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Abstract

Counter-flow configurations in a confined channel flow provide an efficient frame-

work to study high intensity turbulent mixing processes. In a previous study

(Physical Review Fluids, 6(9), p.094603), a wall-bounded counter-flow turbu-

lent channel configuration was presented as an effective framework for addressing

certain challenges related to the study of compressibility effects on turbulence

as an alterntive to free shear layer and Poiseuille/Couette type flows. Here, the

previous direct numerical simulations are extended to a higher Mach number

(M = 0.7) to quantify direct and indirect effects of compressibility. It is found

that the configuration is able to produce large numbers of embedded shocklets,

leading to significant asymmetry in probability density functions of dilatation.

Reducing the Prandtl number from 0.7 to 0.2 increases the compressibility effect

further by reducing the bulk heating in the channel. A peak turbulent Mach

number close to unity is obtained, for which the contribution of the dilatational

dissipation to the total dissipation is nevertheless found to be limited to ∼ 6%.

Indirect effects of compressibility are much larger, with changes of up to 40% in

Favre normal stresses, despite the mean flow and shear stress being almost unaf-

fected by compressibility in this configuration. Given the inflectional nature of
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the turbulent mean flow it is also interesting to identify large structures. Spec-

tral Proper Orthogonal Decomposition (SPOD) reveals a full spectrum with a

slow decay of energy with mode number. Mode shapes are three-dimensional

with the low frequencies displaying elongated streaks in the velocity field at the

channel centre plane.

Keywords: Counter-flow, Compressible turbulence, Shocklet, Direct numerical

simulation, SPOD, Modal analysis, OpenSBLI

Nomenclature

ac local speed of sound

∆x+,∆y+,∆z+ normalised cell sizes in different directions

δij Kronecker delta

ϵD dilatational viscous dissipation5

ϵS solenoidal viscous dissipation

ϵT total viscous dissipation

γ ratio of specific heats

⟨⟩ averages over the homogeneous spatial directions and time

⟨⟩b additional bulk average over y10

⟨M⟩ mean Mach number

µ dynamic viscosity

ϕ an arbitrary flow quantity

ϕ′′ turbulent fluctuation of an arbitrary with respect to the Favre average

ϕ′ turbulent fluctuation of an arbitrary flow quantity15

ρ density
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τt time scale

τij viscous stress tensor

θ dilatation

ỹ coordinate in the y direction relative to the wall20

ỹ+ normalised wall distance

ζ dilatation value threshold

{ϕ} Favre average of an arbitrary flow quantity

b subscript b denotes bulk average

p subscript p denotes the peak value of a flow quantity25

wall subscript wall denotes the value at the wall

a coefficient in the forcing term

c0 maximum amplitude of forcing term

cj forcing term

E total energy30

f frequency

H channel half height

M Mach number set in the simulation

Mt turbulent Mach number

p pressure35

Pr Prandtl number

qj heat flux

Re Reynolds number set in the simulation
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T temperature

t time40

u velocity component in the x direction

ui velocity component in the ith direction

u′′
i u

′′
j Reynolds stresses

uτ friction velocity

u∗
ref reference velocity, with ∗ denoting a dimensional quantity here and45

elsewere

v velocity component in the y direction

w velocity component in the z direction

xj spatial coordinate in the jth direction (j = 1, 2, 3 correspond to x, y, z

respectively)50

1. Introduction

The effects of compressibility on the turbulent characteristics of fluid flows

can be complex and significant. Such effects are typically manifested through,

among others, reduction in turbulence production, acoustic/entropy oscilla-

tions, shear layer growth suppression, shock formation and non-linear shock-55

turbulence interactions [1, 2, 3, 4]. Many aspects of the complex interactions

between compressibility effects and turbulence structures are still not thor-

oughly understood. Recent studies of shocklets include [5], in which it was

shown that such flow discontinuities were present for turbulent Mach numbers

of Mt ≥ 0.7. These shocklets were shown to modify sound generation mecha-60

nisms and vortex dynamics. Traditionally, free shear layers (such as jets, wakes

and mixing layers) and Poiseuille/Couette type flows (such as channel flows)

have been utilised to study compressible turbulence [4]. Spatially-developing
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mixing layer simulations are computationally expensive and sensitive to far-field

and inflow/outflow boundary conditions [6, 7]. However, basic compressibility65

effects can be captured in temporal simulations, as discussed by [8]. One draw-

back of the temporal approach is that the shear layer thickens continually over

time and computational grids suitable for later times are inefficient during the

early development stages of the flow. On the other hand, Poiseuille/Couette

type flows are relatively computationally efficient [9, 10, 11] and can achieve70

high Reynolds numbers at a much lower cost compared to what is typically

required for spatially-developing boundary layers [10]. However, conventional

channel flows have limitations in terms of the achievable fluctuating Mach num-

ber due to the increase in mean flow temperature and the associated speed of

sound, without the use of artificial heat sinks. A counter-flow configuration can75

potentially overcome the barriers of the above-mentioned flows.

