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Abstract. We present a novel method to compute unstable periodic orbits (UPOs)
that optimize the infinite-time average of a given quantity for polynomial ODE systems.
The UPO search procedure relies on polynomial optimization to construct nonnegative
polynomials whose sublevel sets approximately localize parts of the optimal UPO,
and that can be used to implement a simple yet effective control strategy to reduce
the UPO’s instability. Precisely, we construct a family of controlled ODE systems
parameterized by a scalar k such that the original ODE system is recovered for k = 0,
and such that the optimal orbit is less unstable, or even stabilized, for k > 0. Periodic
orbits for the controlled system can be more easily converged with traditional methods
and numerical continuation in k allows one to recover optimal UPOs for the original
system. The effectiveness of this approach is illustrated on three low-dimensional ODE
systems with chaotic dynamics.
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1 Introduction

Computing unstable periodic orbits (UPOs) for systems governed by ordinary differential
equations (ODEs) is a fundamental problem in the study of nonlinear dynamical systems that
exhibit chaotic dynamics. UPOs embedded in a chaotic attractor provide a “skeleton” around
which trajectories evolve through a continuous process of attraction and repulsion along the
orbits’ stable and unstable manifolds [1]. UPOs are also fundamental to the periodic orbit
theory introduced by Cvitanović et al. [2, 3], which states that the infinite-time average of
any observable of interest over a chaotic trajectory can be expressed as a weighted sum of
the time averages over individual UPOs.

A widespread and very effective strategy to find dynamically relevant UPOs is to perform
recurrence analysis on long chaotic trajectories in order to identify nearly periodic segments
that can be used as initial conditions for a variety of UPO-finding algorithms. The simplest
family of such algorithms are shooting methods, which apply the Newton–Raphson algorithm
to the Poincaré return map of the dynamical system to compute one (single shooting) or more
(multiple shooting) points on the periodic orbit as well as its period (see, for instance, [4, 5]
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and [6, Chapter 12]). A more robust family of methods are variational ones [7, 8], which
attempt to deform a (discrete) closed loop in state space into a UPO by minimizing a non-
convex cost function that, loosely speaking, measures the deviation between the tangent to
the loop and the direction of the ODE’s vector field at each point.

Even though this approach to finding UPOs has been applied very successfully to a wide
variety of high-dimensional systems, including turbulent fluid flows (see, e.g., [9–11]), it suffers
from an inherent drawback: success relies on the availability of a very good initial approxima-
tion to a periodic orbit. In the case of shooting methods this is because trajectories starting
from inaccurate initial conditions diverge very quickly from the UPO, whereas the basin of at-
traction for the Newton–Raphson root finder is often very small [4]. For variational methods,
instead, poor initial loops may converge to local minima of the nonconvex cost function that
are not periodic orbits of the underlying ODE. Since extracting good initial approximations
with recurrence analysis relies on chaotic trajectories shadowing a UPO sufficiently closely
for one entire period, one generally can find only orbits that are short and/or have only a
few unstable directions. UPOs that are very unstable or lie in parts of the state space rarely
visited by chaotic trajectories, however, often remain undetected.

In this work, we present a new strategy for constructing good initial approximations to
UPOs that may otherwise be difficult to find. This strategy can be implemented computa-
tionally on low-dimensional ODE systems with polynomial dynamics and is part of a broader
framework to characterize trajectories that maximize or minimize the infinite-time average
of a given quantity of interest Φ. Such extremal orbits are useful for control purposes, as
their knowledge facilitates the design of optimal control actions to stabilize desired dynamics
or suppress undesired ones. Of course, focusing on UPOs that optimize time averages is
not restrictive because every periodic orbit is extremal for at least one choice of Φ, namely,
the indicator function of the orbit itself. Although this is unknown in practice, varying Φ
potentially enables one to identify a large number of periodic orbits.

Underpinning our new approach is the recent realization that nearly sharp bounds on
extreme values of time averages can be derived by constructing so-called auxiliary functions
of the system’s state [12–16], which are similar to the Lyapunov functions used in stability
analysis but satisfy a different set of constraints. In addition to providing bounds on extremal
time averages, Tobasco et al. [15] showed that auxiliary functions provide information about
the location and shape of the corresponding extremal trajectory—which, very often, is a
UPO [17]. These observations have already been exploited by some of the authors [18] to
compute near-extremal UPOs for a nine-dimensional ODE model of shear flow with single
shooting methods. However, the inherent ill-conditioning of initial value problems for chaotic
ODEs limits the applicability of this approach to cases in which very nearly optimal auxiliary
functions can be constructed accurately, which is often not the case.

In this work, we go one step further and show that auxiliary functions can also be used to
construct an effective open-loop control action that can be expected to reduce the instability
of the extremal UPO and, in some cases, provably stabilizes it. Adding this control to the
ODE system produces a family of controlled systems parameterized by the control amplitude,
to which traditional shooting or variational methods are more easily applied. One can then
attempt to numerically continue any orbit computed with control by decreasing the control
amplitude, until a UPO for the original ODE is obtained. In particular, combining this
approach with the techniques developed in [18] enables one to search for extremal UPOs
robustly with auxiliary functions that are not sufficiently close to being optimal for the latter
to work in isolation.

