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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF SOCIAL SCIENCES
MATHEMATICAL SCIENCES

Doctor of Philosophy

by [Susan Martin

Meta-analysis has become the gold standard in medical research analysis. The random-
effects model is generally the preferred method to conduct a meta-analysis, as it in-
corporates between-study heterogeneity - the variability between study estimates as a
result of differences in study characteristics. Several methods to estimate the hetero-
geneity variance parameter in this model have been proposed, including the popular
DerSimonian-Laird estimator, which has been shown to produce negatively biased esti-

mates, performing well only in scenarios not seen in real-life data.

Many medical meta-analyses are concerned with rare-event data, where event probabil-
ities are so low that often a small number or zero events are observed in the studies.
Examples of this include adverse drug reactions in a clinical trial or very rare diseases
in epidemiological studies, where as few as 1 in 1000 people may be affected by the
outcome of interest. In such cases, most pre-proposed heterogeneity variance estimators
perform poorly, and standard analysis techniques can result in the incorrect estimation

of overall treatment effect.

In this thesis, we propose novel methods that we believe are appropriate for the esti-
mation of heterogeneity variance in the case of rare-event data. These are based on
generalised linear mixed models (GLMMSs), and use the Poisson mixed regression model
and the conditional logistic mixed regression model. We conducted a simulation study
to compare our novel approaches with a selection of existing heterogeneity variance

estimators for use in random-effect binary outcome meta-analyses.

From the results of our simulation study, which agree with results given in previous
studies, we found that our novel GLMM-based estimating methods outperform existing
methods in terms of the estimation of heterogeneity variance and summary log-risk
ratio. This is the case when study sample sizes in the meta-analysis are balanced or

unbalanced, and thus we recommend them for use with rare-event data.
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Chapter 1

Introduction

1.1 Systematic reviews and meta-analyses

Clinical studies are essential in the advancement of understanding diseases and develop-
ment of optimal treatments. Many studies are published that investigate the effect of the
same treatment on a particular condition, but use different trial designs or volunteers of
differing ethnicity or medical history. In order to maximise the understanding that can
be drawn from these individual studies, their results need to be combined together in

the form of a systematic review.

The aim of systematic reviews is to collect and synthesise all empirical evidence address-
ing a given research question using comprehensive procedures. The results found in such
a review can be summarised using statistical methods via a meta-analysis to provide an
integrative analysis of the quantities of interest. Meta-analyses are seen as the founda-
tion of evidence-based medicine (Uman| (2011)), as they can provide a broad overview
of a given research question via the accumulation of a diverse base of clinical studies.
In addition to providing a much cheaper alternative to a single new large clinical study,
meta-analyses also have greater power to detect statistically significant results (Cohn
and Becker| (2003))).

Medical governing bodies such as the National Institute for Health and Care Excel-
lence (NICE) set guidelines according to the results produced in published studies, with
meta-analyses allocated the greatest weighting (National Institute for Clinical Excellence
et al.[ (2005)), demonstrating their importance in healthcare systems. Examples of when
meta-analyses of a number of significant trials have had a lasting impact on modern
medicine include the implementation of the Bacillus Calmette-Guérin (BCG) vaccines
in the prevention of tuberculosis (TB) (Colditz et al. (1994])), and the disproving of a link
between the combined measles, mumps and rubella (MMR) vaccine and autism (Taylor
et al|(2014)). Over the past few decades, the number of published meta-analyses has

increased dramatically, as has the interest in their associated methodology.

1



2 Chapter 1 Introduction

1.1.1 Cochrane Database of Systematic Reviews

One of the major contributors to the rise in availability of meta-analyses is Cochrane,
previously called the Cochrane Collaboration, which has made over 3000 systematic re-
views openly available via the Cochrane Database of Systematic Reviews (CDS) (Handoll
et al.| (2008])). Their aim is to make information generated from a series of medical clin-
ical studies more readily available to healthcare professionals and the general public.
Cochrane also provides a source of advice regarding meta-analysis methodology in the
form of the Cochrane handbook for systematic reviews of interventions (Higgins and
Green| (2011)). This handbook outlines currently approved meta-analysis methodology
that can be used by researchers not familiar with meta-analyses or statistics, and as

such is regularly updated to represent the most up-to-date guidelines.

1.1.2 Clinical study design

Clinical studies are comprised of both observational studies and clinical trials. They can
be further grouped into a number of specific design types, characterised by the length the
study, the volunteers used (called the study participants), and the outcome of interest
to be measured, e.g. the odds or the risk. Below we shall outline some of the most

common study design types used in the medical setting.
Clinical trials

The most common type of clinical trial are randomised controlled trials (RCT), which are
generally performed to determine whether a novel treatment or intervention is effective in
reducing the risk of developing some outcome or side-effect in individuals with the disease
or condition of interest. Here, the participants are randomly assigned into two or more
groups, including a ‘treatment group’ who are administered the new intervention under
investigation, and a ‘control group’ who are given either some pre-existing intervention,
a dummy intervention (called a placebo) or no intervention at all. The groups are then
followed up over a pre-determined period of time, and the occurrence of the outcome of
interest is recorded for each participant (Sibbald and Roland, (1998])).

A clinical trial may be blinded (where the participants are not informed which interven-
tion they have been given), or double-blinded (where the researchers are also unaware of
this information) in order to reduce any potential bias, especially in the case of patient-
reported outcomes (e.g. level of depression). RCTs are the trial of choice for testing the
effectiveness of a new treatment with pre-existing treatments, and generally constitute
part of phase III and phase IV clinical trials, which involve comparison with standard

treatments and investigation of side effects, respectively.
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Observational studies

There are a number of different types of observational study. Case-control, or case-
referent, studies use participants who have some disease or medical condition of interest
(the ‘cases’) and others who do not (the ‘controls’), and measure the number from each
group who have experienced some potential causal attribute (also called the exposure).
Due to the nature of the study design, the incidence or risk cannot be calculated, and
so in the case of binary outcomes, the odds must be used to measure the association
between outcome and exposure (Lewallen and Courtright| (1998))). Cases may be paired
to controls in an effort to improve the efficiency of adjustments made to reduce any

potential confounding.

Another form of longitudinal study is the cohort study, where one or more groups (called
cohorts) are followed, and the status of some disease or outcome of interest is recorded
in order to determine whether it is associated with any cohort-specific characteristic
(Song and Chung| (2010)). Cohorts are generated by grouping individuals according
to characteristics such as age or ethnicity, and if some characteristic is found to be
associated with the outcome under investigation, then it is termed as a risk factor. All
participants must be free of the outcome of interest at the start of observation, and
should be chosen to ensure the cohorts are comparable, especially for the non-exposure
cohort. Where this is not possible, confounding factors need to be accounted for. The
benefit of such studies is that causal relationships can be detected, which is not possible
in cross-sectional studies and more difficult in case-control settings. This type of study
can be either prospective or retrospective, however it has a number of disadvantages.
For example, cohorts can be difficult to determine as a result of confounding variables,

and participant characteristics may be imbalanced due to the lack of randomisation.

Observational studies do not need to be longitudinal in design, as is demonstrated with
cross-sectional studies, which simultaneously measure the exposure and outcome of in-
terest from a given population at a single point in time or over a short time interval.
As a result of this, this type of study is cost-effective, and has the ability to investigate
large populations. However, any associations must be interpreted with caution, as bias
may occur from selection of the study population, and the study design can make it
difficult to determine cause and effect (Setia (2016)).

1.1.3 Individual participant data vs. summary aggregated data

Meta-analyses can be conducted using either summary aggregated data (AD) or indi-
vidual participant data (IPD), depending on what is available from the original studies.
IPD meta-analyses can be more reliable than AD alternatives, as they use a greater
depth of information. However, whereas AD is generally always available from the pa-

per or authors, IPD is rarely given, to avoid potential identification of participants, and
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can be difficult or impossible to obtain. In addition to this, both types of meta-analysis
produce the same result in the the majority of cases, and so the further time and ex-
pense required to conduct IPD meta-analysis is unnecessary (Higgins and Green| (2011)).
The choice between these two types of meta-analysis can also depend on the type of in-
vestigation that is chosen. If the data was IPD, and a regression model was used to
conduct the meta-analysis (as described in Section , then parameters specific to

the individuals could also be included as covariates in the model.

1.2 Study-level data

The study-level data required for a meta-analysis generally consists of estimates for some
parameter and its variance, denoted by 6; and 61-2 respectively, for a given study i. This
parameter, 6;, is often referred to as the effect size, and in a medical setting, it often
represents a measure of the difference between two groups, such as an active treatment or
experimental group and a control or placebo group. A number of measures can be used
to calculate éi, depending on the nature of the study outcome being investigated. Study
outcomes can be grouped into several categories: continuous, binary (or dichotomous),
ordinal, survival and repeated measures data. In the study types described in Section
continuous and binary outcomes are the most common, and so we shall focus on

these here.

1.2.1 Continuous outcome data

Study-level data is described as being continuous if the variable to be measured is
recorded on a numerical scale for each participant. Examples of continuous measures in
the medical setting include weight, blood pressure and blood biomarkers. In general, the
aim is to determine whether the levels of these variables change significantly between
groups or cohorts, or after some intervention or treatment has been administered, and

as such the difference in readings is of interest.
Mean difference

In the case of continuous data, results are usually presented as the mean measurement
over all participants in each group, and the effect size is given as the difference in
means between groups, which is called the mean difference (MD). If the study sample
is skewed, then the median difference may instead be used, and if in addition the total
number of participants (the sample size) is small (e.g. < 20) then tests that involve
ranking the measurements may be recommended (Takeshima et al|(2014))). The MD

for a comparison between treatment and control in study 7 is defined as:
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éi = M D; = Mean improvement with treatment — Mean improvement with control

Standardised mean difference

The standardised mean difference (SMD), a variation of the MD that divides by the
standard deviation of outcome among study participants, is generally the effect size
of choice for continuous outcome data. This is because the pooled standard deviation
adjusts for the precision and scale of measurement, as well as the study sample size

(Faraone| (2008)). The SMD for treatment versus control in study ¢ is defined as:

A Mean improvement with treatment — Mean improvement with control

0; = SMD,; =

Pooled standard deviation

It should be noted that the pooling of standard deviations in this manner is only appro-
priate when the population variances are equal. When the inverse is true, we have the
Behrens-Fisher problem (Walwyn and Roberts) (2017)).

1.2.2 Binary outcome data

In studies with a binary outcome, data can be presented in the form of a contingency
table, such as the one given in Table From this, one can derive measures that
compare the event probability between groups, such as the relative risk, odds ratio
or risk difference. The outcomes measures that we shall outline here are the sample
estimates from a study. Population versions of these measures also exist, e.g. population
attributable risk, however we shall not focus on these as we are primarily interested in

clinical study designs.

TABLE 1.1: Example of a 2 x 2 contingency table for study ¢ with a binary outcome.

H H Event ‘ No event H Total H
Treatment a; b; Ny = a; + b;
Control C d; Nie = ¢ + d;

H Total H a; + ¢; ‘ b; +d; H N;=a; +b;+c;+d; H

Relative risk

The relative risk (RR), or risk ratio, is the most popular and well-understood binary
outcome measure with healthcare professionals and patients. It is defined as the com-

parison between the risk in the treatment group (a;/n;;), and the risk in the control

group (c¢;/nic), and is thus given by RR; = Qi/Mit fioy. study 7. As such, the RR of an

ci/Nic
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outcome represents the likelihood that it will occur after exposure to a novel treatment

or risk factor, compared with its likelihood in a control setting (Andrade, (2015])).

For meta-analyses, the RR is transformed onto the log-scale, as the log RR; conforms to
an approximately normal sampling distribution, an assumption of the standard meta-
analysis model. If the estimate of the parameter of interest 6; is the log RR;, then this,
along with its variance (62), could be calculated from the data in Table as follows:

i

0; = log RR; = log (ai/nit>
¢i/Nic

Using the above equations, it is possible to construct confidence intervals (CI) that
are symmetric around the log RR;. Once these have been calculated, the anti-log of
the upper and lower CI bounds and overall log RR can be taken, in order to allow

interpretation of the RR using the following definitions:

1. RR = 1 implies that the risk of an event occurring is equal across the treatment

and control groups

2. RR > 1 implies that the risk of an event occurring in the treatment group is

greater than that of the control group

3. RR < 1 implies that the risk of an event occurring in the treatment group is lower

than that of the control group.

Odds ratio

The other major binary outcome measure used in medical meta-analyses is the odds
ratio (OR). The odds of an outcome is the ratio of the likelihood of it occurring to the
likelihood of it not occurring. As such, the OR is defined as the odds of the outcome
occurring in the treatment group compared to the odds of it occurring in the control

group (Andrade (2015)). Similar to the RR, it is transformed onto the log-scale for
2

meta-analyses, and the log OR; and its variance (6;) are given by:

6, = log OR; = log <Z7’//zz>
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The OR tends to be more difficult to interpret, particularly for those in a healthcare
setting, which can sometimes lead to incorrect conclusions and recommendations being
made. As a result of this, it is advised that medical meta-analyses are conducted using
the more intuitive RR. In addition to this, the OR an inferior measure of association
compared to the RR, as it can only be used in case-control settings and logistic regression
analyses. However, in the case of rare events, the RR and OR will be very similar
(Szumilas (2010)). Interpretation of the OR is similar to that of the RR, with the
definitions for OR in relation to 1 being equivalent to those of RR listed above, but with

‘risk of event’ replaced by ‘odds of the outcome’.
Risk difference

An alternative, but less commonly used, binary outcome measure is the risk difference
(RD), which is a measure of absolute effect difference that represents the absolute effect

of the exposure of interest, or the excess risk of the outcome in the treatment group
2

compared with the control group. The RD; and its variance () are defined as:

~9 a; X bi Cc; X di
O'A =
7 3 3
Ny Mic

Benefits of the RD include that is easy to interpret and can be calculated when zero
events are present, thus not requiring continuity corrections, unlike the RR and OR.
However, the RD does not account for the treatment-specific underlying risk, and so

this must be considered when interpreting the results (Egger et al.| (1997)).

1.3 Between-study heterogeneity

There will always exist some degree of variability between study estimates in a meta-
analysis as a result of the within-study sampling error. However, additional variability
may occur as a result of differences in study characteristics such as study design, con-
duct, participants, and other known or unknown factors. This additional variability is
called between-study variability (or variability due to heterogeneity), where heterogene-
ity represents the excess variation in observed treatment effects over that expected from
the imprecision of results within each study (within-study variance). When measured
as a variance, it is called heterogeneity variance and is denoted by 72 (Decks et al.
(2001)). Heterogeneity results from differences in the effects of the populations that the
studies represent, and in the meta-analysis setting is the residual heterogeneity among

study-specific intervention effects, or the dispersion in study-specific effect sizes.
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1.3.1 Sources of heterogeneity

According to the Cochrane handbook, sources of heterogeneity can be split into two
categories - those causing clinical heterogeneity and those resulting in methodological
heterogeneity (Higgins and Green| (2011))). Sources of clinical heterogeneity include
variation in participants (e.g. ethnicity), outcomes and interventions (e.g. differences in
dose administered), while methodological heterogeneity tends to be the result of variation

in study design (e.g. length of follow-up time) and chance of risk (Thompson| (1994])).

When conducting a meta-analysis, it is best to group together studies that adhere to
certain study characteristic properties (e.g. cohort vs. case-control studies) in order
to avoid confounding of the effect size estimate. However, it is not always possible to
subset studies, particularly as potential sources of heterogeneity may be unreported and

unknown. In these cases, it is essential to adjust for heterogeneity in the analysis itself.

1.3.2 Accounting for between-study heterogeneity

Heterogeneity can either be ignored or incorporated in the analysis via the use of fixed
and random-effects models, respectively, and these are discussed in the next section.
When it is incorporated in the analysis, then an estimate of 72 is required for the
calculation of the overall treatment effect 6. If significant heterogeneity is present in a
meta-analysis, but is not accounted for, then this can lead to over or under-estimation of
the treatment effect, potentially leading to incorrect conclusions. In a medical setting,
misleading inferences of drug performance in clinical trial results, in terms of either

significance or direction of effect, could have disastrous repercussions.

1.4 Meta-analysis approaches

A number of approaches have been proposed to conduct meta-analyses. The most basic
of these approaches, called marginal analysis, involves combining all study results to-
gether and calculating the effect size estimate as though the meta-analysis was a single
study. For binary outcomes, this would involve merging all study results into a single
2 x 2 table, such as that seen in Table [I.1I} and then calculating the pooled effect size
using these total counts. Although this approach can allow for studies with zero counts
(but not whole meta-analyses of zero counts) (Sweeting et al.| (2004)), it is not recom-
mended for use because it assumes that the event risk is constant across all studies,
which is unlikely to be true, and so may produce inaccurate results (Simpson! (1951));
Altman and Deeks| (2002)).

Approaches exist in two main classes: 2-stage (whereby the heterogeneity variance is

estimated first, and then used to calculate an estimate of overall effect size measure)



Chapter 1 Introduction 9

and 1-stage (where the heterogeneity variance and effect size is estimated directly in
one step). The majority of existing approaches are 2-stage as they include the use of a
72 estimator, however a number of 1-stage methods have recently been proposed, and
these generally involve the use of regression models where the estimates of § and 72 are

simultaneously extracted as the model’s parameters.

The two main approaches suggested for combining the study findings in a meta-analysis
are the fixed-effect (FE) model and the random-effects (RE) model. In addition to these
two models, meta-analyses can also be conducted by modelling with covariates via a
random-effects meta-regression, where the covariates can then be investigated for being
the source of any heterogeneity present, or through the use of Bayesian approaches to
the above models (Smith et al.| (1995); Sutton and Abrams| (2001)). We shall outline

some of these approaches in this section.

1.4.1 Fixed-effect model

The fixed-effect (FE) model is the simpler of the two main approaches, and assumes
that study effects are homogeneous, and so the true effect is the same in all studies
in the meta-analysis. As a result, all studies are assumed to be estimating a common
effect size 6, and the model does not account for heterogeneity. As mentioned briefly in
Section [1.2.2] models for conducting meta-analyses generally assume that the observed

study effects in a meta-analysis will follow the normal distribution, as follows:

ézNN(evo-z)

where 0 is the true overall effect size in the meta-analysis and o? is the true variance in
study ¢, with ¢ = 1,..., k. The FE model is often incorrectly used in meta-analyses by

those who wrongly assume that there is no heterogeneity present in their data.

1.4.2 Random-effects model

In contrast to the FE model, the random-effects (RE) model allows the true effect to vary
across studies, with the mean true effect being the parameter of interest. As such, anal-
yses based on the RE model incorporate a between-study component of variance for the
treatment effect in addition to the within-study variance, encompassing heterogeneity

between studies. In this case, the assumed normal distribution is given by:

0; ~ N(0;,02)
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Here the distribution of 6; is also assumed to be normal, with mean 6 and heterogeneity

variance 72:

0; ~ N(0,7%)

If the heterogeneity variance is estimated to be zero, i.e. 72 = 0, then the RE model
will simplify to a FE model. The RE model is the preferred model, and should be
used in favour of the FE model if study results in the meta-analysis are suspected to be
heterogeneous. Study heterogeneity is particularly common in medical settings, as even
if the study designs of clinical trials are identical, it is likely that the participants may
differ in terms of certain non-modifiable risk factors such as age, gender, ethnicity, etc.,

resulting in variation between the clinical trials in the meta-analysis.

The RE model can also result in wider confidence intervals for the associated overall
effect size, leading to more conservative outcomes being produced. However, despite all
of these positive attributes, the RE model also has several disadvantages. For example,
publication bias is often present (although difficult to detect) in meta-analyses, and such

bias can violate the normality assumption regarding the distribution of study effect sizes.

1.4.3 Meta-regression

An alternative approach to conducting meta-analyses is to use a meta-regression. This
is similar to simple regression models, but in this case the outcome is the effect size
estimate (e.g log odds ratio), and the explanatory variables in the model represent
study characteristics that may affect this effect size. These covariates allow for the
incorporation of elements that may affect the outcome measure and thus should be
incorporated into its estimation, which is one of the major benefits of meta-regression
(Thompson and Higgins| (2002)).

Studies are weighted using the standard error of their respective outcome measure es-
timates, giving larger studies greater influence on the overall estimate. Between-study
heterogeneity not explained by the covariates can also be incorporated into the regres-
sion model, giving random-effects meta-regression (Thompson and Sharp (1999)). A
disadvantage of this approach is that it is not recommended for sparse data, as it per-
forms poorly in the case of few studies, and as a result should not be considered when

the meta-analysis contains fewer than 10 studies.

1.5 The inverse-variance approach

One of the main aims of a meta-analysis is to combine studies and produce an estimate

for . Studies typically vary in terms of size, and assuming that all studies are of



Chapter 1 Introduction 11

equal quality, larger studies tend to estimate the parameter with more precision. The
inverse-variance method is commonly used to combine studies in a meta-analysis, as it
gives more precise studies a larger weighting and thus more influence on the effect size

estimate. Using this method, the effect size 6 and its variance can be estimated by:

—_

‘0] = =
(Zle wi> i=1 2= Wi

where the study weights, denoted by w;, are calculated by the reciprocal of Var(éi), e.g.

w; =1/ aiz, and k is the number of studies in the meta-analysis. If we assume a common

effect, like the FE model, the within-study variance is assumed to account for all the

variability of éi, and therefore w; pp = 1/ 01-2. However, if we allow for random effects,
like in the RE model, then w; pg = 1/(0? 4 72).

1.5.1 Disadvantages of the inverse-variance approach

The inverse-variance method can encounter problems when used alongside the RE model,
as if the heterogeneity variance in the meta-analysis is significantly large, then studies
with small and large sample sizes may be allocated very similar weights. As a result
of this, studies with few participants may be given a relatively large weight, dispropor-
tionate to their sample size. This can lead to incorrect inferences of the summary effect
size, and the problem will worsen as the difference between study sample sizes within

the meta-analysis widens.

1.6 Confidence intervals for the summary effect

When conducting a meta-analysis, in addition to generating a point estimate of the out-
come measure of interest, it is also necessary to produce an associated confidence interval
to represent the uncertainty in this estimate. Various methods exist for calculating the
confidence interval of the summary effect measure, which we shall discuss below. The
performances of confidence intervals are generally compared in terms of coverage, where
confidence intervals with higher coverage generally produce wide intervals. The perfor-
mance of the confidence, or credible (if Bayesian approaches were used), intervals can be
indicative of the overall performance of the approach used to conduct the meta-analysis
and produce the associated summary effect point estimate. As such, it can be useful to

compare these intervals when comparing a range of meta-analysis approaches, as specific
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pairings of approaches and intervals may perform better than others, while others should

not be used together in certain circumstances.

1.6.1 Wald-type method

The most commonly used confidence interval in meta-analysis is the Wald-type method,
which is based on the assumption of the Normal distribution (DerSimonian and Laird

(1986))). The endpoints for the summary effect interval are calculated as follows:

0+ 21_aj2\/ Var(d) (1.6.1)

where 6 is the estimate of the summary effect, o is the coverage level of the confidence
interval, z(;_q/9) is the (1 —/2)-quantile of the standard normal distribution, @(é) =
1/ Zle 1/w; and w; is the weight estimate appropriate for the type of model used
(i.e. fixed or random-effects) as discussed in Section For the fixed-effects model,
W; pr = 1/62, however if the random-effects weight w; rp = 1/(67 + 72) is used, then

the estimate of 72 comes from using any of the estimators that we shall discuss later on.

1.6.2 {-distribution method

Another commonly used confidence interval is based on the use of the t-distribution
with k£ — 1 degrees of freedom (Follmann and Proschan| (1999))), where k is the number

of studies in the meta-analysis. The confidence interval in this case is given by:

0+ l—1,(1—a/2) Var(f)

where t(;,_1) (1—a/2) is the (1 — a/2)-quantile of the Student-t distribution with (k — 1)
degrees of freedom, and all other values are as given in Equation ([1.6.1)).

1.6.3 Hartung-Knapp-Sidik-Jonkman method

As the previous two methods had been shown to perform poorly in terms of coverage in a
number of meta-analysis scenarios, Hartung and Knapp| (2001)) and |Sidik and Jonkman
(2002)) proposed an alternate interval that is equivalent to the t-distribution method,
however its variance is multiplied by a scaling factor (¢) (Wiksten et al| (2016))). This
method is known to produce wider intervals than those based on the normal approx-
imation, since the Student-t quantile is greater than the associated normal quantile.
However, it can also produce narrower confidence intervals when the scaling factor is
less than 1 (Higgins and Thompson, (2002])).
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é:l: tk—l,(l—a/Q) q X @(é) (162)

where ¢ = 15 S (8:i—0)%/(62+72), thus giving a scaled value of the variance of 6 that
is derived from a non-negative, unbiased estimator of 1/ Zle 1/w;. This method was
found to perform better than existing confidence intervals, especially when combined
with the DerSimonian-Laird heterogeneity variance estimator, particularly when 72 was
non-zero and there were few studies present. [ntHout et al. (2014) noted that confidence
intervals based on the normal approximation can easily be converted into HKSJ-adjusted

results.

1.6.4 Modified Knapp-Hartung method

The HKSJ confidence interval was observed to be shorter than the original ¢-distribution
F(1-a/2)
l(k—1,1-a/2)
the improvement in coverage this adjustment was proposed to provide. As a result, a

approach when ¢ was arbitrarily small (in fact if /g < ), which contrasts
modified version of this approach has also been proposed, which involves a simple ad

hoc modification to the scaling factor ¢, namely:

q* = mazx{l,q}

(Knapp and Hartung (2003))). By using ¢* as the scaling factor in Equation
instead of ¢, this ensures that the value to always be greater than or equal to 1, and
thus avoids the consequent narrowing of intervals, ensuring a more conservative approach
(Rover et al.| (2015])).