Counter-flows are recognized as highly efficient configurations for mixing,

thanks to the maintenance of high turbulence intensities [12, 13, 14]. Moreover,

they have been utilised in the development of flow control mechanisms, such

as thrust vectoring applications [15, 16, 17], as well as low-emission combus-80

tors [18]. The use of counter-flow configurations for fundamental flow stud-

ies was first recognised by Humphrey and Li [12] and later by various re-

searchers, including most notably Forliti et al. [14] who concluded that locally

unstable flows trigger a global instability in planar counter-flow shear layers.

Previously, we introduced [19] a wall-bounded counter-flow turbulent channel85

configuration, amenable to Direct Numerical Simulation (DNS), and demon-

strated that it could overcome the barriers associated with free shear layers and

Poiseuille/Couette type flows. Specifically, it retains a statistically stationary

one-dimensional solution, in common with conventional channel flows, but con-

tains an inflectional mean flow, representative of free shear layers. The counter-90

flow channel has periodic streamwise and spanwise boundaries and isothermal

no-slip walls and is driven by a mean pressure gradient introduced by a hyper-

bolic tangent forcing term. The unstable base flow of the proposed counter-flow

is more relevant to the free shear layers found in practical applications, such

5



as jets, wakes, and mixing layers, compared to another version of channel flow95

that produces counter-flows of the kind considered here with a linearly stable

base flow, as discussed by Waleffe [20]. It was previously shown [19] that when

the peak local mean Mach number reached ∼ 0.55, a turbulent Mach number of

∼ 0.6 could be obtained, indicating that such counter-flow configuration could

potentially be useful for studying compressibility effects on turbulence.100

The previous study [19] provided insights into flow dynamics of the counter-

flow configuration up to a Mach number of M = 0.4 (defined based on a

reference velocity deduced from the forcing as discussed in the next section).

However, this maximum Mach number was constrained by the necessity of a

shock-capturing method for higher values and the associated increase in compu-105

tational cost. To address this limitation, the primary objective in this study is to

identify strong compressibility effects in counter-flow channels. We accomplish

this by enhancing our numerical treatment in the vicinity of flow discontinu-

ities with an efficient high-order characteristic-based shock-capturing approach

[21, 22], thereby extending the previous DNS investigation to a Mach number110

of M = 0.7. This extension allows us to capture the formation and evolution of

shocklets, and their interactions with turbulence. A secondary objective is to

deepen our understanding of the characteristics and interactions of these highly

three-dimensional transient shocklets with the turbulent scales. To this end, we

utilise Spectral Proper Orthogonal Decomposition (SPOD) [23], a data-driven115

technique designed to analyse the spatio-temporal characteristics of a flow field,

as a tool for modal analysis of the high-Mach counter-flow field.

The SPOD methodology provides a frequency-resolved modal decomposition

[24, 25], enabling the extraction of fluid dynamical structures [26, 24, 27]. Most

of these applications have been to incompressible flow, but SPOD has also re-120

cently been applied to transonic aerofoil buffet flows where a global instability

is active[28]. The present flow is a new application for SPOD, in that it is an

internal compressible turbulence problem. The temporal nature of the flow and

the presence of an inflection point in the mean flow suggest that energy is fed

into large-scale structures by the mean flow instability and it is of interest to125
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check with SPOD the organisation of such structures and whether any partic-

ular frequencies/wavenumbers are preferred. SPOD decomposes the flow field

into orthogonal modes, each representing a distinct pattern of variation, ranked

according to their significance in the frequency domain. The first mode cap-

tures the greatest variability, with subsequent modes progressively representing130

smaller amounts of variability [23, 29].

The outline of this paper is as follows: in Section 2, the governing equa-

tions, numerical methods, computational framework and problem setup are in-

troduced. In Section 3, first the key mean flow and turbulence statistics are

discussed. Then, the formation, structure and evolution of the transient shock-135

lets in highly compressible counter-flows are studied and quantified in Section

3.2. Finally, SPOD analysis of a high-Mach counter-flow case is discussed in

section 3.4 . Further discussion and final conclusions are drawn in Section 4.
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2. Methodology

2.1. Governing Equations140

The dimensionless governing equations of a compressible Newtonian fluid

flow, that conserve mass, momentum and energy, are solved as [19]:

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0,

∂ρui

∂t
+

∂

∂xj
(ρuiuj + pδij − τij) + cjδij = 0,

∂ρE

∂t
+

∂

∂xj
(ρEuj + ujp+ qj − uiτij) + cjuj = 0,

(1)

where ρ represents the density, ui(i = 1, 2, 3) denotes the velocity component

(u, v and w, respectively) in the ith direction (x, y and z, respectively), E

is the total energy, and p and δ denote the pressure and the Kronecker delta,145

respectively. The forcing term cj drives the flow. In the x direction, its value

is given by c1 = −c0 tanh(ay), while it is zero in all other directions. The

amplitude of the forcing term is set as c0 = 1. The bulk-averaged density ⟨ρ∗⟩b
is used as a reference, where ∗ denotes a dimensional quantity and angle brackets

denote averages over the homogeneous spatial directions (x and z) and time t.150

The characteristic length is the channel half height H∗. The reference velocity

is deduced from the forcing as u∗
ref =

√
c∗0H

∗/⟨ρ∗⟩b. A reference timescale

is defined by H∗/u∗
ref , which is subsequently used to form the dimensionless

frequency f .