The rest of the paper is organized as follows. Section 2 reviews the auxiliary function
method and how auxiliary functions can be leveraged to localize extremal trajectories. Sec-
tion 3 introduces our control strategy to stabilize UPOs and describes how the construction
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of a family of controlled systems allows for the computation of extremal UPOs for polyno-
mial ODEs. The practical potential of this approach is demonstrated in section 4 on three
low-dimensional ODE systems that display chaotic dynamics. Computational merits and
limitations of our method are discussed in section 5 along with possible directions for further
improvement. Finally, section 6 offers concluding remarks.

2 Approximating extremal UPOs with auxiliary functions

Consider an autonomous dynamical system governed by the ODE

(1)
da

dt
= f(a), a(0) = a0,

where a ∈ Rn and f : Rn → Rn is smooth. The infinite-time average of a function Φ(a) along
the trajectory starting from a0 is defined as

(2) Φ (a0) := lim
τ→∞

1

τ

∫ τ

0
Φ [a (t ;a0)] dt,

where a(t ;a0) denotes the trajectory a(t) with initial condition a0, and we assume for sim-
plicity that the limit exists. We are interested in the maximal value of Φ over all bounded
trajectories,

(3) Φ
∗

:= max
a0∈Rn:

‖a(t ;a0)‖<∞∀t

Φ(a0),

as well as the initial conditions and corresponding trajectories which achieve it. Note that
considering maximal time averages only is not restrictive, as minimizers of Φ coincide with
maximizers of −Φ.

Upper bounds on Φ
∗

can be computed in a relatively straightforward way. Suppose that
there exist a function P (a) such that P = 0 and a constant U such that Φ(a) +P (a) ≤ U for
any a. Averaging this inequality along the trajectory a(t ;a0) yields Φ(a0) ≤ U for any a0, so
Φ
∗ ≤ U . To construct a function P (a) with zero average, one can take P (a) = f(a) · ∇V (a)

with any V : Rn → R in the class C1 of continuously differentiable functions. Indeed, along
any bounded trajectory of (1) the chain rule gives

P [a(t ;a0)] = f [a(t ;a0)] · ∇V [a(t ;a0)](4)

=
d

dt
V [a(t ;a0)]

= lim
τ→∞

V [a(τ ;a0)]− V (a0)

τ

= 0.

The best upper bound on Φ
∗

is obtained by optimizing over the choice of V , hereafter called
auxiliary function:

(5) Φ
∗ ≤ inf

V ∈C1
{U | U − Φ(a)− f(a) · ∇V (a) ≥ 0 ∀a ∈ Rn} .

If Φ and f are polynomial, feasible polynomial auxiliary functions and their corresponding
bounds on Φ

∗
can be constructed computationally upon replacing the inequality constraint

in (5) with the stronger requirement that the polynomial U −Φ(a)− f(a) · ∇V (a) be a sum
of squares (SOS) [12–14, 18–20], which can be handled using efficient algorithms for convex
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optimization [21–23]. Moreover, if all trajectories of (1) are absorbed by a compact set Ω,
then the constraint in (5) can be restricted to Ω and the corresponding SOS computations
are guaranteed to return arbitrarily sharp bounds on Φ

∗
[15, 18]. More precisely, for any

δ > 0 one can construct a polynomial auxiliary function Vδ which provides a bound Uδ with
Φ
∗ ≤ Uδ ≤ Φ

∗
+ δ. Importantly, this often happens in practice even when no absorbing set

Ω exists.
The crucial observation for this work is that any near-optimal auxiliary function con-

structed with polynomial optimization not only produces an upper bound on Φ
∗
, but can

also be used to localize the associated extremal trajectories in state space – which are, very
often, UPOs. To understand this localization framework, suppose first that there exists an
optimal auxiliary function V0 proving a sharp upper bound U0 = Φ

∗
. Then, any extremal

trajectory a(t) must satisfy [13, 15]

(6) Φ
∗ − Φ[a(t)]− f [a(t)] · ∇V0[a(t)] = 0.

Since the quantity being averaged in (6) is nonnegative it must actually vanish pointwise in
time, so the extremal trajectory necessarily lies inside the set

(7) S0 := {a ∈ Rn | Φ∗ − [f(a) · ∇V0(a) + Φ(a)] = 0}.

Although this set may contain also points that are not on the extremal periodic orbit, it
provides guidance to locate the extremal trajectory.

In practice, an optimal auxiliary function V0 is rarely available and one can only construct
a δ-suboptimal one, Vδ, with corresponding bound Uδ. Nevertheless, it was shown in [15] that,
if the extremal trajectory is a periodic orbit, then for any ε ≥ δ it must lie inside the set

(8) Sε = {a ∈ Rn | D(a) ≤ ε}

for a fraction of its time period no smaller than F := 1− δ/ε, where

(9) D(a) := Uδ − f(a) · ∇Vδ(a)− Φ(a).

