techniques to derive optimally tuned FFs, which are

tested against an ML potential. To this end, we evaluate the performance of a
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standard FF, an optimally tuned FF, and an ML potential in the modelling of a

set of γ-fluorohydrins. We assess the performance of each molecular model by

comparing its predictions to those obtained from QM methods and experiments.

The current strengths and shortcomings of each model are then analysed, from

which guidelines for improvement are drawn.

Chapter 8 summarises the main conclusions of this thesis and provides sugges-

tions to guide future research efforts.
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Chapter 2

Quantum Mechanics

QM emerged in the 1920s as an alternative to the classical description of systems,

and since then it has revolutionised the way nature is understood. Although

there is no evidence that the central quantity of QM, the wavefunction, exists, the

quantum theory nevertheless provides the most successful representation there is

thus far to describe the behaviour of the microscopic world, being widely applied

to perform calculations in chemical sciences. Despite its remarkable accuracy,

real-world problems are still challenging to be solved quantum mechanically

mostly owing to their computational cost, which limits the size of the systems

and the time scales that can be simulated. A wide variety of methods have been

proposed over the last decades to perform quantum mechanical calculations,

with those related to the description of the electronic structure of chemical

systems being the focus of the discussion presented next.

2.1 Fundamental principles of quantum mechanics

In the QM representation of the motions of particles, systems are described

using a wavefunction, Ψ, an entity that provides a complete QM description

of a system. For an N-electron system, the wavefunction depends on a set

of spatial (ri) and spin (si) coordinates, x = (r1, r2, . . . , rN, s1, s2, . . . , sN), and
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on time t. The wavefunction itself is not a physical observable, but it has a

physical interpretation that was suggested by Born. The Born interpretation of

the wavefunction states that the probability density of finding an electron i with

spin si at position ri and at time t is given by35

P(ri, si, t) = Ψ(ri, si, t)Ψ∗(ri, si, t) = |Ψ(ri, si, t)|2 (2.1)

This probability, when integrated over all space, must be 1, i.e.,

〈Ψ|Ψ〉 =
∫ ∞

−∞
d3ri |Ψ(ri, si, t)|2 = 1 (2.2)

meaning that the electron must exist within space. The time evolution of a quan-

tum system governed by a wavefunction is determined by the time-dependent

Schrödinger equation, which reads36

ih̄
∂Ψ
∂t

= ĤΨ (2.3)

where Ĥ is the Hamiltonian operator, h̄ is the Planck constant divided by 2π,

and i is the imaginary unit. If Ĥ is time independent, the wavefunction can be

separated into a time-independent spatial/spin part, ψ(x), and a time-dependent

part, τ(t), as follows

Ψ(x, t) = ψ(x)τ(t) (2.4)

Moreover, the time-independent version of equation (2.3) only depends on the

spatial/spin wavefunction, and it can be written as

Ĥψ(x) = Eψ(x) (2.5)
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where E is the energy of the system, which corresponds to the eigenvalue of

the eigenvector ψ(x). By introducing equation (2.4) into equation (2.3), the

expression of time-dependent part of the wavefunction is obtained, which reads

τ(t) = exp (−iEt/h̄) (2.6)

Most problems in quantum chemistry do not depend on time, and therefore

one normally seeks to solve equation (2.5) instead of equation (2.3), where

determining the energy E corresponds to solving an eigenvalue problem. Finally,

the expectation value of a dynamical observable A can be calculated using

〈A〉 = 〈Ψ|Â|Ψ〉〈Ψ|Ψ〉 (2.7)

where the denominator corresponds to the normalisation integral, often required

to be unity. Note that in equation (2.7), Ψ ≡ ψ holds if the observable of interest A

is static. The probability density, |ψ(ri, si)|2, also retains the same interpretation

as that of equation (2.1), though it is now stationary.

2.2 The Born-Oppenheimer approximation

Consider a stationary system composed of n nuclei and N electrons, positively

and negatively charged, respectively. If relativistic effects and spin-orbit interac-

tions are neglected, the Hamiltonian such a system can be written as

Ĥ(r, R) = T̂n(R) + V̂nn(R) + Ĥel(r, R) (2.8)

where r = (r1, r2, . . . , rN) is the set of electronic coordinates,

R = (R1, R2, . . . , Rn) is the set of nuclear coordinates, Ĥel(r, R) is the electronic

Hamiltonian, T̂n(R) is the nuclear kinetic energy operator, and V̂nn(R) is the
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nuclear-nuclear repulsion operator. In atomic units, the latter two operators are

of the form

T̂n(R) = −
n

∑
α

1
2Mα
∇̂2

α (2.9)

V̂nn(R) =
n

∑
α

n

∑
α>β

ZαZβ

Rαβ
(2.10)

where the Mα is the mass and Zα the charge of the nucleus α, and Rαβ =

|Rα − Rβ| is the distance between nuclei α and β. Furthermore, the electronic

Hamiltonian of equation (2.8) is given by

Ĥel(r, R) = T̂e(r) + V̂ee(r) + V̂en(r, R) (2.11)

where T̂e(r) is the electronic kinetic energy operator, V̂ee(r) is the electron-

electron repulsion operator, and V̂en(r, R) is the electron-nucleus attraction oper-

ator, which can be written as follows

T̂e(r) = −
N

∑
i

1
2
∇̂2

i (2.12)

V̂ee(r) =
N

∑
i

n

∑
j>i

1
rij

(2.13)

V̂en(r, R) = −
n

∑
α

N

∑
i

Zα

Riα
(2.14)

where Riα = |ri − Rα| is the distance between nucleus α and electron i, and

rij = |ri − rj| is the distance between electrons i and j. In equations (2.9) and

(2.12), ∇̂2
α and ∇̂2

i are the Laplacian operators, given by the sum of second partial

derivatives with respect to the coordinates of nucleus α and electron i, i.e.,
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∇̂2
α =

∂2

∂r2
α,x

+
∂2

∂r2
α,y

+
∂2

∂r2
α,z

(2.15)

∇̂2
i =

∂2

∂r2
i,x

+
∂2

∂r2
i,y

+
∂2

∂r2
i,z

(2.16)

In equation (2.11), the electron-nucleus attraction operator, V̂en(r, R), is the term

responsible for coupling the motion of nuclei and electrons, thus preventing the

wavefunction to be written as a product of electronic, φ(x, ξ), and nuclear, η(ξ),

wavefunctions as follows

ψ(x, ξ) = φ(x, ξ)η(ξ) (2.17)

where the wavefunctions are time-independent since the system is stationary by

construction, and x = (r1, r2, . . . , rN, s1, s2, . . . , sN) and

ξ = (R1, R2, . . . , Rn, S1, S2, . . . , Sn) denote the sets of electronic and nuclear

spatial/spin coordinates, respectively. To solve the wavefunction inseparabil-

ity problem, the most commonly employed scheme is the Born-Oppenheimer

approximation,37 which separates electronic and nuclear motion by exploiting

the fact that the nuclear masses are much larger than those of the electrons,

causing nuclei to move at much slower speeds than electrons. These observa-

tions lead to two assumptions that are at the core of the Born-Oppenheimer

approximation, viz.: the electrons instantaneously adjust to changes of the nuclei

positions; and the nuclei move in a potential field set up by the electrons since

the electronic energy varies smoothly as a function of the nuclei coordinates. The

Born-Oppenheimer approximation, also known as the adiabatic approximation,

permits the wavefunction to be written as

ψ(x; ξ) = φ(x; ξ)η(ξ) (2.18)
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where φ(x; ξ) is now the adiabatic electronic wavefunction, as the nuclei are

assumed to be fixed, making it possible to treat their positions parametrically. In

this framework, the total energy of a system is given by the sum of the nuclear

and electronic energies, such that

E = Eel(r; R) + Enuc(R) (2.19)

Enuc(R) =
n

∑
α

n

∑
α>β

ZαZβ

Rαβ
(2.20)

where Eel(r; R) and Enuc(R) are the electronic and nuclear energies, respectively.

From equation (2.20), it can be seen that the nuclear-nuclear repulsion is treated

at the classical level. Furthermore, the nuclear kinetic energy vanishes because

nuclei are assumed to be stationary. Finally, the electronic energy, Eel(r; R), can

be calculated from the following time-independent Schrödinger equation

[
T̂e(r) + V̂ee(r) + V̂en(r; R)

]
φ(x; ξ) = Eelφ(x; ξ) (2.21)

where all operators are given as previously defined. There are two families

of quantum chemistry methods commonly employed to approximate the elec-

tronic time-independent Schrödinger equation: wavefunction- and DFT-based

methods. As the latter family of methods is used throughout this work, the

foundations of DFT are explained in detail in Section 2.4. Furthermore, since the

nuclear-nuclear repulsion, the nuclear-electron attraction, and the uncorrelated

electron-electron repulsion energies used in DFT are the same as those used in

HF theory, in the next section we first explain the general features of the HF

method.
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2.3 The Hartree-Fock method

The HF method is extensively used to approximate both the wavefunction

and the ground-state energy of a system.38–41 HF is considered a mean-field

approach, as it reduces an N-electron problem to a one-electron one by assuming

independent electrons. In this picture, the interaction between a given electron

and all other electrons is calculated in an average fashion, so that each electron

interacts with a mean-field potential that represents the average of all electron-

electron interactions.

In the HF method, the exact electronic wavefunction is approximated through a

single Slater determinant composed of one-electron wavefunctions. This allows

the state of an N-electron system occupying N spin orbitals, (χa, χb, . . . , χc), to be

written without the need to specify which electron is in which orbital. The prop-

erties of the determinants also ensure that the wavefunction is antisymmetric

with respect to the interchange of any two electrons, and that the wavefunction

vanishes if any two electrons occupy the same spin orbital, thereby fulfilling

the Pauli exclusion principle.36 The single-determinant antisymmetric electronic

wavefunction of an N-electron system is written as40,42

φHF(x) =
1√
N!

∣∣∣∣∣∣∣∣∣∣∣∣

χa(x1) χb(x1) · · · χc(x1)

χa(x2) χb(x2) · · · χc(x2)
...

... . . . ...

χa(xN) χb(xN) · · · χc(xN)

∣∣∣∣∣∣∣∣∣∣∣∣
(2.22)

= |χaχb . . . χc〉 (2.23)

where the normalisation factor, 1/
√

N!, is implicitly included in the short-hand

notation used in equation (2.23). Each spin orbital, χa(xi), is formed by the

product of a spatial orbital, σa(ri), and a spin function, which can be either αa(si)

(spin up, ↑) or βa(si) (spin down, ↓). Hence, χa(xi) can be written as
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χa(xi) =


σa(ri)αa(si)

or

σa(ri)βa(si)

(2.24)

The spin functions are orthonormal, and so are the spin orbitals. Having stated

how Slater determinants are defined, the HF ground-state wavefunction and

energy can now be determined using the variational theorem, which states that

the energy of a system, E, is higher than that of its ground state, E0, unless the

wavefunction corresponds to the true ground-state wavefunction. Therefore, the

following relation holds

E[φ] ≥ E0 (2.25)

where the energy is explicitly denoted as a functional of the wavefunction

since the variational flexibility is in the choice of the spin orbitals that compose

the wavefunction. Since the best single-determinant wavefunction is the one

that gives the lowest possible HF energy, the HF equation can be obtained by

minimising the HF energy with respect to the choice of spin orbitals*, resulting

in the following eigenvalue equation

f̂a(xi)χa(xi) = εaχa(xi) (2.26)

where εa is the energy associated with the orbital χa(xi), and f̂a(xi) denotes the

Fock operator that acts on that orbital, which, in turn, is given by

f̂a(xi) = −
1
2
∇̂2

i −
n

∑
α

Zα

Riα
+ vHF

a (xi) (2.27)

*See Szabo and Ostlund 42, pp. 31–38, or Schatz and Ratner 36, pp. 6–7, for a detailed
explanation of the variational method.
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where the first and second terms form the so-called core Hamiltonian and corre-

spond to the kinetic and electron-nuclear attraction operators, respectively, and

vHF
a (xi) is the mean-field potential experienced by the electron on the ath orbital

due to the presence of the other electrons.

Starting from an initial guess of spin orbitals, the HF method consists in self-

consistently solving the set of one-electron eigenvalue problems defined by

equation (2.26). The requirement for an iterative solution arises due to the

dependence of vHF
a (xi) on the spin orbitals of the other N − 1 electrons. The

occurrence of this dependence can be seen by writing vHF
a (xi) in terms of the

Coulomb, Ĵ, and exchange, K̂, operators as follows

vHF
a (xi) = ∑

b 6=a

[
Ĵb(xi)− K̂b(xi)

]
(2.28)

where the sum runs over all the N − 1 orbitals that are not χa. In equation (2.28),

the Coulomb operator, Ĵb, gives the average local potential at position ri that

arises due to the charge distribution of any electron in spin orbital χb. This

Coulomb operator reads

Ĵb(xi) =
∫

dsj

∫
d3rj

χ∗b(xj)χb(xj)

rij
=
∫

d3rj
σ∗b (rj)σb(rj)

rij
(2.29)

which only depends on the spatial orbitals because the integration over the spin

variable is always 1. Furthermore, the exchange operator K̂b, which arises from

the antisymmetry requirement of the wavefunction, is defined by its action on

the spin orbital χa(xi). This exchange operator can be written as

K̂b(xi)χa(xi) =

[∫
dsidsj

∫
d3rj

χ∗b(xj)χa(xj)

|ri − rj|

]
χb(xi) (2.30)

The integral of equation (2.30) only needs to be evaluated for orbitals with

parallel spins, as it vanishes for orbitals with anti-parallel spins, causing the
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motion of electrons with opposite spin to be uncorrelated. The total HF energy

can now be written as

EHF =

〈
χa

∣∣∣∣∣ N

∑
a

1
2
∇̂2

i −
N

∑
a

n

∑
α

Zα

Riα

∣∣∣∣∣χa

〉
+ ∑

a≥b

[
〈χa| Ĵb|χa〉 − 〈χa|K̂b|χa〉

]
(2.31)

Note that the a 6= b restriction imposed in equation (2.28) was removed since

〈χa| Ĵb|χa〉 ≡ 〈χa|K̂b|χa〉. The integration variables are assumed to be xi for the

one-electron operators (kinetic and nucleus-electron attractions), and xi and xj

for the two-electron operators (Coulomb and exchange).

In summary, the HF method describes N-electron systems by considering a

mean-field potential that includes the Coulomb and non-local exchange contri-

butions. Hence, the lack of electronic correlation in HF leads to poor accuracy

in systems where a proper description of correlation effects is critical. Many

post-HF correlated methods have been developed over the years to improve the

description of chemical systems, such as, e.g., Møller–Plesset perturbation the-

ory,43 configuration interaction,44 coupled cluster,45 and multi-configurational

self-consistent field approaches.46–48 Despite their differences, all these methods

attempt to recover the missing static and dynamic correlation by adding more

Slater determinants to the HF single-determinant wavefunction. Alternatively,

DFT can also be used to improve the HF results. This method is explained at

length in the next section, as it is widely used in this thesis.

2.4 Density functional theory

DFT is based on two seminal papers of Hohenberg, Kohn and Sham.49,50 The

central quantity of DFT is the electronic density, ρ(ri), which is defined as the

integral over all spin coordinates and the spatial coordinates of N − 1 electrons,

i.e.,
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ρ(ri) = N
∫

. . .
∫

ds1d4x2d4x3 . . . d4xN |φ(r; R)|2 (2.32)

which has the advantage of depending only on 3 degrees of freedom (DOFs).

This simplification greatly reduces the dimensionality of quantum chemistry

calculations, as to compute the ground-state energy there is no need to solve

the Schrödinger equation and determine the 4N dimensional wavefunction.

This allows to computationally treat much larger systems, especially now that

linear-scaling DFT has become widespread, owing much to the development

of the Order-N Electronic Total Energy Package (ONETEP),51 which enables

simulation of realistic systems of thousands of atoms.

The early foundations of DFT date back to 1927, when Thomas and Fermi

independently developed an approach to solve many-body problems in which

the electronic density is the central variable rather than the wavefunction.52,53

In the Thomas-Fermi model, the energy functional is composed of three terms:

the kinetic energy term, corresponding to that of the uniform electron gas;

the electron-electron interaction term, approximated by the classical Coulomb

potential like in HF; and the nuclear-electron attraction term. This model was

later extended by Dirac, in 1930, which augmented it by introducing exchange

effects.54 It was not until 1964, however, that the modern foundations of DFT

were laid out.49 This was done by Hohenberg and Kohn, authors of the two

fundamental theorems that have paved the way towards the development of

accurate methods for electronic structure calculations using DFT. These two

Hohenberg-Kohn theorems are the subject of the discussion presented in the

next section.

2.4.1 The Hohenberg-Kohn theorems

The first Hohenberg-Kohn theorem proves the existence of a one-to-one map-

ping between the electronic density and the external potential.49 Physically,

the external potential represents the nuclear attraction part of the electronic
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Hamiltonian operator. To demonstrate this unequivocal one-to-one mapping,

the proof presented by Hohenberg and Kohn proceeds by reductio ad absurdum,

as described below.

Assume the existence of two different external potentials, vext(ri) and v′ext(ri),

which differ by more than an additive constant but give rise to the same electronic

density, ρ(ri). The ground-state wavefunctions associated with these external

potentials are given by Ψ0 and Ψ′0 (which are necessarily different since vext(ri)−

v′ext(ri) 6= c), and the associated Hamiltonian and ground-state energies are

denoted as H and H′, and E0 and E′0, respectively. The variational theorem stated

in equation (2.25) establishes that the energy of a system is higher than that of

its ground state unless the wavefunction is the true ground-state wavefunction.

Therefore, the following relations holds

E′0 =
〈
Ψ′0
∣∣H′∣∣Ψ′0〉 < 〈Ψ0|H′|Ψ0〉 = 〈Ψ0|H − vext + v′ext|Ψ0〉 (2.33)

which can be rewritten as

E′0 < E0 +
∫

d3ri
[
vext(ri)− v′ext(ri)

]
ρ(ri) (2.34)

By interchanging the primed and unprimed quantities, the following inequation

is obtained

E0 < E′0 +
∫

d3ri
[
v′ext(ri)− vext(ri)

]
ρ(ri) (2.35)

Finally, adding equations (2.34) and (2.35) gives

E′0 + E0 < E′0 + E0 (2.36)

which is clearly an inconsistency. Therefore, the conclusion is that two external

potentials that differ by more than a constant must necessarily give rise to
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different electronic densities. A corollary of this theorem is that the external

potential is a functional of the electronic density. Furthermore, since the number

of electrons and the external potential completely define the Hamiltonian and,

consequently, the wavefunction, this means that the wavefunction must also be

a functional of the electronic density.

The second Hohenberg-Kohn theorem uses the corollaries of the first theorem

to demonstrate that the ground-state energy can be obtained variationally by

minimising the electronic density.49 To show that his holds true for any N-

electron system governed by an external potential, first recall that both the

wavefunction and the Hamiltonian are a functional of the electronic density, and

thus the following can be written

F[ρ] = 〈Ψ|T̂e + V̂ee|Ψ〉 (2.37)

where F[ρ] is the so-called universal functional. Likewise, since there is a one-to-

one mapping between vext(ri) and ρ(ri), the total energy can also be written as a

functional of the electronic density, i.e.,

E[ρ] = 〈Ψ|T̂e + V̂ee + vext|Ψ〉 (2.38)

= F[ρ] +
∫

d3ri vext(ri)ρ(ri) (2.39)

Hence, since the energy is a functional of the electronic density, the energy can be

minimised by varying ρ under the constraint of preservation of the total number

of electrons N, a quantity related to ρ by

N[ρ] =
∫

d3ri ρ(ri) = N (2.40)

Moreover, similarly to what was done in equation (2.33), the variational principle

asserts that
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〈Ψ|T̂e + V̂ee + vext|Ψ〉 > 〈Ψ0|T̂e + V̂ee + vext|Ψ0〉 (2.41)

where Ψ0 = Ψ[ρ0] is the ground-state wavefunction, which is a functional of the

exact ground-state electronic density. This leads to the conclusion that

E[ρ] > E[ρ0] = E0 (2.42)

which demonstrates that the ground-state energy may be found variationally us-

ing the electronic density as a variable. Despite the importance of the Hohenberg-

Kohn theorems, a practical way of performing DFT calculations was only intro-

duced one year later, in 1965, by Kohn and Sham. The general features of this

method are described in what follows.

2.4.2 The Kohn-Sham equations

In this section, the Kohn-Sham DFT formalism is presented.50 Kohn-Sham DFT

is extensively used in quantum chemistry, as it introduces a practical way of

performing electronic structure calculations. Before discussing the Kohn-Sham

DFT formalism, recall that the universal functional contains the contributions

of the kinetic energy, Te[ρ], the classical Coulomb interaction, J[ρ], and the non-

classical energy, Encl[ρ]. Therefore, the universal functional can be written as

F[ρ] = Te[ρ] + Vee[ρ]

= Te[ρ] + J[ρ] + Encl[ρ]

In this equation, the only term that is known is J[ρ], which is the Hartree energy,

corresponding to the HF-like electron-electron interactions. To determine expres-

sions for the other two terms, the Kohn-Sham ansatz must be used, in which the
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interacting system is replaced by a non-interacting one, in such a way that the

ground-state density of the latter is the same as that of the former. Like in the HF

theory, this ansatz corresponds to assuming independence of electrons, making

it possible to decompose the wavefunction into an antisymmetric product of

one-electron spin orbitals. This gives rise to a Slater determinant made of the

so-called Kohn-Sham orbitals, which reads

φDFT[ρ(ri)] = |χa(r1)χb(r2) . . . χc(rN)〉 = |χaχb . . . χc〉 (2.43)

where the same short-hand notation previously presented in equation (2.23) was

used. The kinetic energy of such a Kohn-Sham non-interacting system is thus

given by

Ts[ρ] = −
1
2

Nα

∑
a
〈σα

a |∇2
i |σα

a 〉+
Nβ

∑
b

〈
σ

β
b

∣∣∣∇2
i

∣∣∣σβ
b

〉 (2.44)

where the sums run over all Nα and Nβ spatial orbitals σα
a and σ

β
b with α and

β spin, respectively, and the subscript i in ∇2
i refers to the dummy variable of

integration ri. Note that, however, this is not equal to the kinetic energy of the

interacting system. Kohn and Sham accounted for that difference by introducing

the following separation of the universal functional

F[ρ] = Ts[ρ] + J[ρ] + Exc[ρ] (2.45)

where the exchange-correlation functional, Exc[ρ], accounts for everything that

is unknown and reads

Exc[ρ] = (Te[ρ]− Ts[ρ]) + (Vee[ρ]− J[ρ]) (2.46)

with Vee[ρ] representing the exact electron-electron interactions of the interacting

system. The problem now is to determine the orbitals of the non-interacting
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system so that they reproduce the ground-state density of the interacting one.

Before doing this, let us first write the total Kohn-Sham energy as

EKS[ρ] = Ts[ρ] +
1
2

∫ ∫
dridrj

ρ(ri)ρ(rj)

rij
+
∫

dri vext(ri)ρ(ri) + Exc[ρ] (2.47)

where the electronic density can be calculated using the following expression

ρ(ri) =
Nα

∑
a
|σα

a (ri)|2 +
Nβ

∑
b
|σβ

b (ri)|2 (2.48)

From the second Hohenberg-Kohn theorem, it is known that the ground-state

energy may be found variationally using the electronic density as a variable.

Therefore, by applying the variational principle to minimise EKS[ρ] with respect

to ρ, the following set of one-electron Kohn-Sham equations is obtained

ĥKS(ri)σ
s
a(ri) = εs

a(ri)σ
s
a(ri) (2.49)

where the s superscript denotes the spin of the spatial orbital, σs
a(ri). The Kohn-

Sham Hamiltonian, ĥKS(ri), and the effective potential, ve f f (ri), read

ĥKS(ri) = −
1
2
∇2

i + ve f f (ri) (2.50)

ve f f (ri) = vext(ri) +
∫

drj
ρ(rj)

rij
+ vxc(ri) (2.51)

with the exchange-correlation potential of equation (2.51) having the form

vxc(ri) =
δExc[ρ]

δρ(ri)
(2.52)
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In practice, the Kohn-Sham DFT approach proceeds by first calculating the

effective potential given by equation (2.51) from a provided initial guess of the

electronic density. The set of Kohn-Sham equations (2.49) is then solved, resulting

in new spin orbitals that are employed to calculate the electronic density using

equation (2.48), and the Kohn-Sham energy resorting to equation (2.47). This

procedure is repeated iteratively until convergence, when it is assumed that the

ground-state density and energy have been found.

It is worth noting that the Kohn-Sham method turns the problem of interact-

ing electrons in an external potential into that of Kohn-Sham non-interacting

electrons in an effective potential. Therefore, from the first Hohenberg-Kohn

theorem, it follows that there is a one-to-one mapping between the effective po-

tential and the electronic density, implying that the exact ground-state electronic

density may only be found if the exact form of Exc[ρ] is known. Even though

Kohn-Sham DFT is a formally exact framework, the exact form of Exc[ρ] is not

known except for the free electron gas. Therefore, it is necessary to approxi-

mate Exc[ρ] so that the missing exchange-correlation interactions are taken into

account. In the next section, we delve into the world of exchange-correlation

functionals and present their main categories.

2.4.3 The exchange-correlation functional

The world of exchange-correlation functionals is populated by various methods

that attempt to somewhat capture the exchange and correlation effects that are

missing from the universal functional. This is a rapidly- and ever-evolving field,

in which several categories of exchange-correlation functionals have already

been proposed, some more accurate than others, depending on the assumptions

and approximations implied in their development.

The functionals based on the local density approximation (LDA) are amongst

those with the simplest description of the electronic density. LDA function-

als assume that the local electronic density is the same as that of the uniform
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electron gas, thereby neglecting any information regarding the derivatives of

the electronic density. These functionals are typically separated into exchange,

ELDA
X [ρ], and correlation, ELDA

C [ρ], parts as follows

ELDA
xc [ρ] = ELDA

x [ρ] + ELDA
c [ρ] (2.53)

with the analytical form of ELDA
x [ρ] being given by

ELDA
x [ρ] = −3

4

(
3
π

)1/3 ∫
d3ri ρ4/3(ri) (2.54)

Various expressions have been proposed thus far to approximate ELDA
c [ρ], with

a few examples of LDA functionals being VWN,55 PW92,56 and CAPZ.57,58

The next obvious step to increase the performance of LDA functionals is to

include the description of some local features of the electronic density. This

is the approach taken by the functionals based on the generalised gradient

approximation (GGA), for which the exchange-correlation energy reads

EGGA
xc [ρ] =

∫
d3ri εxc [ρ(ri),∇ρ(ri)] (2.55)

where εxc is the exchange-correlation energy density, representing the energy per

electron as a function of the spatial coordinates. As can be seen from equation

(2.55), GGA functionals depend not only on the electronic density but also on

its gradient, allowing more accurate representation of systems for which the

electronic density is not constant. The most popular functionals belonging to

this category are PBE,59 PW91,60 and BLYP.61,62

In addition to the gradient of the electronic density, meta-GGA (mGGA) func-

tionals, such as TPSS63 and M06-L,64 further include its Laplacian, ∇2ρ(ri). The

general form of the mGGA functionals reads
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EmGGA
xc [ρ] =

∫
d3ri εxc

[
ρ(ri),∇ρ(ri),∇2ρ(ri)

]
(2.56)

Moreover, hybrid functionals, also known as adiabatic connection method func-

tionals, besides the standard GGA or mGGA exchange-correlation, also include

a contribution from the exact HF non-local exchange energy, EHF
x , calculated as a

functional of the Kohn-Sham orbitals. Hybrid functionals attempt to mitigate the

so-called self-interaction error, and they have the following general functional

form

Ehyb
H [ρ] = (1− a)E(m)GGA

xc [ρ] + aEHF
x (2.57)

where a is a parameter that controls the amount of HF exchange energy that

is introduced. Undoubtedly, the most popular hybrid functional is B3LYP,65

but other options are available, such as, e.g., B1PW91,66 PBE0,67 VV10,68,69 and

ωB97X.70

Finally, double-hybrid functionals are the most recent development in the field.

These schemes add a second-order Møller-Plesset correlation energy term, EMP2
c ,

obtained from the Kohn-Sham GGA or mGGA orbitals and eigenvalues, to the

functional form of the hybrid functionals.71 The general expression of double-

hybrid functionals is given by

EDH
xc [ρ] = axEHF

x + (1− ax)E(m)GGA
x [ρ] + (1− ac)E(m)GGA

c [ρ] + acEMP2
c (2.58)

where ax and ac control the relative contributions of each term to the exchange

and correlation parts, respectively. The first three terms are computed in a self-

consistent fashion following the standard Kohn-Sham approach, while EMP2
c

is added a posteriori.72 Typical double-hybrid functionals are B2-PLYP73 and

PBE0-DH.74
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From the discussion presented above, it is clear that there is a large variety

of exchange-correlation functionals. These are diagrammatically organised in

terms of their accuracy in the so-called Jacob’s ladder of density functional ap-

proximations for the exchange-correlation energy,75 of which the lowest rung

corresponds to the HF theory, and the highest one to the double-hybrid ap-

proaches. As a general rule, the higher one is on Jacob’s ladder, the higher the

accuracy and the computational cost of the DFT calculations. It is worth noting,

however, that this is not always the case, as the performance of functionals is

often system-specific, and it is good practice to benchmark their accuracy before

applying them to systems of interest.

Alternatively to plain DFT methods, density functional-based tight-binding

(DFTB) methods can also be used to perform electronic structure calculations

in chemical sciences, avoiding the requirement to approximate the exchange-

correlation functional. These are very efficient approximations of DFT, as they

are based on expansions up to the third order of the total Kohn-Sham energy

with respect to charge density fluctuations,1,76–78 which may or may not include

self-consistent charges (SCC). Owing to its success in describing the energetics

and geometries of small organic molecule,72,79–82 SCC-DFTB was used frequently

in the research studies presented in this thesis.

In what follows, we end this chapter on quantum mechanics by giving a brief

overview of the basis sets that are commonly employed to describe the spin

orbitals of which the wavefunction is composed.

2.5 Basis sets

As previously discussed, in most electronic structure calculations the wavefunc-

tion is decomposed into a product of independent one-electron wavefunctions

that represent spin orbitals. Since the analytical expression of these orbitals is

usually unknown, it is necessary to express them as a linear combination of some

known auxiliary functions - referred to as a basis set -, which span the Hilbert
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space where the problem is solved. In this approach, each spin orbital, χa(ri), is

expanded as a linear combination of Nb basis functions, υγ(ri), such that

χa(ri) =
Nb

∑
γ=1

cγaυγ(ri) (2.59)

where cγa are the expansion coefficients of the spin orbital χa(ri). The choice of

a basis set is critical when employing ab initio methods, as it has an impact on

both the computational cost and accuracy of the calculations.83

In the early days of electronic structure calculations, Slater-type orbitals (STOs)

were the basis set of choice due to the correctness of their short- and long-range

behaviour.84,85 The expression of an STO in Cartesian coordinates is given by

υSTO
abc (ri) = Nxaybzc exp

[
−ζ
√

x2
i + y2

i + z2
i

]
(2.60)

where N is a normalisation constant, a, b, and c control the angular momentum

L = a + b + c, and ζ defines the width of the orbitals. STOs are, however,

unpractical due to their computational inefficiency. A much more efficient

alternative are the Gaussian-type orbitals (GTOs).86 Although GTOs do not

correctly describe the form of the cusp at the nucleus and decay too fast, the ratio

of the number of GTOs to the number of STOs required to obtain comparable

accuracy pends to the side of the GTOs in terms of computational cost,85 making

them the preferred basis set of quantum chemists. The expression of a GTO in

Cartesian coordinates is given by

υGTO
abc (ri) = Nxaybzc exp

[
−ζ
(

x2
i + y2

i + z2
i

)]
(2.61)

where all terms are as previously defined for STOs. In practice, in quantum

chemistry, contracted Gaussians (CGs), which are linear combinations of primi-

tive GTOs, are used to represent atomic orbitals. The simplest type of CGs are

the STO-nG basis sets, which attempt to approximate STOs using n primitive
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GTOs. STO-nG basis sets are, however, poor representations of atomic orbitals,

since only one CG is included per atomic orbital. An extension to this picture is

obtained when using more than one CG to represent the atomic orbitals of the

valence electrons. This approximation results in the so-called split-valence basis

sets, which can be double-, triple-, quadruple-zeta, and so on, depending on

how many basis functions describe the valence electrons. For example, the 6-31G

double-zeta basis set describes the core electrons using a contraction of six GTOs,

while each valence electron is described using two basis functions: the first is

composed of a contraction of three GTOs, and the second consists of a single

uncontracted GTO. More flexibility can be introduced into basis sets by making

use of polarisation and/or diffuse functions. Polarisation functions add CGs

with an angular momentum higher than that naturally present in the valence

shell of a given atom. A typical example of a polarised basis set is the 6-31G*

basis set, which augments the 6-31G basis set through addition of polarisation

functions to the heavy atoms. Diffuse functions, on the other hand, lead to, e.g.,

the 6-31G+ basis set, and they are used to better represent the atomic orbitals at

regions far from the nucleus.

Finally, plane-wave basis sets are also commonly employed in electronic struc-

ture calculations, especially in those that involve periodic systems, as they are

solutions to the Schrödinger equation for a particle in a periodic box. The

expression of a plane wave reads

υG(ri) = N exp [iG · ri] (2.62)

where i is the imaginary unit, and G is the wave vector.

2.6 Summary

In this chapter, we have presented the basics of quantum mechanics. We started

from the fundamental principles of the theory and then proceeded to discuss
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the specifics of electronic structure calculations, viz., the Born-Oppenheimer

approximation, the Hartree-Fock method, density functional theory, and basis

sets.

In the next chapter, we present the fundamental principles of statistical mechan-

ics and contextualize their use in standard simulation methods. Specifically, we

discuss the main concepts of statistical mechanics, the features of the principal

thermodynamic ensembles, and the fundamentals of the Monte Carlo and molec-

ular dynamics simulation methods. Lastly, we conclude with a discussion on

thermostats, barostats, and enhanced sampling methods.
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Chapter 3

Statistical Mechanics and

Simulation Methods

Statistical mechanics was one of the major advances in the physics of the 19th cen-

tury. Since then, it has revolutionised how problems involving a large number

of particles, typically on the order of 1023, are solved. Systems of such dimen-

sionality, and particularly those involving interacting particles, pose several

challenges to those interested in studying them. First, it is difficult to exactly

define their state; and second, there are neither the mathematical tools required

to analytically solve 1023 coupled differential equations nor the computational

power to numerically handle them. Additionally, researchers are generally more

interested in the collective behaviour rather than in the individual behaviour

of particles, meaning that even if it were possible to computationally solve

these N-particle problems, it would still be a waste of computational resources

since much of the information would be either meaningless or unintelligible,

not providing much relevant physical data. Hence, statistical mechanics is a

key discipline that establishes bridges between the realms of the macroscopic

and microscopic worlds. In doing so, it allows the derivation of macroscopic

thermodynamic properties from microscopic descriptions of systems.
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3.1 Fundamental principles of statistical mechanics

In statistical mechanics, a microstate refers to a specific microscopic configuration

of a thermodynamic system with an associated probability of occurrence, and an

ensemble is a collection of microstates compatible with a specific macrostate of a

thermodynamic system. Two fundamental principles are required to derive all

the framework of statistical mechanics. The first is the principle of a priori equal

probability, which states that microstates in the same microcanonical ensemble,

i.e., microstates that have the same number of particles, N, volume, V, and

energy, E, must occur with the same frequency. This principle assumes that

nature cannot distinguish between two identical microstates that have the same

macroscopic values for N, V, and E.

The second principle, postulated by Gibbs, is based on Boltzmann’s idea of

ergodicity, used to define a system that moves on a constant-energy surface in

phase space and that eventually will visit all its domain. This principle postulates

that whatever ensemble is set up, it must be ergodic. An immediate corollary

of this postulate is the ergodic hypothesis, which states that in equilibrium the

ensemble average of a property A is the same as the time average of that property

for a single system. Because of this, the following relation holds

〈A〉time = 〈A〉ensemble (3.1)

which can alternatively be expressed as87

lim
t→∞

1
t

∫ t

0
dt′ A(p(t′), q(t′)) =

∫ ∞

−∞
d3N p

∫
Ω

d3Nq ρ(p, q)A(p, q) (3.2)

where p = (p1, p2, . . . , p3N) and q = (q1, q2, . . . , q3N) are the momentum and

position coordinates of a three-dimensional N-particle system, ρ(p, q) is the

probability density of the microstates, and Ω is the region of space defined by

the containing volume.
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In practice, theoretical evaluation of either side of equation (3.2) must be done

discretely. For example, time averages are often calculated with methods such

as MD, which propagate a system by numerically integrating its equations of

motion through finite and discrete time steps. Owing to the non-continuous

nature of these techniques, time averages must be calculated using the following

equation

〈A〉time ≈
1

Nt

Nt

∑
i=1

A(p(ti), q(ti)) (3.3)

where i is an index that runs over all Nt time steps. Likewise, analytical calcula-

tions of ensemble averages are often impossible to perform owing to the form of

ρ(p, q). Hence, stochastic methods, such as MC, must be employed to numeri-

cally approximate the right-hand side of equation (3.2), making estimations of

ensemble averages using

〈A〉ensemble ≈
Np

∑
i=1

ρ(pi, qi)A(pi, qi) (3.4)

where i runs over a collection of Np distinct points in phase space. Note that

equations (3.3) and (3.4) become exact as Nt → +∞ and Np → +∞, respectively.

It is worth mentioning that many systems studied through theoretical simula-

tions do not behave ergodically on the time scales that can be achieved computa-

tionally, the reason being that they often get trapped in energy basins bounded

by high-energy barriers88 or in loops within phase space.89 This phenomenon

is known as kinetic trapping, and it is the main factor preventing a thorough

exploration of phase space. Since it has a huge impact on the accuracy of the

results obtained in simulations, the development of methods to solve this issue is

an area of intensive research that has led to the development of many enhanced

sampling schemes. An overview of the state of the art of this field is presented

in Section 3.6.
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3.2 Thermodynamic ensembles

In the previous introduction to statistical mechanics, we briefly referred to en-

sembles without actually defining what they are. The concept of the ensemble is

central in statistical mechanics, and it corresponds to a hypothetical representa-

tion of a set of identical copies of a system, in which each copy is in one possible

microstate.87,90,91 An ensemble must be in a well defined thermodynamic state,

characterised by a small set of macroscopic variables that are fixed, such as, e.g.,

the number of particles, N, the temperature, T, the chemical potential, µ, the

pressure, P, or the total energy, E. There are various thermodynamic ensem-

bles, with the most common ones being the microcanonical ensemble (NVE),

the canonical ensemble (NVT), the grand canonical ensemble (µVT), and the

isothermal-isobaric ensemble (NPT).

Furthermore, in relation to the previous discussion on the ergodic hypothesis, it

remains to address how the values of the thermodynamic properties themselves

are calculated. Since these are specific for each thermodynamic ensemble, we

now turn our discussion to the features of the three ensembles used in this thesis,

viz., the microcanonical (NVE), the canonical (NVT), and the isothermal-isobaric

(NPT). In what follows, we always consider three-dimensional classical systems

with continuous energy levels composed of N distinguishable particles.

3.2.1 The microcanonical ensemble

The thermodynamic variables fixed in the microcanonical ensemble are the num-

ber of particles, N, the volume, V, and the total energy, E. It is rare to find

experiments carried out in this ensemble, and there are only a few theoretical

applications of it.90 Despite this, the NVE ensemble is of great conceptual impor-

tance since it considers an isolated system, i.e., a situation in which no work or

heat is exchanged between the system and its environment.
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In an isolated system in equilibrium, the probability density of finding a system

with total energy E is proportional to87

N (p, q) ∝ δ [H(p, q)− E] (3.5)

where H(p, q) is the Hamiltonian of the system, and the δ function is used to

select those microstates of a N-particle system in a container of volume V that

have the desired energy E. The microcanonical partition function is directly

constructed by integrating the above probability density over all phase space

volume, i.e.,

QNVE =
1

h3N

∫ ∞

−∞
d3N p

∫
Ω

d3Nq δ [H(p, q)− E] (3.6)

where h is the Planck constant, introduced to make QNVE dimensionless. Hence,

considering the principle of a priori equal probability, the probability density

stated in equation (3.5) can be rewritten as92

N (p, q) =
δ [H(p, q)− E]

QNVE
=

1
W (3.7)

whereW is the number of microstates with energy E. This statistical probability

is related to the entropy through the Boltzmann’s entropy formula, which reads

S = kB ln (W) (3.8)

where kB is the Boltzmann constant.

3.2.2 The canonical ensemble

The macrostate of a system in the canonical ensemble is defined by the number

of particles, N, the volume, V, and the temperature, T. The canonical ensemble
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is often used in both experimental and theoretical settings, and it considers a

system in contact with a heat bath at constant temperature. As different copies

of a system in the NVT ensemble may have different energies, its probability

density function is proportional to the Boltzmann distribution* and reads

N (p, q) =
exp [−βH(p, q)]

QNVT
(3.9)

where β = (kBT)−1 is the thermodynamic beta, and QNVT is the canonical

partition function, which reads

QNVT =
1

h3N

∫ ∞

−∞
d3N p

∫
Ω

d3Nq exp [−βH(p, q)] (3.10)

There are cases in which the Hamiltonian is separable into kinetic, K(p), and

potential energy, U(q), terms, as shown in the following equation

H(p, q) = U(q) + K(p) (3.11)

= U(q) +
N

∑
i

|pi|2
2mi

(3.12)

where mi is the mass of particle i. Whenever this separation is possible, the

integration over the momentum coordinates can be carried out analytically,

yielding a factor of
(
h2/2πmkBT

)1/2 for each of the 3N DOFs.94 Therefore, the

canonical partition function can be rewritten simply as a configurational partition

function (often referred to as the configurational integral) that reads

ZNVT =
∫

Ω
d3Nq exp [−βU(q)] (3.13)

*See Pathria and Beale 93, pp. 41–44, for a detailed derivation of the probability density
function for the canonical ensemble.
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The canonical probability density function can also be rewritten considering only

the potential energy part, i.e.,

N (q) =
exp [−βU (q)]
ZNVT

(3.14)

Finally, as the entropy connects the macroscopic thermodynamics with the sta-

tistical interpretation in the microcanonical ensemble, in the canonical ensemble

this connection is made by the Helmholtz free energy. The Helmholtz free energy

is a thermodynamic state function that measures the useful work obtainable

from a closed isothermal system and its expression is given by

A = −kbT ln (QNVT) (3.15)

3.2.3 The isothermal-isobaric ensemble

Another fundamental ensemble is the isothermal-isobaric, in which the macrostate

of a system is defined by the number of particles, N, the pressure, P, and the

temperature, T. The NPT ensemble is suited to simulate biological processes

or chemical reactions because in solution, in vitro, or in vivo these phenomena

usually occur under conditions of constant pressure. The probability density of

the NPT ensemble is given by87

N (p, q, V) =
exp {−β [H(p, q) + PV]}

QNPT
(3.16)

where QNPT is the isothermal-isobaric partition function, which reads

QNPT =
1

V0h3N

∫ ∞

0
dV VN

∫ ∞

−∞
d3N p

∫
Ω

d3Nq exp {−β [H(p, q) + PV]} (3.17)
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where V0 is some basic unit of volume chosen to render QNPT dimensionless.