The viscous stress tensor (τij) and the heat flux (qj) are defined as:155

τij =
µ

Re
(
∂ui

∂xj
+

∂uj

∂xi
− 2

3

∂uk

∂xk
δij), (2)

qj =
−µ

(γ − 1)M2PrRe

∂T

∂xj
, (3)

where µ denotes the dynamic viscosity, T is the temperature, γ is the ratio of

specific heats with a value of γ = 1.4 here and Pr is the Prandtl number. Re

and M denote the Reynolds and Mach numbers set in the simulation, based
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on the reference velocity together with the channel half height and the wall

temperature and viscosity. The temperature-dependent dynamic viscosity is160

calculated via a power law as µ = T 0.7.

Equivalent driving forces are applied in opposite directions to the upper

(y > 0) and lower (y < 0) halves of the domain (−1 ≤ y ≤ 1), which con-

sequently result in the formation of a shear-forcing or counter-flow condition.

The coefficient a in the hyperbolic tangent forcing term is positive with a value165

of a = 100. The total energy E, is related to the pressure p and temperature

T of the perfect gas as p = (γ − 1)(ρE − ρuiui/2) = ρT/(γM2). where the

temperature is normalised with the wall temperature.

A 4th-order non-dissipative finite-difference central scheme is used to dis-

cretise the governing equations and grid metrics. Convective terms are re-170

cast in a quadratic split formulation [30] to improve numerical stability and

reduce aliasing errors. A 4th-order one-sided boundary scheme [31] is used

at non-periodic boundaries to maintain consistent spatial discretisation order

throughout the domain. Viscous terms are solved in Laplacian form by dedi-

cated second-derivative operators to avoid odd-even decoupling phenomena[32].175

A 5th-order Global Lax-Friedrichs (GLF) Weighted Essentially Non-Oscillatory

(WENO) filter-step method [21] is applied to the flow field after the comple-

tion of each full time-step to stabilise the simulation in the presence of shocklets.

The density field is corrected if necessary, after applying the filtering to maintain

the conservation of mass. A low-storage three-stage explicit 3rd order Runge-180

Kutta scheme [33] is used to advance the solution in time. The time-steps,

as outlined in Table 1, were determined empirically, but can be compared with

predictions based on combined convective and viscous Courant–Friedrichs–Lewy

(CFL) conditions, as discussed in [34]. For example, in the counter-flow case

with the strongest compressibility effects (M = 0.7 and Pr = 0.2), the time-step185

employed was required to be approximately 7.5 times smaller than the predicted

analytical time-step. This indicates that this CFL estimate is not accurate for

highly compressible turbulence. Additionally, boundary condition implementa-

tions, grid metrics, shock sensors, and differences in the stability characteristics
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of numerical scheme formulations can all contribute to variations seen in time-190

step requirements [32, 35]. The work of [36] reported a factor of two difference

in permissible time-step for compressible turbulent channel flows depending on

whether or not staggered grid locations were used for placement of the walls.

All of the simulations presented in this work were computed in OpenSBLI

2.0, a Python-based automatic source code generation and parallel computing195

framework for compressible fluid dynamics on structured meshes [37]. OpenS-

BLI utilises symbolic algebra to automatically generate C/C++ codes for the

Oxford Parallel library for Structured mesh solver (OPS), an embedded domain

specific language with associated libraries and pre-processors to generate par-

allel executables for applications on multi-block structured meshes [38, 39]. In200

the context of the present work, OpenSBLI has been validated for simulations

of compressible wall-bounded turbulence in [40, 41]. The results presented here

are obtained using multiple NVIDIA P100 and A100 GPUs using CUDA+MPI.

2.2. Problem Specifications

As shown schematically in Figure 1, the streamwise and spanwise boundaries205

of the counter-flow channel configuration are periodic, while isothermal (Tw =

1.0) no-slip viscous wall conditions are enforced on the boundaries in the normal

direction (y). In order to accurately resolve the near wall region, the grid is

stretched symmetrically in the y direction [40]. We have previously identified an

optimum domain size of 12H×2H×6H with a grid resolution of 240×151×200210

[19]. This domain size is used with a Reynolds number of Re = 400. Mach

number values of M = 0.1, 0.4 and 0.7 are examined. The Prandtl number

has a value of mainly Pr = 0.7. However, a case with Pr = 0.2 (M = 0.7) is

also studied. This reduction in Prandtl number increases the heat flux through

the isothermal walls, reducing the bulk temperature and sound speed in the215

channel, leading to increased local Mach numbers and stronger compressibility

effects. The WENO filtering described in Section 2.1 is necessary to obtain a

stable solution for the more numerically challenging cases at M = 0.7. For the

case with M = 0.4, results of two simulations with and without the filtering
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are provided to make direct comparisons and examine the filtering effect. A220

list of test cases studied here is presented in Table 1. The key computational

parameters and normalised grid resolutions based on the friction velocity (uτ ) is

provided in Table 2. It should be noted that, here, subscript p denotes the peak

values of flow quantities. The normalised wall distance value (ỹ+) is defined as

ỹ+ = ỹReτ , where ỹ is the coordinate in the y direction relative to the wall.225

The normalised cell sizes in different directions, ∆x+, ∆ỹ+ (the height of the

first grid point above the wall) and ∆z+, are evaluated in a similar way to ỹ+.