Since the polynomial D(a) is nonnegative by construction, when δ � 1 (that is, when the
auxiliary function is close to being optimal) taking δ � ε� 1 often allows one to keep F ≈ 1
while excluding much of the state space from Sε, which therefore localizes large portions of
extremal and near-extremal orbits.

While constructing the entire set Sε is computationally intractable except for ODE sys-
tems of very low dimension, obtaining points that lie in it is relatively straightforward. For
instance, global minimizers for D(a) lie in Sε for all ε ≥ δ and can sometimes be recov-
ered directly from the solution of the optimization problem resulting from an SOS relaxation
of (5) [23, section 6.1.2]. A simpler and more robust procedure, however, is to numerically
search for points where D(a) ≤ ε by minimizing D using any nonlinear minimization algo-
rithm, initialized from a large number of initial conditions [18]. Since all points in Sε along
the extremal periodic orbit are close to being global minimizers for D when ε is small, it
is reasonable to expect that ∇D will be small along the part of the extremal periodic orbit
contained in Sε and large elsewhere. The minimization routine will therefore quickly descend
to this flat region and then slowly approach a local minimum, producing a collection of points
in Sε on or close to the extremal periodic orbit as part of the process. This typical situation
is illustrated in Figure 1, which shows the unstable limit cycle of the reverse-time van der
Pol oscillator

(10)
da1
dt

= −3a2,
da2
dt

= −4(1− 9a21)a2
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Figure 1: Surface plot of the polynomial D(a) for the rescaled van der Pol oscillator (10) correspond-
ing to the observable Φ(a) = a21 + a22 and a polynomial auxiliary function V of degree 16. The solid
line ( ) indicates the limit cycle for (10), which is the extremal trajectory for the chosen Φ. Blue
dots ( ) show points lying in S10−4 obtained via direct unconstrained minimization of D(a).

along with the polynomial D obtained with Φ(a) = a21 + a22 (whose infinite-time average on
bounded trajectories is maximized on the limit cycle) and a near-optimal polynomial auxiliary
function of degree 16. All points on the limit cycle satisfy D(a) ≤ 10−6.

As demonstrated in [18], any of the points computed by minimizing D(a) can be used as
initial conditions for algorithms that converge to UPOs by evolving the system’s dynamics
forward in time. However, this basic strategy suffers from two fundamental limitations. The
first is that only a finite number of local minima of D may exist when V is suboptimal, to
which the minimization routine used will repeatedly converge. The resulting approximation
of the extremal periodic orbit can therefore be sparse, making the use of a multiple-shooting
or variational method to converge the UPO infeasible in practice. The second fundamental
limitation is that, for a given near-optimal auxiliary function and a given ε, the set Sε contains
points not on the extremal UPO and possibly far from it [15, section 4]. Thus, the point
obtained via minimization of D(a) may not be a good initial condition for single-shooting
techniques. In the next section we address the first of these limitations by introducing a novel
control methodology to reduce the instability of extremal UPOs.

3 Control methodology

Auxiliary functions can be used not only to localize extremal trajectories, but also be used to
formulate an effective control strategy to stabilize them or, at least, reduce their instability.
This observation, which is the main contribution of this work, can be used to aid the compu-
tation of extremal UPOs with traditional shooting or variational techniques. Subsection 3.1
describes this control strategy in the case of optimal auxiliary functions, for which a rigorous
stabilization result can be established without much difficulty. The suboptimal case, which is
more relevant in practice but for which we do not have similar theoretical results, is discussed
in subsection 3.2. We shall assume throughout that, as is often the case for ODE systems
with chaotic dynamics, the trajectory achieving the maximum time average Φ

∗
is a UPO

O := {a(t) | 0 ≤ t < T} with period T .
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3.1 Optimal auxiliary functions

Suppose that V is an optimal auxiliary function and recall from section 2 that the correspond-
ing nonnegative polynomial D(a) defined in (9) must vanish everywhere along the extremal
UPO O, so ∇D = 0 on it. Furthermore, it is not unreasonable to expect that D(a) is steep
elsewhere, so ∇D 6= 0 in a neighborhood of O (cf. Figure 1). Then, consider the ODE

(11)
da

dt
= f(a)− k∇D(a), a(0) = a0,

where k is an arbitrary nonnegative scalar which takes on the role of a control parameter.
Since ∇D = 0 on the extremal UPO O by construction, O remains a periodic orbit of (11)
for any choice of k, but its stability properties depend crucially on k.

To see this, observe that the two terms on the right-hand side of (11) have a clear dy-
namical meaning. Given an initial condition a0 sufficiently close to (but not on) the extremal
UPO O, the vector field f approximately advances the ensuing trajectory along the peri-
odic orbit, but its instability eventually leads to divergence. The −k∇D term counteracts
this instability by pushing the trajectory back towards the set S0 = {a | D(a) = 0}, which
contains the entire extremal UPO because the auxiliary function V used to construct D is
optimal. Thus, the term −k∇D effectively acts as a control term that reduces the instability
of the UPO and whose authority is proportional to k. In particular, the controlled ODE (11)
reduces to the original ODE (1) when k = 0, while letting k →∞ and rescaling time by k−1

leads to the ODE governing the steepest-descent minimization of D.
With this intuition in mind, it is not difficult to prove that the orbit O is locally stable

for all sufficiently large k provided that ∇D does not vanish in a neighborhood of O.