Analogously to what was done for the canonical ensemble, it is possible separate

the configurational properties from the kinetic ones to obtain the following

isothermal-isobaric configurational partition and probability density functions

ZNPT =
1

V0

∫
dV

∫
Ω

d3Nq exp {−β [U(q) + PV]} (3.18)

N (q, V) =
VN exp {−β [U(q) + PV]}

QNPT
(3.19)

Finally, the thermodynamic property related to the NPT partition function is the

Gibbs free energy, which is given by

G = −kbT ln (QNPT) (3.20)

3.3 Monte Carlo

MC refers to a class of methods that resorts to random sampling and statistical

modelling to simulate the behaviour of complex systems and numerically esti-

mate mathematical functions.95 Its modern origins date back to the 18th century,

when George Louis LeClerc, Comte de Buffon (1707-1788) estimated the value

of π in his famous needle experiment. It was not until the 20th century, how-

ever, that MC started to be widely employed as a tool to simulate physical and

chemical phenomena.96,97 In chemical sciences, of great historical importance is

the introduction,98,99 in 1953, of the MC algorithm proposed by Metropolis et

al.,100 used to perform the first simulation of a hard-sphere ”liquid”. Since then,

several MC algorithms have been suggested,101–106 and these have been applied

to solve different problems.107–111

MC methods normally attempt to perform two operations: generate S samples,

xS = (x1, x2, . . . , xS ∈ Rn), which are here assumed to be continuous real vectors,
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from a probability density function; and estimate expectation values of functions

under this density function.87,90,112 Each of these operations has its own caveats,

which require careful consideration. Regarding the calculation of the expected

value of a thermodynamic property of interest A = A(x), suppose one wants to

evaluate the following integral

〈A〉 =
∫

Ω
dnx ρ(x)A(x) (3.21)

where ρ(x) is a probability density function that weights the values of A(x),

and Ω defines the integration domain. As previously discussed, equations of

this type are often impossible to solve analytically owing to the mathematical

form of the ρ(x) term. It is possible, nonetheless, to employ methods like MC

to numerically estimate such integrals. Hence, if samples can be drawn directly

from ρ(x), the MC estimator of 〈A〉 is given by the sample mean, i.e.,

〈A〉 ≈ Â =
1
S

S

∑
i=1

A(xi) (3.22)

However, in most cases, sampling directly from ρ(x) is unfeasible because either

its normalisation constant is unknown, or it is challenging to draw n-dimensional

samples from ρ(x). The solution for this problem is to introduce an auxiliary

probability density function, w(x), from which sampling is performed. To ensure

that Â still converges to 〈A〉 as S→ ∞, w(x) should contain ρ(x) and be non-zero

everywhere where ρ(x) is non-zero. When using this auxiliary function, instead

of attempting to evaluate equation (3.21), the following integral is considered

〈A〉 =
∫

Ω
dnx w(x)

[
ρ(x)A(x)

w(x)

]
(3.23)

Therefore, similarly to what was done to estimate equation (3.21), the integral of

equation (3.23) can be calculated using the following MC estimator
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〈A〉 ≈ Â =
1
S

S

∑
i=1

ρ(xi)A(xi)

w(xi)
(3.24)

Now, say the w(x) function is chosen to be a hyperrectangle from which uniform

sampling is performed. Since in this case w(x) can be determined analytically,

the MC estimator reads

〈A〉 ≈ Â =
V
S

S

∑
i=1

A(xi)ρ(xi) (3.25)

where V =
∫

Ω dnx is the volume of the sample space defined by the n-orthotope

or n-cube. In practice, uniform sampling is inefficient because it is prone to

exploring sample space regions that have low importance for the integral of

equation (3.23). For example, thinking in terms of configurational space, the

regions that are the most relevant to explore are those where exp[−βH(q)] is

the largest, and if uniform sampling is performed this subtlety is not taken into

account. A possible solution to increase the efficiency of MC integration is to

perform importance sampling, a technique in which the chosen w(xi) is biased

towards regions of sample space that have high importance. To understand the

value of this method, consider a situation in which one is concerned with the

estimation of 〈A〉 in the canonical ensemble, and that the w(x) function is chosen

to be the normalised canonical Boltzmann distribution. On these assumptions,

the following relation holds

w(x) = ρ(x) =
exp[−βH(x)]

ZNVT
(3.26)

and, therefore, equation (3.24) reduces to

〈A〉 ≈ Â =
1
S

S

∑
i=1

A(xi) (3.27)
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This is one of the main ideas behind the Metropolis algorithm,100 in which

expectation values are calculated by simply averaging the A(xi) values. The

brilliance of the Metropolis method is that it allows to sample from w(x) = ρ(x)

without requiring the value of the partition function to be known (see discussion

in Section 3.3.1). Furthermore, besides importance sampling, other MC sampling

techniques are available, and we refer the reader to the comprehensive literature

of Lemieux 113 , Landau and Binder 114 , and Binder and Heermann 115 for further

details.

To conclude the discussion on the general aspects of the MC method, it is

worthwhile mentioning that another important feature of MC integration is that

the variance Var
[
Â
]

scales as Var
[
Â
]
∼ 1/S, thus decreasing as the number

of samples S increases. This can be verified by using the definition of equation

(3.21) to express Var
[
Â
]

as follows

Var
[
Â
]
= Var

[
1
S

S

∑
i=1

A(xi)ρ(xi)

]
=

1
S2 Var

[
S

∑
i=1

A(xi)ρ(xi)

]
(3.28)

Since MC draws are uncorrelated samples (random and independent), the vari-

ance of the sum is the sum of the variances, and therefore equation (3.28) can be

rewritten as

Var
[
Â
]
=

1
S2

S

∑
i=1

Var [A(xi)ρ(xi)] =
1
S

Var [A(xi)ρ(xi)] (3.29)

leading to the conclusion that the accuracy of the MC estimator is independent

of the dimensionality of the sample space, only depending on the number of

samples, S. A similar derivation can be done to show that importance sampling,

when properly performed, reduces the estimation variance in MC simulations.90
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3.3.1 Acceptance criteria in Monte Carlo

The derivation of the acceptance criteria in standard MC simulations requires

satisfying the detailed balanced principle, also known as the condition of micro-

scopic reversibility, so that reversible Markov chains are constructed. In what

follows, for the sake of simplicity, it is assumed that the state of the system

is fully defined by the position of its particles, although note that this may

not always be the case, since, for example, in the isothermal-isobaric ensem-

ble the state of the system also depends on the volume. On this assumption,

detailed balanced implies that in equilibrium the average number of accepted

moves from a configuration qi = (qi,1, qi,2, ..., qi,3N) to any other configuration

q f =
(
q f ,1, q f ,2, ..., q f ,3N

)
, where N is the number of particles, is exactly cancelled

by the number of reverse moves, i.e.,

N (qi)π(qi → q f ) = N (q f )π(q f → qi) (3.30)

where N (qi) is the probability of finding the system in configuration qi, and

π(qi → q f ) is the transition probability of going from configuration qi to con-

figuration q f . The latter probability is constructed by noting that a MC move

consists of two stages. The first stage corresponds to performing a trial move

from qi to q f , with an associated probability of occurrence given by α(qi → q f ).

Moreover, the second stage corresponds to accepting or rejecting this trial move,

with an acceptance probability denoted by θ(qi → q f ). Since the two stages are

independent of each other, π(qi → q f ) can be written as

 π(qi → q f ) = α(qi → q f )× θ(qi → q f ) if i 6= j

π(qi → qi) = 1−∑j 6=i π(qi → q f ) if i = j
(3.31)

The detailed balance principle can be satisfied by carefully defining the form of

the acceptance probability θ(qi → q f ). Noticing that in equilibrium θ(qi → q f )

is constant if microscopic reversibility is ensured, then the following relation

holds
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θ(qi → q f ) + θ(q f → qi) = s(qi → q f ) (3.32)

where s(qi → q f ) is a symmetric function, i.e., s(qi → q f ) = s(q f → qi), chosen

such that 0 ≤ α(qi → q f ) ≤ 1. Hence, combining the relation of equation (3.32)

with the results of equations (3.30) and (3.31) leads to the following expression

N (qi)α(qi → q f )θ(qi → q f ) = N (q f )α(q f → qi)θ(q f → qi) (3.33)

which holds for any i and j and can be rewritten as

θ(qi → q f ) =
s(qi → q f )

1 +
N (qi)α(qi→q f )

N (q f )α(q f→qi)

(3.34)

This is the general form of the acceptance probability θ(qi → q f ), as proposed

by Hastings 116 . Various forms have been suggested for the function s(qi → q f ).

For example, Barker 117 suggested to take s(qi → q f ) = 1, which is simply a

normalisation of the sum of equation (3.32). Furthermore, Metropolis et al. 100

suggested the following form for s(qi → q f )

s(qi → q f ) =

 1 + N (qi)
N (q f )

α(qi→q f )

α(q f→qi)
if N (qi)
N (q f )

α(qi→q f )

α(q f→qi)
≥ 1

1 +
N (q f )

N (qi)

α(q f→qi)

α(qi→q f )
if
N (q f )

N (qi)

α(q f→qi)

α(qi→q f )
< 1

(3.35)

which reduces equation (3.34) to

θ(qi → q f ) = min

[
1,
N (q f )

N (qi)

α(q f → qi)

α(qi → q f )

]
(3.36)

which can be recognised as the widely used Metropolis criterion. Nothing has

yet been said about the form of N (q). Since this quantity has to be proportional

to the probability density function of the considered ensemble, it is given by one
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of the expressions that was previously stated, viz., equation (3.7) for the micro-

canonical ensemble, equation (3.14) for the canonical ensemble, and equation

(3.19) for the isothermal-isobaric ensemble.

3.3.2 Monte Carlo algorithm structure

Although there are several types of MC algorithms, in general they all share

common features that are now described. The general workflow of a typical MC

algorithm is shown diagrammatically in Figure 3.1, and it can be summarised in

the following steps:

1. Initialize the starting configuration qi.

2. Perform NMC MC sweeps†:

(a) Generate a new configuration q f by making a perturbation to config-

uration qi.

(b) For a given acceptance criterion, accept q f if θ(qi → q f ) is greater or

equal than a random number X sampled from a uniform distribution

defined within the interval [0, 1], and reject q f otherwise.

(c) If the configuration q f were rejected, start the next iteration from

configuration qi; otherwise start the next iteration from configuration

q f , i.e., set q f = qi.

3. Stop the simulation.

A large variety of choices are available for the perturbation done in step 2a.106

Some common MC moves include simulation box scaling, thermodynamic

perturbation, particle displacement, particle insertion or deletion, molecule

rotation, and other types of stochastic or deterministic perturbations of the DOFs

of the system.

†An MC sweep is the natural unit of simulation ”time” of MC simulations and consists in a
sequence of random moves that are accepted or rejected according to an acceptance criterion.
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Have NMC MC sweeps

been performed? 

Generate new configuration
qf  by making a perturbation

to configuration qi 




Calculate

Generate random number

End

Accept configuration qf  so
that in the next iteration

Reject configuration qf  so
that in the next iteration

Initialize starting structure
qi

Figure 3.1: Diagram describing the general workflow of the MC algorithm.
U(0, 1) denotes a random number between 0 and 1 sampled from a uniform
distribution. The green arrows denote conditionals for which the evaluated
condition is true, whereas the red arrows denote conditionals for which the
evaluated condition is false.



46 Chapter 3. Statistical Mechanics and Simulation Methods

3.4 Molecular dynamics

Molecular dynamics is the standard method for simulating the dynamical be-

haviour of systems. Contrary to MC algorithms, which are stochastic in nature,

plain MD methods are deterministic and allow the time-dependent behaviour of

systems to be studied by numerical integration of their equations of motion. The

first MD simulations were performed in 1957 by Alder and Wainwright 118 , using

systems composed of hard spheres. Advances in MD algorithms and computa-

tional power permitted the first MD simulations of a realistic system, viz., liquid

water, to be performed in 1974 by Stillinger and Rahman 119 , and a few years

later of a protein, viz., the bovine pancreatic trypsin inhibitor, which was run by

McCammon et al. 120 in 1977. Since then, the use of MD simulations has become

widespread much owing to the continuous development of molecular mechanics

and, more recently, to the advent of GPUs that can perform GPU-accelerated

MD. These advances have allowed simulations of larger systems for longer time

scales.121 MD simulations are nowadays routinely employed to study a wide

range of problems in chemical sciences, with druglike molecules, proteins, and

nucleic acids being some of the common systems of interest.

The underlying principles of MD were firstly derived by Sir Isaac Newton in 1687.

In Newton’s formalism of classical mechanics, a set of Cartesian coordinates,

r = (r1, r2, r3, ..., r3N), is usually employed, and the time evolution of one of these

degrees of freedom is calculated using the following equation

Fi = m
dṙi(t)

dt
= m

d2ri

dt2 (3.37)

where dot notation is used to denote time derivatives, Fi represents the force

acting upon the degree of freedom i at time t, and m the mass of the particle

associated with that degree of freedom.

An alternative formalism of classical mechanism was proposed by Joseph-Louis

Lagrange. In the Lagrangian picture, a set of generalised coordinates q = {qi}
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that depends on the system of interest is used, and the equations of motions are

rewritten for the appropriate configuration manifold such that any constraints

are considered from the outset. The central quantity in this formalism is the

Lagrangian, L(r, ṙ, t), which is defined as the difference between the kinetic,

K(ṙ), and potential energies, U(r). The expression of the Lagrangian reads

L(r, ṙ, t) = K(ṙ)−U(r) =
3N

∑
i

1
2

mṙ2
i −U(r) (3.38)

where, for the sake of simplicity, it was assumed that q ≡ r, i.e., that the gener-

alised coordinates correspond to Cartesian coordinates. The equation of motion

of the Lagrangian formalism reads

d
dt

(
∂L
∂ṙi

)
=

∂L
∂ri

(3.39)

By inserting the result of equation (3.38) into equation (3.39), the following

relation is obtained

m
dṙi

dt
= −∂U(r)

∂ri
(3.40)

from which, by comparison with equation (3.37), the link between the Newtonian

and Lagrangian formalisms is unraveled

Fi = −
∂U(r)

∂ri
(3.41)

demonstrating that the force can be expressed as the gradient of the potential

energy. Equation (3.41) provides a fundamental result for MD, as it can be used

to calculate forces from an arbitrary potential energy function. Moreover, this

result also implies an interesting feature of MD: since each Fi depends on the

potential energy, U(r), which in turns depends on the position coordinates of

all particles, the 3N differential equations that must be solved to propagate the
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equations of motion are coupled whenever an interacting system is considered,

and, therefore, generally, it is necessary to resort to numerical integration to

obtain the dynamical behaviour of such an interacting system.

Hamiltonian mechanics can also be used to perform MD, consisting in a refor-

mulation of the Lagrangian formalism that can be extended to QM. It describes

classical systems using a set of canonical coordinates and conjugate momenta,

{qi, pi}, defined in phase space. The fundamental quantity of this formalism

is the Hamiltonian, H(q, p), which represents the total energy of the system

calculated as the sum of the kinetic, K(ṗ), and potential energies, U(q). The

expression of the Hamiltonian reads

H(q, p) = K(ṗ) + U(q) (3.42)

The Hamiltonian equations of motion are given by

∂H
∂pi

= q̇i (3.43)

∂H
∂qi

= − ṗi (3.44)

Finally, it is worthwhile mentioning that initial velocities for MD simulations

can be drawn from the Maxwell-Boltzmann distribution, which reads

p(vi) =

(
mi

2πkbT

)1/2

exp

[
−

miv2
i

2kBT

]
(3.45)

where vi is the velocity of the degree of freedom i, and the other variables are as

previously defined.

Having discussed the most important formalisms that allow the dynamical

behaviour of systems to be determined, it remains to address how the equa-

tions of motion can be numerically solved. Several numerical algorithms have



3.4. Molecular dynamics 49

been developed for this purpose, the most popular ones being the leap-frog

algorithm,122 the Verlet algorithm,123 the Beeman’s algorithm,124,125 and the

velocity-Verlet algorithm.126 The basic assumption in all these methods is that

the positions, velocities and accelerations can be approximated by a Taylor series

expansion. Since the velocity-Verlet algorithm is the one used in this work, it is

discussed in detail in the next section.

3.4.1 The velocity-Verlet algorithm

The velocity-Verlet algorithm126 is an improved version of the original Verlet

algorithm.123 The main advantage of the velocity-Verlet algorithm with respect

to the leap-frog algorithm is that the former calculates the positions and velocities

at the same instant of time. The basic equations of the velocity-Verlet algorithm

are the following

qi(t + dt) = qi(t) + q̇i(t)dt +
Fi(t)dt2

2mi
+O(dt3) (3.46)

q̇i(t + dt) = q̇i(t) +
dt

2mi
[Fi(t + dt) + Fi(t)] +O(dt3) (3.47)

where dt is the integration time step. From these equations, it can be seen that

the local error in positions and velocities is O(dt3). However, since a simulation

of length t needs to perform t/dt time steps, the global error of this algorithm

is O(dt2), making velocity-Verlet a second-order method. Importantly, this

integration algorithm preserves two fundamental properties of the classical

equations of motion, viz., time reversibility, and symplecticity‡. Sympleticity is

essential to ensure the integrator conserves the energy of dynamical systems

during propagation. Furthermore, in most implementations, equations (3.46)

and (3.47) are further splitted into

‡Sympleticity implies phase space ”volume” preservation over time, i.e., that the density of
microstates is held constant within the entire phase space over the trajectory time.
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q̇i(t +
dt
2
) = q̇i(t)−

Fi(t)
2mi

dt (3.48)

qi(t + dt) = qi(t) + q̇i(t +
dt
2
)dt (3.49)

q̇i(t + dt) = q̇i(t +
dt
2
)− Fi(t + dt)

2mi
dt (3.50)

The workflow of this algorithm can be summarised as follows:

1. For every degree of freedom i:

(a) Given qi at time t, calculate Fi using equation (3.41).

(b) Using equation (3.48), calculate the half-step velocity using q̇i and Fi

at time t.

(c) Update qi for time t + δt using equation (3.49).

(d) Given qi at time t + δt, calculate the new force Fi using equation (3.41).

(e) Using Fi calculated in the previous step (1d), update the half-step q̇i

to to the full step q̇i using equation (3.50);

(f) Go back to step 1.

3.5 Thermostats and barostats

Thermostats and barostats are required to control the temperature and pressure

of a system during an MD simulation. The use of thermostats and barostats

allows the simulation of ensembles that match experimental conditions, mak-

ing them essential components of MD simulations. The simplest thermostats

available are the velocity-rescaling127 and Berendsen.128 Despite their compu-

tational convenience, the velocity-rescaling and Berendsen thermostats do not
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sample any defined ensemble and are prone to producing the flying ice cube

effect.129 These drawbacks prevent the use of the velocity-rescaling and Berend-

sen thermostats in MD production runs unless more advanced velocity-rescaling

schemes are employed.130 The Nosé-Hoover,131,132 Nosé-Hoover chain,89 and

Anderson133 thermostats, on the other hand, correctly sample the NVT ensem-

ble. The Nosé-Hoover thermostat, however, is not ergodic for small or stiff

systems,89 making the Nosé-Hoover chain and Anderson thermostats the most

viable methods to effectively sample the canonical distribution. Lastly, the tem-

perature of a system can also be controlled by performing Langevin dynamics.134

Since Langevin dynamics was the temperature-controlling method mostly used

throughout this thesis, it is described in detail in subsection 3.5.1.

MD simulations require barostats to simulate the NPT ensemble. The principles

underlying pressure coupling methods are very similar to those of tempera-

ture coupling methods. For example, the algorithm underlying the Berendsen

barostat is the same as that of the thermostat with the same name,128 though,

instead of scaling the velocities, the barostat works by scaling the cell vectors

and system coordinates at each MD step. Similarly, the Monte Carlo barostat also

controls the pressure through scaling of the cell vectors and system’s coordinates,

although this scaling is done stochastically and scaling attempts are accepted or

rejected according to an acceptance criterion. As the Monte Carlo barostat135–137

was the pressure-controlling scheme used throughout this thesis, it is described

in detail in subsection 3.5.2. Other popular pressure-controlling methods are the

Parrinello-Rahman barostat,138–140 which, besides volume scaling, allows the

simulation box to change its shape, and the Anderson133,141,142 barostat, which

works by mimicking the action of a piston that can compress or decompress a

system to which it is coupled.

3.5.1 Langevin dynamics

The Langevin equation is a stochastic differential equation that can be used to

sample an ensemble at a fixed temperature T.87,134 The Langevin equation is
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the fundamental equation behind Langevin dynamics and can be constructed

by adding a dissipative force and a noise term to the Hamiltonian equations

of motion. These added terms mimic the function of a thermostat by allowing

energy to flow into or out of the system.143 The equations that govern Langevin

dynamics are given by

ṗi = −Fi [qi(t)]− γi pi(t) +
√

2miγikBT
dW(t)

dt
(3.51)

q̇i =
pi(t)
mi

(3.52)

where Fi is the deterministic force acting on the degree of freedom i, γi is the

friction coefficient associated with that degree of freedom, and dW(t) is a Wiener

noise that satisfies the conditions 〈dW(t)dW(t′)〉 = δ(t− t′) and 〈dW(t)〉 = 0.

The noise term can be interpreted as a random force, or fluctuation, which brings

energy into the system. This energy is dissipated through the dissipative force,

−γi p(t), which can be interpreted as a friction force arising due to the solvent.

Care has to be taken when choosing the friction coefficient, γi, as too small values

may lead to ineffective dissipation of energy, causing the system to heat. This is

of particular concern for non-equilibrium situations since small values of γi may

lead to the breakdown of the system.144 On the other hand, in the high friction

limit, which occurs when γi → ∞, Langevin dynamics becomes Brownian

dynamics because the deterministic force is negligible in comparison to the other

terms.145 Several algorithms have been proposed for the numerical integration

of the Langevin equations, and we refer the reader to the comprehensive review

made by Leimkuhler and Matthews 146 , Chapter 7, for further details.

3.5.2 The Monte Carlo barostat

The MC barostat can be used to simulate the effects of constant pressure by

stochastically adjusting the size of a periodic simulation box. Although there are
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advanced versions of this algorithm,137 its basic idea is to perform a simulation

box rescaling at a chosen frequency and after a regular MD time step. This per-

turbation consists in proposing a trial volume change, ∆V = ξ∆Vmax, generated

using a random number, ξ, sampled from a uniform distribution defined within

the interval [−1, 1]. The limit ∆Vmax is chosen so that the MC acceptance ratio is

typically about 40-50%. The box lengths and centre of mass coordinates of each

molecule are then scaled according to135,136

l′i = li

(
V′

V

)1/3

(3.53)

r′i = (ri − ci)

(
V′

V

)1/3

+ ci (3.54)

where li is the size of the box along dimension i, ri is coordinate of the degree

of freedom i, V′ = V + ∆V, and ci denotes the coordinate of the centre of the

periodic box along dimension i. To derive the acceptance criterion for this MC

move, consider the form of the Metropolis criterion stated in equation (3.36). If

α(qi → q f ) = α(q f → qi) is chosen by imposing symmetry on the probability of

occurrence of the move, equation (3.36) reduces to

θ(qi → q f ) = min

[
1,
N (q f , V′)
N (qi, V)

]
(3.55)

Furthermore, since constant pressure simulations must be performed in the NPT

ensemble, N is given by the corresponding probability density function already

stated in equation (3.19). Therefore, N (qi, V) and N (q f , V′) are given by

N (q f , V′) =
V′N exp

{
−β

[
U(q f ) + PV′

]}
QNPT

(3.56)

N (qi, V) =
VN exp {−β [U(qi) + PV]}

QNPT
(3.57)
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Hence, by inserting equations (3.56) and (3.57) into equation (3.55), the following

acceptance criterion is obtained

θ(qi → q f ) = min
[

1, exp
{
−β [∆U + P∆V]− N ln

(
V′

V

)}]
(3.58)

where ∆U = U(q f ) − U(qi). The volume move is then accepted if θ(qi →

q f ) ≥ X, where X is a random number sampled from a uniform distribution

defined within the interval [0, 1], and rejected otherwise. Note that an isotropic

MC barostat was considered here, but this does not have to necessarily be the

case since the above procedure can easily be adapted to take anisotropy into

account.147

3.6 Enhanced sampling methods

Enhanced sampling methods are nowadays routinely employed to solve the

sampling problem in MD simulations. With the currently available MD algo-

rithms and computational power, it is possible to simulate mesoscale systems

containing millions of atoms on the nanosecond time scale. In this regard, in

2019 Jung et al. 148 reported the first atomistic MD simulation of an entire gene, a

system composed of 1 billion atoms, which was simulated during approximately

1 ns. Another remarkable example is the atomistic 121 ns MD simulation of

the H1N1 viral envelope (ca. 160 million atoms) performed by Durrant et al.149

While these noteworthy cases are representative of the limits imposed on the

simulation of mesoscale systems by present-day software and hardware architec-

tures, smaller systems composed of hundreds of thousands of atoms can now be

simulated on time scales that can go up to the microsecond.150 Despite this, MD

simulations of this size and length still demand computational resources that

are not available to all research groups, making enhanced sampling methods the

only feasible way to simulate certain phenomena of interest in chemical sciences.
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The fastest molecular motions are vibrations and rotations, which occur on time

scales ranging from femtosecond to picosecond, and picosecond to nanosecond,

respectively.151 These motions are easily captured by atomistic MD simulations,

in which the standard time step used is 1 fs. Complex systems, however, are

characterised by a multiple time scale nature, in which the dynamics of fast

movements takes place in parallel to slow motions that occur on a microsecond

to millisecond time scale. Events of such kind are, for example, enzyme cataly-

sis, protein-ligand binding, protein folding, signal transduction, and allosteric

regulation.88,152 These biomolecular phenomena are poorly captured by MD

simulations, being considered as rare events on the currently accessible simula-

tion times. Furthermore, the occurrence of some conformational changes even in

small-to-medium-sized organic molecules often depends upon the emergence

of unlikely fluctuations, since the free energy landscapes of such systems are

characterised by high barriers separating long-lived metastable states.153 Most

MD simulations are, consequently, not truly ergodic because they cannot explore

every available point in phase space. Enhanced sampling methods are, therefore,

the way forward towards efficient and thorough sampling in MD simulations.

Enhanced sampling methods can be broadly separated into two families: those

that depend on collective variables (CVs), and those that are independent of

CVs.88 CVs, also referred to as order parameters or reaction coordinates, are

defined as functions, generally non-linear, of the atomic coordinates, q, such

that a set of CVs s(q) is defined as s(q) = (s1(q), s2(q), . . . , sd(q)). This CV

set should be able to describe the key features of the physical behaviour of

interest, distinguish between all relevant metastable states, and include all the

slow DOFs.154 The equilibrium distribution, P(s), of the CVs, s(q), is thus given

by

P(s) =
∫

d3Nq δ [s− s(q)]N (q) = 〈δ [s− s(q)]〉 (3.59)

where N (q) is, for example, the canonical probability density function defined

in equation (3.14). The free energy surface is defined as the logarithm of this
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distribution, and therefore it reads

F(s) = − 1
β

ln [P(s)] (3.60)

Of the family of methods that depend on CVs, the most popular ones are um-

brella sampling,34 and metadynamics (MetaD),29 though there are many more

available such as J-walking,155 adaptive biasing force method,156 or conforma-

tional space annealing,157,158 to name just a few. Umbrella sampling was the

first method of this kind to be proposed. It works by introducing a bias poten-

tial Ubias [s(q)] designed to enhance the sampling of CV space, such that the

equilibrium distribution of the CVs, taking into account the biasing potential,

reads

Pbias(s) =
∫

Ω
d3Nq δ [s− s(q)]N (q)Nbias(q) (3.61)

where Nbias(q) is the probability density function of the biasing potential, which

is given by

Nbias(q) =
exp {−βUbias [s(q)]}

Zbias
=

exp {−βUbias [s(q)]}∫
Ω d3Nq exp {−βUbias [s(q)]}

(3.62)

Therefore, the unbiased free energy surface can be obtained using

F(s) = − 1
β

ln [Pbias(s)] = −
1
β

ln
[

P(s)
Zbias

]
−Ubias (s) (3.63)

where P(s)/Zbias is the distribution sampled in the biased simulation. Hence,

from equation (3.63) it follows that the unbiased free energy surface in umbrella

sampling can be recovered by reweighting the distribution from the biased

simulation.
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MetaD works by constructing an history-dependent bias potential Ubias(s, t) that

gradually accumulates multivariate Gaussian repulsive potentials G [s, s(t′)] at

the visited CV, i.e.,88

Ubias(s, t) =
∫ t

0
dt′ G

[
s, s(t′)

]
(3.64)

G
[
s, s(t′)

]
= ω exp

{
−1

2
[
s− s(t′)

]T
Σ−1 [s− s(t′)

]}
(3.65)

where ω is the height of the Gaussian, and Σ−1 is a symmetric covariance

matrix. By doing this, metaD disfavours states that were already visited during

the simulation and guides the system towards new regions in CV space. The

goal of metaD simulations is to obtain a sampled distribution that becomes

uniform as t → ∞, therefore allowing the free energy to be recovered, as it

is proportional to the negative of the bias potential. However, since repulsive

potentials never stop being added to this bias potential, metaD simulations never

converge, presenting a systematic error. The solution for this problem is called

well-tempered metaD, a method in which the height of the Gaussians becomes

time-dependent, decreasing as the biasing potential increases, so that

ω(t) = ω exp
[
−βUbias(s, t)

γ− 1

]
(3.66)

where γ > 1 is a constant called bias factor. Hence, since as t → ∞, ω(t) → 0,

the bias potential converges as

Ubias(s) ∝ −
(

1− 1
γ

)
F(s) (3.67)

allowing convergence of the free energy surface.

On the other hand, of the family of methods that are independent of CVs, the

most popular ones are parallel tempering (or replica exchange)32,159,160 and its
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derivatives.161,162 In the most basic version of this method, R parallel replicas of

a system are considered, and these replicas are concomitantly simulated at differ-

ent temperatures using MD. The lowest temperature replica represents the target

ensemble for which sampling is to be enhanced, while the high-temperature

replicas are used to accelerate the exploration of conformational space. Enhanced

sampling is then achieved by performing MC exchange attempts between the

configurations of adjacent replicas every Nt MD steps. A diagram describing the

general workflow of these replica-exchange-based methods is shown in Figure

3.2.

Figure 3.2: Diagram describing the general workflow of replica-exchange-based
methods. A supersystem composed of R replicas is represented, for which
exchange attempts between adjacent replicas are attempted every Nt MD steps.
These exchange attempts consist in configuration exchanges, which are accepted
or rejected according to the acceptance criterion given by equation (3.71). The
temperature of the replicas increases monotonically from T1 to TR, allowing for
enhanced sampling to be achieved.

To derive the MC acceptance criterion for the exchange of configurations between

two replicas, consider the procedure presented in Section 3.3.1. The first step

involves imposing detailed balance, which forces the number of exchanges from

replica i to f to be exactly cancelled by the number of reverse moves, i.e.,
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Ni(qi)N f (q f )π[i(qi)↔ f (q f )] = Ni(q f )N f (qi)π[i(q f )↔ f (qi)] (3.68)

where Ni(qi) is the probability of finding the system with configuration qi on

the ith replica, and π[i(qi) ↔ f (q f )] is the transition probability for the ex-

change of configurations between replicas i and f . As in standard MC moves,

π[i(qi)↔ f (q f )] consists of two stages: the first stage corresponds to perform-

ing a trial configuration exchange i(qi) ↔ f (q f ), which has as an associated

probability of occurrence given by α[i(qi) ↔ f (q f )]. Furthermore, the second

stage corresponds to the acceptance (or rejection) of this exchange attempt, being

its acceptance probability denoted by θ[i(qi) ↔ f (q f )]. If α is symmetric, i.e.,

α[i(qi)↔ f (q f )] = α[i(q f )↔ f (qi)], equation (3.68) can be written as

Ni(qi)N f (q f )θ[i(qi)↔ f (q f )] = Ni(q f )N f (qi)θ[i(q f )↔ f (qi)] (3.69)

which can be rearranged to give

θ[i(qi)↔ f (q f )]

θ[i(q f )↔ f (qi)]
=
Ni(q f )N f (qi)

Ni(qi)N f (q f )
(3.70)

Using the Metropolis version of the acceptance criterion, equation (3.70) reduces

to

θ[i(qi)↔ f (q f )] = min

[
1,
Ni(q f )N f (qi)

Ni(qi)N f (q f )

]
(3.71)

whereN (q) is given by equation (3.7) for the microcanonical ensemble, equation

(3.14) for the canonical ensemble, and equation (3.19) for the isothermal-isobaric

ensemble. The exchange move is then accepted if θ[i(qi)↔ f (q f )] > X, where

X is a random number sampled from a uniform distribution defined within the

interval [0, 1], and rejected otherwise.
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We refer readers to the reviews of Yang et al. 88 and Bernardi et al. 163 for more

information about enhanced sampling methods.

3.7 Summary

In this chapter, we have presented the basic theory behind statistical mechanics

and simulation methods. We began with the fundamental principles of statistical

mechanics and proceeded to discuss the features of the main thermodynamic

ensembles, the fundamentals of the Monte Carlo and molecular dynamics simu-

lation methods, and the theory underlying thermostats, barostats, and enhanced

sampling methods.

The next chapter is devoted to molecular mechanics, the main classical method

used to model molecular systems in this thesis. We introduce the concept of

potential energy surface, discuss the main classes and functional forms of force

fields, review the methods for calculating long-range interactions, and present

the details of the general AMBER force field. Lastly, we conclude with a review

of the current state of the art of force field parameterisation strategies.



61

Chapter 4

Molecular Mechanics

MM refers to the use of classical descriptions to model molecular systems. Unlike

QM methods, which explicitly consider electronic motions, in MM methods the

energy of a system is a function of nuclear positions only, since electrons are

either ignored or only partially incorporated at a mean-field level in polarisable

models. This approximation greatly simplifies the calculations that must be

performed to determine the behaviour of systems of interest, therefore reducing

the computational cost required for their simulation. MM models are often

referred to as FFs. FFs have been continuously developed since the 1960s,

providing nowadays the principal model with which complex chemical systems

are described. Although MM methods cannot provide any information about

electronic properties, they still have, in some cases, advantages in terms of

accuracy. A clear example in which MM models have been historically superior

to QM methods is in the description of dispersion interactions, which current ab

initio methods can only accurately reproduce at the MP2 or higher levels of theory

if no empirical MM-like corrections are employed.164 Despite their indubitable

success, MM models are based on empirical energy functions and require a set

of FF parameters to work, making their development an ongoing process since

the diversity of systems of interest never stops posing new challenges.
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4.1 Potential energy surfaces

The potential energy surface (PES) describes the energy of a system as a function

of some (or all) of its geometric parameters. The concept of the PES is not exclu-

sive to MM, as it is used in any method (e.g., QM methods or machine-learning

potentials) that can calculate the energy of a system in terms of structural param-

eters. PESs can be determined owing to the Born-Oppenheimer approximation,

which, by decoupling electronic and nuclear motion, makes the concept of

geometry meaningful.165

The stationary points are the key features of a PES. Stationary points are defined

as points where the gradient of the energy with respect to all structural parame-

ters is zero. Three types of stationary points are relevant in chemistry: minima,

transition states, and higher-order saddle points. Minima correspond to stable

(global minima) or metastable (local minima) molecular structures. Transition

states are first-order saddle points in the energy map connecting two minima.

Higher-order saddle points are less important than transition states, although

some reactions or transitions may occur through them, especially through second

order saddle points. A representation of a PES is shown in Figure 4.1.

Local 
minimum

Transition 
state Global 

minimum

⍺

β

Figure 4.1: Simplified PES as a function of structural parameters α and β.
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To characterise the stationary points of a PES, recall that for a linear molecule

with N atoms there are p = 3N − 5 vibrational DOFs. Furthermore, for a non-

linear molecule, p = 3N − 6 independent variables are necessary to define its

internal coordinates, q = (q1, q2, . . . , qp). Taking this into account, the Hessian

matrix of such a system reads

H =


∂2U
∂q2

1
. . . ∂2U

∂q1∂qp
... . . . ...

∂2U
∂qp∂q1

. . . ∂2U
∂q2

p

 (4.1)

The nature of a stationary point can be determined by calculating the eigenvalues

of the Hessian at that point. If the eigenvalues are all positive, the stationary

point is a minimum. If the eigenvalues are all negative, the stationary point is a

maximum. Otherwise, the stationary point is a saddle point, of which first-order

saddle points, which are a minimum in all DOFs except one, are particularly

important in chemistry since they correspond to transition states.166

4.2 Force fields

FFs are the state-of-the-art models employed in the simulation of systems in

chemical sciences. The core of any FF is the potential energy function, or func-

tional form, used to map the molecular representation, q, of a system of interest

to its potential energy, U.164 Besides the FF functional form, a set of FF parame-

ters is usually required, which can be obtained either from the various databases

available or bespoke-derived. The detail of the molecular representation defines

the granularity of the FF. In this regard, molecular modelling can be done using

either all-atom,95,167 united-atom,168,169 or coarse-grained FFs.170–172 The atom-

istic representation explicitly includes every atom, being, therefore, the most

accurate at the MM level. The united-atom model does not explicitly represent

nonpolar hydrogens, capturing their steric effect by modifying the Lennard-

Jones (LJ) parameters of the parent atom.173 Coarse-grained FFs further reduce
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the DOFs of a system by representing groups of atoms as beads, allowing cheaper

simulations at the cost of lower accuracy. There are also hybrid MM models that

combine, for example, the all-atom and coarse-grained representations,174,175 in

which the atomistic details are applied to the most relevant parts of the system,

and coarse-graining is used for the less important ones, permitting a balance to

be achieved between accuracy and computational cost. Since this work focus on

all-atom FFs, in what follows we present a discussion about the main variations

of this type of model, which can be broadly divided into four classes:164,173,176,177

• Rule-based: FFs in this category resort to a minimal set of parameters

that covers all elements in the periodic table. The functional forms of

rule-based FFs typically contain terms found in class I and class II FFs (e.g.,

bond stretching, dihedral, and bond-angle terms), although rule-based FFs

do not require sets of interaction-specific parameters as required for class

I and class II FFs. Instead, the parameters governing all interactions in

a system are generated using generic rules. Rule-based FFs are usually

universal in applicability and can virtually describe any system at the cost

of lower accuracy. Examples of such FFs are UFF,178 DREIDING,179 and

ESFF.180

• Class I: FFs belonging to this class are usually called ”harmonic” since they

use harmonic potentials to model both bond stretching and angle bending.

The LJ 12-6 potential is used to describe the dispersion interactions, and

the Coulomb potential is used for electrostatics. Class I FFs are also often

called ”diagonal” FFs, as no cross-terms coupling different functional form

terms (also known as off-diagonal terms) are included. Note, however,

that class I FFs may contain harmonic couplings, such as the Urey-Bradley

potential. Class I FFs are commonly employed in biomolecular simulations,

as these FFs have been specifically derived to model organic molecules,

peptides, proteins, and nucleic acids. The most popular class I FFs are

AMBER,181,182 CHARMM,183 GROMOS,184 and OPLS.185–188
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• Class II: This class of FFs employs functional forms that include cross-

terms that capture couplings between DOFs. They also include cubic or

quartic terms to model bond stretching and angle bending, and the disper-

sion interactions are treated using exponential-type potentials.177 Owing

to this, class II FFs are more computationally expensive than class I FFs,

but generally more accurate at predicting energies, geometries, and vibra-

tional frequencies.176,177 Class II FFs are commonly applied in material

science and biomolecular simulations, with MM3,189–191 CFF,192,193 COM-

PASS,194,195 and MMFF94196–200 being examples of popular FFs that belong

to this class.

• Class III: FFs in this class represent the most sophisticated models in

MM. Besides anharmonic and cross-terms, class III FFs also include de-

scription of non-additive electrostatic effects, such as hyperconjugation,

and polarisation. Polarisation is included through either induced dipoles

(AMOEBA201,202), the drude model (Polarisable CHARMM203,204), or fluc-

tuating charges (fluc-q205–207).

As can be seen from this summary, each FF class has its advantages and draw-

backs, and their choice depends on the type of system to be used and the degree

of accuracy to be achieved. In what follows, we explicitly define the potential

functions typically used in FFs, with emphasis on those employed by class I FFs,

which were frequently used throughout this thesis.

4.2.1 Bonded potentials

The simplest FF functional forms comprise three types of bonded interactions:

bond stretching term, angle bending terms, and torsional terms. These are

pictorially represented in Figure 4.2.
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Figure 4.2: Pictorial representation of the three main contributions of the bonded
terms of a MM FF, viz., bond stretching, angle bending, and bond rotation
(torsion).

Bond stretching terms define how the energy of a bond changes with its length.

The energy of a bond can be written as a Taylor expansion about the point r = req,

with req being the reference bond length, such that

Ubond(r) = Ubond
(
req
)
+

dUbond(r)
dr

∣∣∣∣
r=req

(
r− req

)
+

1
2

d2Ubond(r)
dr2

∣∣∣∣
r=req

(
r− req

)2
+O

(
r3
)

(4.2)

where we have neglected all terms of order higher than two. In equation (4.2),

since the energy reference is arbitrary, Ubond(req) can be set to zero. Furthermore,

since the force at equilibrium is zero, the second term of the expansion is also

zero. Hence, equation (4.2) can be rewritten as

Ubond(r) =
1
2

d2Ubond(r)
dr2

∣∣∣∣
r=req

(
r− req

)2
+O

(
r3
)

(4.3)

where the second derivative gives the curvature of the potential about the

equilibrium bond length and is usually called the harmonic bond force constant

Kb. Therefore, in the harmonic approximation, the potential function that models

bond stretching is given by
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Ubond(r) = Kb
(
r− req

)2 (4.4)

An analogous derivation can be done to show that the harmonic angle bending

term reads

Uangle(θ) = Kθ

(
θ − θeq

)2 (4.5)

where θeq is the reference valence angle, and Kθ is the harmonic angle force

constant. Note, however, that the harmonic approximation in insufficient for

situations in which the bonds and angles deviate far from their equilibrium val-

ues. Most vibrational motions are also anharmonic, requiring terms beyond the

harmonic approximation for an accurate description. An accurate representation

of bond stretching is given by the Morse potential,208 which reads

Ubond(r) = De
{

1− exp
[
−α
(
r− req

)]}2 (4.6)

where De is the dissociation energy or well depth, and α =
√

Kb/2De. Owing

to its computational cost and requirement of three parameters (De, KB, and

req), the Morse potential is rarely used in molecular simulations. Its shape is

instead approximated by class II and class III FFs, which truncate equation (4.2)

at orders higher than two. For example, a typical quartic energy function for

bond stretching is given by173

Ubond(r) = Kb
(
r− req

)2
+ K

′
b
(
r− req

)3
+ K

′′
b
(
r− req

)4 (4.7)

where K
′
b and K

′′
b correspond to the second and third derivatives of the energy

with respect to the bond length, evaluated at the reference bond length. De-

spite their higher accuracy in reproducing PESs and vibrational spectra, these

anharmonic functions also introduce more parameters in the FF, making param-

eterisation more difficult.
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Bond rotation terms, also known as torsional potentials, are commonly expressed

as a sum of cosine functions with multiplicities n = 1, 2, 3, . . ., and amplitudes

Vn, such that

Utorsion(φ) = ∑
n

Vn[1 + cos(nφ− γn)] (4.8)

where γn are the phase factors that determine where the torsional potential

passes through its minimum. There are also improper dihedrals terms, which

either prevent molecules from flipping to their mirror images or keep planar

groups planar. These are applied to arrangements of four atoms as represented

in Figure 4.3.