1.7 Measuring heterogeneity

The outline of the RE model in Section [[.4.2] demonstrates the importance of estimating
the heterogeneity variance in the correct determination of the overall effect size in a
meta-analysis based on the RE model. It can be useful to produce a measure of het-
erogeneity when collating results in a meta-analysis, thus determining what proportion
of the variation in the meta-analysis was the result of between-study variability. In this
section, we shall discuss several methods used to conduct both of these tasks, along with

their associated problems.
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1.7.1 Heterogeneity variance estimators

The heterogeneity variance estimate (72) is commonly associated with substantial un-
certainty, especially in contexts where there are few studies available, such as in small
population and rare disease research. For example, simulation studies have shown that
estimates of 72 are particularly inaccurate when the number of studies (k) in the meta-
analysis is small, i.e. < 5 studies (Friede et al|(2017a))). Also, although heterogeneity
will always be present to some degree, it tends to be more pronounced in situations where
there are few studies or where there are few participants in these studies. Similarly, it
it likely to be magnified in situations with large numbers of studies, as there is likely to
a higher number of outliers present. If incorrect zero estimates of 72 are produced, then

this can result in overly optimistic estimates of the summary effect.

A number of methods have been developed to estimate 72, including both classical and
Bayesian approaches. The methods can be divided into two main groups: closed-form
(or non-iterative) methods, and iterative methods. We shall outline some of the main
groups of methods below. A wide range of 72 estimators are available for use in meta-

analyses with STATA’s updated admetan package.
Method of moments approach

Methods of moments approaches are based on Cochran’s @) test statistic for heterogene-
ity, and can be split into those that are truncated to zero when negative, and those that
produce only non-negative estimates by design. An example of a method of moments ap-
proach is the non-iterative DerSimonian-Laird (DL) estimator (DerSimonian and Laird
(1986))), which is the most commonly used estimator and the default method in many
statistical software packages. However, the use of the DL method has been questioned,
as the type I error rate (the probability of rejecting a true null hypothesis) of this estima-
tor can be extremely high, unless certain conditions are met. These conditions include
the number of studies being large (k > 20), and no or very little heterogeneity being

present - situations that rarely occur in real data (IntHout et al|(2014)).

The DL estimator also has a tendency to generate zero estimates for 72, even when the
true value differs considerably from zero. Figure which is taken from the study by
Kontopantelis et al.| (2013)), demonstrates this poor characteristic of the DL method, for
both the Cochrane and simulated data over various values of k. The bar chart shows
that the estimator produces inaccurate zero estimates at least 60% of the time when
k = 2, and although this decreases as k increases, scenarios with small values of 72 still

results in zero values for over half the estimates when k = 5.
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F1GURE 1.1: Bar chart from |[Kontopantelis et al.l (I2013I) displaying the percentages of

zero 72 estimates with DerSimonian-Laird method for meta-analyses in the Cochrane

library and simulated data, for varying numbers of studies.

Bayestian approach

A number of Bayesian-based approaches have been produced, and are a popular choice
for the meta-analysis of few studies (k < 5) and rare events, a scenario where most ex-
isting estimators perform very poorly and are not recommended (Giinhan et al| (2018))).

Their advantages involve the choice of priors and prior distributions, which can be crucial

in the optimal estimation of parameters, particularly when rare events are involved.
Other estimators

Other frequentist methods include those based on the maximum likelihood-based ap-
proach, and the independent Hunter-Schmidt approach. These methods, along with the
approaches outlined above, will be described in more detail in Chapter



16 Chapter 1 Introduction

1.7.2 The (@ statistic

As mentioned previously, the method of moments 72 estimators, including the DL

method, are based on the ()-statistic:
k
Q=" wirp(l;—0)
i=1

@ itself can also be used as a test statistic for the presence of heterogeneity, where a p-
value can be derived by comparing @ to the x?-distribution with k—1 degrees of freedom.
If the sampling variances a? adequately account for the total observed variance, and 0;

are normally distributed around 6;, then E(Q) = k — 1, i.e. the expected value of Xz—r
DerSimonian-Laird method

To demonstrate the use of @ in the formation of 72 estimators, we give the DL method:

Y Q—(k—1)

k Loy b (1/62)2
2i=1(1/67) = m

72, =max {0,

where @ is the above-defined Q-statistic but with weights generated from estimates of
the within-study variances, i.e. w; pp =1/ 612. In this estimator, the numerator measures
the extent to which Q exceeds its expected value (k —1) under the assumption of a fixed
effect. The denominator then converts the estimator to the same scale as the estimated
overall effect size 6. When Q < k — 1, the estimator is truncated at zero, as displayed

in the above equation.

1.7.3 The I? statistic

The I?-statistic is the most common measure of heterogeneity present in a meta-analysis.
It represents the percentage of total variation that is due to heterogeneity between study
effects, and is produced by transforming the Q-statistic (Higgins and Thompson (2002])),

as follows:

I? = max {0, Q_(g;_l) X 100%} (1.7.1)

Compared to 72, the I?-statistic is much easier for non-statisticians to interpret, and is
also independent of the type of outcome measure used (i.e. I? can be compared between
meta-analyses with binary and continuous outcomes). An alternative formula for 12 is

given by:
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)
2= ﬁ x 100% (1.7.2)

7ﬁ2

where 62 represents the estimate of an overall within-study variance, which would be

the case if all studies had equal &?, and can be calculated using:

52 = (k—1) Zf:l W
- 2
(Chy i) -k a2

where w; = 1/6? (Higgins and Thompson| (2002)). The issue with this approach for
calculating I? is that it assumes a common within-study variance, when in reality, the
within-study variance o? will vary between studies (Borenstein et al. (2010)). As a
result of this, Equation is generally used in preference to Equation when

calculating I2.

1.8 Forest plots

Forest plots, also called blobbograms, graphically summarise the outcome of a meta-
analysis and characteristics of the contributing studies. Figure displays a forest plot
for a meta-analysis on the effect of the BCG vaccine on incidence of TB, as mentioned in
Section The upper section of the plot displays information on the studies included
in the meta-analysis, giving the number of events and sample size for each intervention
group, although this information may not always be displayed. The study-specific effect
sizes (in this case the risk ratio) and associated 95% Wald-type confidence intervals are
plotted, with the size of the boxes representing the size of the studies (and associated
weight if the inverse-variance approach is being used), and given on the right-hand side.
In the lower section of the plot, the overall effect size estimates are plotted and displayed,
along with their associated p-values testing whether the meta-analysis provides signifi-
cant evidence of favouring either the control or treatment. In this case, the BCG vaccine
is found to be significantly favoured over the control, for both fixed and random-effects

approaches.
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Vaccinated Control

Author(s) and year TB+ TB- TEB+ TB- Risk Ratio [95% CI] p-value
Aronson (1948) 4 123 N 139 I—-—l 0.41[0.13, 1.26]
Ferguson et al. {1949) A A6 79 303 24— 0.20 [0.09, 0.49)
Rosenthal et al. {1960) 17 1716 85 1665 ——— 0.25[0.15, 0.43]
Coetzee et al. {1968) 9 7499 45 TITT r—-—| 0.63 [0.38, 1.00]
Comstock et al. (1969) 5 298 3 2341 I—-—| 1.56 [0.37, 6.53)
Frimont-Moller et al. (1973) 33 5069 47 5808 b -1 0.80 [0.52, 1.25]
Vandeviere et al. {1973) B 2545 10 629 e—=—o 0.20 [0.08, 0.50]
Comstock et al. (1974) 186 50634 141 17854 |m 0.47 [0.37, 0.58]
Comstock et al. (1976) 27 16913 29 17854 I—-—| 0.98 [0.58, 1.66]
Hart et al. (1977) 62 13598 248 12867 o 0.24 [0.18, 0.317)
Madras {1980) 505 BA391 499 B339 l 1.01[0.89, 1.14]
Fixed-effect [ ] 0.68 [0.62,0.74] p=0.01
Random-effect (DL: 1° = 0.42, I = 92.63%) < 0.48 [0.31, 0.75] p < 0.01
T I 1
01 1 10
Favours Treatment Favours Control

FIGURE 1.2: Forest plot displaying inverse-variance weighted fixed-effect and random-
effects meta-analyses of the effect of the BCG vaccine on incidence of TB. For the
random-effects approach, the DerSimonian-Laird (DL) 72 estimator is used. Wald-type

confidence intervals are displayed here.

1.9 Rare-event data

Many medical research datasets tend to involve rare events, where the event occurrence
probability is so low that frequently a small number or no events are observed in a
clinical trial, despite the fact that either the trial arm sizes or the observation times are
not small. This is different from sparse data, where trial sizes are small (often for reasons
of patient recruitment) but event probabilities may not necessarily be small

ot ] (@019)).
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The Cochrane handbook states in its guidelines that risks of 1 in 1000 would be classed
as ‘rare events’, and that risks as high as 1 in 100, and even 1 in 10, may also be
classed as such (Higgins and Green (2011))). They also state that a common feature of
rare-event data in a meta-analysis is the presence of zero events of interest in one trial
arm (defined as single-zero trials) and the presence of zero events in both trial arms
(double-zero trials). Estimators of 72 tend to have negative bias in scenarios where both

heterogeneity and rare events are present.

1.9.1 Continuity corrections

If there are zero events present in either arm of study 4, then for the RR and OR
binary outcome measures 6; and a? cannot be estimated. In this scenario, a continuity
correction is added to all event counts and sample sizes of studies including zero event

counts.
Constant continuity correction

The standard continuity correction involves adding a constant k to all event counts in
Table (ai, bs, ¢, d;), as proposed by [Jewell and Holford| (2005). The default choice for
this value of k is 0.5, most likely a result of |Coxl (2018) finding a correction factor of 0.5
to have the least bias when applied to a single arm log-odds analysis. However, constant
corrections in general (including k = 0.5) have been shown to often add unwanted bias
and adversely affect CI coverage, thus causing meta-analysis methods that incorporate
such study-level corrections to perform poorly (Bradburn et al. (2007)). As a result,

alternative correction factors have been sought.
Reciprocal of the opposing trial arm’s sample size

Sweeting et al. (2004) proposed two alternative continuity corrections - the first of these
involved using a factor of the reciprocal of the sample size of the alternate treatment
group (k/n; and k/n;. for the control and treatment group respectively), where k is the
chosen proportionality constant in this case. They believed that this adjustment to the
constant correction may result in less bias when the sample sizes of the trial arms were
severely unbalanced. In fact, they found this correction to outperform the constant
correction for all degrees of sample size imbalance for meta-analyses performed using
the Mantel-Haenszel, Peto’s, Bayesian and regression-based approaches, but performed

similarly poorly for the popular inverse-variance approach.
Empirical continuity correction

The second correction that Sweeting et al.| (2004)) proposed involves using an empirical
estimate of the pooled effect sizes from the remaining non-zero studies in the meta-
analysis. It is based on noting that the reciprocal-based correction has a tendency to

arbitrarily pull the estimate of the effect size towards that of no effect, and believing that
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instead using a correction factor that pulls the estimate towards the pooled effect size
using non-zero studies by design would be more preferable. As such, this novel empirical
approach uses a correction factor based on the pooled effect estimate from non-zero
studies in the meta-analysis, as such acting as prior (that is empirically derived from
alternate studies) would in a Bayesian setting. Suppose that an estimate of the pooled
odds ratio was derived from the non-zero studies, and is given by @, and that the
ratio imbalance between the control and treatment groups is R = n./n;, meaning that
the control arm sample size can be rewritten as n. = n; X R. The empirical correction

factors for the treatment and control arms respectively, k; and k., must then satisfy:

k‘t (ntR + k‘c)

— OR 1.9.1
k:c(nt + kt) ( )

When the arm-specific study sample sizes are large enough, then the left-hand side of
Equation ([1.9.1)) can be approximated by Rk;/k.. Restrictions for the summation of k;
and k. must be set into place, for example k; + k. = 1, as is the case with the constant

correction of 0.5, in which case we have:

RA—Fk) _oR
ke
and the following empirical corrections are produced:

LR
‘" R+OR
OR

I{Zt%if\
R+OR

If all studies within the meta-analysis contain at least one zero event trial arm, then
the estimate of the pooled effect size is undefined, and an alternative estimate must be
defined by the user, using prior information known regarding the intervention under in-
vestigation. This method is not recommended for use with risk ratio meta-analyses. As
with the reciprocal correction, this method was found to outperform the constant cor-
rection factor for all meta-analysis approaches other than the inverse-variance approach.
In a simulation study focusing on unbalanced meta-analyses consisting of studies with
small and large sample sizes (typical of observational studies), and containing 10 stud-
ies with an event rate of 1%, they found that both novel corrections outperformed the
constant 0.5 correction. As a result, in sparse-event scenarios it has been recommended
to use such alternative corrections, or meta-analysis approaches that can manage zero

count data, which we shall discuss later in the chapter.
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Both of the novel estimators proposed by Sweeting et al. (2004) are available to use
in STATA’s admetan package for conducting meta-analyses (an update of the popular

metan package).

1.9.2 Reported characteristics of meta-analyses

According to [Langan| (2015)), the most prevelant outcome measure recorded in the 2008
version of the CDS was the risk ratio, as they found that this was used for 43% of
meta-analyses, excluding those with fewer than 3 studies. They also found that the
majority (85%) of meta-analysis contained fewer than 10 studies. Mallett and Clarke
(2002) stated that a typical review from the 2001 CDS contained 6 studies, with the
maximum number of trials observed being 136. Based on a sample of 258 meta-analyses,
they also found that median sample size per trial was 118, with the median total sample

size for thew meta-analysis being 945.

1.9.3 Exclusion of double-zero trials

It is crucial to not simply exclude single-zero or double-zero trials when conducting meta-
analyses, as they provide a lot of information in terms of the rarity of the outcome in
question, and as such should be incorporated into the final summary effect estimate. This
argument against exclusion of such data has been discussed previously (Whitehead and
Whitehead (1991))). Bhaumik et al. (2012) and Sweeting et al.| (2004) both investigated
the output of meta-analyses where double-zero studies were excluded, and found that,
despite 72 estimates being less biased, the summary effect estimates were considerably
more biased when the double-zero trials were excluded - providing more evidence for

their inclusion.

1.9.4 Rare-event data in a medical setting

In medical data, rare events tend to occur in the form of rare disease occurrences in
epidemiological studies and adverse drug reactions in clinical trials. Very rare diseases
are often known as orphan diseases, and these are defined as having a prevalence of < 5
in 10,000 (Rover et al.| (2015))).

One of the best known examples of rare-event data in a meta-analysis is the effect
of rosiglitazone, a drug for the management of type 2 diabetes, with respect to the
risk of myocardial infarction and cardiovascular-related death. This dataset contains
several single and double-zero trials, and the meta-analysis has been investigated twice
by |Nissen and Wolski (2007, 2010). Several other studies have also looked at this dataset,

and have obtained different results for the effectiveness of this drug depending on the
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type of analysis method used (Cai et al.| (2010); Diamond et al.| (2007))), a worrying

outcome in such a serious subject area.

1.9.5 Techniques for the analysis of rare-event data

Analysing rare events requires specialised statistical techniques since common methods
such as linear and logistic regression are inappropriate. This is because they can dramat-
ically underestimate the probability of rare events, resulting in the incorrect estimation
of the treatment effect (Cai et al.| (2010))). Some statistical models have been proposed

for use with such sparse-event data, and we shall outline these below.
Mantel-Haenszel approach

The Mantel-Haenszel method is the most popular FE method to produce an estimate of
a weighted binary outcome measure, and works by using alternative weights that depend
on the outcome measure of the meta-analysis (Mantel (1963))). It has notable beneficial
statistical properties in the cases of rare-event data and small sample sizes, where the
inverse-variance method performs poorly in estimating the standard errors of the effect
sizes (Deeks et al.|(2001)). In the Cochrane handbook, the Mantel-Haenszel method is
recommended over the inverse-variance method in the case of sparse-event data, however

it is noted that the two methods give similar estimates in other scenarios (Higgins and
Green| (2011))).

The Mantel-Haenszel summary relative risk (RRys) and odds ratio (ORj ) estimates

are calculated as follows:

(1.9.2)

The major downfall of the Mantel-Haenszel method is that it is a FE-based method,
and so does not account for heterogeneity, which is likely to be more pronounced when
sparsity is present in the data. In addition to this, this approach is undefined for
log RRyrpr and log ORjrr when events in all study treatment arms are zero or events
in all study control arms are zero. In this case, a continuity correction can be added
to all event counts and sample sizes across the meta-analysis, such as a constant of
0.5, however there is little literature to support the use of a correction for the Mantel-

Haenszel method, and so its appropriateness is unknown.
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Peto’s method

Peto’s method (or Peto’s odds ratio) is designed specifically for use with the odds ratio,
as its name suggests (Peto and Peto|(1972)). It is based on the inverse-variance approach,
but uses different weights to estimate the odds ratio. The approach can be viewed as a
sum of the observed — expected statistics, where in this case ‘observed’ represents the
observed count of events in the treatment group of each study, and ‘expected’ is the
respective expected count of events. The formula for Peto’s odds ratio is given by:

= 0; — K

Vi
where O; = a;, E; = w, Vi= (aﬁbi)(cig&)\;ﬁﬁi)(bﬁdi) and i =1,...,k. When

using this method, continuity corrections for single-zero studies are not required, and
so their associated bias is avoided. However, for a double-zero study 4, the values O;,
FE; and V; are all zero by construction, and so such studies would not contribute to the

pooled odds ratio estimate or variance.

As with the Mantel-Haenszel method, this approach is based on the FE model, and so
does not account for the heterogeneity that is likely to be present. In addition to this,
Peto’s method has been shown to cause bias itself, particularly in the case where study
treatment and control group sizes differ significantly, and when the true odds ratio is
far from one (Greenland and Salvan (1990)). However, [Deeks et al.| (1999) found that
Peto’s method performed best in terms of bias and power, when compared to alternate
approaches, in a simulation study focusing on rare-event data with little sample size

imbalance (typical of RCTs).
Regression modelling techniques

One of the most recently proposed, and as a result, least investigated, approaches to
dealing with rare-event data in a meta-analysis involves the use of mixed regression
models (Stijnen et al. (2010)). This method allows for the inclusion of covariates of
interest as fixed or random-effects, and provides a more satisfying approach for dealing
with study heterogeneity. It also allows for the easy estimation of the outcome measure

of interest and the heterogeneity variance through parameters in the associated model.

Currently proposed suggestions for the models in this approach include the Poisson
mixed regression model (Bohning et al. (2015)), originally considered by [Deeks et al.
(1999)), and the conditional logistic mixed regression model (Stijnen et al| (2010)). A
more in-depth discussion of these models and their application shall be presented in

Chapter
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1.10 Techniques used in the Cochrane library

Figure (taken from the study by Kontopantelis et al| (2013))) displays the types

of meta-analysis methods used within the Cochrane library for various k. They have

divided the methods into the rare-event Peto’s and Mantel-Haenszel methods discussed
in Section m (including a random-effects variation of the Mantel-Haneszel approach),
and the FE and RE standard inverse-variance methods. It can be seen that the method
most frequently used is the FE Mantel-Haenszel approach, with the FE inverse-variance
method coming second. This demonstrates how the FE approaches are much more widely
used, potentially inappropriately at times, and this is likely due to its default application
in many statistical packages. This plots also demonstrates that a considerable number
of meta-analyses in the Cochrane review contain few studies, with approximately 19,000

containing only 2 studies, while only around 7000 meta-analyses have 10 or more.
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M Peto (FE) m Inverse Variance (FE) ' Inverse Variance (RE) m Mantel-Haenszel (FE) = Mantel-Haenszel (RE)

*note that in many cases fixed-effect models were used when heterogeneity was detected

FiGURE 1.3: Bar chart from |[Kontopantelis et al.l (I2013|> displaying the counts and
percentages of types of methods used for meta-analyses in the Cochrane library over

varying numbers of studies.
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1.11 Overview of thesis

Recent studies have focused on comparing the available 72 estimators under a number of
scenarios, including sparse data (Friede et al. (2017a))), however none have yet concen-
trated on the case of rare events. For our project, we aim to determine the effectiveness
of currently available heterogeneity variance estimators and other statistical methods
for the meta-analysis of rare-event data, and develop new techniques that we believe to
be appropriate. Below we shall list the aims of our research in detail, as well as provide

an outline of the structure of the remainder of this thesis.

1.11.1 Aims

The aims of our research are to investigate the performance of 72 estimators under spar-
sity in binary outcome meta-analyses, focusing on situations where: (1) the probability
of an event in either study intervention arm is low (e.g. 1 in 1000), (2) we have few
studies in the meta-analysis, and (3) the individual studies have small sample sizes. We
shall use the risk ratio as our outcome measure because this is the recommended choice
for clinicians, and was found to be the most popular in the CDS. We will propose new
methods based on mixed regression models, as well as others based on conditional ap-
proaches and mixture models, that we believe to be appropriate for use with rare-event
data.

Once we have developed our new approaches, we will assess their performance against
that of existing methods under various scenarios of sparsity. In order to do this, we
will use empirical data that meets our sparsity requirements, as well as design and run
simulations to recreate these situations, using the statistical software package R (R Core
Team! (2019)). The design of these simulations will be based on simulations conducted in
studies focusing on similar problems, and according to meta-analyses that we conduct in
practice. However, we shall be extending them to fewer numbers of studies and smaller
sample sizes, as well as more pronounced between-study heterogeneity, to better reflect
the circumstances commonly encountered in rare-event data. We will generate the data

according to a RE model, and vary the following parameters:

e Number of studies

Study sample sizes (looking at both balanced and unbalanced cases)

True heterogeneity variance

Probability of events

Variance of study-specific baseline risk.
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In addition to investigating the performance of 72 estimators, we shall construct our
simulation study to also compare existing continuity corrections and confidence intervals,
simulating meta-analyses from a range of realistic rare-event scenarios. For completeness,
we will also compare the point estimates of the risk ratio produced using these 72
estimates with that produced using the fixed-effect Mantel-Haenszel approach, in order

to determine the impact of accounting for heterogeneity.

Using our results, we will then be able to investigate the performance of estimation of
the heterogeneity 72 and effect measure 6 for each of the methods considered, in terms
of performance measures such as bias and mean squared error. We will then construct
confidence and credibility intervals, and compare all combinations of estimators and
confidence intervals in terms of coverage. From this, we will be able to determine
the 72 estimators, and associated confidence intervals, that perform best for a range of
given scenarios, and thus produce recommendations and guidelines as to the appropriate

methods to use given the structure and characteristics of the meta-analysis data.

1.11.2 Structure of thesis

In Chapter [2, we will be describing the current methods available to estimate hetero-
geneity variance, and will outline their performance for sparse-event data using results
from previous simulation studies. To obtain a feeling of the differences in 72 estimat-
ing methods and how they respond to common scenarios present in rare-event data, we
shall then look at several empirical datasets containing low-probability events or small
number of studies and apply all mentioned estimators to these cases in Chapter 3 We
shall compare the results of these estimators, plotting the respective forest plots for each

case study investigated.

In Chapter |4 we will also propose a new idea for the analysis of rare-event data (condi-
tional logistic mixed regression modelling), as well as describe the previously suggested
Poisson mixed regression models. In addition to these, we will also propose two ad-
ditional methods, one based on a conditional approach, that uses modified versions of
estimating equations proposed by [Bohning and Sarol| (2000]) that have been adapted for
the risk ratio in Chapter [} Our second additional approach, discussed in Chapter [0]
involves using mixture models, and applying the EM algorithm to determine the model

of best fit and extract parameter estimates.

The latter portion of this thesis will focus on a description of our methods for comparing
these estimators through the use of a new simulation study, focusing largely on rare-
event data, where we shall produce a comprehensive list of all the scenarios that we are
interested in investigating in Chapter [7] Having conducted these simulations, we shall
then discuss certain results of interest regarding the performance of estimators that

have been applied to the range of simulated meta-analyses, determining which methods
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perform best in certain scenarios in Chapter [§] From this, we will be able to make
recommendations and construct guidelines based on the results obtained, and discuss
what implications these have in terms of meta-analysis methodology for rare-event data
in Chapter [






Chapter 2

Methods for estimating

heterogeneity variance

2.1 Introduction

Heterogeneity variance (72) estimates can provide a measure of disparity between study
treatment effects and are an essential component of random-effects (RE) meta-analyses.
In this chapter, we will present a comprehensive review of the methods available to
estimate heterogeneity variance, focusing only on those that are used in two-step meta-
analyses (as described in Section , as well as Bayesian approaches. Although we
shall concentrate primarily on methods suitable for use with binary endpoint effect
measures, as this is our area of interest, we will also briefly mention other methods
that do not meet this requirement but which are well-cited and demonstrate the use of
alternative methodology. The heterogeneity variance estimators we discuss fall into a
number of distinct approaches, including the method of moments, maximum likelihood
and Bayesian approaches. A summary table of all those estimators discussed here is

presented later in this chapter.

The methods available to estimate 72 vary in terms of performance for varying meta-
analysis scenarios, e.g. some estimators only perform well with high numbers of studies
or large heterogeneity. As a result of this, a number of simulation studies have been
conducted to compare heterogeneity variance estimators under a wide range of these re-
alistic scenarios. Most have conducted these comparisons by measuring the bias or mean
squared error (MSE) of the estimators, and have focused on cases where the number of

2 vary in magnitude. In the

studies k£ and the true value of the heterogeneity variance 7
closing sections of this chapter, we will outline the general findings of such simulation
studies for the estimators we describe here, paying particular attention to their perfor-
mance in the case of sparse-event data. We shall also review the performance of these

methods when combined with confidence intervals for the summary effect, again for both

29
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common and rare-event binary data scenarios. Finally, we will conclude on the methods
available for rare-event meta-analyses, and how our findings provide motivation for the

construction of novel approaches.