Proposition 1. Assume that the ODE (1) has a periodic orbit O = {a(t)}t∈(0,T ]. Suppose
also that D(a) is continuously differentiable, that D(a) = 0 on O, and that D(a) ≥ 0 in a
set Ω ⊆ Rn that contains O. Further, assume that there exists a bounded open neighborhood
N of the orbit O such that ‖∇D(a)‖ > 0 for all a ∈ N \ O. Then, there exists k0 such that
O is a locally stable orbit for the controlled system (11) for all k > k0.

Proof. Since D is continuous, there exists γ0 > 0 such that the set Uγ = {a ∈ N | D(a) ≤ γ}
is compact for all γ ≤ γ0, so it does not intersect the boundary of N . The same is true for
Vγ = {a ∈ Uγ | 12γ ≤ D(a) ≤ γ} and

(12) c := min
a∈Vγ

‖∇D‖2 > 0

because ‖∇D(a)‖ > 0 on Vγ . Then,

(13)
d

dt
D(a(t)) = f · ∇D − k‖∇D‖2 ≤ max

a∈Vγ
‖f · ∇D‖ − kc

along any trajectory of (11) starting in Vγ . Consequently, D decays along trajectories pro-
vided that

(14) k > max
a∈Vγ

‖f · ∇D‖
c

=: k0.

In particular, for all such k trajectories cannot escape the set Uγ , which is a neighborhood
of the orbit O. Moreover, since O =

⋂
γ>0 Uγ we can make this trapping set Uγ arbitrarily

small by taking γ arbitrarily small. This proves that O is locally stable, as claimed.
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In principle, this stability result enables the computation of the UPO O for system (1) in
a straightforward way: simply find points a0 with D(a0) ≤ ε using nonlinear minimization
algorithms, as described in section 2, and use them as initial conditions to simulate the
controlled ODE (11). The process can be repeated with increasingly small ε and increasingly
large k until a0 falls within the basin of attraction of O. In practice, however, optimal
auxiliary functions required by this approach are rarely available in practice, so one must
adjust the procedure to allow for suboptimal ones. We turn to this next.

3.2 Suboptimal auxiliary functions

The controlled ODE (11) can be formulated and solved numerically even when the auxiliary
function V used to constructD is suboptimal, but two complications arise. First, the extremal
orbit O is generally not a trajectory of the controlled system, because D and ∇D need not
vanish along it when V is suboptimal. Second, and most important, it is possible that taking
k � 1 introduces unwanted stable equilibria in the vicinity of O where f − k∇D vanishes,
preventing trajectories of the controlled system from shadowing O over an entire period.

To avoid this issue and increase the likelihood that the controlled system possesses a
periodic orbit that continuously deforms into O as k is reduced, we project the control term
−k∇D onto the subspace perpendicular to f and replace (11) with

(15)
da

dt
= f(a)− k

[
I − f ⊗ f

‖f‖2

]
∇D(a),=: hk(a), a(0) = a0.

As proved in Appendix A, the stability result in Proposition 1 for optimal V extends to
this modified controlled system under moderate assumptions on the behavior of D and f near
the extremal orbit O. For suboptimal V , however, one cannot guarantee that increasing k
will result in the existence of a stable periodic orbit for (15). Nevertheless, provided that
V is sufficiently close to optimal, it is not unreasonable to expect that there exists a family
of UPOs for the family of systems (15) that connects to the extremal UPO for the original
system (1). In addition, if D increases rapidly in the directions normal to f in the vicinity of
the extremal UPO O as in Figure 1, periodic orbits for large k are likely to be less unstable
than the original extremal orbit O obtained with k = 0 because the control term still strongly
damps perturbations normal to it.

These heuristic observations suggest that traditional techniques for computing UPOs may
be much more effective for large values of k than for k = 0. Moreover, since at least part
of the original orbit O must lie in the set Sε defined in (8) when V is near-optimal, points
in it are not unlikely to be good initial conditions to find exactly the branch of UPOs that
connects to O as k → 0 (if one exists). Therefore, we propose to search for extremal UPOs
using the following 4-step procedure:

(1) Construct a near-optimal polynomial auxiliary function V by solving an SOS relaxation
of (5) as described in [12–14, 18, 19].

(2) Construct the polynomial D and, given a tolerance ε > 0, attempt to find points where
D(a) ≤ ε with direct nonlinear minimization of D.

(3) Fix k > 0 and search for UPOs of the controlled ODE system (15) using the points
obtained at step 2 as initial conditions for shooting methods or for recurrence analysis.

(4) Repeat steps 2 and 3 with increasingly small ε and k until a periodic orbit is found, then
perform continuation in k until k = 0.

We stress that this procedure is not guaranteed to work because the polynomial D may not
behave as illustrated in Figure 1, UPOs for (15) may be hard to find even with k � 1,
and any branch of UPOs one manages to find may not continue up to k = 0. Nevertheless,
numerical experiments reveal that our strategy is often successful in practice.
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4 Examples

We now demonstrate the potential of the control methodology described in subsection 3.2 to
find extremal UPOs on three low-dimensional ODE systems that display chaotic dynamics.
Details of our numerical implementation are discussed in Appendix B.

