The University of Southampton
University of Southampton Institutional Repository

Lightweight low-noise linear isolator integrating phase- and amplitude-engineered temporal loops

Lightweight low-noise linear isolator integrating phase- and amplitude-engineered temporal loops
Lightweight low-noise linear isolator integrating phase- and amplitude-engineered temporal loops

The quest for efficient and versatile microwave and optical isolators has recently led to spawn space–time-modulated isolator structures. However, such space-time isolators suffer from a large profile and complex architecture that is required for a progressive nonreciprocal space–time coupling. To overcome these limitations, here a nonmagnetic phase-engineered temporal loop-based isolator featuring large isolation levels, suppressed undesired time harmonics while exhibiting a low profile is proposed. The proposed isolator is composed of two temporal loops that provide desired constructive and destructive interferences of different time harmonics. Furthermore, these two loops are designed in a way to assure that the circulation and reflection of different time harmonics strengthen a unidirectional signal transmission with low insertion loss. An experimental demonstration of the proposed time-modulated isolator is provided at microwave frequencies, featuring strong unidirectional wave transmission through the isolator with more than 27 dB contrast between the forward and backward waves, across a fractional bandwidth of 14.3%. The proposed technique outperforms alternative approaches, that is, space–time modulation, ferrite magnets, nonlinearity, and HBT/CMOS transistors. It features a highly linear response with OP1dB of higher than 31 dBm, high power rating of more than 47 dBm, and a low noise figure of 3.4 dB.

electromagnetics, isolator, nonreciprocity, telecommunications, time modulation
2365-709X
Taravati, Sajjad
0026f25d-c919-4273-b956-8fe9795b31ce
Eleftheriades, George V.
280bbae6-32df-4af5-bcad-110f38ad72e7
Taravati, Sajjad
0026f25d-c919-4273-b956-8fe9795b31ce
Eleftheriades, George V.
280bbae6-32df-4af5-bcad-110f38ad72e7

Taravati, Sajjad and Eleftheriades, George V. (2022) Lightweight low-noise linear isolator integrating phase- and amplitude-engineered temporal loops. Advanced Materials Technologies, 7 (6), [2100674]. (doi:10.1002/admt.202100674).

Record type: Article

Abstract

The quest for efficient and versatile microwave and optical isolators has recently led to spawn space–time-modulated isolator structures. However, such space-time isolators suffer from a large profile and complex architecture that is required for a progressive nonreciprocal space–time coupling. To overcome these limitations, here a nonmagnetic phase-engineered temporal loop-based isolator featuring large isolation levels, suppressed undesired time harmonics while exhibiting a low profile is proposed. The proposed isolator is composed of two temporal loops that provide desired constructive and destructive interferences of different time harmonics. Furthermore, these two loops are designed in a way to assure that the circulation and reflection of different time harmonics strengthen a unidirectional signal transmission with low insertion loss. An experimental demonstration of the proposed time-modulated isolator is provided at microwave frequencies, featuring strong unidirectional wave transmission through the isolator with more than 27 dB contrast between the forward and backward waves, across a fractional bandwidth of 14.3%. The proposed technique outperforms alternative approaches, that is, space–time modulation, ferrite magnets, nonlinearity, and HBT/CMOS transistors. It features a highly linear response with OP1dB of higher than 31 dBm, high power rating of more than 47 dBm, and a low noise figure of 3.4 dB.

UNSPECIFIED
2107.09157v1 - Author's Original
Available under License Other.
Download (0B)

More information

Accepted/In Press date: 10 November 2021
e-pub ahead of print date: 18 December 2021
Published date: 7 June 2022
Additional Information: Funding Information: This work is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).
Keywords: electromagnetics, isolator, nonreciprocity, telecommunications, time modulation

Identifiers

Local EPrints ID: 482823
URI: http://eprints.soton.ac.uk/id/eprint/482823
ISSN: 2365-709X
PURE UUID: f946780a-ede8-4771-aabd-5a3dd04cc545
ORCID for Sajjad Taravati: ORCID iD orcid.org/0000-0003-3992-0050

Catalogue record

Date deposited: 12 Oct 2023 16:52
Last modified: 29 Apr 2024 02:04

Export record

Altmetrics

Contributors

Author: Sajjad Taravati ORCID iD
Author: George V. Eleftheriades

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×