2.2 Method of moments approach

The method of moments approach was proposed by Kacker| (2004)), and is based on
Cochran’s generalised @Q-statistic, Qasas (defined as the weighted sum of squared differ-

ences between individual study effects and the pooled effect across studies):

k
Qun = Y wi(6; — 6) (2.2.1)

=1

where w; is the weight of study ¢, and k is the number of studies in the meta-analysis.
For the general method of moments approach, we assume that w; does not take a specific
form, and may be known or estimated using the study data. As a result of this, 0is a
generic weighted average of study effects 6;. Qazar becomes the Q-statistic introduced
in Chapter (1| when w; pp =1/ 02-2 is substituted in for w; in Equation .

The approach involves equating Qaras to its expected value, giving the general method

of moments (MM) estimator:

A detailed derivation of this estimator can be seen in Appendix [A:d] The approach
assumes that 022 are known but these are generally replaced by estimates 61»2 in Formula
(2.2.2). Every method of moments estimator can be derived from Formula , by
replacing w; with its associated functional form. Because the proposed study weights in
this equation do not ensure that 72 > 0, all method of moments estimators are truncated

to zero whenever they would otherwise produce negative values.

2.2.1 DerSimonian-Laird

As mentioned in Chapter [T the most commonly used method to estimate heterogeneity
variance is the non-iterative DerSimonian-Laird (DL) method (DerSimonian and Laird
(1986))). This estimator is derived by equating the observed value of Qprys with FE
weights w; pp = 1/67 (which we denote Q), with its expected value E(Q), where E(Q) =

K (1/62)? o
72 <Zf:1(1/5'¢2) - W) + (k — 1), yielding:
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Sk (1/62)(6i — 6pr)? — (k—1)

k ~9 S (1/62)2
i (1/67) — m

%, =max 3 0,

where 0 = Ele(wz P Eéz) / Zle w; pp. We can also obtain this estimator by directly
substituting the FE weights w; pg = 1/67 into Equation (2.2.2).

A number of variations of the DL method were proposed by [Kontopantelis et al.| (2013)).
These include the positive DL (DLp) method, which uses truncation to an arbitrary
positive constant (e.g. 0.01) rather than zero, to ensure a positive estimate. A non-
parametric bootstrap DL (DLb) method was also proposed, which aims to minimise the
proportion of zero estimates. This bootstrap approach is conducted by first randomly
sampling k studies with replacement, and then calculating 7% ;, for the sample. These
steps are then repeated B times, where say B = 10,000, and then the estimate %12)Lb is
calculated as the mean of these B estimates. This bootstrap method could theoretically

be employed for any 72 estimator.

2.2.2 Hedges-Olkin

Another non-iterative estimator from the method of moments approach is the Hedges-
Olkin (HO) method, also known as Cochran’s ANOVA or variance component type
estimator (Hedges and Olkin| (1985); |Cochran| (1954)). It is obtained by setting the

sample variance, S7 = ﬁ Zle(él -6 Ho)?, equal to its expected value and solving for

’7'22

k k
R 1 N N 2 1 .
%o = max {O, 1 g (0; — o) — Z g 01-2}

i=1 i=1

where G50 is the unweighted average of 9}-, given by:

k
Ono => 0i/k (2.2.3)
=1

This heterogeneity variance estimator can equivalently be produced by substituting
weights w; = 1/k into Equation (2.2.2):
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, (S /m)0 — fir0)?) - (zg;lu Jhyo? z<(/k/>k)>
v S (/k) - %
_a/m) S8 0n0)?) — ((1/k) Sh, 62 — (1/k)? Th, 62)
11— (1/k)
(1/%)2;€ 1(9 —9Ho) ((1/k) — (1/k) >Zz 62
(k— 1)/k:
1

A A 2
(0: —Ono) —% >

1

k—1

-

=1

2.2.3 Mandel-Paule

The Mandel-Paule (MP), or empirical Bayes, estimator is an iterative example of the
method of moments approach (Paule and Mandel (1982)). In this case, the estimate 72
is calculated as the unique solution to the MP estimating equation, F(7%,5), by means
of fixed-point iteration. This equation is obtained by equating Qarps, with weights
Wi re = 1/(62 + 72,p), to its expected value k — 1, giving:

ko5 oA \2

. (0; — Onp)
)= 2

where 0y p = zle(wi,REéi)/Zle w; rg- The solution, %]%413, is determined through
a process of numerical iteration until convergence, starting with an initial estimate of
7¢ = 0. If F(72,p) is negative for all 72, > 0, the estimate is set to zero. An alternative

method to derive this estimate involves substituting the above RE weights into Equation

[£22). giving:

2 S i re(0; — Onp)? — (O Wi rE6? — (8 Wi rEe?) /(S8 ikE))

TMp = k- k E -
27;:1 Wi,RE — (Zz 1 wzQRE)/(Zizl Wi RE)

As before, a process of iteration is needed to determine the %]%/[ p estimate here, however

this second approach is seen to be more intuitive.

2.2.4 Improved Mandel-Paule

For the meta-analysis of odds ratio outcome data, Bhaumik et al.| (2012) suggested an

improved, stabilising MP (IMP) estimator for rare events. Their approach provides an
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alternative method of calculating sampling variance, and involves borrowing strength
from other studies when estimating each within-study variance. Instead of using the

standard &?, they suggest:

A A 72 N #2
ag(*) = —— [exp (—C’GRi — 0o + 2) + 2 4+ exp <CGRZ- + 0o + 2)}
—— [exp(—CGR;) + 2 + exp(CGR;)]

where n;; and n;. are the sample sizes in the treatment and control group respectively, of
study i, CGR; is the estimated risk of an event in the control group of study 4, and 60 is
the equally-weighted combined effect estimate in Equation , but with a continuity
correction for zero events. The risk CGR; can be calculated as CGR; = ¢;/njc, where
¢; is the number with the event of interest in the control group, and the values of ¢; and

n;. can be taken from a 2 x 2 contingency table, such as the one given in Table

To obtain the improved MP estimator, %?M p» the same process is used as in MP, but this
time using shared-strength weights w; pp =1/ (72 4+ 62(x)). These alternative estimates
of the within-study variance could in principle be applied to every 72 estimator. Since
this estimator is solely for use with the odds ratio outcome measure, it will not be of
use for our risk ratio meta-analysis simulation study, however we include it here for
completeness and to provide an example of estimators proposed specifically for use with

rare-event data.

2.2.5 Two-step estimators

Non-iterative, two-step versions of the MP method have been proposed by |[DerSimonian
and Kacker| (2007). Similar to the MP method, these estimators require RE study
weights, but their iteration is restricted to only two steps rather than until convergence.
Two forms of this two-step approach exist, one with initial estimate %3 = 7% . (DL2),
the other with initial estimate 7§ = 7%, (HO2). If we substitute @; g = 1/(75, + 67)
in Equation , and use Op, as defined above, we get the two-step estimate 7% 19

where:

k N N ) k ~ ~ k S ~ k N
. Sim1 Wirp (0 — Opr)? — (i, Wi rEGT — (i) W] gpo?)/(Xiey WiRE))
DL2 — ~2

ko oa k E -
> im1 Wi,rE — (20— Wi gE)/(Ximy Wi,RE)

The HO two-step estimator, 7%02, can be constructed in a similar manner, by substi-
tuting ; pr = 1/(67 + 7%,) and o into Equation (2:2.2)), thus giving:
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k A O A k A ~ k ~ ~ k ~
o i Wire(0; — 010)? — (371 WirEG] — (371 W] gpo?)/ (i WiRE))

THO2 = . k- E -
>oic WirE — (301 W gp)/ (3251 Wi RE)

These two-step estimators are included here for completeness, however they shall not be
used in our simulation study as they only advance their respective base estimators by one

further step of iteration, and so are not seen as significantly improving the estimation.

2.3 Non-truncated moments-based approaches

As mentioned in Section [2.2] the majority of method of moments estimators require
truncation to zero as they allow for the production of negative estimates. However,

there are some estimators based on this approach that do not require such truncation.

2.3.1 Hartung-Makambi

One of these is the Hartung-Makambi (HM) method, which is a non-iterative modifi-
cation of the DL method that always produces positive results (Hartung and Makambi
(2003)). Recall that:

where Q is the value of Q 72/ given in Section and ¢ = Zle wi,FE—(Zle ’LZ)ZFE/ Zle Wi FE)-

The HM method involves multiplying the (always positive) first term of 73, (Q /c), by
a positive correction factor, denoted by €, which accounts for the bias resulting from the
exclusion of the term (k—1)/c. The HM estimator therefore takes the form 7,, = e-Q/c,

where:

giving the HM estimator:

2 Q?
THM = R i Sk 2
k- 1) +0) (zizl i )

D1 Wi FE
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2.3.2 Sidik-Jonkman

Another estimator that always yields positive results is the non-iterative Sidik-Jonkman
(SJ) method, or model error variance estimator, which is based on weighted least squares
(Sidik and Jonkman| (2005)). This estimator is methodologically similar to the MP
method, as the weights are equivalent to the RE study weights, multiplied by a constant

72 to ensure positivity. To obtain the SJ estimator, we first substitute the following

new study weights w; g5 = @ /;2) = = &_Qiﬂ into the standard formula for Var(é)
introduced in Chapter (Var(é) = W Zle wfaf), giving:
i=1 "
k 2 \2 2 a2 ~4 K 1
‘7\@_2@1 ) (Ji+T)_T211&3+72 B 72 _ 72
ar( ) k 72 2 B k 72 2 Zk - 722A N Zk lZ)'SJ
(Zizl 5_1.2_"_7:2) Zi:l W) 1=1 02.2+7-2 =1 ",

This variance is then equated to an alternative, weighted estimate of Var(é), proposed
by [Hartung (1998):

SF i g5(0; — 0)?

Vargr () =
ux(9) (k—1) % i sy

These two values for the variance are equated, and then rearranged in terms of 72, giving

us the SJ estimator:

9 —fs)?

Mw

k 1= or / 76)
where éHO is the unweighted estimate of # defined earlier, and és J is the weighted
least squares estimate of 6 with weights ; g5 = 1/((62/7%) + 1). Since this formula is
iterative, [Sidik and Jonkman! (2005)) proposed a two-step approach with initial estimate
2= %Zle(éz — Opo)?. We set 7%, = 0 in the unlikely event that 7¢ = 0 (all 0; are
equal), and so the study weights w; g; are undefined.

The idea behind this estimator comes from replacing the standard random-effects weights
w; = %“ with an alternative involving a ratio of the variances r; = d;> /72, giving
W5y = (02/ S which we take from noting that Var(6;) = o? + 12 = 72(r; + 1)
where they assume that the within-study variances are known, and thus the ratios
are also assumed to be known (despite usually being unknown in practice), and also
assuming that 72 # 0. By viewing the effect measure as a linear model, the best linear

unbiased estimate for the summary outcome measure is given by the weighted least
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squares estimators, where the rates are given as above. If both variances are known,
then this estimator is equivalent to using the standard random-effects weights. This is
a two-step approach since a crude initial estimate of 72 is obtained through the above
equation for %3, and this is then input into the alternative weights, which is in turn

input into the weighted residual sum of squares to provide an estimate for 72.

Sidik and Jonkman (Sidik and Jonkman| (2005)) noted that alternative 7Z estimates
may lead to an estimator with better properties. Therefore, Sidik and Jonkman (Sidik
and Jonkman| (2007)) proposed 7¢ = maxz(0.01,7%,) in a follow-up paper; I denote the
resulting estimator as SJ2. As with the original estimator, %5% 72 18 a two-step estimator
that is simple to compute and always results in a positive estimate of the heterogeneity

variance.

2.4 Likelihood-based approach

The maximum likelihood (ML) and restricted maximum likelihood (REML) estimators
are both computationally intensive, iterative methods based on the marginal distribution
0, ~ N (0, O’ZZ +72). These approaches differ from the method of methods approach as the
parameter §; and associated estimate §; are assumed to be normally distributed around

the central parameter, 6.

2.4.1 Maximum likelihood

The classical maximum likelihood (ML) estimate is obtained by maximising the log-
likelihood function (Hardy and Thompson| (1996)), given by:

k

k 1< (0; — 0)?
1OgLML(0,T2) = —§log(27r — —Zlog o; +T 52 o? —1—7')2
=1 i=1

ML estimators for # and 72 can be obtained by partially differentiating log Ly, with
respect to 6 and 72, respectively, and equating the resulting equations to zero. This

gives the following ML estimates:

k N 2

N ; - pr0
Onr = —Ezzl wTRE : (2.4.1)

j :7,:1 wZ,RE

. 5 A 2 .
Zf:lwzz,RE((e'—eML) —67)

ko ~2
dic1 Wi RE

i, = maz {0, (2.4.2)



Chapter 2 Methods for estimating heterogeneity variance 37

where w; pp = 1/ (612 + %J%/[ ;) and Oy is the maximum likelihood estimate of 6. The
ML estimates are then calculated by solving the above two equations simultaneously
and iteratively, beginning with an initial estimate %g. As such, these values could be
estimated using an iterative scheme, where you start with some value %02, and substitute
this into Equation to give a value for éML. This value for éML would then be
substituted into Equation to generate a new value for %]%/[L, and this process

would be continued until the solutions converge.

2.4.2 Restricted maximum likelihood

The restricted maximum likelihood (REML) method can be used to correct for the
negative bias that is associated with the above ML method (Raudenbush| (2009)). In

this case, the estimate is produced by maximising the restricted log-likelihood function:

k

k 1< 1<~ (6;— 02 1 k 1
o8 Lirs () = 3 loa(0m)—5 D log(ot472) =3 3 (T o s (Z <a.2+72>)
=1 1 ?

i= i=1

The estimate for 72 is derived by partially differentiating log Lrgasr with respect to 72,

and then setting this equal to zero and solving the resulting equation, giving:

N A4 .
9 > szE((Qi —OrEML)? = 07) 1
TrEMmL = Max § 0, E— + =

2z Wi RE > ie1 WiRE

where Oppyvr = S8 (Wi rEbi)/ S8 i pe and Wi rp = 1/(67 + 725,7)- As before,
the estimate is calculated by a process of iteration with an initial estimate of %g >0,
where each iteration step requires non-negativity. The difference between the REML and
ML estimators for 72 is the addition of the term 1/ Zle w; re in the REML formula.

2.4.3 Approximate restricted maximum likelihood

An approximate restricted maximum likelihood (AREML) method has also been pro-
posed by Morris (1983), which uses a direct adjustment for the loss of degrees of freedom.
The AREML estimate for 72 is the iterative solution to:

Zf:l “A)ZQ,RE((% (9 - HAREML)z - 022) }

22 _ )
TAREML = max 0, . 5
die 1 W RE
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where the weights are defined as w; g = 1/(62 + 73z gasz)- This method yields similar
estimates to REML, and in the case where all sampling variances are equal, AREML

and REML estimates are identical.

2.5 Hunter-Schmidt

Other frequentist estimators have been proposed that do not fit into any of the grouped
methodology types. One of these is the direct variance component approach Hunter-
Schmidt (HS) estimator (Schmidt and Hunter| (2014))), which is obtained by writing the
variance components for 0 as Var(é) = 72 + ¢2, and then substituting the weighted
unbiased estimates of Var(é) and o? into the variance components. It is produced by
setting the Q-statistic, Q = Zle wi’FE(HAi - é)Q, equal to its expected value and solving

for 72:

k k k
B(Q) =Y wirpBE0:; — 0~ wipp(o] +7°) =k+» wirpr’
i—1 i—1 i=1

S i pp(0;— 0)? - k}

:%%S:max{O, Zk -
i=1 Wi,FE

2.6 Bayesian approach

As mentioned in Chapter [1} meta-analyses can be conducted in a Bayesian, rather than
classical, framework. In these cases, the heterogeneity variance can also be estimated
by means of a Bayesian approach, and these allow for the incorporation of prior beliefs
of model parameters to be included with the meta-analysis data. Here we will discuss a

fully Bayesian approach, as well as some semi-Bayesian estimators.

2.6.1 Full Bayesian

The full Bayesian (FB) method allows estimates to be obtained simultaneously with
all other parameters of interest, incorporating any uncertainty in these estimates. In
a Bayesian RE model with no covariates, the prior distributions for § and 72 can be
defined as:

6 ~ (1)
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72 ~ ma(¢2)

where 7 and mo are chosen probability distributions with fixed parameter vectors ¢
and ¢o. The prior distributions and their parameter vectors are chosen to reflect the
prior knowledge, or set as vague if none is available. Possible prior distributions for
72 include inverse-gamma and uniform, and recently half-normal priors have been pro-
posed (Gunhan et al.| (2018)), while 6; will generally be assumed a normal distribution.
Estimates for these two parameters are extracted from the joint posterior distribution
for @ and 72, which is itself calculated by combining the prior distributions with the
meta-analysis data using Markov chain Monte Carlo (MCMC) methods. We could also
make # and 72 dependent by using joint priors for these parameters, where the prior for

one parameter is set to be conditional on the other.

2.6.2 Rukhin Bayes

As mentioned above, a series of semi-Bayesian estimators exist, one of which is the
Rukhin Bayes (RB) method (Rukhin|(2013)). This estimator is simpler to compute than
the FB method described above, and only requires a fixed prior estimate for 72, denoted
by 7&. Tt is based on the generalised method of moments approach, and involves deriving
the formula for Var(72), and then choosing 72 such that Var(#?) is locally minimised

around the prior estimate of 72. The general form of the RB estimator is:

_l’_

725 =max<{ 0 Zf:l(él —0)? (Zﬁzl(n“ + nic) — k) (2k7§ — (k—1) Zf:l ;)
i © o k+1 S (e + 1e) — ke + 2)k(k + 1)

where é = Z?:l(éiﬁ)i,RE)/Zle UA)LRE, UA)Z‘,RE = 1/(612 + %g), and n;; and n;. are the
sample sizes in the treatment and control groups, respectively. Rukhin recommended

estimating 73 using the prior estimate 73 = 0 (RB0).

2.6.3 Bayes Modal

Another semi-Bayesian approach is the Bayes Modal (BM) method, which can estimate
72 without the need for MCMC methods (Chung et al.| (2013} 2014))). To derive the BM

estimator, you need to use the profile likelihood, given by:

~ 2
zi;l(o?w)-lei)

i . (6 -
k 1 1 < L Sl
log Ly(r) = — log(2r) — o > log(of +77) =5 (2 1+ )

i=1 i=1 !
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The BM estimate, 73,,, is then obtained by approximating log L,(7) using the ML

estimator 73,; and a Taylor expansion, giving the closed-form solution:

~9 ~
) Var(tir,) , TvmL =0
a = 2
T™BM — -
7 7 AVar (7T ~
Lé“ +L”2“ 1—!-7%( arz) , v >0
™ML

2.7 Summary of binary-outcome heterogeneity variance es-

timators

In Sections to we gave a comprehensive review of the methods proposed to
estimate heterogeneity variance in a meta-analysis with binary outcome measures. We
included all those estimators of interest at the time of publication. Table [2.1] lists all of
these estimators, along with their location in the chapter, and the abbreviations that

we shall use to refer to them throughout the remainder of this thesis.
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TABLE 2.1: A summary of the heterogeneity variance estimators along with their

respective abbreviations used in this thesis.

H Estimator Abbreviation ‘ Section H
Method of moments approach 2.2
DerSimonian-Laird DL 2.2.1
Positive DerSimonian-Laird DLp 2.2.1
Bootstrap DerSimonian-Laird DLb 2.2.1
Hedges-Olkin HO 2.2.2
Mandel-Paule MP 2.2.3
Improved Mandel-Paule IMP 2.2.4
Two-step DerSimonian-Laird DL2 2.2.5
Two-step Hedges-Olkin HO2 2.2.5
Non-truncated moments-based approaches 2.3
Hartung-Makambi HM 2.3.1
Sidik-Jonkman SJ 2.3.2
Sidik-Jonkman (HO initial estimate) SJ2 2.3.2
Likelihood-based approach 2.4
Maximum likelihood ML 2.4.1
Restricted maximum maximum likelihood REML 2.4.2
Approximate restricted maximum likelihood | AREML 2.4.3
Independent approach 2.5
Hunter-Schmidt HS 2.5
Bayesian approach 2.6
Full Bayesian FB 2.6.1
Rukhin Bayes RB 2.6.2
Rukhin Bayes with prior estimate %g =0 RBO 2.6.2
Bayes Modal BM 2.6.3

2.8 Other approaches

The estimators that we have discussed up until now in this chapter are appropriate for
binary outcome meta-analyses, and which are well-cited and compared in the literature.
We shall now briefly describe some alternative estimators that either cannot be applied
to binary outcome meta-analyses, or we do not believe are appropriate for inclusion
in our simulation study, but nevertheless we feel are important to mention here for
completeness. The estimators considered up until this point are unspecific and can be

applied to any generic estimate - any quantity of interest, effect measure or proportion.
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2.8.1 Malzahn, Bohning and Holling

Malzahn et al. (2000) proposed a 72 estimator that can only be used with standardised
mean difference meta-analyses (the continuous outcome measure described in Section
. The key feature of this estimator is that it makes no assumptions regarding the
distribution of {61,...,0;}, a significant advantage over other estimators. The estimate
of 72 (#2,5y) is derived by calculating the difference between the variance of §; under

the fixed-effect model and under the random-effects model, giving:

k k k
1 N 1 Nit + Ny 1 -
~92 it ic 2
=|— E 1—-K;)(0; — 0 —75 —_— —fE (KH)
TMBH <k—1> : ( i)(0i — Oro) k 4 < o > k 2 iV
=1 =1 i=1
where K; =1 — ((IV; — 2)/N¢Ji2), N; =njy+nje—2, J; =1—3/(4N; — 1) (suggested by
Hedges) (1981)) to correct for bias), and 0o is the equally-weighted outcome measure

estimate in Equation ([2.2.3)).

2.8.2 Bohning-Sarol

Another estimator that makes no assumptions regarding the distribution of the study-
specific effect sizes is that proposed by Bohning and Sarol| (2000). This estimator can
only be applied to meta-analyses with the standardised mortality ratio outcome - the
ratio of the observed and expected count of mortality cases. The estimate, 7%5, is

calculated using the following formula:

k k

(O e/ =Y~
2 2

=1 =1

~2 o
TBS =

=

where O; is the observed number of mortality cases in study 4, e; is the expected (non-
random) number of mortality cases in study ¢, k is the number of studies in the meta-
analysis, and p is an unknown parameter which must be estimated. We shall further
expand on this estimator, and a risk ratio variation of it that we are proposing, in
Chapter [l The estimator is quite general as it can be applied to any rate data where
it is assumed that, conditional upon the study, the observed count is of Poisson type

where the rate might involve some study-specific parameter.

2.8.3 Within-study variance estimators

The IMP approach described in Section [2.2.4] is an example of a within-study variance
estimator - a method based on using an alternative estimate of the within-study variance

to the standard &2-2 appropriate for the outcome measure of choice (examples of 62-2 were
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given in Section|1.2.2). This alternate estimate of o7 is then used to calculate an estimate
of the heterogeneity variance. Other within-study variance estimators exist, including
that proposed by Berkey et al.| (1995), who suggested an alternative estimate of 012 for

risk ratio meta-analyses:

k k
1 Nt — Q4 1 Nje — G
~2 _ 1t 7 ic 7
i (*) - kmi zz—: ( a; ) + kngi zz—: < C; >

=1 =1

where a; and ¢; are the count of events in the treatment and control groups, respectively.
This approach was proposed to minimise correlation between the estimates of effect
size and within-study variances. An altered version of this estimator that includes a
continuity correction, and again can only be used for risk ratio meta-analyses, was

proposed by [Knapp and Hartung| (2003]):

) k

1 ni —a; + C 1 3 Nic — ¢i +C
“9 . it ) wil
GZ(*)_k‘nu;< a; +C >+kn2ii:l< ci+C )

where they set the correction C' to be 0.5, in line with the constant continuity correction
discussed in Section [[.9.1]

These within-study variance estimators differ from the methods discussed previously as
they do not directly estimate 72, instead estimating the value of o2 that is used later in
the calculation of 72. As a result of this, once one of these &? methods has been applied,
the problem of deciding on an appropriate estimator for 72 still exists. As such, we shall
not include these approaches in our simulation study, as there is no evidence that they

will significantly improve the performance of the paired 72 estimator.

2.9 Performance of heterogeneity variance estimators

The 72 estimators included in Table 2.1 have been included in a number of simulation
studies in order to analyse and compare their performance in terms of measures such as
bias and mean squared error (MSE). In this section, we shall provide an overview of the
results of these simulation studies for each method, grouping the estimators according

to their associated methodology.

2.9.1 Method of moments approach

As mentioned in Chapter [I} the most widely used heterogeneity variance estimator is
the DL method, however its frequent use has been questioned because of the significant

bias it can have in particular scenarios, leading to unreliable 72 estimates (Veroniki et al.
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(2016))). The estimator has been shown to be positively biased and over-estimate 72 on

2 is small or close

average (Viechtbauer| (2005))), and it is only acceptable when the true 7
to 0, and k is large (Bowden et al. (2011); Novianti et al| (2014)). When 72 is large,
DL can produce estimates with signifiant negative bias, particularly when the effect size
measure is binary (Veroniki et al| (2016])). The alternative versions of the DL method
also have their issues, with DLb performing well only with a large number of studies.
In fact, DLb has been shown to have greater bias than DL, with the bias being more
profound in small meta-analyses (Kontopantelis et al.| (2013)). Similarly, [Bhaumik et al.

(2012) showed the DL2 method to be downwardly biased for rare events.

