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Optimizing beam-splitter pulses for atom interferometry:
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We present a methodology for the design of optimal Raman beam-splitter pulses suitable for
cold atom inertial sensors. The methodology, based on time-dependent perturbation theory, links
optimal control and the sensitivity function formalism in the Bloch sphere picture, thus providing a
geometric interpretation of the optimization problem. Optimized pulse waveforms are found to be
more resilient than conventional beam-splitter pulses and ensure a near-flat superposition phase for
a range of detunings approaching the Rabi frequency. As a practical application, we have simulated
the performance of an optimized Mach-Zehnder interferometer in terms of scale-factor error and
bias induced by inter-pulse laser intensity variations. Our findings reveal enhancements compared
to conventional interferometers operating with constant-power beam-splitter pulses.
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I. INTRODUCTION

Since the first pioneering experiments of Kasevich and
Chu, light-pulse atom interferometry has been used to
measure inertial effects [1]. The key advantage of this
technology is its high long-term stability [2–5], making
it an attractive prospect for high accuracy navigation,
gravity and gravity gradient mapping [6–9].
Most applications of atom interferometry to inertial

measurement use a scheme of three laser pulses that
drive stimulated Raman transitions [10, 11]. The first
laser pulse acts like an optical beam-splitter, dividing
the atomic wavepacket into a coherent superposition of
the atom’s hyperfine ground states. The atomic states
are inverted by a second pulse that acts like the inter-
ferometer’s mirror, and, finally, recombined by a third
pulse in order to allow interference. The measurement
performance is highly dependent on the fidelity of the
Raman transition process: imperfect pulses cause errors
that affect the accuracy and precision of a cold atom in-
ertial sensor [12, 13]. Imperfection in the mirror process
largely affects the contrast of the interferometric signal
[14], while in the beam-splitting and recombining pro-
cesses they mainly result in the introduction of phase
errors [12, 15, 16].
Composite Raman pulse [10, 17–19] and optimal con-

trol approaches [20–22] have previously been used to de-
sign pulse sequences that are robust to interferometer
imperfections that affect the pulse detuning and coupling
strength. Within this framework, we present a method
to design optimized beam-splitter pulses that are charac-
terized by a near-flat superposition phase for a range of
detunings approaching the Rabi frequency. The method,
based on time-dependent perturbation theory, links the
sensitivity function formalism [23] and the Bloch sphere
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picture [24], providing a geometric interpretation of the
optimization problem.
The structure of the paper is as follows. We first intro-

duce the motivations behind our work, highlighting the
features of the adopted perturbative approach and the
advantages that an optimized beam-splitter brings to a
cold atom inertial sensor. Then, we present the theoret-
ical framework, starting with time-dependent perturba-
tion theory, and derive the cost function of the optimiza-
tion problem, along with its connection to the sensitivity
function formalism. In the second part, we present the
results of our method: an optimized beam-splitter pulse
is obtained, in which the laser intensity is modulated,
and the Raman phase is constrained to values of 0 and π
radians. We compare the performance of optimized and
conventional beam-splitters both individually and when
included in a Mach-Zehnder interferometer. Finally, we
conduct a stability and symmetry analysis of the opti-
mized beam-splitter by representing off-resonant Bloch
vector trajectories, aiming to understand the mechanism
that leads to the achievement of a near-flat superposition
phase across a range of detunings.

II. MOTIVATIONS

The choice of an optimization method based on time-
dependent perturbation theory relies on the minimization
of errors introduced by off-resonance conditions. The
cost function is obtained analytically as a function of the
perturbation expansion terms, thus not requiring averag-
ing over a specific atomic ensemble like non-perturbative
methods such as GRAPE [25] and Krotov-based meth-
ods [26]. Rather than trying to reach a target state for
a range of specific detunings, we obtain waveforms that
minimize the errors introduced by off-resonance condi-
tions, adopting an approach similar to the one taken
in the design of early composite pulses [27–29]. Mini-
mization of the errors avoids the presence of ‘wobbles’ in
the pulse fidelity about the resonance condition that are
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characteristic of the ensemble-based optimisation meth-
ods [20, 30].
Interferometers operating with conventional constant-

power pulses typically require atoms to experience the
same laser intensity during the beam-splitting and re-
combining processes to ensure phase error compensation.
Inter-pulse Rabi frequency fluctuations break the sym-
metry of the Mach-Zehnder interferometer. As a con-
sequence: a) there is a residual sensitivity in the case
that atoms are prepared with an asymmetric or non-zero
mean velocity distribution [5, 16]; b) the inertial scale-
factor drifts [31]; c) intensity variations affect the bias
stability of the interferometer via the one-photon and
two-photon light shifts [12, 15]. In contrast, optimized
beam-splitter pulses feature a near-flat dependence of
superposition phase upon intensity which automatically
improves the resilience of the interferometric phase to
inter-pulse laser intensity fluctuations, relaxing the need
for Mach-Zehnder laser intensity symmetry. This also
facilitates phase error compensation by minimizing the
phase error accumulated at the end of the beam-splitting
and recombining processes, ensuring that variations in
the interferometric phase due to off-resonant conditions
remain small.