4.1 A three-dimensional chaotic system

Consider the three-dimensional polynomial ODE system

(16)
da1
dt

= a2 + a3,
da2
dt

= −a1 +
1

2
a2,

da3
dt

= a21 − a3,

which has two equilibrium points at (0, 0, 0) and (−2,−4, 4) and a chaotic attractor [24].
Trajectories starting outside the basin of the attraction of these invariant structures may be-
come unbounded, but we can still search for extremal UPOs as long as near-optimal auxiliary
functions to bound time averages on bounded trajectories can be constructed. This is not
guaranteed by the theoretical results in [15, 18] because (16) has no compact absorbing set,
but it appears to be true in practice.

We therefore applied our 4-step control strategy to search for extremal UPOs that maxi-
mize the infinite-time average of the following observables:

(17)

Φ1(a) = 0.33a21 + 0.27a1a2 + 1.28a1a3 + 0.88a22 + 0.49a2a3 + 0.05a23,

Φ2(a) = 0.71a21 + 0.59a1a2 + 0.84a1a3 + 0.42a22 + 0.83a2a3 + 0.31a23,

Φ3(a) = 0.75a21 + 0.68a1a2 + 1.04a1a3 + 0.5a22 + 1.52a2a3 + 0.38a23,

Φ4(a) = 0.98a21 + 0.3a1a2 + 1.42a1a3 + 0.6a22 + 1.21a2a3 + 0.02a23.

These were selected from a list of 30 randomly generated quadratic Φ, after removing those
whose time average is maximized at one of the equilibria. We deemed this to be the case if
the best upper bound on Φ

∗
obtained with the polynomial optimization techniques of [12–

14, 18, 19] differed from the value of Φ at one of the equilibria by less than 0.01 in absolute
value.

Results of computations for the observables Φ1 and Φ2 are shown in Figures 2 and 3. First,
we used polynomial optimization to construct a polynomial auxiliary function V of degree
14, which gives the upper bound Φ1

∗ ≤ 0.4217. Increasing the polynomial degree gives the
same bound to within 0.047%, suggesting that our V is very close to being optimal. We
then computed local minimizers of the polynomials D corresponding to this near-optimal V .
These local minimizers, plotted as red dots in the figure, lie in the set S10−4 and are expected
to lie close to the extremal UPO. Recurrence analysis on the trajectory of the controlled
ODE system (15) with k = 0.25 starting from the best available local minimizer produced
a very good initial guess for a UPO, plotted as dot-dashed blue lines in Figure 2, which we
converged using the variational algorithm of [8]. Numerical continuation of this UPO in k
down to k = 0 resulted in a UPO for (16), plotted as a solid black line. The average of Φ1

over this UPO is within 0.1% of the upper bound on Φ1
∗

reported above, strongly suggesting
that we have indeed computed the extremal orbit. Results for the observable Φ2, plotted
in Figure 3, lead to a different UPO but are qualitatively analogous, so we do not discuss
them for brevity. For both observables, the same results were obtained also when the initial
value of the control amplitude k was varied in the range [0.2, 0.7]. This suggests that, at least
for this particular ODE system, our approach is not very sensitive to the initial choice of k.

Similar calculations for the observables Φ3 and Φ4 in (17) led to the discovery of only
a third UPO, illustrated in Figure 4, that simultaneously maximizes the average of both
quantities. We conclude this because numerical upper bounds on Φ3

∗
and Φ4

∗
computed
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Figure 2: Extremal UPO for system (16) with observable Φ1(a) ( ). Also plotted are the converged
UPO for the corresponding controlled system (15) with k = 0.25 ( ) and local minimizers of the
polynomial D ( ) obtained with a degree-14 auxiliary function, which lie inside the set S10−4 .

Figure 3: Extremal UPO for system (16) with observable Φ2(a) ( ). Also plotted are the converged
UPO for the corresponding controlled system (15) with k = 0.25 ( ) and local minimizers of the
polynomial D ( ) obtained with a degree-14 auxiliary function, which lie inside the set S10−4 .

Figure 4: UPO for system (16) that simultaneously maximizes the time average of Φ3(a) and Φ4(a)
( ). Also plotted are the converged UPO for the corresponding controlled system (15) with k = 0.1
( ) and local minimizers of the polynomial D ( ) obtained with a degree-6 auxiliary function, which
lie inside the set S10−8 .
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with degree-10 polynomial auxiliary functions are actually 0.0036% smaller than the averages
of Φ3 and Φ4 on this UPO.1 However, this orbit could be found using polynomial auxiliary
functions of degree as low as six, which yield upper bounds 0.0038% and 0.0041% larger
than the respective true averages, and with control amplitude k as small as 0.1. Auxiliary
functions of low polynomial degrees are significantly cheaper to construct [12–14, 18, 19] and
may be expected to work when the extremal UPO being sought has a simple shape in state
space. Indeed, the best control term in (15) is obtained when the function D corresponds
to an optimal auxiliary function V . In this ideal case, D must vanish on the extremal UPO
(cf. section 2). Therefore, a polynomial V with enough degrees of freedom to approximately
satisfy the same constraint may lead to good control terms in (15), even if the corresponding
upper bound on Φ

∗
are far from sharp. We suspect that this is why the extremal UPO for

Φ3 and Φ4 could be found with degree-6 V while the extremal UPOs for Φ1 and Φ2, which
have a more complicated shape, required increasing the polynomial degree to 14.