The friction Reynolds number is defined as Reτ = ⟨ρwall⟩uτH/⟨µwall⟩ where

uτ =
√
⟨τwall⟩/⟨ρwall⟩.
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Figure 1: 2D schematic of the 3D counter-flow channel configuration. The spanwise z direction

into the page is also periodic.

In this paper, the single prime (′) denotes the turbulent fluctuation which230

for an arbitrary flow quantity (ϕ) is defined as ϕ′ = ϕ− ⟨ϕ⟩. Moreover, for the

higher Mach number case, the Favre average is defined as {ϕ} = ⟨ρϕ⟩/⟨ρ⟩ and
the double prime (′′) denotes the turbulent fluctuation with respect to the Favre

average defined as ϕ′′ = ϕ− {ϕ}. For the Reynolds stresses, the Favre average

is related to the Reynolds average as ⟨ρ⟩{u′′
i u

′′
j } = ⟨ρuiuj⟩ − ⟨ρ⟩⟨ui⟩⟨uj⟩. Also,235

the mean Mach number is defined as ⟨M⟩ =
√
⟨u⟩2 + ⟨v⟩2 + ⟨w⟩2/⟨ac⟩, where

ac is the local speed of sound, while the turbulent Mach number is defined as

Mt =
√
⟨u′u′⟩+ ⟨v′v′⟩+ ⟨w′w′⟩/⟨ac⟩.
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Table 2: Computational parameters of the counter-flow cases.

Case M Pr WENO Filter Reτ uτ ∆x+ ∆ỹ+ ∆z+ ⟨u⟩+p
1 0.1 0.7 No 131.482 0.299 6.574 0.406 3.944 7.209

2 0.4 0.7 No 193.835 0.210 9.691 0.599 5.815 9.716

3 0.4 0.7 Yes 194.769 0.211 9.738 0.602 5.843 9.742

4 0.7 0.7 Yes 278.672 0.159 13.933 0.862 8.360 12.631

5 0.7 0.2 Yes 231.122 0.189 11.556 0.715 6.933 11.790

2.3. WENO Filtering

As introduced in Section 2.1, the code used in [19] is extended in the present240

work to include a filtering method based on the widely used family of WENO

shock-capturing schemes. The filter is used to damp oscillations in the solu-

tion (due to sharp gradients from non-linear shocklets), while preserving the

ability to resolve small-scale turbulence [21]. The WENO procedure works by

constructing a high-order polynomial approximation of the solution is using a245

selection of smaller candidate stencils over neighboring grid points [42, 43]. The

specific polynomial degree and stencil size depend on the order of the WENO

method. In the present work, a 5th-order WENO scheme is applied. The weights

for each lower-order approximation candidate stencil are calculated based on

their ability to minimise the smoothness indicator, which is a measure of the250

smoothness of the solution in the stencil. The final reconstruction is built from a

weighted combination of the smaller candidate stencils. The WENO reconstruc-

tion procedure is performed in characteristic space to enhance the robustness of

the shock-capturing.

As in the framework presented in [21], the WENO filtering is applied only255

once at the end of every time-step, rather than at every sub-stage of the Runge-

Kutta time-stepping algorithm. The filter method subtracts a centred approx-

imation to the WENO flux to leave only the dissipative portion of the WENO

scheme. This dissipative contribution is then used to filter each of the conser-

vative variables to selectively remove high-frequency oscillations in the solution260
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while preserving the key turbulent structures. A modified version [44] of the

Ducros sensor [45] is used to localise the application of the shock-capturing only

to regions containing shocklets. The WENO filter step method was validated in

OpenSBLI for a supersonic Taylor-Green vortex case at M = 1.25 in [22], and

was shown to have excellent numerical resolution while still remaining stable in265

the presence of strong shocks.

The counter-flow with M = 0.4 forms a mildly compressible turbulent flow

with M tp ≈ 0.6 [19], hence the formation of flow discontinuities in form of

shocklets would be extremely limited. Therefore, the WENO filtering, which is

only active where a discontinuity exists, should have a very limited role for the270

counter-flow with M = 0.4. Figure 2 shows a direct comparison between various

flow quantities (which will be discussed later in this paper) for the M = 0.4

counter-flow case with and without the WENO filtering. It is clear that these

cases exhibit almost identical trends and Table 1 shows less than ∼ 1% changes

in their key flow quantities. This suggests that the filter-based shock capturing275

method is performing well and the grid resolution is fine enough. In the rest of

this work, all results shown for M ≥ 0.4 are obtained using the aforementioned

WENO filtering scheme.

