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A B S T R A C T

Counter-flow configurations in a confined channel flow provide an efficient framework to study high intensity
turbulent mixing processes. In a previous study (Physical Review Fluids, 6(9), p.094603), a wall-bounded
counter-flow turbulent channel configuration was presented as an effective framework for addressing certain
challenges related to the study of compressibility effects on turbulence as an alternative to free shear layer and
Poiseuille/Couette type flows. Here, the previous direct numerical simulations are extended to a higher Mach
number (𝑀 = 0.7) to quantify direct and indirect effects of compressibility. It is found that the configuration
is able to produce large numbers of embedded shocklets, leading to significant asymmetry in probability
density functions of dilatation. Reducing the Prandtl number from 0.7 to 0.2 increases the compressibility
effect further by reducing the bulk heating in the channel. A peak turbulent Mach number close to unity is
obtained, for which the contribution of the dilatational dissipation to the total dissipation is nevertheless found
to be limited to ∼ 6%. Indirect effects of compressibility are much larger, with changes of up to 40% in Favre
normal stresses, despite the mean flow and shear stress being almost unaffected by compressibility in this
configuration. Given the inflectional nature of the turbulent mean flow it is also interesting to identify large
structures. Spectral Proper Orthogonal Decomposition (SPOD) reveals a full spectrum with a slow decay of
energy with mode number. Mode shapes are three-dimensional with the low frequencies displaying elongated
streaks in the velocity field at the channel centre plane.
. Introduction

The effects of compressibility on the turbulent characteristics of
luid flows can be complex and significant. Such effects are typically
anifested through, among others, reduction in turbulence production,

coustic/entropy oscillations, shear layer growth suppression, shock
ormation and non-linear shock-turbulence interactions (Lee et al.,
991; Lele, 1994; Sarkar, 1995; Freund et al., 2000). Many aspects
f the complex interactions between compressibility effects and tur-
ulence structures are still not thoroughly understood. Recent studies
f shocklets include (Terakado et al., 2022), in which it was shown
hat such flow discontinuities were present for turbulent Mach numbers
f 𝑀𝑡 ≥ 0.7. These shocklets were shown to modify sound genera-
ion mechanisms and vortex dynamics. Traditionally, free shear layers
such as jets, wakes and mixing layers) and Poiseuille/Couette type
lows (such as channel flows) have been utilised to study compressible
urbulence (Freund et al., 2000). Spatially-developing mixing layer
imulations are computationally expensive and sensitive to far-field and
nflow/outflow boundary conditions (Mankbadi et al., 2017; Yao and
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Hussain, 2020). However, basic compressibility effects can be captured
in temporal simulations, as discussed by Vreman et al. (1996). One
drawback of the temporal approach is that the shear layer thickens
continually over time and computational grids suitable for later times
are inefficient during the early development stages of the flow. On
the other hand, Poiseuille/Couette type flows are relatively computa-
tionally efficient (Kim et al., 1987; Coleman et al., 1995; Johnstone
et al., 2010) and can achieve high Reynolds numbers at a much lower
cost compared to what is typically required for spatially-developing
boundary layers (Coleman et al., 1995). However, conventional chan-
nel flows have limitations in terms of the achievable fluctuating Mach
number due to the increase in the mean flow temperature and the
associated speed of sound, without the use of artificial heat sinks. A
counter-flow configuration can potentially overcome the barriers of the
above-mentioned flows.

Counter-flows are recognised as highly efficient configurations for
mixing, thanks to the maintenance of high turbulence intensities
(Humphrey and Li, 1981; Strykowski and Wilcoxon, 1993; Forliti et al.,
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Nomenclature

𝑎𝑐 Local speed of sound
𝛥𝑥+, 𝛥𝑦+, 𝛥𝑧+ Normalised cell sizes in different directions
𝛿𝑖𝑗 Kronecker delta
𝜖 Dilatational viscous dissipation
𝜖 Solenoidal viscous dissipation
𝜖 Total viscous dissipation
𝛾 Ratio of specific heats
⟨⟩ Averages over the homogeneous spatial

directions and time
⟨⟩𝑏 Additional bulk average over 𝑦
⟨𝑀⟩ Mean Mach number
𝜇 Dynamic viscosity
𝜙 An arbitrary flow quantity
𝜙′′ Turbulent fluctuation of an arbitrary with

respect to the Favre average
𝜙′ Turbulent fluctuation of an arbitrary flow

quantity
𝜌 Density
𝜏𝑡 Time scale
𝜏𝑖𝑗 Viscous stress tensor
𝜃 Dilatation
�̃� Coordinate in the 𝑦 direction relative to the

wall
�̃�+ Normalised wall distance
𝜁 Dilatation value threshold
{𝜙} Favre average of an arbitrary flow quantity
𝑏 Subscript 𝑏 denotes bulk average
𝑝 Subscript 𝑝 denotes the peak value of a flow

quantity
𝑤𝑎𝑙𝑙 Subscript 𝑤𝑎𝑙𝑙 denotes the value at the wall
𝑎 Coefficient in the forcing term
𝑐0 Maximum amplitude of forcing term
𝑐𝑗 Forcing term
𝐸 Total energy
𝑓 Frequency
𝐻 Channel half height
𝑀 Mach number set in the simulation
𝑀𝑡 Turbulent Mach number
𝑝 Pressure
𝑃𝑟 Prandtl number
𝑞𝑗 Heat flux
𝑅𝑒 Reynolds number set in the simulation
𝑇 Temperature
𝑡 Time
𝑢 Velocity component in the 𝑥 direction
𝑢𝑖 Velocity component in the 𝑖th direction
𝑢′′𝑖 𝑢

′′
𝑗 Reynolds stresses

𝑢𝜏 Friction velocity
𝑢∗ref Reference velocity, with ∗ denoting a

dimensional quantity here and elsewhere
𝑣 Velocity component in the 𝑦 direction
𝑤 Velocity component in the 𝑧 direction
𝑥𝑗 Spatial coordinate in the 𝑗th direction (𝑗 =