A final interesting observation is that, in Figures 2 and 3, many of the local minimizers
of D(a) approximating the extremal UPO actually to lie closer to the converged UPO for
the controlled system. A possible explanation for this is that the extremal UPO for (16)
is not a periodic orbit for the uncontrolled one when V is suboptimal, and need not lie
entirely in the set Sε if ε is small. On the other hand, the local minimizers of D(a) do
lie in Sε by construction, and the control term in (15) pushes trajectories exactly towards
these points. Consequently, local minimizers of D could be better initial conditions for the
controlled system, rather than for the uncontrolled one. This, however, may not always be
the case (see, for instance, Figure 4) and appears to depend on how suboptimal the auxiliary
function is, on the chosen value of the control parameter k, and on how “flat” the polynomial
D is in the vicinity of the extremal UPO along directions perpendicular to it.

4.2 Lorenz–96 system

We next study the five-dimensional Lorenz–96 ODE system [25]

(18)
dai
dt

= (ai+1 − ai−2)ai−1 − ai + F, i = 1, . . . , 5,

where we adopt the convention that a−1 = a4, a0 = a5 and a6 = a1. The scalar F is a
constant forcing term and the system has a unique equilibrium point a0 = (F, . . . , F ). Fixing
F = 8 we applied the 4-step strategy outlined in subsection 3.2 with a degree-10 polynomial
function and k = 0.5 to search for the extremal UPO for the observable

(19) Φ(a) = (a1 − F )2 + (a4 − F )2,

whose time average is certainly not maximized by the equilibrium. Local minima of the
polynomial D, the converged UPO for the controlled system (15), and the final UPO with
k = 0 are illustrated in Figure 5. The fact that the upper bound on Φ

∗
obtained in step

1 exceeds the numerical of average of Φ over the converged UPO by only 0.43% strongly
suggests that we have indeed found the extremal one.

It is instructive to ask whether our control strategy offers any advantages over the method
from [18], which attempts to find the extremal UPO directly by using local minimizers of D
(supplemented with a guess for the orbit’s period) as initial conditions for a single-shooting
Newton–Raphson method. With the set of local minimizers shown in Figure 5, the single-
shooting Newton–Raphson algorithm fails to converge to any UPO for the Lorenz–96 sys-
tem (18) even when the initial guess for the period is taken to be equal to the period T ∗ of

1This apparent contradiction is due to unavoidably finite tolerances in the algorithms used to optimize the
upper bounds, which may return slightly infeasible answers.
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Figure 5: UPO for system (18) that maximizes the time average of Φ(a) = (a1−F )2 + (a4−F )2 for
F = 8 ( ). Also plotted are the converged UPO for the corresponding controlled system (15) with
k = 0.5 ( ) and local minimizers of the polynomial D ( ) obtained with a degree-10 auxiliary function,
which lie inside the set S10−4 .

the target extremal UPO. To understand this failure in convergence, we integrated both the
uncontrolled Lorenz–96 system and the corresponding controlled system with k = 0.4 over a
time interval of length T ∗, taking the best local minimizer of D as the initial condition. The
shooting error ‖a(T ∗ ;a0) − a0‖/‖a0‖ was 0.256 for the controlled trajectory and 0.396 for
the uncontrolled one. This clearly demonstrates the efficacy of the control term in (15) in
reducing the instability of the orbit, which is too unstable for the shooting strategy of [18]
to work. This difficulty could not be resolved by working with a more accurate polynomial
auxiliary function of degree-14, highlighting that the sensitivity of the single-shooting ap-
proach to poor initial conditions cannot be easily mitigated by increasing the accuracy of V .
In contrast, the control strategy described in this paper works robustly.

4.3 A model of shear flow

As a final example, we consider a nine-dimensional ODE system modeling sinusoidally forced
shear flow in a periodic channel [26]. The system takes the form

(20)
dai
dt

= λ1δ1i −
1

Re
λjaj +Nijkajak, i, j, k = 1, . . . , 9,

where summation over indices j and k is assumed, δ1i is the usual Kronecker delta, Re
is a fixed constant representing the flow’s Reynolds number, and λj , Nijk are numerical
coefficients corresponding to the “NBC” configuration in [26, 27].

At all values of Re, system (20) has a locally stable equilibrium point al = (1, 0, . . . , 0),
which represents the laminar flow state. Trajectories display chaotic behavior as Re is raised
and a large number of UPOs have been computed for Re > 80.54 [26, 27]. Here, we fix
Re = 120 and look for the UPO that maximizes (in a time-averaged sense) the energy of
perturbations from the laminar flow,

(21) Φ(a) := ‖a− al‖2.