III. BACKGROUND THEORY

A. Time-dependent perturbation theory

Under the rotating wave and adiabatic elimination ap-
proximations, the dynamics of the atomic wave-function
undergoing a stimulated Raman transition can be de-
scribed by an effective two-level system [32] and the time
evolution of the internal states, |g〉 and |e〉, can be found
solving the associated Liouville-von Neumann equation

i~
dρ

dt
= [H,ρ] , (1)

with ρ the density matrix defined as

ρ =

[

ρgg ρge
ρeg ρee

]

, (2)

and H the two-level Hamiltonian [25]

H =
~

2

[

δ Ω0 e
−iφL

Ω0 e
iφL −δ

]

. (3)

Here δ, Ω0 and φL are, respectively, the two-photon de-
tuning, the effective Rabi frequency, and the effective
Raman phase.
By imposing that the Raman phase can only assume

values φL = 0, π, and thus can be given by the sign of the
Rabi frequency, and using the following transformation





bx
by
bz



 =





2ℜ(ρge)
2ℑ(ρge)
ρgg − ρee



 , (4)

the Liouville-von Neumann equation can be reduced to
the well-known Bloch equation

d

dt





bx
by
bz



 =





0 −δ 0
δ 0 Ω0

0 −Ω0 0









bx
by
bz



 . (5)

Here, bx, by and bz are the components of the Bloch vec-
tor in the basis defined by the Pauli matrices. For a given
atom, the magnitude of the Bloch vector is one for every
value of δ and Ω0; hence the trajectory of the Bloch vec-
tor on the unit sphere (Bloch sphere) describes the time
evolution of the internal states of a two-level system.
Eq. (5) can be solved analytically in the case of constant
δ and Ω0. Approximate solutions for the time-varying
case can be obtained using time-dependent perturbation
theory in the form of Magnus expansion [33] or Dyson se-
ries [34]. In this work we focus on Dyson series because
of its connection with the sensitivity function formalism
and the geometrical insight it offers into the Bloch sphere
picture.
Using the Dyson series, an approximate solution of

Eq. (5) can be found to be

b(t) = U0(t, t0)b(t0) + . . .

U0(t, t0)

∫ t

t0

dt′V(t′, t0) b(t0) + . . . (6)

U0(t, t0)

∫ t

t0

∫ t′

t0

dt′dt′′V(t′, t0)V(t′′, t0) b(t0) + . . .

where

V(t, t0) = U0

†(t, t0)Mδ(t)U0(t, t0) , (7a)

Mδ(t) =





0 −δ(t) 0
δ(t) 0 0
0 0 0



 , (7b)

and U0(t, t0) is the unperturbed propagator, i.e. the
state transfer matrix that describes the evolution of the
two-level system from time t0 to time t in the case of zero
detuning

U0(t, t0) =





1 0 0
0 cos θ(t) sin θ(t)
0 − sin θ(t) cos θ(t)



 , (8)

where θ(t) =
∫ t

t0
Ω0(t

′)dt′ is the total angle rotated by

the Bloch vector about the x-axis, or, equivalently, the
pulse area.
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FIG. 1. Bloch sphere representation of two-level quantum sys-
tem dynamics. The North and South poles of the sphere co-
incide respectively with the basis states |g〉 and |e〉. The blue
trajectory represents the unperturbed error-free evolution of
an atom subject to a beam-splitter pulse. Laser intensity and
detuning errors cause the atomic trajectory to deviate from
the unperturbed solution as represented by the red curve.

B. Link with the sensitivity function formalism

The phase sensitivity function describes the response of
the interferometer to a Dirac delta-function input in de-
tuning (equivalent to a step change in atom-laser phase)
in the limit of small perturbations [23]. Hence, a natural
connection arises between time-dependent perturbation
theory and the sensitivity function. Considering as the
initial condition a basis state b(t0) = (0 0 1)T , the first
order solution of Eq. (5) is given by





bx(t)
by(t)
bz(t)



 =





0
sin θ(t)
cos θ(t)



 +





∫ t

t0
g
(1)
x (t′)δ(t′)dt′

0
0



 , (9)

where g
(1)
x (t′) = − sin

(

∫ t′

t0
Ω0(t

′′)dt′′
)

. The first and sec-

ond terms in the right-hand-side of Eq. (9) represent,
respectively, the unperturbed solution and the first order
correction.
The link with the phase sensitivity function appears if we
express the first order solution in spherical coordinates.
In particular, considering a Mach-Zehnder interferometer
working on the side of the central fringe (sin θ(tf ) = 1
and cos θ(tf ) = 0, where tf is the final time instant of
the last beam-splitter pulse), we have

(

δΦ(tf )
δα(tf )

)

=

(

tan−1
[

∫ tf

t0
g
(1)
x (t)δ(t)dt

]

0

)

. (10)