1, 2, 3 correspond to 𝑥, 𝑦, 𝑧 respectively)

2005). Moreover, they have been utilised in the development of flow
control mechanisms, such as thrust vectoring applications (Strykowski
et al., 1996; Alvi and Strykowski, 1999; Gillgrist et al., 2007), as well
2

as low-emission combustors (Lonnes et al., 1998). The use of counter-
flow configurations for fundamental flow studies was first recognised
by Humphrey and Li (1981) and later by various researchers, including
most notably Forliti et al. (2005) who concluded that locally unstable
flows trigger a global instability in planar counter-flow shear layers.
Previously, we introduced (Hamzehloo et al., 2021a) a wall-bounded
counter-flow turbulent channel configuration, amenable to Direct Nu-
merical Simulation (DNS), and demonstrated that it could overcome the
barriers associated with free shear layers and Poiseuille/Couette type
flows. Specifically, it retains a statistically stationary one-dimensional
solution, in common with conventional channel flows, but contains an
inflectional mean flow, representative of free shear layers. The counter-
flow channel has periodic streamwise and spanwise boundaries and
isothermal no-slip walls and is driven by a mean pressure gradient in-
troduced by a hyperbolic tangent forcing term. The unstable base flow
of the proposed counter-flow is more relevant to the free shear layers
found in practical applications, such as jets, wakes, and mixing layers,
compared to another version of channel flow that produces counter-
flows of the kind considered here with a linearly stable base flow,
as discussed by Waleffe (1990). It was previously shown (Hamzehloo
et al., 2021a) that when the peak local mean Mach number reached
∼0.55, a turbulent Mach number of ∼0.6 could be obtained, indicating
that such counter-flow configuration could potentially be useful for
studying compressibility effects on turbulence.

The previous study (Hamzehloo et al., 2021a) provided insights into
flow dynamics of the counter-flow configuration up to a Mach number
of 𝑀 = 0.4 (defined based on a reference velocity deduced from the
forcing as discussed in the next section). However, this maximum Mach
number was constrained by the necessity of a shock-capturing method
for higher values and the associated increase in computational cost. To
address this limitation, the primary objective in this study is to identify
strong compressibility effects in counter-flow channels. We accomplish
this by enhancing our numerical treatment in the vicinity of flow
discontinuities with an efficient high-order characteristic-based shock-
capturing approach (Yee and Sjögreen, 2018; Lusher et al., 2023),
thereby extending the previous DNS investigation to a Mach number
of 𝑀 = 0.7. This extension allows us to capture the formation and evo-
lution of shocklets, and their interactions with turbulence. A secondary
objective is to deepen our understanding of the characteristics and
interactions of these highly three-dimensional transient shocklets with
the turbulent scales. To this end, we utilise Spectral Proper Orthogo-
nal Decomposition (SPOD) (Schmidt and Towne, 2019), a data-driven
technique designed to analyse the spatio-temporal characteristics of a
flowfield, as a tool for modal analysis of the high-Mach counter-flow
field.

The SPOD methodology provides a frequency-resolved modal de-
composition (Towne et al., 2018; Muralidhar et al., 2019), enabling
the extraction of fluid dynamical structures (Abdelsamie et al., 2017;
Muralidhar et al., 2019; Abreu et al., 2020). Most of these applications
have been to incompressible flows, but SPOD has also recently been
applied to transonic aerofoil buffet flows where a global instability is
active (Moise et al., 2022). The present flow is a new application for
SPOD, in that it is an internal compressible turbulence problem. The
temporal nature of the flow and the presence of an inflection point
in the mean flow suggest that energy is fed into large-scale structures
by the mean flow instability and it is of interest to check with SPOD
the organisation of such structures and whether any particular frequen-
cies/wavenumbers are preferred. SPOD decomposes the flowfield into
orthogonal modes, each representing a distinct pattern of variation,
ranked according to their significance in the frequency domain. The
first mode captures the greatest variability, with subsequent modes
progressively representing smaller amounts of variability (Schmidt and
Towne, 2019; Schmidt, 2022).

The outline of this paper is as follows: in Section 2, the governing

equations, numerical methods, computational framework and problem
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Table 1
DNS counter-flow channel cases.
Case 𝑀 𝑅𝑒 𝑃𝑟 WENO filter 𝛥t {𝑢}𝑏 {𝑢}𝑝 ⟨𝑎𝑐⟩𝑏 ⟨𝑎𝑐⟩𝑝 ⟨𝑇 ⟩𝑝 ⟨𝑀⟩𝑝 𝑀𝑡𝑝

1 0.1 400 0.7 No 2 × 10−4 1.409 2.159 10.291 10.479 1.098 0.207 0.213
2 0.4 400 0.7 No 5 × 10−5 1.375 2.047 3.669 3.849 2.374 0.556 0.595
3 0.4 400 0.7 Yes 5 × 10−5 1.380 2.062 3.671 3.852 2.376 0.560 0.594
4 0.7 400 0.7 Yes 5 × 10−5 1.358 2.005 2.919 3.132 4.823 0.697 0.758
5 0.7 400 0.2 Yes 5 × 10−5 1.535 2.238 2.382 2.602 3.332 0.973 0.981
o
u

setup are introduced. In Section 3, first the key mean flow and tur-
bulence statistics are discussed. Then, the formation, structure and
evolution of the transient shocklets in highly compressible counter-
flows are studied and quantified in Section 3.2. Finally, SPOD analysis
of a high-Mach counter-flow case is discussed in Section 3.4 . Further
discussion and final conclusions are drawn in Section 4.