The result of computations with a degree-10 auxiliary function and k = 0.4, are shown
in Figure 6. The numerical average of Φ over the converged UPO for system (20) is only
0.63% less than our upper bound on Φ. Once again, this strongly suggests that our method
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Figure 6: UPO for system (20) that maximizes the time average of Φ(a) = ‖a − al‖2 at Re = 120
( ). Also plotted are the converged UPO for the corresponding controlled system (15) with k = 0.4
( ) and local minimizers of the polynomial D ( ) obtained with a degree-10 auxiliary function, which
lie inside the set S10−4 .

yields the extremal UPO for Φ. As in subsection 4.2, the uncontrolled single-shooting method
of [18] fails to produce any periodic orbit, even when the initial guess for the period is taken
to be equal to the period T ∗ of the target extremal UPO. Integrating both the uncontrolled
system (20) and its controlled counterpart (15) with k = 0.4 over a time interval of length T ∗

using the best local minimizer of D as the initial condition, we find that the shooting error
‖a(T ∗ ;a0)− a0‖/‖a0‖ is 0.0174 for the controlled trajectory and 0.3751 for the uncontrolled
one. This again illustrates the stabilizing effect of the control. Of course, we cannot exclude
that the single-shooting method of [18] will work if one uses polynomial auxiliary functions of
higher degree, but doing so would require significantly larger computational resources than
those available to this study. The control strategy approach presented here, however, could
be implemented successfully without difficulties.

5 Discussion

The examples above demonstrate that the four-step strategy introduced in this work enables
one to compute extremal UPOs robustly, at least for low-dimensional ODE systems. The
ability to focus on extremal orbits is a particular advantage of our method, because performing
recurrence analysis on chaotic trajectories might easily miss UPOs with extreme behavior that
do not contribute significantly to the statistics of the chaotic attractor.

On the other hand, the need to construct polynomial auxiliary functions that produce
sufficiently accurate upper bounds on the extremal time average Φ

∗
of the quantity of in-

terest currently poses a significant barrier to scalability. This is because the computational
complexity of the polynomial optimization techniques described in [12–14, 18, 19] grows
combinatorially as the number of ODE states and the degree of the auxiliary function is
increased [23]. As a result, the largest polynomial degree that can currently be considered
for the nine-dimensional system in subsection 4.3 is approximately 10 on a workstation with
64GB of RAM, and reduces to no more than 4 or 6 for ODEs with a few tens of states.
Nevertheless, removing computational bottlenecks in general polynomial optimization and in
its applications to dynamical systems are problems that have attracted significant interest
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in recent years (see, e.g., [28–37]), so we expect that our UPO search strategy will become
practical for ODEs of moderate dimension in the near future.

With computational aspects in mind, a particularly attractive aspect of the control strat-
egy proposed in this paper is that its four steps do not depend on the particular algorithms
used to carry them out. This enables one to use more sophisticated numerical techniques
not only to construct polynomial auxiliary functions, but also to converge UPOs for the
controlled system (15). For example, one could augment multiple-shooting and variational
algorithms with recent approaches to identifying near-periodic trajectory segments based on
dynamic mode decomposition [38], which are more robust than the traditional recurrence
analysis employed in this work.

Finally, all results reported in this paper were obtained by fixing the control amplitude k
in (15) to an arbitrary constant value in the interval (0, 1). Methods to optimize k statically
or dynamically by taking into account the characteristics of the polynomial D(a) would be a
highly valuable addition to our approach, because simply fixing a large k value would mean
that the periodic orbit for the controlled system (15), if it exists, lies far away from the
extremal UPO for the uncontrolled system (1). This situation is not ideal, because then
a continuous branch connecting a periodic orbit for the controlled system to the extremal
UPO for the uncontrolled one may not exist. On the other hand, taking k too small could
mean that the stabilizing effect of the control term is not sufficient to find any near-periodic
trajectory segments. There clearly is an optimal choice for k, but there are also many ways
to formulate an optimal control problem for the controlled ODEs (11) or (15) and, without
a priori knowledge of an extremal UPO and/or of the polynomial D, it is not immediately
clear which one leads to the best UPO approximation. We leave further investigation of this
problem to future work.

6 Conclusion

We have presented a novel technique of computing UPOs for ODE systems governed by
polynomial dynamics, which overcomes the deficiencies of a related approach presented in [18].
As in that work, the UPO search procedure is initiated by leveraging polynomial optimization
techniques to construct an auxiliary function V that proves a near-sharp bound U on the
maximal value of the infinite-time average of a prescribed observable Φ. Direct unconstrained
minimization of the polynomial D = U −Φ− f ·∇V then yields a set of points which lie close
to the extremal UPO for the original system. The novel contribution of this work was to
show that this polynomial D can also be used to construct an effective control strategy which
reduces the instability of the orbit, and aids its computation with traditional techniques.