Here, δΦ(tf ) and δα(tf ) represent the first order devi-
ations of the Bloch vector from the ideal path due to
a time-varying detuning. The deviations are expressed,

respectively, in terms of longitude and latitude errors,
where the longitude error represents the angular devia-
tion of the Bloch vector trajectory with respect to the
y-z plane. Similarly, latitude error is the deviation of the
Bloch vector from the equatorial plane. Longitude and
latitude are considered positive as in Fig. 1.
In the limit of first order approximation, a time-varying
detuning produces a longitude error, but no latitude er-
ror. The longitude component of the Bloch vector rep-
resents the phase imprinted by the laser on the atomic
wave-function during the pulse sequence, or in other

words, the interferometric phase. Hence, g
(1)
x (t) describes

the response of the interferometer to a time-varying de-
tuning and coincides with the phase sensitivity function
for a time-varying Rabi frequency [35].
Eq. (10) is valid both for a Mach-Zehnder interferom-

eter working on the side of the central fringe and for
an individual beam-splitter, given the Rabi frequency as
function of time and the sequence duration tf . Hence,
the quantity δΦ may represent, to first order, both the
phase error impressed on the atomic wave-function at the
end of the single beam-splitter pulse, and the phase of the
interferometer overall.

IV. METHODS

The beam-splitter divides the atomic wave-function
into a coherent superposition of two states, and can be
represented as a trajectory on the Bloch sphere. For
instance, in the ideal case of perfect timing and zero de-
tuning, and starting from the basis state b(t0) = (0 0 1)T ,
the Bloch vector will end up at the point b(t) = (0 1 0)T .
Detuning causes a deviation from this ideal trajectory. In
Appendix A, we demonstrate that odd order corrections
in the Dyson series give longitude error contributions,
while even order corrections give latitude error contribu-
tions.
Longitude and latitude errors correspond, respectively, to
phase and population amplitude errors that the atomic
wave-function accumulates during the beam-splitting
process. A robust beam-splitting process should there-
fore minimize longitude and latitude errors for different
values of detunings.
We optimize the beam-splitter by solving the following

minimization problem

min
Ω0(t)





∑

k,i

w
(k)
i δb

(k)
i (tf ) + P



 ∀ δ = const , (11)

where the generic δb
(k)
i is the i-th component of the k-th

order Bloch vector correction computed at the final time
instant of the beam-splitter as defined in the right-hand
side of Eq. (6). Each correction component is weighted by

a dimensionless coefficient w
(k)
i ; P is a waveform smooth-

ness parameter proportional to the second derivative of
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FIG. 2. Optimized beam-splitter waveform (blue) and pulse
area (red). The design Rabi frequency is Ω0 = 2π × 200kHz.
The length of the pulse is set to be 8 times that of an equiv-
alent mirror pulse.

the Rabi frequency control law [21]. The term in the
square brackets in Eq. (11) is the cost function of the
minimization problem.
The output of the optimization problem is an optimal
Rabi frequency waveform Ω0(t) = Ω0 u(t) that minimizes
the deviations of the Bloch vector from the ideal trajec-
tory due to constant detunings. Negative values of the
Rabi frequency correspond to a laser phase of π rad.
The Bloch vector corrections within the cost function

are represented by the integral terms in the Dyson se-
ries, which do not depend on detuning when the latter is
held constant. As a result, the cost function is analytical
and does not require averaging over an atomic ensemble.
Nevertheless, due to the presence of high-order terms in
the Dyson series, we compute the gradient numerically.
When implementing the optimization, attention

should be paid to the convergence of the Dyson se-
ries. Heuristically, the series converges if the ratio

|δb
(k+1)
i (t)|/|δb

(k)
i (t)| ≪ 1 ∀ t. Each correction term in

the series expansion is proportional to (δ/Ω0)
k, and the

convergence condition is met if the detuning is smaller
than the Rabi frequency. In general, the convergence of
the series is guaranteed if ‖Mδ(t) t‖ ≪ 1 [36]. Hence,
even if the detuning is of the same order as the Rabi fre-
quency, convergence can be achieved by splitting the inte-
gration in Eq. (6) into many time intervals, and choosing
a sufficiently small time-step.

V. RESULTS

A. Optimized beam-splitter pulse

We now present the results of our optimization and
compare its performance with a conventional rectangu-
lar pulse.
The optimization was performed by solving the prob-

FIG. 3. Phase error map for: (a) a conventional beam-splitter
pulse; (b) the optimized beam-splitter pulse. In both cases
the nominal Rabi frequency is Ω0 = 2π× 200kHz. The phase
error represents the longitude offset of the Bloch vector with
respect to the ideal zero-detuning case, computed at the end
of the beam-splitter.

lem stated in Eq. (11), using the MATLAB routine
fmincon with an active-set algorithm [37], subject to the
following non-linear constraints

∫ tf

t0

Ω0u(t) dt ≤
π

2
, (12a)

|u(t)| ≤ 1 . (12b)