2. Methodology

2.1. Governing equations

The dimensionless governing equations of a compressible Newto-
nian fluid flow, that conserve mass, momentum and energy, are solved
as (Hamzehloo et al., 2021a):
𝜕𝜌
𝜕𝑡

+ 𝜕
𝜕𝑥𝑗

(𝜌𝑢𝑗 ) = 0,

𝜕𝜌𝑢𝑖
𝜕𝑡

+ 𝜕
𝜕𝑥𝑗

(𝜌𝑢𝑖𝑢𝑗 + 𝑝𝛿𝑖𝑗 − 𝜏𝑖𝑗 ) + 𝑐𝑗𝛿𝑖𝑗 = 0,

𝜕𝜌𝐸
𝜕𝑡

+ 𝜕
𝜕𝑥𝑗

(𝜌𝐸𝑢𝑗 + 𝑢𝑗𝑝 + 𝑞𝑗 − 𝑢𝑖𝜏𝑖𝑗 ) + 𝑐𝑗𝑢𝑗 = 0,

(1)

where 𝜌 represents the density, 𝑢𝑖(𝑖 = 1, 2, 3) denotes the velocity
component (𝑢, 𝑣 and 𝑤, respectively) in the 𝑖th direction (𝑥, 𝑦 and 𝑧,
respectively), 𝐸 is the total energy, and 𝑝 and 𝛿 denote the pressure
and the Kronecker delta, respectively. The forcing term 𝑐𝑗 drives the
flow. In the 𝑥 direction, its value is given by 𝑐1 = −𝑐0 tanh(𝑎𝑦), while
t is zero in all other directions. The amplitude of the forcing term is
et as 𝑐0 = 1. The bulk-averaged density ⟨𝜌∗⟩𝑏 is used as a reference,

where ∗ denotes a dimensional quantity and angle brackets denote
averages over the homogeneous spatial directions (𝑥 and 𝑧) and time 𝑡.

he characteristic length is the channel half height 𝐻∗. The reference
elocity is deduced from the forcing as 𝑢∗ref =

√

𝑐∗0𝐻
∗∕⟨𝜌∗⟩𝑏. A reference

timescale is defined by 𝐻∗∕𝑢∗ref , which is subsequently used to form the
imensionless frequency 𝑓 .

The viscous stress tensor (𝜏𝑖𝑗) and the heat flux (𝑞𝑗) are defined as:

𝑖𝑗 =
𝜇
𝑅𝑒

(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

− 2
3
𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗 ), (2)

𝑞𝑗 =
−𝜇

(𝛾 − 1)𝑀2𝑃𝑟𝑅𝑒
𝜕𝑇
𝜕𝑥𝑗

, (3)

where 𝜇 denotes the dynamic viscosity, 𝑇 is the temperature, 𝛾 is the
ratio of specific heats with a value of 𝛾 = 1.4 here and 𝑃𝑟 is the
Prandtl number. 𝑅𝑒 and 𝑀 denote the Reynolds and Mach numbers
set in the simulation, based on the reference velocity together with
the channel half height and the wall temperature and viscosity. The
temperature-dependent dynamic viscosity is calculated via a power law
as 𝜇 = 𝑇 0.7.

Equivalent driving forces are applied in opposite directions to the
upper (𝑦 > 0) and lower (𝑦 < 0) halves of the domain (−1 ≤ 𝑦 ≤
1), which consequently result in the formation of a shear-forcing or
counter-flow condition. The coefficient 𝑎 in the hyperbolic tangent
forcing term is positive with a value of 𝑎 = 100. The total energy
𝐸, is related to the pressure 𝑝 and temperature 𝑇 of the perfect gas
as 𝑝 = (𝛾 − 1)(𝜌𝐸 − 𝜌𝑢𝑖𝑢𝑖∕2) = 𝜌𝑇 ∕(𝛾𝑀2). where the temperature is
normalised with the wall temperature.

A 4th-order non-dissipative finite-difference central scheme is used
to discretise the governing equations and grid metrics. Convective
3

a

terms are recast in a quadratic split formulation (Feiereisen, 1981) to
improve numerical stability and reduce aliasing errors. A 4th-order
one-sided boundary scheme (Carpenter et al., 1999) is used at non-
periodic boundaries to maintain consistent spatial discretisation order
throughout the domain. Viscous terms are solved in Laplacian form
by dedicated second-derivative operators to avoid odd-even decoupling
phenomena (Pirozzoli, 2011). A 5th-order Global Lax–Friedrichs (GLF)
Weighted Essentially Non-Oscillatory (WENO) filter-step method (Yee
and Sjögreen, 2018) is applied to the flowfield after the comple-
tion of each full time-step to stabilise the simulation in the pres-
ence of shocklets. The density field is corrected if necessary, after
applying the filtering to maintain the conservation of mass. A low-
storage three-stage explicit 3rd order Runge–Kutta scheme (Williamson,
1980) is used to advance the solution in time. The time-steps, as
outlined in Table 1, were determined empirically, but can be com-
pared with predictions based on combined convective and viscous
Courant–Friedrichs–Lewy (CFL) conditions, as discussed by Li (2003).
For example, in the counter-flow case with the strongest compressibility
effects (𝑀 = 0.7 and 𝑃𝑟 = 0.2), the time-step employed was required to
be approximately 7.5 times smaller than the predicted analytical time-
step. This indicates that this CFL estimate is not accurate for highly
compressible turbulence. Additionally, boundary condition implemen-
tations, grid metrics, shock sensors, and differences in the stability
characteristics of numerical scheme formulations can all contribute to
variations seen in time-step requirements (Pirozzoli, 2011; Brehm et al.,
2015). The work of Modesti and Pirozzoli (2016) reported a factor
of two difference in permissible time-step for compressible turbulent
channel flows depending on whether or not staggered grid locations
were used for placement of the walls.

All of the simulations presented in this work were computed in
OpenSBLI 2.0, a Python-based automatic source code generation and
parallel computing framework for compressible fluid dynamics on
structured meshes (Lusher et al., 2021). OpenSBLI utilises symbolic
algebra to automatically generate C/C++ codes for the Oxford Par-
allel library for Structured mesh solver (OPS), an embedded domain
specific language with associated libraries and pre-processors to gen-
erate parallel executables for applications on multi-block structured
meshes (Reguly et al., 2014; Mudalige et al., 2019). In the context of
the present work, OpenSBLI has been validated for simulations of com-
pressible wall-bounded turbulence by Hamzehloo et al. (2021b) and
Lusher and Coleman (2022). The results presented here are obtained
using multiple NVIDIA P100 and A100 GPUs using CUDA+MPI.