Figure 4.3: Pictorial representation of improper dihedrals used to impose planar
(a) or tetrahedral (b) geometries, or to prevent out of plane bending for rings (c).

Improper dihedrals are routinely modelled using the periodic potential stated

in equation (4.8). Alternatively, they can be modelled using a simple harmonic

potential that reads

Uimproper(φ) = Kφ

(
φ− φeq

)2 (4.9)

where φ is the angle between the two planes formed by the triads of atoms 1-2-3

and 2-3-4 (see Figure 4.3), φeq is the improper dihedral equilibrium value, and

Kφ is the improper dihedral amplitude. Finally, cross-terms that couple bonds,
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angles, and torsions are also included in class II and class II FFs. For example, a

typical bond-bond cross-term is given by

Ubond(r1, r2) = Kb1Kb2

(
r1 − req1

) (
r2 − req2

)
(4.10)

Other types of cross-terms, such as those describing bond-angle, angle-angle,

bond-torsion, and angle-torsion couplings can be constructed in a similar way.173

In class I FFs, a common bond-angle cross-term is the Urey-Bradley potential,

which is mainly used by the CHARMM FF.183 The Urey-Bradley potential ac-

counts for corrections to angle bending that arise due to bond stretching. This

term is important for the proper description of in-plane deformations and for

the separation of symmetric and asymmetric bond stretching vibrations.209 The

Urey-Bradley potential has a simple harmonic form that reads

UUB(S) = KUB
(
S− Seq

)2 (4.11)

where KUB and Seq are the Urey-Bradley force constant and equilibrium distance,

respectively, of a virtual bond formed between atoms 1 and 3. Another impor-

tant cross-term with particular relevance for the modelling of proteins is the

CMAP,164,210 which is a torsion-torsion term that couples the Φ and Ψ protein

backbone torsion angles. It is used in the CHARMM FF183 and corresponds to

a Ramachandran-like plot that represents the differences between the MM and

QM energies at every point in the grid.173

4.2.2 Nonbonded potentials

The electrostatic interactions in class I FFs are handled by the Coulomb potential.

This treatment implies a point charge model in which each atom is assigned a

fixed partial charge. The Coulomb potential reads
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UCoulomb(rij) =
qiqj

4πε0rij
(4.12)

where qi and qj are the partial charges assigned to atoms i and j, respectively, rij

denotes the distance between these atoms, and ε0 is the vacuum permittivity.

This ”additive” treatment of electrostatics assumes that the charges do not affect

each other, and therefore, that all electrostatic interactions can be summed to

yield the total electrostatic energy.173 It is well known, however, that especially

in the condensed phase, molecules have higher dipoles than in the gas phase.164

This phenomenon, which is not captured unless polarisation is taken into ac-

count, is the main driving force behind the development of class III FFs. In class

I and class II FFs, in which partial charges are usually derived for the gas phase,

a possible workaround for this issue consists in calculating partial charges in

the dielectric medium of interest. By doing so, it is possible to mitigate some

of the undesired consequences that arise due to the use of gas-phase partial

charges in condensed-phase situations. Another common workaround to mimic

condensed-phase settings is to overpolarise the molecules using low QM levels

of theory.211,212 A ”real” treatment of electrostatic interactions, however, must

necessarily go beyond the point charge model, even when polarisation is taken

into account. This is the approach used by, for example, the AMOEBA FF,201,202

in which multipole-multipole interactions are considered instead of the usual

charge-charge interactions. Using this framework, AMOEBA represents the

charge distribution of each atom by the permanent atomic monopole (charge),

dipole, and quadrupole moments, of which only the dipole moment is polar-

isable. This combination of permanent atomic multipoles and atomic induced

dipoles leads to AMOEBA’s great performance when considering complex sys-

tems for which polarisation and accurate electrostatics are critical.201

Van der Waals interactions in class I FFs are handled using the LJ 12-6 potential,

which reads
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ULJ(rij) = 4εij

(σij

rij

)12

−
(

σij

rij

)6
 (4.13)

where εij is the well depth of the LJ interaction between atoms i and j, and σij the

distance at which said interaction vanishes. The ε and σ values can be calculated

using the Lorentz-Berthelot combination rules,213,214 which are given by

σij =
σii + σjj

2
(4.14)

εij =
√

εiiεjj (4.15)

In practice, a cutoff is used to truncate the LJ 12-6 interactions at a given distance.

However, as a sharp truncation at the cutoff distance leads to discontinuities

in the potential, which may cause the energy not to be conserved, a switching

function is usually employed to make the interaction go smoothly to zero over a

finite distance range. For example, OpenMM215 uses the following switching

function

S = 1− 6x5 + 15x4 − 10x3 (4.16)

where x = (r− rs)/(rc − rs), and rs refers to the distance from which equation

(4.16) is used to multiply the LJ 12-6 energy. For a situation in which both a cutoff

and a switching function are employed, the LJ 12-6 equation can be written as

ULJ(rij) =



4εij

[(
σij
rij

)12
−
(

σij
rij

)6
]

, rij ≤ rs

4εij

[(
σij
rij

)12
−
(

σij
rij

)6
]

S, rc > rij > rs

0, rij ≥ rc

(4.17)
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As an alternative to switching functions, shift functions, which shift the LJ 12-6

potential in the entire range by an amount equal to ULJ(rc), can also be applied.

Shifting the LJ 12-6 potential by a constant is a simple way to ensure that there

is no discontinuity in the energy at rij = rc. This simple shifting scheme does

not ensure that the force goes to zero at the cutoff distance, however. To solve

this problem, several shifted-force LJ 12-6 potentials have been proposed.216–219

Shifted-force LJ 12-6 potentials add a small linear term that makes the LJ 12-6

derivative equal to zero at rc, consequently removing the previously mentioned

problems in both energies and forces.87

The use of cutoffs requires energy corrections that take into account missing

dispersion interactions. These terms approximate the energy contribution of all

interactions with rij ≥ rc. For an isotropic fluid with homogeneous LJ sites, the

LJ 12-6 energy correction is given by220

Ucorr
LJ =

8πN2

V

(
〈εijσ

12
ij 〉

9r9
c
−
〈εijσ

6
ij〉

3r3
c

)
(4.18)

where V is the volume of the simulation box, N is the number of particles of the

system, and 〈. . .〉 denotes an average over all pairs of particles in the system.

Similar terms can also be applied to correct the pressure.220 For inhomogeneous

systems outside the cutoff distance, Ewald-family methods can be used to cap-

ture the long-range dispersion interactions. Some of the Ewald-family methods

used for the treatment of electrostatic interactions are presented in the next

section.

Lastly, most FFs do not include Coulomb and LJ 12-6 interactions between

atoms separated by one or two bonds and use modified parameters for atoms

separated by three bonds, which give rise to the so-called 1-4 interactions. The

1-4 interactions can be interpreted as scaled nonbonded interactions, since the LJ

and electrostatic interactions are damped by a scale constant that prevents the

molecule from breaking or deforming due to the occurrence of geometries that

lead to high repulsions.



4.3. Long-range interactions 73

4.3 Long-range interactions

Realistic simulations of biological systems necessarily require the inclusion of

long-range interactions. These are normally calculated while employing pe-

riodic boundary conditions (PBCs), which are used to suppress surface and

finite-size effects that arise due to reducing systems that are infinite or very

large to smaller, computationally-tractable simulation cells. When using PBCs,

the original unit cell is infinitely replicated in all directions to form a periodic

lattice, such that if a particle leaves the original unit cell during the simulation,

then a copy of that particle enters the cell from the opposite side. To calculate

nonbonded interactions for systems with PBCs, the simplest scheme available

is the minimum-image convention. In the minimum image convention, each

particle only interacts with the closest image formed by the remaining particles.

For computational efficiency, modifications of the minimum-image convention

scheme have been developed, in which it is combined with truncation at spheri-

cal cutoffs. Despite being conceptually simple and computationally convenient,

schemes revolving around the (truncated) minimum-image convention pose

several problems for simulations, as they introduce non-negligible errors and ar-

tificial behaviour.221–223 To realistically simulate periodic systems, it is, therefore,

necessary to resort to methods that properly capture long-range interactions.

In what follows, we focus our discussion on the most important methods used

to treat long-range electrostatic interactions, viz., the Ewald and particle mesh

Ewald (PME) methods.

In an infinitely periodic system composed of N particles in a cubic box of size L,

the total Coulomb energy is given by222

UCoulomb =
1
2

′

∑
n

∑
i,j

qiqj

rij,n
(4.19)

where n = (n1, n2, n3) runs over all copies of the periodic cell, the prime indicates

that i = j is omitted for n = 0, the indices i and j run over all particles, qi and qj
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are the partial charges, and rij,n is the distance between a particle in the original

cell and a particle at an image cell n. For the sake of simplicity, all 4πε0 factors are

omitted in equation (4.19), which corresponds to reducing charges by a factor of

(4πε0)
1/2.87 Calculation of long-range Coulomb interactions using this equation

is computationally demanding, as well as slowly and conditionally convergent

(depends on the order in which the sum is made). Methods that efficiently

calculate the long-range interactions of systems with PBCs must therefore be

employed for proper treatment of the electrostatics. The Ewald summation is

one of the techniques of choice to converge long-range contributions. It works

by recasting equation (4.19) as a sum of two rapidly converging series plus a

constant term, i.e.,222

UEwald = Edirect + Ereciprocal + Esel f (4.20)

where Edirect is the direct (real) space sum, Ereciprocal is the reciprocal (imaginary)

space sum, and Esel f is the self-energy term. Each of these terms can be defined

as follows

Edirect =
1
2

′

∑
n

∑
i,j

qiqj
erfc

(
αrij,n

)
rij,n

(4.21)

Ereciprocal =
1

2πV ∑
i,j

qiqj ∑
m 6=0

exp
[
−(πm/α)2 + i2πm · (ri − rj)

]
m2 (4.22)

Esel f = −
α√
π

∑
i

q2
i (4.23)

where V is the volume of the unit cell, m is a reciprocal-space vector, and α is an

internal parameter that is defined next. In the Ewald method, each point charge

of a neutral charge system is surrounded by a charge distribution, typically

Gaussian-shaped, of equal magnitude and opposite sign, which reads
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ρi(r) = qiα
3 exp

(
−α2|r|2

)
/
√

π3 (4.24)

where α determines the width of the Gaussian distribution, and r is the posi-

tion relative to the centre of the distribution. This charge distribution screens

the interactions between neighbour point charges, making them short-range

in nature, allowing, therefore, for rapid convergence of the direct space sum.

Since the erfc function tends to zero as rij,n increases, if α in equation (4.21) is

chosen to be large enough, the direct space sum reduces to the minimum image

convention.87 To counteract the screening charge distribution and recover the

original charge distribution, a second Gaussian charge distribution is added to

each point charge to cancel the screening charge distribution in the real space.

This cancelling distribution is summed in reciprocal space and then transformed

back to real space through a Fourier transform, which decays rapidly since

equation (4.22) is a smooth function.222

The PME method is an alternative way of converging the long-range interactions.

Similarly to the Ewald method, PME also recasts the potential energy into direct

and reciprocal sums and uses Gaussian charge distributions.221,224 The main

distinctive feature of PME is that the reciprocal sum is approximated using fast

Fourier transforms (FFTs) with convolutions on a grid in which charges are

interpolated to the grid points.222 For example, OpenMM distributes the charges

onto nodes of a rectangular mesh using 5th order B-splines.215 The use of FFT

permits the PME algorithm to scale as O (N log(N)).

4.4 The general AMBER force field

The FF used throughout this work is the GAFF, which has parameters for almost

all organic molecules.182 It uses the following class I functional form



76 Chapter 4. Molecular Mechanics

U = ∑
bonds

Kb
2
(r− req)

2 + ∑
angles

Kθ

2
(θ − θeq)

2 + ∑
dihedrals

Vn [1 + cos (nφ− γn)]

+∑
i<j

4εij

( σij

Rij

)12

−
(

σij

rij

)6
+ ∑

i<j

qiqj

4πε0rij

(4.25)

where all terms are as previously defined. The charge method used in GAFF is

the HF/6-31G* RESP charge model, which is presented in detail in Section 5.2.5.

Alternatively, the AM1-BCC method,225,226 which, like RESP, also emulates the

HF/6-31G* electrostatic potential of a molecule, can also be applied to compute

the atomic charges. The GAFF van der Waals parameters are the same as those

used by the traditional AMBER FF. To derive the reference bond lengths, GAFF

resorted to data obtained through X-ray and neutron diffraction experiments,

as well as theoretical MP2/6-31G* calculations. The reference angle values

were determined from previous FFs parameters, MP2/6-31G* calculations, Cam-

bridge Structural Database (CSD) data, and empirical rules. Furthermore, bond

and angle force constants were derived using empirical functions. Finally, tor-

sional parameters were determined by fitting the series of cosine functions to

torsional profiles obtained by performing geometry optimisations//single-point

calculations at the MP4/6-311G(d,p)//MP2/6-31G* level of theory.

4.5 Force field parameterisation

As previously discussed, a FF consists of a functional form and a set of unknown

FF parameters that enters the functional form. While the potential energy func-

tion is universal for a given FF class (see Section 4.2), and the FF parameters may

be transferable within specific families of molecules (e.g., proteins, nucleic acids,

ligands), it is frequently necessary to derive new parameters for novel chemical

moieties or challenging molecular interactions. FF parameterisation is, therefore,
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the process with which optimal FF parameters are derived so that the FFs re-

produce target theoretical and/or experimental properties. In the context of the

research presented in this thesis, FF parameterisation is of particular importance

for the parameterisation of novel ligands, for which transferable parameters are

often inaccurate.

The idea of transferability of FF parameters is based upon spectroscopic obser-

vations that indicate that there is sufficient similarity between certain natural

parameters within a given molecular class. For example, C-C bonds in alkanes

are similar enough so that the same bond length can be used to describe, e.g.,

pentane or hexane.227 The concept of transferability is also related to that of

atom types, which are assigned to the different elements of a molecule consid-

ering their hybridisation states and chemical environment.173 Since the larger

the number of atom types, the lower the generality of a FF, a balance must be

achieved between transferability and accuracy. Although handy and successful

in many situations, atom types make it difficult to systematically extend FFs, as

their diversity is virtually unlimited. Moreover, an exhaustive definition of every

possible atom type would result in redundant parameters, and, therefore, in

practice, FFs limit their atom type definitions to those commonly encountered in

most chemical and biological systems. This approach, however, does not come

without issues to FF development, having led to the proposal of new approaches

of assigning FF parameters that escape atom types.228,229

FF parameterisation typically involves two stages: calculation or selection of a

target theoretical and/or experimental data set to be used in the parameterisation;

and optimisation of the FF parameters. There is a wide range of experimental

data that can be used for FF parameterisation, such as dielectric constants and

thermodynamics properties, as well as data obtained from X-ray crystallography,

IR spectroscopy, and NMR spectroscopy. Additionally, any property that can be

computed by ab initio methods can also be included in the target data set, such

as, e.g., energies, forces, electrostatic potentials, vibrations, among others.173,230

In what follows, we focus our discussion on the optimisation of FF parameters

using ab initio data, as it was the approach taken in this work.
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Of great historical importance in the fitting of FF parameters to QM data is the

the force-matching method proposed by Ercolessi and Adams 231 in 1994. In

this method, the set of unknown FF parameters, p, is determined by minimising

an objective function that measures the difference between the FF and ab initio

forces for a large set of different configurations. The objective function of the

force-matching method reads

χF(p) =
Ns

∑
i

wi

3N

∑
j

(
FMM

i,j (p)− FQM
i,j

)2
(4.26)

where i runs over all Ns configurations, j runs over all 3N atomic force compo-

nents, wi is the weight of the ith configuration, FMM
i,j is the force on the jth atomic

component of configuration i as predicted by the FF, and FQM
i,j is the reference

force obtained from an ab initio calculation. The weighting methods that can be

used to modify the relative importance of the configurations of the target data

set are discussed at length in Section 5.2.4. The force-matching method objective

function of equation (4.26) can be readily recognised as a least squares problem

of which the solution is the optimal set of FF parameters. Incidentally, over the

past 30 years, solving least squares problems has been the main FF parameter-

isation strategy, as the force-matching method can be generalised to include

other experimental or theoretical properties of interest, as well as to include

regularisation terms that prevent overfitting. This generalisation is thoroughly

discussed in Section 5.2.1, as it forms the basis of ParaMol, software that we

developed and aims to ease the process of FF parameterisation by fitting to ab

initio data (see Chapter 5). Parameterisation using least squares strategies has

the advantage of being analytically solvable and not requiring an initial guess

of FF parameters if the least squares problem is linear. On the other hand, for

non-linear problems, local minimisation algorithms must be employed, though

they do not ensure that a global minimum is found and require an initial guess

of parameters.

Before the advent of least squares strategies for FF parameterisation, there was no
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mathematically defined way to perform systematic and automatic optimisation

of FFs. FF parameterisation, thus, involved informed trial and error procedures

that were used to construct the first FF parameter sets.227 As an advancement to

least squares fitting strategies, alternative objective functions that did not require

minimisation of the sum of squared residuals began to be employed. For these

problems, genetic algorithms have stood out as one of the most viable global

optimisation approaches.232–234

Parameterisation strategies not resorting to least squares fitting have also been

developed. These strategies have a more physics-driven rather than data-driven

philosophy. A striking example of such a physics-based parameterisation strat-

egy is the one presented by the Quantum Mechanical Bespoke Kit (QUBEKit),235

which forms the basis of the QUBE FF. In the QUBE FF, equilibrium bond lengths

and angles are determined from QM optimised geometries; harmonic bond and

angle force constants are derived from the QM Hessian matrix using a modified

version of the Seminario method;236,237 charge and LJ nonbonded parameters

are derived from atoms-in-molecules partitioning of the QM electron density;238

and the derivation of the torsional terms follows a more traditional least squares

fitting approach. Besides enabling bespoke FFs to be derived and demonstrating

high accuracy, one of the advantages of QUBEKit is its scaling performance,

which allows systems composed of thousands of atoms, such as proteins, to be

treated.239

Recently, Bayesian inference began to be used as a statistical formalism to per-

form FF parameterisation.240–243 This statistical technique is based on the Bayes’

theorem, which relates the conditional and marginal probabilities of two stochas-

tic events. To understand how Bayesian inference works, consider the condi-

tional probability of observing a set of parameters, p, given a target data set, D,

which is proportional to

P(p|D) ∝ P(D|p)P(p) (4.27)
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where P(p|D) is the posterior distribution, P(D|p) is the likelihood, and P(p)

is the prior distribution. FF parameterisation can then be seen as the problem

of maximising the posterior distribution with respect to the FF parameters.244

Hence, to find the optimal set of FF parameters, the likelihood and prior distri-

butions must be determined. Evaluating the likelihood requires calculating the

FF physical properties as a function of the FF parameters and comparing those

properties to reference data through an error model, typically chosen so that the

errors are Gaussian-distributed. The FF outputs can be calculated using, e.g.,

standard MM simulations, though in many situations this is a costly procedure,

and thus a surrogate model, such as a Gaussian process, is employed to estimate

the likelihood. This involves cheaply approximating the response surface of

the physical properties with respect to the FF parameters and comparing those

values to the reference data through the error model. Furthermore, the prior

distribution must be chosen so that it restraints the parameters to physically

sensible regions using previous FF parameters, physical constraints, or physical

intuition. Finally, since posteriors are generally non-analytical, MC sampling

schemes are employed to generate trial moves in parameter space. The advan-

tages of Bayesian inference are that it can be used to obtain FF parameters with

uncertainty estimates for each parameter,241,244 as well as to compare the fitness

of various FF functional forms,240 thus providing a complete framework that

will be at the core of future FFs.

4.6 Summary

In this chapter, we have presented the fundamentals of molecular mechanics

models. We introduced the concept of potential energy surface, discussed the

main classes and functional forms of force fields, reviewed methods for calcu-

lating long-range interactions, and presented the details of the general AMBER

force field. Lastly, we concluded with a review of the current state of the art of

force field parameterisation strategies.
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The next chapter comprises the first research study of this thesis. It presents the

theory, development, implementation, and validation of ParaMol, software that

aims to ease the process of FF parameterisation. ParaMol has a special focus on

the parameterisation of bonded and nonbonded terms of druglike molecules

by fitting to ab initio data. We demonstrate the capabilities of the software by

deriving bonded parameters of three widely-known drug molecules: aspirin,

caffeine, and a norfloxacin analogue. Additionally, we illustrate the best practices

to follow when employing specific parameterisation routes; the sensitivity of

the fitted parameters to the fitting procedure; and the features of the various

weighting methods available to weight configurations used in the fitting.
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Chapter 5

ParaMol: A Package for Automatic

Parameterisation of Molecular

Mechanics Force Fields

The ensemble of structures generated by MM simulations is determined by

the functional form of the FF employed and its parameterisation. For a given

functional form, the quality of the parameterisation is crucial and determines

how accurately observable properties can be computed from simulations. Whilst

accurate FF parameterisations are available for biomolecules, such as proteins

or DNA, the parameterisation of new molecules, such as drug candidates, is

particularly challenging as these may involve functional groups and interactions

for which accurate parameters are not available. In this chapter, in an effort to

address this problem, we present ParaMol, a Python package that has a special

focus on the parameterisation of bonded and nonbonded terms of druglike

molecules by fitting to ab initio data. We demonstrate the software by deriving

bonded parameters of three widely-known drug molecules: aspirin, caffeine, and

a norfloxacin analogue. For these molecules, we show that, within the constraints

of the functional form, the methodologies implemented in ParaMol are able to

derive near-ideal parameters. Additionally, we illustrate the best practices

to follow when employing specific parameterisation routes; the sensitivity of
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different fitting data sets, such as relaxed dihedral scans and configurational

ensembles, to the parameterisation procedure; and the features of the various

weighting methods available to weight configurations. Owing to ParaMol’s

capabilities, we propose that this software can be introduced as a routine step

in the protocol normally employed to parameterise druglike molecules for MM

simulations.

This chapter has been published as an article in the Journal of Chemical Informa-

tion and Modeling:

• Morado, J.; Mortenson, P. N.; Verdonk, M. L.; Ward, R. A.; Essex, J. W.;

Skylaris, C.-K. ParaMol: A Package for Automatic Parameterization of

Molecular Mechanics Force Fields. J. Chem. Inf. Model. 2021, 61 (4),

2026–2047. https://doi.org/10.1021/acs.jcim.0c01444

5.1 Introduction

MM-based simulation methods such as MD and MC are commonly employed to

solve many problems in chemistry, physics, biochemistry, and condensed mat-

ter.7 The ability of these MM-based methodologies to correctly model systems

of interest relies mainly on two aspects: their capacity to extensively sample the

configurational space and the accuracy of the underlying FF.

The sampling problem is still an area of intensive research, with many enhanced

sampling methods being proposed in the past decades, e.g., MetaD,29,30 Hamil-

tonian replica-exchange,31–33 and umbrella sampling.34 On the other hand, the

accuracy of MM simulations relies on the underlying FF, which comprises a

functional form and a set of parameters. The functional form consists of a func-

tion that defines the potential energy of the system and allows the calculation of

forces, which enables equations of motion to be numerically solved. Amongst

the most commonly used fixed-charge FF functional forms are AMBER,182,245

https://doi.org/10.1021/acs.jcim.0c01444
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GROMOS,184 CHARMM,183 and OPLS.185–188 These FFs already contain exten-

sive databases of parameters for different types of molecules. Even so, many

applications require the parameterisation of novel molecules or levels of accu-

racy in the conformations and energetics that are unattainable using default FF

parameters. Of great importance is the parameterisation of molecules for drug-

design applications and for the calculation of quantum corrections to classical

free energies, which were shown to converge faster if MM descriptions more

similar to the quantum level are employed.246–248 Here, in an effort to address

the problem of FF accuracy, we present ParaMol, a software package that is

capable of deriving bespoke FF parameters in an automated fashion by fitting to

ab initio data.

Different software packages have already been released for the purpose of auto-

matic FF parameterisation. Each has its features, specific methods, and design

choices. For example, Paramfit249 is capable of parameterising the bonded

parameters in the AMBER equation by fitting to ab initio forces and energies;

QUBEKit uses a physics-driven parameterisation methodology that enables be-

spoke FFs to be derived for systems composed of thousands of atoms;235 ffTK250

(VMD plugin) and GAAMP251 were designed specifically to derive CHARMM-

compatible parameters for small molecules and permit the parameterisation of

charges and bonded parameters; the CPMD software package252 also contains a

QM/MM force-matching implementation and can derive charges and bonded

terms parameters for the AMBER and GROMOS96 equations; Schrödinger’s pro-

prietary software is capable of parameterising the OPLS FF and systematically

generating missing torsional parameters;185,187,188,253 finally, ForceBalance230,254

stands out due to its generality, as it is capable of parameterising different FF

functional forms to experimental data and has many optimisation algorithms

available.

ParaMol can be used as a stand-alone package and as a Python package to create

user-customised parameterisation protocols. It differs from other parameterisa-

tion software packages in some of its implementation choices and in its special
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focus on the parameterisation of druglike molecules from first-principles quan-

tum mechanics. ParaMol aims to ease all steps in a standard parameterisation

workflow: it automates configurational sampling, the calculation of reference

data, and the procedure of obtaining the optimal FF parameters. Therefore,

ParaMol can be easily introduced as a routine step in the standard workflow

used to prepare druglike molecules for MM simulations. The software can also

be extended to accommodate new objective functions, fitting properties, and FF

functional forms. ParaMol also has parallel capabilities that allow distributing

the calculation of the objective function and ab initio training data amongst the

available computational resources. Currently, the package is able to derive pa-

rameters for class I additive potential energy functions, such as those used by

AMBER, CHARMM, and OPLS FFs.176

As application examples, we assessed the limits of accuracy that can be attained

by fitting bonded parameters of the GAFF functional form to QM calculations.

For this purpose, we chose three widely-known drug molecules: aspirin, caffeine,

and a norfloxacin analogue. To illustrate the dihedral scan functionality that

is available in ParaMol, we optimised the dihedral parameters associated with

the main rotatable bond of a norfloxacin analogue. Furthermore, for aspirin,

we explored the advantages and limitations of the use of dihedral scans against

configurational ensembles generated MD simulations, as ways of exploring

the PES, and optimised aspirin’s bond, angle, and dihedral parameters; finally,

we employed adaptive parameterisation to derive new bonded parameters for

caffeine.

This chapter is structured as follows: we first present the basic theory un-

derlying the implementation of the ParaMol package, viz., the generalisation

of the force-matching method,231 the restrained electrostatic potential (RESP)

model,211,255,256 the optimisation algorithms available, as well as some remarks

about regularisation and parameter preconditioning; then we describe the or-

ganisation of the software package and its functionalities. Finally, we conclude

by presenting the application of different parameterisation protocols to the

previously mentioned test cases.
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5.2 Theory and methods

5.2.1 Generalisation of the force-matching method

A generalisation of the original force-matching method231 can be formulated in

which, instead of only fitting forces, the aim is to fit the FF to reproduce, within

the constraints of the functional form, any target experimental or theoretical

property of interest. In this context, the optimisation procedure can be seen as a

mathematical problem in the space of FF parameters, which are denoted as p,

being p a vector containing all the optimisable parameters. The optimisation

aims to determine the optimal set of parameters that minimise an objective

function, here denoted as X. The objective function contains the squares of the

residuals, and in its general form reads

X(p) = XF(p) + ∑
{A}

XA(p) + Θ(p) (5.1)

where XF corresponds to the term of the objective function by which MM forces

are fitted to reference values, XA accounts for the fitting of any other property of

interest A to reference data (e.g., potential energy, electrostatic potential), and

Θ(p) is a regularisation term that can be optionally included in order to prevent

overfitting (discussed in detail in Section 5.2.6). Specifically, two different types

of force-matching terms, X I
F and X I I

F , are implemented in ParaMol. The type I

force-matching term fits the norm of the atomic forces to reference data and it

has the following form231

X I
F(p) =

1
3Na

Ns

∑
i

ωi

Na

∑
j

∣∣∆Fi,j
∣∣2

Var(Fre f )
(5.2)

where ∆Fi,j = FMM
i,j (p)− Fre f

i,j , Fre f
ij and FMM

ij are the QM (reference) and MM

force vectors, respectively, of atom j in conformation i, ωi is the weight of the ith

conformation, Ns is the number of structures provided, and Na the number of
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atoms of the system. The type II force-matching term fits every component of

the atomic forces to reference data and it is given by254

X I I
F (p) =

1
3Na

Ns

∑
i

ωi

Na

∑
j

[
∆Fi,j(p)T〈Fre f

i,j ⊗ Fre f
i,j 〉

−1∆Fi,j(p)
]

(5.3)

It is worth noting that the variance, Var(Fre f ), and covariance, 〈Fre f
i,j ⊗ Fre f

i,j 〉, are

used in X I
F and X I I

F , respectively, so that the residuals in the objective function

are dimensionless and maximally of unit magnitude. Furthermore, in equation

(5.1), XA is a general expression for the fitting of any property of interest A to

reference data, which for the case of a global property is given by

XA(p) =
Ns

∑
i

ωi

(
AMM

i (p)− Are f
i

)2

Var(Are f )
(5.4)

Furthermore, similarly to what was done in equations (5.2) and (5.3), if A is an

atom-based property, the appropriate sum over all atoms and normalisation

constant must be introduced. It is worth mentioning that a special case of

equation (5.4) is considered when the property to be fitted is the energy, i.e.,

when A = E. In this case, since different levels of theory have different energy

references (e.g., the QM and MM energies usually differ by several orders of

magnitude), the expression used for XE reads

XE(p) =
Ns

∑
i

ωi

(
EMM

i (p)− Ere f
i − 〈∆E〉

)2

Var(Ere f )
(5.5)

where Ere f
i and EMM

i are the QM (reference) and MM potential energies, and

〈∆E〉 = 1
Ns

∑Ns
i

(
Ere f

i − EMM
i

)
is a term that brings the two distributions together

by subtracting the average difference between the reference and MM energies

from the energy residuals.
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5.2.2 Data set generation: dihedral scans and configurational

ensembles

Regarding the schemes through which reference data sets of configurations and

their respective properties of interest can be generated for parameterisation

purposes, two methods are routinely employed to explore the PES of small

organic molecules: dihedrals scans, and configurational ensembles.

The most common method to explore the PES is by performing one-dimensional

relaxed scans of the DOFs of interest (e.g., dihedrals), in which only the DOFs

not explicitly being constrained are allowed to relax (by default all the DOFs

not being scanned). There are mainly two disadvantages associated with this

methodology. First, the energy can change dramatically if a substituent group

falls into a different molecular configuration due to concerted motions, which

causes discontinuities in the energy profiles. Second, if there are non-negligible

couplings between DOFs, i.e., if the DOFs are non-orthogonal, then the energy

landscape is not correctly described by a one-dimensional surface, demanding

higher-dimensional scans that quickly become prohibitive.257,258

Alternatively to the use of dihedral scans, it is also possible to use either MD or

MC simulations to generate configurational ensembles. Whilst the disadvantages

of the relaxed scans are not present in this case, generating configurational

ensembles requires sufficiently long simulations that guarantee exploration of

the relevant parts of the PES, or specific techniques that guarantee sufficient

coverage of sampling (e.g., replica-exchange algorithms31–33).

5.2.3 Dihedral fitting approaches

Although the derivation of dihedral parameters can be performed using configu-

rational ensembles, computationally it is often less costly and more convenient

to use dihedral scans. We implemented in ParaMol two different dihedral fitting

approaches that use dihedral scans as the fitting data sets. In what follows,
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we use the notation EA,B, where A and B refer to the levels of theory used to

calculate the single-point energies and perform the geometry optimisations,

respectively.

A commonly employed dihedral fitting approach,249,251,259 hereinafter referred

to as QM-relaxed, is to derive the dihedral parameters by determining differ-

ences between the MM single-point energies (EMM,re f ) and the QM single-point

energies (Ere f ,re f ), obtained in vacuum and using the same QM geometry for

both the MM and QM calculations. In this case, the objective function reads

Xdih(p) =
Ns

∑
i

ωi

(
EMM,re f

i (p)− Ere f ,re f
i − 〈∆E〉

)2

Var(Ere f ,re f )
(5.6)

However, as pointed out by other authors,250,260,261 an approach that is often

underappreciated and that yields more adequate parameters, hereinafter referred

to as MM-relaxed, is obtained when a further MM optimisation (with the proper

constraints) is also carried out for every conformation of the dihedral scan.

Therefore, since in this case the MM single point-energy (EMM,MM) is calculated

based on the MM-relaxed geometry rather than the QM-relaxed geometry, the

objective function reads

Xdih,relaxed(p) =
Ns

∑
i

ωi

(
EMM,MM

i (p)− Ere f ,re f
i − 〈∆E〉

)2

Var(Ere f ,re f )
(5.7)

The rationale underlying the MM-relaxed approach is that the MM energy is

highly influenced by the intramolecular energy of terms associated with parame-

ters that are not being optimised. QM optimisations can result in geometries that

are deformed from the point of view of the MM level because the FF parameters

may have been obtained by fitting to experimental data or QM levels that are

different from those used to perform the dihedral scans. Consequently, the

MM and QM dihedral profiles may present significant differences in regions

of the PES that are of primary interest for proper modelling, such as minima
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and transition states. Hence, by using QM geometries that acquire MM energies

(QM-relaxed approach) rather than MM geometries that acquire MM energies

(MM-relaxed approach), the parameterisation procedure is likely to generate

biased parameters, as it attempts to correct for differences in the dihedral profiles

that are unrelated to the FF parameters associated with the dihedral(s) being

scanned. Interestingly, the MM-relaxed approach can also be used to take into ac-

count more complex relaxation situations, such as, e.g., the environment-related

effects that occur in solution or a protein environment.261

Overall, it is recommended to use the MM-relaxed approach as long as the

resultant MM-optimised geometries do not significantly differ from the QM-

optimised ones. As a rule of thumb, if the global conformational preferences of

the molecule do not change after the MM optimisation, then the MM-relaxed

approach is preferred. Finally, it is also worth mentioning that the QM-relaxed

approach is a good approximation whenever the DOFs not being scanned match

in the QM and MM optimised geometries, or whenever the remaining FF terms

do not contribute significantly to the dihedral profile. This concern is particularly

important for hard DOFs (bonds and angles), for which small differences in

value lead to large energy changes due to large force constants. Therefore, it

is recommended to relax those DOFs before deriving dihedral parameters, as

otherwise biased parameters are likely to be obtained.

5.2.4 Weighting methods

We implemented a variety of weighting methods in ParaMol that give more im-

portance to some conformations than others. Currently, the weighting methods

available in ParaMol are the following:

• Uniform weighting: this is the simplest weighting method that is possible

to apply. It assigns equal weight to all conformations, such that the weight

of any two conformations i and k is given by
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ωi = ωk =
1

Ns
(5.8)

This weighting method may be problematic if very high-energy confor-

mations are present because, in order to minimise the errors in their de-

scription, the fitting procedure may adversely affect the description of

highly-populated low-energy conformations. This usually happens due to

constraints of the functional form. A practical solution for this problem is

to use ParaMol to prune out conformations of which the reference energy

is larger than a given value relative to the minimum energy conformation

(e.g., 10.0 kcal/mol).

• Boltzmann weighting: Boltzmann weighting based on the reference (QM)

energies gives more importance to low-energy conformations than to high-

energy conformations. This non-uniform weighting is achieved by weight-

ing each conformation by the factor

ωi =
exp

[
−β(EQM

i − < EQM >)
]

∑Ns
j exp

[
−β(EQM

j − < EQM >)
] (5.9)

The disadvantage of Boltzmann weighting is that it usually leads to inac-

curate energies for conformations located at or near high-energy barriers.

This often compromises the dynamics of the model, preventing its use in

standard simulation methods.258

• Non-Boltzmann weighting: The non-Boltzmann weighting method im-

plemented in ParaMol is the one proposed by Wang et al.,262 in which the

expression used for the weight of a conformation i is given by

ωi =
exp

[
−β(EMM

i − EQM
i − < ∆E >)

]
∑Ns

j exp
[
−β(EMM

j − EQM
j − < ∆E >)

] (5.10)

where ∆E = EMM − EQM. This weighting method gives larger weights

to conformations in which the MM energy is underestimated (EMM −
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EQM < 0) than to conformations in which the MM energy is overestimated

(EMM − EQM > 0), with respect to the reference (QM) energy. Hence,

as pointed out by its original authors,263 configurations with negative

EMM − EQM have a spuriously large thermodynamic weight in the MM

representation and are more likely to appear during MM sampling, which

could lead to incorrect equilibrium averages due to incorrect equilibrium

structures. On the other hand, configurations with positive EMM − EQM

have a spuriously small weight in the MM representation, which could

result in overestimation of transition-state energies and underestimation

of fluctuations. Therefore, by heavily penalizing configurations with MM

energies that are lower than QM energies, this weighting procedure avoids

the creation of spurious MM minima and forces the fitting errors into the

high-energy regions, which are, in a sense, higher-order errors than the

incorrect equilibrium averages.

• Manual weighting: This weighting method allows the user to choose

the weights of each conformation, which will be constant throughout the

whole optimisation. This may be of special importance if the user knows

which conformations should be given more or less importance. Other

publications have suggested that weights of less than or equal to five are

typically appropriate for the underrepresented conformations, assuming

weights of unity for the rest of the target data.260

5.2.5 Charge fitting to electrostatic potential: the RESP model

ParaMol can derive atom-centred point charges by fitting to a reference electro-

static potential (ESP).255 Specifically, ParaMol contains an implementation of the

RESP model.211,256 The objective function used in the multiconformational RESP

fit reads
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XRESP(q) =
Ns

∑
i

ωi

Ngrid

∑
k

Ncharges

∑
j

qj

rjk,i
−VQM

k,i

2

+ λ1

Ncharges

∑
j

qj − qtot


+

Nconstraints

∑
m=2

λm fm(q) + Θ(q)

(5.11)

where ωi is the weight of the ith conformation, q = (q1, ..., qj) is the vector of

charges allowed to vary during the fitting, VQM
k is the value of the calculated

ESP at the grid point k, and rjk is the distance between the atomic centre j and

the grid point k. Furthermore, λ1 corresponds to the Lagrange multiplier used

to constraint the sum of the charges to the total molecular charge, and λm (with

m > 1) corresponds to the Lagrange multipliers used to impose other types of

constraints such as, for instance, symmetry constraints.256 Finally, as in equation

(5.1), Θ(q) defines the penalty function optionally applied so that the fit becomes

restrained.

ParaMol is able to perform charge fitting by using SciPy’s264 implementation

of the COBYLA,265 SLSQP266 or Trust Region267 algorithms. Moreover, we also

implemented an analytical solution of the system of equations that arises from

taking the derivatives of equation (5.11) with respect to the charges and Lagrange

multipliers. More information about the implementation of this analytical solu-

tion can be found in Refs. 255 and 211.

5.2.6 Preconditioning of optimisable parameters and regulari-

sation

In order to avoid overfitted parameterisations, which may occur whenever the

amount of reference data used in the optimisation is not extensive enough,

regularisation has to be applied so that, during the optimisation, the parameters

remain within a range of values that makes physical sense. This is done through

the inclusion of the penalty functions Θ in equations (5.1) and (5.11). In Bayesian
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statistics, penalty functions correspond to the negative logarithm of a prior

distribution, and the regularised objective function corresponds to the posterior

distribution.230 Hence, it is possible to design penalty functions by making

assumptions regarding the prior distribution of the parameters. We implemented

in ParaMol different regularisation methods. For instance, if the user wants

to apply L1 regularisation, i.e., if the prior distribution of a parameter p is

assumed to be given by P(p) = exp
(
− |p−p0|

γ

)
, where γ controls the width of

the distribution and p0 is the parameter initial guess, then the penalty function

reads

ΘL1(p) = α

Np

∑
m

|pm − p0
m|

γm
(5.12)

where α is an adjustable parameter that controls the strength of the regularisation.

Similarly, if the user wants to apply L2 regularisation, i.e., if the prior distribution

of the parameters is assumed to be Gaussian, a harmonic penalty function is

then employed, which reads

ΘL2(p) = α

Np

∑
m

(pm − p0
m)

2

γ2
m

(5.13)

The widths of the prior distributions can be automatically generated or man-

ually chosen by the user using physical knowledge. Regarding the automatic

generation of these hyperparameters, ParaMol uses a procedure in which either

the arithmetic or geometric mean is calculated for classes of FF parameters (e.g.,

bond force constants, dihedral phases, etc.). All parameters within the same

class will then use this mean value as the width of their prior distributions. This

is similar to the approach followed by ForceBalance.254 Moreover, the procedure

used to automatically generate the prior widths can also be used to construct the

Jacobi preconditioner, which scales the parameters so that they are all treated on

the same footing by the optimisation algorithm. Specifically, the Jacobi (diagonal)

preconditioner used in ParaMol is given by P = γmδmm.
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Finally, if charges are being fitted, it is also possible to apply a hyperbolic

regularisation term that prevents the charges from deviating too much from a

target charge of zero.211 This hyperbolic penalty function is given by

ΘHB(q) = α

Ncharges

∑
m

[
(q2

m + β2)1/2 − β
]

(5.14)

where α and β are adjustable hyperparameters that define the asymptotic limits

of the strength of the restraint and the tightness of the hyperbola around its

minimum, respectively.

5.2.7 Optimisation algorithms

We implemented in ParaMol global and local optimisation algorithms that

perform non-linear minimisation of the objective function, viz., non-reversible

Monte Carlo,268 gradient descent,269 stochastic gradient descent,270 and simu-

lated annealing.271 Furthermore, ParaMol also interfaces with the Python SciPy

package, from which several minimisation algorithms can be used (e.g., Nelder-

Mead, Powell, BFGS, L-BFGS-B, SLSQP, COBYLA, and Trust Region). Since

ParaMol has no implementation of analytical derivatives of the objective func-

tion with respect to the set of parameters being optimised, whenever necessary

the Jacobian matrix is calculated using numerical derivatives, and the Hessian

matrix is approximated using BFGS or SR1 updates.264,272

In addition to the non-linear iterative optimisers previously described, ParaMol

also offers analytical linear least squares (LLS) solutions to the parameterisation

of the bonded parameters (bond, angle, and dihedral parameters) of class I

FFs.258,259 This fitting approach can be employed alongside any of the avail-

able regularisation schemes, though currently only to find the minimum of the

squared deviations of the energies, as shown in equation (5.5). The LLS solver

does not support the use of the non-Boltzmann weighting given by equation

(5.10), as the dependence of this weighting method on the MM energies makes it
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suited to be solved only through non-linear optimisation. The main ”disadvan-

tage” of the LLS fitting approach is that it provides a single deterministic answer,

whereas a scatter of possible solutions with nearly the same quality concerning

the objective function usually exists. On the other hand, iterative methods, such

as the stochastic Monte Carlo or gradient-based optimisations, can find other

nearby solutions, which may have value if they produce different simulation

outcomes that may be preferred in specific cases (e.g., produce the right helical

propensity, or orientation of a drug molecule in a protein binding site). Never-

theless, it should be stressed that these solutions should only be fielded once the

absolute optimum obtained by the LLS fitting has been attempted.

5.2.8 ParaMol package structure

ParaMol is designed to be used as a Python package that can be easily extended

by the user to include extra functionalities or other parameterisation protocols.