The first of these ensures that the pulse acts as a beam-
splitter. The inequality sign relaxes the constraint allow-
ing the minimization algorithm to find a better solution.
The second condition is a constraint on the maximum
Rabi frequency value, reflecting practical limits upon the
laser intensity. In this context, the function u(t) is the
dimensionless Rabi frequency waveform, while Ω0 is the
design (or nominal) Rabi frequency. We note that con-
dition (12b) could be removed by the constraints and in-
cluded in the cost function by means of a spill-out norm
penalty [38].
Fig. 2 shows the resulting optimized beam-splitter
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FIG. 4. Time evolution of the distribution representing the atomic ensemble E . The value of the distribution at each time
instant has been normalized with respect to the maximum value. Upper panel: latitude-longitude distribution on the Bloch
sphere at three different times throughout our optimized pulse: t/tπ = 2, 4, and 8. The thick meridian is given by the
intersection of the Bloch sphere with the y-z plane. The magenta line represents the Bloch vector trajectory and for δ/Ω0 = 0.4
and Ω/Ω0 = 1. Lower panel: time evolution of the longitude distribution on the left, and latitude distribution on the right.
The magenta line represents, respectively, the longitude and latitude projection of the aforementioned Bloch vector trajectory.

waveform pulse, obtained using a design Rabi frequency
of 2π × 200kHz and a total pulse duration of 8 tπ, where
tπ is the duration of an equivalent conventional π-pulse
having the same maximum Rabi frequency. We divide
the pulse into 200 piecewise-constant segments in which
the optimiser can adjust the Rabi frequency waveform.
Dyson series terms up to the 7th order have been consid-
ered in the cost function.
Fig. 3 shows the effects of laser intensity and detuning

errors on the phase error δΦ for a conventional rectangu-
lar beam-splitter, and for the optimized pulse of Fig. 2.
The optimized beam-splitter pulse exhibits a phase error
which is minimized in a range of detunings of ±0.5Ω0

when Ω = Ω0. In contrast, a conventional rectangular
pulse exhibits a phase error that varies almost linearly
with the detuning [30]. It is worth noting that, over the
region shown, the range of detunings for which a mini-
mized phase error is realized increases as the maximum
value of the Rabi frequency decreases with respect to the
design one.
Fig. 4 illustrates the simulated evolution of the atomic

ensemble E = {δ/Ω0 ∈ [−0.8, 0.8] andΩ/Ω0 ∈ [0.8, 1.2]}
of 40000 particles. For the given ensemble, we inte-
grate numerically the Bloch equations and construct the
time-evolution of the latitude, longitude and latitude-
longitude histograms. We obtain the ensemble distribu-

tions normalizing the histograms with respect its maxi-
mum value at each time-step. The Bloch vector trajec-
tory for δ/Ω0 = 0.4 and Ω/Ω0 = 1 is overlaid in Fig. 4
with snapshots of the latitude-longitude ensemble dis-
tribution mapped on the Bloch sphere at times t = 2,
4, and 8 tπ. The optimized Rabi frequency waveform
‘squeezes’ the ensemble distribution reducing phase dis-
persion. Fig. 4 also shows the time evolution of the lon-
gitude and latitude distribution, along with projections
of the aforementioned Bloch vector trajectory.

B. Interferometer performance

Atoms within the interferometer experience pulse-to-
pulse intensity variations, either because of laser fluctua-
tions or motion through spatial variations - for instance,
with a gaussian Raman beam profile with 1/e2 radius of
10mm and a free-evolution time T = 10ms, a 1g acceler-
ation of the sensor in the direction transverse to the laser
axis will cause the atomic cloud to move 2mm from the
beam centre and see a recombiner pulse intensity that is
only∼ 92% of that of the beam-splitter. As well as reduc-
ing the interferometer contrast, Gillot et al. have shown
that such intensity variations break the symmetry of the
interferometer, rendering it sensitive to any asymmetry
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FIG. 5. Interferometric phase error map of: (a) conventional
interferometer; (b) optimized interferometer. We assume that
Ω1 = Ω2 = Ω0 = 2π × 200kHz.

in the velocity distribution or other systematic detuning,
and, thus, affecting the bias instability when used as an
inertial sensor [16].
In this section, we analyse the performance of a 3-

pulse Mach-Zehnder interferometer formed from our opti-
mized beam-splitter, a conventional constant-power mir-
ror pulse, and a recombiner that is the power-inverted
reverse of the beam-splitter [20]. We compare this ‘op-
timized’ interferometer sequence with a ‘conventional’
Mach-Zehnder interferometer using constant-power π/2
and π pulses. We explore the effects of detuning and
pulse-to-pulse intensity variations upon the phase fidelity
of the Mach-Zehnder interferometer and, as an example,
the case of an acceleration measurement.
Fig. 5 shows the simulated interferometric phase error

map of the conventional and optimized Mach-Zehnder
interferometers. We assume that the maximum Rabi
frequencies of the beam-splitter (Ω1) and mirror (Ω2)
pulses are equal to the design value, i.e., Ω1 = Ω2 =
Ω0 = 2π × 200kHz, but consider different values of
the recombiner Rabi frequency (Ω3). In both cases,
the interferometric phase has been weighted by the con-
trast for different detunings and Rabi frequency ratios,
C(δ,Ω3/Ω1)×δΦ(δ,Ω3/Ω1) [16]. For the optimized pulse
sequence, the range of detunings over which the interfer-

FIG. 6. Bias of a cold-atom based accelerometer due to
the coupling between Rabi frequency imbalance and resid-
ual velocity sensitivity using: (a) conventional and (b) op-
timized pulse sequence. We assume: free-evolution time
T = 10ms; atomic temperature T = 2.1µK; gaussian beam
waist w = 10mm; Ω1 = Ω0 = 2π × 200kHz.