The MP method is mostly unbiased for large sample sizes (Panityakul et al.| (2013)),
however it has been shown to have upward bias for small k£ and 72, and downward
bias for large k and 72 (Sidik and Jonkman| (2007)). Despite this, it has been found
to be generally less biased than alternative estimators, for both binary and continuous
outcomes, and has been recommended for use with such data (Bowden et al.| (2011))).
The IMP estimator, proposed by |[Bhaumik et al. (2012) for use with rare-event data,
has less bias than both the DL and MP estimators. The HO estimator performs well
in the presence of substantial between-study variance, especially when k is large (> 30
studies), but has greater MSE than the other method of moments estimators (Chung
et al.| (2014); Panityakul et al.|(2013); Sidik and Jonkman| (2007))).

2.9.2 Non-truncated moments-based approaches

With regards to the non-truncated moments-based approaches, [Thorlund et al. (2011)
found that the HM method tends to over-estimate for small to moderate 72. The SJ
estimator, which is methodologically similar to the MP method, has larger MSE and
greater bias than the DL estimator for small 72 and few studies (Sidik and Jonkman
(2005)). It also has smaller MSE compared with the HO method, irrespective of the
value of 72 or the number of studies (Sidik and Jonkman| (2007)). However, it has
large bias compared with other methods when 72 is small, but this bias decreases as
72 increases (Novianti et al. (2014)), and for large 72, SJ and MP methods have been

suggested by |Sidik and Jonkman! (2007)) as the best estimators in terms of bias.

2.9.3 Hunter-Schmidt and likelihood based approaches

The HS and ML estimators have similar MSEs, which in turn are lower than the MSEs of
the DL and HO methods. However, the HS estimator has been shown to be significantly
negatively biased, and so this method should be avoided (Viechtbauer| (2005)). The
performance of the ML estimator depends on the choice of maximisation method, and
may fail to converge, especially if there is a flat likelihood, which may be the case with

a small number of studies. Although this estimator has small MSE, it exhibits large
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downward bias for large 72 when k is small to moderate and the sample sizes are small,
and so is not recommended (Kontopantelis et al.| (2013)); [Panityakul et al. (2013)). For
binary outcome data, the REML method is less downwardly biased than DL but has
greater MSE (Chung et al.| (2014)), and underestimates 72 when the data are sparse
(Goldstein and Rasbash| (1996))).

2.9.4 Bayesian approach

For the full Bayesian approach, the choice of prior distribution is important when k is
small, and can have a substantial impact on the estimates of 72 and the mean treatment
effect 6 (Lambert et al| (2005)). In particular, inverse-gamma, uniform and Wishart
prior distributions for 72 perform poorly for small k, and produce estimates with large
bias (Gelman et al|(2006)). The semi-Bayesian RB estimator has an inherent positive
bias, but is recommended for small to moderate k (Rukhin| (2013))). A simulation study
by [Kontopantelis et al.| (2013|) with & < 5 showed that RBO had less bias than DL (all
variations), HO, REML and SJ estimators. In contrast, the BM method overestimates
72 and has large bias when the true 72 = 0, especially when the sample sizes and k are
small (Chung et al.| (2014)); Veroniki et al.| (2016))).

2.10 Performance of heterogeneity variance estimators with

rare events

As shown in the previous section, a number of simulation studies have been conducted
to compare 72 estimators under realistic meta-analysis scenarios, however very few have
studied the case of rare-event data. One of these is the study by Langan et al.| (2018),
who recently looked at odds ratio meta-analyses with an event probability of 0.05. They
considered the DL, HO, MP, DL2, HO2, HM, SJ, SJ2 and REML estimators, and found
that all methods performed poorly in terms of bias, MSE and coverage (when combined
with summary effect confidence intervals). In particular, they noted that all estimators
had considerable negative bias under this rare-event scenario, for both balanced and
unbalanced study sample sizes, and for a range of true heterogeneity values and numbers
of studies (k). Although they recommended the REML estimate overall, they emphasised
its inappropriateness for sparse-event data, and concluded that alternate methods should

be sought for this particular data type.

As mentioned in Section Bhaumik et al.| (2012) proposed their IMP estimator
for use with odds ratio rare-event meta-analyses. To demonstrate its suitability, they
conducted a simulation study, comparing its performance against that of existing es-
timators - namely the DL, DL2 and associated MP methods. They concentrated on

scenarios with zero treatment effect (i.e. a summary log-odds ratio of 0), 20 studies and
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highly unbalanced study sample sizes. For the case of extremely rare events, they found
their novel IMP estimator to have the least bias, consistently outperforming the pre-
existing estimators for all levels of heterogeneity investigated (72 from 0 to 1.2). When
the true heterogeneity was considerably large (e.g. 72 = 0.8), the existing estimators
were observed to significantly underestimate 72, thereby failing to detect the variation
in treatment effect size across studies. As mentioned previously, the disadvantage of the
IMP estimator is its limitation for use with only the odds ratio, and as such it is limited
in applicability to a binary outcome that is difficult to interpret and not recommended

for use by clinicians.

2.10.1 Performance of heterogeneity variance estimators with rare events
and few studies

Some of the simulation studies investigating 72 performance for rare events also focus on
the case of few studies in the meta-analysis (e.g. k < 5), a combined scenario that raises
more challenges in terms of estimating 72, as a result of the consequent high proportion
of zero or very low counts. For example, Friede et al.| (2017al) compared DL, MP, REML
and BM methods for the meta-analysis of few small studies in rare diseases. The plot
in Figure [2.1| was taken from their paper, and shows the bias of these estimators given
a range of values of 7 (the heterogeneity standard deviation) and k. It shows that the
extent of bias strongly depends on k for all estimators, with small bias for large k& and
substantial bias for small k. It can also be seen that the direction and size of bias heavily
depends on the estimator and the value of 7, and also on the choice of prior distribution
in the case of the BM method.

Another plot from the paper by [Friede et al. (2017a)) is shown in Figure this time
showing the proportion of 7 estimates equal to zero depending on k for those estimators
that are not strictly positive by construction (i.e. DL, MP and REML). It shows that for
small k£ the proportion of estimates being equal to 0 is substantial for small to moderate

7, but this effect lessens with increasing k.
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FIGURE 2.1: Plot from [Friede et al.l (lQOl?aI} showing the bias in estimating the between-
study heterogeneity 72 for DL, REML, MP and BM estimators, and for several numbers

k of studies included in the meta-analyses.
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FIGURE 2.2: Plot from |[Friede et al.l (IZOl?aI) showing the proportion of estimates of the

between-study heterogeneity 7 equal to zero for those estimators that are not strictly

positive by construction depending on the number £ of studies.

Bayesian approaches are a popular choice for this particular problem, and
(2018) recently tested two priors against the existing ML estimator. They used vague

and weakly informative priors, both with a half-normal distribution and scale parameter
of 0.5, and point estimates of 72 were taken as the posterior medians. For 72 = (.28,

they found that the ML estimator consistently underestimated 72, whereas the Bayesian
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approaches overestimated it, but to a lesser degree. As such, they concluded that the

Bayesian approaches outperformed the ML.

The fewest number of studies that can be included in a meta-analysis is two, and |[Friede
et al.| (2017b) focused on this particular scenario (which occurs frequently in medical
meta-analyses), specifically looking at two-study meta-analyses with rare events. They
compared the DL estimator with two fully Bayesian methods under this scenario, with
the Bayesian approaches given half-normal prior distributions with scale parameters 0.5
and 1, similar to the previous study mentioned. From the results of their simulation
study, they found that the DL estimator was biased in all scenarios considered, overes-
timating 72 when the true heterogeneity was small (72 = 0,0.1) and underestimating it
when it was large (72 = 0.5,1). In addition to this, a number of zero DL estimates were
produced when substantial heterogeneity was present, agreeing with previous findings.
Posterior median estimates obtained from the Bayesian approaches showed a similar
pattern of bias, however underestimation of 72 only occurred when heterogeneity was
very large, and the degree of bias depended heavily on the prior used. For example, the
half-normal (1) prior had the greater bias of the two priors for small heterogeneity, as a
result of it favouring larger values of 72. However, they point out that less importance
can be placed on Bayesian estimates of 72, as the posterior distribution incorporates the

uncertainty of 72 in the subsequent estimation of the summary effect.

2.11 Performance of summary effect confidence intervals

In Section [1.6| we outlined the main confidence intervals proposed for use with meta-
analysis outcome measures: Wald-type, t-distribution, Hartung-Knapp-Sidik-Jonkman
(HKSJ) and modified Knapp-Hartung (mKH) confidence intervals. A number of simu-
lation studies comparing heterogeneity variance estimators have also investigated their
performance when combined with a range of confidence intervals for the summary effect

size.

Recently, |[Langan et al.| (2018) compared the Wald-type, ¢t-distribution and HKSJ con-
fidence intervals for summary effect after applying a range of 72 estimators (DL, HO,
MP, D12, HO2, HM, SJ, SJ2 and REML). They investigated all combinations of these
72 estimators and confidence intervals (using the 95% level), measuring performance in
terms of coverage, for both standardised mean difference and odds ratio meta-analyses
with event probabilities ranging from 0.1 to 0.5. For the Wald-type method, they found
that all 72 estimators behaved similarly (with the coverage between them differing by
up to 5%). Coverage was very low, at only 65%, for small numbers of studies (e.g.
k < 5) when significant heterogeneity was present (I? = 90%, 72 = 0.194), but tended
towards 95% as k increased. In homogeneous situations, however, the coverage remained

between 96% and 100% for all scenarios considered.
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In the same paper, they found the ¢-distribution confidence interval to be far more
robust to changes in heterogeneity. For all 72 estimators considered, the method was
conservative when k < 5, producing coverages close to 100%. However, as with the
Wald-type method, there was no notable difference between the 72 estimators, and as
a result, no single 72 estimator could be deemed the optimum choice. Similarly, for the
HKSJ confidence interval, no 72 estimator outperformed the others when combined with
this method. However, in contrast to the previous two approaches, the HKSJ method
had a very small range of 94% to 96% when the outcome measure was the standardised
mean difference, for all scenarios considered. As such, they recommended this confidence
interval overall, combined with either the REML, MP, or DL2 estimators in the case
of balanced study samples sizes (basing the choice of 72 estimators on their individual
merits in terms of bias and MSE), and combined with either REML or DL2 for highly

unbalanced samples sizes.

2.11.1 Performance of summary effect confidence intervals with rare

events

As we have discussed the results of simulation studies that focus on rare events and
those that compare summary effect confidence intervals, it is only logical that we now
review those that have looked at these two subjects together. In addition to looking at
confidence intervals under common events, Langan et al.| (2018) also compared the Wald-
type, t-distribution and HKSJ methods for rare-event odds ratio meta-analyses (with
an average event probability of 0.05). In contrast to the results discussed in Section
they found that the otherwise recommended HKSJ method performed poorly in
terms of coverage with rare-event data when k > 20. The Wald-type and t¢-distribution
confidence intervals also had extreme levels of coverage, giving similar results to those
observed with common events. These results imply one of two possibilities: either all of
these confidence intervals perform poorly in the case of zero counts, or they are unable

to produce appropriate intervals as a result of using biased 72 estimators.

In their analysis of two-study meta-analyses, Friede et al.|(2017b) also compared Wald-
type, HKSJ and mKH confidence intervals (combined with the DL estimator) against
credible intervals produced via the Bayesian approaches discussed in Section
They measured the coverage and interval length for each method, under both simulated
and empirical data. When little heterogeneity was present, they found that all methods
performed well in terms of coverage except for the Wald-type method with DL, where
coverage was below the nominal 95%. Both the HKSJ and mKH methods had good
coverage when study sample sizes were balanced, however the HKSJ approach performed
poorly in unbalanced scenarios. In addition, these two methods produced very wide and,
in some instances, implausible intervals. In comparison, the Bayesian credible intervals

produced much shorter, and thus realistic, 95% intervals, and performed well in terms of
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coverage regardless of sample size balance, however this was only the case when 72 was

less than the parameter of the chosen half-normal prior distribution and so was a-priori

more likely.

2.12 Conclusions

In this chapter, we have outlined the most common heterogeneity variance estimators
appropriate for two-step meta-analyses, as taken from the current literature, as well
as some recently proposed methods. Both frequentist and Bayesian estimators exist,
and these fit into a number of distinct approaches, each with their own advantages and
disadvantages. Some methods are designed specifically for use with certain data types,

while others can be applied to a variety of outcome measures.

Results from previous simulation studies show that certain methods perform better than
others in terms of bias and MSE over a range of scenarios. Reviewing these studies, we
found that the majority of estimators considered only perform well when there are large
numbers of studies, little heterogeneity, common events and balanced sample sizes. How-
ever, these scenarios are not characteristic of empirical meta-analysis data, particularly

that from clinical trials.

A more common feature of medical research data is high proportions of zero or low
event counts. However, we found that very little has been investigated in terms of
comparing the performance of 72 estimators under such rare-event scenarios, with the
work by |Friede et al.| (2017a) being one of the few examples available. As such, no or
little information is available in the form of recommendations and guidelines to follow
when conducting meta-analyses on this type of data. From the results that are available
however, it can be deduced that all pre-existing estimators either perform poorly in
this scenario or are not appropriate for use with the risk ratio, our outcome measure of
interest. Given this, there is motivation to design and propose alternate methods that

are better designed to work with sparse-event data in risk ratio meta-analyses.

Heterogeneity variance estimators are not the only component that needs to be care-
fully chosen according to the characteristics of the meta-analysis data, as there are also
a variety of confidence intervals available for the summary effect. Similar to 72 estima-
tors, these confidence intervals are sensitive to the probability of events. Some studies
have looked at the performance of combinations of 72 estimators and summary effect
confidence intervals, and found that all confidence intervals perform poorly in terms
of coverage and interval length under rare-event scenarios, for each of the 72 methods
considered. As such, an alternate method to estimate the heterogeneity variance, that
performs well in the case of rare-event data, may promote better results in terms of cov-
erage of these confidence intervals, in particular the HKSJ method, which has promising

results in all other scenarios.



Chapter 3

Meta-analysis case studies

3.1 Introduction

In this chapter, we shall present the results of several meta-analyses of empirical rare-
event data to illustrate the inconsistency in outcomes that result from using fixed versus
random-effects approaches, and within the latter different heterogeneity variance (72)
estimators. The case-study datasets we analyse are all obtained from published medical
clinical trials and contain a number of zero and very sparse events, but vary in terms
of sample size and the number of trials included in the meta-analysis. While most of
the cases we look at have between 20 and 60 studies, we also look at a meta-analysis
of fewer than 5 studies (a more problematic and therefore very specific scenario). This
diversity in sample size and structure provides us with a wide range of meta-analysis

scenarios to investigate, which we shall later be mimicking in our simulation study.

As we are interested in the performance of 72 estimators only in the case of log-risk ratio
meta-analyses, we have used this as our outcome measure for all cases considered here.
For each case study, we present the 72 estimates produced using some of the estimators
discussed in Chapter [2| as well as the associated log-risk ratio estimate produced when
72 is applied to the two-step inverse-variance approach (as discussed in Section .
All heterogeneity variance estimates given in this chapter were calculated using the
methods described in Chapter [2] with abbreviations for these estimators listed in Table
and using code we developed in the statical software package R (R Core Team
(2019)), which can be seen in Appendix Using each of these estimates for 72, we were
also able to provide an estimate for the heterogeneity measure I2, which is calculated
using Equation . For each meta-analysis, we also present the value of the log-
risk ratio generated using the fixed-effect Mantel-Haneszel approach (outlined in Section
. All analyses presented in this chapter were conducted using the standard constant
continuity correction method (adding 0.5 to all event counts and sample sizes in studies

containing a zero count in either arm), as outlined in Section m

51
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To present the uncertainty of the summary effect measures, we used three alternate
confidence intervals: Wald-type, t-distribution and Hartung-Knapp-Sidik-Jonkman, all
of which are described in Section [I.6] Calculating various confidence intervals allows
us to visualise how the results produced using these methods also vary with alternate
estimators of 72. For each meta-analysis we display the associated forest plot, created
using the metafor package in R. Within each forest plot, in addition to presenting the
random-effects results produced using some of the 72 estimators of significant interest
to us, we also display the standard fixed-effect result (assuming 72 = 0 when using the
inverse-variance approach). While we plot all 3 of the above confidence intervals for each
of the random-effects approaches included, we only give the Wald-type confidence inter-
val with the fixed-effect approach. This is because we are more interested in comparing
the summary effect confidence intervals in respect to the 72 estimators than between
fixed and random-effects. While we shall record the log-risk ratio estimates in the results
tables within this chapter, we shall plot the exponentiated result of this (the risk ratio)
in our forest plots, as this is generally how it would be visually presented in publications

to aid easy interpretation of the results.

3.2 Rare-event meta-analyses

3.2.1 Effect of rosiglitazone on the risk of myocardial infarction and
death from cardiovascular causes

As mentioned in Chapter [1} the most well-explored medical dataset in the area of rare-
event meta-analysis methodology is that looking at the effect of the drug rosiglitazone
on the risk of myocardial infarction and death from cardiovascular causes. Rosiglitazone
is an anti-diabetic therapy drug used to lower blood glucose and glycated haemoglobin
levels in patients with type 2 diabetes (Shen et al. (2008])). Since over 65% of deaths in
patients with this condition are from cardiovascular-related causes, it is of utmost impor-
tance to identify if a treatment drug contributes to any microvascular or macrovascular
complications, and thus the risks associated with taking such a treatment (Deshpande
et al.[ (2008)). The data for this meta-analysis is taken from the original paper published
by Nissen and Wolski (2007)), and is displayed in Table

As can be seen from the data in Table this meta-analysis contains a considerable
number of single and double-zero trials, displaying the rare occurrence of the event of my-
ocardial infarctions, and the even rarer event of death from cardiovascular complications.
We conducted two meta-analyses: one looking at the risk of myocardial infarctions and
the other looking at the risk of death from cardiovascular causes, and their associated
forest plots can be seen below in Figures B.1] and [3.2] respectively. The abbreviations
used to detect the estimators in these figures are explained in Table
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TABLE 3.1: Study data for the meta-analysis on the effect of rosiglitazone; MI refers to
myocardial infarctions, Death refers to death from cardiovascular causes, n is the size

of the respective study arm.

Study Treatment arm Control arm
n | MI| Death | n [ MI [ Death

49653/011 357 | 2 1 176 | 0 0
49653/020 391 2 0 207 | 1 0
49653,/024 T4 |1 0 185 1 0
49653/093 213 | O 0 109 1 0
49653/094 232 1 1 116 | 0 0
100684 43 0 0 47 1 0
49653/143 121 1 0 124 | 0 0
49653/211 110 | 5 3 114 | 2 2
49653 /284 382 1 0 384 | 0 0
712753/008 284 | 1 0 135 | 0 0
AVM100264 294 0 2 302 1 1
BRL 49653C/185 || 563 | 2 0 142 | 0 0
BRL 49653/334 278 | 2 0 279 1 1
BRL 49653/347 418 | 2 0 212 | O 0
49653/015 395 | 2 2 198 1 0
49653/079 203 1 1 106 1 1
49653/080 104 1 0 99 2 0
49653/082 212 | 2 1 107 | 0 0
49653,/085 138 | 3 1 139 1 0
49653/095 196 | 0 1 96 0 0
49653/097 122 | 0 0 120 1 0
49653/125 175 | 0 0 173 1 0
49653/127 56 1 0 58 0 0
49653/128 39 1 0 38 0 0
49653/134 561 | 0 1 276 | 2 0
49653/135 116 2 2 111 3 1
49653,/136 148 1 2 143 | 0 0
49653/145 231 1 1 242 | 0 0
49653/147 89 1 0 88 0 0
49653/162 168 1 1 172 | 0 0
49653/234 116 | 0 0 61 0 0
49653/330 1172 | 1 1 377 | 0 0
49653/331 706 | O 1 325 | 0 0
49653/137 204 | 1 0 185 | 2 1
SB-712753/002 288 1 1 280 | O 0
SB-712753/003 254 | 1 0 272 | 0 0
SB-712753/007 314 | 1 0 154 | 0 0
SB-712753/009 162 | 0 0 160 | 0 0
49653/132 442 1 1 112 | 0 0
AVA100193 394 1 1 124 | 0 0
DREAM 2635 | 15 12 2634 | 9 10
ADOPT 1456 | 27 2 2895 | 41 5
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Study Risk Ratio [95% CI] p-value
49653/011 f : 2.47[0.12, 51.22]

49653020 } ; | 1.06 [0.10, 11.61]
49653/024 } j | 0.24 [0.02, 3.80]
49653/093 4 : 0.17 [0.01, 4.17]
49653/094 i : 1.51[0.08, 36.70]
100684 } ; 0.36 [0.02, 8.70]
496531143 } j 3.07[0.13, 74.72]
49653211 L ——— 2.59[0.51, 13.08]
49653/284 } 3.02[0.12, 73.80]
712753/008 : f 1.43[0.08, 34.81]
AVM100264 | : 0.34 [0.01, 8.37]
BRL 49653C/185 | § | 1.27 [0.08, 26.26]
BRL 49653/334 } - | 2.01[0.18, 22.01]
BRL 49853/347 } ; 2.54[0.12, 52.34]
49653/015 | f | 3.02[0.32, 28.69]
49653/079 f 0.49 [0.01, 24.83]
49653/080 | : 0.33 [0.01, 7.97]
49653/082 I f 0.33 [0.01, 8.03]
49653/085 | § 3.11[0.13, 74.86]
49653/095 <4 : | 2.92[0.12, 69.84]
49653097 [ 0.10 [0, 2.05]
49653/125 [ j 0.64 [0.11, 3.75]
49653127 } ; 2.90[0.12, 70.58]
496531128 } § 3.14 [0.13, 76.74]
496531134 4 — 2.97[0.12, 71.85]
49653/135 e 3.07 [0.13, 74.86]
496531136 | . 0.53 [0.01, 26.38)
496531145 [ 0.97 [0.04, 23.68]
496531147 [ § 0.46 [0.01, 23.19]
496531162 ! ; 0.45 [0.04, 4.96]
49653234 f § : 2.92[0.12, 71.30]
49653330 } : { 3.21[0.13, 78.48)
49653/331 4 : i 1.48 [0.08, 36.03]
49653/137 ! : 0.99 [0.02, 49.48]
SB-712753/002 I 0.77 [0.03, 18.66]
SB-712753/003 | : 0.95 [0.04, 23.16]
SB-712753/007 | : 1.67 [0.73, 3.80]
SB-712753/009 } § 1.31[0.81, 2.12]
49653/132 | : | 2.47[0.12, 51.22]
AVA100193 ! : ] 1.06[0.10, 11.581]
DREAM ] 0.24 [0.02, 3.80]
ADOPT Fm 0.17 [0.01, 4.17]
Fixed-effect - 1.26 [0.93, 1.71] p=0.14
G DL=0,1"=0%) - 1.26 [0.92, 1.72] p=0.15
& pm@®=01=0%) e 1.26[0.82,172)  p=0.15
.‘E' REML (=0, 1 = 0%) e 1.26[0.92, 1.72] p=015
BM (= 0.01, ° = 0.5%) - 1.26[0.81,172])  p=0.15
_ DL(¥=0, 1= 0%) e 1.26 [0.91, 1.72] p=015
S emmE=o ¥ = o%) - 1.26[0.81,172] p=0.15
g REML(¥ =0, TZ=G%} - 1.26 [0.91, 1.72] p=015
= BM (=001, 1 =0.5%) - 1.26 [0.90, 1.73] p=017
_ DL (92=o,‘|‘2=a%} - 1.26[1.03, 1.54] p=002
O pm@=0, 17 =0%) - 126[1.03,154]  p=002
¥ REML(¥=0, T’;:a%} - 126[1.03,154]  p=002
T Bm@F=o001, T =05%) - 126[1.02,154]  p=003
| I I | 1
0.01 0.1 1 10 100
Favours Treatment Favours Contral

FI1GURE 3.1: Forest plot of the risk ratio for myocardial infarctions.
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Study Risk Ratio [95% CI] p-value
49653/011 } : : 1.48 [0.06,36.23]
49653020 | ; | 0.53 [0.01, 26.64]
496531024 4 j | 0.24 [0, 12.06]
49653/093 [ : | 0.51[0.01, 25.73]
49653/094 i : | 1.51[0.08, 36.70]
100684 } f | 1.09[0.02, 53.81]
496531143 f j | 1.02[0.01,51.23]
49653211 e 1.55 [0.26, 9.13]
49653/284 | ' | 1.01[0.02, 50.53)
712753/008 <4 f 0.48 [0.01, 23.92]
AVM100264 [ : 2.05[0.19, 22.54]
BRL 49653C/185 <4 § | 0.25[0.001, 12.72]
BRL 49653/334 } : s 0.33 [0.01, 8.18]
BRL 49653/347 } : } 0.51[0.01, 25.53]
49653/015 | : | 2.51[0.12, 52.08]
49653/079 | 0.52 [0.03, 8.27]
49653/080 I j | 0.95 [0.02, 47.54]
49653/082 | : | 1.52 [0.08, 37.03]
49653/085 | § 3.02[0.12, 73.54]
49653/095 } : | 1.48 [0.08, 35.93]
49653097 } : | 0.98 [0.02, 49.18]
49653/125 | j | 0.99 [0.02, 49.55]
49653127 } ; : 1.04 [0.02, 51.29]
49653/128 | : | 0.98 [0.02, 47.93]
496531134 | : | 1.48 [0.08, 36.18]
49653/135 [ § | 1.91[0.18, 20.81]
496531136 } f | 4.83[0.23, 99.78]
496531145 [ | 3.14 [0.13,76.74]
496531147 [ § | 0.99[0.02, 49.29]
496531162 ! ; 3.07 [0.13, 74.86]
49653234 f § : 0.53[0.01, 26.38]
49653/330 : 0.97 [0.04, 23.68]
49653/331 | | 1.38 [0.06, 33.87]
49653/137 | f | 0.30 [0.01, 7.38]
SB-712753/002 I 2.92[0.12, 71.30]
SB-712753/003 | : | 1.07 [0.02, 53.75]
SB-712753/007 4 : | 0.49 [0.01, 24.88]
SB-712753/009 } § | 0.99 [0.02, 49.48]
49653/132 : | 0.77 [0.03, 18.86]
AVA100193 : 0.95 [0.04, 23.16]
DREAM —a— 1.20 [0.52, 2.77]
ADOPT A 0.80 [0.15, 4.09]
Fixed-effect — 1.14 [0.74, 1.74] p=055
G oLE=01"=0%) - 1.14 [0.74, 1.73] p=055
& pm@®=01=0%) e 1.14[0.74,173)  p=055
.‘E' REML (=0, 1 = 0%) e 1.14 [0.74, 1.73] p=055
BM (¥ =0.05, 1" = 2.4%) e 113[0.73,1.77]  p=080
_ DL(¥=0, 1= 0%) e 1.14[0.73, 1.77] p=056
S emmE=o ¥ = o%) D 114[0.73,177]  p=056
g REML(¥ =0, TZ=G%} - 1.14 [0.73, 1.77] p=056
= OBM (=005 1 =2.4%) —— 1.13[0.72, 1.79] p=061
_ DL (92=o,‘|‘2=a%} - 1.14 [0.94, 1.36] p=017
O pm@=0, 17 =0%) - 114[0.94,136]  p=017
¥ REML(¥=0, T’;:a%} - 114[0.94,136]  p=017
T BM@#F =005 1 =24%) - 113[0.93,136] p=022
| I I | 1
0.01 0.1 1 10 100
Favours Treatment Favours Control

FIGURE 3.2: Forest plot of the risk ratio for death from cardiovascular causes.
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These forest plots indicate that both the risk of myocardial infarction and the risk of
death by cardiovascular causes are greater in the rosiglitazone treatment group than
the control group, as the risk ratio is consistently greater than 1, although this result is
not significant for most of the approaches applied here. It can be seen that both meta-
analyses appear to have very little heterogeneity present, with the 72 and I? estimates
being zero for 3 out of the 4 72 estimators displayed here (DL, PM, and REML), and with
the non-zero Bayes Modal estimates resulting in I? estimates of only 0.5% and 2.4% for
the two meta-analyses. As a result, the frequentist estimators produce almost identical
results to the fixed-effect approach with the Wald (Z)-type interval, and this similarity
in results is also seen with the t¢-distribution confidence interval and the random-effects
approaches. The Hartung-Knapp-Sidik-Jonkman (HKSJ) method, however, produces
consistently narrower confidence intervals for each of the 72 estimators considered in both
meta-analyses. This narrowing of intervals is accompanied by smaller p-values, with the
associated p-values in the myocardial infarction analysis being significant (< 0.05) for

all 72 estimators included here.