The Python (sub)subpackages and modules that comprise ParaMol’s top-level

package, as well as the main interactions between them, are depicted in Figure

5.1. ParaMol uses OpenMM215 as its MM engine and has implemented wrappers

of AMBER, DFTB+273,274 and ASE.275 The ASE package allows single-point or

geometry-optimisation calculations to be performed using any of the calculators

or optimisers available in it. Moreover, ParaMol also offers symmetrisers that

enable subjecting reparameterisations to the symmetries defined in the topol-

ogy files used by traditional MM packages, such as AMBER, CHARMM, or

GROMACS. Interfaces to read and write input files for these packages are also

available.

In order to set up a custom parameterisation protocol using ParaMol, firstly a

ParaMol’s representation of the system of interest must be created by resorting to

the ParaMolSystem object defined in the system module of the System subpackage.

An instance of this object stores the reference data, contains the MM (modules in

MM engines subpackage) and QM engines (wrappers defined in the modules of
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the QM engines subpackage) used by the system, and stores ParaMol’s represen-

tation of the FF (modules in ForceField subpackage). Furthermore, an instance

of the ObjectiveFunction object must also be created. This object is defined in

the objective function module of the ObjectiveFunction subpackage. The Objective-

Function object requires some properties (objects defined in the modules of the

ObjectiveFunction.Properties subsubpackage) to be fitted to the reference data, and

an instance of the ParameterSpace object defined in the parameter space module of

the ParameterSpace subpackage, which stores the vector space of optimisable pa-

rameters. Lastly, one of the optimisers available in the modules of the optimisers

subpackage must be used to perform the minimisation of the objective function.

Alternatively, it is possible to resort to one of the tasks already implemented

in the modules of the Tasks subpackage to perform specific parameterisation

protocols (these tasks are described in detail in the next subsection). ParaMol

tasks greatly simplify the use of the software because they usually only require

instancing of ParaMolSystem objects and of the desired task. More information

about the ParaMol package and examples of how to use the code can be found

at ParaMol’s website, https://paramol.readthedocs.io.

https://paramol.readthedocs.io
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Figure 5.1: Overview of the structure of the ParaMol Python top-level pack-
age. Paramol’s (sub)subpackages are represented as cyan circles and the re-
spective modules as blue rectangles. The most relevant interactions between
(sub)subpackages are represented with arrows. The direction of the arrows
indicates that modules from the destination (sub)subpackage require modules
from the source (sub)subpackages (e.g., the modules of the System subpackage
require modules from the Force field, MM packages and QM packages subpack-
ages). Some (sub)subpackages and modules are not shown for the sake of
conciseness.

5.2.9 ParaMol tasks

ParaMol includes built-in tasks that perform specific parameterisation protocols

and also routines that aid the parameterisation protocols themselves as, e.g.,

utilities that assess convergence of the optimisation procedure and calculate ab

initio reference data. Currently, the parameterisation tasks available in ParaMol

are the following:

• Parameterisation (ParaMol.Tasks.parametrization): This tasks performs

ParaMol’s standard parameterisation protocol. Specifically, the param-

eterisation task creates the parameter space, the objective function, and the

optimiser that are used in the optimisation of the FF parameters. It also pre-

conditions the optimisable parameters and defines the constraints to which
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the optimisation is subjected, e.g., total charge or symmetry constraints.

Regarding the symmetry constraints, these have to be defined manually

by the user so that physical-based symmetries are retained. Alternatively,

it is also possible to apply ParaMol’s AMBER, CHARMM, or GROMACS

symmetrisers, which subject the optimisation to the symmetries defined in

the respective topology files.

During the optimisation procedure itself, the objective function typically

has to be evaluated hundreds to thousands of times. This evaluation can

be done either in serial or in parallel. For the latter case, it is possible to use

OpenMM’s support of different platforms and distribute the computation

of the MM properties amongst the available CPUs or GPUs by using

Python’s multiprocessing package.

• LLS fitting (ParaMol.Tasks.lls fitting): This task is very similar to the pa-

rameterisation task, except that it does not support the non-Boltzmann

weighting scheme and can only parameterise the bond, angle, and dihe-

dral parameters of class I FFs by minimising the squared deviations of

the energies. The LLS solution is calculated by resorting to Numpy’s276

numpy.linalg.lstsq function.

• Adaptive parameterisation (ParaMol.Tasks.adaptive parametrization): This

task performs adaptive parameterisation, which consists of a self-consistent

loop in which, at each iteration, configurational sampling and parameter

optimisation are carried out. First, given an initial guess of FF parame-

ters, a set of configurations is generated using any integrator available in

OpenMM, and the reference ab initio data for this data set is calculated.

Then, a new set of optimal parameters is determined by resorting to the

Parameterisation task. Finally, the convergence of the self-consistent proce-

dure is assessed, which is assumed to occur when the root-mean-square

deviation (RMSD) of the current parameters with respect to parameters of

the previous iteration is less than a user-defined threshold. The correction

to the weights of the conformations described in Ref. 254 can be optionally

applied in every iteration. This correction removes the bias introduced
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by the fact that conformations at different iterations are sampled using

different FFs.

• Dihedral scans (ParaMol.Tasks.torsions scans): This task performs 1D or 2D

relaxed dihedral scans. Specifically, for the 1D case (2D scans follow the

same approach), this task requires specification of the quartet of atoms

a-b-c-d for which the potential energy scan will be performed by rotating

the b-c bond. By default, at a given step of the scan, only the dihedral angle

being scanned is fixed, allowing the remaining DOFs to relax during the

geometry optimisation. However, it is also possible to further constrain

other DOFs, such as, e.g., bonds, angles, or other dihedrals, during a scan,

a feature that resorts to the capabilities of the ASE package.275

• Automatic soft dihedral parameterisation (ParaMol.Tasks.

torsions parametrization): This task allows automatic parameterisation of

soft (rotatable) dihedrals in a way inspired by the protocol used by

GAAMP.251 This approach is of particular importance because soft di-

hedrals, which have small energy barriers, are the ones that control the

conformational preferences of a molecule. Therefore, accurate dihedral

parameters are important since they crucially determine the topology of

the PES. The first step of this task concerns the identification of soft bonds,

here defined as bonds that contain soft dihedrals, which is done resorting

to the RDKit package.277 ParaMol then iterates over all soft bonds and

generates relaxed scans of their soft dihedrals. If a soft bond has more than

two soft dihedrals of the same type, i.e., soft dihedrals that share exactly

the same atom types, a relaxed dihedral scan is only performed at the first

encounter with this soft dihedral type. In addition, if two or more soft

bonds have exactly the same soft dihedrals types, they are considered to

belong to the same soft bond type, and thus scans are only performed at the

first encounter with a soft bond of this type. Furthermore, every time a new

soft dihedral type is scanned, optimisation of the parameters of that soft

dihedral type is performed. This step is important to generate smoother

energy profiles because, by default, ParaMol performs a MM geometry



102 Chapter 5. The ParaMol Package

optimisation before the QM geometry optimisation, a ”preconditioning”

that substantially decreases the computational cost of the high-level calcu-

lation. Hence, by having a gradually better MM representation, the MM

optimisations are more likely to find QM-like energy minima that lower

the cost of the QM optimisations. Finally, once ParaMol finishes iterat-

ing over the soft bonds, concomitant parameterisation of all soft dihedral

parameters is performed using the calculated relaxed dihedral scans. In

this final optimisation, the optimised parameters generated in the inter-

mediate reparameterisations are forgotten, as ParaMol performs the final

reparameterisation starting from the originally provided MM parameters.

A diagram describing the workflow of this task is shown in Appendix A,

Figure A.18.

• RESP charge fitting (ParaMol.Tasks.resp fitting): This task performs charge

fitting to a reference ESP that can be obtained from quantum chemistry

packages, as previously described in subsection 5.2.5. ParaMol currently

can extract the ESP directly from a Gaussian output. The output of other

software has to be converted by the user to the format read by ParaMol.

• Calculation of ab initio reference data (ParaMol.Tasks.ab initio properties):

This task calculates ab initio reference data by using any QM calculator

available in the ASE package, or one of the wrappers of QM packages

implemented in ParaMol. These calculations can be performed in serial or

in parallel, the latter by distributing the workload amongst the available

CPUs by using Python’s multiprocessing package.

5.3 Application examples

In what follows, we present examples of reparameterisation of drug molecules.

For this purpose, we used the GAFF, which was already presented in Section 4.4.

The reparameterisations were performed using SciPy’s SLSQP optimiser, and

they were deemed to be converged whenever the objective function between two
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successive iterations did not change by more than 10−6, i.e., Xn+1 − Xn < 10−6

(10−8 for the norfloxacin analogue example). Furthermore, GAFF parameters

were used as the initial guess for the optimisations, except when stated otherwise.

L2 (harmonic) regularisation was applied with prior widths inspired by the

values reported in Ref. 263 (see Table 5.1). The objective function included as

targets either forces - equation (5.3) - or energies - equation (5.5) -, or both at the

same time. The initial parameterisation of the drug molecules was performed

using Antechamber packages, which are part of AmberTools. AM1-BCC charges

were calculated after the geometry was optimised at the target level of theory,

which was either the DFTB+273,274 implementation of SCC-DFTB including

the D3 dispersion correction278 with Becke-Johnson damping;279 the non-local

van der Waals DFT functional VV10,68,69 as implemented in the linear-scaling

DFT package ONETEP;51,280,281 or the Psi4282 implementation of the long-range

corrected hybrid DFT functional ωB97X-D70 with the 6-31G* basis set. The

choice of these QM levels relies on the evidence that they perform quite well in

determining conformations and respective energies.72,79–82 The topology and

coordinates files used as inputs to ParaMol were created using LEaP. Atom

type symmetries were preserved during reparameterisation, unless otherwise

indicated.
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Table 5.1: ParaMol default prior width values for each parameter type.

Parameter type Prior width

bond length 0.05 nm

bond force constant 105 kJ mol-1 nm-2

bond angle π/16 rad

angle force constant 102 kJ mol-1 rad-2

dihedral phase π rad

dihedral amplitude 16.736 kJ mol-1

Lennard-Jones 12-6 ε 0.30 kJ mol-1

Lennard-Jones 12-6 σ 0.20 nm

charge 0.5 e

1–4 electrostatic scaling factor 1.0

1–4 Lennard-Jones scaling factor 1.0

5.3.1 Details of the QM calculations

The SCC-DFTB calculations were performed using the 19.1 version of the

DFTB+273,274 package. These calculations included the D3 dispersion correc-

tion278 with Becke-Johnson damping.279 The dispersion values used for the

Becke-Johnson damping were a1 = 0.5719, a2 = 3.6017, s6 = 1.0, and s8 = 0.5883

(as stated in the DFTB+ manual). The DFTB parameters employed were stored

in Slater-Koster files that belong to the DFTB parameter set mio-1-1.1

The calculations that employed the non-local van der Waals DFT functional

VV1068,69 were performed using the 5.3.1.18 version of the linear-scaling DFT

package ONETEP.280,281 These calculations used a nonorthogonal generalised

Wannier function (NGWF) radius of 8 Bohr and a kinetic energy cutoff of 700

eV. The convergence threshold for the root-mean-square gradient of the NGWFs

was set to 1× 10−4.
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The calculations that employed the ωB97X-D/6-31G* level of theory were per-

formed using the 1.3.2 version of the Psi4 package282 with default settings.

5.3.2 Dihedral scans: norfloxacin analogue

Figure 5.2: Molecular structure of norfloxacin. Owing to the unavailability of
fluorine parameters in the mio-1-1 set,1 the molecule used in this example is
a norfloxacin analogue, in which we substituted the fluorine attached to the
C1 carbon by a hydrogen atom. The differences in the torsional preferences
introduced by this change are negligible, as it is shown in Figures A.5 and A.6
of Appendix A using data from the CSD.2 Additionally, as a typical example of
a fragment-based approach, we cut the molecule at the positions indicated by
the wavy lines. All dangling bonds were capped with hydrogen atoms.

The first example of this chapter concerns the dihedral scan functionality imple-

mented in ParaMol. In order to illustrate the procedure and the issues that may

arise when reparameterising the dihedrals of a drug molecule, we optimised

the parameters (force constants and phase constants) of the dihedrals associated

with the main rotatable bond of a norfloxacin analogue (C2-N4, see Figure 5.2).

As this molecule is achiral, to increase the transferability of the parameters we

constrained the phase constants to be fixed to 180◦ (0◦ would be equivalently

valid).183,259 In the FF topology, two dihedrals contain C2 and N4 as inner atoms:

C5-N4-C2-C1 and C5-N4-C2-C3. Both have the same atom types and, therefore,

share the same set of parameters. GAFF models this dihedral type (c3-nh-ca-ca)

by including only one term with periodicity n = 2. Nevertheless, to increase the
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flexibility of the FF, we included all terms in the Fourier expansion with period-

icities from n = 1 to n = 6. The numerical experiments performed here aimed

to assess the performance of the weighting methods implemented in ParaMol,

viz., uniform, Boltzmann, and non-Boltzmann weighting when attempting to

reproduce a target dihedral energy profile, as well as to illustrate the differences

between the MM-relaxed and QM-relaxed approach.

Before analysing the results obtained, it is worth discussing some considerations

about the QM dihedral energy profiles. Owing to the substantial discontinu-

ities obtained in one-dimensional dihedral scans, we opted to perform fittings

using a two-dimensional PES. The observed discontinuities were related to con-

formational changes that occurred in the piperazinyl ring as the N4-C2 bond

was rotated, and they were caused by a flip of the pyramidal geometry of the

N4 centre, which led to sudden energy variations. This phenomenon is seen

by following the profile defined by the red stars in Figure 5.3, which indicate

the minimum energy structure for a given φ angle. To avoid the energy dis-

continuities obtained in the one-dimensional dihedral scan, we opted to use

a two-dimensional PES, generated by varying the C5-N4-C2-C1 (φ) dihedral

angle from to -180◦ to 170◦ in steps of 10◦, whilst concomitantly varying the

C2-C6-N4-C5 (ψ) improper dihedral angle from 120◦ to 180◦, and from -178◦

to -120◦ in steps of 2◦. A total of 2196 geometry optimisations were performed,

resulting in the 2D PES represented in Figure 5.3.
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Figure 5.3: ωB97X-D/6-31G* PES of the C5-N4-C2-C1 (φ) vs. C2-C6-N4-C5
(ψ) 2D dihedral scan for the norfloxacin analogue fragment. The red stars
correspond to the minimum energy structure for a given φ dihedral angle value.

Besides the spontaneous conformational changes that may occur when rotating

a chosen dihedral, another issue that commonly produces discontinuities in

relaxed dihedral scans is hysteresis in the energy associated with the dihedral

being relaxed.258 This is prone to occur when optimising one data point after

another, since non-orthogonal DOFs may be put under strain, accumulating

potential energy that is released once the molecule crosses a given threshold,

causing the strained DOFs to relax. A commonly employed solution to identify

and correct this issue is to perform scans in both directions and pick the one that

yields the more physically sensible profile. This practice is important because

sudden physically-based changes in energy, like the ones seen in Figure 5.3,

can be easily mistaken by discontinuities resultant of path-related hysteresis,

and if the latter are artificial, the former are desirable to be captured (ideally

exhaustively scanned by performing high-dimensional scans). Additionally, in
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some applications, it is possible to impose symmetries by constraining specific

DOFs, so that conformational changes and energy jumps are avoided. However,

it is important to keep in mind that doing so yields a constrained adiabatic PES

that misrepresents the (local) energy minimum for a given dihedral angle value.

Consequently, due to this reason, we decided to proceed with two-dimensional

relaxed scans, as they are a better representation of the PES of the molecule.

The results obtained for the ωB97X-D/6-31G* MM-relaxed dihedral fittings are

shown in Figure 5.4, and the final optimised parameters are shown in Table 5.2

(the results of the SCC-DFTB-D3 reparameterisations are shown in Appendix A,

Figures A.1, A.2, A.3, and A.4, and Table A.1). The final parameters obtained

using the QM-relaxed approach of equation (5.6) are shown in Table 5.2, and

the ωB97X-D/6-31G* dihedral energy profiles are shown in Figure 5.5. All

fittings were performed using the objective function of equation (5.7) with an

additional L2 regularisation term (α = 0.1). The weighting temperature used

was 500 K, and both the SLSQP SciPy optimiser and the LLS fitting approach

were employed to optimise the dihedral parameters.
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Figure 5.4: Relative errors of the MM FFs (GAFF, uniform, Boltzmann, and
non-Boltzmann weightings) with respect to the target (ωB97X-D/6-31G*) PES
of the C5-N4-C2-C1 (φ) vs. C2-C6-N4-C5 (ψ) 2D dihedral scan. The MM-relaxed
approach was employed to optimise the FFs.

Through the analysis of the fitting curves shown in Figure 5.4 and of the SCC-

DFTB-D3 MM-relaxed fittings shown in Appendix A, we conclude that a sig-

nificant improvement with respect to GAFF is observed for the three sets of

parameters. Specifically, uniform and non-Boltzmann weighting performed the

best in reproducing both the ωB97X-D/6-31G* and SCC-DFTB-D3 levels of the-

ory, leading to fittings with root-mean-square errors (RMSEs) of 11.99/11.47 kJ

mol-1 and 12.04/11.49 kJ mol-1, respectively, for ωB97X-D/SCC-DFTB-D3, while

Boltzmann weighting performed slightly worse in terms of RMSEs (13.02/12.52

kJ mol-1). Furthermore, non-Boltzmann weighting led to an overall robust

description of the QM minima and, more importantly, showed a tendency to

skew the distribution of the errors towards positive values, being overall the

weighting scheme with less negative relative errors (Figure 5.4). On the other

hand, since Boltzmann weighting emphasises having a good description of the

QM minima, it was the scheme that performed the worst for conformations

located near high-energy barriers (see, e.g., regions located at φ = [−120◦,−90◦]
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and φ = [90◦, 120◦]). Boltzmann weighting underestimated the energies of the

transition-state conformations by as much as ca. 20 kJ mol-1 for both ωB97X-

D/6-31G* and SCC-DFTB-D3. Hence, although uniform weighting led to the

best RMSEs, the residuals of this scheme tend to be symmetrically distributed

around zero (Figure 5.4 and SCC-DFTB-D3 fittings in Appendix A), leading

to the creation of artifacts in the PES, such as spurious minima. On the other

hand, as non-Boltzmann weighting emphasises correcting regions of the PES for

which the MM energy is lower than the QM energy, the creation of spurious MM

minima is substantially mitigated by this weighting method, a feature that leads

us to advocate for its use.

GAFF Uniform Boltzmann non-Boltzmann

SciPy SLSQP solution

V1 0.00 -2.19 / -3.88 0.16 / -1.73 -1.67 / -4.21

V2 17.57 7.98 / 8.26 6.86 / 7.22 7.87 / 8.62

V3 0.00 -7.64 / -4.18 -3.52 / -2.12 -6.97 / 0.60

V4 0.00 0.15 / 0.92 1.67 / 2.03 -0.29 / 0.61

V5 0.00 0.50 / 0.66 -1.94 / 1.34 0.56 / 1.37

V6 0.00 0.27 / 0.13 1.60 / 1.64 0.10 / 0.32

LLS solution

V1 0.00 -2.18 / -3.88 0.21 / -1.74 -

V2 17.57 7.98 / 8.26 6.86 / 7.22 -

V3 0.00 -7.64 / -4.18 -3.50 / -2.07 -

V4 0.00 0.15 / 0.92 1.67 / 2.03 -

V5 0.00 0.50 / 0.66 -1.94 / 1.34 -

V6 0.00 0.27 / 0.13 1.60 / 1.64 -

Table 5.2: Dihedral force constants (kJ mol-1) derived using the MM-
relaxed/QM-relaxed approach. The fittings were performed using the ωB97X-
D/6-31G* PES.

Through the analysis of the values of the final optimised parameters shown

in Table 5.2, we conclude that the SLSQP SciPy optimiser and the LLS fitting
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gave identical results in terms of accuracy. Since the LLS optimisation problem

is always convex, it follows that LLS fitting always finds a global, although

not necessarily unique, solution. Thus, this demonstrates that within the con-

straints of the functional form, the methodologies implemented in ParaMol are

able to derive near-ideal parameters for small organic molecules. Moreover,

the parameters did not stray far away from physically sensible values, which

robustly indicates that the regularisation applied was strong enough to avoid

non-physical force constants. Therefore, even though not applying regularisation

may allow the optimisation procedure to reproduce small details in the dihedral

profile correctly, we advocate for the use of regularisation, as it helps generate

parameters that are more suited to be used in standard MM simulations. It is

also worth noting that by imposing L2 regularisation, the optimised parameters

depend on their initial guesses and, therefore, the results here presented might

be potentially improved by starting the optimisations from better initial guesses.

Nevertheless, since in many cases it is not straightforward to postulate good

initial parameters, we decided to test the limiting case where Vi = 0.0 kJ mol-1

for all i, for which we demonstrated that even a blind guess led to improved

FFs. Our experience suggests V = 0.0 kJ mol-1 is usually a good initial guess

and, consequently, it is the one we recommend using by default in the absence

of better ones.



112 Chapter 5. The ParaMol Package

180 150 120 90 60 30 0 30 60 90 120 150
120

140

160

±180

-160

-140

-120
QM-relaxed, GAFF, RMSE=15.71 kJ/mol

180 150 120 90 60 30 0 30 60 90 120 150
120

140

160

±180

-160

-140

-120
QM-relaxed, Uniform weighting, RMSE=12.62 kJ/mol

180 150 120 90 60 30 0 30 60 90 120 150
120

140

160

±180

-160

-140

-120
QM-relaxed, Boltzmann weighting, RMSE=13.45 kJ/mol

180 150 120 90 60 30 0 30 60 90 120 150
120

140

160

±180

-160

-140

-120
QM-relaxed, non-Boltzmann weighting, RMSE=12.72 kJ/mol

20

10

0

10

20

30

40

EM
M

EQ
M

EM
M

EQ
M

 (k
J/m

ol
)

, C5-N4-C2-C1 dihedral angle (degrees)

, C
2-

C6
-N

4-
C5

 d
ih

ed
ra

l a
ng

le
 (d

eg
re

es
)

Figure 5.5: Relative errors of the MM FFs (GAFF, uniform, Boltzmann, and
non-Boltzmann weightings) with respect to the target (ωB97X-D/6-31G*) PES
of the C5-N4-C2-C1 (φ) vs. C2-C6-N4-C5 (ψ) 2D dihedral scan. The QM-relaxed
approach was employed to optimise the FFs.

Finally, with regards to the QM-relaxed approach, it is worth discussing the

bias that this methodology introduces in the final derived parameters. A naive

analysis of the obtained QM-relaxed energy profiles can lead us to consider them

as correct: the fittings shown in Figure 5.5 exhibit a similar agreement with the

target ωB97X-D/6-31G* PES as the ones obtained for the MM-relaxed approach,

and the derived FF parameters are within physically sensible ranges (Table

5.2). Despite this, the artifacts introduced by this approach manifest themselves

when MM-relaxed energy profiles are calculated using the QM-relaxed-derived

FFs. We proceeded to perform this extra MM-relaxation of the QM-relaxed

energy profiles, for which the results obtained are shown in Figure 5.6. Through

the analysis of these plots, it can be seen that the QM-relaxed approach led to

the creation of non-negligible artifacts in the PES as, e.g., the spurious minima

observed at ca. 0◦ and ±180◦. Hence, since the QM-relaxed approach is critically

dependent on the other intramolecular FF parameters,261 it substantially biased

the derived FF parameters and, therefore, we advocate against its use. The
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artifacts arising from using the QM-relaxed approach are normally more serious

the lower the dimensionality of the PES used in the fitting, as the chances of not

covering substantial mismatches between the MM and QM levels increase.
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Figure 5.6: Relative errors of the MM FFs (GAFF, uniform, Boltzmann, and
non-Boltzmann weightings) with respect to the target (ωB97X-D/6-31G*) PES
of the C5-N4-C2-C1 (φ) vs. C2-C6-N4-C5 (ψ) 2D dihedral scan. The MM PESs
used to calculate the relative errors were obtained by MM optimisation of the
QM-relaxed PESs used in Figure 5.5.

5.3.3 Parameterisation of aspirin

As a second example of the parameterisation methodologies implemented in

ParaMol, we present and discuss the results obtained in the parameterisation

of aspirin. We parameterised aspirin using both relaxed dihedral scans and a

configurational ensemble generated by an MD simulation. The main aim of these

parameterisation experiments was to reproduce the conformational preferences

of aspirin at the SCC-DFTB-D3 level of theory.
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Figure 5.7: Molecular structures of aspirin. SCC-DFTB-D3 MD simulations
sample mostly configurations that occur through rotation of the C6-O7 bond
in conformations I-syn and II-syn. Moreover, even though conformation II-
anti was not sampled in the SCC-DFTB-D3 MD simulation, it is shown here
because it was sampled in some reparameterised FFs. In solution, the carboxylic
acid of aspirin assumes predominantly its deprotonated state (pKa=3.49-3.6 at
25 ◦C3). Therefore, the results and discussions of this section concerning the
II-syn and II-anti conformations are simply illustrations of the features of the
parameterisation protocols employed, as these are mainly relevant in the gas
phase.

As shown in Figure 5.8, the most striking difference between the populations

predicted by the GAFF and SCC-DFTB-D3 is seen for the dihedrals involved

in the rotation of the C6-O7 soft bond (C4-C6-O7-C8 and C5-C6-O7-C8). These

dihedrals are originally modelled by the GAFF using only one dihedral term

with periodicity n = 2, leading to the two minima observed in the dihedral

distributions, in contrast with the four minima predicted by SCC-DFTB-D3.

Hence, as the number of minima of the SCC-DFTB-D3 distributions do not

match the number of minima predicted by the FF, we increased the flexibility of

GAFF in our reparameterisation by including all terms in the Fourier expansion

with periodicities from n = 1 up to n = 4. Furthermore, although dihedrals

C4-C6-O7-C8 and C5-C6-O7-C8 share the same set of FF parameters, their SCC-

DFTB-D3 dihedral populations are substantially different, implying that if we

were to use a single potential to model both dihedrals, we would have to rely on

the nonbonded terms to implicitly break their symmetry. This is, however, a clear

example of the inability of the nonbonded terms of equation (4.25) to correctly

model the intramolecular interactions that occur in aspirin, and especially the
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weak hydrogen bond that can be formed between atoms O10 and H11, which is

predominantly of electrostatic character since it occurs at distances of ca. 4.0 Å

(see SCC-DFTB-D3 distribution in Figure 5.9).283 This is concluded by examining

the populations of the C5-C6-O7-C8 and C4-C6-O7-C8 dihedrals at ca. ±130◦

and ±60◦, respectively, for which the GAFF populations decay smoothly, not

skewing towards the weakly hydrogen-bonded conformations that are present

in the SCC-DFTB-D3 distribution.

The configurational distributions generated by simple reparameterisation of

the original GAFF predicted wrong global minima and generally gave poor

agreement with respect to the SCC-DFTB-D3 distribution (see Appendix A,

Figure A.7). As a workaround for this issue, we decided to break the symmetry

of the C5-C6-O7-C8 and C4-C6-O7-C8 dihedrals to artificially compensate for

the limitations of the nonbonded (especially electrostatic) terms of the FF. In

practice, this is equivalent to introducing a new atom type at, e.g., position C4, as

this carbon is linked to the carboxylic group and, consequently, its nature is very

different from the C5 carbon atom. This breaking of symmetry makes it possible

to independently optimise the parameters of each of these dihedrals, a step which

proved to be essential to reproduce the target SCC-DFTB-D3 configurational

distribution, as the simple augmentation of the number of dihedral terms was

insufficient to do so. Lastly, for the two dihedral types involved in the rotation

around the C8-C9 bond, GAFF assigns three terms with periodicities n = 1, 2, 3

to the O7-C8-C9-H dihedrals (o-c-c3-hc type), and one term with periodicity

n = 2 to the O10-C8-C9-H dihedrals (os-c-c3-hc type). Despite this, we only

assigned terms with periodicity n = 3 since this is a multiplicity not forbidden

by symmetry. These dihedrals have a sp3 carbon as one of the inner atoms (C1),

which has three identical hydrogen substituents, and, therefore, all terms with

multiplicity that is not a multiple of 3 vanish.258
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Figure 5.8: Kernel density estimations of the populations of the soft dihedrals
of aspirin obtained from MD simulations using SCC-DFTB-D3 and the original
GAFF. The soft dihedrals here presented (C5-C6-O7-C8, C4-C6-O7-C8, C6-C4-
C2-O1, C6-C4-C2-O3, C4-C2-O3-H11, and O1-C2-O3-H11) are the ones for
which parameters were optimised using relaxed dihedral scans.

5.3.3.1 Reparameterisation using a configurational ensemble

Regarding the reparameterisations performed using a SCC-DFTB-D3 configura-

tional ensemble, these were designed to assess the performance of the weighting

methods and the impact of the regularisation strength. To generate the SCC-

DFTB-D3 configurational ensemble, we performed a gas-phase MD simulation

using the DFTB+ package during 10 ns, in which snapshots were collected every

1 ps, resulting in a total of 10000 configurations. In this MD simulation, the
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Nosé-Hoover thermostat was applied to maintain the temperature at 350 K

with a coupling strength of 3400 cm-1, a value close to the calculated highest

vibrational frequency of the molecule (3670.75 cm-1). We reparameterised all

intramolecular parameters of aspirin, such that the vector of optimsable pa-

rameters was p = (Kb, req, Kθ, θeq, Vn, γn). In order to do this, we employed

an objective function that fits both energies and forces through the use of the

equations (5.5) and (5.3), respectively, plus the additional L2 regularisation term

of equation (5.13). The total number of FF parameters concomitantly optimised

was 108. The original GAFF parameters were used as initial guesses. After new

FF parameters were derived, the optimised FFs were used to perform 100 ns

of MD simulations, which were carried out using a Langevin integrator with a

friction coefficient of 2 ps-1, a time-step of 1 fs, and at a temperature of 350 K.

Snapshots were collected every 10 ps, amounting for a total of 10000 snapshots

for each simulation.

The configurational distributions of the O10-H11 distance vs. the C5-C6-O7-C8

dihedral angle obtained using the non-Boltzmann weighting with a weighting

temperature of 500 K is shown in Figure 5.9, and the distributions obtained for

weighting temperatures of 300 K, 1000 K, 2000 K are shown in Appendix A,

Figures A.8, A.9, and A.10, respectively. By examining the cases for which the

weighting temperature was either 300 K or 500 K, we conclude that for strong

regularisation strengths (α = 1 and α = 0.1), the optimised FFs reproduced

quite well the general features of the SCC-DFTB-D3 distribution, as these FFs

were able to sample the 4 minima that occur through rotation of the C6-O7 bond

of conformation I-syn (outer edge of the distribution), as well as the states for

which aspirin assumes the conformation II-syn (inner edge of the distribution).

On the other hand, when intermediate regularisation strength (α = 0.01) was

employed, configurations in which aspirin assumes the II-anti conformation

were sampled for the FF derived using a weighting temperature of 500 K, even

though these configurations are not observed in the SCC-DFTB-D3 distribution.

This spurious sampling was further aggravated when the weakest regularisation

strength (α = 0.001) was employed, for which the simulations became kinetically
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trapped in these conformations, despite being started from the global minimum

geometry (conformation I-syn with a C5-C6-O7-C8 dihedral angle value of ca.

130◦).

The sampling of spurious conformations is a frequent issue when using repa-

rameterised FFs in MM simulations, and it may occur whenever the spurious

geometries are absent from the data set that was used to perform the fitting.

Hence, in this case, since the fitting procedure had no information about the

SCC-DFTB-D3 forces and energies of the II-anti conformations and transition

states that lead to them, the barrier heights for the conversion of the carboxylic

group from syn to anti were underestimated. A possible solution for this issue is

to further reoptimise the FF, including the sampled spurious conformations so

that the optimisation procedure also takes them into account. By doing this, it

could be possible to prevent the oversampling of the spurious geometries, as the

features of non-Boltzmann weighting lead to a tendency to overestimate barrier

heights and/or equilibrium energies. Note, however, that this problem was not

present for the strongly-regularised FFs, clearly indicating the importance of

regularisation, which, by not allowing the FF parameters to stray away too much

from physically sensible values, helps in preventing the creation of spurious

minima.
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Figure 5.9: Configurational distributions of the O10-H11 distance vs. the C5-
C6-O7-C8 dihedral angle of aspirin obtained from MD simulations using SCC-
DFTB-D3, the GAFF, and the GAFF.MOD (reparameterised) FFs. The latter were
derived employing non-Boltzmann weighting, with a weighting temperature
of 500 K and using different regularisation strengths (α = (1.0, 0.1, 0.01, 0.001)).
The data set used in the reparameterisation was the SCC-DFTB-D3 configura-
tional ensemble. All represented distributions contain 10000 configurations.

The configurational distributions obtained using Boltzmann weighting with

strong regularisation (α = 1.0) and at different weighting temperatures are

shown in Appendix A, Figure A.11. Through their analysis, we conclude that

the overall agreement to the SCC-DFTB-D3 distribution was poor. The I-syn

and II-syn minima were sampled (except for the FF derived with a weighting

temperature of 500 K), but with incorrect frequency. Furthermore, it can also

be seen that the distributions are highly asymmetric and show sampling of

the spurious II-anti conformation, suggesting an overestimation of the barrier

heights between the different minima and an underestimation of the syn-to-anti

energy barrier. We do not show the configurational distributions of the FFs
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derived with other regularisation strengths because they sampled unphysical

configurations. This observation strongly indicates that Boltzmann weighting

requires strong regularisation to produce FFs that can be potentially used in

MM modelling. The reason for this may be attributed to the fact that Boltzmann

weighting emphasises the description of the QM minima. Hence, if the regions

of the PES that correspond to these QM minima are overfitted at the cost of

poorly describing the remaining of the energy landscape, as soon as the molecule

moves away from these minima regions, the PES becomes unphysical, ultimately

leading to distorted geometries and wrong dynamics.

Finally, the configurational distributions obtained using uniform weighting with

different regularisation strengths, α = (1.0, 0.1, 0.01, 0.001), are shown in Ap-

pendix A, Figure A.12. As for the Boltzmann weighting, the FFs derived using

uniform weighting led to configurational distributions that poorly agree with the

SCC-DFTB-D3 distribution. Furthermore, all FFs except the one derived using

α = 1.0 were kinetically trapped at the global minimum conformation from

which the MD simulations were started. This indicates either overstabilisation

of this minimum or overestimation of the transition states to which it is con-

nected. The overstabilisation of the minimum is justified by the fact that uniform

weighting equally allows for positive and negative EMM − EQM values, which

may lead to regions with negative EMM− EQM values that have spuriously large

thermodynamics weights. The asymmetries that might be imposed on the PES

by equally allowing for positive and negative errors are an issue that was already

reported and discussed by other authors.263 On the other hand, overestimation

of transition-state energies is likely to occur if the global minimum geometries

are the most populated in the data set used in the fitting. This situation can

lead the optimisation procedure to overfitting overrepresented configurations

at the expense of misdescribing other configurations. Whenever this occurs,

underrepresented configurations, such as transition states, are generally poorly

described.
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α = 1.0 α = 0.1 α = 0.01 α = 0.001

GAFF 53.24 / 140.95 53.24 / 140.95 53.24 / 140.95 53.24 / 140.95

non-Boltzmann (T=300 K) 44.03 / 94.68 41.81 / 87.29 40.61 / 83.25 39.75 / 84.81

non-Boltzmann (T=500 K) 43.85 / 93.87 41.73 / 87.15 40.38 / 82.62 39.60 / 83.12

non-Boltzmann (T=1000 K) 43.63 / 93.97 41.05 / 87.87 39.59 / 82.55 38.81 / 81.57

non-Boltzmann (T=2000 K) 43.61 / 95.13 40.39 / 88.91 38.61 / 83.38 37.75 / 81.20

Boltzmann (T=300 K) 49.78 / 124.33 47.27 / 110.25 46.88 / 109.13 48.66 / 123.05

Boltzmann (T=500 K) 44.73 / 124.62 38.97 / 110.61 37.15 / 113.44 36.81 / 123.93

Boltzmann (T=1000 K) 42.35 / 111.84 37.02 / 103.67 34.12 / 102.17 33.53 / 103.05

Boltzmann (T=2000 K) 42.29 / 107.81 37.12 / 100.01 33.95 / 95.15 32.92 / 95.45

Uniform 42.28 / 104.50 37.11 / 96.75 33.92 / 91.54 32.84 / 91.44

Table 5.3: RMSE of the energies (kJ mol-1) / Average RMSE of the atomic force
(kJ mol-1 Å-1 atom-1). The RMSEs were calculated for the SCC-DFTB-D3 config-
urational ensemble data set, and they represent the energies and forces errors
between the SCC-DFTB-D3 level of theory and the reparameterised FFs. The

formula used to compute them is given by RMSE(E) =

√
∑Ns

i (EQM
i −EMM

i −〈∆E〉)
2

Ns

with 〈∆E〉 = 1
Ns

∑Ns
i

(
EQM

i − EMM
i

)
.

Overall, as a general guideline to follow when fitting to configurational ensem-

bles, we recommend the use of non-Boltzmann weighting as this weighting

scheme seems to be generally less sensitive to the regularisation strength and

yielded the best performance in reproducing the SCC-DFTB-D3 distribution.

Furthermore, strong regularisation (α = 1.0 and α = 0.1) seems to result in more

reliable parameters than intermediate (α = 0.01) and weak (α = 0.001) regulari-

sation, as a closer agreement to the SCC-DFTB-D3 distribution was obtained for

the FFs derived using strong regularisation. Additionally, strong regularisation

also prevents the FF parameters from deviating much from their original values,

enabling the FF parameters to be kept within a range of physically sensible

values.

Intermediate and weak regularisation strengths led to FFs that have generally

lower energy RMSEs and lower average atomic force RMSEs (see Table 5.3) than

their strongly-regularised counterparts (except when Boltzmann weighting is
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employed with low weighting temperatures, as, in these situations, there is a

tendency to overfit the QM minima). However, these putative better fittings came

at the cost of creating artifacts in the PES, such as, e.g., spurious minima. Finally,

progressively employing higher weighting temperatures (1000 K and 2000 K) in

the non-Boltzmann and Boltzmann schemes led to results that became gradually

similar to the ones that were obtained upon using the uniform weighting scheme,

as expected. Hence, since uniform weighting did not perform particularly

well when using a configurational ensemble as the fitting data set, we do not

recommend the use of high weighting temperatures. Therefore, unless one has

a specific reason to do so, temperatures in a range between 300 K to 500 K are

preferable.

5.3.3.2 Reparameterisation using dihedral scans

Let us now turn our discussion to the results obtained by reparameterising

the soft dihedrals of aspirin using relaxed dihedral scans. The dihedral energy

profiles of aspirin were created from 36-point one-dimensional relaxed scans

in which each point was spaced by 10◦. These dihedrals scans were performed

for all soft dihedrals except those associated with the rotation of the methyl

group (the QM energy profile of such dihedrals generally can be reproduced

reasonably by the GAFF251) and those involved in the rotation of the O7-C8

bond, as it is fairly rigid (see Figure 5.7). Specifically, the soft dihedrals scanned

were C5-C6-O7-C8, C6-C4-C2-O1, C6-C4-C2-O3, C4-C2-O3-H11, and O1-C2-

O3-H11. Furthermore, for optimisation purposes, the C4-C6-O7-C8 dihedral

was also included, as we broke the symmetry of the dihedrals involved in the

rotation of the C6-O7 bond. All geometry optimisations were performed while

fixing only the dihedral being scanned, and they were deemed to be converged

when the force on all atoms was less 1× 10−2 eV Å-1. The reparameterisations

were performed using the MM-relaxed approach of equation (5.7) with strong

regularisation (α = 1.0) and with a weighting temperature of 500 K. The vector

of optimisable parameters that entered in the optimisation was p = (Vn, γn), in
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which any pair of Vn and γn belongs to a term of the previously mentioned soft

dihedrals. The 26 dihedral parameters were all optimised concomitantly. The

fittings obtained when employing Boltzmann weighting are shown in Figure

5.10, and the fittings for the non-Boltzmann and uniform weighting methods are

shown in Appendix A, Figures A.13 and A.14.

Through the analysis of these results, we conclude that most of the improve-

ment in the fittings occurred for the C5-C6-O7-C8 dihedral, an observation that

supports the argument that the main source of the mismatch seen between

the GAFF and the SCC-DFTB-D3 distributions comes from the soft dihedrals

that model the rotation about the C6-O7 bond. For the remaining dihedrals,

modest improvements or even slight worsening were obtained. The latter situ-

ation occurs because the optimisation procedure may sacrifice some accuracy

in specific dihedrals to obtain a better global agreement. Furthermore, through

the analysis of the configurational distribution represented in Figure 5.11, we

conclude that, independently of the weighting scheme applied, the agreement

obtained to the target distribution was quite good. It is also interesting to notice

the sampling, even though very rarely, of the II-anti conformation and, surpris-

ingly, of the I-anti conformation, which was visited even less often, when using

non-Boltzmann and uniform weighting.

Overall, all weighting schemes performed similarly when fitting was performed

using dihedral scans. Nevertheless, as a general guideline, we recommend the

use of non-Boltzmann weighting due to its features. This recommendation,

however, is less strict than that previously made for the fitting performed using

configurational ensembles. Furthermore, with regards to the regularisation

strength, our experience indicates that, in most cases, this reparameterisation

approach requires strong-to-intermediate regularisation strengths (α = 1.0 or

α = 0.1), as attempts to use weaker regularisation strengths resulted, in general,

in unstable FFs that tend to be unsuitable for MD simulations.
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Figure 5.10: Comparison of the SCC-DFTB-D3, GAFF, and GAFF.MOD (repa-
rameterised FF) dihedral energy profiles for the C5-C6-O7-C8, C6-C4-C2-O1,
C6-C4-C2-O3, C4-C2-O3-H11, and O1-C2-O3-H11 dihedral angles. The GAFF
curves correspond to MM-relaxed energy profiles. The GAFF.MOD FF was
obtained by employing the MM-relaxed approach with Boltzmann weighting
(T=500.0 K, α = 1.0). The parameters of the dihedrals represented in this Figure
were concomitantly optimised along those of the C4-C6-O7-C8 dihedral using
the ParaMol’s automatic soft dihedral parameterisation task.
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Figure 5.11: Configurational distributions of the O10-H11 distance vs. the C5-
C6-O7-C8 dihedral angle of aspirin obtained from MD simulations using SCC-
DFTB-D3, the GAFF, and the GAFF.MOD (reparameterised) FFs. The latter were
derived through reparameterisation of the soft dihedrals employing Boltzmann
(Figure 5.10), non-Boltzmann, and uniform weighting methods (Appendix A,
Figures A.13 and A.14, respectively), with a weighting temperature of 500 K
and a regularisation strength of α = 1.0. All represented distributions contain
10000 configurations.

Lastly, we also attempted to reproduce the SCC-DFTB-D3 distribution by simply

reparameterising the C5-C6-O7-C8 and C4-C6-O7-C8 dihedrals, i.e., the soft

dihedrals that model the rotation around the C6-O7 bond, as these dihedrals are

the main source of the mismatch seen between the GAFF and the SCC-DFTB-D3

distributions. These reparameterisations were performed using the MM-relaxed

approach of equation (5.7) with strong regularisation (α = 1.0) and with a

weighting temperature of 500 K. As seen in the dihedral energy profiles of Figure

5.12, the dihedral energy profiles of the reparameterised FFs are in excellent

agreement with SCC-DFTB-D3. Reparameterisation led to a decrease in the
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energy RMSE from 10.21 kJ mol-1 (GAFF) to 3.19 kJ mol-1 (Boltzmann weighting),

3.24 kJ mol-1 (non-Boltzmann weighting), and 1.29 kJ mol-1 (uniform weighting).