ometric phase remains small (e.g. < 10mrad) depends
upon the ratio of the Rabi frequencies of the first and
last pulses. However, outside the flattened area, repre-
sented in Fig. 5 by the ±5mrad contour lines, the phase
error of the optimized sequence grows more rapidly than
the phase error of the conventional one. This behaviour
stems from the perturbative approach of our optimiza-
tion method that minimizes error terms only around the
unperturbed solution.
In order to include the contribution of the different veloc-
ity classes, the contrast-weighted interferometric phase
has to be averaged over the atomic velocity distribution
and normalized with respect the average contrast as re-
ported in [16]

〈δΦ〉 =

∫ +∞

−∞
f(v)C(v)δΦ(v) dv

∫ +∞

−∞
f(v)C(v) dv

, (13)

where 〈δΦ〉 is the overall interferometric phase and f(v) is
the velocity distribution of the atomic cloud entering the
interferometer. Because of the odd parity of the contrast-
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FIG. 7. Intensity sensitivity function for conventional and op-
timized interferometer sequences, shown as functions of time
relative to the central mirror pulse.

weighted interferometric phase with respect to the de-
tuning, any asymmetry or non-zero mean in the atomic
velocity distribution gives rise to a bias. While asym-
metries are mainly due to the velocity selection process
[16, 39, 40], non-zero mean can be caused by counter-
propagating laser intensity imbalance affecting the re-
lease of the atomic cloud from the magneto-optic trap
[40], accelerations in the direction parallel to the Raman
beam, or misalignment of the Raman retro-reflecting mir-
ror with respect to the atomic launch trajectory [41].

1. Acceleration-induced bias

Temporal variations of the Raman laser intensity re-
sult in an imbalance between the Rabi frequencies of the
three pulses. As a test case, we compute the bias in-
duced by the coupling between the Rabi frequency im-
balance and the residual velocity sensitivity for a cold
atom accelerometer, where the Rabi frequency variations
are considered to stem from the acceleration of the host
vehicle in the direction orthogonal to the effective wave-
vector. In the simulation we model the velocity distri-
bution along the beam propagation axis as a gaussian
having a standard deviation σv =

√

kBT /m, and mean
velocity vsel, where kB, T and m are, respectively, the
Boltzmann constant, the temperature of the atomic cloud
and the mass of the atomic species (in our case 85Rb).
We assume that the Rabi frequency imbalance is due to
the relative motion of the centre of mass of the atomic
cloud with respect to the centroid of a gaussian laser
beam with 1/e2 radius w = 10mm.
Fig. 6 shows the bias map for the conventional and op-
timized pulse sequence, for various transverse accelera-
tions and Doppler frequencies δsel = keffvsel, where keff
is the effective wave-vector. The maximum Rabi fre-
quency experienced by the centre of mass of the atomic

cloud during the pulse sequence is modelled as Ω =
Ω0 exp (−2(1/2a⊥t

2)2/w2), where a⊥ is the transverse
acceleration and t = 0 is the time instant at which the
first beam-splitter pulse occurs. In the simulation we con-
sider a free-evolution time T = 10ms and a temperature
T = 2.1µK. In the case of the optimized sequence, a bias
less than 0.25µg is achieved for transverse acceleration
a⊥ ≤ 1.5g over a range |δsel| ≤ 25kHz. For a⊥ ≥ 1.6g,
or equivalently Ω3/Ω1 . 0.82, the conventional pulse se-
quence outperforms the optimized one in agreement with
Fig. 5.

2. Sensitivity to laser intensity drifts

An important characteristic of the presented optimiza-
tion method is the link with the sensitivity function for-
malism and the robustness with respect to inter-pulse
laser intensity variations. The optimized beam-splitter
has been obtained minimizing the phase error accumu-
lated by the atomic wave-function. To the first order, this
phase error is proportional to the integral of the phase

sensitivity function g
(1)
x (t), as expressed by Eq. (10).

Moreover, the integral of the phase sensitivity function
can be linked to the intensity sensitivity function, i.e. the
response of the interferometer to an infinitesimal step in-
tensity variation, δI(t) = δIθ(t′ − t), where θ(t′ − t) is
the Heaviside function, via the following relation

gI(t) =

∫ +∞

t

g(1)x (t′)h(t′) dt′ , (14)