More precisely, we have formulated a family of controlled ODE systems (15) parame-
terized by a control amplitude k, which reduce to the original ODE system when k = 0.
When the auxiliary function V is optimal and the corresponding D satisfies the assumptions
of Proposition 1, a sufficiently large control amplitude k will guarantee the existence of a
(locally) stable periodic orbit for the controlled system that can be found simply by time
integration. By construction, this periodic orbit coincides with the UPO of the original,
uncontrolled system that maximizes the infinite-time average of the given observable Φ. If
V is not optimal, which is often the case in practice, stabilization cannot be guaranteed.
However, for near-optimal V one expects that periodic orbits for the controlled systems not
only still exist, but are also less unstable than the extremal UPOs for the original ODE and,
crucially, connect to it continuously as the control amplitude k is reduced to zero. One can
therefore first compute an orbit for the controlled system by combining recurrence analysis
along trajectories starting from local minimizers of D with shooting or variational algorithms,
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and then continue it numerically in k to recover the extremal UPO for the original ODE,
which is harder to compute directly.

This process was applied successfully in section 4 to a three-dimensional system with a
chaotic attractor [24], a five-dimensional version of the Lorenz–96 system [25], and a nine-
dimensional model of shear flow [26]. The control methodology developed in this paper was
essential to compute the correct extremal UPOs for a number of different observables Φ.
In stark contrast, the uncontrolled approach in [18] failed in all cases. We cannot say if
the robust numerical behavior observed in these examples is generic, and further theoretical
and computational advances are necessary before complex high-dimensional ODE systems
can be tackled using the ideas we have described here. Nevertheless, augmenting traditional
techniques for converging UPOs with recent frameworks for ODE analysis via polynomial
optimization promises to be a fruitful avenue of research.

Acknowledgments. MVL was supported by EPSRC studentship award 2092930 under
grant EP/N509486/1. GF was supported by an Imperial College Research Fellowship.

A A stability result for ODE (15)

In the case of optimal V , the stability argument in Proposition 1 can be extended to the
controlled system (15) under moderate assumptions on D and f . Proceeding as in the proof
of Proposition 1, one must show that the right-hand side of the inequality

(22)
dD

dt
≤ max

a∈Vγ
|f · ∇D| − k‖∇D‖2

(
1− |f · ∇D|2

‖f‖2 ‖∇D‖2

)
is negative at all points a ∈ Vγ for sufficiently large k. This is true if D and f satisfy

(23)
|f · ∇D|
‖f‖ ‖∇D‖

< const < 1 ∀a ∈ Vγ .

This constraint is weak, because ∇(f · ∇D) = ∇f ∇D + f · (∇⊗∇D) vanishes on the orbit:
the first term in the sum is zero there because ∇D = 0, while the second term is zero because
it is the material derivative of ∇D along the orbit. As a result, one can expect that in the
vicinity of the orbit f ·∇D ∼ d2 while ‖∇D‖ ∼ d, where d is the distance to the orbit. This, in
particular, will be the case at all the points on the orbit where the Hessian matrix ∇⊗∇D is
positive definite in the subspace perpendicular to f . One can therefore ensure (23) by taking
γ small enough.

B Numerical implementation

For all examples presented in section 4, polynomial auxiliary functions were constructed
with the polynomial optimization framework described in [12–14, 18, 19] using a customized
version2 of the MATLAB optimization toolbox YALMIP [39] and optimization solver MOSEK
v.9.2 [40]. Approximate local minima of the corresponding polynomial D(a) were found
using the BFGS quasi-Newton method [41–44] implemented in MATLAB’s built-in function
fminunc, with the step tolerance (relative lower bound on the size of an iteration step) and
the first-order optimality tolerance (lower bound on ‖∇D‖∞) both set to 10−16.

The best local minimum was then used to integrate the controlled system (15) forward
in time for a value of k fixed arbitrarily, and recurrence analysis was employed to identify

2Available from https://github.com/aeroimperial-optimisation/aeroimperial-yalmip
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near-periodic trajectory segments [45, 46]. In our implementation, a near recurrence of period
T was deemed to have occurred at time t if the quantity

(24) R(t, T ) :=
‖a(t)− a(t− T )‖

‖a(t)‖
≤ 0.025.

The portion of trajectory between times t − T and T was then used as an initial guess
to converge a periodic orbit using the variational approach described in [8]. This method
requires minimizing the cost function

(25) C(â0, . . . , âN−1, T ) :=
N

2T

N−1∑
i=0

∥∥∥∥âi+1 − âi −
T

N
hk

(
âi+1 + âi

2

)∥∥∥∥2
over the orbit’s period T and overN points â0, â1, . . . , âN−1 distributed at equal time intervals
T/N along the orbit. (In writing (25), we used the convention that âN = â0 by periodicity.)
We solved this nonlinear least-squares problem using the Levenberg–Marquardt algorithm [47,
48] implemented in the MATLAB built-in function lsqnonlin, with the function tolerance
on C (relative lower bound on the change in the value of C after an iteration) and the step
tolerance on the vector (â0, . . . , âN−1, T ) both set to 10−16.

Periodic orbits for the controlled ODE system (15) computed in this way were then
numerically continued in k down to k = 0. This could be done with a variety of sophisticated
numerical approaches (see, e.g., [49]); here, however, we simply minimized (25) at increasingly
small values of k using the minimizer from the previous computation as the initial condition.

References
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