Furthermore, through the analysis of the configurational distribution represented

in Figure 5.13, we conclude that regardless of the weighting scheme applied,

the agreement to the SCC-DFTB-D3 distribution is quite good. Despite this, a

small underrepresentation of the configurations of the II-syn conformation is

seen, as well as very rare sampling of the II-anti conformation for the Boltzmann-

weighted FF. All in all, parameterisation of the dihedrals associated with the

main faulty soft bond proved to be an efficient route to correctly model the

conformational dynamics of aspirin, especially given that it is computationally

cheap and all weighting schemes performed similarly.
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Figure 5.12: Comparison of the SCC-DFTB-D3, GAFF, and GAFF.MOD (repa-
rameterised FF) energy profiles of the C5-C6-O7-C8 dihedral. The GAFF curves
correspond to MM-relaxed energy profiles. The GAFF.MOD FF was obtained
by employing the MM-relaxed approach to optimise the parameters of the C5-
C6-O7-C8 dihedral. The weighting methods and regularisation strength used
are indicated on top of each plot.
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Figure 5.13: Configurational distributions of the O10-H11 distance vs. the
C5-C6-O7-C8 dihedral angle of aspirin obtained from MD simulations using
SCC-DFTB-D3, the GAFF, and the GAFF.MOD FFs of Figure 5.12. The latter
were obtained by reparameterisation of the dihedrals associated with the main
faulty soft bond of aspirin (see Figure 5.12). All represented distributions
contain 10000 configurations.

5.3.4 Adaptive parameterisation of caffeine

O N

N

N

N

O

Figure 5.14: Molecular structure of caffeine.
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As a last illustrative example of ParaMol’s parameterisation capabilities, we

reparameterised all intramolecular parameters of caffeine (Figure 5.14) to the

VV10 level of theory using adaptive parameterisation (the SCC-DFTB-D3 results

are shown in Appendix A, Figures A.15, A.16, and A.17). Specifically, the vector

of parameters that entered in the optimisation was p = (Kb, req, Kθ, θeq, Vn, γn).

The total number of optimisable parameters was 156. The minimised objec-

tive function included an energy, force, and regularisation terms, as given by

equations (5.3), (5.5), and (5.13).

In every iteration of the adaptive parameterisation procedure, 100 new config-

urations separated 0.5 ps from each other were generated and added to the

previous ones. These configurations were obtained using Langevin dynamics

with a friction coefficient of 2 ps-1, a time-step of 1 fs, and a temperature of 300

K. No special sampling technique was employed to explore the PES of caffeine

since it is mostly planar and does not have much conformational flexibility. The

adaptive parameterisation procedure was deemed to be converged when the

RMSD of the parameters between two successive iterations was less than 10−4.

The adaptive parameterisation performed 23 iterations in total until convergence,

corresponding to a total of 2300 structures in the last iteration.

The plots of the RMSD of the parameters and the components of the objective

function as a function of the iteration number are shown in Figure 5.15. Through

their analysis, we can see that most of the improvement in the objective function

occurred in the first 2-3 iterations, as shown by the θL2 regularisation term, which

remained practically steady afterwards, indicating that only small adjustments to

the FF parameters occurred. After this substantial initial refinement, the steady

increase of the XE energy term may be attributed to the convergence of the rela-

tive populations of the configurational ensemble used in the parameterisation,

as the initial and final XE values were practically the same. Interestingly, this

steady increase is not seen in the XF term, suggesting that XF was less sensitive

to the completeness of the configurational ensemble. Furthermore, not much

variation in any term occurred after the 15th iteration, as can be seen through

the stabilisation of the objective function terms, which is a robust indication that,
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at this point, both the sampling and the parameter optimisation were practically

converged.

Finally, to evaluate the improvement of the energies and forces, we generated

two testings data sets composed of 1000 configurations using either the FF

before (GAFF) and after reparameterisation (GAFF.MOD). This was done by

performing short MD simulations with the same settings as before (snapshots

were collected every picosecond). Since each data set was generated by sampling

from its respective FF, this analysis evaluates how close to the target level of

theory each FF samples. The plot that shows the correlation between the QM

energies and the MM energies is represented in Figure 5.16, and the atomic

forces errors are shown in the molecular structures of Figure 5.17. The RMSE

of the energies before and after reparameterisation was 12.82 kJ mol-1 and 6.73

kJ mol-1, respectively, which reveals that GAFF.MOD samples conformations

that are closer in energy to the VV10 level of theory. On other hand, the average

RMSE of the atomic forces improved from 83.61 kJ mol-1 Å-1 atom-1 to 50.95 kJ

mol-1 Å-1 atom-1 after reparameterisation, a clear indication that GAFF.MOD is

an improved FF in relation to GAFF since it also predicts better forces.
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Figure 5.15: Top panel: Plot of the values of each term included in the objective
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XE corresponds to the energy term, XF to the forces term, and θL2 to the regular-
isation term. Bottom panel: Plot of the RMSD of the parameters as a function of
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Figure 5.16: Correlation between the QM energies and the MM energies of
caffeine before (GAFF) and after (GAFF.MOD) the adaptive reparameterisation
procedure. Each data sets consists of 1000 configurations generated through a
short MD simulation that used the respective FF.
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Figure 5.17: Atomic force errors before (GAFF, left) and after (GAFF.MOD,

right) reparameterisation, calculated using RMSE(Fj) =

√
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∣∣∣FQM
i,j −FMM

i,j

∣∣∣2
3 . The

average RMSE of the atomic forces improved from 83.61 kJ mol-1 Å-1 atom-1

(GAFF) to 50.95 kJ mol-1 Å-1 atom-1 after reparameterisation (GAFF.MOD).
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5.4 Conclusions

In this chapter, we have presented ParaMol, software that has the capability of

reparameterising class I force field with a special focus on druglike molecules.

As explained and demonstrated in the examples provided, ParaMol has many

automated capabilities that allow the reparameterisation of molecules through

the use of different protocols. Its application may have implications in different

areas of chemistry with biological relevance that require FFs with high levels of

accuracy. The results obtained demonstrate that, within the constraints of the

functional form, the methodologies implemented in ParaMol are able to derive

near-ideal parameters for small organic molecules.

We demonstrated that the use of MM-relaxed dihedral scans is a robust way to

reparameterise the parameters of dihedrals and that this methodology is not very

sensitive to the weighting method, although it requires strong-to-intermediate

regularisation strengths. On the other hand, since fittings to QM-relaxed dihe-

drals scans are critically dependent on the intramolecular FF parameters, these

fittings substantially bias the derived FF parameters and, therefore, the use of

QM-relaxed dihedral scans should be avoided. Furthermore, configurational en-

sembles generated through standard MM simulation methods may also be used

as parameterisation data sets, even though they make the optimisations more

sensitive to the weighting method. In this context, the best results were obtained

when using non-Boltzmann weighting, which proved to be the most reliable

weighting scheme, despite its tendency to overestimate transition-state energies

and underestimate fluctuations. Moreover, Boltzmann weighting, which em-

phasises the description of QM minima, tends to overfit low energy regions of

the PES at the cost of poorly describing the remainder of the energy landscape.

Hence, it requires strong regularisation to produce FFs that can be potentially

used in MM modelling. Finally, since uniform weighting allows for positive and

negative EMM − EQM values, it is prone to the creation of asymmetries in the

PES, which often lead to spurious minima due to artificially large thermody-

namics weights and poor description of underrepresented configurations (e.g.,
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transition states). As in Boltzmann weighting, uniform weighting also requires

strong regularisation to mitigate some of these undesirable features.

Sampling of spurious conformations is a common issue that arises when repa-

rameterising FFs, and it may occur whenever weak regularisation is employed or

the spurious geometries are absent in the data set used to perform the fitting. A

possible solution for this issue is to further reoptimise the FFs including the spu-

rious conformations so that the optimisation procedure has information about

them. Owing to the features of non-Boltzmann weighting, it is the indicated

method to apply in these situations, as it tends to overestimate barrier heights

and/or equilibrium energies, which are features that, ultimately, prevent the

oversampling of ”artificial” geometries.

When using configurational ensembles as parameterisation data sets, tempera-

tures in a range between 300 and 500 K should be applied if using Boltzmann

or non-Boltzmann weighting, as progressively employing higher temperatures

leads to results that become gradually similar to the ones that are obtained

when using uniform weighting (which does not perform particularly well in

this setting). Alternatively, it is also possible to resort to ParaMol’s soft dihedral

parameterisation task, which identifies and concomitantly parameterises all

dihedrals associated with the rotatable bonds of a molecule. This method has

a computational cost significantly lower than the configurational ensemble ap-

proach, whilst inheriting all features implicit to dihedral scans. Finally, adaptive

parameterisation is also an attractive and useful way to optimise parameters,

as it combines self-consistent sampling and parameter optimisation in a single

protocol.

In general, most of the parameterisation routines implemented in ParaMol can

be performed automatically. However, care has to be taken when performing

parameterisations using a non-linear iterative optimiser at the expense of the LLS

fitting approach, as the former may become trapped in local minima, whereas the

latter is deterministic and ensures obtaining the global minimum. Consequently,

whenever possible and suitable, the LLS solution is preferred. Moreover, manual
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quality checks may be required to identify poor data and outliers in the data set

used in the parameterisation, which is of particular importance since most of the

FF optimisation problems arise as a result of low-quality fitting data.

Owing to its potential, we suggest that ParaMol can be introduced as a routine

step in the protocol normally employed to parameterise drug molecules for MM

simulations. The software is licensed under the MIT open source license. The

code is available at GitHub at https://github.com/JMorado/ParaMol, and the

documentation can be found at https://paramol.readthedocs.io.

In the next chapter, we introduce a multilevel MC method that allows quantum

configurational ensembles to be generated while keeping the computational cost

at a minimum. We present the theory and algorithm of the methodology and

apply it to a set of relevant druglike molecules. We show that FF reparameteri-

sation is an efficient way to accelerate the QM-level sampling and discuss the

implications and features of the method. As more advanced applications, we

apply the nMC-MC algorithm to generate the QM/MM distribution of a ligand

in aqueous solution and present a self-parameterising version of the method,

which combines sampling and FF parameterisation in one scheme.

https://github.com/JMorado/ParaMol
https://paramol.readthedocs.io
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Chapter 6

On the Generation of Quantum

Configurational Ensembles Using

Approximate Potentials

Conformational analysis is of paramount importance in drug design: it is crucial

to determine pharmacological properties, understand molecular recognition

processes, and characterise the conformations of ligands when unbound. MM

simulation methods, such as MC and MD, are usually employed to generate

ensembles of structures due to their ability to extensively sample the conforma-

tional space of molecules. The accuracy of these MM-based schemes strongly

depends on the functional form of the FF and its parameterisation, components

that often hinder their performance. High-level methods, such as ab initio MD,

provide reliable structural information but are still too computationally expen-

sive to allow for extensive sampling. Therefore, to overcome these limitations,

in this chapter we present a multilevel MC method that is capable of generating

quantum configurational ensembles while keeping the computational cost at a

minimum. We show that FF reparameterisation is an efficient route to generate

FFs that reproduce QM results more closely, which in turn can be used as low-

cost models to achieve the gold standard QM accuracy. We demonstrate that

the MC acceptance rate is strongly correlated with various phase space overlap
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measurements and that it constitutes a robust metric to evaluate the similarity

between the MM and QM levels of theory. As a more advanced applications, we

present a self-parameterising version of the algorithm, which combines sampling

and FF parameterisation in one scheme, and adapt the MC algorithm to generate

the QM/MM distribution of a ligand in aqueous solution.

This chapter has been published as an article in the Journal of Chemical Theory

and Computation:

• Morado, J.; Mortenson, P. N.; Nissink, J. W. M.; Verdonk, M. L.; Ward, R.

A.; Essex, J. W.; Skylaris, C.-K. Generation of Quantum Configurational

Ensembles Using Approximate Potentials. J. Chem. Theory Comput. 2021,

17 (11), 7021–7042. https://doi.org/10.1021/acs.jctc.1c00532

6.1 Introduction

The study of the conformational dynamics of molecules free in solution is essen-

tial for predicting molecular properties and to guide the rational development of

new pharmaceutical compounds. The latter application is of utmost importance

for the pharmaceutical industry since knowledge of the unbound state is vital

to understand the fundamentals of molecular recognition.12,19–22 Besides the

displacement of water from protein binding sites,23–25 one of the main phenom-

ena that impacts binding affinity is the reorganisation of the unbound state

ligand upon binding to its target, a process that is influenced by the change

in intramolecular energy of the ligand in adopting the bioactive conformer, as

well as the associated loss of entropy.22 Minimisation of the free energy penalty

associated with this structural change is vital to optimising ligand potency,

requiring knowledge of the physical interactions that control conformational

preferences and methods for conformational analysis if a rational strategy is to

be employed.22 There is a wide range of experimental structural information on

pharmaceutical compounds bound to their protein targets.26,27 However, as it has

https://doi.org/10.1021/acs.jctc.1c00532
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been emphasised in various studies, the conformations of unbound compounds

are still poorly characterised.12,20,21,28 Therefore, the scientific community must

put effort into developing tools that allow fast and reliable characterisation of

unbound molecular conformers as these can potentially provide the so-called

”missing link” in structure-based drug discovery.20,28

The most widely used experimental method to elucidate unbound conforma-

tional ensembles is NMR spectroscopy, which is often utilised in drug design to

complement X-ray protein–ligand structural information.22,28,284 Additionally,

MM simulation methods, such as MD and MC, are also commonly employed

to predict thermophysical molecular properties and generate structures for con-

formational analysis.7,21 In particular, static properties, such as, e.g., optical

spectra, NMR spectra, and solvation free energies, can be determined from the

relative populations of the free state conformers,285 which are usually possible

to estimate in MM-based simulations since, in many instances, these permit

ergodic sampling.29–34 Although these methods allow extensive sampling of the

configurational space of molecules, the functional form used by the FF affects

the sampling quality, and parameterisation must be adequate to ensure accurate

results. High-level simulation schemes, such as, e.g., ab initio MD, have become

the gold standard for simulation purposes as they provide reliable structural

information at the quantum level, but are still too computationally expensive to

allow achieving the time scales typically required for convergence of the simu-

lations.286–290 Hence, to attain extensive and reliable sampling, it is necessary

to find a compromise between the efficiency of the MM-based methods and the

accuracy of the QM level of theory.

Several approaches have already been proposed to sample molecular confor-

mations with QM accuracy at a nearly MM cost. In this context, Rosa et al.285

proposed a postprocessing method in which, through the use of conformational

clustering and thermodynamic perturbation theory, it is possible to estimate

the QM populations by correcting MM populations. Others have attempted

to explore the conformational landscape of bioactive small molecules by using

a combination of classical Hamiltonian replica exchange with high-level QM
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calculations.291 In this chapter, we attempt to bridge the gap between the MM

efficiency and the QM accuracy by presenting a methodology that is based on

an ab initio MC algorithm. This approach enables recovery of the correct QM

ensembles while keeping the computational cost at a minimum. It is also capable

of self-parameterising FFs to a target level of theory in an iterative and on-the-fly

fashion, a feature that can be applied whenever generation of high-quality FFs is

required.

The method we propose in this chapter consists in a nested Markov chain Monte

Carlo (nMC-MC) algorithm that combines sampling at the MM level with peri-

odic switching attempts to the QM level. This nMC-MC algorithm works by first

resorting to the hybrid Monte Carlo (hMC) scheme to rigorously generate con-

figurations that belong to a target MM ensemble.292–294 These are subsequently

used as trial states for a second Markov chain, in which they are accepted or

rejected according to a correction step based on the difference between the MM

and QM potentials.295,296 In this way, it is possible to generate quantum configu-

rational ensembles using approximate potentials (e.g., MM FFs). This multilevel

ab initio MC algorithm has already been applied in various contexts, such as in

the fitting of FF dihedral angles,297 in a ”stepping stone” approach for obtaining

quantum free energies of hydration,298 and in a MC resampling approach for

the calculation of hybrid classical/quantum free energies;299 to improve the

efficiency of Born models in MC simulations,300 to model reactivity in small

molecules,301 and to enhance the conformational sampling of disordered regions

of proteins.302,303

It is widely known that the key factor for convergence of multilevel approaches

is ensuring a favourable overlap between the energy distributions of different

levels of theory.248,304,305 Otherwise, as FFs often predict conformations and

energies that substantially deviate from the QM level, low acceptance rates are

obtained when attempting to sample from the MM to the QM chain. Ultimately,

the mismatch between the MM and QM descriptions becomes a bottleneck be-

cause it prevents a thorough exploration of relevant regions of the QM PES,

slowing convergence of the sampling of the target quantum configurational
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distributions. Different strategies have already been proposed to improve the

overlap between the probability distributions of the energies associated with

different levels of theory.304 One possibility is to artificially broaden the MM

distribution by manipulating the thermodynamic variables (e.g., pressure and

temperature) characterising the reference system306–309 or using Tsallis statis-

tics.310 It is also possible to introduce an intermediate level of theory (e.g., a

semiempirical QM method) to bridge the gap between the MM and QM chains

or employ an arbitrary number of intermediate potential energy layers with

sufficient overlap between their probability distributions.311 Another option is to

increase the overlap between the distributions by improving the MM description

so that it becomes more QM-like, which is the approach followed in this study.

This increased overlap can be achieved through either FF reparameterisation

(typically by force-matching231,248,305), by using ML potentials,312,313 or through

fitting of ad hoc potentials.306,314–316

As application examples, we tested the proposed methodology on a set of small

organic molecules of increasing complexity, which are representative fragments

of molecules found in drug discovery programs. Specifically, we attempted to

generate quantum configurational ensembles of aniline, acetanilide, biphenyl,

diphenyl ether, and sulfanilamide. As a relevant druglike example, we investi-

gated a fragment of cpd 26, which is the core of an efficacious low nM antagonist

of the inhibitor of apoptosis proteins cIAP1 and XIAP.15 Furthermore, as proof

of principle, we used octahydrotetracene to demonstrate that the nMC-MC al-

gorithm can be coupled with a reparameterisation step, allowing for iterative

optimisation of the molecule’s FF parameters using the on-the-fly QM-generated

ensemble. This self-parameterisation nMC-MC algorithm is similar in philoso-

phy to the methods presented in some past applications,312,314–317 though these

studies did not use MM FFs or druglike molecules. Finally, as a more advanced

application, we applied the nMC-MC algorithm to generate the QM/MM318

distribution of aniline in aqueous solution.

This chapter is structured as follows: we first present the basic theory underlying

the proposed approach, viz., the hMC method, the nMC-MC algorithm, the FF
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reparameterisation approach, the phase space overlap metrics, and the numerical

experiments protocol. We then present applications of the algorithms to the

previously mentioned test cases and conclude with final remarks.

6.2 Theory and methods

6.2.1 Hybrid Monte Carlo

hMC is an exact sampling approach that combines the features of the MC and

MD simulation methods in such a way that the trial steps of the MC algorithm

are short MD runs. Therefore, hMC inherits the advantages of both algorithms,

such as the tendency of MD to move the system towards regions of configuration

space that are energetically favourable, and the possibility to relax the restriction

on the size of the MD time step, dt, through the application of a MC step.92

hMC also prevents the numerical instabilities that arise due to the numerical

integration algorithms used by MD simulations.319

At the start of every iteration, hMC draws new velocities from the Maxwell-

Boltzmann distribution at a chosen temperature TK, a step which is performed

using the Marsaglia polar method.298,320 Then, a short MD simulation in the mi-

crocanonical ensemble (NVE) is run using a sympletic integrator that preserves

detailed balance321 (e.g., the velocity-Verlet algorithm,322,323 the integrator used

in this study) during M steps. Finally, the final configuration of the system

is accepted or rejected according to a given acceptance criterion, which for a

canonical ensemble (NVT) at temperature TU reads292

φ(qi → q f ) = min
{

1, exp
[
−βK∆K− βU∆UMM(qi, q f )

]}
(6.1)

where ∆K = K f − Ki is the difference of the kinetic energy between the final

and initial states of the short MD run, ∆UMM = UMM(q f )−UMM(qi) is the

difference between the potential energy of the system at configurations q f and qi,
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and βK and βU are the thermodynamics betas corresponding to the temperatures

TK and TU, respectively. The latter do not need have the same value, a feature

that can be used as a means of increasing the conformational sampling efficiency

by, for example, using high TK values for the kinetic energy component. It is

worth mentioning that M and dt are hyperparameters that have to be chosen

properly in order to ensure sampling of uncorrelated snapshots while keeping

the wall time required for each MD run manageable.298 These hyperparameters

may have an impact on the acceptance rates.294,298,324

The disadvantage of hMC is that its acceptance probability decays exponentially

with the system size because the RMSE of the energy increases with N1/2
a ,90,294

where Na is the number of atoms of the system. There have been many attempts

to circumvent this bottleneck, the most widely studied being sampling from

shadow Hamiltonians.294,325 Nevertheless, owing to the relatively small size of

the molecular systems covered in this study, this issue does not pose a problem

for the current application. As it is discussed in Section 6.2.2, hMC can also be

embedded in an nMC-MC algorithm, in which the hMC moves are used as the

trial steps of an ab initio MC algorithm.

6.2.1.1 Acceptance criterion derivation

To derive the acceptance criterion for the hMC algorithm, assume that a simula-

tion starts from configuration qi. The probability that configuration q f is reached

after M MD steps is proportional to the initial momenta, pi, and is given by

α
(
qi → q f

)
∝

Na

∏
γ=1

(
βK

2mγπ

)−1/2

exp

[
−βK

Na

∑
γ=1

p2
i,γ

2mγ

]
(6.2)

where γ runs over all Na atoms, βK is the thermodynamic beta, and mγ the mass

of γth atom. Noting that the argument of the exponential function corresponds

to the kinetic energy, K, equation (6.2) can be rewritten as
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α(qi → q f ) ∝ exp [−βKK(pi)] (6.3)

And similarly to what we did in equations (6.2) and (6.3), the probability of

reaching qi from q f reads

α(q f → qi) ∝ exp
[
−βKK(p f )

]
(6.4)

where pj is the negative of the momentum of the system after M MD steps,

chosen as so in order to impose the detailed balance condition. It is now possible

to use the result of equation (3.33) to derive the hMC acceptance criterion for the

canonical ensemble, for which the probability density is stated in equation (3.14).

Knowing that the transition probabilities are given by equations (6.3) and (6.4),

the hMC acceptance criterion reads

θ(qi → q f ) =
α(q f → qi)

α(qi → q f )

N (q f )

N (qi)
(6.5)

=
exp

[
−βKK(p f )

]
exp [−βKK(pi)]

exp
[
−βUU(q f )

]
exp [−βUU(qi)]

(6.6)

= exp
[
−βK∆K− βU∆UMM(qi, q f )

]
(6.7)

Finally, as shown in equation (3.36), by making the Metropolis choice for the

acceptance criterion, the following hMC acceptance criterion is obtained

φ(qi → q f ) = min
{

1, exp
[
−βK∆K− βU∆UMM(qi, q f )

]}
(6.8)

which corresponds to the result previously stated in equation (6.1).
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6.2.2 Sampling from approximate potentials

As it was formalised by Gelb in his seminal work about sampling from approx-

imate potentials, it is possible to create an nMC-MC simulation by coupling

hMC with a correction step based on the difference between the MM and QM

potentials.295,296 The expression of this correction step reads

θ(qi → q f ) = min
{

1, exp
[
−β′U∆UQM(qi, q f ) + βU∆UMM(qi, q f )

]}
(6.9)

where ∆UMM = UMM(q f )−UMM(qi), ∆UQM = UQM(q f )−UQM(qi), and βU

and β′U are the thermodynamic betas of the MM and QM ensembles, respectively.

Note that, as in the hMC algorithm, the beta thermodynamic parameters do not

need to be the same in both Markov chains, a feature that can be exploited as a

way of increasing the overlap between the MM and QM levels.306,307

The nMC-MC algorithm works by first generating a trial structure through the

hMC algorithm, which is then attempted to be sampled into the QM level by

applying the acceptance criterion of equation (6.9). If the structure is accepted,

the next hMC run starts from this configuration; otherwise, the hMC run starts

from the last accepted configuration. A detailed diagram of the workflow of this

algorithm is shown in Figure 6.1.
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Start

Has an ensemble of 

Ns QM structures 

been generated? 

Generate new

velocities


Starting from last accepted

QM structure run classical

MD simulation during M
steps


Calculate
ΔUMM(qi,qf) = UMM(qf)-UMM(qi) 

ΔK = Kf -Ki

λ=exp[-βKΔK-

βUΔUMM(qi,qf)]

min[1,λ] > U(0,1)

Calculate 

ΔUQM(qi,qf) = UQM(qf)-UQM(qi) 

Λ=exp[-β'UΔUQM(qi,qf)+
βUΔUMM(qi,qf)]



min[1,Λ] > U(0,1)

Include the new structure, qf,

in the QM ensemble

End

Hybrid Monte Carlo
 MM NVT → QM NVT


Include the last accepted
structure, qi, again in the 


QM ensemble

Figure 6.1: Diagram describing the workflow of nMC-MC algorithm as imple-
mented in ParaMol.4 The hMC part of the algorithm is used to generate an
exact NVT ensemble (left), while the sampling from approximate potentials part
is used as a switching step between the MM and QM levels of theory (right).
U(0, 1) denotes a random number between 0 and 1 sampled from a uniform
distribution, and the i and f subscripts refer to the initial and final states of a
given iteration. The green arrows denote conditionals for which the evaluated
condition is true, whereas the red arrows denote conditionals for which the
evaluated condition is false.
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6.2.2.1 Acceptance criterion derivation

To derive the acceptance criterion for the nMC-MC algorithm, consider a first

Markov chain, identified by the QM superscript, and a second Markov chain,

identified by the MM superscript, which uses the approximate potential that

generates new trial states for the first Markov chain. Now suppose that a

molecular simulation at the MM chain generates the state f given that it has

started at state i. In such a situation, the probability of occurrence of a trial move

from qi to q f in the QM Markov chain is given by

αQM(qi → q f ) = πMM(qi → q f ) = αMM(qi → q f )θ
MM(qi → q f ) (6.10)

Hence, by substituting this result into equation (3.36), i.e., by making the Metropo-

lis choice for the acceptance criterion, we obtain

θQM(qi → q f ) = min

[
1,
N QM(q f )

N QM(qi)

αQM(q f → qi)

αQM(qi → q f )

]
(6.11)

= min

[
1,
N QM(q f )

N QM(qi)

πMM(q f → qi)

πMM(qi → q f )

]
(6.12)

= min

[
1,
N QM(q f )

N QM(qi)

αMM(q f → qi)θ
MM(q f → qi)

αMM(qi → q f )θMM(qi → q f )

]
(6.13)

which can be used to generate an ensemble that is distributed according to the

QM distribution. Alternatively, recalling the relation given by equation (3.30),

equation (6.13) can be rewritten as

θQM(qi → q f ) = min

[
1,
N QM(q f )

N QM(qi)

NMM(qi)

NMM(q f )

]
(6.14)
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As previously mentioned, the expressions of the probability densities appearing

in equation (6.14) are ensemble-dependent. For example, if one is interested in

sampling from an MM NVT distribution to generate a QM NVT ensemble, the

canonical probability density function given by equation (3.14) must be used,

leading to the following acceptance criterion

θ(qi → q f ) = min
{

1, exp
[
−β′U∆UQM(qi, q f ) + βU∆UMM(qi, q f )

]}
(6.15)

which can be recognised as the expression previously stated in equation (6.9). On

the other hand, if one is interested in sampling from an MM NVE distribution to

generate a QM NVT ensemble, it must be ensured that the MD run of the hMC

algorithm conserves the energy of the system. In practical terms, this means that

the time step used must be sufficiently small so that the numerical errors are

negligible. Whenever this condition is ensured, hMC steps are accepted with

unit probability, i.e., θMM(qi → q f ) = θMM(q f → qi) = 1, reducing equation

(6.13) to

θ(qi → q f ) = min
{

1, exp
[
−β′U∆UQM(qi, q f ) + βK∆K

]}
(6.16)

where the results of the transition probabilities given by equations (6.3) and

(6.4) were employed. Note that equation (6.16) can be rewritten as equation

(6.15) since, under energy conservation conditions, ∆K = ∆U. Hence, overall we

conclude that the same acceptance criterion can be used to sample from the MM

chain to the QM chain, whether sampling is performed from the MM NVE or the

MM NVT ensemble. However, while the former sampling option requires using

the hMC acceptance criterion of equation (6.1) to first generate the MM NVT

ensemble, the latter option avoids this step, permitting a direct switch between

the MM and QM Markov chains. Lastly, note that although in this study the

hMC algorithm was used to generate trial states for the QM Markov chain, in
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practice any sampling method, such as, e.g., standard MC simulations, parallel

tempering MC, or umbrella sampling schemes, can be used for that purpose.

6.2.3 Force field reparameterisation

The key requirement for convergence of the nMC-MC algorithm is ensuring a

favourable distribution overlap between the FF and the QM level of theory. To

fulfill this condition, we generated low-level models that were closer to the target

high-level of theory than the original GAFF.182 The aim of this procedure was

to improve the overlap between the energy difference distributions of the MM

and QM levels. The increased overlap was attained through reparameterisation

of GAFF-like FFs, a step performed to make the MM models more QM-like. To

perform the optimisation of the FF parameters, we resorted to the methodologies

implemented in ParaMol, in which an FF is fitted to a target level of theory

through minimisation of the following objective function

X(p) = XF(p) + XU(p) + Θ(p) (6.17)

where XF is given by equation (5.3), corresponding to the term of the objective

function by which every component of the MM atomic forces is fitted to QM data;

XU is given by equation (5.5), amounting to the fitting of energies to reference

QM data; and Θ(p) is given by equation (5.13), corresponding to an optional L2

regularisation included to prevent overfitting.

6.2.4 Phase space overlap metrics

As a means of establishing the similarity between the MM and QM levels, we

evaluated their phase space overlap using two different metrics. The first metric

resorts to the idea that the phase space overlap can be calculated as the overlap

between the distributions of the total energy difference between the two con-

sidered levels of theory.248 These distributions can be obtained by performing
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MD simulations using both the MM and the QM Hamiltonians, whereupon

the differences ∆EMM→QM
MM = EQM

MM − EMM
MM and ∆EQM→MM

QM = EMM
QM − EQM

QM are

evaluated for the trajectories obtained utilising the MM and QM Hamiltonians,

respectively, where the subscript indicates the level of theory used for sampling,

and the superscript indicates the level of theory used to evaluate the potential

energy. The corresponding histograms of the calculated ∆Es are then approxi-

mated by assuming Gaussian-shaped distributions, in such a way that the energy

difference distribution of the QM Hamiltonian is given by

NQM(∆EQM→MM
QM ) =

√
1

2πσ2
QM

exp

−
(

∆EQM→MM
QM − 〈∆EQM→MM

QM 〉
)2

σ2
QM


(6.18)

where σQM is the standard deviation of the ∆EQM→MM
QM values. The Gaussian

representation of the energy difference distribution of the MM Hamiltonian,

NMM, can be written analogously. Hence, it possible to measure the overlap, Ω,

between the NQM and NMM distributions by using the following equation

Ω =
〈NQM,NMM〉

max
[
〈NQM,NQM〉, 〈NMM,NMM〉

] (6.19)

where 〈 f , g〉 =
∫

dx f (x) · g(x) is the inner product or overlap integral between

the f and g functions. The integration of this overlap integral was performed

numerically using SciPy’s integrate.quad function with default settings.264

We also used the descriptors of the phase space overlap between two states that

were developed by Wu and Kofke.248,326,327 In particular, we used a metric based

on the overlap of total energy distributions that reads

ΣMM,QM = 2
∫ +∞

−∞
dEQM ρQM

QM(EQM)
∫ EQM

−∞
dE′QM ρQM

MM(E′QM) (6.20)
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where ρA
A and ρA

B are the probability distributions of state A energies observed

within simulations of states A and B, respectively. Similarly, the expression for

ΣQM,MM can be written as

ΣQM,MM = 2
∫ +∞

−∞
dEMM ρMM

MM(EMM)
∫ UMM

−∞
dE′MM ρMM

QM (E′MM) (6.21)

The value of ΣB,A varies from 0 to 2 and indicates the offset of ρA
B relative to

ρA
A. If ρA

B is centred left with respect to ρA
A, then 1 < ΣB,A ≤ 2. Otherwise, if ρA

B

is centred right with respect to ρA
A, then 0 ≤ ΣB,A < 1. The integration of the

double integrals of equations (6.20) and (6.21) was performed numerically using

SciPy’s integrate.dblquad function with default settings.

6.2.5 Numerical experiments protocol

The numerical experiments presented in this study relied on refined low-level

models that attempted to approximate a high level of theory. The high level

of theory used was the DFTB+273,274 implementation of SCC-DFTB,1 includ-

ing the D3 dispersion correction278 and with Becke-Johnson damping.279 This

choice was based on the evidence that SCC-DFTB-D3 performs quite well in

determining conformations of druglike molecules and respective energies.79–81

SCC-DFTB-D3 is also computationally cheap, allowing for extensive testing of

various compounds. As low-level models, optimally tuned FFs were generated

to improve the overlap between the energy difference distributions of the low

and high levels of theory. These FFs were reparameterised to reproduce the

SCC-DFTB-D3 level of theory. They consisted of refined versions of GAFF, for

which the functional form is given by equation (4.25). The optimally tuned FFs

were designed systematically such that, for every molecule shown in Figure 6.2,

the following set of reparameterised FFs was generated

• B FF - bond force constants (Kb) and equilibrium values (req) were opti-

mised.
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• BA FF - bond and angle force constants (Kθ) and equilibrium values (θeq)

were optimised.

• BAT FF - bond, angle and dihedral force constants (Kb, Kθ, and Vn), bond

and angle equilibrium values (req, and θeq), and dihedral phase constants

(γn) were optimised.

• BAT-LJ FF - in addition to the parameters optimised in the BAT FF, the σ

and ε LJ 12-6 parameters were also optimised.

• BAT-Q FF - in addition to the parameters optimised in the BAT FF, the

atomic charges (q) were also optimised (under the constraint of total molec-

ular charge conservation).

• BAT-LJQ FF - in addition to the parameters optimised in the BAT FF, the σ

and ε LJ 12-6 parameters were also optimised, as well as the atomic charges

(q) under the constraint of total molecular charge conservation.

The optimisation of the parameters was performed using ParaMol with the

SciPy’s SLSQP optimiser.328 The optimisations were deemed to be converged

whenever the objective function between two successive iterations did not

change by more than 10−6, i.e., Xn+1 − Xn < 10−6. The original GAFF parame-

ters were used as the initial guess for the optimisations. These were obtained by

initially parameterising the druglike molecules using Antechamber packages,

which are part of AmberTools.329 AM1-BCC charges225,226 were calculated after

the geometry was optimised at the SCC-DFTB-D3 level of theory. The topology

and coordinates files used as inputs to ParaMol were created using LEaP. All FF

modifications given by the frcmod file created by parmchk2 were included. No

atom-type symmetries were preserved during the reparameterisation. Conse-

quently, the results presented are close to the limits of accuracy that the GAFF

functional form can achieve.
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Figure 6.2: Molecular structures of the test molecules used in this study.

The objective function minimised in the optimisation procedure included as

targets both forces and energies, as shown in equation (6.17). The reparame-

terisations of the FFs used either the uniform or the non-Boltzmann weighting

(weighting temperature of 300 K) schemes available in ParaMol (see the dis-

cussion presented in Section 5.2.4). They were conducted applying either no

regularisation or L2 regularisation. The prior widths used for the regularisa-

tion term are reported in Table 5.1. The value of the scaling factor used in the

regularisation term was α = 1/Np, where Np is the number of parameters be-

ing optimised. The training data sets consisted of configurational ensembles

generated at the SCC-DFTB-D3 level of theory. They were obtained by perform-

ing gas-phase Langevin dynamics at a temperature of 500 K (time step of 1 fs,

and friction coefficient of 2 ps-1). We chose to simulate at a high temperature

to ensure a thorough exploration of the SCC-DFTB-D3 conformational space.
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Snapshots of the simulations were collected every 1 ps, resulting in a final data

set of 10000 configurations.

The nMC-MC calculations performed to estimate the acceptance rates used a

time step of 1 fs (100 MD steps per hMC run). Velocities were sampled from the

Maxwell-Boltzmann distribution at 300 K. This temperature was also used for the

MM and QM chains. No fine-tuning of these hyperparameters was attempted, as

these tend to be molecule-specific. A total of 4 independent samplers were run

for each molecule, all starting from the same initial structure but using different

random seeds.

6.3 Results and discussion

6.3.1 nMC-MC acceptance rates

The most direct metrics one can obtain from nMC-MC simulations are the

acceptance rates. There are two of these: the hMC acceptance rate shown

in equation (6.1), and the MM to QM switching step acceptance rate shown in

equation (6.9). The hMC acceptance rate gives information about the stability

of the NVE MD runs. It is useful to identify energy conservation issues. The

MM to QM switching step gives information about the similarity between the

MM and QM levels of theory. This switching step acceptance rate is the focus

of this work because, as discussed later, it is highly correlated with phase space

overlap metrics. Consequently, this acceptance rate is a valuable metric of how

close to the QM level of theory the MM FFs sample, as it measures the MM→

QM overlap. Note, however, that this is a unidirectional relation, because the

acceptance rate does not give details about how close to the MM level of theory

the QM Hamiltonian samples. Measuring the QM→MM overlap would require

performing nMC-MC calculations using the QM Hamiltonian in the lower chain.

This is computationally expensive and, in many cases, unfeasible owing to the

requirement of performing ab initio MD. Hence, we cannot exclude the possibility
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of predicting high acceptance rates for FFs that do not completely represent the

QM level. This situation occurs whenever a FF explores only a subset of QM

configurations that are well described at the MM level. Note that, however, this

situation never occurred for the optimally tuned FFs generated in this study.

Incidentally, as the phase space overlap metrics reveal, the MM configurational

distributions generated at a given temperature were of a similar extent to (or

broader than) their QM counterparts. This observation corroborates that the

switching step acceptance rate is a robust metric of the similarity between the

MM and QM levels of theory.
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Figure 6.3: nMC-MC acceptance rates for the set of molecules represented
in Figure 6.2. The FFs used to calculate the acceptance rates were derived
employing non-Boltzmann weighting with (dark blue) or without (light blue)
L2 regularisation. The training data set contained configurations sampled at
500 K. The errors bars correspond to the standard deviation of the results of
4 different nMC-MC samplers. Each sampler performed a total of 2 × 105

nMC-MC sweeps.

The acceptance rates obtained when using non-Boltzmann weighting in the

reparameterisations are shown in Figure 6.3. Through the analysis of this figure,

we conclude that the variations observed in the acceptance rates are in line with

what we would expect from a systematical reparameterisation of FFs: for the

nonregularised FFs, the more classes of FF parameters optimised, the higher



154 Chapter 6. Multilevel Monte Carlo Sampling

the acceptance rates obtained. In general, they follow the trend B < BA < BAT

< BAT-Q < BAT-LJ < BAT-LJQ. The only disparity is observed for aniline and

sulfanilamide, for which the BAT-Q FF performed better than the BAT-LJ. This

reveals that the optimisation of charges is more important to accurate modelling

of the aniline scaffold, which both molecules share, than the optimisation of the

LJ parameters.

The optimisation of the nonbonded part of the FFs (charges, and LJ parameters)

was here used as an ad hoc workaround to accelerate the sampling of the target

SCC-DFTB-D3 distribution. It must be stressed, however, that this approach

is only viable for gas-phase situations like those presented in these examples.

As these parameters affect the intermolecular interactions, the BAT-LJ, BAT-Q,

and BAT-LJQ FFs may have a limited applicability when applied to solutes in

solution. Since solute-solvent interactions influence the solute’s configurational

ensemble, and the nonbonded parameters influence the energetics of intermolec-

ular interactions, a training data set including interactions with solvent needs to

be considered if the LJ parameters and partial atomic charges are to be optimised.

In comparison to the original GAFF, the improvements obtained for the accep-

tance rates were substantial (Figure 6.3). This indicates that the optimally tuned

FFs increased their similarity with respect to the SCC-DFTB-D3 Hamiltonian.

For all test cases, except aniline and biphenyl (for which GAFF acceptance rates

of ca. 13-15% were obtained), the GAFF acceptance rates were lower than 3%,

being virtually 0% for sulfanilamide. These observations support the idea that

MM FFs struggle to correctly model sulfonamides.330

The properties of non-Boltzmann weighting help to understand the previous

observations. During the FF optimisation, this weighting scheme gives larger

weights to conformations in which the MM energy is underestimated (UMM −

UQM < 0) than to conformations in which the MM energy is overestimated

(UMM−UQM > 0) with respect to the QM energy. Consequently, non-Boltzmann

weighting mitigates the creation of spurious minima and drives the errors to-

wards high-energy regions, thus overestimating transition-state energies and
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underestimating fluctuations.4,263 This is a desirable property because if a perfect

fit to the QM PES is unattainable, it is preferable to have a mismatch that makes

∆UMM greater than ∆UQM. Driving the errors towards high-energy regions

maximises acceptance into the QM chain (see equation (6.9)) and leads to the

stable and systematic improvements that are observed in Figure 6.3.

The results obtained for the L2-regularised FFs follow similar trends to their non-

regularised counterparts (Figure 6.3). For the FFs in which bonded parameters

(B, BA, and BAT) were optimised, the acceptance rates of the regularised and

nonregularised FFs were identical, presenting variations that are not statistically

significant. However, for the regularised FFs in which nonbonded parameters

were also optimised (BAT-LJ, BAT-Q, and BAT-LJQ), there was a noticeable

decrease in the acceptance rates for some molecules (e.g., aniline and sulfanil-

amide). The prior widths used to constrain the charges and LJ parameters may

be the source of this decrease in acceptance rates, as the prior widths may have

not allowed the nonbonded parameters to stray too far away from their initial

guesses. Consequently, poorer fits were obtained, leading to lower acceptance

rates. For the remaining molecules, the regularised FFs performed equally or

slightly better than the nonregularised FFs. The small differences observed are,

in most cases, not statistically significant.
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Figure 6.4: nMC-MC acceptance rates for the set of molecules represented in
Figure 6.2. The FFs used to calculate the acceptance rates were derived employ-
ing uniform weighting with (dark blue) or without (light blue) L2 regularisation.
The training data set contained configurations sampled at 500 K. The errors
bars correspond to the standard deviation of the results of 4 different nMC-MC
samplers. Each sampler performed a total of 2× 105 nMC-MC sweeps.