2.2. Problem specifications

As shown schematically in Fig. 1, the streamwise and spanwise
boundaries of the counter-flow channel configuration are periodic,
while isothermal (𝑇𝑤 = 1.0) no-slip viscous wall conditions are enforced
on the boundaries in the normal direction (𝑦). In order to accurately
resolve the near wall region, the grid is stretched symmetrically in the
𝑦 direction (Hamzehloo et al., 2021b). We have previously identified
an optimum domain size of 12𝐻 × 2𝐻 × 6𝐻 with a grid resolution
f 240 × 151 × 200 (Hamzehloo et al., 2021a). This domain size is
sed with a Reynolds number of 𝑅𝑒 = 400. Mach number values of

𝑀 = 0.1, 0.4 and 0.7 are examined. The Prandtl number has a value
of mainly 𝑃𝑟 = 0.7. However, a case with 𝑃𝑟 = 0.2 (𝑀 = 0.7) is

lso studied. This reduction in Prandtl number increases the heat flux
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Fig. 1. 2D schematic of the 3D counter-flow channel configuration. The spanwise 𝑧 direction into the page is also periodic.
Fig. 2. Profiles of the mean velocity, density, Mach number, and vorticity fluctuation, and Favre streamwise normal and shear stresses for the counter-flow cases with 𝑀 = 0.4
nd with and without the WENO filtering.
𝛥
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d

w
M
d
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hrough the isothermal walls, reducing the bulk temperature and sound
peed in the channel, leading to increased local Mach numbers and
tronger compressibility effects. The WENO filtering described in Sec-
ion 2.1 is necessary to obtain a stable solution for the more numerically
hallenging cases at 𝑀 = 0.7. For the case with 𝑀 = 0.4, results of
wo simulations with and without the filtering are provided to make
irect comparisons and examine the filtering effect. A list of test cases
tudied here is presented in Table 1. The key computational parameters
nd normalised grid resolutions based on the friction velocity (𝑢𝜏 ) is
rovided in Table 2. It should be noted that, here, subscript 𝑝 denotes
he peak values of flow quantities. The normalised wall distance value
�̃�+) is defined as �̃�+ = �̃�𝑅𝑒𝜏 , where �̃� is the coordinate in the 𝑦 direction
elative to the wall. The normalised cell sizes in different directions,
4

a

𝑥+, 𝛥�̃�+ (the height of the first grid point above the wall) and 𝛥𝑧+,
re evaluated in a similar way to �̃�+. The friction Reynolds number is
efined as 𝑅𝑒𝜏 = ⟨𝜌𝑤𝑎𝑙𝑙⟩𝑢𝜏𝐻∕⟨𝜇𝑤𝑎𝑙𝑙⟩ where 𝑢𝜏 =

√

⟨𝜏𝑤𝑎𝑙𝑙⟩∕⟨𝜌𝑤𝑎𝑙𝑙⟩.
In this paper, the single prime (′) denotes the turbulent fluctuation

hich for an arbitrary flow quantity (𝜙) is defined as 𝜙′ = 𝜙 − ⟨𝜙⟩.
oreover, for the higher Mach number case, the Favre average is

efined as {𝜙} = ⟨𝜌𝜙⟩∕⟨𝜌⟩ and the double prime (′′) denotes the
urbulent fluctuation with respect to the Favre average defined as 𝜙′′ =
− {𝜙}. For the Reynolds stresses, the Favre average is related to the
eynolds average as ⟨𝜌⟩{𝑢′′𝑖 𝑢

′′
𝑗 } = ⟨𝜌𝑢𝑖𝑢𝑗⟩ − ⟨𝜌⟩⟨𝑢𝑖⟩⟨𝑢𝑗⟩. Also, the mean

ach number is defined as ⟨𝑀⟩ =
√

⟨𝑢⟩2 + ⟨𝑣⟩2 + ⟨𝑤⟩

2∕⟨𝑎𝑐⟩, where 𝑎𝑐
s the local speed of sound, while the turbulent Mach number is defined
s 𝑀 =

√

⟨𝑢′𝑢′⟩ + ⟨𝑣′𝑣′⟩ + ⟨𝑤′𝑤′
⟩∕⟨𝑎 ⟩.
𝑡 𝑐
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Fig. 3. Profiles of the mean velocity, density, temperature, speed of sound and Mach number, and profile of the turbulent Mach number (𝑀𝑡).

Fig. 4. Profiles of the Favre Reynolds stresses.



International Journal of Heat and Fluid Flow 104 (2023) 109229A. Hamzehloo et al.
Fig. 5. Profiles of the vorticity fluctuation and the components of the vorticity turbulent fluctuations.
Table 2
Computational parameters of the counter-flow cases.

Case 𝑀 𝑃𝑟 WENO filter 𝑅𝑒𝜏 𝑢𝜏 𝛥𝑥+ 𝛥�̃�+ 𝛥𝑧+ ⟨𝑢⟩+𝑝
1 0.1 0.7 No 131.482 0.299 6.574 0.406 3.944 7.209
2 0.4 0.7 No 193.835 0.210 9.691 0.599 5.815 9.716
3 0.4 0.7 Yes 194.769 0.211 9.738 0.602 5.843 9.742
4 0.7 0.7 Yes 278.672 0.159 13.933 0.862 8.360 12.631
5 0.7 0.2 Yes 231.122 0.189 11.556 0.715 6.933 11.790

2.3. WENO filtering

As introduced in Section 2.1, the code used by Hamzehloo et al.
(2021a) is extended in the present work to include a filtering method
based on the widely used family of WENO shock-capturing schemes.
The filter is used to damp oscillations in the solution (due to sharp
gradients from non-linear shocklets), while preserving the ability to
resolve small-scale turbulence (Yee and Sjögreen, 2018). The WENO
procedure works by constructing a high-order polynomial approxima-
tion of the solution is using a selection of smaller candidate stencils over
neighbouring grid points (Jiang and Shu, 1996; Shu, 1997). The specific
polynomial degree and stencil size depend on the order of the WENO
method. In the present work, a 5th-order WENO scheme is applied.
The weights for each lower-order approximation candidate stencil are
calculated based on their ability to minimise the smoothness indicator,
which is a measure of the smoothness of the solution in the stencil. The
final reconstruction is built from a weighted combination of the smaller
candidate stencils. The WENO reconstruction procedure is performed in
characteristic space to enhance the robustness of the shock-capturing.