2.4. Spectral Proper Orthogonal Decomposition (SPOD)

SPOD, an extension of the Proper Orthogonal Decomposition (POD) method,280

can be used to identify the most important spatio-temporal modes of a dataset

[25]. To perform such an analysis, the data is first transformed into the frequency

domain using Fourier transforms with overlapping segments. Then POD is ap-

plied to the frequency-domain data to identify the significant modes (those with

larger eigenvalues). This allows for the identification of the dominant spatial285

patterns in the data for specific frequencies. The SPOD modes are temporally

orthogonal and monochromatic, and are less noisy compared to Fourier analysis

alone. In the present study, the memory-efficient streaming SPOD algorithm

and software provided by Schmidt and Towne [23, 29] are used. Both x − y

(at z = 0) and x − z (at y = 0) planes of the counter-flow with M = 0.7 and290
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Figure 2: Profiles of the mean velocity, density, Mach number, and vorticity fluctuation, and

Favre streamwise normal and shear stresses for the counter-flow cases with M = 0.4 and with

and without the WENO filtering.
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Pr = 0.7 are investigated for both the u and v components of the velocity vec-

tor. Snapshots are stored at every 20 time-steps (i.e. t = 0.001) which results

in a total of 330000 samples. These are divided into segments, or blocks, which

are concatenated into a matrix for the main analysis. The size and overlap of

the blocks can be altered to balance the trade-off between frequency resolution295

and statistical accuracy [23]. Here, a block number of 7 with 50% overlap and a

Hamming window (to improve the accuracy by reducing the effects of spectral

leakage [29]) have been selected. The SPOD formulation is omitted here for the

sake of brevity, and the reader is to referred to the work by Moise, Zauner and

Sandham [28] which applied the same methodology to compressible airfoil flows.300

3. Results and discussion

3.1. Mean Flow and Turbulence Statistics

Figure 3 shows a direct comparison between the counter-flows studied here

based on various mean flow quantities, including the streamwise velocity {u},
density ⟨ρ⟩, temperature ⟨T ⟩, local speed of sound ⟨ac⟩ and Mach number ⟨M⟩,305

and also the turbulent Mach number Mt. Additionally, Figure 4 provides the

Favre Reynolds stresses of the counter-flows. The temperature field is observed

to have a strong dependence on the reference Mach number. For cases with

increasing Mach number, for instance, as also provided in Table 1, the peak

mean temperature is ∼ 2.0 and ∼ 4.4 times higher for the cases with M = 0.4310

and M = 0.7 compared to the case at M = 0.1, respectively. Meanwhile,

reducing the Prandtl number from Pr = 0.7 to 0.2 for M = 0.7 increases the

thermal diffusivity in the simulation, and leads to a a subsequent reduction

in the peak mean temperature by ∼ 31%. As shown in Figure 3, the mean

velocity profiles do not change significantly when altering the Mach number315

since the latter is governed primarily by the local speed of sound. Mean and

turbulent Mach numbers exhibit significant surges as the reference Mach number

increases. Notably in the context of eddy-shocklet generation discussed later in

this work, the peak turbulent Mach number increases by ∼ 179% and ∼ 256%
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when the reference Mach number is increased from M = 0.1 to M = 0.4 and320

0.7, respectively. Reducing the Prandtl number while keeping the Mach number

fixed at M = 0.7 further increases the turbulent Mach number by ∼ 29.5% to

reach a value of near unity at the centreline of the channel. At these highly

compressible flow conditions, strong non-linearities can develop within the flow

[1, 46]325

Regarding the normal stresses, as shown in Figure 4 and Table 3 (which

presents the variation of the peak values of the Favre Reynolds stresses with

changes in the Mach and Prandtl numbers) a clear trend can be observed as the

Mach number increases (cases 1,3 and 4), keeping Pr constant. For instance,

when comparing Case 1 (M = 0.1, P r = 0.7) with Case 4 (M = 0.7, P r = 0.7),330

it can be observed that ⟨ρ⟩{u′′u′′}p increases by approximately 9%, from 2.638

to 2.879. Similarly, ⟨ρ⟩{v′′v′′}p and ⟨ρ⟩{w′′w′′}p decrease by ∼ 31% and ∼ 26%

respectively. Thus, there is a clear linkage between changes in the Mach num-

ber and the state of turbulence anisotropy. The increase in anisotropy suggests

a propensity towards a more one-dimensional or longitudinal turbulence state,335

while momentum transfer by the v and w velocity components is reduced. The

changes in the streamwise fluctuation of ⟨ρ⟩{u′′u′′}p seen in Figure 4 are notably

smaller that in the other components, with no changes as M increases from 0.1

to 0.4 and then a small increase from 0.4 to 0.7. The effect of reducing Pr is

consistent with the trend of increasing anisotropy with increases in the turbu-340

lence Mach number. There are some subtle differences however. The decrease

in Pr affects ⟨ρ⟩{u′′u′′}p more than the transverse component, suggesting that

the change in the bulk temperature also has a role to play. In summary, we

can say that anisotropy of the turbulence increases with increasing Mt. With

increasing M while keeping Pr constant, this mainly occurs by reductions in the345

transverse components of the Favre stresses, while for constant M and reducing

Pr this happens mainly by increasing the streamwise Favre stress.