Before analysing the results obtained when employing uniform weighting in the

reparameterisations (Figure 6.4), it is important to discuss the consequences of

the asymmetries that might be imposed on the MM PES by equally allowing

positive and negative errors in the fittings. This feature of uniform weighting

has already been reported in previous studies.4,263 Let us consider the diagrams

of Figure 6.5, which show hypothetical MM PES fittings that can be obtained

when employing uniform weighting. Assuming that the data set used in the

reparameterisations comprises only the structures at configurations qi and q f ,

all the represented uniform-weighted fittings have equal squared errors of the

energy with respect to the QM PES, viz. ∑i

(
UQM

i −UMM
i

)2
= 2U2. Despite

this, each case would lead to a different behaviour if the corresponding FF

were used in the nMC-MC algorithm. Firstly, it is important to note that case

A truly corresponds to a perfect fitting, as the uniform-weighted MM PES

can be superimposed with QM PES by a simple translation (the difference

between them is only a constant). Therefore, in what follows, we exclude
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this situation from the discussion. Furthermore, for case B, ∆∆U(qi → q f ) =

∆UQM(qi → q f ) − ∆UMM(qi → q f ) = −2U for uniform weighting, leading

to a fitting that maximises acceptance into the QM chain. On the other hand,

case C minimises the probability of accepting structures into the QM chain since

∆∆U(qi → q f ) = 2U. Hence, the uniform weighting scheme is prone to creating

series of FFs that show unpredictable, non-systematic behaviour since positive

and negative UMM −UQM differences are equally probable. This leads us to

advocate for the use of non-Boltzmann weighting if the aim is to use FFs in the

nMC-MC algorithm. Incidentally, non-Boltzmann weighting also tends to be

superior to uniform weighting for general-purpose applications.4,263 Note that

the squared error of the energy with respect to the QM for the non-Boltzmann-

weighted fitting is not equal to 2U2 as it is in the uniform-weighted fittings.

Nevertheless, the point was to illustrate the possible asymmetries that uniform

weighting may impose that can negatively impact the acceptance rates.

Figure 6.5: Diagram illustrating typical possible fittings that can be obtained
when employing either the uniform and non-Boltzmann weighting schemes.
All the represented uniform-weighted fittings have equal squared errors of the

energy with respect to the QM PES, viz., ∑i

(
UQM

i −UMM
i

)2
= 2U2, but they

behave differently when used in the nMC-MC algorithm.

For the FFs derived employing uniform weighting, systematic reparameteri-

sation only led to systematically higher acceptance rates for aniline, diphenyl
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ether, and the fragment of cpd 26 (Figure 6.4). This is observed for both the

L2 and nonregularised versions of the FFs. On the other hand, for biphenyl

and acetanilide, the BA FF resulted in lower acceptance rates than the B FF, and

the BAT FF only performed slightly better than the B FF. The acceptance rates

obtained for sulfanilamide are unexpected, as the BA and BAT FFs gave very

low acceptance into the QM chain (ca. 2%). Interestingly, higher acceptance

rates were obtained for their L2-regularised counterparts, as they increased

from ca. 2% to ca. 7-8% and 13% for the BA and BAT FFs, respectively. These

results can be understood by inspecting the optimised angle force constants,

Kθ, and angle equilibrium values, θeq, of the nonregularised BA and BAT FFs

of sulfanilamide (see Figure 6.6). From these plots, it is clear that the nonreg-

ularised optimisations drove the parameters towards nonphysical values. For

Kθ, close to zero or even negative values were obtained, whereas for θeq, values

close to 0◦ or 360◦ were obtained, meaning that bent angles became practically

linear. These artifacts, created by the optimisation to minimise the objective

function, ultimately had a strong impact on the acceptance rates, as they led to

poor dynamics and energy prediction. These large and unphysical variations

were lessened by applying L2 regularisation, resulting in FFs that had optimised

parameters with values in physically-sensible ranges. The L2-regularised FFs

were also superior in terms of QM similarity in regards to their nonregularised

counterparts and led to higher acceptance rates. Besides sulfanilamide, the only

test case for which a similar behaviour occurred was acetanilide, in which the

nonregularised uniform-weighted BA and BAT FFs also contained unphysical

parameter values. This event did not occur for any non-Boltzmann-weighted or

L2-regularised FF.
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Figure 6.6: Sulfanilamide parameters before (GAFF; x axis) and after reparame-
terisation (uniform-weighted BA/BAT FFs; y axis). The parameters represented
are angle force constants (top panels) and angle equilibrium values (lower
panels).

Two synergistic factors may have contributed to the deviations from physically

sensible values observed for the nonregularised uniform-weighted FFs. Firstly,

some of the angle terms may have been used to compensate for deficiencies in

other parts of the FF, since when nonbonded parameters were concomitantly

optimised, these large deviations were not observed. Incidentally, as previously

mentioned, the optimisation of the nonbonded terms performed in this study

was, in some sense, a workaround to make up for possible limitations in the FF

functional form. Secondly, the fact that the training data sets consisted of NVT

ensembles sampled at a temperature of 500 K also contributed to nonphysical

parameters. This can be observed by comparing the acceptance rates obtained
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for the training data sets generated at 500 K with those obtained for the training

data sets generated at 300 K (Figure 6.7; no regularisation, uniform weighting).

At the QM level, especially when sampling at very high temperatures, bonds

and angles oscillate anharmonically. This phenomenon may impact the FF

reparameterisation owing to limitations of the GAFF functional form that, by

design, imposes harmonicity in these DOFs (see equation 4.25). The consequence

is that the optimisers tend to pull the angle force constants towards lower values

to generate wider potentials that better fit the sampled anharmonicities. This is

the response observed in Figure 6.6. Angles are particularly prone to straying

away from physical-sensible values, as they have the lowest force constants

of the hard DOFs. Consequently, they may suffer more from using data sets

containing configurations in the anharmonic regime.

Although the training data sets at 500 K did not lead to nonphysical bond

parameters, it is clear in Figure 6.6 that, for some molecules, they led to lower

average acceptance rates in comparison to the FFs derived using data sets at

300 K. Interestingly, the differences in acceptance rates, which initially became

apparent in the B or BA FF, were then somewhat propagated into the FFs for

which parameters of nonbonded terms were also optimised (BAT-LJ, BAT-Q,

and BAT-LJQ). Optimisation of nonbonded parameters either mitigated these

contrasts or worsened them owing to the presence of high-energy structures in

the high-temperature ensemble that were unimportant to the low-temperature

ensemble. Despite these observations, we still opted to use the high-temperature

data sets for most of the reparameterisations in this study, as they ensured a

thorough exploration of the conformational space of the molecules being studied.

Ideally, one would employ enhanced-sampling methods to have the best of both

ensembles: the extensive conformational sampling of the high-temperature data

set, and the harmonic behaviour of the low-temperature data set.
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Figure 6.7: Comparison between the nMC-MC acceptance rates obtained for
FFs reparameterised using data sets containing structure sampled at either 300
or 500 K. The FFs used to calculate the acceptance rates were derived employing
uniform weighting without regularisation. The error bars correspond to the
standard deviation of the results of 4 different nMC-MC samplers. Each sampler
performed a total of 2× 105 nMC-MC sweeps.

Overall, FF reparameterisation proves to be an efficient strategy to increase the

acceptance rate of the switching step from the MM to the QM level of theory. It

permits accelerating convergence of the sampling of the target QM configura-

tional distribution, otherwise impractical owing to very low acceptance rates.

The best acceptance rates were obtained for aniline (ca. 65%), whereas the

molecule with the lowest acceptance rate was the fragment of cpd 26. This is

expected given that the latter is the largest and most complex molecule of the

test set. We expect that both molecular size and chemical complexity have an

impact on the acceptance rates: the former because small differences between

the MM and QM Hamiltonians accumulate as the number of DOFs increases;

the latter due to the challenge that some functional groups pose to the func-

tional form of the GAFF. Furthermore, uniform-weighted FFs, especially without

regularisation, are to be avoided. They are prone to generate nonphysical pa-

rameters to obtain the best possible fit. On the other hand, L2-regularised and
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non-Boltzmann-weighted FFs tend to perform the best and usually exhibit stable

behaviour. Hard DOFs, such as bonds and angles, are crucial to be reparame-

terised to increase the acceptance rates. As hard DOFs have large force constants,

small differences in their values lead to large changes in energy. Consequently,

poor parameters for the hard DOFs may considerably impact the switching

efficiency from the MM to the QM chain.

6.3.2 NH2 inversion in aniline

As a first example of how nMC-MC allows recovery of the exact quantum con-

figurational distribution using an approximate FF, let us consider the inversion

of the NH2 group in aniline. It is well established, both experimentally331,332

and theoretically,333,334 that the primary amine of aniline has a pyramidal ge-

ometry and that interconversion between two equally stable conformations

occurs through nitrogen inversion. Nevertheless, although simple, this is a

clear instance of a functional group for which GAFF fails to predict the correct

conformational dynamics.

Through the analysis of the configurational distributions represented in Figure

6.8, it can be seen that GAFF generated NVT configurational distributions at

300 K that differ substantially from those generated by SCC-DFTB-D3. Specif-

ically, GAFF (lower panel) predicted that the NH2 group assumes a trigonal

planar geometry, hence failing to reproduce the interconversion between the

two local minima. On the other hand, SCC-DFTB-D3 (top panel) predicted the

expected conformational behaviour. Furthermore, the reparameterised BAT FF

distribution was much closer to the SCC-DFTB-D3 distribution than the original

GAFF, and the nMC-MC distribution successfully reproduced the SCC-DFTB-D3

distribution when sampling was performed using the BAT FF. The agreement

obtained is excellent, as there is negligible loss of accuracy.

The fast recovery of the target SCC-DFTB-D3 distribution through the nMC-MC

algorithm was only possible due to the increased acceptance rates that were
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achieved after reparameterisation of the original FF. GAFF gave acceptance rates

of ca. 12-13%. Even though these acceptance rates are high in comparison with

other test cases, they are still much lower than the acceptance rates of ca. 49-50%

that were obtained for the non-Boltzmann-weighted L2-regularised BAT FF. This

high acceptance rate enabled recovery of the target SCC-DFTB-D3 in only 2× 105

nMC-MC sweeps (hMC runs of 100 steps with a 1 fs time step). No attempt was

made to optimise the length of these calculations, as our main goal was to prove

the implementation and principles of the methodology and not to optimise the

protocol in itself.

Figure 6.8: Top panel: Distribution of the C2-H3-N1-H4 improper dihedral
of aniline as obtained in the SCC-DFTB-D3 MD and nMC-MC simulations.
Lower panel: Distribution of the C2-H3-N1-H4 improper dihedral of aniline as
obtained in MD simulations using the original GAFF and the non-Boltzmann-
weighted L2-regularised BAT FF. The SCC-DFTB-D3, GAFF, and BAT MD
calculations were performed during 10 ns (snapshots collected every 1 ps), and
the nMC-MC sampler performed a total of 2× 105 MC sweeps. The temperature
of the simulations was 300 K.
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6.3.3 Fragment of cpd 26

Let us now discuss the results obtained when applying the nMC-MC algorithm

to the fragment of cpd 26 shown in Figure 6.2. Cpd 26 is a nonpeptidic, orally

bioavailable, and efficacious low nM antagonist of the inhibitor of apoptosis

proteins cIAP1 and XIAP.15 Therefore, this test case aims to mimic the application

of the presented methods to a recently designed and relevant druglike molecule.

By analysing the SCC-DFTB-D3 configurational distribution represented in Fig-

ure 6.9, we were able to identify 8 conformations for this molecule. Their molec-

ular structures, which map to the red stars in the plot, are represented in Figure

6.10. These conformations essentially arise from the different relative positions

that the phenyl group can assume relative to the azaindoline ring. This confor-

mational dynamics is in line with what has been observed experimentally.15

Surprisingly, although GAFF gave very low nMC-MC acceptance rates (close

to 1%) and predicted incorrect relative abundances, it still fairly described the

global features of the configurational distribution. The BAT (L2-regularised, non-

Boltzmann-weighted) optimisation of GAFF led to a much closer distribution to

the target SCC-DFTB-D3, demonstrating the quality of this FF. This observation

is further supported by the increase in acceptance rate to 23-24%. Finally, as

expected, the nMC-MC flawlessly reproduced the SCC-DFTB-D3 when using

the BAT FF (L2-regularised, non-Boltzmann-weighted) in the low-level Markov

chain, allowing recovery of the target distribution in 3× 106 nMC-MC sweeps

(hMC runs of 250 steps with a 1 fs time step). To accelerate sampling in the MM

chain, a temperature of 400 K was used for the TK and TU values entering in

equation (6.1), while the temperature of the target QM NVT ensemble was kept

at 300 K.
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Figure 6.9: Configurational distributions of the C5-C4-C1-C3 vs. C6-C5-C4-C1
dihedrals for the fragment of cpd 26. The SCC-DFTB-D3 MD was simulated
during 10 ns (snapshots collected every 1 ps), and the GAFF and BAT MD were
simulated during 1 µs (snapshots collected every 100 ps). The nMC-MC sampler
performed a total of 3× 106 MC sweeps. The temperature of the simulations
was 300 K. The conformations identified on the top left plot are shown in Figure
6.10.

Despite the success of the results obtained when applying the nMC-MC algo-

rithm to the fragment of cpd 26, the main pitfall of this methodology became

apparent in this test case. As mentioned before, the larger and more complex

the molecule, the more difficult it is to reparameterise to the QM level of theory

owing to accumulations of errors that are unavoidable and usually related to FF

functional form constraints. There are two possible solutions to this bottleneck if

a two-chain nMC-MC algorithm is to be kept. The simpler approach consists of

artificially broadening the MM distribution by manipulating the thermodynamic
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variables of the MM chain. This would involve, e.g., increasing the temperature

of the MM chain such that its energy distribution becomes wider and overlaps to

a greater extent with the QM energy distribution. This strategy was successfully

applied in past studies,306,307 though success is not guaranteed if the mismatch

between the energy distributions is too large. On the other hand, a more complex

but perhaps more reliable method involves developing and employing more

accurate low-level models. In this regard, there are different classes of FFs of

increasing complexity that can be applied and are still computationally cheap

in comparison with the QM calculations. ML potentials are also an attractive

option, especially owing to their blindness to functional forms, which make

them potentially more accurate than MM FFs.335,336 Nevertheless, in principle,

in an nMC-MC context ML potentials would have to be used alongside a high-

level of theory similar to that they were trained to reproduce. It is also possible

to use intermediate levels of theory to bridge the gap between the low-level

and high-level models. Unfortunately, this solution becomes computationally

expensive, especially if hybrid energy models such as λiUMM + (1− λi)UQM,

where λi controls the weight of each energy component in the i-th chain, are

used, as they still require high-level calculations to be performed.
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Figure 6.10: Main conformations of the fragment of cpd 26 identified in Figure
6.9.

6.3.4 Analysis of the phase space overlap

To verify the variations in the acceptance rates observed when systematically

reparameterising the FFs, let us now turn our discussion to the evaluation of the
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phase space overlap between the ensembles generated using the MM FFs and

the SCC-DFTB-D3 level of theory. In the following results, all the testing data

sets contained 10000 configurations sampled from MM and QM MD simulations.

These were performed with the same settings applied when generating the

training data sets, except for the temperature, which was set to 300 K to make the

results directly comparable to the nMC-MC acceptance rates. Note that phase

space is here employed as a synonym of configuration space as we only consider

situations that compare total energy distributions at the same temperature, thus

making the momentum coordinates irrelevant (see proof in the Appendix B,

Section B.1). Owing to this, even though these metrics were initially presented

as depending on the total energy, in practical terms only the potential energy

was used in their calculation.

The most direct and robust metric to measure the phase space overlap between

ensembles obtained using different levels of theory is given by equation (6.19).

In the context of this study, it required performing MD simulations with the MM

and QM Hamiltonians and, subsequently, evaluating the energies of each en-

semble at both the MM and QM levels of theory. The potential energy difference

between the QM and MM levels for structures sampled using SCC-DFTB-D3,

∆UQM→MM
QM = UMM

QM − UQM
QM , and minus the potential energy difference be-

tween the MM FF and the QM level of theory for structures sampled using

the FF, −∆UMM→QM
MM = −

(
UQM

MM −UMM
MM

)
, were then calculated, and the corre-

sponding histograms determined. The resulting probability distributions were

translated along the ∆U axis so that ∆U = 0 was the midpoint between the

two distribution means. Each histogram was fitted to a Gaussian function, and

the overlap obtained between the Gaussians was evaluated numerically and

used as an estimation of the phase space overlap. Any structure for which the

absolute difference of its energy relative to the average energy of the respective

distribution was larger than 100 kJ mol-1, i.e. |U − 〈U〉 | > 100, was removed

from the data set.



6.3. Results and discussion 169

Figure 6.11: Energy difference histograms of MM→QM and QM→MM for ani-
line (left) and the fragment of cpd 26 (right). The distributions were translated
along the ∆U axis so that ∆U = 0 was the midpoint between the means of the
two distributions.

The energy difference histograms and phase space overlaps for the two molecules

in which we have primarily focused our discussion thus far, viz., aniline and

the fragment of cpd 26, are shown in Figure 6.11 (non-Boltzmann weighting,

L2 regularisation). In these plots, it can be seen that the energy difference

distributions are well approximated by Gaussian functions, and that the phase

space overlap increased from the B FF to the BAT-LJQ FF, as observed in the

acceptance rates of Figure 6.3.

Using the nMC-MC switching step acceptance rate as a metric of the similarity

between the MM and QM levels of theory necessarily requires establishing a

strong correlation between the acceptance rates of equation (6.9), θ, and the

phase space overlap of equation (6.19), Ω. To assess the degree of correlation

between both measurements, we computed the linear regressions of four sets of

data: uniform-weighted data, non-Boltzmann-weighted data, non-Boltzmann-

weighted L2-regularised data, and all data. From the results shown in Figure

6.12, it is clear that there is a high degree of correlation between θ and Ω. Al-

though these linear fittings are only an approximation of the true correlation

between both measurements, we consider that the observed correlations are
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close enough to linear behaviour to be considered as so. Owing to this, a direct

comparison between R2 of different fittings is avoided. Nevertheless, for the

uniform-weighted data set, there is an outlier located at (θ ≈ 0.20, Ω ≈ 0),

for which the nMC-MC acceptance rate was significant, but the phase space

overlap was estimated to be practically 0. A close inspection revealed that this

data point corresponds to the BAT-Q uniform-weighted L2-regularised FF of

acetanilide. This observation is in line with the results obtained in Chapter 5,

which reports situations in which reparameterisation of charges using uniform

weighting also led to a decrease in the FF quality.248 Interestingly, the nMC-MC

algorithm still allowed high acceptance rates to be obtained for problematic FFs

with nonphysical parameters if the hMC runs were short enough to prevent the

molecules from converting to the spuriously stable, nonphysical geometries in

which they got trapped in regular MD simulations. Overall, the results show

that the nMC-MC acceptance rate is a robust metric of the phase space overlap.

Therefore, it can be employed to evaluate the similarity between the levels of

theory used in the low- and high-level chains of the nMC-MC algorithm
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Figure 6.12: Correlation between the nMC-MC acceptance rate, θ, as given by
equation (6.9), and the phase space overlap, Ω, as given by equation (6.19),
for 4 different data sets: all data (top left), not-regularised data (top right),
L2-regularised data (lower left), and non-Boltzmann-weighted L2-regularised
data (lower right). The GAFF data points are included in the ”all data” data set.

Before analysing the results obtained for the Wu and Kofke metrics given by

equations (6.20) and (6.21), it is useful to explain their physical meaning. Since

these metrics are a measure of the offset of an energy distribution with respect to

another, they provide insights into how much the MM-sampled phase space lies

inside the QM-sampled phase space. Firstly, it is important to notice that when

0 ≤ ΣQM,MM < 1, the probability distribution of the MM energies observed

for a simulation performed using the QM Hamiltonian, ρMM
QM , is centred right

relative to the probability distribution of the MM energies observed for a simu-

lation performed using the MM FF, ρMM
MM. This means that the QM high-energy
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structures that lay above ρMM
MM are unimportant to the MM FF or that the MM

FF low-energy structures that lay below ρMM
QM are undersampled by the QM

Hamiltonian. On the other hand, when 1 < ΣQM,MM ≤ 2, the probability distri-

bution of the MM energies calculated for a simulation performed using the QM

Hamiltonian, ρMM
QM , is centred left relative to the probability distribution of the

MM energies calculated for a simulation performed using the MM FF, ρMM
MM. This

means that the QM Hamiltonian preferentially accesses a small set of structures

that are either not sampled by the MM FF or, if energetically favourable, are

entropically disfavoured, or that the MM FF samples high-energy structures that

are unimportant to the QM Hamiltonian. Identical reasoning can be applied to

ΣMM,QM.
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Figure 6.13: Violin plots showing the distribution of the Wu and Kofke overlap
metrics between the MM and QM levels of theory, as given by equations (6.20)
and (6.21), for all molecules represented in Figure 6.2. The solid lines indicate
the mean and the extrema of the distribution for each type of reparameterised FF,
and the dashed lines connect their mean values. Four data sets are represented:
non-Boltzmann-weighted not-regularised data (top left), uniform-weighted
not-regularised data (top right), non-Boltzmann-weighted L2-regularised data
(lower left), and uniform-weighted L2-regularised data (lower right).

From the results presented in Figure 6.13, which shows the average behaviour

of ΣQM,MM and ΣMM,QM for all molecules in the test set, it can be seen that for

the non-Boltzmann-weighted FFs, ΣQM,MM starts with a value close to 0.4 (B FF),

likely meaning that the energy of high-energy QM structures was overestimated

in the MM FF or that the MM FF sampled spurious minima. Nevertheless, this

mismatch progressively diminishes with systematic reparameterisation, since
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ΣQM,MM gets closer to 1, showing how well the most refined MM FFs predicted

the energy of structures generated through an MD performed using the QM

Hamiltonian. A similar trend is observed for ΣMM,QM, though this quantity

reaches a plateau at ΣMM,QM ≈ 0.8 for the most refined FFs (BAT, BAT-LJ, BAT-

Q, and BAT-LJQ). This combination of ΣQM,MM and ΣMM,QM values indicates

that systematic reparameterisation of the FFs turned an overlap relation into a

subset relation between the phase space distributions explored by the MM and

QM levels of theory, supporting the idea that the MM distributions of the most

refined FFs were somewhat broader than their QM counterparts since the former

sampled high-energy structures that were unimportant to the QM FF.

An identical interpretation follows for the plots concerning the uniform-weighted

FFs. Worthy of note are the BAT-LJ and BAT-LJQ FFs, for which 1 < ΣQM,MM ≤ 2

and 0 ≤ ΣMM,QM < 1. This is a case of special concern because it means that

these FFs either sampled spurious high-energy structures or undersampled the

QM minima. Finally, even though not observed in this study, 0 ≤ ΣQM,MM < 1

and 1 < ΣMM,QM ≤ 2 is a hugely undesirable case, as it indicates that an FF

either sampled spurious minima or overstabilised the QM minima, situations

that can potentially lead to trapping of MD simulations in overstabilised basins.

Likewise, the case in which 1 < ΣQM,MM ≤ 2 and 1 < ΣMM,QM ≤ 2 is also of

concern, as it suggests that an FF not only undersampled the true QM minima

but also sampled other spurious minimina.

6.3.5 Self-parameterising nMC-MC

As proof of principle, we tested the self-parameterising methodology that it-

eratively couples the nMC-MC algorithm with a parameterisation step. This

algorithm allows on-the-fly derivation of optimally tuned FFs owing to its ca-

pability of performing sampling of relevant configurations and subsequent

optimisation of the FF parameters, all in one scheme. Specifically, we used the

nMC-MC algorithm to sample QM configurations in such a way that a configu-

ration belonging to the QM ensemble was added to the FF training data set for
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every 5 configurations accepted into this QM ensemble. Configurations belong-

ing to the MM ensemble or rejected configurations of any kind were discarded

for reparameterisation purposes. Despite this choice, in some situations they can

be informative for the optimisations and, inclusively, accelerate the convergence

of the self-parameterising procedure.312 Furthermore, every time 500 new QM

structures were added to the existing training data set, a new reparameterisation

of the FF parameters was performed using the total training data. The tempera-

ture used for the Markov chains and the Maxwell-Boltzmann distribution was

300 K. The self-parameterising nMC-MC procedure was deemed to be converged

when the RMSD of the FF parameters between two successive iterations was

less than 10−4.

The molecule used in this application was octahydrotetracene (see molecu-

lar structure in Figure 6.14). This choice relied on the fact that this scaffold

was previously identified as a challenging case for FFs, which struggle in re-

producing its QM energies.330 All bonded parameters were optimised in ev-

ery optimisation, such that the vector of optimisable parameters was given by

p =
(
Kb, req, Kθ, θeq, Vn, γn

)
. The total number of optimisable parameters was

72. Using the nomenclature of the previous examples, this corresponded to

generating a BAT-type FF. The objective function included energy, force, and

regularisation terms, as given by equations (5.3), (5.5), and (5.13), respectively.

Uniform weighting was applied to weight the conformations. In contrast to the

previous applications, AMBER atom-type symmetries were preserved, and the

prior widths used in the regularisation were estimated from the arithmetic mean

for each class of parameters, a feature included in ParaMol.

The results obtained for the self-parameterising nMC-MC calculation of octahy-

drotetracene are shown in Figure 6.14, in which we see that the acceptance rate

increased smoothly and monotonically, progressively stabilising as the nMC-MC

sweeps increased. The behaviour of the RMSD plot is somewhat more irregular,

with sudden jumps that are explained by the necessity of the optimisation to

adapt the parameters to a new set of configurations. Although this was not

problematic in this example, in other applications large variations of the RMSD
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may lead to a premature ending of the self-parameterising procedure, which is

something that may be resolved by employing tighter thresholds. The algorithm

took in total 11 iterations to converge, resulting in a final training data set of 5500

QM structures. The convergence of the procedure is confirmed by analysing the

components of the objective function as a function of the iteration number (see

Appendix B, Figure B.1).

Finally, to test the quality of the derived FF, we generated a BAT-type FF using a

training data set containing a total of 10000 QM structures. This FF was derived

following the same philosophy applied in the previous examples: firstly, we

built the training data set using Langevin dynamics at a temperature of 300

K; afterwards, we optimised the FF. By comparing the blue and green lines of

the top panel of Figure 6.14, we conclude that both approaches led to identical

acceptance rates of ca. 15-16%, strongly indicating the robustness of the self-

parameterising nMC-MC procedure. Overall, this self-parameterising algorithm

is quite appealing since, by combining sampling and parameterisation in one

scheme, it does not require a priori generation of a training data set of unknown

size, therefore limiting the computational work to what is strictly necessary.
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Figure 6.14: Top panel: Acceptance rates of the self-parameterising nMC-MC
procedure as a function of the nMC-MC sweep for octahydrotetracene. The
nMC-MC acceptance rate and standard deviation of the FF derived following
the same philosophy applied for the test cases of Figure 6.2 are also shown.
The background shading indicates different iterations of the procedure. Bottom
panel: Plot of the RMSD of the FF parameters (left axis) and of the total number
of structures in the training data set (right axis) as a function of the nMC-MC
sweep.
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6.3.6 nMC-MC sampling into a QM/MM Hamiltonian

Figure 6.15: Left: Snapshot of the nMC-MC simulation of aniline in water.
Right: Comparison of the hMC and switching step acceptance rates obtained
for aniline in the gas phase and aqueous solution.

As a final application, we immersed the aniline molecule in a TIP3P water

box (the total system had 5327 atoms) and equilibrated the system in the NPT

ensemble for 1 ns at 300 K using the Langevin integrator337 (time step of 1 fs

and friction coefficient of 2 ps-1). The pressure of the system was maintained at 1

bar using the Monte Carlo barostat135,338 implemented in OpenMM. Periodic

boundary conditions were applied and long-range electrostatics were handled

by the PME method.221,224 The cutoff applied to all nonbonded interactions was

12 Å. The final configuration of the equilibration run, which had a box size of

37.38× 37.26× 38.55 Å3, was subsequently used as the starting point for a set of

4 NVT nMC-MC simulations in which the MM system was used in the low-level

chain and a QM/MM model was employed in the high-level chain. The MM

model used for aniline was the previously derived non-Boltzmann-weighted

L2-regularised BAT FF.

In a system composed of a ligand in solution, the energy of the total MM system

is given by

UMM(qs, ql, qs−l) = UMM
sol (qs) + UMM

lig (ql) + UMM
lig−sol(q

s−l) (6.22)
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where UMM
sol is the energy of the solvent (TIP3P waters), UMM

lig the energy of the

ligand (aniline), UMM
lig−sol is the ligand-solvent (aniline-TIP3P waters) interaction

energy, and qs, ql and qs−l are the DOFs of the solvent, ligand, and the interac-

tion between them. The QM/MM energy of a system in which only the ligand is

included in the QM region and there are no covalent bonds between the ligand

and solvent reads339,340

UQM/MM(qs, ql, qs−l) = UMM
sol (qs) + UQM

lig (ql) + UMM
lig−sol(q

s−l) (6.23)

where the only difference with respect to equation (6.22) is that now the potential

energy of the ligand, Ulig, is calculated at the QM level. Note that the interaction

between the MM and QM regions, UMM
lig−sol, is still calculated at the MM level.

For the present test case, the point charges used to calculate this interaction term

did not change during the simulation in the QM/MM Hamiltonian of equation

(6.23). This corresponds to a mechanical embedding model with fixed-point

charges in the QM region.341 Consequently, by combining equations (6.22) and

(6.23) we obtain that the ∆∆U term that has to be introduced in the nMC-MC

acceptance rate of equation (6.9) is given by

∆∆U(qi, q f ) =
[
UQM/MM(q f )−UMM(q f )

]
−
[
UQM/MM(qi)−UMM(qi)

]
=
[
UQM

lig (ql
f )−UMM

lig (ql
f )
]
−
[
UQM

lig (ql
i)−UMM

lig (ql
i)
]

(6.24)

from which we conclude that the switching step from the MM to the QM/MM

Hamiltonian only requires the calculation of the energies of the ligand at the

MM and QM levels. Equation (6.24) was employed in this test case to sample

the QM/MM distribution of aniline in a box of TIP3P waters.

The acceptance rates obtained are shown in Figure 6.15. As expected, the hMC ac-

ceptance rate decreased when going from the gas phase to water solvent because
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of the increase in system size. There was also a small but significant decrease

of ca. 4% in the switching step acceptance rate. The successful application of

the gas-phase-derived BAT FF is attributed to the fact that the conformational

preferences of aniline in aqueous solution (see Figure 6.16) were well captured

by the nonbonded interactions. If this were not the case, a possible solution

would involve reparameterising GAFF using a training data set consisting of

conformations extracted from explicit solution simulations.
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Figure 6.16: Comparison of the nMC-MC-sampled configurational distributions
of aniline in the gas phase and in aqueous solution.

In this application example, we used a fixed set of charges for the QM re-

gion, which not only simplified the acceptance rate equation but also increased

the similarity between the MM and the QM/MM models. Nevertheless, in

QM/MM calculations, it is common to consider a QM region with varying

partial charges, usually derived using a least-squares fitting to the QM electro-

static potential.211,255,256 Although ParaMol provides the tools to parameterise

nonbonded parameters in solution, from our experience, even in a mechanical

embedding context, in which the electrostatic coupling between the MM and
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QM regions is calculated at the MM level, a ligand with a varying set of MM

partial charges is already a challenging system for the nMC-MC algorithm, as

the term UMM′
lig−sol(q

s−l)−UMM
lig−sol(q

s−l), where MM’ is the FF with on-the-fly

fitted charges and MM is the FF with original charges, does not vanish as it

does in equation (6.24). Unfortunately, since energy is an extensive property, the

larger the simulation box, the larger the mismatch between the QM/MM and

MM levels of theory. Therefore, this QM/MM framework commonly leads to

large energy differences in the ligand-solvent interaction energy, which make

the nMC-MC algorithm unviable for all but the simplest cases.

It is also important to stress that, besides conformational changes, there are

important nonadditive electrostatic effects that cannot be properly described by

using a single set of charges. For example, the electrostatic embedding scheme,

in which the electrostatic contribution from the MM subsystem is included in

the QM Hamiltonian, poses additional difficulties that worsen the mismatch

between the MM and QM representations of the ligand due to polarisation

by the solvent. Hence, owing to the dynamic nature of the electrostatic cloud,

these are typical applications for which fixed point-charges FFs are unsuitable.

FF models that include descriptions of polarisation and hyperconjugation may

prove useful for these applications, such as, e.g., AMOEBA,201,202 polarisable

CHARMM203,204 or fluc-q.205–207 The ”electron spill-out” problem342,343 is also a

well-known pitfall of the electrostatic embedding scheme that may artificially

distort the electron density of the QM region, thus increasing the mismatch

between the energy of the QM/MM and MM models. So far, our research has

set the mechanical-embedding fixed-point charge QM/MM model used above

as the limiting case for successful sampling using the nMC-MC algorithm. In

general, further complexity of the high-level models seems to be unsuitable to

be reproduced by simple fixed point-charge FFs.
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6.4 Conclusions

In this chapter, we have presented a multilevel procedure that allows estimation

of quantum configurational ensembles while keeping the computational cost at

a minimum. This work is of paramount importance for conformational analysis

because it combines the feasibility of computationally cheap methods, such as

MM FFs, with the accuracy of the more expensive QM level. The algorithms

presented are implemented and made available in the ParaMol, free software

that aims to ease the process of parameterisation of MM FFs.4 The code can be

found at https://github.com/JMorado/ParaMol, and examples of how to use

it are available through ParaMol’s website, https://paramol.readthedocs.io.

The presented methodology involves coupling the hMC algorithm with a switch-

ing step between two Markov chains, the latter as formalized by Gelb. In the

context of this work, the low-level Markov chain corresponded to a GAFF-

like MM FF in which sampling of configurations was performed, whereas the

high-level Markov chain was the SCC-DFTB-D3 level of theory to which confor-

mations were periodically attempted to be sampled. Owing to the low energetics

similarity between GAFF and SCC-DFTB-D3, a straightforward application of

the methodology led to very slow convergence of the target configurational

distributions due to low acceptance rates. Therefore, we resorted to FF reparam-

eterisation as a means of ensuring sufficient overlap between the MM and QM

levels of theory. We demonstrated this to be a successful strategy of generating

more QM-like FFs and, consequently, increasing the nMC-MC switching step

acceptance rates, thus accelerating the convergence of the sampling of the target

quantum configurational distribution.

Overall, systematic reparameterisation of FFs proved to be an efficient strat-

egy to increase the acceptance rates of the switching step from the MM to the

QM level of theory. The best acceptance rates were obtained for aniline (ca.

65%), whereas the molecule with the lowest possible acceptance rate was the

fragment of cpd 26. This is expected since both molecular size and chemical

complexity have an impact on the acceptance rates. Moreover, we determined

https://github.com/JMorado/ParaMol
https://paramol.readthedocs.io


6.4. Conclusions 183

that the optimal reparameterisation recipe involves employing non-Boltzmann

weighting alongside L2 regularisation. Uniform-weighted FFs, especially with-

out regularisation, are to be avoided as they easily sacrifice physicality in the

FF parameters to obtain the best possible fit. These observations are in line with

the conclusions of the study presented in Chapter 5. The systematic parameteri-

sation also showed that hard DOFs, such as bonds and angles, are crucial to be

reparameterised to increase the acceptance rates, mainly due to their large force

constants. Reparameterisation of charges with the uniform weighting scheme

seems to be deleterious to the quality of the FFs. The acceptance rates data were

supported by information obtained from various phase space overlap metrics.

These metrics revealed further insights into the features of the weighting meth-

ods, leading us to suggest the switching step acceptance rates as a robust metric

of phase space overlap.

We also presented a self-parameterising algorithm that combines sampling and

FF parameterisation in one scheme. This method does not require a priori gen-

eration of a training data set of unknown size, thus limiting the computational

work to the strictly necessary. We illustrated its modus operandi and showed that

it gives identical results to the standard approach.

Finally, we also applied the nMC-MC algorithm to generate the QM/MM dis-

tribution of a ligand in aqueous solution. We proved that within a fixed-point

charge mechanical embedding framework, the nMC-MC algorithm is a viable

methodology that permits recovery of the target QM/MM configurational en-

semble. This application example also provided useful guidelines for future

research efforts because it illustrates the limitations of using a GAFF-like MM

FF as the low-level model. Since this FF has fixed-point charges, it appears

to be generally unsuitable for application in contexts involving varying solute

charges, which may occur either due to conformational changes or polarisation

originating from electrostatic embedding. A possible solution for this bottleneck

may involve resorting to polarisable FFs or machine-learning models.
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The next chapter attempts to answer the question: ”does a machine-learnt po-

tential perform better than an optimally tuned traditional force field?”. Having

developed a method to parameterise druglike molecules in Chapter 5, and an al-

gorithm to generate quantum configurational ensembles at a low computational

cost in this chapter, we apply these techniques to derive optimally tuned FFs,

which are tested against an ML potential. We then evaluate the performance of a

standard FF, an optimally tuned FF, and an ML potential in the modelling of a set

of γ-fluorohydrins. We assess the performance of each model by comparing its

predictions to those obtained from QM methods and experiments. The current

strengths and shortcomings of each model are analysed, from which guidelines

for improvement are drawn.
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Chapter 7

Does a Machine-Learnt Potential

Perform Better Than an Optimally

Tuned Traditional Force Field? A

Case Study on Fluorohydrins

In this chapter, we present a comparative study that evaluates the performance

of a ML potential (ANI-2x), a conventional FF (GAFF), and an optimally tuned

GAFF-like FF in the modelling of a set of 10 γ-fluorohydrins that exhibit a com-

plex interplay between intra- and intermolecular interactions in determining

conformer stability. To benchmark the performance of each molecular model, we

evaluated their energetic, geometric, and sampling accuracy relative to QM data.

This benchmark involved conformational analysis both in the gas phase and

chloroform solution. We also assessed the performance of the aforementioned

molecular models in estimating nuclear spin-spin coupling constants by compar-

ing their predictions to experimental data available in chloroform. The results

and discussion presented in this study highlight the strengths and weaknesses

of each model, providing guidelines for future development of force fields and

machine learning potentials.
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7.1 Introduction

Over the years, many methods have been developed to describe the potential

energy of small organic molecules. Researchers have been attempting to find a

compromise between accuracy and computational cost, and a balance between

the time scale that simulations can achieve and the size of the systems being

simulated. Despite many efforts and advances towards this equilibrium, in gen-

eral there is still a positive correlation between computational cost and accuracy,

and these two properties are often negatively correlated with system size and

simulation time scale. The gold-standard method in ligand modelling remains

to be quantum mechanics. QM methods approximate the Schrödinger equa-

tion using wavefunction-based methods or DFT. From the wavefunction-based

methods, the coupled-cluster methods45,344 are thus far the most accurate for

quantum chemistry applications. Unfortunately, owing to the high computa-

tional cost of QM methods, their use in ab initio simulations is limited to all

but the simplest systems, despite recent advances that attempt to combine the

sampling efficiency of cheap, approximate potentials with the accuracy of the

quantum level.285,298–300,345 A less computational demanding and widely used

alternative are the MM FFs. FFs resort to classical, empirical functions to describe

the potential energy of systems. The popularity of FFs resides in their ability

to simulate systems containing thousands of atoms on time scales that can go

up to the millisecond.204,346 The main drawback of FFs comes from the same

feature that confers them their strength: the simplicity of their functional form,

while computationally attractive, is often unsuited to model complex chemistry

and challenging chemical interactions, a constraint that is further aggravated

by the requirement of a sometimes unknown set of FF parameters. Although

FF parameters are usually available for many classes of molecules at a satisfac-

tory degree of accuracy, novel chemical entities, of which ligands are a striking

example, frequently demand derivation of new FF parameters.4,229,330,347 FF

parameterisation, however, is neither trivial nor straightforward in many appli-

cations. Recently, neural network potentials (NNP) have emerged as a promising
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ML alternative to FFs.348–350 NNPs learn the QM energy of an atom in its sur-

rounding chemical environment, requiring neither a FF functional form nor FF

parameters to work. For these reasons, NNPs are generally readily transferable

to classes of compounds similar to those included in the training data set. The

accuracy of NNPs when applied to chemical environments outside the train-

ing data set, however, is unpredictable and should be evaluated beforehand.

Furthermore, although NNPs computational cost is much smaller than that of

the QM methods (ca. 106 times), even with GPU-accelerated computing they

are still considerably more (up to 100 times) computationally expensive than

conventional FFs, limiting the size of the systems that can be simulated and the

simulation time scales that can be achieved.

In this chapter, we evaluate the accuracy of an NNP, a conventional class I FF, and

an optimally tuned FF in the modelling of a set of 10 γ-fluorohydrins (Figure 7.1).

In 2015, Linclau et al. used these molecules to demonstrate for the first time the

occurrence of OH-F intramolecular hydrogen bonds (IMHBs) in acyclic saturated

γ-fluorohydrins.351 This set of molecules exhibits a complex interplay between

intra- and intermolecular interactions in determining conformer stability, making

it an interesting test case to study. We benchmarked the performance of the

aforementioned molecular models both in the gas phase and chloroform solution

by comparing their predictions to both experimental (NMR J-coupling constants)

and theoretical data (energies and geometries).

The NNP we tested in this study was ANI-2x,352 a model from the ANI fam-

ily336,348,353–355 that has been trained to reproduce the ωb97X70/6-31G* level

of theory. Specifically, ANI-2x was derived using a data set comprising 8.9

million molecular conformations, and it includes active learning refinements to

torsional profiles, nonbonded interactions, and bulk water behaviour. This NNP

has already been successfully applied in binding free energy calculations,356

in the description of the torsional357,358 and bond potential energy surfaces,358

and integrated into fast FF parameterisation protocols as the reference level of

theory.359 Furthermore, as our traditional FF we used the GAFF,182 which is

commonly employed in the modelling of druglike molecules.360 Finally, our
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optimally tuned FF was an optimised version of the GAFF in which bonded

parameters were optimised to the same level of theory that ANI-2x was trained

to reproduce (ωb97X/6-31G*).

MD was used to sample the molecular conformations. Since the NNP was used

only to model the intramolecular interactions of the ligand, the simulations in

chloroform employed a model that embeds the NNP inside a conventional MM

FF. In this approach, the ligand intramolecular interactions are treated at the ML

level, whereas the ligand-solvent intermolecular interactions and solvent-solvent

interactions are treated using MM. This hybrid NNP/MM strategy excludes any

polarisation of the solute by the solvent and thus corresponds to a mechanical

embedding model341 with fixed-point charges in the ML region. It has already

been applied in past studies,356,357,361–363 being close in philosophy to that of

QM/MM models, but with the NNP in place of the QM method.

This chapter is structured as follows: we first describe the basic theory and

methods underlying the present study, viz., the ANI-2x NNP, the FF reparame-

terisation protocol, the hybrid NNP/MM model, the details regarding the MD

simulations, and the procedure used to calculate the populations of conform-

ers and the NMR J-coupling constants. We then present a thorough analysis

of the performance of the tested molecular models both in the gas phase and

chloroform solution and, finally, conclude with some final remarks and future

work.
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Figure 7.1: List of γ-fluorohydrins studied in this study.

7.2 Theory and methods

7.2.1 The ANI-2x neural network potential

NNPs are currently one of the most promising potentials to be used in place

of MM FFs to model the intramolecular interactions of ligands. There are cur-

rently two models of the ANI family that may be applied to a broad spectrum

of problems in chemical sciences. ANI-1ccx, which is trained to reproduce

CCSD(T*)/CBS, is the ANI NNP with the highest level of accuracy,357,361,362,364

although it can only simulate organic molecules containing elements H, C, N,

and O. ANI-2x, on the other hand, is trained to reproduce ωb97X/6-31G* and

has also shown promising results in various applications.356,357 ANI-2x has the

advantage of extending the chemical space covered by ANI-1ccx to organic

molecules also containing elements F, S, and Cl. Owing to this, ANI-2x covers a

chemical space that encompasses 90% of druglike molecules352 and is the only
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ANI model that can be employed to simulate the γ-fluorohydrins considered in

this study due to the presence of the fluorine atoms.