Finally, we applied all of the heterogeneity variance estimators from Chapter [2| that we
deemed appropriate and are interested in comparing, as well as the fixed-effect Mantel-
Haenszel approach, to each of these meta-analyses, and the results can be seen below in
Tables and As before, the abbreviations used for the estimators in these tables
are given in Table As the Mantel-Haenszel approach is fixed-effect, no estimates for
72 and I? are produced. It should be noted that the Mantel-Haenszel (MH) estimates in
these tables are generated using the approach in Section while the ‘Fixed-effect’
estimates in the previous figures are produced using the standard FE inverse-variance
approach detailed in Section As such, while both of these methods are fixed-effect,
they represent different methodology.
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o7

TABLE 3.2: Heterogeneity variance estimates for the meta-analysis on the effect of

rosiglitazone on myocardial infarctions.

) . . — Confidence Interval
Estimator || 72 I? log RR
Z-type CI | ttype CI | HKSJCI |

DL 0.00 | 0.00 0.23 | (-0.08, 0.54) | (-0.09, 0.54) | (0.03, 0.43)
DLp 0.01 | 0.81 0.22 | (-0.09, 0.54) | (-0.10, 0.55) | (0.02, 0.43)
DLb 0.00 | 0.00 0.23 | (-0.08, 0.54) | (-0.09, 0.54) | (0.03, 0.43)
HO 0.00 | 0.00 0.23 | (-0.08, 0.54) | (-0.09, 0.54) | (0.03, 0.43)
PM 0.00 | 0.00 0.23 | (-0.08, 0.54) | (-0.09, 0.54) | (0.03, 0.43)
HM 0.09 | 6.56 0.20 | (-0.17,0.57) | (-0.18, 0.58) | (-0.04, 0.43)
HS 0.00 | 0.00 0.23 | (-0.08, 0.54) | (-0.09, 0.54) | (0.03, 0.43)
SJ 0.24 | 16.54 | 0.17 | (-0.25, 0.59) | (-0.26, 0.60) | (-0.09, 0.43)
ML 0.00 | 0.00 0.23 | (-0.08, 0.54) | (-0.09, 0.54) | (0.03, 0.43)
REML 0.00 | 0.00 0.23 | (-0.08, 0.54) | (-0.09, 0.54) | (0.03, 0.43)
AREML 0.00 | 0.00 0.23 | (-0.08, 0.54) | (-0.09, 0.54) | (0.03, 0.43)
AB 0.00 | 0.00 0.23 | (-0.08, 0.54) | (-0.09, 0.54) | (0.03, 0.43)
RB 0.00 | 0.00 0.23 | (-0.08, 0.54) | (-0.09, 0.54) | (0.03, 0.43)
RBO 0.00 | 0.00 0.23 | (-0.08, 0.54) | (-0.09, 0.54) | (0.03, 0.43)
BM 0.01 | 0.51 0.23 | (-0.09, 0.54) | (-0.10, 0.55) | (0.02, 0.43)
MH - - 0.35 (0.05, 0.66) | (0.04,0.67) | (0.15, 0.56)

These two tables display relatively similar results, as those estimators that produce a
zero heterogeneity variance estimate in one meta-analysis also do so in the other. A total
of 11 of the 15 estimators included here provide a zero estimate for 72, with all of these
also then giving a zero estimate for I2. These zero estimates appear to largely stem
from those estimators based on the truncated method of moments and likelihood-based
approaches, thus displaying their inability to work well in the case of rare events, as they
are generally truncated to zero in such situations. It can also be noted that in both cases,
the SJ estimator produces much higher estimates for 72 and lower estimates for log RR
than the alternate approaches. The results of the confidence intervals displayed here
is consistent with those included in the associated forest plots, as the Wald and t-type
methods produce very similar intervals for all 72 estimators, while the HKSJ method
produces consistently narrower intervals. The fixed-effect Mantel-Haenszel approach
produces much larger estimates for the log-risk ratio and associated confidence intervals
that do not agree with any of the random-effects approaches, perhaps indicating poor

performance as a result of not accounting for heterogeneity.
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TABLE 3.3: Heterogeneity variance estimates for the meta-analysis on the effect of

rosiglitazone on death from cardiovascular causes.

) . . — Confidence Interval
Estimator || 72 I? | logRR
Ztype CI | ttype CI | HKSJCI |

DL 0.00 | 0.00 | 0.13 (-0.30, 0.55) | (-0.31, 0.57) | (-0.06, 0.31)
DLp 0.01 | 0.47 | 0.13 (-0.30, 0.56) | (-0.32, 0.57) | (-0.06, 0.31)
DLb 0.00 | 0.00 | 0.13 (-0.30, 0.55) | (-0.31, 0.57) | (-0.06, 0.31)
HO 0.00 | 0.00 | 0.13 (-0.30, 0.55) | (-0.31, 0.57) | (-0.06, 0.31)
PM 0.00 | 0.00 | 0.13 (-0.30, 0.55) | (-0.31, 0.57) | (-0.06, 0.31)
HM 0.03 | 1.43 | 0.12 (-0.31, 0.56) | (-0.32, 0.57) | (-0.06, 0.31)
HS 0.00 | 0.00 | 0.13 (-0.30, 0.55) | (-0.31, 0.57) | (-0.06, 0.31)
SJ 0.07 | 3.29 | 0.12 (-0.33, 0.57) | (-0.34, 0.58) | (-0.07, 0.31)
ML 0.00 | 0.00 | 0.13 (-0.30, 0.55) | (-0.31, 0.57) | (-0.06, 0.31)
REML 0.00 | 0.00 | 0.13 (-0.30, 0.55) | (-0.31, 0.57) | (-0.06, 0.31)
AREML 0.00 | 0.00 | 0.13 (-0.30, 0.55) | (-0.31, 0.57) | (-0.06, 0.31)
AB 0.00 | 0.00 | 0.13 (-0.30, 0.55) | (-0.31, 0.57) | (-0.06, 0.31)
RB 0.00 | 0.00 | 0.13 (-0.30, 0.55) | (-0.31, 0.57) | (-0.06, 0.31)
RBO 0.00 | 0.00 | 0.13 (-0.30, 0.55) | (-0.31, 0.57) | (-0.06, 0.31)
BM 0.05 | 2.41 | 0.12 (-0.32, 0.57) | (-0.33, 0.58) | (-0.07, 0.31)
MH - - 0.53 (0.10, 0.95) | (0.09,0.97) | (0.30, 0.75)

3.2.2 Catheter-related bloodstream infection

For our next example, we will focus on the scenario where we have fewer studies but
similarly sparse events, using data from a meta-analysis conducted by |Niel-Weise et al.
(2007)) on the effect of anti-infective-treated central venous catheters versus standard
catheters on catheter-related bloodstream infection (CRBSI) in the acute care setting.
This meta-analysis consists of 18 clinical trials, and again includes both single and
double-zero trials. The full list of data from this study is reproduced in Table [3.4]
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TABLE 3.4: Study data for the meta-analysis on the effect of anti-infective-treated
catheter in comparison to standard catheter; CRBSI refers to catheter-related blood-

stream infection events, n is the size of the respective study arm.

Treatment arm Control arm
Study

CRBSI n CRBSI n
Bach et al. 1996 0 116 3 117
George et al. 1997 1 44 3 35
Maki et al. 1997 2 208 9 195
Raad et al. 1997 0 130 7 136
Heard et al. 1998 5 151 6 157
Collin 1999 1 98 4 139
Hannan et al. 1999 1 174 3 177
Marik et al. 1999 1 74 2 39
Pierce et al. 2000 1 97 19 103
Sheng et al. 2000 1 113 2 122
Chatzinikolaou et al. 2003 0 66 7 64
Corral et al. 2003 0 70 1 58
Brun-Buisson et al. 2004 3 188 5 175
Leon et al. 2004 6 187 11 180
Yiicel et al. 2004 0 118 0 105
Moretti et al. 2005 0 252 1 262
Rupp et al. 2005 1 345 3 362
Osma et al. 2006 4 64 1 69

A forest plot for CRBSI events is provided in Figure displaying a visual impression
of the distribution of the risk ratio across included studies. This plot tells us that the
risk of a CRBSI event in the anti-infective-treated catheter group is lower than that
of the group assigned the standard catheter, implying that the treated catheter has
a positive impact on patients by reducing the occurrence of infections. This benefit
of the treatment is highly significant in this case, as the p-values are < 0.01 for all
approaches included here. As before, all frequentist estimators produce zero estimates
for 72, and consequently I?, resulting in their risk ratio estimates being very similar
to that produced from the fixed-effect approach. The Bayes Model estimator again
produces the only non-zero estimate for 72 (0.05), with an I? estimate of 5.2%, however
the resulting risk ratio estimate does not differ much from the alternate methods. In this

case, all confidence intervals produce almost identical results for all estimators applied.
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FIGURE 3.3: Forest plot of the risk ratio for CRBSI events.

As with the previous case studies, we calculated many of the appropriate 72 estimators
from Chapter [2| for this meta-analysis, and have listed a summary of their estimates and
associated summary effect results in Table[3.5] In this case, 10 of the 15 approaches have
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produced zero estimates for 72, and subsequently 72. Again it can be noted that a num-
ber of the truncated estimators have produced zero estimates, again from the truncated
method of moments and likelihood-based approaches. The estimate of I? is considerably
larger for the HM and SJ estimators, at 21.9% and 32.3% respectively, indicating that
significant heterogeneity may be present but simply not being detected. For this meta-
analysis, all confidence intervals produced very similar results per 72 estimator, with no
one method producing wider or narrower intervals. As before, the fixed-effect Mantel-
Haenszel approach produced a log-risk ratio estimate that was remarkably different from

those produced using the random-effects approaches.

TABLE 3.5: Heterogeneity variance estimates for the meta-analysis on the effect of

anti-infective-treated catheter in comparison to standard catheter.

i 5 . — Confidence Interval
Estimator T 1 log RR
Z-type CI ‘ t-type CI ‘ HKSJ CI ‘

DL 0.00 | 0.00 | -0.92 | (-1.36,-0.47) | (-1.40,-0.43) | (-1.37, -0.46)
DLp 0.01 | 1.00 | -0.92 | (-1.37,-0.47) | (-1.41,-0.43) | (-1.38, -0.46)
DLb 0.07 | 6.69 | -0.94 | (-1.42,-0.47) | (-1.45,-0.43) | (-1.41, -0.47)
HO 0.00 | 0.00 | -0.92 | (-1.36,-0.47) | (-1.40,-0.43) | (-1.37, -0.46)
PM 0.00 | 0.00 | -0.92 | (-1.36,-0.47) | (-1.40,-0.43) | (-1.37, -0.46)
HM 0.28 | 21.93 | -0.99 | (-1.53,-0.45) | (-1.57, -0.41) | (-1.48, -0.50)
HS 0.00 | 0.00 | -0.92 | (-1.36,-0.47) | (-1.40,-0.43) | (-1.37, -0.46)
SJ 0.47 | 32.20 | -1.02 (-1.61, -0.43) | (-1.65,-0.39) | (-1.51, -0.52)
ML 0.00 | 0.00 | -0.92 | (-1.36,-0.47) | (-1.40,-0.43) | (-1.37, -0.46)
REML 0.00 | 0.00 | -0.92 | (-1.36,-0.47) | (-1.40, -0.43) | (-1.37, -0.46)
AREML 0.00 | 0.00 | -0.92 | (-1.36,-0.47) | (-1.40,-0.43) | (-1.37, -0.46)
AB 0.00 | 0.00 | -0.92 | (-1.36,-0.47) | (-1.40,-0.43) | (-1.37, -0.46)
RB 0.00 | 0.00 | -0.92 | (-1.36,-0.47) | (-1.40,-0.43) | (-1.37, -0.46)
RBO 0.00 | 0.00 | -0.92 | (-1.36,-0.47) | (-1.40,-0.43) | (-1.37, -0.46)
BM 0.05 | 5.21 | -0.94 | (-1.41,-0.47) | (-1.44,-0.43) | (-1.40, -0.47)
MH - - -1.18 | (-1.63,-0.73) | (-1.66, -0.70) | (-1.66, -0.70)

3.2.3 Prophylactic antibiotics in caesarean section

Our next example is based on data obtained from the study by [Hofmeyr and Smaill
(2002), detailing the effects of prophylactic antibiotic treatment on the incidence of
wound infection in women undergoing caesarean delivery, via the comparison of an
antibiotic treatment group with a placebo group. This meta-analysis comprises of a
much larger total of 61 studies, but again includes very rare events of infections in both
treatment and control arms of the included studies, with the presence of both single and
double-zero studies. The data for these 61 trials can be seen in Table B.6l
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TABLE 3.6: Study data for the meta-analysis on the effect of antibiotic prophylaxis for

caesarean section; n is the size of the respective study arm.

Study Tr?atr.ncnt arm P}ac?bo arm Study Tr?atr.ncnt arm P-lac?bo arm
Infection ‘ n | Infection ‘ n Infection ‘ n | Infection ‘ n
Adeleye et al. 1981 11 58 14 48 || Leonetti et al. 1989 0 100 1 50
Bibi et al. 1994 4 133 28 136 || Levin et al. 1983 0 85 3 43
Chan et al. 1989 27 299 12 101 || Lewis et al. 1990 1 36 1 25
Conover et al. 1984 2 68 1 56 || Lewis et al. 1990 2 76 4 75
Cormier et al. 1989 5 55 8 55 || Mahomed et al. 1988 12 115 15 117
Dashow et al. 1986 3 100 0 33 || Mallaret et al. 1990 6 136 16 130
Dashow et al. 1986 4 183 3 44 || McCowan et al. 1980 9 35 7 38
De Boer et al. 1989 1 11 5 17 || Miller et al. 1968 13 150 23 150
De Boer et al. 1989 10 80 21 74 || Moodley et al. 1981 2 40 4 20
Dillon et al. 1981 0 46 4 55 || Moro et al. 1974 0 74 2 74
Duff et al. 1980 0 26 1 31 || Padilla et al. 1983 0 34 5 37
Duff et al. 1982 0 42 0 40 || Phelan et al. 1979 2 61 2 61
Elliot et al. 1986 0 119 1 39 || Polk et al. 1982 3 146 9 132
Engel et al. 1986 1 50 9 50 || Rehu et al. 1980 4 88 4 40
Fugere et al. 1983 2 60 6 30 || Roex et al. 1986 1 64 7 65
Gall 1979 1 46 1 49 || Ross et al. 1984 7 57 7 58
Gerstner et al. 1980 3 53 9 50 || Rothbard et al. 1975 0 16 1 16
Gibbs et al. 1972 0 33 4 28 || Rothbard et al. 1975 2 31 6 37
Gibbs et al. 1973 0 34 6 34 || Ruiz-Moreno et al. 1991 1 50 4 50
Gibbs et al. 1981 0 50 2 50 || Saltzman et al. 1985 1 50 2 49
Gordon et al. 1979 0 78 1 36 || Schedvins et al. 1986 2 26 0 27
Hager et al. 1983 1 43 1 47 || Stage et al. 1983 3 133 12 66
Hagglund et al. 1989 0 80 3 80 || Stiver et al. 1983 6 244 17 117
Harger et al. 1981 2 196 14 190 || Tully et al. 1983 1 52 2 61
Hawrylyshyn et al. 1983 2 124 2 58 || Tzingounis et al. 1982 2 46 4 50
Ismail et al. 1990 2 74 8 78 || Weissberg et al. 1971 0 40 3 40
Jakobi et al. 1994 4 167 5 140 || Wong et al. 1978 2 48 3 45
Karhunen et al. 1985 2 75 9 77 || Work et al. 1977 3 40 1 40
Kreutner et al. 1978 0 48 2 49 || Yip et al. 1997 1 160 1 160
Kristensen et al. 1990 0 102 1 99 || Young et al. 1983 1 50 4 50
Lapas et al. 1989 1 50 10 50 || - - - - -

The forest plot produced for this meta-analysis can be seen in Figure [3.4] Although
our forest plots contain double-zero studies, it is important to note that other packages
such as metan in STATA eliminate those double-zero trials by default, demonstrating the
protocol of some statistical software packages to ignore such studies. Here it can be seen
that the use of prophylactic antibiotics is favoured highly significantly (all p < 0.01), as
the risk of contracting a wound infection after having a caesarean section is lower in the
treatment group than the placebo group. In this case, all 4 72 estimators considered have
produced non-zero estimates, thus all are in agreement that heterogeneity is present to
some degree. However, the degree of this heterogeneity varies between estimators, as the
MM-based DL and PM methods result in I? estimates of only 3.7% and 2.4%, whereas
the REML and BM methods are associated with I2 of 20.9% and 22.2% respectively.
As such, the risk ratio estimates of the two MM-based estimators are similar to that
of the fixed-effect approach, but differ slightly from that of the others. The confidence
interval results mirror those seen in the previous example, with all methods producing

very similar width intervals.
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Study Risk Ratio [95% CI] p-value
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FIGURE 3.4: Forest plot of the risk ratio for infection after caesarean section.
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As before, 72 estimates were calculated using a larger selection of methods than those
plotted, and these can be seen in Table These results are more diverse than those
of the previous examples, with only 3 estimators producing zero 72 and I? estimates
- the HO, RB and RB0O methods. The reason for the increase in the number of non-
zero estimates is likely to be related to the large number of studies, the relatively large
sample sizes of these studies, and the fact that only one double-zero trial is present in
this dataset. With regards to those estimators producing non-zero 72 estimates, it can
be seen that there is some agreement between different types of estimators, with the
truncated MM-based approaches all resulting in I? estimates of 2.4 — 6.7% and the ML-
based approaches all producing respective estimates of 19.6 — 20.9%. The non-truncated
SJ estimator, however, produces a considerably larger estimate for 72, resulting in a I2
of 39.7%. For all approaches tabulated here, the confidence intervals produced using the
three alternate methods are almost identical. As before, the Mantel-Haenszel log-risk
ratio estimate is fairly low compared to the others, however in this case it is not that

different to the estimate resulting from the SJ estimator, despite the high heterogeneity

estimated by the former approach.

TABLE 3.7: Heterogeneity variance estimates for the meta-analysis on the effect of

antibiotic prophylaxis for caesarean section.

. 9 2 — Confidence Interval
Estimator T I log RR
Z-type CI | t-type CI | HKSJ CI

DL 0.02 | 3.67 -0.83 (-1.02, -0.64) | (-1.02,-0.64) | (-1.02, -0.64)
DLp 0.02 | 3.67 | -0.83 | (-1.02,-0.64) | (-1.02, -0.64) | (-1.02, -0.64)
DLb 0.04 | 6.71 -0.84 (-1.04, -0.65) | (-1.04, -0.64) | (-1.04, -0.65)
HO 0.00 | 0.00 | -0.81 | (-0.99,-0.63) | (-1.00, -0.63) | (-1.00, -0.62)
PM 0.01 | 2.39 | -0.82 | (-1.01,-0.64) | (-1.02, -0.63) | (-1.02, -0.63)
HM 0.19 | 26.18 | -0.90 | (-1.14,-0.67) | (-1.15,-0.66) | (-1.11, -0.70)
HS 0.01 | 2.01 | -0.82 | (-1.01,-0.64) | (-1.01, -0.63) | (-1.01, -0.63)
SJ 0.36 | 39.73 | -0.93 | (-1.20,-0.67) | (-1.21, -0.66) | (-1.14, -0.72)
ML 0.13 | 19.57 | -0.89 | (-1.11,-0.66) | (-1.11,-0.66) | (-1.09, -0.68)
REML 0.14 | 20.86 | -0.89 | (-1.12,-0.66) | (-1.12,-0.66) | (-1.09, -0.69)
AREML 0.14 | 20.32 | -0.89 | (-1.11,-0.66) | (-1.12,-0.66) | (-1.09, -0.69)
AB 0.02 | 3.67 | -0.83 | (-1.02,-0.64) | (-1.02,-0.64) | (-1.02, -0.64)
RB 0.00 | 0.00 | -0.81 | (-0.99,-0.63) | (-1.00, -0.63) | (-1.00, -0.62)
RBO 0.00 | 0.00 | -0.81 | (-0.99,-0.63) | (-1.00, -0.63) | (-1.00, -0.62)
BM 0.15 | 22.20 | -0.89 | (-1.12,-0.66) | (-1.13, -0.66) | (-1.10, -0.69)
MH - - 0.95 | (-1.13,-0.77) | (-1.14, -0.76) | (-1.14, -0.76)
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3.2.4 Mortality of human albumin solution

Finally, we look at the effect of administering human albumin, or plasma protein fraction,
on increasing the number of deaths of patients that are critically ill. Human albumin
solution is administered to patients who have suffered an acute loss of plasma volume
as is the case following burn injuries, or to individuals with severe hypoalbuminaemia
as a supplemental therapy in liver disease (Alderson et al. (2002)). Reviewers (1998)
conducted a systematic review investigating the relationship between the use of this
solution and the risk of death, after a number of conflicting studies had been published
on the matter (Goldwasser and Feldman| (1997))). The data from the meta-analysis by
Reviewers| (1998) can be seen in Table below.

TABLE 3.8: Study data for the meta-analysis on mortality of human albumin solution

for resuscitation in critically ill patients; n is the size of the respective study arm.

Treatment arm | Control arm Treatment arm | Control arm
Study ID Study ID

Death ‘ n Death ‘ n Death ‘ n Death ‘ n
Lowe et al. 1977 3 57 3 84 Woittiez 1998 8 15 4 16
Shah et al. 1977 2 9 3 11 Jelenko et al. 1979 1 7 2 7
Lucas et al. 1978 7 27 0 25 Goodwin et al. 1983 11 40 3 39
Virgilio et al. 1979 1 15 1 14 Greenhalgh et al. 1995 7 34 3 36
Boutros et al. 1979 0 2 17 Bland et al. 1976 4 14 1 13
Zetterstrom et al. 1981 0 15 1 15 Nilsson et al. 1980 1 29 0 30
Zetterstrom 1981 2 9 0 9 Brown et al. 1988 6 34 4 33
Grundmann et al. 1982 1 14 0 6 Foley et al. 1990 7 18 6 22
Rackow et al. 1983 6 9 6 8 Kanarek et al. 1992 3 12 2 12
Woods et al. 1993 1 37 0 32 Greenough et al. 1993 6 20 4 20
Tollgfsrud et al. 1995 0 10 1 10 Golub et al. 1994 12 116 6 103
So et al. 1997 7 32 5 31 Rubin et al. 1997 2 16 1 15

It can be seen from the table that this dataset contains several single-zero trials (from
both trial arms), but no double-zero ones. The associated forest plot for this meta-
analysis is shown in Figure [3.6} The varying conclusions regarding the effect of albumin
solution on mortality reached in different studies is very apparent in this plot, however
the overall conclusion from the meta-analysis is that albumin treatment does not reduce
that risk of death over control, and in fact the control performs significantly better
than albumin (p < 0.01 for all methods). All log-risk ratio estimates across fixed and
random-effects approaches are very similar, as the only 72 estimator to produce a non-
zero estimate in this case was BM, which lead to an I? estimate of only 1.8%. The
confidence intervals produced form the Wald and t-type methods were very similar as
before, however the HKSJ method had consistently narrower intervals, resulting in a

lower p-values for all 72 estimators displayed (p dropped from 0.01 to < 0.01).
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= PM(F =01 =0%) - 1.46[1.09, 1.97] p = 0.01
T REML [%2=0.12=u=,-a] - 1.46[1.09, 1.97] p = 0.01
< BM(1"=00],1 =18%) - 1.48[1.09, 1.99] p = 0.01
~ DL({¥*=0,1 =0%) - 1.46 [1.16, 1.84] p < 0.01
S PM{F=0T =p%) - 1.46 [1.16, 1.84] p < 0.01
€ ReEML (=01 =0%) - 1.46[1.16, 1.84] p < 0.01
T BM(#*=0011 =1.8%) - 1.48[1.16, 1.86] p < 0.01
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FI1GURE 3.5: Forest plot of the risk ratio for mortality in albumin treatment vs. placebo.