The overall vorticity fluctuation, ω′ =
√
⟨ω2

x + ω2
y + ω2

z⟩ and the contribut-

ing components of the vorticity fluctuations are shown in Figure 5. Trends in

vorticity fluctuations for varying Mach and Prandtl numbers can be considered350
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Figure 3: Profiles of the mean velocity, density, temperature, speed of sound and Mach

number, and profile of the turbulent Mach number (Mt).
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Figure 4: Profiles of the Favre Reynolds stresses.

Table 3: Peak values of the Favre Reynolds stresses.

Case M Pr ⟨ρ⟩{u′′u′′}p ⟨ρ⟩{v′′v′′}p ⟨ρ⟩{w′′w′′}p −⟨ρ⟩{u′′v′′}p
1 0.1 0.7 2.638 1.019 1.274 0.875

3 0.4 0.7 2.631 0.847 1.122 0.853

4 0.7 0.7 2.879 0.699 0.938 0.819

5 0.7 0.2 3.447 0.640 0.895 0.831

indicative of changes in the behaviour of smaller scales of turbulence, relative

to the Favre stresses discussed in ht previous paragraph. From Figure 5, we

can seen that vorticity (the total and all the components individually) reduces

in magnitude as the Mach number increases, while holding Pr constant. This

behavior is similar to the decline in spanwise and wall-normal Reynolds stresses,355

seen in Figure 4, as the Mach number increases and signifies a weakening of the

small-scale vortical structures and a movement towards a less active turbulence
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Figure 5: Profiles of the vorticity fluctuation and the components of the vorticity turbulent

fluctuations.

state. On the other hand, reducing the Prandtl number from 0.7 to 0.2 increases

the vorticity fluctuations, affecting all components. The most likely explanation

for this different trend is the reduction in core channel temperature and hence360

viscosity, meaning that small vortical stuctures are less damped by viscosity.

3.2. Shocklet Structures

As a result of the high values of the mean and turbulent Mach numbers shown

in Figure 3, regions with instantaneous local Mach numbers beyond unity are

expected to form in the cases with M = 0.7. For such transonic values, the365

formation of shocklets is possible. Shocklets can be associated with regions

where the dilatation, defined as θ =
∂u

∂x
+

∂v

∂y
+

∂w

∂z
, is lower than a negative

threshold i.e. θ < −ζ [46, 47]. A value of ζ = 3θ′, where θ′ denotes the

dilatation fluctuation (root mean square of the dilatation magnitude) defined
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as θ′ =

√
⟨(∂u
∂x

)2 + (
∂v

∂y
)2 + (

∂w

∂z
)2⟩, has been used in compressible decaying370

turbulence problems to detect shocklets as regions with strong compression rates

(in turbulent Mach number values in the range of 0.5 ≤ Mt ≤ 1.0) [46, 47].

Furthermore, ζ = θ′ was used by [46] to visualise shocklets. Table 4 provides

the bulk-averaged values of the dilatation fluctuation (θ′b) for the counter-flows

studied here as the reference Mach and Prandtl numbers are varied.375

In order to detect and visualise the shocklets, iso-surfaces of the dilatation

with various threshold values (iso-values) of ζ = 2θ′b (a) and 3θ′b (b) are used

as shown in Figure 6 for counter-flows with M ≥ 0.4. The threshold value of

ζ = 3θ′b was used by [47] to highlight the differences in high-compression regions

of the flow (i.e. shocklets) as the compressibility increases. The surfaces are380

coloured based on streamwise velocity (red for positive and blue for negative)

to improve their interpretation. We see that significant numbers of shocklet

structures are detected. They span the whole computational domain and are

highly three-dimensional and irregular. The cases are arranged from top to

bottom in order of increasing compressibility, as noted by the increase in θ′b385

shown in Table 4. Not only is θ′b increasing, but also the volume enclosed by

shocklet-type structures with dilatation magnitude exceeding 3θ′b is increasing.

The tendency (most clearly in the cases for M = 0.7 and Pr = 0.2) for the

shocklets to be stronger and more frequent at certain spanwise locations in

this figure was not generally observed at other time instants, although some390

connection between shock location and large scale structures cannot be entirely

ruled out.

3.3. Shocklet Quantification

The total viscous dissipation can be decomposed into the solenoidal and

dilatational components as ϵT = ϵS + ϵD [48] where, the solenoidal (ϵS) and395

dilatational (compressible) (ϵD) dissipations are defined as

ϵS =
1

Re

[
µ

〈(∂w
∂z

− ∂v

∂z

)2

+
(∂u
∂z

− ∂w

∂x

)2

+
(∂v
∂x

− ∂u

∂y

)2
〉]

(4)
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Table 4: Bulk-averaged dilatation fluctuation dependence on reference Mach and Prandtl

numbers.