As in the framework presented by Yee and Sjögreen (2018), the
WENO filtering is applied only once at the end of every time-step,
rather than at every sub-stage of the Runge-Kutta time-stepping al-
gorithm. The filter method subtracts a centred approximation to the
WENO flux to leave only the dissipative portion of the WENO scheme.
This dissipative contribution is then used to filter each of the conser-
vative variables to selectively remove high-frequency oscillations in
6

the solution while preserving the key turbulent structures. A modified
version (Lusher and Sandham, 2019) of the Ducros sensor (Ducros
et al., 2000) is used to localise the application of the shock-capturing
only to regions containing shocklets. The WENO filter step method was
validated in OpenSBLI for a supersonic Taylor–Green vortex case at
𝑀 = 1.25 by Lusher et al. (2023), and was shown to have excellent
numerical resolution while still remaining stable in the presence of
strong shocks.

The counter-flow with 𝑀 = 0.4 forms a mildly compressible tur-
bulent flow with 𝑀 𝑡𝑝 ≈ 0.6 (Hamzehloo et al., 2021a), hence the
formation of flow discontinuities in form of shocklets would be ex-
tremely limited. Therefore, the WENO filtering, which is only active
where a discontinuity exists, should have a very limited role for the
counter-flow with 𝑀 = 0.4. Fig. 2 shows a direct comparison between
various flow quantities (which will be discussed later in this paper) for
the 𝑀 = 0.4 counter-flow case with and without the WENO filtering.
It is clear that these cases exhibit almost identical trends and Table 1
shows less than ∼1% changes in their key flow quantities. This suggests
that the filter-based shock capturing method is performing well and the
grid resolution is fine enough. In the rest of this work, all results shown
for 𝑀 ≥ 0.4 are obtained using the aforementioned WENO filtering
scheme.

2.4. Spectral Proper Orthogonal Decomposition (SPOD)

SPOD, an extension of the Proper Orthogonal Decomposition (POD)
method, can be used to identify the most important spatio-temporal
modes of a dataset (Towne et al., 2018). To perform such an analysis,
the data is first transformed into the frequency domain using Fourier
transforms with overlapping segments. Then POD is applied to the
frequency-domain data to identify the significant modes (those with
larger eigenvalues). This allows for the identification of the dominant
spatial patterns in the data for specific frequencies. The SPOD modes
are temporally orthogonal and monochromatic, and are less noisy
compared to Fourier analysis alone. In the present study, the memory-
efficient streaming SPOD algorithm and software provided by Schmidt
and Towne (2019) and Schmidt (2022) are used. Both 𝑥 − 𝑦 (at 𝑧 = 0)
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Fig. 6. Iso-surfaces of the dilatation with iso-values of (a): 𝜃𝑖𝑠𝑜 = 2𝜃′𝑏 and (b): 𝜃𝑖𝑠𝑜 = 3𝜃′𝑏. Red and blue colours show the flow directions in the positive (left to right) and negative
streamwise directions, respectively.
Fig. 7. Profiles of the ratio of the dilatational dissipation over the total dissipation.

and 𝑥−𝑧 (at 𝑦 = 0) planes of the counter-flow with 𝑀 = 0.7 and 𝑃𝑟 = 0.7
are investigated for both the 𝑢 and 𝑣 components of the velocity vector.
Snapshots are stored at every 20 time-steps (i.e. 𝑡 = 0.001) which results
in a total of 330 000 samples. These are divided into segments, or
blocks, which are concatenated into a matrix for the main analysis.
The size and overlap of the blocks can be altered to balance the trade-
off between frequency resolution and statistical accuracy (Schmidt and
Towne, 2019). Here, a block number of 7 with 50% overlap and a
Hamming window (to improve the accuracy by reducing the effects
of spectral leakage (Schmidt, 2022)) have been selected. The SPOD
formulation is omitted here for the sake of brevity, and the reader is
to referred to the work by Moise et al. (2022) which applied the same
methodology to compressible airfoil flows.
7

3. Results and discussion

3.1. Mean flow and turbulence statistics

Fig. 3 shows a direct comparison between the counter-flows studied
here based on various mean flow quantities, including the streamwise
velocity {𝑢}, density ⟨𝜌⟩, temperature ⟨𝑇 ⟩, local speed of sound ⟨𝑎𝑐⟩
and Mach number ⟨𝑀⟩, and also the turbulent Mach number 𝑀𝑡.
Additionally, Fig. 4 provides the Favre Reynolds stresses of the counter-
flows. The temperature field is observed to have a strong dependence
on the reference Mach number. For cases with increasing Mach number,
for instance, as also provided in Table 1, the peak mean temperature
is ∼2.0 and ∼4.4 times higher for the cases with 𝑀 = 0.4 and 𝑀 = 0.7
compared to the case at 𝑀 = 0.1, respectively. Meanwhile, reducing the
Prandtl number from 𝑃𝑟 = 0.7 to 0.2 for 𝑀 = 0.7 increases the thermal
diffusivity in the simulation, and leads to a subsequent reduction in
the peak mean temperature by ∼31%. As shown in Fig. 3, the mean
velocity profiles do not change significantly when altering the Mach
number since the latter is governed primarily by the local speed of
sound. Mean and turbulent Mach numbers exhibit significant surges as
the reference Mach number increases. Notably in the context of eddy-
shocklet generation discussed later in this work, the peak turbulent
Mach number increases by ∼179% and ∼256% when the reference Mach
number is increased from 𝑀 = 0.1 to 𝑀 = 0.4 and 0.7, respectively.
Reducing the Prandtl number while keeping the Mach number fixed at
𝑀 = 0.7 further increases the turbulent Mach number by ∼29.5% to
reach a value of near unity at the centreline of the channel. At these
highly compressible flow conditions, strong non-linearities can develop
within the flow (Lee et al., 1991; Samtaney et al., 2001).