Table displays the 72 and associated log-risk ratio estimates produced for this case
study. The 72 estimates calculated for this meta-analysis show similar patterns to those

seen in the examples discussed previously, with regards to an observable large number



Chapter 3 Meta-analysis case studies 67

of zero estimates and associated high rates of truncation taking place in the truncated
methods. In this case, only 4 of the 15 estimators have produced non-zero 72 estimates
- the DLp, HM, SJ and BM methods. The level of heterogeneity estimated by these 4
methods, with BM resulting in an I? estimate of 1.8%, while the SJ approach generated
a significantly greater estimate of 30.6%. As a result, the log-risk ratio estimates also
varied accordingly, however the degree to this variation was rather small (logﬁ took
values between 0.38 and 0.43 for random-effects approaches). The fixed-effect Mantel-
Haenszel approach again produced a log-risk ratio estimate of greater magnitude than
the random-effects approaches, with a corresponding estimate of 0.55. The confidence
intervals generated using the Wald and t-type methods were relatively similar for all
meta-analysis approaches considered, however the HKSJ method resulted in consistently

narrower intervals, as was seen in the forest plot.

TABLE 3.9: Heterogeneity variance estimates for the meta-analysis on mortality of

human albumin solution for resuscitation in critically ill patients.

) . — Confidence Interval
Estimator || 72 I? log RR
Z-type CI | t-type CI | HKSJ CI |

DL 0.00 | 0.00 0.38 (0.10, 0.66) | (0.09, 0.68) | (0.15, 0.61)
DLp 0.01 | 1.90 0.39 (0.10, 0.67) | (0.09, 0.69) | (0.15, 0.62)
DLb 0.00 | 0.04 0.38 (0.10, 0.66) | (0.09, 0.68) | (0.15, 0.61)
HO 0.00 | 0.00 0.38 (0.10, 0.66) | (0.09, 0.68) | (0.15, 0.61)
PM 0.00 | 0.00 0.38 (0.10, 0.66) | (0.09, 0.68) | (0.15, 0.61)
HM 0.08 | 12.97 | 0.41 (0.09, 0.73) | (0.08, 0.75) | (0.17, 0.66)
HS 0.00 | 0.00 0.38 (0.10, 0.66) | (0.09, 0.68) | (0.15, 0.61)
SJ 0.23 | 30.59 | 0.43 (0.06, 0.81) | (0.04, 0.83) | (0.17, 0.69)
ML 0.00 | 0.00 0.38 (0.10, 0.66) | (0.09, 0.68) | (0.15, 0.61)
REML 0.00 | 0.00 0.38 (0.10, 0.66) | (0.09, 0.68) | (0.15, 0.61)
AREML 0.00 | 0.00 0.38 (0.10, 0.66) | (0.09, 0.68) | (0.15, 0.61)
AB 0.00 | 0.00 0.38 (0.10, 0.66) | (0.09, 0.68) | (0.15, 0.61)
RB 0.00 | 0.00 0.38 (0.10, 0.66) | (0.09, 0.68) | (0.15, 0.61)
RBO 0.00 | 0.00 0.38 (0.10, 0.66) | (0.09, 0.68) | (0.15, 0.61)
BM 0.01 | 1.75 0.39 (0.10, 0.67) | (0.09, 0.69) | (0.15, 0.62)
MH - - 0.55 (0.27, 0.83) | (0.25, 0.84) | (0.30, 0.79)

3.3 Meta-analyses with rare events and few studies

In this section, we shall look at the case where there are very few studies in the meta-
analysis, i.e. k < 5, as well as sparse-event data occurring. This is likely to be the

most problematic of the scenarios that we investigate, as there is very little data to base
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the heterogeneity variance estimates on, thus increasing the likelihood and magnitude

of potential bias of the estimators.

3.3.1 Post-transplant lymphoproliferative disease in paediatric liver
transplantation

In this example, we shall look at the use of novel biological drugs used to improve
success rates and reduce detrimental side-effects following paediatric liver transplanta-
tion. Crins et al|(2014) conducted a meta-analysis of clinical trials (both randomised
and not) investigating the effect of the interleukin-2 receptor antagonists (IL-2RA) to-
gether with the standard baseline therapy of concomitant immunosuppression compared
against the baseline treatment alone in children. In particular, they concentrate on
studies using the IL-2RA drugs basiliximab and daclizumab. These drugs work as tar-
geted immunosuppressive agents, aiming to decrease the risk of acute rejection, and
have already been incorporated into the standard treatment regime for adults. In their
analysis, (Crins et al.| (2014) looked at a number of outcomes, including acute and chronic
rejection of the transplanted organ. Here, we shall focus on their example investigating
the experimental drugs’ effect on post-transplant lymphoproliferative disease (PTLD) -

a potentially fatal disorder that can develop in the recipient after transplantation.

TABLE 3.10: Study data for the meta-analysis on post-transplant lymphoproliferative
disease in experimental paediatric transplantation vs. control; n is the size of the

respective study arm.

Experimental arm | Control arm
Study

PTLD n PTLD | n
Schuller et al. 0 18 0 12
Ganschow et al. 1 54 0 54
Spada et al. 1 36 1 36

The data from this meta-analysis is displayed in Table As can be seen from this
table, there were only three studies in this meta-analysis, and they consist of one single-
zero trial and one double-zero trial. The sample sizes of these studies are also fairly small
(ranging from 12 to 54), and are well-balanced across treatment arms. The associated
forest plot for this analysis is displayed in Figure and indicates that the risk of
post-transplant lymphoproliferative disease is slightly greater in those individuals in the
experimental arm compared to those in the control arm, although only slightly, as the
risk ratio is close to 1 for all methods. Similar to the examples with & > 5, 3 of the
4 estimators plotted here produce zero estimates for 72 and I?, with BM being the
only one not to, and in fact resulting in an I? estimate of 60.9%. This marked difference

between the frequentist and semi-Bayesian approaches included in this plot may correlate
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with the fact that Bayesian approaches are the preferred and most researched types of
method for meta-analyses with k < 5. In contrast to the larger case studies however, the
confidence intervals form the Wald-type and HKSJ methods appear to be very similar,
while the t-distribution method has produced exceedingly wide intervals in comparison,

particularly when combined with the BM estimator.

Study Risk Ratio [95% CI] p-value
Schuller et al. : : 0.68 [0.01, 32.34]
Ganschow et al. : R | 3.00 [0.12, 72.05]
Spada et al. : = | 1.00 [0.07, 15.38]
Fixed-effect ~t—— 1.32[0.21,8.19] p=0.77
DL (#° = 0, F = 0%) el 1.31[0.21,8.17] p=0.77
5 :
% PM (=0, IF = 0%) ——ll— 1.31[0.21,8.17] p=0.77
N
REML (¥ = 0, > = 0%) T T 1.31[0.21, 817 p=077
BM (t* = 4.20, ¥ = 60.9%) e —— 1.30 [0.07, 25.53] p = 0.86
DL (#° = 0, P = 0%) e — 1.31[0.02, 72.24] p = 0.89
S PM(¥=0 1 =0%) e —— 1.31[0.02, 72.24] p=0.89
% i
T REML (¥ =0,1%=0%) — T T 1.31[0.02, 72.24] p = 0.89
BM (7 = 4.20, I¥ = 60.9%) —-——*——-— 1.30 [0.002, 897.85] p = 0.94
DL (#*=0, P = 0%) * 1.31[0.21, 8.08] p=0.77
S PM("=0,F=0%) et 1.31[0.21, 8.08] p=0.77
3
T REML (¥ =0,1%=0%) —eontii— 1.31[0.21, 8.08] p = 0.77
BM (¥° =420, ¥ = 60.9%) et 1.30[0.20, 8.58] p=0.79
| | I | |
0.01 0.1 1 10 100
Fawvours Treatment Favours Control

FIGURE 3.6: Forest plot of the risk ratio for post-transplant lymphoproliferative disease

in experimental paediatric transplantation vs. control.

When the heterogeneity variance was estimated for this meta-analysis, a total of 11
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out of the 15 available methods considered produced a 72 estimate of zero, as can be
seen in Table Similar to the previous examples, only the DLp, HM, SJ and BM
estimators produced non-zero estimates for 72, but these varied considerably (from 0.01
to 4.20), leading to high variation in their corresponding I? estimates (0.37-60.87%).
The BM method was responsible this extremely high estimate of I? = 60.87%, and
this may reflect the recommendation of Bayesian approaches when k£ < 5, as only this
semi-Bayesian approach could detect the heterogeneity to this level, or the method could
simply be seriously over-estimating 72 in this case. Either way, these results reflect the
extreme difficulty that all 72 estimators encounter when analysing rare-event data where
few studies are available. As before, the Mantel-Haenszel approach produced a notably
different estimate of the log-risk ratio, with the value being much higher than those
produced by the random-effects approaches. In terms of the summary effect confidence
intervals, it can be seen that the Wald-type and HKSJ methods produce relatively
similar intervals, with the HKSJ producing slightly narrower intervals for all approaches.
Meanwhile, the t-distribution method consistently produced significantly wider intervals
for this scenario, with the combination of ¢-distribution and BM methods producing the
widest intervals of all. This could represent the inability of the t-distribution method to
perform well when there are few studies in the meta-analysis, but may also throw into

question the assumed appropriateness of the BM method for such a scenario.

TABLE 3.11: Heterogeneity variance estimates for the meta-analysis on post-transplant

lymphoproliferative disease in experimental paediatric transplantation vs. control.

) . . — Confidence Interval
Estimator || 72 I? log RR
Ztype CI | t-type CI | HKSJCI |

DL 0.00 | 0.00 0.27 | (-1.55, 2.10) | (-3.73, 4.28) | (-1.54, 2.09)
DLp 0.01 | 0.37 0.27 (-1.55, 2.10) | (-3.74, 4.29) | (-1.54, 2.09)
DLb 0.00 | 0.00 0.27 | (-1.55, 2.10) | (-3.73, 4.28) | (-1.54, 2.09)
HO 0.00 | 0.00 0.27 | (-1.55, 2.10) | (-3.73, 4.28) | (-1.54, 2.09)
PM 0.00 | 0.00 0.27 | (-1.55, 2.10) | (-3.73, 4.28) | (-1.54, 2.09)
HM 0.05 | 1.89 0.27 (-1.57, 2.12) | (-3.78, 4.32) | (-1.55, 2.10)
HS 0.00 | 0.00 0.27 | (-1.55, 2.10) | (-3.73, 4.28) | (-1.54, 2.09)
SJ 0.07 | 259 | 0.27 | (-1.58, 2.13) | (-3.79, 4.34) | (-1.55, 2.10)
ML 0.00 | 0.00 0.27 | (-1.55, 2.10) | (-3.73, 4.28) | (-1.54, 2.09)
REML 0.00 | 0.00 | 0.27 | (-1.55,2.10) | (-3.73, 4.28) | (-1.54, 2.09)
AREML 0.00 | 0.00 0.27 | (-1.55, 2.10) | (-3.73, 4.28) | (-1.54, 2.09)
AB 0.00 | 0.00 | 0.27 | (-1.55,2.10) | (-3.73, 4.28) | (-1.54, 2.09)
RB 0.00 | 0.00 0.27 | (-1.55, 2.10) | (-3.73, 4.28) | (-1.54, 2.09)
RBO 0.00 | 0.00 0.27 | (-1.55, 2.10) | (-3.73, 4.28) | (-1.54, 2.09)
BM 4.20 | 60.87 | 0.26 | (-2.72,3.24) | (-6.28, 6.80) | (-1.63, 2.15)
MH - - 0.69 | (-1.13, 2.52) | (-3.31, 4.70) | (-1.53, 2.91)
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3.4 Summary characteristics of rare-event meta-analysis

case studies

In this section we shall present a summary of the characteristics of the meta-analysis
case studies that we have discussed thus far in this chapter. We are interested in aspects
such as the sample sizes for each trial, the number of single-zero and double-zero trials,
and the probability of the event of interest in the control and treatment arms. Table
[3:12] lists the summary characteristics of the case study meta-analyses, which we shall
take into account when deciding on appropriate parameter ranges in the design of our
own simulation study. While all meta-analyses listed in this table contain at least one
single-zero study (a requirement for them to be used in this chapter), not all include
double-zero trials. The mean sample sizes of the studies included in these meta-analyses
do not differ significantly between treatment arms, indicating that the examples we
have looked at are fairly balanced in regards to this aspect. The mean event probability
ranges form 0.001 to 0.2, and we have included both cases where the event probability

is greater in the treatment arm, and that when it is greater in the control arm.

TABLE 3.12: Summary characteristics of case study meta-analyses; k is the number of
studies, ng and n; are the sample sizes, and py and p; are the event probabilities in the

control and treatment arms respectively (presented as mean (SD)).

Meta-analysis k SZ Dz no ny Po p1

Rosig. (MI) 42 | 26 (62%) | 4 (10%) | 292.3 (566.6) | 370.4 (456.4) | 0.004 (0.01) | 0.01 (0.01)
Rosig. (death) | 42 | 17 (41%) | 19 (45%) | 292.3 (566.6) | 370.4 (456.4) | 0.001 (0.003) | 0.003 (0.01)

CRBSI 18 | 5(28%) | 1(6%) | 138.6 (81.8) | 138.6 (76.8) | 0.04 (0.1) | 0.01 (0.02)
C-section 61 | 18 (30%) | 1 (2%) | 63.1(79.8) | 79.8 (38.0) 0. 10( ) 0.04 (0.05)
Albumin 24 | 8(33%) | 0(0%) | 25.3(23.3) | 24.8(23.2) 1(0.2 2 (0.2)

Transplant 3 | 1(33%) | 1(33%) | 94.3(61.9) | 70.0 (21.5) | 0.01 (0. 01) 0.02 (0.01)

3.5 Conclusions

From conducting meta-analyses on a range of rare-event medical datasets, we have
demonstrated the varying performance of the heterogeneity estimators presently avail-
able. In addition to this, we have seen the high number of zero estimates that are
produced in these scenarios, particularly by a number of MM-based estimators. The
method used to calculate the confidence interval for the summary effect can have a con-
siderable impact on its width and the associated significance of the result. We focused
only on clinical trials because our interest is solely in the log-risk ratio outcome measure,

for which case-control studies are not appropriate.
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In all cases, we observed that the SJ estimator behaved very differently to the other
methods - producing considerably larger estimates of 72, sometimes with considerably
larger estimates of 72, sometimes with correspondingly lower estimates of log RR. This
pattern relates to the difference in methodology of this approach, and agrees with some
previously published results regarding its detection of high heterogeneity (Sidik and
Jonkman (2005))). It would be interesting to see whether this pattern is repeated for
scenarios other than those represented here, and so we shall ensure to include this

estimator in our simulation study.

For the meta-analyses containing greater than 5 studies, we found that in most cases the
HKSJ method produced the shortest interval of those investigated for all 72 estimators
considered, and that the Wald-type and ¢-distribution methods produced similar results.
In the case study involving fewer than 5 studies, this pattern of results was dramatically
different. In this specialist scenario, the HKSJ approach produced the shortest intervals
for all estimators considered, with the ¢-distribution approach resulting in the widest
intervals. In particular, the Bayes Modal 72 estimator combined with the ¢-distribution

produced exceedingly large intervals, with associated large p-value.

Finally, we have also summarised the characteristics of the case studies that we analysed
in this chapter. This allowed us to generate a feel of the average probability of events,
number of zero events, sample size and number of studies for real rare-event meta-
analyses. As such, we shall be able to incorporate these findings when designing our
own simulation study in order to best represent the type and variety of data that can

be encountered.



Chapter 4

Generalised linear mixed models
to estimate heterogeneity

variance

4.1 Introduction

The aim of our research is to design and compare methods to estimate heterogeneity
variance when conducting a meta-analysis of rare-event trials. So far in this thesis, we
have focused only on meta-analysis using a Normal-based random-effects model, and the
different methods to estimate the heterogeneity variance (72) required for this model.
In the case of rare events in binary outcome data, special care is needed when using the
standard inverse-variance approach described in Section [1.5] as the degree of bias in the
72 estimation is proportional to the rarity of the study events. As a result of this, it has
been suggested that the inverse-variance method should be avoided altogether (Veroniki
et al.| (2016)).

There exist several alternative methods that have been proposed to analyse such sparse-
event data. These include using the fixed-effect model with either the Mantel-Haenszel
method for unbalanced treatment and control group sizes, or Peto’s method for balanced
group sizes, as discussed in Section [1.9.5] However, these methods have their own
drawbacks, namely that they do not incorporate the potential heterogeneity, and Peto’s
method can only be applied for the odds ratio outcome measure. In Chapter [3| we saw
how estimates from the Mantel-Haenszel approach differed sometimes quite considerably
from those produced using the random-effects approach when applied to our rare-event
meta-analysis case studies. Although the results differed, these differences were not
to the extent of changing the overall conclusion, and may have occurred as a result
of the Mantel-Haenszel approach not requiring continuity corrections for zero event

counts (except for the case of all-study single-arm zeros). In general, however, our

73



74 Chapter 4 Generalised linear mixed models to estimate heterogeneity variance

empirical analysis demonstrated the high proportion of zero estimates produced with
sparse data, and the significant differences in results produced between fixed-effect and
random-effects analysis with certain heterogeneity variance (72) estimators, potentially

indicative of their inability to perform well in such scenarios.

As a result of the lack of confidence and inconsistency in existing meta-analysis ap-
proaches, it has been suggested to use methods or models based on exact distributional
assumptions (Bohning et al. (2015)). Generalised linear mixed models (GLMMSs) have
a number of benefits over existing approaches, including their use of a binomial-normal
likelihood, and their potential to produce more accurate inference in a single 1-step
approach. A considerable amount of work has recently been conducted in regards to
comparing the use of a variety of GLMMSs in the case of odds ratio meta-analysis, how-
ever little has been done for the risk ratio or its log, and the range of models under
investigation has been limited to a select few (Bakbergenuly and Kulinskayal (2018));
Jackson et al| (2018])). In addition, little has been done to specifically compare these
models in terms of their performance in estimating the 72 parameter - a key component

of random-effects meta-analyses.

In this chapter, we shall discuss the general use of GLMMs to conduct meta-analyses,
and demonstrate the application of GLMMSs with fixed and random intercepts. We will
then outline two novel GLMM-based approaches that we are proposing to estimate 72
for the case of rare-event log-risk ratio outcomes - Poisson mixed regression models with
a random effect on the treatment parameter, and conditional logistic mixed regression
models. Alternative GLMMSs that have been previously proposed elsewhere for alterna-
tive settings will then briefly be discussed. As GLMMSs can face difficulties in terms of
convergence, particularly with sparse data, we will outline the model-based options we
used when applying our two chosen models, and list the scenarios where these models
cannot be applied by definition. Finally, we shall look at the results produced when
applying our chosen models to the case studies portrayed in Chapter |3 looking for any
differences between statistical software packages and integration methods, and compar-
ing with the results produced using the estimators from Chapter [2] before summarising

on the use of the models in general.

4.2 The use of generalised linear mixed models for meta-

analysis

Generalised linear mixed models (GLMMSs) are an alternative to standard meta-analysis
approaches, that theoretically have the potential to overcome the disadvantages of the
latter through their use of a binomial-normal likelihood. They are an extension of
generalised linear models that include random effects in addition to fixed effects, and

where the likelihood is used for the inference. Despite their potential positive attributes,
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these models are rarely used in practice as a result of their complex nature, and the
associated difficulty in applying such models in standard statistical software packages.
In addition, there exists little in the way of published recommendations regarding the

types of model suitable for specific data types such as rare-event scenarios.

However, they have recently gained growing attention in this field, in an attempt to
determine whether their theoretical benefits have standing in real-life data analysis. In
particular, Bakbergenuly and Kulinskaya| (2018]) and |Jackson et al.| (2018]) have looked at
the performance of several GLMMs in conducting odds ratio meta-analyses, compared
with the standard and fixed-effect and random-effects inverse-variance approaches. In
addition, there is now scope for their application, as GLMMs have recently become
much easier to implement in known software packages, giving the opportunity for rec-
ommendations to be made regarding these now simple-to-use models. For example,
the R package metafor, used for applying meta-analyses, now has four GLMM methods

available for application.

As the availability of individual-level data for studies is continuously increasing, and
this is our area of interest, we shall focus on modelling individual-level binary outcome
data, although summary-data can also be incorporated into such models. We shall be
concentrating on log-risk ratio meta-analyses here, unless otherwise specified, as this is
an easily interpretable measure, however other outcome measures can be used with the
models with some modifications. For all the models we propose, we shall also assume
that the true effect sizes, 6;, are normally distributed between the k studies in the meta-
analysis, however alternate mixing distributions can be used for the random effects,

including the beta-binomial model.

4.2.1 Benefits of generalised linear mixed models

The use of GLMMs for the estimation of 72 in meta-analyses has several benefits over
the alternative estimators described in Chapter [2] particularly for the case of sparse-
event data with zero counts. Firstly, GLMMs can account for the standard errors of the
outcome measure (or the square root of the within-study variances), denoted o;, that
need to be estimated from the data, and which other methods incorrectly assume to
be known. In addition to this, these models can account for any correlation between
the outcome measure estimates (6;) and their associated standard error estimates (6;),
which can have a profound effect on the overall outcome of the analysis if significant
correlation is present but not accounted for. The majority of existing methods require
continuity corrections, such as those outlined in Section [I.9.1] when dealing with single
and double-zero studies, and these have been shown to be associated with significant bias
(Sweeting et al. (2004)). Based on their structure, GLMMs have the ability to avoid
the use of such (arbitrary) continuity corrections in the case of zero events, thereby

avoiding the corresponding bias. Finally, these models can avoid the use of the normal
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approximation, which is generally violated in the case of studies with few events, by

assuming alternate, more suitable distributions for the data.

4.2.2 Theory behind the general case

We shall now describe the theory behind the general case of applying GLMMs to conduct
meta-analyses, as discussed in [Bakbergenuly and Kulinskaya (2018). Let y; be the
univariate observation from study 4, and the covariate vectors x; and z; (with dimensions
p and q) represent the fixed and random effects of study i respectively, where i = 1,... k.
Assume that the observations y; are independent with conditional means and variances

given by:

E(yi|bi) = p1i(bi)

Var(yi|b;) = Aa;v(pi(b;))

where b; is a random effect, A is the dispersion parameter, a; is some known constant,
and v(-) is a variance function (Breslow and Clayton| (1993)). These paired conditional
means and variances have a mean-variance relationship, and it can be seen that both
depend on the random effect b;. Now, given the g-dimensional vector of random effects,
b= (b1,...,bq), the general GLMM in this case has the form:

n°(b) = xlf + zlb (4.2.1)

where t is the matrix transpose and [ is the regression parameter vector. Similar to the
case of the more simplified generalised linear model, the conditional mean E(y;|b;) is
associated with a linear predictor via some link function, which is given by g(u;(b;)) =

1 and using X and Z to represent

7i(b;)). Inverting this link function, we have H = g~
the design matrices with rows z! and z!, respectively, the overall conditional mean can

be written as:

E(ylb) = H(XSB + Zb)

where y = (y1,...,yk). The random effect b will follow some distribution, generally a
multivariate normal, with a mean of 0 and variance-covariance matrix D = D((), for
some unknown variance component vector (. Breslow and Clayton| (1993) considered
Poisson, binomial and hypergeometric models for the conditional distribution of y;, with

the conditional variance containing a dispersion parameter of A = 1. Over-dispersion
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can be modelled by using A > 1, where A is jointly estimated with the variance com-

ponent vector ¢ via D = D(().

With GLMMs, the maximum likelihood approach is used to estimate the parameters.
However, as the model in this case is nonlinear and contains random effects, the max-
imum likelihood approach would involve a marginal distribution requiring integration
with respect to the unobservable random effects. As a result, this integration generally
does not have a closed form, and so an analytic solution is not possible. In order to
evaluate this integral, alternative estimation techniques must be applied, which are then
also used in the approximation of the corresponding log-likelihood function, informa-
tion matrices and score equations. Such alternative numerical methods include adaptive
Hermite quadrature, Laplace’s approach and higher order approximations, and penalised
quasi-likelihood and equivalent pseudo-likelihood methods (Breslow and Clayton| (1993);
Demidenko (2013)). Alternative approaches to fit GLMMs include Bayesian methods
involving Markov chain Monte Carlo (MCMC) stochastic integration, and Gibbs sam-
pling, with a number of hybrid methods also being available (Capanu et al.| (2013])).
Methods based on the moment-based generalised estimation equation are also available

for the estimation of population-average parameters in marginal models.