Case M Pr θ′b

1 0.1 0.7 0.128

3 0.4 0.7 1.374

4 0.7 0.7 1.885

5 0.7 0.2 2.808

M=0.4

Pr=0.7

Pr=0.2

(a) ( )

Figure 6: Iso-surfaces of the dilatation with iso-values of (a): θiso = 2θ′b and (b): θiso = 3θ′b.

Red and blue colours show the flow directions in the positive (left to right) and negative

streamwise directions, respectively.
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and

ϵD =
4

3Re

[
µ

〈
∂u

∂x
+

∂v

∂y
+

∂w

∂z

〉2]
. (5)

Energy dissipation through Mach number-induced changes on turbulent flow

structures (i.e. shocklets) can be linked to the dilatational part of the dissipa-400

tion [48]. Figure 7 shows the ratio of the dilatational dissipation to the total

dissipation for the counter-flows studied here. The contribution of the dilata-

tional part of the total viscous dissipation becomes significantly more important

as the compressibility increases by having a higher Mach number and/or a lower

Prandtl number. The peak of the ratio of the dilatational dissipation to the total405

dissipation occurs at around |y| ≈ 0.75 for all cases where the mean streamwise

velocity and the mean Mach number also exhibit peak values as shown in Fig-

ure 3. It is clear that ϵS is directly related to the vorticity which reduces as

the Mach number increases. In fact, the solenoidal dissipation reduces slightly

(not shown here) as the compressibility of the counter-flow increases. A higher410

compressibility results in the formation of more shocklets (as shown in Figure

6), and hence a relatively higher dilatational dissipation.

−1.0 −0.5 0.0 0.5 1.0
y

0.00

0.02

0.04

0.06

0.08

〈ǫ
D
〉/
〈ǫ

T
〉

M = 0.1, P r = 0.7

M = 0.4, P r = 0.7

M = 0.7, P r = 0.7

M = 0.7, P r = 0.2

Figure 7: Profiles of the ratio of the dilatational dissipation over the total dissipation.

For a more quantitative analysis of shocklet distribution within the counter-

flows, the probability distribution of the dilatation is evaluated, as depicted

in Figure 8. This is based on the Probability Density Function (PDF) of the415
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dilatation, time-averaged over four independent realisations. It presents the

PDF of the dilatation across the entire computational domain and on x − z

planes at selected channel heights. The PDF profiles for the case with M = 0.1

exhibit approximate symmetry, attributable to its low compressibility. As the

Mach number increases (or the Prandtl number decreases), the PDF profiles420

increasingly skew towards negative dilatation values. This skewness stems from

the presence of nonlinear compression waves and, ultimately, shocklets within

the flow. The trend is consistent at different channel locations indicating that

shocklets are present across the entire width of the channel. The only slight

difference between the channel centreline (subfigure y = 0 plane) and off-centre425

locations (subfigures y ≈ 0.511 and 0.962 planes) is that the rate of increase in

skewness shows only a small increase from M = 0.4 to 0.7, perhaps indicating

that the increasing bulk temperature constrains the formation of shocks in this

region. When Pr is reduced, hence reducing the bulk temperature, the trend

to increasing skewness of the PDF resumes.430

To study the variability of shocklets over time, the PDF of the dilatation

across the entire domain is plotted for time intervals of ∆t = 10 for the cases

with M = 0.7 as shown in Figure 9. The red curves in the graph illustrate the

instantaneous PDFs, while the thick black curve signifies their temporal average.

It is conspicuous that all the profiles incline towards negative dilatation values, a435

trend that can be ascribed to the continual presence of shocklets. As previously

demonstrated, the counter-flow case with Pr = 0.2 exhibits a more negatively

skewed profile of the time-averaged dilatation PDF, which aligns with its higher

compressibility level.

3.4. SPOD Analysis440

Figure 10 shows the energy of spatial SPOD modes as a function of frequency

for the analysis based on the u component of the velocity vector on the x − y

plane for the case with M = 0.7 and Pr = 0.7. The SPOD modes and their

corresponding mode energies are the eigenvectors and eigenvalues, respectively,

of the weighted cross-spectral density matrix, which is estimated from an en-445
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Figure 8: Probability distribution of the dilatation over the entire domain and also specific

x− z planes (average over four independent realisations).
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Figure 9: Probability distributions of the dilatation over the entire domain for every t = 10

intervals up to t = 1000.

semble of realisations of the temporal discrete Fourier transform [29]. There is

no dominant peak or even distinguishable local peaks in this figure, which con-

firms the broadband fully turbulent nature of the counter-flow configuration.