Regarding the normal stresses, as shown in Fig. 4 and Table 3
(which presents the variation of the peak values of the Favre Reynolds
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Fig. 9. Probability distributions of the dilatation over the entire domain for every
𝑡 = 10 intervals up to 𝑡 = 1000.

tresses with changes in the Mach and Prandtl numbers) a clear trend
an be observed as the Mach number increases (cases 1,3 and 4),
eeping 𝑃𝑟 constant. For instance, when comparing Case 1 (𝑀 =
.1, 𝑃 𝑟 = 0.7) with Case 4 (𝑀 = 0.7, 𝑃 𝑟 = 0.7), it can be observed
hat ⟨𝜌⟩{𝑢′′𝑢′′} increases by approximately 9%, from 2.638 to 2.879.
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𝑝 t
Fig. 10. Energy of the SPOD modes versus frequency. The black arrow illustrates the
direction that the mode number increases (𝑀 = 0.7 and 𝑃𝑟 = 0.7).

Table 3
Peak values of the Favre Reynolds stresses.

Case 𝑀 𝑃𝑟 ⟨𝜌⟩{𝑢′′𝑢′′}𝑝 ⟨𝜌⟩{𝑣′′𝑣′′}𝑝 ⟨𝜌⟩{𝑤′′𝑤′′}𝑝 −⟨𝜌⟩{𝑢′′𝑣′′}𝑝
1 0.1 0.7 2.638 1.019 1.274 0.875
3 0.4 0.7 2.631 0.847 1.122 0.853
4 0.7 0.7 2.879 0.699 0.938 0.819
5 0.7 0.2 3.447 0.640 0.895 0.831

Similarly, ⟨𝜌⟩{𝑣′′𝑣′′}𝑝 and ⟨𝜌⟩{𝑤′′𝑤′′}𝑝 decrease by ∼31% and ∼26%
espectively. Thus, there is a clear linkage between changes in the
ach number and the state of turbulence anisotropy. The increase

n anisotropy suggests a propensity towards a more one-dimensional
r longitudinal turbulence state, while momentum transfer by the 𝑣
nd 𝑤 velocity components is reduced. The changes in the streamwise
luctuation of ⟨𝜌⟩{𝑢′′𝑢′′}𝑝 seen in Fig. 4 are notably smaller than in
he other components, with no changes as 𝑀 increases from 0.1 to
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Table 4
Bulk-averaged dilatation fluctuation dependence on the reference Mach and Prandtl
numbers.

Case 𝑀 𝑃𝑟 𝜃′𝑏
1 0.1 0.7 0.128
3 0.4 0.7 1.374
4 0.7 0.7 1.885
5 0.7 0.2 2.808

0.4 and then a small increase from 0.4 to 0.7. The effect of reducing
𝑃𝑟 is consistent with the trend of increasing anisotropy with increases
in the turbulence Mach number. There are some subtle differences
however. The decrease in 𝑃𝑟 affects ⟨𝜌⟩{𝑢′′𝑢′′}𝑝 more than the trans-
verse component, suggesting that the change in the bulk temperature
also has a role to play. In summary, we can say that anisotropy of
the turbulence increases with increasing 𝑀𝑡. With increasing 𝑀 while
keeping 𝑃𝑟 constant, this mainly occurs by reductions in the transverse
components of the Favre stresses, while for constant 𝑀 and reducing
𝑃𝑟 this happens mainly by increasing the streamwise Favre stress.

The overall vorticity fluctuation, 𝜔′ =
√

⟨𝜔2
𝑥 + 𝜔2

𝑦 + 𝜔2
𝑧⟩ and the

contributing components of the vorticity fluctuations are shown in
Fig. 5. Trends in vorticity fluctuations for varying Mach and Prandtl
numbers can be considered indicative of changes in the behaviour of
smaller scales of turbulence, relative to the Favre stresses discussed in
the previous paragraph. From Fig. 5, we can see that vorticity (the total
and all the components individually) reduces in magnitude as the Mach
number increases, while holding 𝑃𝑟 constant. This behaviour is similar
to the decline in spanwise and wall-normal Reynolds stresses, seen in
Fig. 4, as the Mach number increases and signifies a weakening of the
small-scale vortical structures and a movement towards a less active
turbulence state. On the other hand, reducing the Prandtl number
from 0.7 to 0.2 increases the vorticity fluctuations, affecting all the
components. The most likely explanation for this different trend is the
reduction in core channel temperature and hence viscosity, meaning
that small vortical structures are less damped by viscosity.

3.2. Shocklet structures

As a result of the high values of the mean and turbulent Mach num-
bers shown in Fig. 3, regions with instantaneous local Mach numbers
beyond unity are expected to form in the cases with 𝑀 = 0.7. For
such transonic values, the formation of shocklets is possible. Shocklets
can be associated with regions where the dilatation, defined as 𝜃 =
𝜕𝑢
𝜕𝑥 + 𝜕𝑣

𝜕𝑦 + 𝜕𝑤
𝜕𝑧 , is lower than a negative threshold i.e. 𝜃 < −𝜁 (Samtaney

et al., 2001; Wang et al., 2017). A value of 𝜁 = 3𝜃′, where 𝜃′ denotes the
dilatation fluctuation (root mean square of the dilatation magnitude)
defined as 𝜃′ =

√

⟨( 𝜕𝑢𝜕𝑥 )
2 + ( 𝜕𝑣𝜕𝑦 )

2 + ( 𝜕𝑤𝜕𝑧 )
2
⟩, has been used in compressible

decaying turbulence problems to detect shocklets as regions with strong
compression rates (in turbulent Mach number values in the range
of 0.5 ≤ 𝑀𝑡 ≤ 1.0) (Samtaney et al., 2001; Wang et al., 2017).
Furthermore, 𝜁 = 𝜃′ was used by Samtaney et al. (2001) to visualise
shocklets. Table 4 provides the bulk-averaged values of the dilatation
fluctuation (𝜃′𝑏) for the counter-flows studied here as the reference
Mach and Prandtl numbers are varied.