If x; represent binary outcomes and g(-) is the logit link function, then the model given
in Equation represents a random-intercept logistic regression model. When this
is applied to meta-analysis data, then the intercept represents the study-specific effects,
and the slope of the treatment arm indicator variable corresponds to the treatment
effect. For these GLMMs applied to meta-analyses, the treatment effect is generally set
to be random, and the intercepts (study-specific effects) can either be assumed to be

fixed or random.

For binary outcomes, conditional on the fixed effects the outcomes are generally assumed
to follow a binomial or non-central hypergeometric distribution, whereas the random
effects are assumed to be normally distributed, corresponding to a binomial-normal or
hypergeometric-normal likelihood, respectively. In comparison, the standard random-
effects meta-analysis approach discussed in Section [1.4.2] assumes the distribution of log-
risk ratios to be normally distributed, resulting in the normal-normal model. Alternative
models have been proposed for varying outcome measures, for example with incidence

rates, where the Poisson-normal model has been suggested.

4.2.3 GLMDMs with fixed intercept

As mentioned in the previous section, meta-analysis GLMMSs with a fixed intercept fall
into the category of mixed-effects logistic regression models, and are able to account
for the heterogeneity between studies (Turner et al| (2000)). Here we shall base these

models on the log-odds ratio outcome measure, as this provides the basic structure from
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which the corresponding log-risk ratio models can be built upon, as we shall discuss
later in the chapter with our proposed methods. In this case, the fixed-intercept model

for the log-odds ratio can be written as:

Yij |pij ~ Binomial(nijapij)

log <p”> =a;+ 0+ ;) xj
L —pij
where p;; are the treatment arm-specific event probabilities, «; is the log-odds of the
control arm (i.e. «; = log(pio/(1—pio))), O is the overall effect size (log-odds ratio), and
B; are the deviations of the study-specific treatment effect from 6, with j = 1 representing
the active treatment arm and j = 0 otherwise, for ¢ = 1,..., k. Here, the fixed intercept
is represented by «;, while 8; ~ N(0,72) corresponds to the random effects, where 72 is
the between-study variance. As such, the above model can be rewritten for the treatment

and control groups separately as follows:

log <p“> =o; +0+5;
1 —pi1

and

] ( Pio ) .
og =y
1 —pio

log { 29— N ; 0 0
IOg 1321'1 ai+'9 7 0 7-2

This model makes the assumption that the treatment arms have higher variability than

so that

the associated control arms. To avoid the asymmetry that results from this assumption,
an adjustment of +0.5 and —0.5 was proposed as a treatment-arm dummy variable by
Turner et al.| (2000)), instead of simply using j = 0,1 as above. If we replace the whole
parameter j with the dummy variable z;; = 4-0.5, then the above model can be rewritten

for the treatment and control arms as:

L =pi

and
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log (WJ) =a; —0.55;
1 —pio

where o = a; — 0.50 after re-parametrisation, giving

g (255) ) _ y (( ol ) ( 02572  —0.2572 >>

log ( {2 af+60 )\ —025r% 0.2572
Both of the models we have discussed here are logistic regression models with unknown
parameters «;, § and 72 that need to be estimated. This can be done iteratively using
methods such as penalised quasi-likelihood, marginal quasi-likelihood, or first- or second-
order Taylor expansions. If using penalised quasi-likelihood methods, the associated bias
of the 72 estimates can be reduced by applying a two-step bootstrap approach (Turner
et al.[(2000)). Recently, (Jackson et al. (2018])) conducted a simulation study that showed
the model with adjusted group dummy variables to be superior than that without, in

terms of consistently underestimating 72, and suggested a theoretical explanation for

this observation.

4.2.4 GLMMs with random intercept

Now we shall discuss the use of GLMMs with a random intercept for conducting meta-
analyses, again for the base case of the log-odds ratio. This type of GLMM is equivalent
to a mixed-effects logistic regression model with random intercept and treatment effects

(Turner et al. (2000)), and can be written as:

yij ~ Binomial(nij, pi;)

log <p”> =a+y+(0+06)xj
1 —pij
where p;; are the treatment arm-specific event probabilities, « is the baseline log-odds,
0 is the overall effect size (log-odds ratio), and j3; are the deviations of the study-specific
treatment effect from 6, with j = 1 representing the active treatment arm and j = 0
otherwise, for ¢ = 1, ..., k. In this case, both the intercept and slope are random effects,
assumed to follow a bivariate normal distribution with v; ~ N(0,0?), 8; ~ N(0,72) and
Cov(ni, B;) = wot (Van Houwelingen et al. (1993); [Stijnen et al.| (2010)). When it is
assumed that Cov(y;, §;) = 0, then the above model can be rewritten for the treatment

and control groups separately as follows:
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log<pﬂ> =a+v+0+06
1—pa

and

log (pio ) =a+7
1 = pio

so that

log 15%1.0 N o o2 o2
log (172~ a+60 )\ o2 02472
Similar to Section if we replace the treatment-arm dummy variable 7 = 0,1 by

the adjusted variable z;; = 0.5, and again assume that Cov(y;, 8;) = 0, then the above

model can be re-parametrised for the treatment and control arms as follows:

log <}%1> =a" +7+0+050
1 —pin

and

log <]%0> =ao" 4+ —0.505
1 —pio

where o = o — 0.50 after re-parametrisation, giving

log 15% ~ o* 02 40.2572 o2 —0.2572
log (2i o +60 )\ 02-02512 o2 +0.2572

1-pi1

Whereas the standard random-effects meta-analysis approach includes the single het-

2 are assumed to be known), the above models include

erogeneity parameter 72 (as o
two heterogeneity parameters (02, 72), although this can increase to three when the ad-
ditional parameter w = Cov(v;, 5;) # 0. Similarly to the GLMM with fixed intercept
discussed in Section m the unknown parameters for this case (a,6,0%,72 and w)
can be estimated iteratively using a range of approaches (Turner et al. (2000)). Such
random-intercept logistic regression models have previously been investigated for their
performance in the meta-analysis of proportion data (Hamza et al. (2008))), and also

briefly in the case of sparse data (Kuss| (2015)).
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4.3 Poisson mixed regression model

The first GLMM that we are suggesting for application to meta-analyses, and the sub-
sequent estimation of 72, with rare-event log-risk ratio data is the Poisson mixed-effects
model. One of the key benefits of this model is that it can include double-zero trials
without the need to correct for them, which other approaches and models are gener-
ally unable to do. Although this method has previously been proposed for the case
of rare-event meta-analyses (Bohning et al| (2015))), it has not yet been compared to
other heterogeneity variance estimators for a range of realistic scenarios meeting this
rare-event definition. As a result, we aim to fill this gap in the research, using a version
of the approach that is suitable for use with the log-risk ratio measure. Below we shall

outline the theory behind this proposed model approach.

4.3.1 Theory behind approach

Bohning et al.| (2015) suggested Poisson mixed regression models (PMRMs) with random
study effect and zero-inflation models for the analysis of rare-event data. The benefit
of using a Poisson model approach lies in its ability to incorporate additional covari-
ates as fixed and/or random effects, creating an easier approach for dealing with effect

heterogeneity.

The idea of Poisson modelling is to consider the count of events X as a Poisson dis-
tributed variable with mean E(X) = pP (Breslow and Day (1987); |Clayton et al.
(1993)), where P is the person-time, meaning that u = E(X)/P is the incidence rate.

We have that, for each trial ¢ and each treatment arm j:

E(Xij) = Py (4.3.1)

where j = 1 refers to the treatment arm and j = 0 otherwise, hence giving the risk ratio
as RR = u1/po. In terms of the study-specific counts introduced in Table X1 =a;
and X;o = ¢;. Taking logarithms of Equation (4.3.1)) yields the basic log-linear model:

log E(X;;) = log P;j + log 1 (132)
=logPj +a+Bxj

where 3 is the log-risk ratio and « is the baseline risk. Parameter estimates are found
by maximising the associated Poisson likelihood. An important feature of the model
given in Equation (4.3.2)) is that it includes the logarithmic person-times, log P;;, as an

offset term. The associated likelihood for this fixed-effects Poisson model is given by:
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ke
—
ko

L1 11 Poijlnig) = T ] [Po(wio| Pro exp(e)) x Po(win| P exp(ei + B))]
i=1;=0 i=1

where Po(z|n,02) = exp(—n)n®/x! are the associated Poisson probabilities. The model

can be modified to include a covariate effect, such as study, to give:

log E(X;j) = log P;; + log pi;
=log Pjj + ai + B X j

where the case in which §; = 8 corresponds to there being a common slope, reflecting
the same effect over all studies. This new model not only allows different study-specific
baseline risks «;, but also study-specific log-risk ratios ;. As such, this approach can
easily be generalised to consider a; and f3; as random effects, i.e. a; ~ N(a,02) and
Bi ~ N(, 0%), allowing for the production of mixed models. It is this value of ag that
we are interested in estimating here, as this is our heterogeneity variance estimate. In

this case, the likelihood of the above mixed-effects Poisson model is given as:

k ) o0
H/ Po(xz-oPioexp(ai))X[/ Po(zq| Py exp(ai + B;))(Bi| B, 05)dBi | ¢(cvilar, 02)dev;

—0o0

where ¢(;] 5,0[23) represents the probability density of some normal random variable

with mean f and variance o2, and likewise for ¢(a;|a, 02).
B o

4.3.2 Zero-inflated Poisson models

The Poisson mixed regression model has several benefits, as it captures variation in the
baseline event risks, and may easily be extended to allow for zero-inflation via zero-
inflation Poisson (ZIP) models. ZIP models adjust for the over-dispersion that can arise
from the occurrence of double-zeros, and are easy to interpret, generally leading to an

improved data analysis.

In brief, the idea behind ZIP models involves assuming that some compartment that
produces only zero events occurs with probability «, while the standard Poisson model

then occurs with probability 1 — «. This gives the ZIP model:

i+ (1 —m+ijle ™ | o=

(1 — m5)Po(z|n;j) ,x=1,2,...
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where Po(z|n;;) are the Poisson probabilities, which are modelled as described above.
Now, the excess-zero portion of the above model can be modelled via logistic regression,

giving:

logn;; =log P;j +logu;j =log Py + o+ 3 xj

logit m;; = log m;; — log(1 — ;) = o +8 xj

where 3’ is the log-odds ratio, with 3 still representing the log-risk ratio. If o and o’
are set as random effects, with a ~ N(a,02) and o/ ~ N(o/,02,), then the model can

be rewritten as:

log ni; = log P;j + log pij = log Pij + a; +  x j

logitmj = logmj — log(l - Wij) = a; + /81/ X J

In this case, the associated likelihood is given by:

koo [ 1
11 / [T (6ois}m + (1 — ) Po(ass | P explai + 8 x )] § (o, o2)do
i=1Y 7% | j=0

where dp{x;;} is a dummy variable that is equal to 1 if z;; = 0 and 0 otherwise, and

#(a;la, 02) is defined as previously.

4.3.3 Previous findings

Bohning et al.| (2015) compared the various Poisson-based models discussed in this sec-
tion to the fixed-effect Mantel-Haenszel approach for the case-study dataset regarding
Rosiglitazone performance (shown in Table. They found that the Poisson regression
model with random effects resulted in almost identical outcomes to that of the Mantel-
Haenszel approach, which has previously been shown to perform well in homogeneous
scenarios with few events. As such, it can be deduced that the Poisson model also
works well in this scenario. In addition to this, they noted that the intercept variance
parameter in the random-effects model, which is equivalent to the variation in baseline
risks, appeared to be significant when they looked at both myocardial infarction and
cardiovascular-related death outcomes. As such, they were able to conclude that the
risk in the control arm varied considerably across the studies included, and more impor-
tantly, that this particular model had the power to detect this variation, which other
approaches had not.
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4.4 Conditional logistic mixed regression model

The second GLMM that we are proposing for use in this field is the conditional logistic
mixed regression model (CLMRM), which despite being tested by others recently, has
never been applied to the specific scenario of rare-event log-risk ratio meta-analyses. In
this section we shall first introduce the hypergeometric-normal model, which led to the
original suggestion for this model by |Stijnen et al.[(2010|), and then go on to outline the
theory behind the conditional logistic-based approach itself, explaining why we believe
the model to be suitable for our problem of interest. We will then summarise previously
published results regarding the performance of this model for alternate meta-analysis
scenarios, before discussing the options available for its application, specifically for the
R package glmer. As this model is known to face difficulties with convergence when
applied to sparse data, we shall also outline the model options we used to maximise the

number of successful applications to real-world rare-event data.

4.4.1 Theory behind approach

Stijnen et al.| (2010) proposed a conditional logistic model for use with log-odds ratio
meta-analyses, in the form of the two-level exact non-central hypergeometric-normal
(NCHGN) model and a Binomial approximation of this. It is from their suggestions
that we base our CLMRM approach for log-risk ratio scenarios, and as such we shall

first discuss their proposed methods before introducing our own version.
The non-central hypergeometric-normal model

The hypergeometric-normal model was first proposed for use in meta-analysis by |Liu
and Pierce| (1993) and Van Houwelingen et al. (1993), and was then implemented in
practice by [Stijnen et al.|(2010) and |[Sidik and Jonkman| (2008). It has more recently
been compared with other models for a selection of meta-analysis scenarios, in the form
of both simulation studies and empirical examples (Jackson et al.| (2018)); Bakbergenuly
and Kulinskayal (2018)).

This model, like those discussed previously, can be applied using either a fixed or random
intercept, depending on preference and its chosen purpose. When applying to meta-
analysis data, the idea behind the use of the NCHGN model stems from conditioning
on the total number of events in study ¢, denoted X;, so that only the number of
events in the treatment arm, X;;, are random. [Stijnen et al.|(2010|) proposed it for use
with log-odds ratios, after noting the problems with assuming a normal distribution for
the estimated study-specific effects, 6; (in their case the log-odds ratio), in an attempt
to bring about a number of the benefits discussed in Section In particular, they
suggested that given 6;, which are assumed to be be normally distributed (6; ~ N (6, 72)),

the corresponding event count X;; has an exact non-central hypergeometric distribution.
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This non-central hypergeometric distribution depends upon the assumption that the
treatment and control groups are binomial distributed, without which use of the former
distribution is no longer appropriate. The inference is then be based on the following

exact likelihood:

with

N1 40
(4.4.1)

min(pig,ni1) n41 740 .
> ( . )( | exp(654)
j=max(0,n1—n40) J X —

where n;y and n;; are the sample sizes of the control and treatment arms of study ¢

P(E(X1) = Xul0:) =

respectively, and all other parameters are as defined previously in this chapter. The
denominator in Equation represents the normalising constant for this function.
For this mixed-effects logistic model, the unknown parameters of interest (f and 72)
can be estimated by the Newton-Raphson or EM algorithms, or by maximising the

corresponding log-likelihood, in accordance with the methods discussed in Section
Approximate binomial-normal model for rare events

After proposing the NCHGN model, [Stijnen et al. (2010) then went on to suggest an
approximation for the case of small numbers of events, in the form of a binomial rather
than non-central hypergeometric distribution. They observed that given the total count
of events, X;, the count of events in the treatment group has an approximately binomial

distribution:

Xi1 ~ Binomial (Xi, exp(log(ni1/ni0) + 6;) >
1+ exp(log(ni /nio) + 6;)

If the count of events is much smaller than the corresponding sample size, i.e. X << n,
n
then we have the approximation x ~ nX /X!. The combinations in the summa-

tions of the normalising constant in Equation (4.4.1]) can then be approximated as:
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where as before we have j = max(0,n;1 — njp). If we set j = X;; then, by the above

approximation, the corresponding numerator of Equation (4.4.1)) becomes:

n;1 nio \ [ ma n40
X X; X; X —Xin
- <”1>X Xi i
n40 X; X;!

thus giving the following approximation of Equation (4.4.1):

> (i1 exp(6;) /nig) it

% < XZ ) (nz‘l eXp(ei)/niO)j

J=0 J

)X, and

Now, if we divide the numerator and denominator of this by (14 mn;1 exp(6;)/nio

define m; = (n;1 exp(60;)/nio)/(1 + ni1 exp(6;)/nio), then we have:

? ﬂ.i)(zl (1 _ ﬂ.Z)XZ—X“
Xi

i ( XZ >7Tg(1—7fi)xi_j

J

Since the denominator in the above expression is the sum of all probabilities of a binomial
distribution with parameters X; and m;, it is equal to 1. The numerator, meanwhile,
is the probability of a Binomial(X;1,m;) distribution. As a result, when the event of
interest is rare, and thus the count of events is very small compared to the sample size,
the hypergeometric distribution can be approximated by a simpler binomial distribution,
with X;1|X; ~ Binomial(X;, Px,,|x,)-
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By defining m; = expit(log(nii/nio) + 6;) in the case from |Stijnen et al. (2010), then by
the approximate model, the log-odds becomes equal to log(n;1 /n;o)+6;. As the outcome
measures are assumed to be normally distributed, i.e. 8; ~ N(6,72), this approximate
model can be fitted as a mixed-effects conditional logistic regression model containing
only the intercept term. In particular, each study constitutes a binomial outcome with
X1 events in X; trials, a random intercept and an offset term of log(n;1/n;) that is

included in the model.

The method that we are proposing is based on this idea from [Stijnen et al.| (2010)), but
adapted for the log-risk ratio outcome measure. Although this approach has been tested
previously in meta-analyses (the results of which we shall discuss below), it has only
been applied for the case of odds ratio, and little has been investigated in terms of rare

events, so we shall build on this with our outcome of interest.

4.4.2 Application to the log-risk ratio

As mentioned above, the new approach we are proposing for use with sparse-event data
involves conditional logistic mixed regression modelling. It is based on the analysis of
2 x 2 contingency tables containing zero-event cells, where calculating an effect measure
for each stratum, such as a risk ratio, can be problematic. Whereas the standard random-
effects meta-analysis approach directly models effect measures as the contrast between
two treatment arms (e.g. the risk ratio), this type of mixed-effects logistic regression
model will instead focus on the effect measure directly, as trial effects are conditioned
out. For our purposes, the idea is to allow random effects on those parameters that

provide an estimate of the heterogeneity variance.

Let us recall the classical idea of a logistic regression model:

logit p;j = a; + B x j

where p;; is the probability for an event in study ¢ in the j-th treatment arm, and o;
2

might be a fixed effect o; = a or a random effect a; ~ N(a, 05).
Now, this approach occurs in the following specific way, proposed by [Stijnen et al.[(2010).
The basic idea is to consider Xj;; conditional on X; = X;; + Xjo. Since E(X;1) = pu1 Py

and E(X;9) = puoP;o, Xi1 is binomial with size parameter X; and event parameter:

g = 1Py
w1 Pi1 + poPio
_ RRigl
RR;F: +1
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With this approach, the event parameter involves only the parameter of interest, RR;,

and its functional form makes it prone to logistic regression:

qi
— 4

logit ¢; = log 1

P

=log RR; + log D
i0

P
= «a; + log P72~(1)
K3

where the right-hand side of this equation can be used for further modelling such as

2

2) (a random effect for

a; = « (a common risk ratio across studies) or a; ~ N(a,o

the risk ratio). As before, we are interested in estimating the heterogeneity variance,
2

this time represented by the term . The parameters can be estimated by means of

(restricted) maximum likelihood approaches with iterative least squares, for example.

The benefit of conditional logistic mixed regression models is that you can focus directly
on the treatment heterogeneity distribution, eliminating the intercept or nuisance pa-
rameter. Since this conditional inference approach uses the exact distribution, we believe
that it is appropriate for the analysis of sparse-event data. A more detailed description

of the theory behind our version of the conditional logistic modelling approach is given
in Appendix [B1]]

4.4.3 Previous findings

To assess the performance of the NCHGN model and its binomial approximation (equiv-
alent to the CLMRM) in comparison to the standard Normal-based random-effects
meta-analysis approach, Stijnen et al. (2010) applied them to two example datasets
and conducted a simulation study. Their first case study, which is taken from the study
by [Niel-Weise et al.| (2007)) that we discussed in Section included very few events
and the estimated log-odds ratio (their outcome measure of interest) was consistently
large across all three approaches. Both the NCHGN and CLMLM models were found
to perform similarly, however they only focused on scenarios where the summary effect
measure was extreme (in both case studies and simulations). The two models were found
to outperform the standard normal-based approach in all cases considered, in terms of
both # bias and associated confidence interval coverage. In particular, they had negli-
gible bias and adequate coverage, but this coverage did appear to reduce slightly when

between-study variance was present, although never to any significant degree.

Jackson et al.| (2018)) also recently compared the NCHGN and CLMRM models against
others, using empirical and simulated data. Again, they focused only on the log-odds ra-

tio outcome measure, but in addition to measuring bias, precision and coverage, they also
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looked at the rate of non-convergence - a key potential problem of applying such models
to sparse data. For their empirical analyses, they extracted data from the Cochrane
Review relating to use of antibiotics in children with measles. They used a total of 7
meta-analyses, with the number of studies ranging from 1 (a direct singular analysis)
to 7, with all meta-analyses containing at least one single-zero trial, and one containing
5 double-zero trials (out of 7). Using this real-life data, they found that they could
only apply any of their models to meta-analyses with at least 3 studies containing an
event, and as such could only look at 3 of their 7 planned meta-analyses (with one still
containing a double-zero study), as the models were too weakly identifiable otherwise.
They found that the NCHGN model was robust to inclusion/exclusion of the double-
zero study, however with other models this change led to a dramatic difference in results.
The reason behind this robustness is that the NCHGN model conditions on the events,
so when this is zero it produces a degenerate distribution that is not dependent on the

model parameters, and thus does not contribute to the overall likelihood.

In their simulation study, again focusing on the log-odds ratio, |Jackson et al.| (2018)
designed an array of meta-analysis scenarios. They found that, of all the models consid-
ered, the NCHGN model was the most computationally demanding, taking up to 4000
times longer to fit than the simpler models, indicative of its increased complexity. In
terms of estimation failure, they also found that this model failed the most frequently
of those considered. To account for this, they altered the model options to improve
convergence, managing to reduce the failure in determining point estimates for 6 and
72 to 1.4%, and the corresponding standard error rate to 2.8%, of the 30,000 datasets
simulated. However, some of the standard errors extracted from this model appeared
to be unreliable as they differed significantly from other methods. In particular, they
were generally much lower than those produced using other models, and were termed as
‘artificially low’, however there were also some cases where they were grossly too high,
with one simulation generating a standard error of 17.5, far exceeding the next largest
estimate of 0.09. This is unsurprising given the number of cases where only point esti-
mates could be determined. As a result of this, they suggested conducting sensitivity

analyses when reporting the result of this NCHGN model, as a form of sanity check.

In addition, from the results of their simulation study, Jackson et al.|(2018) also found
that the NCHGN model did not result in any significant bias in estimates of 6, in contrast
to 72, which tended to have slight negative bias in all cases except for those involving
rare events or few studies. As they explained, this makes sense since maximum likelihood
estimates of variance tend to be downwardly biased in general, but that this is likely to
be overcome by the constraint that the estimate must be positive. For very rare events,
they found that the NCHGN model produced very skewed estimates for 72 compared

to other models, with non-replicated estimates of 72

> 20 being produced in some
heterogeneous cases. However, this particular estimate was backed up when using the

rma.glmm command in the R package metafor, potentially indicating its accuracy. This
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observed bias and skewness lessened when the true value of § was positive, more events
were observed in the treatment group or the probability of events was increased, to the
extent that they were no longer of concern. They stated their concern that the NCHGN
model may experience a loss of information as a result of conditioning on an almost
ancillary statistic, however found this not to be the case as the total count of events
has little impact on the odds ratio itself. The quality of the standard errors produced
compared to other approaches led them to conclude that the use of GLMMs in general
may result in more precise estimates for 72, but that this advantage was hindered by
the undesirable positive bias in the case of very rare events, and the otherwise negative

bias.

Finally, in terms of coverage of 95% confidence intervals, |Jackson et al. (2018) pointed
out that the NCHGN model, along with all other (non-normal-normal) models they con-
sidered, use the maximum likelihood asymptotic theory when computing the intervals,
and so some deviation from the nominal 95% is to be expected. They found that the
NCHGN model performed similarly to other models except when events were very rare
or heterogeneity was considerable, in some cases falling short of the nominal level by 5
percentage points. Similar to other models, it was conservative with homogeneity, and
failed to achieve nominal coverage by 1-2 percentage points in general, giving particu-
larly low coverage when k = 3. However, all non-normal-normal models performed well
in terms of coverage when events were rare, contrasting with the challenge in estimating
72. They included the NCHGN model in their final recommendations, however gave
caution regarding the fragile nature of, and numerical challenges associated with, this
model in several scenarios, potentially making it inappropriate for routine use without
statistical expertise. They did however suggest it for use in sensitivity analyses when

applying other models, particularly for the estimation of 72.