where h(t) is a modulation function that is one when the
Raman laser is on and null when the laser is off. Note
that in the definition of the intensity sensitivity function
we implicitly included in the term gI(t) any constant that
depends on the considered mechanism that is affected by
laser intensity fluctuations.
In the limit of small perturbations, the intensity sensitiv-
ity function quantifies the interferometric phase error due
to laser intensity fluctuations that occur on time-scales
shorter than the interferometer duration. These fluctu-
ations affect the output of the interferometer through
two main mechanisms: one- and two-photon light-shifts
[12]. The interferometer sensitivity to time-varying laser
intensity is proportional to the area underneath the func-
tion gI(t) [23, 42]. Fig. 7 shows the comparison between
the intensity sensitivity function of the conventional and
optimized Mach-Zehnder sequences. The optimized se-
quence exhibits a minimized value of the intensity sen-
sitivity function during the free evolution periods, thus,
ensuring robustness to intensity fluctuations for pulse se-
quences in which the free-evolution time T is much larger
than the pulse duration.
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FIG. 8. Panel (a): Recoil diagram of the conventional interferometer. The blue, yellow, and green-shaded areas represent half
of the scale-factor contribution due to pure free-evolution of the wavepackets, finite mirror duration, and finite beam-splitter
duration, respectively. The insets show details in the proximity of the first conventional and optimized beam-splitter pulses.
Panel (b): Recoil diagram of the optimized interferometer. In this case, there is no contribution due to the beam-splitter. For
clarity, only one output port per interferometer is represented. Panel (c): scale-factor error of a cold-atom accelerometer due
to the Rabi frequency imbalance between the third and first beam-splitter pulse. We assume: free-evolution time T = 10ms;
Ω1 = Ω2 = Ω0 = 2π × 200kHz.

3. Intensity-induced scale-factor error

Laser intensity fluctuations affect the interferometer
scale-factor [5, 31]. Variations in the Rabi frequency ex-
perienced by atoms result in a distortion of the temporal
profile of the impulse imparted by the laser field onto
the atomic wave-function. As a result, the space-time
area enclosed by the the atomic states, which defines
the interferometer scale-factor, slightly deviates from the
nominal value [43, 44]. The sensitivity function formal-
ism offers a geometric interpretation of the interferome-
ter scale-factor in the time domain, whereby the scale-
factor for a cold atom accelerometer can be determined
by calculating the area beneath the acceleration response
function [31]. For the conventional Mach-Zehnder inter-
ferometer, the scale-factor error (i.e. deviations from the
the ideal scale-factor obtained in the hypothesis of in-
finitesimal and resonant pulses keffT

2) can be computed
analytically as [31]

SFǫ = keff

[

1

Ω3T
tan

θ3
2

+
1

Ω1T
tan

θ1
2

+ 2η + o
(

η2
)

]

,

(15)
where η = τp/T is the ratio between the duration of the
beam-splitter pulse and the the free-evolution time, and
θj is the pulse area of the j-th laser pulse. Eq. (15)
highlights that, to the first order in η, the scale-factor
error of the interferometer depends on the value of the
Rabi frequency experienced by the atoms during the first
and last pulse. Physically, this is due to the fact the
beam-splitting process has a dominant effect on the over-
all space-temporal area enclosed by the atomic trajec-
tories during the interferometric sequence [43]. Varia-
tions of the Rabi frequency from the ideal value can be
due to stochastic laser intensity fluctuations or to the

coupling between spatial intensity inhomogeneities and
atomic motion.
Fig. 8 shows the accelerometer scale-factor error due to

Rabi frequency imbalance between the first and the third
pulse of the optimized and conventional Mach-Zehnder
interferometer. In the case of the optimized sequence, the
scale-factor error has been computed numerically, eval-
uating the integral of the acceleration response function
[35]. Because of the robustness to laser intensity fluctu-
ations, the scale factor error is minimized, thus ensuring
an enhanced scale-factor stability. This can be under-
stood geometrically by representing the recoil diagrams
as in Fig. 8.
The spread between the centre of mass of the wavepackets
travelling along the upper and lower arms of the interfer-
ometer is given by (see Appendix B)

∆ 〈x(t)〉 = vrec ha(t) , (16)

with vrec = ~keff/m the recoil velocity, and ha(t) the
acceleration response function. In the case of a con-
ventional interferometer, assuming an initial position
〈x(t = −∞)〉 = 0, and considering half of the pulse se-
quence for symmetry, we obtain

〈x(t = 0)〉 = vrec

(

1

Ωj

tan
θj
2

+ T + τp

)

+ o(τ2p ) , (17)

where 〈x(t = 0)〉 is the position of the wavepacket trav-
elling along the upper arm of the interferometer at the
midpoint of the mirror pulse, and Ωj and θj are the Rabi
frequency and the pulse area of the j-th π/2 pulse. The
second and third term in the round brackets represent the
displacement of the wavepacket due to free-evolution and
mirror finite duration, respectively. Their contribution to
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FIG. 9. Stability map of Bloch vector trajectories for the
optimized beam-splitter pulse. The Rabi frequency has been
considered equal to the design value.

the interferometer scale-factor are represented geometri-
cally in Fig. 8 with blue and yellow-shaded areas. The
first term in the round brackets depends on the beam-
splitter Rabi frequency, and its scale-factor geometric
representation is given by the green-shaded area in Fig. 8.
Physically, this term accrues because of the velocity-
dependent phase accumulated by the atomic wavepacket
during the beam-splitting process. Hence, variations in
the nominal Rabi frequency during the beam-splitting
process determine scale-factor instability for a conven-
tional interferometer. In contrast, an interferometer op-
erating with optimized beam-splitter pulses exhibits re-
duced scale-factor instability due to the fact that at the
end of the beam-splitting process, the velocity-dependent
phase is minimized (i.e., (∂δΦ/∂p)p→0 ∼ 0). This is
shown geometrically in Fig. 8, where the optimized inter-
ferometer does not exhibit any beam-splitter-dependent
contribution to the scale-factor.