The ANI-2x training data set was composed of molecules obtained from dif-

ferent sources, viz., the GDB-11365,366 and ChEMBL367 databases, the s66x8

benchmark,368 as well as sulfur-containing amino acids and dipeptides ran-

domly generated using RDKit.277 In total, 8.9 million molecular conformations

were used. These geometries were sampled through active learning algorithms,

designed to sample the relevant chemical space, refine torsions and nonbonded

interactions, and improve bulk water behaviour. In these active learning proce-

dures, non-equilibrium conformations were generated using dimer sampling,

normal-mode sampling, ensembles of MD simulations, and ML-driven torsion

sampling.

ANI NNPs overcome the requirement of an analytical FF functional form and a

set of FF parameters by learning the QM energy of an atom i, Ui, in its surround-

ing chemical environment. The sum of the individual atomic energies yields the

total potential energy, U, of a given molecular species, i.e.

U(R) =
Na

∑
i

Ui(R) (7.1)

where Na is the number of atoms of the system, and R is a vector that maps a

molecule into a certain mathematical representation, ideally invariant to trans-

lation and rotation. In terms of performance, the most encouraging feature

of many ML models is that, once they have been trained, they can be applied

to a myriad of systems without demanding the calculation of additional QM

data. This yields the (near-)linear scaling attributed to the ANI methods, which

is bounded by the molecular featurisation method employed to generate the

descriptors that capture the atomic local environment.369 As can be noted from

equation (7.1), a molecular descriptor is the only input required by the NNPs to

output the atomic energy. There are various flavours of descriptors,369–371 such

as, e.g., Coulomb matrices,372–374 bag of bonds,375 bispectrum components,376
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or smooth overlap of atomic positions.377,378 Specifically, ANI-2x uses the same

atom-centred symmetry function as previous ANI models,348 viz., a form of

Behler and Parrinello-type descriptors379 with a modified symmetry function for

the angular part. Hence, for each ith atom of the molecule with atomic number

µ, an atomic environment vector, Gµ
i = {G1, G2, G3, ..., GM}, is generated, which

captures features of each atomic local environment in radial and angular terms.

The radial descriptors are given by

GR
m =

N

∑
i 6=j

exp
[
−η(Rij − Rs)

2
]

fc(Rij) (7.2)

in which Rij is the distance between atoms i and j, and the index m is over a set

of parameters η and Rs that change the width of the Gaussian distributions and

shift the centres of their peaks, respectively. Furthermore, fc is a piecewise cutoff

function that sets the local environment approximation and is given by

fc(Rij) =

0.5 cos
(

πRij
Rc

)
+ 0.5 for Rij ≤ Rc

0 for Rij > Rc

(7.3)

For the angular symmetry functions, ANI uses a modified version of the Behler

and Parrinello descriptor that reads

GA
m = 21−ξ

N

∑
i 6=j,k

[
1 + cos

(
θijk − θs

)]ξ exp

[
−η

(
Rij − Rik

2
− Rs

]2
)

fc(Rij) fc(Rik)

(7.4)

where θijk is the angle between atoms i, j and k, and ξ and θs serve similar

purposes as η and Rs. The local environment approximation of equation (7.3)

is thus imposed by using short cutoff values for the radial (4.6 Å) and angular

(3.1 Å) descriptors. These short values highlight the local, short-range nature

of the ANI models, which are unable to explicitly capture long-range effects.

In this regard, a recent study has shown that the poor long-range electrostatic
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description of ANI-2x has a deleterious effect on the prediction of water bulk

properties, such as, e.g., the internal pressure, even though this situation can be

artificially compensated through the use of high external pressure values.380

Finally, it is also worth mentioning that ANI-2x was trained to minimise the

following objective function

X(UANI , FANI) =
1

Ns

Ns

∑
i=1

[(
UANI

i −UDFT
i

)2
+

α

Na

Na

∑
j=1

(
FANI

ij − FDFT
ij

)2
]

(7.5)

which involves fitting of both forces (F) and potential energies (U). In equation

7.5, α = 0.1 is a constant used to balance the force and energy fitting terms

during the NNP training, and the sum over i runs over Ns systems with Na

atoms per system.

7.2.2 Force field reparameterisation

The conventional MM FF we used in this study was the GAFF,182 for which the

functional is given by equation (4.25). The GAFF partial charges were derived

using the multiconformational RESP method.211,255,256 The gas-phase QM ESPs

entering the RESP-fitting procedure were calculated at HF/6-31G*211 from gas-

phase geometries optimised at ωb97X/6-31G*. The conformations used in these

calculations were the major conformations found at the MP2/6-311++G(2d,p)

level for each γ-fluorohydrin, as reported in Ref. 351. Two stages were performed

in this charge-derivation process:211,381,382 first, all atoms were allowed to vary

their charges while applying hyperbolic regularisation with a scaling factor of

0.01; second, only the symmetry-equivalent H and F atoms were allowed to vary

their charges, and these charges were constrained to have the same value within

a given symmetry group (in this stage, the scaling factor used for the hyperbolic

regularisation was 0.001).
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The GAFF-like optimally tuned FFs, herein called GAFF.MOD, used the set of

RESP charges previously derived, but their bonded parameters were further opti-

mised to reproduce a training data set at ωb97X/6-31G*, the same level of theory

that ANI-2x aims to reproduce. This training data set was composed of structures

sampled from the DFT ensemble using the nMC-MC algorithm295,296,345 imple-

mented in ParaMol,4 interfaced with Psi4383 for the QM calculations. nMC-MC

combines sampling at an approximate potential with periodic switching attempts

to the QM level, enabling recovery of the exact quantum DFT ensemble.345 Ow-

ing to this feature, this method was used to generate high-quality structures

representative of our reference level of theory. For each γ-fluorohydrin, a vari-

able number of nMC-MC samplers were spawned, each starting from the major

conformers reported in Ref. 351 (the same conformers used to calculate the ESPs

for the RESP procedure). In total, each nMC-MC sampler performed 2.5× 104

sweeps, with hMC292 runs of 100 steps carried out using a 1 fs time step. To

accelerate sampling in the low-level chain (ANI-2x), a temperature of 350 K was

used for its kinetic and potential energy terms, while the temperature of the

target ωb97X/6-31G* NVT ensemble was 300 K. The collected nMC-MC data for

each molecule were then merged, and from these a training (1× 104 structures)

and testing (3× 104 structures) data sets were generated by randomly collecting

structures from the final DFT ensembles. The reparameterisation of GAFF was

finally conducted by concomitantly optimising all bond, angle, and dihedral

parameters (except the dihedral phases) in equation (4.25). Exceptionally for

molecule B, the dihedral phases also entered in the optimisation, as molecules

containing chiral centres sometimes require optimisation of the dihedral phases

to obtain a closer fit to the QM PES.259,260 Although some of the molecules repre-

sented in Figure 7.1 contain chiral centres, optimisation of their dihedral phases

only improved the GAFF.MOD performance for molecule B. For the remaining

molecules, optimisation of the dihedral phases led to decreased FF accuracy

or broke important molecular symmetries. The parameters optimisation was

attained by minimising the following objective function
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X(p) = XU(p) + Θ(p) (7.6)

where p is the vector of parameters entering the optimisation. Furthermore, XU

is given by equation (5.5) and amounts to the fitting of energies to reference

QM data, and Θ(p) is given by equation (5.13) and corresponds to an L2 reg-

ularisation term included to prevent overfitting. The values used for the prior

widths can be found in Table 5.1. Both the RESP-fitting and reparameterisation

procedures were performed in ParaMol.4

7.2.3 The hybrid neural network potential/molecular mechan-

ics model

To determine the conformational dynamics of the set of the γ-fluorohydrins

considered in this study, we performed MD simulations both in the gas phase

and chloroform solution. For the simulations in chloroform that described the

γ-fluorohydrins using FFs, the MM energy of the system reads

UMM(qs, ql, qs−l) = UMM
sol (qs) + UMM

lig (ql) + UMM
lig−sol(q

s−l) (7.7)

where UMM
sol is the energy of the solvent, which in this study were CHCl3

molecules described by the MM model by Caldwell et al.;384 UMM
lig corresponds

to the energy of the ligand (γ-fluorohydrin), herein described using either GAFF

or GAFF.MOD; UMM
lig−sol is the ligand-solvent (γ-fluorohydrin-CHCl3) interaction

energy, a term that depends on the LJ parameters of GAFF (the same as those

used by the traditional AMBER FF) and on the system partial charges; finally, qs,

ql and qs−l are the degrees of freedom of the solvent, ligand, and interactions

between them, respectively.

As an attempt to improve the accuracy of the pure MM model represented in

equation (7.7), several studies356,357,361–363 have been conducted in which a ML



7.2. Theory and methods 195

model was employed to represent the ligand term, UMM
lig (ql). Besides having the

advantage of avoiding the parameterisation of individual ligands, this hybrid

model has led, in general, to higher accuracy in simulations. Owing to the

similarity of this hybrid scheme to the QM/MM model, it has come to be known

as the NNP/MM model. The NNP/MM energy of a system in which only the

ligand is included in the ML region and there are no covalent bonds between

the ligand and the solvent reads

UNNP/MM(qs, ql, qs−l) = UMM
sol (qs) + UNNP

lig (ql) + UMM
lig−sol(q

s−l) (7.8)

Note that the only change in equation (7.8) relative to equation (7.7) is that the

intramolecular representation of the ligand (γ-fluorohydrin) is now made by

the ANI-2x NNP. Hence, since the ligand-solvent (γ-fluorohydrin-CHCl3) and

solvent-solvent (CHCl3-CHCl3) interactions are still treated at the MM level,

this hybrid model corresponds to a mechanical-embedding scheme341 in which

the partial charges of the ML region are kept fixed. As pointed out by Lahey et

al.,361 FFs are parameterised in an internally consistent manner. Consequently,

there is a chance that the MM parameters used to described the ligand-solvent

nonbonded interactions are not optimal for the NNP/MM potential. The degree

to which these non-optimal nonbonded parameters may cause an imbalance

between different parts of the model (in our case, between the MM ligand-solvent

intermolecular interactions and the NNP ligand intramolecular interactions) is

unknown a priori and must be investigated.

7.2.4 Molecular dynamics simulations

The gas-phase MD simulations were performed in the NVT ensemble using a

Langevin integrator with a temperature of 298.15 K and a friction coefficient

of 2 ps-1. These simulations ran for 100 ns with a time step of 1 fs. They were

performed in triplicate for GAFF and GAFF.MOD, whereas for ANI-2x only one

simulation per molecule was run for reasons of computational cost. For the
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simulations in chloroform, which used the same Langevin integrator settings

as the gas-phase simulations, the chloroform box was created by adding CHCl3

molecules around the γ-fluorohydrins for 20 Å in the positive and negative x,

y, and z directions. The solvated systems were then equilibrated in the NPT

ensemble during 1 ns using the MC barostat135,136 to fix the pressure at 1 bar. The

LJ cutoff was set at a distance of 12 Å with a switching distance of 10 Å. Long-

range electrostatic interactions were handled using the PME method.221,224 The

final NVT production runs were performed in duplicate (ANI-2x) or triplicate

(GAFF and GAFF.MOD) during 100 ns. Snapshots of the trajectories were

saved every picosecond. All MD simulations were run in OpenMM,385 and

those that used ML models used the openmm-ml plugin that can be found at

https://github.com/openmm/openmm-ml. The initial topology and coordinate

files used as inputs to OpenMM and ParaMol were generated using LEaP.386

7.2.5 Populations of conformers and spin-spin coupling con-

stants
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Figure 7.2: Dihedral angles used to identify the conformers of the γ-
fluorohydrins.

The terminology used to identify the conformers of the γ-fluorohydrins follows

that commonly employed to characterise the rotamers of protein side-chains.

Hence, the conformers arising from the rotation of the three threefold torsional

barriers identified in Figure 7.2 are labelled according to the following defini-

tions:351,387,388

• 0◦ ≤ χ, φ, ψ < 120◦ =⇒ g+

https://github.com/openmm/openmm-ml
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• 120◦ ≤ χ, φ, ψ < 240◦ =⇒ t

• −120◦ ≤ χ, φ, ψ < 0◦ =⇒ g-

Using these labelling rules, the populations of the conformers obtained from

MD simulations were estimated by clustering every individual frame of the final

trajectories into the respective conformer. For the monofluoroderivatives, the

conformers were identified by the sequence χφ(ψ); for the difluoroderivatives,

the conformers were identified by the sequences χφ1φ2(ψ) or χφ2φ1(ψ); and for

trifluoderivatives, the conformers were identified by the sequence χ(ψ). Further-

more, to have estimations of populations that are independent of the potential

models being tested and that can thus be used as reference values, we calculated

populations at various QM levels for the identified energetic minima of each

γ-fluorohydrin. To do this, geometry optimisations and frequency calculations

were carried out at the ωb97X/6-31G* and MP2/6-311++G(2d,p) levels of theory

using Gaussian 09389 interfaced with ASE.275 Whenever required, solvent ef-

fects (CHCl3) were introduced through the polarisable continuum model (PCM).

The Boltzmann populations of the conformers were then estimated from the

calculated relative standard Gibbs free energies in the harmonic approximation.

The J-coupling constants were computed from optimised geometries at the PCM-

ωB97X/6-311++G(2d,p) level of theory using the gauge-invariant atomic orbital

(GIAO) method.390–392 In these calculations, the hybrid B97-2 functional393 and

the pcJ-2 basis set,394 which exhibit good performance in the calculation of these

NMR parameters,351,395,396 were used. Again, solvent effects were included

through the PCM model. The calculated J-coupling constants were finally aver-

aged over all conformers, according to their relative populations in chloroform

at 298.15 K, using the following equation

Jν
λ =

Ncon f

∑
i

Pν
i Jλ,i (7.9)
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where λ identifies the J-coupling constants being considered, and ν refers to the

QM level or molecular model from which the populations are estimated.

7.3 Results and discussion

7.3.1 nMC-MC acceptance rates

We first present the results obtained in the nMC-MC simulations. The nMC-MC

simulations aimed at generating ensembles of configurations representative

of the ωb97X/6-31G* ensemble by using ANI-2x as the approximate potential.

The acceptance rates that the nMC-MC simulations produce give important

information about the ANI-2x performance in the gas phase.345 On the one

hand, the hMC acceptance rate measures the stability of the short MD runs

performed in the nMC-MC algorithm, and it is positively correlated with energy

conservation during the MD run. Since we obtained hMC acceptance rates

≥ 90% for all molecules in the test set (Figure 7.3), we conclude that ANI-

2x is a viable model to use in MD simulations. These high hMC acceptance

rates are comparable in magnitude to those we have obtained in the study

presented in Chapter 6 for molecules of similar size modelled using GAFF-like

FFs.345 On the other hand, the ANI-2x to DFT acceptance rate measures the

similarity between the ANI-2x potential and the ωb97X/6-31G* level of theory.

We obtained acceptance rates in the ANI-2x to DFT step > 60% (Figure 7.3).

Compared to the results of the previous study,345 these are very high acceptance

rates, indicating excellent agreement between ANI-2x and ωb97X/6-31G*.
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Figure 7.3: Acceptance rates obtained in the nMC-MC simulations for each
γ-fluorohydrin. Only the 3 samplers that gave the lowest acceptance rates were
included in the calculation of the mean and standard deviation of each bar.

7.3.2 Energetic and geometric agreement in the gas phase

Comparing the performance of different ligand models in the absence of exper-

imental data is not straightforward owing to the lack of an absolute reference.

FFs and ML potentials, however, are often fitted to reproduced gas-phase ener-

gies and geometries at specific QM levels of theory. This is the case for GAFF,

fitted to reproduce experimental, MP2/6-31G* (equilibrium bonds and angles)

and MP4/6-311G(d,p)//MP2/6-31G* (dihedral parameters) data,182 and for

GAFF.MOD and ANI-2x, fitted to reproduce ωb97X/6-31G* data.352 The natural

way of benchmarking the accuracy of molecular models in the gas phase is, there-

fore, to compare their performance to that of the QM level against which they

were fitted. Here, we present and discuss our gas-phase results by comparing

the performance of GAFF, GAFF.MOD, and ANI-2x to reference QM data.
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To assess the energetic agreement between the different molecular models and a

given QM reference, we calculated relative energy differences using the follow-

ing equation330

∆∆E =
(

EX − EX
0

)
−
(

EQM − EQM
0

)
(7.10)

where X denotes the molecular model used (GAFF, GAFF.MOD, or ANI-2x), and

the 0 subscript identifies the conformer with the lowest QM energy for the given

molecule. Ideally, a model should give ∆∆E values close to 0 kJ mol-1, indicating

good agreement to the QM level. Broader distributions indicate larger deviations

with respect to the QM level. A negative ∆∆E value indicates that the model

relative energy is underestimated compared to the QM relative energy, whereas

a positive ∆∆E value indicates that the model relative energy is overestimated

compared to the QM relative energy.

For each γ-fluorohydrin, we calculated the relative energy differences for the 3

molecular models relative to ωb97X/6-31G* using 3× 104 structures extracted

from the nMC-MC simulations. The distributions of the relative energy dif-

ferences show an unequivocal trend: the performance of the models tested

decreases as ANI-2x > GAFF.MOD > GAFF (Figure 7.4). This presents evidence

that ANI-2x excels in reproducing the level of theory it has been trained to

reproduce, with RMSEs for all molecules below the chemical accuracy of 4.184

kJ mol-1 (1 kcal mol-1). GAFF.MOD, the optimally tuned FF optimised using

ωb97X/6-31G* data, underperforms relative to ANI-2x, though still showing no-

table improvements relative to the original GAFF. Importantly, the GAFF.MOD

distributions invariably show increased precision (narrower distributions) and,

for most molecules, increased accuracy (mean of the distributions closer to zero)

than GAFF, confirming that reparameterisation improved the FF agreement with

ωb97X/6-31G*.
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Figure 7.4: Distributions of the relative energy differences (∆∆E) for GAFF,
GAFF.MOD, and ANI-2x with respect to the ωb97X/6-31G* level of theory. The
testing data set was composed of 3× 104 structures extracted from the nMC-MC
simulations. The molecular structure used as a reference was removed from the
histograms.



202 Chapter 7. Force Fields and Neural Network Potentials Benchmark

Several confounding factors may have contributed to preventing GAFF.MOD

from achieving the same level of accuracy as ANI-2x. First, since GAFF.MOD is

a GAFF-like model, it is constrained by the FF functional form, which may not

have been ideal to energetically represent some configurations sampled in the

ωb97X/6-31G* ensemble. Second, to derive GAFF.MOD, only the GAFF bonded

parameters were optimised, leaving the nonbonded parameters untouched. It is

well-known that ωb97X lacks dispersion interactions since the semi-local corre-

lation functionals cannot capture long-range correlation effects.380,397–400 This

physical artifact may not have been entirely captured by only optimising the

bonded part of GAFF, as dispersion physics is modelled by the LJ 12-6 potential.

Third, as the objective function (equation 7.6)) included a regularisation term that

depends on the initial FF parameters, the solutions of the optimisation problem

were dependent on this initial guess (in the present work, the GAFF parameters).

We cannot exclude the possibility of obtaining higher-quality FF parameters if

another initial guess were used, though this also poses the non-trivial problem of

determining alternative initial guesses. Fourth, the completeness of the training

data set used in the reparameterisation procedure may also have impacted the

quality of the optimised FF parameters. The nMC-MC simulations, however,

generated representative ωb97X/6-31G* ensembles. We thus believe the com-

pleteness of the training data set did not have a significant impact on the quality

of the reparameterisation procedure. These four issues could be addressed by

using either more advanced FF functional forms or by changing the nature of the

optimisation procedure, work which is outside the scope of the current study.

Two types of error are present when molecular models are used to perform

energy measurements: random errors and systematic errors. Both originate from

functional form constraints and/or inadequate model parameters. Random

errors are related to the precision of the molecular model and are normally

distributed around the true value. Systematic errors are related to the accuracy

of the molecular model and cause the mean of the error distribution to deviate

from the true value and/or the error distribution to be non-Gaussian. The

distributions of the relative energy differences (Figure 7.4) show that GAFF
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has a bias towards negative relative energy differences for most molecules (C,

D, F, G, H, and I). On the other hand, a bias towards positive relative energy

differences is seen for molecules anti-A and E, whereas for molecules syn-A and

B random errors dominate. The systematic errors for the GAFF model are mostly

offset errors, as they manifest themselves as deviations from the true value (the

distributions remain approximately Gaussian). Furthermore, the GAFF.MOD

distributions tend to have a mean closer to the true value (smaller offset errors)

than GAFF, while also showing smaller random errors. Finally, although the

magnitude of the random errors of ANI-2x are small, they present significant

systematic errors that lead to very pronounced non-normally distributed relative

energy differences. The distribution of molecule I is of particular concern due

to its bimodal shape. This bimodal shape occurs because conformations g-

(g+) and g+(g-) of molecule I have a systematic bias towards negative relative

energy differences, whereas the remainder conformations have a systematic

bias towards positive relative energy differences (Figure 7.5). As we shall see

later in the discussion, systematic errors with conformation-dependent signs

and/or magnitudes scale the relative energy between conformers, consequently

changing their relative populations, an undesirable situation.

150 100 50 0 50 100 150
 / degrees

150

100

50

0

50

100

150

 / 
de

gr
ee

s

t(t)

g-(g+) t(g+)

g-(t)

g+(g+)

g+(g-)

g+(t)

g-(g-)
t(g-)

150 100 50 0 50 100 150
 / degrees

150

100

50

0

50

100

150

 / 
de

gr
ee

s

150 100 50 0 50 100 150
 / degrees

150

100

50

0

50

100

150

 / 
de

gr
ee

s

30 20 10 0 10 20
(EGAFF EGAFF

0 ) (EQM EQM
0 ) / kJ mol 1

20 10 0 10 20
(EGAFF. MOD EGAFF. MOD

0 ) (EQM EQM
0 ) / kJ mol 1

2 0 2 4 6 8
(EANI 2x EANI 2x

0 ) (EQM EQM
0 ) / kJ mol 1

Figure 7.5: Distributions of the χ and Ψ dihedral angles (see definitions in Figure
7.2) of molecule I for configurations sampled using 3 nMC-MC simulations.
The color of each point gives the relative energy difference (∆∆E) between the
model (GAFF, left; GAFF.MOD, middle; ANI-2x, right) and ωb97X/6-31G*. The
black stars locate the QM minima calculated using ωb97X/6-31G*.

We now discuss the performance of the models in reproducing the energies
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and geometries of the QM minima. An ideal model should yield optimised

geometries similar to QM, and the relative energies of those minima should

agree between the models and QM.330 To assess performance in these two

categories, we performed geometry optimisations using GAFF, GAFF.MOD, and

ANI-2x, starting from all QM minima within 12.552 kJ mol-1 (3 kcal mol-1) from

the global minimum. The GAFF and GAFF.MOD geometry optimisations were

performed with the L-BFGS algorithm of OpenMM, and the ANI-2x geometry

optimisation were performed using the L-BFGS algorithm of ASE. The RMSDs

of the relative energy differences and the average RMSD of the atomic positions

are shown in Table 7.1. The results obtained agree with the findings presented

so far, indicating that ANI-2x is the model that best reproduces the energies

and geometries of the ωb97X/6-31G* minima, followed by GAFF.MOD and

then by GAFF (Figure 7.6). Interestingly, we observe that ANI-2x tends to

predict positive relative energy differences, meaning that the relative energies

between the local and global minima tend to be overestimated. This observation

is cause for concern, as it indicates that the ANI-2x global minima tend to be

systematically overstabilised. Furthermore, GAFF tends to underestimate the

relative energy differences, whereas GAFF.MOD errors were mostly random,

though still presenting a non-negligible tendency to underestimate the relative

energies of some minima relative to QM. As expected, the inverse trend is

observed when the QM reference is MP2/6-311++G(2d,p), indicating that GAFF

is the model that gives the best energetic agreement with this QM level, followed

by GAFF.MOD and ANI-2x (see Appendix C, Figure C.1). Moreover, the average

RMSD of the atomic positions is lower for GAFF.MOD and ANI-2x than for

GAFF, though these results are heavily influenced by outliers. Removing all

points with an RMSD greater than 0.3 Å leads to equal trends for the energetic

and geometric agreement, as expected.
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Figure 7.6: Scatter plots of the relative conformer energies (∆∆E) versus the
RMSD of atomic positions. Each point was obtained by performing a geometry
optimisation using GAFF, GAFF.MOD, or ANI-2x, starting from all QM min-
ima within 12.552 kJ mol-1 (3 kcal mol-1) from the global minimum. The QM
reference is the ωb97X/6-31G* level of theory.

Table 7.1: RMSDs of the relative energy differences (∆∆E) and average RMSDs
of atomic positions for the scatters depicted in Figure 7.6. The molecular struc-
tures used as a reference were excluded from the calculation of the RMSDs of
the relative energy differences. The QM references are MP2/6-311++G(2d,p)
(MP2) and ωB97X/6-31G* (ωB97X).

∆∆E atomic positions

MP2 ωB97X MP2 ωB97X

GAFF 3.36 7.45 0.087 0.110

GAFF.MOD 4.26 4.05 0.079 0.095

ANI-2x 5.12 2.80 0.080 0.046
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7.3.3 Sampling accuracy in the gas phase

We also assessed the sampling accuracy of each model in the gas phase by com-

paring the populations of the γ-fluorohydrins, as predicted by MD, to their Boltz-

mann populations calculated at ωb97X/6-31G* and MP2/6-311++G(2d,p). To

estimate the QM populations, the electronic energies were converted into Gibbs

free energies in the harmonic approximation using standard thermodynamic

corrections obtained from frequency calculations.351 This approach introduces

two approximations: it considers non-interacting particles and assumes that

the first and higher electronic excited states are entirely inaccessible.401 While

the latter assumption should not pose a problem for the set of γ-fluorohydrins

considered in this study, the former may introduce some error, depending on

how much the systems deviate from ideal behaviour. Whenever possible, the

QM populations should be estimated by performing MD or MC simulations.

However, owing to the prohibitive computational cost of ab initio simulations,

we believe our approach is sufficiently reasonable to warrant investigation. The

metric we used to evaluate the sampling accuracy was the sum of the absolute

error of the populations (SAEP), calculated as the absolute difference between

the populations predicted by the model X and the QM level, such that

SAEP =

Ncon f

∑
i
|pX

i − pQM
i | (7.11)

where pi is the population of the ith conformer, and Ncon f denotes the total

number of conformers. When using ωb97X/6-31G* as the reference, it is not

possible to determine the model that predicts best sampling accuracy because

mixed results were obtained (Figure 7.7, top panel). For example, ANI-2x exhibits

significantly higher sampling accuracy than GAFF.MOD for molecules C, D, and

E, but GAFF.MOD exhibits significantly higher sampling accuracy than ANI-

2x for molecules F, G, H, and I. There are also some molecules (syn-A, anti-A,

and B) for which GAFF.MOD and ANI-2x perform similarly. GAFF, however,

stands out as the model that worst reproduces the populations at ωb97X/6-31G*.
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This trend is inverted when using MP2/6-311++G(2d,p) as the reference (Figure

7.7, bottom panel), indicating that there is a significant disagreement between

the predictions of MP2/6-311++G(2d,p) and ωb97X/6-31G*. This is, however,

expected behaviour: while ANI-2x was trained to reproduce the ωb97X/6-31G*

level of theory, GAFF was derived using experimental, MP2, and MP4 data.182

Hence, it is natural that GAFF is the model that overall best reproduces the

populations at MP2/6-311++G(2d,p). Interestingly, GAFF.MOD FFs still perform

reasonably well when MP2/6-311++G(2d,p) is the reference, and they actually

outperform GAFF for the trifluoroderivates H and I because the populations

for these molecules are similar in both QM references. The good performance

of the GAFF.MOD FFs is attributed to the fact that their parameters, while

optimised to reproduce ωb97X/6-31G*, retain some ”memory” of the original

GAFF parameters due to the regularisation applied during the optimisation

procedure.
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Figure 7.7: Sum of the absolute error of the populations (SAEP), calculated
as the absolute difference between the populations predicted by the models
(GAFF, GAFF.MOD, and ANI-2x) and the QM level. The QM references are
ωb97X/6-31G* (top plot) and MP2/6-311++G(2d,p) (bottom plot).

Two reasons may have contributed to GAFF.MOD predicting a significantly

lower SAEP for some molecules (F, G, H, and I) than ANI-2x, even though the

GAFF.MOD energy landscape agreement with ωb97X/6-31G* is lower than

that of ANI-2x (Figure 7.4). The first reason is energetic: energetic errors that

affect the relative energies of conformers change their relative populations. For

example, if the relative energy between two conformers increases, the conformer

with lower energy becomes more populated. The second reason is entropic:

populations depend not only on conformational energies but also on confor-

mational entropies.402 Broader wells are associated with more configurations

than narrower wells, therefore being more entropically favorable. Since for

ANI-2x we observe conformation-dependent directions of bias (Figure 7.5) and



7.3. Results and discussion 209

a tendency to overstabilise the global minima, we believe these were the factors

that, for some molecules, caused the relative energies of GAFF.MOD to be closer

to ωb97X/6-31G* than those of ANI-2x (see, e.g., Figure 7.8). Hence, we think

GAFF.MOD gave lower SAEPs than ANI-2x for some molecules mainly because

of energetic factors. Note that the configurations sampled by each model for

a given conformer may differ in degrees of freedom other than those used for

conformer assignment (e.g., bonds and angles).
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Figure 7.8: Top plot: Relative energies of the conformers of molecule I (opti-
mised geometries), calculated using ωb97X/6-31G*, ANI-2x, and GAFF.MOD.
Bottom plot: Populations of each conformer of molecule I, as predicted by
ωb97X/6-31G*, ANI-2x, and GAFF.MOD.

In summary, the results obtained in the gas-phase benchmark demonstrate that

models tend to behave similarly to the QM levels to which they have been fitted.

ANI-2x exhibits levels of accuracy that class I FFs (GAFF and GAFF.MOD) cannot

achieve when using ωb97X/6-31G* as the reference (Figure 7.4). Interestingly,

the high accuracy of ANI-2x in reproducing the ωb97X/6-31G* energy landscape
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does not always translate into high sampling accuracy (Figure 7.7). For some

molecules, ANI-2x exhibits systematic errors that cause significant overestima-

tion of the relative energies between the local and global minima, leading to

an overpopulation of the lower energy conformers (Figures 7.6 and 7.8). This

observation raises concerns on whether to use ANI-2x over a conventional FF

to sample the conformational landscape, as the computational cost of ANI-2x

is up to 100 times greater than that of a class I FF. These concerns are further

aggravated by realising that ANI-2x performs the worst in reproducing MP2/6-

311++G(2d,p) (Figure 7.7), which in principle is more accurate than ωb97X/6-

31G*. This difference suggests that ωb97X/6-31G* and MP2/6-311++G(2d,p)

predict different physical behaviour for the γ-fluorohydrins considered in this

study. In the next sections, we evaluate the performance of the models in chlo-

roform solution and then proceed to assess which QM level best reproduces

experimentally-determined J-coupling constants.

7.3.4 Sampling accuracy in chloroform solution

We begin the discussion of the results obtained in chloroform solution by as-

sessing the sampling accuracy of each model. To do this, we follow the pro-

cedure presented in the previous section and compare the populations of the

γ-fluorohydrins, as predicted by MD, to their Boltzmann populations calcu-

lated at ωb97X/6-31G*/PCM and MP2/6-311++G(2d,p)/PCM. This approach

assumes that these QM levels and solvent model represent the standard against

which we compare. GAFF.MOD-RESP/CHCl3 is the model that overall predicts

better sampling accuracy when ωb97X/6-31G*/PCM is used as the reference

(Figure 7.9). Specifically, GAFF.MOD-RESP/CHCl3 best reproduces the pop-

ulations of molecules syn-A, anti-A, B, D, E, F, G, and I, whereas the popula-

tions of molecules C and H are best reproduced by ANI-2x-RESP/CHCl3 and

GAFF-RESP/CHCl3, respectively. Compared to the gas-phase results (Figure

7.7), in which ANI-2x performed slightly better than GAFF.MOD, GAFF.MOD
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seems to be better suited for condensed phase simulations. Since in the ANI-

2x-RESP/CHCl3 simulations the LJ 12-6 parameters were taken from GAFF,

these results suggest that there is an imbalance between the ligand-solvent inter-

molecular and the ligand intramolecular interactions. Hence, for some systems,

the practice356,357,361–363 of directly combining LJ 12-6 parameters with NNPs

may decrease the NNP performance in the condensed phase. This observation

strongly indicates that sets of LJ 12-6 parameters consistent with ANI-2x should

be developed in the future so that the NNP gas-phase accuracy does not decrease

in the condensed phase. The optimally tuned GAFF.MOD FFs, on the other hand,

despite having been optimised to reproduce ωb97X/6-31G*, present a better

balance between the ligand-solvent intermolecular and the ligand intramolecular

interactions. The GAFF.MOD-RESP/CHCl3 are models with greater internal

consistency than ANI-2x-RESP/CHCl3 because their parameters are closer to

those of GAFF owing to the regularisation applied during the optimisation

procedure.
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Figure 7.9: Sum of the absolute error of the populations (SAEP), calculated
as the absolute difference between the populations predicted by the models
(GAFF-RESP/CHCl3, GAFF.MOD-RESP/CHCl3, and ANI-2x-RESP/CHCl3)
and the QM level. The QM references are ωb97X/6-31G*/PCM (top plot) and
MP2/6-311++G(2d,p)/PCM (bottom plot).

When the reference is MP2/6-311++G(2d,p)/PCM, GAFF-RESP/CHCl3 is the

model that overall predicts better sampling accuracy. Exceptions occur for

molecule C, for which all models perform similarly; molecule E, for which ANI-

2x-RESP/CHCl3 and GAFF-RESP/CHCl3 perform similarly; and molecule I, for

which GAFF.MOD-RESP/CHCl3 performs the best. Following the previously

presented discussion for the gas-phase benchmark, this is expected behaviour

since GAFF was fitted to a QM level similar to MP2/6-311++G(2d,p). Again,

the differences in results obtained when using different QM references indicate

that the QM references predict different physical behaviour. To understand how

this relates to the sampled conformers, we determined the populations of the
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conformers with IMHBs for each model and QM reference (Figure 7.10). From

these results, we see that ωb97X/6-31G*/PCM tends to overestimate the popula-

tions of the conformers with IMHBs relative to MP2/6-311++G(2d,p)/PCM. This

overestimation trend is even more pronounced for the ANI-2x-RESP/CHCl3

model. As has been shown previously, ANI-2x tends to overestimate the relative

energies of the local minima relative to the global minima (Figures 7.6 and 7.8).

Since for this set of γ-fluorohydrins the global minima are mostly the conformers

with IMHBs, it follows that the overpopulation of these conformers relative

to ωb97X/6-31G*/PCM is a consequence of this energetic error of the ANI-2x

model. Similar results were obtained in the gas-phase (see Appendix C, Figure

C.2), indicating that this problem cannot be entirely attributed to the imbalance

of the hybrid NNP/MM scheme here employed, as part of it is a consequence of

the energetic errors intrinsic to ANI-2x.
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It is well-known that ωb97X/6-31G* lacks dispersion interactions, and thus it

is expected that ANI-2x also suffers from this physical artifact. Incidentally, a

previous study has shown that the absence of dispersion interactions in ANI-

2x negatively affects the modelling of bulk water and peptides, as it led to

stronger-than-expected hydrogen bonds (HBs).380 For our simulations in chlo-

roform solution, we also observe this phenomenon, as ANI-2x-RESP/CHCl3

and ωb97X/6-31G*/PCM predicted shorter HBs than GAFF-RESP/CHCl3 and

MP2/6-311++G(2d,p)/PCM (see Appendix C, Figure C.3). The results obtained

could potentially be improved by including a dispersion correction, such as

D3.278 However, it is unclear whether this correction would mitigate the system-

atic errors in relative energies observed for ANI-2x. Alternatively, for molecules

only containing elements H, C, N, and O, the ANI-1cxx NNP could be applied

as, in principle, it properly captures dispersion interactions. It would also be pos-

sible to run MD simulations in which both the solute and solvent were described

at the NNP level. However, our attempts to simulate bulk chloroform using ANI-

2x led to radial distribution functions (RDFs) that indicate an overstructuring

tendency relative to the experimental RDFs (see Appendix C, Figure C.4). Again,

this overstructuring is likely caused by the lack of dispersion interactions, which

causes permanent dipole-dipole interactions to dominate. Note that ANI-2x was

not trained to reproduce bulk chloroform. Nevertheless, ANI-2x was trained

to reproduce bulk water, and the overstructuring tendency is still observed.364

Additionally, the short-range nature of ANI-2x requires bulk NNP simulations

to use high-pressure values (ca. 1540 bar for our bulk chloroform simulation)

for the barostat so that bulk densities comparable with the experiment are ob-

tained. The absence of long-range electrostatic interactions in ANI-2x naturally

suggests the use of hybrid NNP/MM schemes, as long-range interactions are

easily computed at the MM level. Unfortunately, NNP/MM hybrid models

pose additional and still unsolved problems because, to obtain high levels of

accuracy, they require sets of nonbonded parameters consistent with the NNP. In

the absence of these parameters, optimally tuned FFs seem to be the most viable

alternative to use for cases in which the original FF performs poorly, as for our
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test set optimally tuned FFs led to higher sampling accuracy than ANI-2x, with

the advantage of having a much lower computational cost.

7.3.5 NMR J-couplings

In the last section of the discussion, we present the results obtained for the

J-coupling constants (h1 JOH· · · F). We resort to the experimental NMR data

available in chloroform solution351 to determine which molecular model or

QM level gives the populations that best reproduce the true behaviour of the

molecules considered in this study. To estimate the theoretical J-couplings,

we used equation (7.9) to average the calculated h1 JOH· · ·F values at ωB97X/6-

311++G(2d,p)/PCM//B97-2/pcJ-2/PCM over the conformer populations pre-

dicted by each model or QM level.

By analysing the results given in Table 7.2, we conclude that

MP2/6-311++G(2d,p)/PCM is the QM level of theory that best reproduces

the experimental J-couplings, as it gave the highest squared Pearson correlation

coefficient (R2 = 0.96) and lowest RMSE (0.41 Hz). ωb97X/6-31G*/PCM gave

the second-best R2 value (0.87), indicating a strong correlation between theoret-

ical and experimental data. The R2 values, however, do not reflect systematic

errors, which are high for this DFT functional, as can be seen from its RMSE

value (4.80 Hz). Concerning the molecular models, GAFF-RESP/CHCl3 gave a

lower RMSE (1.28 Hz) than GAFF.MOD-RESP/CHCl3 (4.77 Hz), though with

smaller R2 value (0.68 vs. 0.75). As low RMSE values indicate both high precision

and accuracy, we consider RMSE to be a better metric than R2 to measure the

agreement with the experiment. Under this assumption, GAFF-RESP/CHCl3 is

the model that best reproduces the experimental data, justified by its similarity to

the MP2 level. Finally, ANI-2x-RESP/CHCl3 exhibits the greatest disagreement

with the experiment, presenting the lowest R2 (0.58) and highest RMSE (6.78 Hz)

values.
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Two possible sources of error can impact the accuracy of the calculated J-coupling

constants: the error in the populations, which is directly related to the model or

QM level of theory used to estimate them, and the error of the QM method used

to calculate the J-coupling values for each conformer. We attempted to determine

the error associated with the QM method employed to calculate the J-couplings

by determining the h1 JOH· · ·F value for a conformationally-restricted cyclohexane

that predominantly assumes only one conformation (compound 2 in Ref. 351).

By doing so, we virtually eliminated the error that comes from the estimation

of the populations. For this compound, we obtained a theoretical value (-16.5

Hz) that deviates considerably in magnitude from experiment (12.1 Hz),403

resulting in a relative error of 16.36%. As we did not find any correlation between

the percentage of conformers with IMHBs and the error in the J-couplings

for our set of γ-fluorohydrins, which if found could indicate an inability of

the method to accurately calculate J-couplings for conformers with IMHBs,

this result is surprising. Future work will focus on unraveling the source of

this mismatch. Despite this, the excellent agreement obtained for the MP2/6-

311++G(2d,p)/PCM data set leads us to believe that the protocol used to compute

the J-coupling constants is sufficiently accurate to warrant a fair comparison

between different data sets.

All in all, the NMR results here presented lead us to recommend that ANI-2x

be used carefully in hybrid models for condensed-phase applications, espe-

cially for the modelling of compounds that have chemical interactions poorly

described by ωb97X/6-31G* (e.g., HBs). This conclusion is further supported

by determining the R2 (0.86 vs. 0.70) and RMSE (1.79 vs. 3.42 Hz) values of

GAFF.MOD-RESP/CHCl3 and ANI-2x-RESP/CHCl3, respectively, relative to

the ωb97X/6-31G*/PCM NMR data. These results corroborate the findings

regarding the sampling accuracy in chloroform solution (Figures 7.9 and 7.10),

which indicate that GAFF.MOD-RESP/CHCl3 reproduces ωb97X/6-31G*/PCM

better than ANI-2x-RESP/CHCl3.
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Table 7.2: Experimental and computed J-couplings (h1 JOH· · · F) obtained in
CDCl3.

Molecule Experimentala MP2b ωb97Xc GAFFd GAFF.MODe ANI-2xf

syn-A 6.6 -7.6 -16.5 -5.6 ± 0.2 -16.1 ± 0.4 -19.5

anti-A 1.9 -1.1 -7.4 -2.6 ± 0.4 -9.9 ± 0.6 -12.7

B 2.2 -2.2 -9.2 -1.6 ± 0.2 -10.8 ± 0.2 -13.7

C 1.7 -1.2 -6.6 -1.1 ± 0.2 -2.2 ± 0.3 -6.1

D 1.4 -1.3 -6.7 -0.85 ± 0.03 -5.4 ± 0.1 -10.5

E 3.5 -3.2 -11.3 -7.7 ± 0.2 -9.0 ± 0.2 -5.2

1.4 -1.7 -1.0 -0.7 ± 0.1 -0.6 ± 0.4 -3.2

F 0.6 -0.6 -1.9 -0.25 ± 0.03 -0.4 ± 0.1 -0.4

0.6 -0.7 -2.7 -0.97 ± 0.03 -4.1 ± 0.2 -7.9

G 0.4 -0.1 -1.1 -0.06 ± 0.05 -2.2 ± 0.2 -2.5

0.4 -0.3 -2.0 -0.11 ± 0.02 -2.3 ± 0.1 -3.6

H 0.7(q)g -0.8 -0.8 -0.92 ± 0.03 -1.46 ± 0.01 -2.7

I 0.3(q)g -0.4 -1.0 0.39 ± 0.01 -1.29 ± 0.01 -1.8

R2 0.96 0.87 0.68 0.75 0.58

RMSE 0.41 4.80 1.28 4.77 6.78

aSign not determined; bMP2/6-311++G(2d,p)/PCM; cωb97X/6-31G*/PCM;
dGAFF-RESP/CHCl3; eGAFF.MOD-RESP/CHCl3; f ANI-2x-RESP/CHCl3;

gquartet

7.4 Conclusions

We have presented a comparative study that evaluates the performance of an

NNP (ANI-2x), a conventional FF (GAFF), and an optimally tuned FF (GAFF.MOD)

relative to experimental and QM data. To this end, for a set of γ-fluorohydrins,

we assessed the energetic and geometric agreement in the gas phase, the sam-

pling accuracy in the gas phase and chloroform solution, and the accuracy of

the estimates of the J-coupling constants relative to experimental data. The re-

sults and discussions presented highlight the strengths and weaknesses of each

model, providing guidelines for future development of FFs and ML potentials.
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We believe this study may have implications in different areas of chemistry and

biology, especially for those interested in applications involving modelling of

small organic compounds, which is very important for the drug design commu-

nity.