In order to detect and visualise the shocklets, iso-surfaces of the
dilatation with various threshold values (iso-values) of 𝜁 = 2𝜃′𝑏 (a) and
3𝜃′𝑏 (b) are used as shown in Fig. 6 for counter-flows with 𝑀 ≥ 0.4. The
threshold value of 𝜁 = 3𝜃′𝑏 was used by Wang et al. (2017) to highlight
the differences in high-compression regions of the flow (i.e. shocklets)
as the compressibility increases. The surfaces are coloured based on
streamwise velocity (red for positive and blue for negative) to improve
their interpretation. We see that significant numbers of shocklet struc-
tures are detected. They span the whole computational domain and are
highly three-dimensional and irregular. The cases are arranged from
top to bottom in order of increasing compressibility, as noted by the
9

Fig. 11. First 4 SPOD modes on the 𝑥− 𝑦 plane at 𝑓 = 0.1 based on the 𝑣 component
of the velocity vector (𝑀 = 0.7 and 𝑃𝑟 = 0.7).

increase in 𝜃′𝑏 shown in Table 4. Not only is 𝜃′𝑏 increasing, but also the
volume enclosed by shocklet-type structures with dilatation magnitude
exceeding 3𝜃′𝑏 is increasing. The tendency (most clearly in the cases
for 𝑀 = 0.7 and 𝑃𝑟 = 0.2) for the shocklets to be stronger and more
frequent at certain spanwise locations in this figure was not generally
observed at other time instants, although some connection between
shock location and large scale structures cannot be entirely ruled out.

3.3. Shocklet quantification

The total viscous dissipation can be decomposed into the solenoidal
and dilatational components as 𝜖 = 𝜖+𝜖 (Sarkar et al., 1991) where,
the solenoidal (𝜖 ) and dilatational (compressible) (𝜖) dissipations are
defined as

𝜖 = 1
𝑅𝑒

[

𝜇

⟨

( 𝜕𝑤
𝜕𝑧

− 𝜕𝑣
𝜕𝑧

)2
+
( 𝜕𝑢
𝜕𝑧

− 𝜕𝑤
𝜕𝑥

)2
+
( 𝜕𝑣
𝜕𝑥

− 𝜕𝑢
𝜕𝑦

)2
⟩]

(4)

and

𝜖 = 4
3𝑅𝑒

[

𝜇

⟨

𝜕𝑢
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦

+ 𝜕𝑤
𝜕𝑧

⟩2]

. (5)

Energy dissipation through Mach number-induced changes on tur-
bulent flow structures (i.e. shocklets) can be linked to the dilatational
part of the dissipation (Sarkar et al., 1991). Fig. 7 shows the ratio
of the dilatational dissipation to the total dissipation for the counter-
flows studied here. The contribution of the dilatational part of the
total viscous dissipation becomes significantly more important as the
compressibility increases by having a higher Mach number and/or
a lower Prandtl number. The peak of the ratio of the dilatational
dissipation to the total dissipation occurs at around |𝑦| ≈ 0.75 for all
cases where the mean streamwise velocity and the mean Mach number
also exhibit peak values as shown in Fig. 3. It is clear that 𝜖 is directly
related to the vorticity which reduces as the Mach number increases. In
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Fig. 12. First SPOD mode on the 𝑥 − 𝑦 plane at different frequencies based on the 𝑢 and 𝑣 components of the velocity vector (𝑀 = 0.7 and 𝑃𝑟 = 0.7).
fact, the solenoidal dissipation reduces slightly (not shown here) as the
compressibility of the counter-flow increases. A higher compressibility
results in the formation of more shocklets (as shown in Fig. 6), and
hence a relatively higher dilatational dissipation.

For a more quantitative analysis of shocklet distribution within the
counter-flows, the probability distribution of the dilatation is evalu-
ated, as depicted in Fig. 8. This is based on the Probability Density
Function (PDF) of the dilatation, time-averaged over four independent
realisations. It presents the PDF of the dilatation across the entire
computational domain and on 𝑥− 𝑧 planes at selected channel heights.
The PDF profiles for the case with 𝑀 = 0.1 exhibit approximate
symmetry, attributable to its low compressibility. As the Mach number
increases (or the Prandtl number decreases), the PDF profiles increas-
ingly skew towards negative dilatation values. This skewness stems
from the presence of nonlinear compression waves and, ultimately,
shocklets within the flow. The trend is consistent at different channel
locations indicating that shocklets are present across the entire width of
the channel. The only slight difference between the channel centreline
(subfigure 𝑦 = 0 plane) and off-centre locations (subfigures 𝑦 ≈ 0.511
and 0.962 planes) is that the rate of increase in skewness shows only
a small increase from 𝑀 = 0.4 to 0.7, perhaps indicating that the
increasing bulk temperature constrains the formation of shocks in this
region. When 𝑃𝑟 is reduced, hence reducing the bulk temperature, the
trend to increasing skewness of the PDF resumes.

To study the variability of shocklets over time, the PDF of the
dilatation across the entire domain is plotted for time intervals of
𝛥𝑡 = 10 for the cases with 𝑀 = 0.7 as shown in Fig. 9. The red curves in
the graph illustrate the instantaneous PDFs, while the thick black curve
signifies their temporal average. It is conspicuous that all the profiles
incline towards negative dilatation values, a trend that can be ascribed
to the continual presence of shocklets. As previously demonstrated, the
counter-flow case with 𝑃𝑟 = 0.2 exhibits a more negatively skewed
profile of the time-averaged dilatation PDF, which aligns with its higher
compressibility level.