C. Symmetry and stability analysis of Bloch vector

trajectories

The robustness of the optimized interferometer against
inter-pulse laser intensity variations is attributed to the
near-flat superposition phase accumulated by the atomic
wave-function at the end of the beam-splitting process.
Therefore, it is interesting to explore why and how the
optimized waveform achieves a minimized phase error by
analyzing the trajectories of the off-resonant Bloch vec-
tors.
From the analysis of Fig. 4 (lower left panel), we note

a symmetric pattern with respect to the unperturbed so-
lution (zero longitude locus), meaning that the Bloch
vector trajectories characterized by detunings of oppo-
site signs are steered in opposite directions. As a conse-
quence, negative and positive detuning paths cross each

other at multiple times. Nevertheless, at the end of the
pulse, the ensemble recombines, converging to the unper-
turbed target state.
The symmetric pattern is due to the fact that atomic
states are steered on the Bloch sphere by just controlling
the amplitude of the field vector (aligned with the x-axis)
and limiting the laser phase to 0− π values [30]. On res-
onance, the trajectory described by the Bloch vector lies
in the y-z plane; off-resonance the plane is inclined ac-
cording to the sign of the detuning. This means that the
trajectories of atoms characterized by positive detunings
have opposite longitude positions with respect to atoms
characterized by negative detunings.
In order to understand when the convergence of the

trajectories to the unperturbed solution occurs, we re-
port a stability analysis based on the sign of the varia-
tion of the longitude error angular rate with respect to
the longitude error itself. Recombination of the ensem-
ble after each crossing point suggests that there must be
a condition that forces the different trajectories to con-
verge towards the unperturbed solution, at the end of
the pulse, minimizing the longitude error. This stability
condition is given by

S(δ, t) =
∂ ˙δΦ

∂δΦ
< 0 , (18)

where δΦ and ˙δΦ are, respectively, the longitude error
and the longitude error rate.
Fig. 9 shows the stability map S(δ, t) for the case Ω =
Ω0: Bloch vector trajectories characterized by detunings
within areas in which the stability condition is fulfilled,
converge to the unperturbed solution. At the end of
the pulse, atoms characterized by detunings in the range
±0.5Ω0 fulfill the stability condition: this result is in
agreement with the phase error map shown in Fig. 3 in
which the optimized beam-splitter exhibits a minimized
phase error in the same detuning range.
The stability map gives unique insights into the be-
haviour of Bloch vector trajectories of far-detuned and
near-to-resonance atoms. Focusing on the final part of
the pulse, for t/tπ & 7, two conclusions can be drawn:
first, Bloch vector trajectories of near-to-resonance atoms
are steered to the unperturbed solution before the end of
the pulse and converge smoothly to it as highlighted by
the relative large stability (blue colour scale) region; on
the other hand, trajectories of far-detuned atoms tran-
sit from a stable region to an unstable (yellow colour
scale) region, meaning that they cross the zero longitude
point before the end of the pulse, and the sign of the
phase error changes. Second, for t/tπ < 8, the detuning
range for which the stability condition is fulfilled becomes
larger. This result agrees with Fig. 3, in which the de-
tuning range of the minimized error phase grows as the
maximum Rabi frequency becomes lower than the design
value.
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VI. DISCUSSION

In this paper, we introduced a method based on time-
dependent perturbation theory for designing optimized
beam-splitter pulses that links the Bloch sphere picture
with the sensitivity function formalism. By solving a con-
strained minimization problem with higher-order terms
in Dyson series, we obtained a pulse with time-dependent
Rabi frequency. We analysed the waveform properties in
terms of phase error and Bloch vector trajectories and
carried out a stability analysis to understand the behav-
ior of atomic ensembles under the action of the pulse.
Our findings demonstrate that this approach to beam-
splitter pulse design is an effective way to minimize phase
errors over a range of detunings and laser intensities.
Furthermore, we showed that the optimised beam-
splitter pulse designed using our method reduces bias and
scale-factor errors in 3-pulse Mach-Zehnder interferome-
ters, improving performance over conventional sequences.
Our findings highlight the potential for optimal control
in the design of beam-splitter pulses for the next gener-
ation of cold atom inertial sensors, enhancing their bias
and scale-factor stability by providing robustness to laser
intensity and detuning errors.
Future work may involve the extension of the proposed

method to the design of optimal mirror pulses and inter-
ferometer sequences. Moreover, further constraints can
be imposed on the shape of the Rabi frequency waveform
in order to achieve enhanced high-frequency phase noise
rejection [35].
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Appendix A: Time-dependent perturbation theory

for Raman pulses

In the framework of time-dependent perturbation the-
ory, the solution of the Bloch equation can be written as
a series expansion

b(t) = b
(0)(t) + δb(1)(t) + δb(2)(t) + . . . , (A1)

where b(0) is the unperturbed solution and δb(k)(t) refers
to the k-th order correction.
Assuming constant detuning, constant Rabi frequency
and initial condition b(t0) = (0 0 1)T , we find the fol-
lowing corrections in the Dyson series up to third order

TABLE I. Longitude and latitude error terms computed for
different orders of time-dependent perturbation theory in the
case of a conventional beam-splitter pulse.