The acceptance rates obtained in the nMC-MC simulations, which used ANI-

2x as the approximate potential, indicate high similarity between ANI-2x and

ωb97X/6-31G*. These nMC-MC results also confirm that ANI-2x can produce

stable MD simulations, with numerical stability comparable to that of GAFF-like

FFs. The high similarity between ANI-2x and ωb97X/6-31G* was further con-

firmed by analysing their energetic agreement. Overall, in the gas phase, ANI-2x

is the model that best reproduces the ωb97X/6-31G* energy landscapes, followed

by GAFF.MOD and GAFF. Optimisation of GAFF to GAFF.MOD, however, led

to a significant improvement in the energetic performance, demonstrating the

power of bespoke reparameterisation. ANI-2x also proved to be the model that

best reproduces the energies and geometries of the gas-phase ωb97X/6-31G*

minima, followed by GAFF.MOD and GAFF. Despite this high performance,

ANI-2x tends to overstabilise global minima, a feature that scales the relative

energies of conformers and, consequently, impacts the relative populations.

In the gas phase, the superior accuracy of ANI-2x in reproducing the ωb97X/6-

31G* energy landscape does not always translate into higher sampling accuracy

than GAFF.MOD, as the energetic errors of ANI-2x negatively impact its per-

formance in this regard. Surprisingly, GAFF.MOD shows similar performance

to ANI-2x in terms of sampling accuracy, raising questions of, given its costs,

whether ANI-2x should be used over a FF to sample the conformational land-

scape of small organic molecules. Hence, while GAFF.MOD performs poorly in

describing the minutiae of the ωb97X/6-31G* energy landscape, GAFF.MOD per-

forms reasonably well in terms of relative energy, thus achieving similar perfor-

mance as ANI-2x. When MP2/6-311++G(2d,p) is the QM reference, GAFF stands

out as the best performing model. This difference suggests that ωb97X/6-31G*

and MP2/6-311++G(2d,p) predict considerably different physical behaviour for

the set of γ-fluorohydrins considered in this study.
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In chloroform solution, GAFF.MOD-RESP/CHCl3 is the model that predicts

better sampling accuracy when ωb97X/6-31G*/PCM is used as the reference,

significantly outperforming ANI-2x-RESP/CHCl3. The decrease in performance

of the ANI-2x potential when used in a hybrid NNP/MM model suggests

significant imbalances between the ligand-solvent intermolecular and the ligand

intramolecular interactions. Hence, combining available LJ 12-6 parameters

with an NNP should be done with caution because of the potential decrease in

the NNP performance. ANI-2x also tends to overestimate the populations of

conformers with IMHBs and predicts stronger hydrogen bonding than expected.

These physical artifacts may be caused by the lack of dispersion interactions in

the hybrid ωb97X/6-31G* functional and can be potentially mitigated by the use

of dispersion corrections.

The NMR analysis also leads us to reinforce the caution of using ANI-2x for

condensed-phase applications, especially for the modelling of compounds that

have chemical interactions poorly handled by ωb97X/6-31G*. In terms of per-

formance, MP2/6-311++G(2d,p)/PCM is the level of theory that best reproduces

the experimental data, followed by GAFF-RESP/CHCl3. These results support

the idea that MP2/6-311++G(2d,p) is closer to the experiment than ωb97X/6-

31G*, and that GAFF is the model that best reproduces the experimental data.

Furthermore, GAFF-RESP/CHCl3 is the model that best reproduces the MP2/6-

311++G(2d,p)/PCM data, and GAFF.MOD-RESP/CHCl3 the model that best

reproduces the ωb97X/6-31G*/PCM data. All in all, these observations cor-

roborate the findings of the sampling accuracy in chloroform solution, as they

indicate that currently FFs are more suited to be used in hybrid models than

ANI-2x.

It is indisputable that ANI-2x has its merits, especially when it comes to mod-

elling molecules in the gas phase. The merits of ANI-2x lie in a generally good

description of the PES of small organic compounds. However, this study shows

some issues with using ANI-2x may have been overlooked in many applications.

ANI-2x has a tendency to predict stronger-than-expected hydrogen bonding, the

tendency to overstabilise global minima, and cannot properly capture dispersion
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interactions. These are observations that may limit the widespread use of ANI-2x

in the long term, suggesting that an improved version of this NNP would be

welcome. Furthermore, the use of ANI-2x in an NNP/MM framework should be

undertaken with caution due to the potential inconsistencies that may arise. For

some systems, directly combining ANI-2x with readily-available FF parameters

may lead to imbalances between different parts of the hybrid model, resulting

in a significant decrease in performance. Owing to their internal consistency,

conventional and optimally tuned FFs remain the best models available for

simulating condensed-phase systems. FFs also have the advantage of being

computationally cheaper than NNPs. For NNP/MM models to become rou-

tinely used in condensed-phase simulations, sets of nonbonded MM parameters

consistent with NNPs need to be derived; otherwise, the accuracy of NNP/MM

models will always be compromised to some extent.

Finally, we must stress that all our conclusions are based on the particular set of

γ-flurohydrins considered in this study. We cannot exclude that the observed

performance may vary for other systems and that our conclusions may not

be, therefore, always extrapolatable. In future work, it would be interesting to

use the multilevel MC method presented in Chapter 6 to generate QM/MM

ensembles of structures against which we could compare the performance of the

NNP/MM data. Despite the significant computational cost that such calcula-

tions would entail, QM/MM structures could provide a better reference than the

current QM/PCM level of theory used, which, for example, does not consider

intermolecular interactions between the ligand and the (implicit) solvent. More-

over, to better understand the origin of the ANI-2x deficits observed, it would

also be valuable to train an ANI-like model using QM energies and forces. In

principle, this optimally tuned ANI-like model should outperform both ANI-2x

and GAFF.MOD, thus proving the superiority of NNPs for modelling small

organic molecules.

In the next chapter, we summarise the main conclusions of the thesis and provide

suggestions to guide future research efforts.
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Chapter 8

Conclusions

The work presented in this thesis aimed to develop, apply, and benchmark

molecular models and simulations methods used for the computational mod-

elling of small organic molecules. Ligands were the main class of compounds

covered in this work, as they show a chemical diversity and conformational

flexibility that requires continual improvement of the conformational analysis

methods available to study them. Ligands were also molecules of special interest

for Astex and AstraZeneca, pharmaceutical companies that collaborated in this

work.

The research projects presented in this thesis focused on three main strands.

The first was the development, implementation, and validation of a software

to parameterise FFs by fitting to QM data. This software came to be known as

ParaMol, and it is available to be used by the scientific community. ParaMol has

proved to be an efficient and robust tool to parameterise FFs, requiring as little

user intervention as possible to derive optimal FF parameters. Although various

parameterisation tools were available when we started developing ParaMol,

most of them were hard to use, required mastering of specific software, and

were limited to certain functional forms. ParaMol aimed to overcome these

limitations by presenting a framework with various built-in parameterisation

protocols that can be used by anyone with minimal Python knowledge. ParaMol

was developed with flexibility in mind so that users can design parameterisation



224 Chapter 8. Conclusions

protocols specifically tailored to their needs. Besides that, ParaMol was designed

to be easily extendable, and developers with some proficiency in Python can

implement routines that cover currently unavailable functional forms and pa-

rameterisation protocols. Although this philosophy of software usability and

extendability has become commonplace for some FF parameterisation tools, it

was uncommon - if not absent - when we started developing ParaMol. This

rapid paradigm shift is a good example of the importance of FF parameterisation,

which remains an incompletely solved problem despite the most recent advances

in theory and methods.

The second strand aimed to bridge the efficiency of FFs with the accuracy of QM

methods. This research resulted in the development, implementation, and vali-

dation of an nMC-MC algorithm that allows quantum configurational ensembles

to be generated by performing sampling using approximate potentials. The use

of approximate potentials for sampling, despite their potential accuracy issues,

presents indisputable advantages relative to QM methods because it allows for

extensive sampling of the conformational landscape of molecules. QM methods,

while highly accurate, are a far cry from becoming the standard method of choice

to simulate molecules due to their computational cost. The nMC-MC algorithm

we developed proved to be an efficient and robust method to bridge the gap

between cheap approximate potentials and expensive but accurate QM levels.

The nMC-MC algorithm was implemented in ParaMol and is available to be used

by the scientific community. Importantly, our implementation of the nMC-MC

algorithm is agnostic to the used approximate potential and QM level, providing

users total flexibility of choice regarding the models that best suit their systems

of interest. This means that, for example, besides FFs, NNPs can also be used as

approximate potentials, which is very useful considering the similarity to the

QM level that NNPs can attain. Our implementation of the nMC-MC algorithm

also allows for hybrid QM/MM or NNP/MM models to be used, paving the

way towards the extensive sampling of large and realistic systems at high levels

of accuracy.
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The third and last strand of this thesis focused on benchmarking the current

plethora of molecular models available to model small organic molecules. While

FFs have been around for decades and have proved to be suitable for many

applications, the advent of ML potentials has been a conspicuous game-changer

that has undoubtedly revolutionised the way computational scientists approach

molecular modelling. Scientific shifts of paradigm, however, do not come with-

out uncertainty, as the emergence of new methodologies raises many unan-

swered and fundamental questions. In order to evaluate the current performance

of ML potentials and FFs, we presented a comparative study that evaluates the

performance of an NNP (ANI-2x), a conventional FF (GAFF), and an optimally

tuned FF (GAFF.MOD) relative to experimental and QM data. To this end, for a

set of γ-fluorohydrins, we assessed the energetic and geometric agreement in

the gas phase, the sampling accuracy in the gas phase and chloroform solution,

and the accuracy of the estimates of the h1 JOH· · · F coupling constants relative to

experimental data. The results and discussions presented highlight the strengths

and weaknesses of each model, providing guidelines for future development of

FFs and ML potentials.

In regards to the project presented in Chapter 5, which presents ParaMol and

establishes the best practices to follow when employing specific parameterisation

routes, the following conclusions were drawn:

• Parameterisation using the analytical LLS solver should be preferred over

parameterisation using non-linear iterative optimisers. Although we ob-

tained identical results using either method, non-linear iterative optimisers

are prone to become trapped in local minima in parameter space, whereas

the analytical LLS solver is deterministic and ensures the global minimum

is obtained. Non-linear iterative optimisers are advantageous in situations

in which it is desirable to find a specific local minimum, such as when

the goal is to produce the right helical propensity or orientation of a drug

molecule in a protein binding site.



226 Chapter 8. Conclusions

• Dihedrals scans should be performed using the MM-relaxed approach, as

fittings using the QM-relaxed approach are critically dependent on the

intramolecular FF parameters, which may lead to biased optimisations.

• Non-Boltzmann weighting proved to be the most reliable weighting scheme,

despite its tendency to overestimate transition-state energies and underes-

timate fluctuations. Unless these are undesirable features for a particular

application, non-Boltzmann weighting is the recommended weighting

scheme for routine parameterisations.

• Boltzmann weighting, which emphasises the description of QM minima,

tends to overfit low energy regions of the PES at the cost of poorly describ-

ing the remainder of the energy landscape. Boltzmann weighting requires

strong regularisation to produce FFs that can be potentially used in MM

modeling.

• As uniform weighting equally allows for positive and negative EMM −

EQM values, it is prone to creating asymmetries in the PES, which often lead

to spurious minima due to artificially large thermodynamics weights and

poor description of underrepresented configurations (e.g., transition states).

Uniform weighting requires strong regularisation to mitigate some of these

undesirable features.

• Using high weighting temperatures (greater than 500 K) in the

non-Boltzmann and Boltzmann weightings schemes leads to results that

become very similar to those obtained when using uniform weighting. The

specific features of these methods are, therefore, more noticeable when

using low weighting temperatures.

• Depending on the set of FF parameters that is aimed to be optimised, this

parameterisation can be done using either dihedral scans or configurational

ensembles as the fitting data sets. Parameterisations using configurational

ensembles are, however, more sensitive to the weighting method than

those that use dihedral scans. Furthermore, regardless of the data set
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type and weighting scheme employed, regularisation should be applied

in any situation, as it prevents FF parameters from straying away from

physically-sensible values.

• Adaptive self-parameterisation is an attractive and useful way to derive op-

timal FF parameters, as it combines self-consistent sampling and parameter

optimisation in a single protocol.

Overall, owing to its features and robustness, we believe ParaMol is a useful

tool for the scientific community and that it has the potential to be used in

various applications that require derivation of optimal FF parameters. Despite

the many functionalities available in ParaMol, there is still much room for

improvement in the software. For example, ParaMol would greatly benefit

from allowing experimental data to be used for parameterisation purposes. The

implementation of routines that allow parameterisation of FF functional forms

belonging to classes II and III would also be of great use. Finally, implementation

of Bayesian methods for parameter estimation would be welcome.240–243

In regards to the project presented in Chapter 6, which introduces the nMC-

MC algorithm, a multilevel Monte Carlo method that allows estimation of

quantum configurational while keeping the computational cost at a minimum,

the following conclusions were drawn:

• Direct application of the nMC-MC algorithm using traditional FFs, such as

GAFF, as the approximate potentials leads to very slow convergence of the

target quantum configurational distributions due to low acceptance rates

caused by poor phase space overlap between the MM and QM levels.

• FF reparameterisation proved to be an efficient strategy to increase the

acceptance rates of the switching step from the MM to the QM level of

theory, thus accelerating the sampling convergence of the target quantum

configurational distribution.
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• Both molecular size and chemical complexity are negatively correlated with

the nMC-MC acceptance rates. The best acceptance rates were obtained for

aniline, whereas the molecule with the lowest possible acceptance rate was

the fragment of cpd 26.

• Hard DOFs, such as bonds and angles, are crucial to be reparameterised to

increase the acceptance rates due to their large force constants.

• There is a strong, positive correlation between the nMC-MC switching

step acceptance rates and the phase space overlap between the QM and

MM levels. This correlation was confirmed by data obtained from various

phase space overlap metrics, leading us to suggest the nMC-MC switching

step acceptance rates as a robust metric of phase space overlap.

• The nMC-MC version of the adaptive self-parameterising algorithm, which

combines sampling at the QM level and FF parameterisation in one scheme,

is an efficient parameterisation method that limits the computational work

to the strictly necessary and does not require a priori generation of a training

data set of unknown size.

• Within a fixed point charge mechanical embedding framework, the nMC-

MC algorithm is a viable methodology that permits recovery of the target

QM/MM configurational ensemble. Currently, this is the limiting case, in

terms of model complexity, that still allows reasonable acceptance rates to

be obtained in the nMC-MC algorithm when using class I FFs.

All in all, the nMC-MC algorithm along with FF reparameterisation proved to

be an efficient strategy to generate quantum configurational ensembles while

keeping the computational cost to a minimum. The main drawback of the

method is the severe negative impact that system size and target Hamiltonian

complexity have on the nMC-MC acceptance rates, which ultimately limit its use

to simple systems. A possible solution for this bottleneck may involve resorting

to ML models or FFs with more advanced functional forms than those of class
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I FFs, which may be able to capture physical phenomena such as anharmonic

behaviour, couplings between DOFs, and non-additive electrostatic effects.

In regards to the project presented in Chapter 7, which, using a set of

γ-fluorohydrins, presents a comparative study that evaluates the performance

of an NNP (ANI-2x), a conventional FF (GAFF), and an optimally tuned FF

(GAFF.MOD) relative to experimental and QM data, the following conclusions

were drawn:

• nMC-MC simulations performed using ANI-2x as the approximate poten-

tial indicate a high similarity between this NNP and the level of theory

it was trained to reproduce, ωb97X/6-31G*. These nMC-MC results also

show that ANI-2x can produce stable MD simulations, with numerical

stability comparable to that of GAFF-like FFs.

• In the gas phase, ANI-2x is the model that best reproduces the ωb97X/6-

31G* energy landscape, followed by GAFF.MOD and GAFF. ANI-2x is

also the model that best reproduces the energies and geometries of the

gas-phase ωb97X/6-31G* minima, followed by GAFF.MOD and GAFF.

• The superior accuracy of ANI-2x in reproducing the ωb97X/6-31G* energy

landscape does not always translate into higher sampling accuracy than

GAFF.MOD, since ANI-2x shows similar performance to GAFF.MOD in

this regard. Hence, while GAFF.MOD performs poorly in describing the

minutiae of the ωb97X/6-31G* energy landscape, GAFF.MOD performs

reasonably well in terms of relative energies, thus achieving similar perfor-

mance as ANI-2x.

• ANI-2x excels in describing the minutiae of the ωb97X/6-31G* PES, es-

pecially in the gas phase. Nonetheless, ANI-2x also shows a tendency to

predict stronger-than-expected hydrogen bonding, a tendency to oversta-

bilise global minima, and cannot properly capture dispersion interactions.
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These problems lead to energetic errors that mainly impact the relative en-

ergies between conformers, preventing ANI-2x from excelling in sampling

accuracy.

• When MP2/6-311++G(2d,p) is the QM reference, GAFF stands out as the

best performing model both in terms of sampling accuracy and energetic

agreement, followed by GAFF.MOD and GAFF.

• In chloroform solution, GAFF.MOD-RESP/CHCl3 is the model that pre-

dicts better sampling accuracy when ωb97X/6-31G*/PCM is used as the

reference, significantly outperforming ANI-2x-RESP/CHCl3. The decrease

in performance of the ANI-2x potential when used in a hybrid NNP/MM

model suggests significant imbalances between the ligand-solvent inter-

molecular and the ligand intramolecular interactions. Hence, the use of

ANI-2x in an NNP/MM framework should be undertaken with caution

due to the potential inconsistencies that may arise by directly combining

available LJ 12-6 parameters with this NNP. Owing to their internal con-

sistency, conventional and optimally tuned FFs remain the best models

available for simulating condensed-phase systems.

• The NMR analysis revealed that MP2/6-311++G(2d,p)/PCM is the level

of theory that best reproduces the experimental h1 JOH· · · F coupling con-

stants, followed by GAFF-RESP/CHCl3. These results suggest that MP2/6-

311++G(2d,p) is closer to the experiment than ωb97X/6-31G*, and that

GAFF is the model that best reproduces the experimental data. Further-

more, GAFF-RESP/CHCl3 is the model that best reproduces the MP2/6-

311++G(2d,p)/PCM data, and GAFF.MOD-RESP/CHCl3 the model that

best reproduces the ωb97X/6-31G*/PCM data.

Although all our conclusions regarding the work of Chapter 7 are based on

the particular set of γ-flurohydrins considered in it, they still provide some

valid guidelines for future development of FFs and ML potentials. For example,

an improved version of ANI-2x that addresses some of its current weaknesses



231

would be welcome. Furthermore, in terms of future work, it is clear that for

NNP/MM models to become routinely used in condensed-phase simulations,

sets of nonbonded MM parameters consistent with NNPs need to be derived so

as not to compromise the accuracy of this hybrid model.

Given the complexity and scope of the problems addressed in this thesis, the

results presented here are unable to provide complete or definitive solutions.

Even so, we believe the outcomes of this project may have implications in

different areas of chemistry and biology, especially for those interested in the

modelling of small organic molecules in the gas phase and solution. The methods

and software developed are available to be used and further developed by the

scientific community. Moreover, the data, discussions, and conclusions may also

provide insights to guide future research efforts that attempt to develop methods

for efficient and accurate simulation of the conformational landscape of ligands.
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Appendix A

Appendix of Chapter 5

A.1 Norfloxacin
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Figure A.1: SCC-DFTB-D3 PES of the C5-N4-C2-C1 (φ) vs. C2-C6-N4-C5 (ψ) 2D
dihedral scan for the norfloxacin analogue fragment. The red stars correspond
to the minimum energy structure for a given φ dihedral angle value.
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Figure A.2: Relative errors of the MM FFs (GAFF, uniform, Boltzmann and
non-Boltzmann weightings) with respect to the target (SCC-DFTB-D3) PES of
the C5-N4-C2-C1 (φ) vs. C2-C6-N4-C5 (ψ) 2D dihedral scan. The MM-relaxed
approach was employed to optimise the FFs.
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Figure A.3: Relative errors of the MM FFs (GAFF, uniform, Boltzmann and
non-Boltzmann weightings) with respect to the target (SCC-DFTB-D3) PES of
the C5-N4-C2-C1 (φ) vs. C2-C6-N4-C5 (ψ) 2D dihedral scan. The QM-relaxed
approach was employed to optimise the FFs
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GAFF Uniform Boltzmann non-Boltzmann

SciPy SLSQP solution

V1 0.00 -0.89 / -2.31 -0.61 / -1.47 -0.56 / -2.33

V2 17.57 11.56 / 12.04 9.97 / 10.75 11.54 / 12.83

V3 0.00 -4.40 / -2.24 -2.73 / -6.71 -4.21 / 0.15

V4 0.00 -0.47 / 1.14 -1.48 / -0.25 -0.82 / 0.87

V5 0.00 0.49 / -0.28 -1.45 / -4.00 0.49 / 0.24

V6 0.00 0.30 / 0.13 1.37 / 1.24 0.31 / 0.62

LLS solution

V1 0.00 -0.89 /-2.31 -0.61 / -1.48 -

V2 17.57 11.56 /12.04 9.97 / 10.75 -

V3 0.00 -4.40 /-2.24 -2.72 / -6.71 -

V4 0.00 -0.47 / 1.14 -1.48 / -0.26 -

V5 0.00 0.49 /-0.28 -1.45 / -4.00 -

V6 0.00 0.30 / 0.13 1.37 / 1.24 -

Table A.1: Dihedral force constants (kJ mol-1) derived using the MM-
relaxed/QM-relaxed approach. The fittings were performed using the SCC-
DFTB-D3 PES.
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Figure A.4: Relative errors of the MM FFs (GAFF, uniform, Boltzmann and
non-Boltzmann weightings) with respect to the target (SCC-DFTB-D3) PES of
the C5-N4-C2-C1 (φ) vs. C2-C6-N4-C5 (ψ) 2D dihedral scan. The MM PESs
used to calculate the relative errors were obtained by MM optimisation of the
QM-relaxed PES of figure A.3.

ortho-H ortho-F

Figure A.5: Templates used to perform the search for crystal structures in
ConQuest.
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Figure A.6: Polar histograms (in frequency) for the C5-N4-C2-C1 dihedral of
norfloxacin (ortho-F) and of the norfloxacin analogue (ortho-H) used in the
paper. The crystal structures used in this plot were obtained from the CSD.2

N corresponds to the number of hits obtained in ConQuest after pruning all
structures that were not published in peer-reviewed journals. Ortho-F and
ortho-H have similar torsional preferences.
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A.2 Aspirin

Figure A.7: Configurational distributions of the O10-H11 distance vs. the
C5-C6-O7-C8 dihedral angle of aspirin obtained from MD simulations using
SCC-DFTB-D3, the GAFF, and the GAFF.MOD FFs. The latter were derived em-
ploying Boltzmann, non-Boltzmann, and uniform weighting, with a weighting
temperature of 300 K, and a regularisation strength of α = 1.0. No symmetry
breaking of the pair of dihedrals C5-C6-O7-C8 and C4-C6-O7-C8 was enforced
during the optimisation. The data set used in the reparameterisations was the
SCC-DFTB-D3 configurational ensemble. All represented distributions contain
10000 configurations.
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Figure A.8: Configurational distributions of the O10-H11 distance vs. the
C5-C6-O7-C8 dihedral angle of aspirin obtained from MD simulations using
SCC-DFTB-D3, the GAFF, and the GAFF.MOD FFs. The latter were derived
employing non-Boltzmann weighting, with a weighting temperature of 300
K and using different regularisation strengths (α = (1.0, 0.1, 0.01, 0.001)). The
data set used in the reparameterisation was the SCC-DFTB-D3 configurational
ensemble. All represented distributions contain 10000 configurations.
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Figure A.9: Configurational distributions of the O10-H11 distance vs. the
C5-C6-O7-C8 dihedral angle of aspirin obtained from MD simulations using
SCC-DFTB-D3, the GAFF, and the GAFF.MOD FFs. The latter were derived
employing non-Boltzmann weighting, with a weighting temperature of 1000
K and using different regularisation strengths (α = (1.0, 0.1, 0.01, 0.001)). The
data set used in the reparameterisation was the SCC-DFTB-D3 configurational
ensemble. All represented distributions contain 10000 configurations.
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Figure A.10: Configurational distributions of the O10-H11 distance vs. the
C5-C6-O7-C8 dihedral angle of aspirin obtained from MD simulations using
SCC-DFTB-D3, the GAFF, and the GAFF.MOD FFs. The latter were derived
employing non-Boltzmann weighting, with a weighting temperature of 2000
K and using different regularisation strengths (α = (1.0, 0.1, 0.01, 0.001)). The
data set used in the reparameterisation was the SCC-DFTB-D3 configurational
ensemble. All represented distributions contain 10000 configurations.
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Figure A.11: Configurational distributions of the O10-H11 distance vs. the
C5-C6-O7-C8 dihedral angle of aspirin obtained from MD simulations using
SCC-DFTB-D3, the GAFF, and the GAFF.MOD FFs. The latter were derived
employing Boltzmann weighting, with weighting temperatures of 300, 500,
1000, and 2000 K and using a regularisation strength of α = 1.0. The data set
used in the reparameterisation was the SCC-DFTB-D3 configurational ensemble.
All represented distributions contain 10000 configurations.
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Figure A.12: Configurational distributions of the O10-H11 distance vs. the
C5-C6-O7-C8 dihedral angle of aspirin obtained from MD simulations using
SCC-DFTB-D3, the GAFF, and the GAFF.MOD FFs. The latter were derived
employing uniform weighting, with different regularisation strengths (α =
(1.0, 0.1, 0.01, 0.001)). The data set used in the reparameterisation was the SCC-
DFTB-D3 configurational ensemble. All represented distributions contain 10000
configurations.
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Figure A.13: Comparison of the SCC-DFTB-D3, GAFF, and GAFF.MOD (repa-
rameterised FF) dihedral energy profiles for the C5-C6-O7-C8, C6-C4-C2-O1,
C6-C4-C2-O3, C4-C2-O3-H11, and O1-C2-O3-H11 dihedral angles. The GAFF
curves correspond to MM-relaxed energy profiles. The GAFF.MOD FF was ob-
tained by employing the MM-relaxed approach with non-Boltzmann weighting
(T=500.0 K, α = 1.0). The parameters of the dihedrals represented in this Figure
were concomitantly optimised along those of the C4-C6-O7-C8 dihedral using
the ParaMol’s automatic soft dihedral parameterisation task.
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Figure A.14: Comparison of the SCC-DFTB-D3, GAFF, and GAFF.MOD (repa-
rameterised FF) dihedral energy profiles for the C5-C6-O7-C8, C6-C4-C2-O1,
C6-C4-C2-O3, C4-C2-O3-H11, and O1-C2-O3-H11 dihedral angles. The GAFF
curves correspond to MM-relaxed energy profiles. The GAFF.MOD FF was
obtained by employing the MM-relaxed approach with uniform weighting
(α = 1.0). The parameters of the dihedrals represented in this Figure were
concomitantly optimised along those of the C4-C6-O7-C8 dihedral using the
ParaMol’s automatic soft dihedral parameterisation task.

A.3 Caffeine

In every iteration of the adaptive parameterisation of caffeine to the SCC-DFTB-

D3 level of theory, 100 new configurations separated 0.5 ps from each other were

generated and added to the previous ones. These configurations were obtained
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using Langevin dynamics with a friction coefficient of 2 ps-1, a time-step of 1

fs, and a temperature of 300 K. The adaptive parameterisation procedure was

deemed to be converged when the root-mean-square deviation of the parameters

between two successive iterations was less than 10−4. The adaptive parameteri-

sation performed 22 iterations, corresponding to a total of 2200 structures in the

last iteration.

The plots of the RMSD of the parameters and the components of the objective

function as a function of the iteration number are shown in figure A.15. The

plot that shows the correlation between the SCC-DFTB-D3 energies and the MM

energies is represented in figure A.16. The atomic forces errors are shown in the

molecular structures of figure A.17.
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Figure A.15: Top panel: Plot of the values of each term included in the objective
function at the beginning (dashed lines) and end (solid lines) of each iteration.
Bottom panel: Plot of the RMSD of the parameters as a function of the iteration
number.
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Figure A.16: Correlation between the QM energies and the MM energies of
caffeine before and after the adaptive reparameterisation to the SCC-DFTB-D3
level of theory. Each data sets consists of 1000 configurations generated though
a short MD simulation that used the respective FF. The RMSE of the energy
improved from 17.04 kJ mol-1 (GAFF) to 7.80 kJ mol-1 after reparameterisation
(GAFF.MOD).
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Figure A.17: Atomic force errors before (GAFF, left) and after (GAFF.MOD,
right) reparameterisation to the SCC-DFTB-D3 level of theory. The average
RMSE of the atomic forces improved from 124.67 kJ mol-1 Å-1 atom-1 (GAFF) to
57.86 kJ mol-1 Å-1 atom-1 after reparameterisation (GAFF.MOD).
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A.4 ParaMol’s soft dihedral parameterisation algo-

rithm

Identify all rotatable
bonds.

Pick a rotatable
bond that has not

been scanned.

Has this rotatable bond
type been scanned?

Identify all dihedrals
associated with this

rotatable bond.

Pick a dihedral that
has not been
scanned yet.

Has this dihedral type been
scanned?

Perform 1D relaxed
scan.

Have all dihedrals of this
rotatable bond been 

scanned?

Have all rotatable bonds
been scanned?

END

Perform optimization of
all parameters of the

scanned dihedral types

START

Figure A.18: Flowchart representing the workflow of the ParaMol’s built-in task
that automatically identifies and optimises soft dihedrals. The green arrows
denote conditionals for which the evaluated condition is true, whereas the red
arrows denote conditionals for which the evaluated condition is false.



249

Appendix B

Appendix of Chapter 6

B.1 Phase space overlap metrics

In the phase space overlap calculations of Chapter 6, phase space is employed as

a synonym of configuration space as only situations that compare total energy

distributions at the same temperature are considered, making the momentum

coordinates irrelevant. To confirm that the momentum coordinates do not affect

these calculations, let us first consider the metric defined in equation (6.19). Ω is

independent of the kinetic energy because

∆EQM→MM
QM = EMM

QM − EQM
QM

= UMM
QM + KQM −UQM

QM − KQM

= UMM
QM −UQM

QM

(B.1)

in which KQM was included in EMM
QM and EQM

QM as both total energies consider

frames sampled during a QM MD simulation, though with potential energies

evaluated at the QM and MM levels of theory, respectively (an analogous deriva-

tion can be done for EMM→QM
MM ).

Furthermore, the metric defined in equation (6.20) is also independent of the

kinetic energy whenever comparing total energy distributions of NVT ensembles
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at the same temperature. This is so because, by splitting the total energy (E) into

its kinetic energy (K) and potential energy (U) components, we obtain

ΣMM,QM = 2
∫ +∞

−∞
dEQM ρQM

QM(EQM)
∫ EQM

−∞
dE′QM ρQM

MM(E′QM)

= 2
∫ +∞

−∞
dUQMdKQM ρQM

QM(UQM)ρQM
QM(KQM)× · · ·

· · · ×
∫ UQM+KMM

−∞
dU′QMdK′MM ρQM

MM(U′QM)ρQM
MM(K′MM)

= 2
∫ +∞

−∞
dKQM ρQM

QM(KQM)
∫ KMM

−∞
dK′MM ρQM

MM(K′MM)× · · ·

· · · ×
∫ +∞

−∞
dUQM ρQM

QM(UQM)
∫ UQM

−∞
dU′QM ρQM

MM(U′QM)

(B.2)

in which
∫ +∞
−∞ dKQM ρQM

QM(KQM)
∫ KMM
−∞ dK′MM ρQM

MM(K′MM) = 1 because two ki-

netic energy distributions of the same system at the same temperature totally

overlap (they are independent of the level of theory used for the potential energy,

depending only on the temperature if the same system is regarded). Therefore,

we have that

ΣMM,QM = 2
∫ +∞

−∞
dUQM ρQM

QM(UQM)
∫ UQM

−∞
dU′QM ρQM

MM(U′QM) (B.3)

which demonstrates the independence of this metric on the kinetic energy.
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B.2 Self-parameterising nMC-MC
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Figure B.1: Convergence of the self-parameterising nMC-MC calculation for
octahydrotetracene. Top panel: Plot of the values of each term included in
the objective function at the beginning (dashed lines) and end (solid lines) of
each iteration. XE corresponds to the potential energy term, XF to the forces
term, and θL2 to the regularisation term. Bottom panel: Plot of the RMSD of the
parameters as a function of the iteration number.
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B.3 Acceptance rates
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Figure B.2: Comparison between the nMC-MC acceptance rates obtained for
FFs reparameterised using data sets containing structure sampled at either
300 K or 500 K. The FFs used to calculate the acceptance rates were derived
employing non-Boltzmann weighting without any regularisation. The error
bars correspond to the standard deviation of the results of 4 different nMC-MC
samplers. Each sampler performed a total of 2× 105 nMC-MC sweeps.
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Figure B.3: hMC acceptance rates for the set of molecules used in Chapter 6.
The FFs were derived employing uniform weighting with (dark blue) or without
(light blue) L2 regularisation. The training data set contained configurations
sampled at 500 K. The errors bars correspond to the standard deviation of the
results of 4 different nMC-MC samplers. Each sampler performed a total of
2× 105 nMC-MC sweeps.
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Figure B.4: hMC acceptance rates for the set of molecules used in Chapter 6.
The FFs were derived employing non-Boltzmann weighting with (dark blue) or
without (light blue) L2 regularisation. The training data set contained configu-
rations sampled at 500 K. The errors bars correspond to the standard deviation
of the results of 4 different nMC-MC samplers. Each sampler performed a total
of 2× 105 nMC-MC sweeps.
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B.4 Configurational distributions
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Figure B.5: Top panel: Distribution of the C5-C4-N3-C1 dihedral of acetanilide
as obtained in SCC-DFTB-D3 MD and nMC-MC simulations. Lower panel:
Distribution of the C5-C4-N3-C1 dihedral of acetanilide as obtained in MD
simulations using the original GAFF and the non-Boltzmann-weighted L2-
regularised BAT-LJQ FF. The SCC-DFTB-D3, GAFF, and BAT-LJQ MD were
simulated during 10 ns (snapshots collected every 1 ps), and the nMC-MC
sampler performed a total of 2 × 106 MC sweeps. The temperature of the
simulations was 300 K.
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Figure B.6: Configurational distributions of the C2-C1-C4-C5 vs. C3-C1-C4-
C6 dihedrals for biphenyl. The SCC-DFTB-D3 MD was simulated during 10
ns (snapshots collected every 1 ps), and the GAFF and BAT-LJQ MD were
simulated during 100 ns (snapshots collected every 10 ps). The nMC-MC
sampler performed a total of 4 × 106 MC sweeps. The temperature of the
simulations was 300 K.
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Figure B.7: Configurational distributions of the C4-C2-O1-C5 vs. C2-O1-C5-C6
dihedrals for diphenyl ether. The SCC-DFTB-D3 MD was simulated during
10 ns (snapshots collected every 1 ps), and the GAFF and BAT-LJQ MD were
simulated during 1 µs (snapshots collected every 100 ps). The nMC-MC sampler
performed a total of 2× 106 MC sweeps. The temperature of the simulations
was 500 K. The distributions at 300 K are not show as they were very far from
convergence.
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Figure B.8: Top panel: Distribution of the C7-C5-S2-N1 dihedral of sulfanil-
amide as obtained in SCC-DFTB-D3 MD and nMC-MC simulations. Lower
panel: Distribution of the C7-C5-S2-N1 dihedral of sulfanilamide as obtained
in MD simulations using the original GAFF and the non-Boltzmann-weighted
L2-regularised BAT-LJQ FF. The SCC-DFTB-D3 and BAT-LJQ MD were sim-
ulated during 10 ns (snapshots collected every 1 ps), and the GAFF MD was
simulated during 1 µs (snapshots collected every 100 ps). The nMC-MC sampler
performed a total of 2923640 MC sweeps. The temperature of the simulations
was 300 K.
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Appendix C

Appendix of Chapter 7

C.1 Supporting Figures
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Figure C.1: Scatter plots of the relative conformer energies (∆∆E) versus the
RMSD of atomic positions. Each point was obtained by performing a geometry
optimisation using GAFF, GAFF.MOD, or ANI-2x, starting from all QM min-
ima within 12.552 kJ mol-1 (3 kcal mol-1) from the global minimum. The QM
reference is the MP2/6-311++G(2d,p) level of theory.
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Figure C.2: Populations in the gas phase of the conformers with IMHBs.
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Figure C.3: Top panel: Distributions of the hydrogen bond (HB) lengths as
obtained from the ANI-2x-RESP/CHCl3 MD simulations (solid lines), and HB
lengths of the geometries optimised at ωB97X/6-31G*/PCM (dashed lines).
Bottom panel: Distributions of the hydrogen bond (HB) lengths as obtained
from the GAFF-RESP/CHCl3 MD simulations (solid lines), and HB lengths of
the geometries optimised at MP2/6-311++G(2d,p)/PCM (dashed lines). Only
conformers with IMHBs are represented.
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Figure C.4: Experimental and ANI-2x radial distribution functions (RDFs) of
bulk chloroform. The experimental data is reproduced from Refs. 5 and 6.
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[289] M. Dračı́nský, H. M. Möller and T. E. Exner, J. Chem. Theory Comput., 2013,

9, 3806–3815.

[290] D. Wei, H. Guo and D. R. Salahub, Phys. Rev. E, 2001, 64, 011907.

[291] S. Zivanovic, F. Colizzi, D. Moreno, A. Hospital, R. Soliva and M. Orozco,

J. Chem. Theory Comput., 2020, 16, 6575–6585.



REFERENCES 285

[292] S. Duane, A. Kennedy, B. J. Pendleton and D. Roweth, Phys. Lett. B, 1987,

195, 216–222.

[293] E. Akhmatskaya, N. Bou-Rabee and S. Reich, J. Comput. Phys., 2009, 228,

2256–2265.

[294] C. R. Sweet, S. S. Hampton, R. D. Skeel and J. A. Izaguirre, J. Chem. Phys.,

2009, 131, 174106.

[295] L. D. Gelb, J. Chem. Phys., 2003, 118, 7747–7750.

[296] R. Iftimie, D. Salahub, D. Wei and J. Schofield, J. Chem. Phys., 2000, 113,

4852.

[297] S. K. Burger, P. W. Ayers and J. Schofield, J. Comput. Chem., 2014, 35,

1438–1445.

[298] C. Sampson, T. Fox, C. S. Tautermann, C. Woods and C.-K. Skylaris, J. Phys.

Chem. B, 2015, 119, 7030–7040.

[299] C. Cave-Ayland, C.-K. Skylaris and J. W. Essex, J. Chem. Theory Comput.,

2017, 13, 415–424.

[300] J. Michel, R. D. Taylor and J. W. Essex, J. Chem. Theory Comput., 2006, 2,

732–739.

[301] J. Leiding and J. D. Coe, J. Chem. Phys., 2016, 144, 174109.

[302] A. Mittal, N. Lyle, T. S. Harmon and R. V. Pappu, J. Chem. Theory Comput.,

2014, 10, 3550–3562.

[303] A. Mittal, A. S. Holehouse, M. C. Cohan and R. V. Pappu, J. Mol. Biol., 2018,

430, 2403–2421.

[304] S. Ito and Q. Cui, J. Chem. Phys., 2020, 153, 044115.

[305] P. S. Hudson, S. Boresch, D. M. Rogers and H. L. Woodcock, J. Chem. Theory

Comput., 2018, 14, 6327–6335.



286 REFERENCES

[306] J. D. Coe, T. D. Sewell and M. S. Shaw, J. Chem. Phys., 2009, 131, 074105.

[307] J. D. Coe, T. D. Sewell and M. S. Shaw, J. Chem. Phys., 2009, 130, 164104.

[308] P. Bandyopadhyay, Chem. Phys. Lett., 2013, 556, 341–345.

[309] J. Leiding and J. D. Coe, J. Chem. Phys., 2014, 140, 034106.

[310] I. Andricioaei and J. E. Straub, Phys. Rev. E, 1996, 53, R3055–R3058.

[311] N. E. Jackson, M. A. Webb and J. J. de Pablo, J. Chem. Phys., 2018, 149,

072326.

[312] Y. Nagai, M. Okumura, K. Kobayashi and M. Shiga, Phys. Rev. B, 2020, 102,

041124.

[313] R. B. Jadrich and J. A. Leiding, J. Phys. Chem. B, 2020, 124, 5488–5497.

[314] P. Bandyopadhyay, J. Chem. Phys., 2005, 122, 091102.

[315] A. Nakayama, N. Seki and T. Taketsugu, J. Chem. Phys., 2009, 130, 024107.

[316] S. Bulusu and R. Fournier, J. Chem. Phys., 2012, 136, 064112.

[317] L. D. Gelb and T. N. Carnahan, Chem. Phys. Lett., 2006, 417, 283–287.

[318] A. Warshel and M. Levitt, J. Mol. Biol., 1976, 103, 227–249.

[319] V. Tomar, J. Appl. Phys. (Melville, NY, U. S.), 2007, 101, 103512.

[320] G. Marsaglia and T. A. Bray, SIAM Rev., 1964, 6, 260–264.

[321] B. Mehlig, D. W. Heermann and B. M. Forrest, Phys. Rev. B, 1992, 45,

679–685.

[322] W. C. Swope, H. C. Andersen, P. H. Berens and K. R. Wilson, J. Chem. Phys.,

1982, 76, 637–649.

[323] L. Verlet, Phys. Rev., 1967, 159, 98–103.

[324] Y. Fang, J. M. Sanz-Serna and R. D. Skeel, J. Chem. Phys., 2014, 140, 174108.



REFERENCES 287

[325] J. A. Izaguirre and S. S. Hampton, J. Comput. Phys., 2004, 200, 581–604.

[326] D. Wu and D. A. Kofke, J. Chem. Phys., 2005, 123, 054103.

[327] D. Wu and D. A. Kofke, J. Chem. Phys., 2005, 123, 084109.

[328] D. Kraft, A Software Package for Sequential Quadratic Programming, Wiss.

Berichtswesen d. DFVLR, 1988.

[329] J. Wang, W. Wang, P. A. Kollman and D. A. Case, J. Mol. Graphics Modell.,

2006, 25, 247–260.

[330] V. T. Lim, D. F. Hahn, G. Tresadern, C. I. Bayly and D. L. Mobley,

F1000Research, 2020, 9, 1390.

[331] J. C. Brand, D. R. Williams and T. J. Cook, J. Mol. Spectrosc., 1966, 20,

359–380.

[332] M. Mukherjee, B. Bandyopadhyay, P. Biswas and T. Chakraborty, Indian J.

Phys., 2012, 86, 201–208.

[333] C. W. Bock, P. George and M. Trachtman, Theor. Chim. Acta, 1986, 69,

235–245.

[334] K. C. Gross and P. G. Seybold, Int. J. Quantum Chem., 2000, 80, 1107–1115.

[335] P. Gkeka, G. Stoltz, A. Barati Farimani, Z. Belkacemi, M. Ceriotti, J. D.

Chodera, A. R. Dinner, A. L. Ferguson, J.-B. Maillet, H. Minoux, C. Peter,

F. Pietrucci, A. Silveira, A. Tkatchenko, Z. Trstanova, R. Wiewiora and
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