The integral value of the mode energy over the frequencies (not shown here)

decreases monotonically with the mode number. It should be noted that there450

are similar trends for the mode energies on the x− z plane and also on the the

x − y plane based on the v component of the velocity vector (not shown here

for brevity). There is a rather slow decline in the mode energy as the mode

number increases, reflecting the absence of dominant modes compared to the

SPOD analysis of flow around a circular cylinder [49] or airfoil buffet [28], where455
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a global instability is present.
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Figure 10: Energy of the SPOD modes versus frequency. The black arrow illustrates the

direction that the mode number increases (M = 0.7 and Pr = 0.7)

An example of the variability in the SPOD mode shapes is presented in

Figure 11 for the first four modes at a frequency of f = 0.1. This figure is

based on the v component of the velocity vector on the x − y plane. Mode 1

has its highest amplitude at the centreline y = 0 with two spatial wavelengths460

captured. Higher modes are less coherent and show the presence of peaks closer

to the walls. For further study we consider only the first mode.

In Figures 12 and 13 the first SPOD mode based on the u and v components

of the velocity vector is shown on the x − y and x − z planes for different

frequencies including f = 0.025, 0.1, 0.4, 1.6, and 6.4. On the x − y plane, the465

lowest two frequencies have modes centred in the middle of the channel where

the shear is strongest. At higher frequencies (like f = 6.4) the modes include

small features that are homogeneously distributed throughout the domain. On

the x − z plane the lower frequency modes are in the form of velocity streaks

for both the u and v components of the velocity vector. The presence of large-470

scale streaky structures in the velocity field could potentially be connected the
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Figure 11: First 4 SPOD modes on the x− y plane at f = 0.1 based on the v component of

the velocity vector (M = 0.7 and Pr = 0.7)

spatial non-uniformity seen in Figure 6 however inspection of flowfields at other

instants in time was not conclusive.

The current analysis did not identify any single dominant large-scale coher-

ent structure in the counter-flow configuration under investigation, which might475

have been expected for a flow that anticipated to be globally unstable. Rather,

the richness of structures in the SPOD analysis emphasises the broadband three-

dimensional nature of the turbulence. The absence of coherent structures does

not necessarily eliminate the possibility of underlying associations between the

observed streaky structures and oblique modes that are expected to be present480

in a stability analysis of the mean flow that remains for future study.
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Figure 12: First SPOD mode on the x− y plane at different frequencies based on the u and

v components of the velocity vector (M = 0.7 and Pr = 0.7).

4. Conclusions

Direct numerical simulations of shocklet-containing turbulent flows were con-

ducted using a new counter-flow channel configuration introduced previously by

the current authors [19]. The simulations were performed for reference Mach485

number values of M = 0.1, 0.4 and 0.7 with a Reynolds number of Re = 400.

A case with a Prandtl number of Pr = 0.2 (reduced from the default value

of Pr = 0.7) and M = 0.7 was also studied in an attempt to boost the com-

pressibility within the flow. Additionally, a modal analysis based on SPOD was

performed on the M = 0.7 and Pr = 0.7 counter-flow to better understand the490

characteristics of the highly three-dimensional transient shocklets embedded in

such flow and their interactions with the turbulent scales.

It was found that a reference Mach number as low as M = 0.7 could pro-

duce fluctuating and mean Mach numbers close to 0.7 over a considerable length

of the width of the counter-flow channel. Such values produced instantaneous495
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Figure 13: First SPOD mode on the x− z plane at different frequencies based on the u and

v components of the velocity vector (M = 0.7 and Pr = 0.7).

supersonic velocities that formed relatively strong transient shocklets. Addition-

ally, fluctuating and mean Mach numbers above 0.95 were achieved by reducing

the Prandtl number from Pr = 0.7 to 0.2 as the core temperature of the flow

decreased. Despite the presence of shocklets, the contribution of dilatational

dissipation to the total dissipation was found to be small (6% or less) compared500

to the rotational component. SPOD analysis of the counter flow with M = 0.7
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and Pr = 0.7 showed a small decay of energy with mode number indicating an

absence of a single dominant structure. At the lowest frequencies the first SPOD

mode appeared in the form of streamwise velocity streaks located at the centre

of the channel. While this study did not uncover clear evidence of coherent505

structures, this does not rule out possible links between the observed streaky

structure and the interaction of oblique modes, which a future stability analysis

of the mean flow profile may expose.

In summary, the counter-flow configuration of an ideal gas has been shown

to be capable of generating highly turbulent flows with embedded compression510

shocklets for a relatively modest reference Mach number. Therefore, the config-

uration provides a useful framework to study some of the fundamental physics

associated with shock-turbulence interactions and could be considerably benefi-

cial to the development of compressible sub-grid scale turbulence models as well

as improved representations of compressibility in Reynolds-averaged Navier-515

Stokes models. Future work could include the addition of a heat sink term

to the counter-flow configuration, as this would lower the core temperatures

and further increase compressibility effects and shocklet generation. Further-

more, the counter-flow could be extended to investigate dense gases, where the

molecular complexity can lead to inversion of the fundamental derivative of gas520

dynamics and a much richer space of permissible non-linear flow structures [50].

Specifically, it would be interesting to demonstrate the existence of expansion

shocklets [51] within a dense gas counter-flow, which are not permissible when

using an ideal gas equation of state.
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