Order δΦ δα

1st − δ

Ω0

0

2nd 0
(

1− π

4

)

δ
2

Ω2

0

3rd
(

1− π

4

)

δ
3

Ω3

0

0

δb(1)(t) =





−2s2θ
2

0
0





δ

Ω0
, (A2a)

δb(2)(t) =







0
−cθ

[

sθ −
s2θ
4 − θ

2

]

− 2sθs
4
θ
2

−sθ
[

sθ −
s2θ
4 − θ

2

]

− 2cθs
4
θ
2







δ2

Ω2
0

, (A2b)

δb(3)(t) =





2s2θ
2

− θ
2sθ

0
0





δ3

Ω3
0

, (A2c)

where sθ = sin θ, cθ = cos θ, and θ = Ω0t is the angle by
which the Bloch vector rotates about the x-axis.
We define the angles δΦ and δα, respectively, as the longi-
tude deviation from the y-axis and the latitude deviation
from the equatorial plane

δΦ = tan−1 bx
by

, (A3a)

δα = sin−1 bz . (A3b)

Following this definition, the angle δΦ is the geometric
representation of the phase dispersion error imparted on
the atomic wave-function. Analogously, the angle δα is
linked to the errors in atomic population.
As an example, we computed the longitude and latitude
errors in the case of a beam-splitter pulse (θ = π/2) con-
sidering corrections up to the third order. The results are
reported in Table I. The k-th order longitude and latitude
errors have been computed substituting in Eqs. (A3) the
unperturbed solution and the corresponding k-th order
correction. The computed expressions agree with results
reported in [44].
In the case of an atomic wave-function initially prepared
in a basis state, odd order correction terms produce phase
dispersion errors, while even order terms are linked to
population amplitude errors.
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FIG. 10. Spread between the arms of the interferometer for
both the optimized and conventional pulse sequences. We as-
sumed same maximum Rabi frequency. The red-shaded areas
represent the pulse duration for the optimized interferometer.
The spread function of the optimized interferometer crosses
zero at the end (start) of the first (last) pulse, ensuring ro-
bustness of the scale-factor error to laser intensity variations.

Appendix B: Link between sensitivity function and

atomic trajectories

The mean position of an atomic wavepacket can be
obtained by solving the differential equation [45]

d 〈x〉

dt
= −

∫ +∞

−∞

|Ψ(k)|2
∂ω

∂k
dk , (B1)

where Ψ(k) and ∂ω/∂k are, respectively, the initial
momentum-space wavefunction and the group velocity
associated to the atomic wavepacket. Assuming that the

wavepacket is narrow in momentum space around k = 0,
we obtain

d 〈x〉

dt
≈ −~

∂ω

∂p

∣

∣

∣

∣

p→0

, (B2)

with p = ~ k, momentum. The angular frequency ω(v, t)
is the time derivative of the phase accumulated by the
atomic wavefunction at time t and can be computed with
time-dependent perturbation theory [46]. Hence, using
Eq. (10) and assuming δ = keff v we have

d 〈x〉

dt
≈ −vrec gφ(t) (B3)

where the phase sensitivity function, g
(1)
x (t), has been re-

named gφ(t), and vrec = ~keff/m is the recoil velocity.
Integration of Eq. (B3) leads to the determination of the
spread between the centre of mass of the wavepackets
travelling along the upper and lower arms of the interfer-
ometer

∆ 〈x(t)〉 = vrec ha(t) , (B4)

where ha(t) =
∫ +∞

t
gφ(t

′)dt′ is the acceleration response
function. Thus, the acceleration response function pro-
vides a representation of the space-time area spanned by
the centre of mass of the wavepackets during the pulse
sequence. Fig. 10 shows the spread function ∆ 〈x(t)〉 for
both the conventional and optimized interferometers. As
expected, the maximum separation between the arms of
the interferometer occurs during the mirror pulse. The
optimized interferometer exhibits a zero spread value at
the end of the the first pulse. This is a consequence of
the optimization condition for which we imposed that the
velocity-dependent phase δΦ is minimized at the end of
the beam-splitter pulse. Because of the symmetry with
respect to the midpoint of the mirror pulse, the spread
is also zero at the start of the last pulse.
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A. Landragin, Characterization and limits of a cold-atom
Sagnac interferometer, Phys. Rev. A 80, 063604 (2009).

[13] N. Mielec, M. Altorio, R. Sapam, D. Horville,
D. Holleville, L. Sidorenkov, A. Landragin, and
R. Geiger, Atom interferometry with top-hat laser beams,
Appl. Phys. Lett. 113, 161108 (2018).

[14] Y. Luo, S. Yan, Q. Hu, A. Jia, C. Wei, and
J. Yang, Contrast enhancement via shaped Raman
pulses for thermal cold atom cloud interferometry,
Eur. Phys. J. D 70, 262 (2016).

[15] A. Gauguet, T. E. Mehlstäubler, T. Lévèque,
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