3.4. SPOD analysis

Fig. 10 shows the energy of spatial SPOD modes as a function of fre-
quency for the analysis based on the 𝑢 component of the velocity vector
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on the 𝑥 − 𝑦 plane for the case with 𝑀 = 0.7 and 𝑃𝑟 = 0.7. The SPOD
modes and their corresponding mode energies are the eigenvectors and
eigenvalues, respectively, of the weighted cross-spectral density matrix,
which is estimated from an ensemble of realisations of the temporal
discrete Fourier transform (Schmidt, 2022). There is no dominant peak
or even distinguishable local peaks in this figure, which confirms the
broadband fully turbulent nature of the counter-flow configuration. The
integral value of the mode energy over the frequencies (not shown
here) decreases monotonically with the mode number. It should be
noted that there are similar trends for the mode energies on the 𝑥 − 𝑧
plane and also on the 𝑥 − 𝑦 plane based on the 𝑣 component of the
velocity vector (not shown here for brevity). There is a rather slow
decline in the mode energy as the mode number increases, reflecting
the absence of dominant modes compared to the SPOD analysis of flow
around a circular cylinder (Chu et al., 2021) or airfoil buffet (Moise
et al., 2022), where a global instability is present.

An example of the variability in the SPOD mode shapes is presented
in Fig. 11 for the first four modes at a frequency of 𝑓 = 0.1. This figure
is based on the 𝑣 component of the velocity vector on the 𝑥 − 𝑦 plane.
Mode 1 has its highest amplitude at the centreline 𝑦 = 0 with two
spatial wavelengths captured. Higher modes are less coherent and show
the presence of peaks closer to the walls. For further study we consider
only the first mode.

In Figs. 12 and 13 the first SPOD mode based on the 𝑢 and 𝑣
components of the velocity vector is shown on the 𝑥 − 𝑦 and 𝑥 − 𝑧
planes for different frequencies including 𝑓 = 0.025, 0.1, 0.4, 1.6, and
6.4. On the 𝑥−𝑦 plane, the lowest two frequencies have modes centred
in the middle of the channel where the shear is strongest. At higher
frequencies (like 𝑓 = 6.4) the modes include small features that are
homogeneously distributed throughout the domain. On the 𝑥− 𝑧 plane
the lower frequency modes are in the form of velocity streaks for
both the 𝑢 and 𝑣 components of the velocity vector. The presence of
large-scale streaky structures in the velocity field could potentially be
connected the spatial non-uniformity seen in Fig. 6 however inspection
of flowfields at other instants in time was not conclusive.

The current analysis did not identify any single dominant large-scale
coherent structure in the counter-flow configuration under investiga-
tion, which might have been expected for a flow that anticipated to
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Fig. 13. First SPOD mode on the 𝑥 − 𝑧 plane at different frequencies based on the 𝑢 and 𝑣 components of the velocity vector (𝑀 = 0.7 and 𝑃𝑟 = 0.7).
be globally unstable. Rather, the richness of structures in the SPOD
analysis emphasises the broadband three-dimensional nature of the
turbulence. The absence of coherent structures does not necessarily
eliminate the possibility of underlying associations between the ob-
served streaky structures and oblique modes that are expected to be
present in a stability analysis of the mean flow that remains for a future
study.

4. Conclusions

Direct numerical simulations of shocklet-containing turbulent flows
were conducted using a new counter-flow channel configuration intro-
duced previously by the current authors (Hamzehloo et al., 2021a). The
simulations were performed for the reference Mach number values of
𝑀 = 0.1, 0.4 and 0.7 with a Reynolds number of 𝑅𝑒 = 400. A case
with a Prandtl number of 𝑃𝑟 = 0.2 (reduced from the default value of
𝑃𝑟 = 0.7) and 𝑀 = 0.7 was also studied in an attempt to boost the
compressibility within the flow. Additionally, a modal analysis based
on SPOD was performed on the 𝑀 = 0.7 and 𝑃𝑟 = 0.7 counter-flow to
better understand the characteristics of the highly three-dimensional
transient shocklets embedded in such flow and their interactions with
the turbulent scales.
11
It was found that a reference Mach number as low as 𝑀 = 0.7
could produce fluctuating and mean Mach numbers close to 0.7 over a
considerable length of the height of the counter-flow channel. Such val-
ues produced instantaneous supersonic velocities that formed relatively
strong transient shocklets. Additionally, fluctuating and mean Mach
numbers above 0.95 were achieved by reducing the Prandtl number
from 𝑃𝑟 = 0.7 to 0.2 as the core temperature of the flow decreased.
Despite the presence of shocklets, the contribution of dilatational dis-
sipation to the total dissipation was found to be small (6% or less)
compared to the rotational component. SPOD analysis of the counter
flow with 𝑀 = 0.7 and 𝑃𝑟 = 0.7 showed a small decay of energy with
mode number indicating an absence of a single dominant structure. At
the lowest frequencies the first SPOD mode appeared in the form of
streamwise velocity streaks located at the centre of the channel. While
this study did not uncover clear evidence of coherent structures, this
does not rule out possible links between the observed streaky structure
and the interaction of oblique modes, which a future stability analysis
of the mean flow profile may expose.

In summary, the counter-flow configuration of an ideal gas has
been shown to be capable of generating highly turbulent flows with
embedded compression shocklets for a relatively modest reference
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Mach number. Therefore, the configuration provides a useful frame-
work to study some of the fundamental physics associated with shock-
turbulence interactions and could be considerably beneficial to the
development of compressible sub-grid scale turbulence models as well
as improved representations of compressibility in Reynolds-averaged
Navier–Stokes models. Future work could include the addition of a
heat sink term to the counter-flow configuration, as this would lower
the core temperatures and further increase compressibility effects and
shocklet generation. Furthermore, the counter-flow could be extended
to investigate dense gases, where the molecular complexity can lead to
inversion of the fundamental derivative of gas dynamics and a much
richer space of permissible non-linear flow structures (Cramer, 1991).
Specifically, it would be interesting to demonstrate the existence of
expansion shocklets (Giauque et al., 2020) within a dense gas counter-
flow, which are not permissible when using an ideal gas equation of
state.
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