The CLMRM model was compared against others in a simulation setting by [Kuss (2015),
where they focused on on meta-analyses with varying proportions of double-zero trials.
In their study, they looked at a number of outcome measures, including the risk ratio,
however only used the odds ratio with this particular model. In the case of non-zero
treatment effect, they found the CLMRM model to perform similarly to an alterna-
tive Beta-Binomial model in terms of empirical power and convergence time. In fact,
CLMRM had the faster convergence of the two, but had slightly less power, with a me-
dian of 9.1% power. In terms of coverage, however, the model performed very poorly,

with coverage probability regularly below 70%, well below the nominal 95% level

Recently, |Bakbergenuly and Kulinskayal (2018)) looked at both the NCHGN and CLMRM
models in terms of log-odds ratios in a simulation study, and found that for the esti-
mation of 72, the NCHGN model produced the highest bias of all models considered
when sample sizes were below 100 participants, but had negative bias in all other cases.
However, despite the high bias in 72, the model was found to be one of the best for

the scenario of small sample sizes, with the authors noting that it was the magnitude
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of sample size inequality that appeared to have a considerable effect on the bias of this
parameter. The model was also found to perform well when 72 was large, sample size
was small and event probability was low, being considered the best for sparse data in
general. However, the NCHGN model was found to behave erratically when sample sizes
were large, particularly in the estimation of 8, and the CLMRM model gave the worst
performance in this scenario as it was asymptotically biased. In particular, the CLMRM
model had large negative bias when estimating 6, but produced the smallest estimates
for this parameter, with the NCHGN model producing the second-lowest estimates but
outperforming standard approaches in the case of sparse data and large heterogeneity.
When the event probability was high (> 0.4), both models performed equally well, and
their respective biases were smaller in magnitude when event probability in the control

arm was not too low, i.e. > 0.1.

In terms of coverage, |Bakbergenuly and Kulinskayal (2018]) found that the NCHGN
model always had lower than nominal coverage, while the CLMRM model had this for
all cases except when both 72 was small and sample size was large. In general, coverage
improved as the size of the treatment effect increased away from zero, with the NCHGN
model displaying the poorest coverage at all levels of 72. When applying the models
to an empirical dataset, they found that the CLMRM model produced a much lower
estimate of 72 compared to the alternate methods considered, with the estimate of 6 also
being noticeably different. However, the authors point out that this latter estimate may
in fact be close to the true value, as this model consistently produced lower estimates in
simulations of data of a similar structure, but had the least bias (almost being unbiased
at times) in such a scenario. Both models gave narrower confidence intervals than the
other approaches, with the simulations indicating that the CLMRM model tends to have
the best coverage when the effect size is zero, but the worst coverage otherwise. However,
increased bias in the treatment effect, combined with underestimation of the associated
standard error, resulted in both of these models regularly generating a coverage far lower
than the nominal level of 95%.

4.4.4 Choice of model options

When applying the NCHGN model, [Jackson et al.| (2018]) chose to implement it in using
the rma.glmm command in the R package metafor, initially using no command options
other than setting the model to be ‘CM.EL’ - indicating a conditional model with exact
likelihood. For the CLMRM model, they applied it using the same command but with
option ‘CM.AL’, corresponding to a conditional model with approximate likelihood. The
metafor R package, along with Ime/, requires a value to be set for the command option
nAGQ - the points per axis used to calculate the adaptive Gauss-Hermite approximation
of the log-likelihood. For metafor, the default value is 7, and |Jackson et al.| (2018) used

this default in order to limit the computational demands of all models they applied with
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this package. The metafor package removes all studies containing zero events (double-
zero studies) by default, however this option can be changed, just as |Jackson et al.
(2018) did in order to compare the effect of including vs. excluding these studies when

applying their models.

When applying the CLMRM model to a meta-analysis of 5 studies (containing one single-
zero and one double-zero trial), Jackson et al. (2018) found that the original model
options for metafor had to be altered in order to ensure convergence. In particular,
they increased the maximum number of iterations to 20,000 and the relative tolerance
level to 0.0001, and changed the maximisation algorithm to the more robust Nelder-
Mead approach. However, they left the option nAGQ as the default (7 points), as this
particular model involves only a single random effect. They pointed out that these
changes were only made for the CLMRM approach in order to obtain the numerical
maximisation initial values, and so did not influence the number of quadrature points
applied in the model fitting itself. They also investigated various options relating to the
production of the standard errors, via the hessianCtrl command options, in an attempt
to produce more stable errors, however they determined that the default setting in

metafor was best and so kept to this.

4.5 Alternative GLMM approaches

So far in this chapter, we have focused on GLMMS that we believe to be appropriate and
theoretically beneficial in the meta-analysis of rare-event log-risk ratio data. However,
a number of alternate models have also been proposed and tested for use with meta-
analyses of different outcome measures and varying scenarios. Below we shall outline
some of these alternate GLMMSs for completeness, and to provide an idea of models that

could be adapted for potential future approaches in our area of interest.

4.5.1 Binomial mixed regression model

In addition to proposing the CLMRM model discussed in Section Stijnen et al.| (2010)
also looked at the Binomial-Normal model, for both proportion data and incidence rate

ratios.
Proportion outcome data

For the case of proportion data, Stijnen et al. (2010) used a basic model where the
outcome was the incidence of the event of interest, and the parameter of interest in
the model was some proportion, e.g. the occurrence of an event with a new treatment.

In order to overcome many of the issues with the standard normal-normal model and



Chapter 4 Generalised linear mixed models to estimate heterogeneity variance 93

the associated use of continuity corrections, Hamza et al.| (2008)) proposed assuming a

Binomial distribution for the study-specific event counts, in the form of:

X; ~ Binomial | n;, M
1+ exp(6;)

where 6; is the proportion of study 7 in this case. As a result of this assumption, the

within-study likelihood is given by the following Binomial likelihood:

eXP(gi)Xi/(l + exp(8;))™

Now, if the proportions 61, ..., 60, are assumed to be normally distributed with

0; ~ N(6,0%) (4.5.1)

as is the case in the normal-normal model, then we have the Binomial-Normal (BN) or
random-intercept logistic regression model. By design, this model is a simpler version
of the CLMRM we discussed previously, that does not involve any conditioning on

parameters.

Some investigation has been conducted to determine the performance of this model in
the special case of proportion-based outcomes. For example, Hamza et al.| (2008)) found
the BN model to regularly outperform the normal-normal model in a simulation study,
generating unbiased point estimates and adequate confidence interval coverage. As a
result, they recommended its use for the case of meta-analyses with few studies, and

suggested pairing it with profile likelihood summary-effect confidence intervals.

When |Stijnen et al.| (2010) proposed this model for use with this data type, they ap-
plied it to the rare-event case study from Niel-Weise et al| (2007) that we discussed
in Section [3:2.2] In their case, they looked at the incidence of catheter-related blood
stream infections in each of the treatment groups. They compared the model outcomes
with those produced using the standard normal-normal approach, and found that their
results mirrored those found in the simulations of Hamza et al. (2008). In particular,
they observed that the BN model produced larger estimates of 72, particularly when
looking at the active treatment group, while the normal-normal model consistently un-
derestimated this parameter. However, the BN model also produced larger standard
errors for the summary effect measure, although this can be explained by the fact that
the BN model takes into account the uncertainty of the within-study variances, which
the standard approach does not, and also because its corresponding 72 estimates are
greater in magnitude. They also applied the model to log-odds ratios, using the same
dataset, and found that the BN model performed similarly to the NCGHN model, which
is to be expected given the data type.
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Incidence rate ratio outcome data

Stijnen et al. (2010]) also looked at the use of the BN model with incidence rate ratio
data, where in this case the aim is to compare the performance of some intervention
between two groups. If X;; and F;; are the count of events and total follow-up time
of the treatment group j in study ¢ respectively, and 6 represents the log-incident rate

ratio, then the corresponding meta-analysis model is given by:

- Xi1/Pi
6, = log ( 2/
im0 <XiO/F)iO>

and

1 1
52 =

X +X¢

The CLMRM-based models that we discussed earlier were based on exact within-study
likelihoods that exploit the fact the number of events in the treatment arm given the

total number of events follows a binomial distribution, as follows:

log(Pi1 / Po) + 0;
X1 ~ Binomial <X< exp(log(Fi/Fio) + 1) ) (4.5.2)

"1+ exp(log(Py1/Pio) + 6;)

Combining the model given in Equation with that from Equation gives
the incidence rate ratio BN model, or logistic regression model with random intercept
and offset term log(P;1/P;0), so again a modification of our CLMRM model. |Stijnen
et al| (2010) applied this model to another dataset from the study by Niel-Weise et al.
(2007), comparing its results to that of the traditional normal-normal approach as before.
They found that the BN method produced a summary effect of greater magnitude but
with a smaller p-value than the normal-normal model, but both gave similar estimates

for 72.

They hypothesised that the difference in results between these models would
increase if the true value of 6 increased, and so conducted a small simulation study to
investigate this theory. From these simulations, they found that whereas point estimate
bias increased with the value of 8 for the normal-normal approach, it remained negligible
in all cases investigated for the BN model, demonstrating the consistent reliability of the
BN model over the standard approach. The coverage of the summary-effect confidence
interval was also found to be better with the BN model, as it was less sensitive to the

magnitude of 6.

4.5.2 Beta-Binomial mixed regression model

An alternative to the BN model discussed above would be to assume that the effect

measures represent a random sample from a Beta, rather than Normal, distribution,
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generating the Beta-Binomial (BB) model, as used by [Zhou et al.| (1999). This change
in distribution results in a simple expression for the marginal likelihood of the study-
specific summary effect. Once again, this model represents another version of logistic
regression, particularly for responses that are correlated. For this model, we look at
case of proportion data and assume that study-specific proportions are observed from
independent Binomial distributions, where the probability parameter (7) of each of
these distributions in turn has a Beta distribution with parameters o and 5. The
mean of the Beta distribution is defined as F(n) = p = a/(a + (), with variance
Var(m) = p(l —p)0/(1 +6) when 0 = 1/(ac+ ). This is equivalent to saying that the
event counts have a beta-binomial distribution with mean F(X;) = n;u and variance
Var(X;) =nip(l — p) [1 4+ (n; — 1)0/(1 + )] when the average is taken with respect to
the beta distribution of 7. The correlation between individual event counts across study-
specific arms can then be defined as p = 1/(a++1). The corresponding log-likelihood

of this beta-binomial distribution is as follows:

k

l(OK, B) = ZZZ(O‘?B)

i=1

with

li(ar, B) = lgamm(n; + 1) + lgamm(X; + «) + lgamm(n; — X; + B) + lgamm(a + )
—lgamm(X; + 1) — lgamm(n; — X; + 1) — lgamm(n; + o + ) — lgamm(«)
— lgamm/(p)

where a = u(1—p)/p, = (1—pu)(1—p)/p and lgamm represents the natural log of the
gamma function. As each study contributes two proportions (one from each treatment

arm), the treatment effect, p, is modelled as follows:

g(p) = bo + b1j

where g represents some common link function, by and by are the model intercept and
slope respectively, and j = 0,1 is a dummy variable for the control and treatment arms
as before. The choice of the link function is important as this dictates the outcome
measure, e.g. logit link gives the log-odds ratio while log link corresponds to the log-risk
ratio. [Kuss| (2015)) subtracted the treatment arm-specific logit model event probability
estimates in order to produce the risk difference, and then generated the associated
standard error via the delta method. As this model incorporates a closed-form log-
likelihood, it allows for parameter estimation despite being a random-effects model. As

such, it has the potential to be adaptable to a range of outcome measures.
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Kuss| (2015]) compared the performance of this model against others and found that, for
the log-risk ratio, the BB model performed similarly to others in terms of convergence
- performing well for large numbers of studies but struggling when few are present. De-
spite performing well in terms of coverage for 95% confidence intervals, with coverages
consistently above 90%, the model was found to generate considerable bias, the mag-
nitude of which resulted in the model being deemed unacceptable for reliable use with
this particular outcome measure. For the risk difference, as before they found that the
model performed similarly to others in terms of convergence, but this time performed
well in terms of bias, while also having the best coverage of all models considered (with
only one corresponding coverage below 90%). As mentioned previously, this approach
performed similarly to the CLMRM model for log-odds ratio, but had higher power
despite producing lower coverage. In general, for the log-risk ratio, the BB model had
similar properties to other models, but had better convergence compared to others that
struggled with the increasing sparsity of the data. As a result, |[Kuss (2015) recommended
this model for the three outcome measures discussed here for rare-event binary outcome

data, as it performed well in all cases for both zero and moderate treatment effect.

4.5.3 Approximate version of hypergeometric-normal model with random-

effects variation of Peto’s method

As discussed in Section[4.4] the NCHGN model was found to perform well with rare-event
data, however this was not the case for much more common events, where the model
could become increasingly challenging to fit as a result of small differences between event
counts and corresponding sample sizes. [Jackson et al.| (2018) proposed a variation of the
NCHGN model that could account for this, and thus has the potential to be used when
events are more common. Their approach involves Peto’s method for odds ratio, which
naturally incorporates the non-central hypergeometric distribution with a fixed-effect
model, thus being an approximation of the NCHGN model with 72 = 0. They use this
approximation and transform it into a random-effects model, by using the study-specific
log-odds estimates within the non-central hypergeometric distributions given in Section
These estimates are then normally approximated, and an approximate version of the
NCHGN model is fit using the estimates as outcome data and the random-effects model.
As the NCHGN is fit via maximum likelihood expectation, they suggested estimating
72 via the corresponding maximum likelihood approach in order to produce estimates

as close to those of the original model as possible.

When applying this variation of the NCHGN model to empirical data containing large
numbers of zero counts, |Jackson et al.| (2018)) found that it produced similar point esti-
mates to the original NCHGN model. As such, this approximate version of the approach
can act as a sanity check for the original approach’s results, or as an alternative when

it fails to converge in this scenario. In fact, to reduce the high rate of non-convergence
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and investigate any non-replicated extreme estimates produced by the NCHGN model
in their simulation study, they replaced point estimates and standard errors that were
missing or differed by a certain level with those produced using this approximation.
This adjustment in results allowed estimates to now be obtained for all 30,000 simulated

studies, altering 3.3% of the standard errors in total.

4.6 Application of our chosen models

We are interested in applying the PMRM and CLMRM models introduced in this chapter
to rare-event log-risk ratio meta-analysis data, with the primary aim being to extract
an estimate for the heterogeneity variance. We chose to use the glmer command in the
R package Imej to apply these models, because it allowed for the application of both
types of model with meta-analysis data and could handle zero-count data - an important
criterion in our case. This command includes double-zero studies by default, which the
previously mentioned rma.glmm command does not. In addition, we observed that the
glmer command could apply our chosen models to more scenarios than any other package
or command, making it the superior choice for our purposes. In terms of the number
of axis points used to estimate the adaptive Gauss-Hermite approximation, its default

option is 1, which is equivalent to the Laplacian approximation.

When applying our models, we initially used the default options for glmer, with the plan
to change these model options as required in order to cope with the zero counts present,
and to allow for convergence in as many scenarios as possible. Any changes to these
options will be discussed with the results of the simulation study, along with the number
of non-convergences that may have occurred. Our aim is to produce models that can be
applied to the largest selection of rare-event scenarios possible, which may be difficult
given previous results regarding non-convergence with sparse data, as discussed above.
As a result, there may have to be a pay-off between model accuracy and total number
of scenarios it can be applied to. However, we are assuming that any changes in options
will not change the outcomes considerably, in the sense that the relative performance
of the models compared to the other methods will likely remain the same. As such, we
aim to generate models that can be applied to a diversity of rare-event scenarios, and

so can be applied in the majority of real-life datasets.

4.7 Scenarios where our chosen models cannot be applied

Despite amending the glmer command options to allow for the models to be applied
in the maximum number of scenarios possible, there will remain some cases where the
models simply cannot be used on certain types of data, and thus no 72 estimate can

be retrieved. In these cases, it is the result of the structure of the data itself not being
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compatible with the type of model being applied. Examples of this include the event
of interest being too rare and thus resulting in outcome data that consists of too many
zero counts, or the data simply meeting some incompatible form. In the case of extreme
rarity of events, there are more model parameters than outcomes, which leads to over-
parameterisation of the model and thus no convergence, ensuring the model cannot be
applied. The conditions that govern this lack of convergence differ depending on the
type of model being fitted and its associated family distribution. Below we shall outline
the different scenarios that lead to non-convergence, as a direct result of the structure
of the data and the corresponding model, for each of the models that we are considering
here. Any additional non-compatible scenarios that we identify during our simulation

study will be discussed with the results.

It is worth noting that when applying these models with the chosen glmer command,
some warnings may appear, with more appearing as the rarity of the outcome increases.
These warnings can be safely ignored, as they are merely appearing as the result of
convergence difficulties due to the rarity of the data being input, something that cannot
be avoided with these types of models. In particular, they are informing us that the
models may be close to being non-identifiable (a particular issue for random-effects
models), which will result over-parameterisation. However, the results produced are

still acceptable and can be taken as the desired solution of the estimates here.

4.7.1 Poisson mixed regression model

The Poisson mixed regression model can be applied to most meta-analysis scenarios,
however there are some where the model cannot be applied as a result of the structure
of that data. The data is simply incompatible with the model when the ratio of events
to sample size in the treatment arm is equal across all studies and the ratio of events to
sample size in the control arm is also equal across all studies AND one of the following
holds:

e The count of events in the control arm is equal across all studies and the sample

size of the control arm is equal across all studies in the meta-analysis

e There are zero events in the control arm for all studies in the meta-analysis.

4.7.2 Conditional logistic mixed regression model

There are a number of meta-analysis scenarios for which the conditional logistic mixed
regression model cannot be applied. These include cases where there is either no varia-
tion, and so this random-intercept model cannot converge, or the response is constant,
meaning that this is simply not the correct type of input data for this particular family

of model. These cases are listed below:
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e The number of double-zero trials in the meta-analysis is greater or equal to k — 1,

where k is the number of studies in the meta-analysis
e There are zero events in the control arm for every study in the meta-analysis
e There are zero events in the treatment arm for every study in the meta-analysis

e The ratio of the number of events in the treatment arm to the number of events
in the control arm is equal across each of the non-double-zero studies in the meta-

analysis.

4.8 Comparison with alternative statistical packages

To determine whether we were applying our chosen GLMMs correctly using the glmer
command in the R package Ime4, and to check that we were extracting the correct
parameters for our estimates, we also applied the models using a different statistical
software package. We chose to use STATA as this alternate software as it allowed
for the application of both the PMRM and CLMRM models using the mepoisson and
melogit commands respectively (StataCorp (2013)). These STATA commands gave the
option to change the integration method being used - something that would also allow
us to check whether the command options we had chosen to use with glmer in R were
appropriate. In particular, the integration methods that mepoisson and melogit can

implement, along with the labels that we shall use to refer to them, are:

e Non-adaptive Gauss-Hermite quadrature (nonadaptGH ):
This transforms the multivariate integral in the associated likelihood into a series
of manageable nested univariate integrals, which can then be calculated via use of

a polynomial that optimally approximates the integrand.

e Mean-variance adaptive Gauss-Hermite quadrature - the default approach with
these commands (Default):
Similar to nonadaptGH, but the univariate integrals have their intervals divided
into subintervals, where the subintervals are further shortened if the integrand
behaves poorly. In this case, parameter estimates for the normal random variable
in the likelihood are iteratively generated from re-evaluated posterior moments of
the Gauss-Hermite quadrature approximation. Starting parameters for this are a

mean of (0,...,0) and identity variance matrix.

e Mode-curvature adaptive Gauss-Hermite quadrature (modeGH)
Similar to Default, but the parameter estimates of the normal random variable are
generated via optimisation of the integrand with respect to the normal random
variable, where the associated mean is taken as the optimal value and the variance

is the curvature at this value.
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e Laplacian approximation (Laplace):
Expressing the integrand as an exponential function, this method involves a second-
order Taylor expansion on the argument of this function, about the value of the

normal-based mean that maximises it.

4.8.1 Case studies

In order to make these comparisons between statistical software packages and integration
methods, and also to compare the two models themselves with the estimators discussed
in Chapter 2] we applied them to the rare-event case studies introduced in Chapter
The results of applying the PMRM model to those datasets in R and STATA are given
in Table while the respective results for the CLMRM model are displayed in Table
4.2

From looking at Table it can be observed that when applying the PMRM approach,
the results from our R code most closely correlate to those produced using the default
(mean-variance) and mode-curative Gauss-Hermite quadrature integration methods with
STATA’s mepoisson command. This is unsurprising given that the default integration
approach that we applied using the glmer command in R is more similar to these than the
alternate STATA options of non-adaptive Gauss-Hermite quadrature and the Laplacian
approach. These differences are only present with the 72 estimates however, as the log-
risk ratio estimates are actually very similar between all integration methods for the
C-section, albumin and transplant datasets, which corresponds to the type of data these
case studies represent. There are no results for non-adaptive Gauss-Hermite quadrature
with PMRM in STATA for the transplant dataset as this model could not converge,

most likely the result of the very small number of studies in this meta-analysis.

In terms of the CLMRM approach, Table displays a similar story, although in this
case all three Gauss-Hermite quadrature methods provide similar results to that of our

R code for 72

. Again, this is indicative of the integration method used in the default
option for glmer when applying this particular model. In terms of the log-risk ratio,
all integration methods considered provide very similar, and in some cases identical,
estimates for each of the case studies. From both of these tables, we can conclude
that the results obtained using our R code are backed up by those obtained using an
alternative statistical software package, and as such can be assumed to be reliable.
In addition to this, the integration method is observed to have a significant impact
on the estimates of 72 - particularly between the Gauss-Hermite quadrature methods
and the Laplacian approximation. In these tables, we have not included the confidence
intervals that would be generated from the STATA parameter estimates, as we were only

interested in comparing the direct point estimates extracted from the model parameters.
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TABLE 4.2: Summary of results from conditional logistic mixed regression model according to our written R code and STATA for case studies.

Confidence Interval

Dataset Software | Integration Method 72 I? r@ Z-type CI 7 t-type CI 7 HKSJ CI
R code - 0 0 0.35 | (0.05,0.66) | (0.04, 0.67) | (0.15, 0.56)
Default 0 0 0.35
Rosig (MI) modeGH 0 0 0.35
STATA nonadaptGH 0 0 0.35
Laplace 0.70 36.25 0.34
R code - 0 0 0.51 (0.08, 0.93) | (0.07,0.94) | (0.29, 0.73)
Default 0 0 0.51
Rosig (death) modeGH 0 0 0.51
STATA nonadaptGH 0 0 0.51
Laplace 0.79 27.24 0.50
R code - 0.56 36.14 -1.30 | (-1.91, -0.69) | (-1.95, -0.65) | (-1.82, -0.78)
Default 0.60 37.74 -1.30
CRBSI modeGH 0.60 37.74 -1.30
STATA nonadaptGH 0.57 36.54 -1.30
Laplace 1.00 50.26 -1.18
R code |- 0.22 28.95 “1.04 | (-1.28,-0.80) | (-1.29, -0.79) | (-1.25, -0.83)
Default 0.23 29.87 -1.04
C-section modeGH 0.23 29.87 -1.04
STATA nonadaptGH 0.23 29.87 -1.05
Laplace 0.22 28.95 -1.04
R code - 0 0 0.54 | (0.26, 0.82) | (0.25,0.84) | (0.30, 0.79)
Default 0 0 0.54
Albumin modeGH 0 0 0.54
STATA nonadaptGH 0 0 0.54
Laplace 0.81 61.12 0.54
R code |- 0 0 0.69 | (-1.13, 2.52) | (-3.31, 4.70) | (-1.53, 2.91)
Default 4.00 x 10731 [1.48 x 10732 | 0.69
Transplant | ¢\ py | modeGH 5.16 x 10734 | 1.91 x 10732 | 0.69
nonadaptGH 4.16 x 10734 [ 1.54 x 10732 | 0.69
Laplace 0.83 23.51 0.68
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Now, comparing the results generated from our R code in these two tables directly
against each other, we can compare our two proposed GLMM approaches in terms of
how they appear to perform in the case of rare-event data. Firstly, we can note that both
models could be applied to each of the 6 case studies when using our written R code,
which is itself a testament to their consistent suitability in rare-event scenarios, even
when there are also very few studies. It can be observed that several zero 72 estimates
have been generated, particularly with the CLMRM model, with both producing zero
(or close to zero) estimates for the rosiglitazone (MI) and transplant datasets - again
most likely linked with the type of data these two case studies represent. In terms
of the overall 72 and log-risk ratio estimates, the results are consistently very similar
between the two models, with each giving authenticity to the other, and potentially
indicating that the two models may perform rather similarly in general. In terms of
the summary-effect confidence intervals, the Z-type and t-distribution methods can be
seen to produce similar intervals for all datasets other than transplant, with the HKSJ
method producing the narrowest intervals in most scenarios. For the transplant dataset,
where there were few studies present, the t-distribution method appears to consistently

perform very poorly, generating extremely wide intervals with both models.

Finally, comparing these results to those displayed in Chapter |3| we can compare how
these models perform compared to the existing 72 estimators discussed in Chapter In
terms of both the rosiglitazone datasets, the 72 estimates are very similar (as many of the
existing approaches also produced zero estimates), however the log-risk ratio estimates
are consistently higher in the models. For the CRBSI case study, the model 72 estimates
are much higher than the existing methods in general (with them being slightly larger
than the highest estimates from Sidik-Jonkman), while the corresponding log-risk ratio
estimates are far further away from zero. The model log-risk ratio estimates for the
C-section case study also have a greater magnitude than the existing approaches, while
the 72 estimates are similar to those from the Sidik-Jonkman approach. The model 72
estimates for the albumin dataset were similar to those given in Chapter [3| as most
existing approaches gave zero estimates, while the log-risk ratio estimates again had
a greater magnitude and were similar to those from the Mantel-Haenszel approach.
Finally, for the transplant meta-analysis with few studies, it can be observed that zero
72 estimates were produced in both of the models and many existing methods, with the
log-risk ratio estimates being much greater in the models, and identical to those from
the fixed-effect Mantel-Haenszel approach in the case of the CLMRM model.

4.9 Conclusions

In this chapter, we have outlined two novel approaches based on the use of GLMMs
that we are proposing for the estimation of 72 in the case of rare-event log-risk ratio

meta-analyses. There are several benefits of using GLMMs over standard approaches to
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conduct meta-analyses, particularly in the case of zero count data, as they do not require
bias-inducing continuity corrections and also avoid the use of the inappropriate normal
approximation. As a result, some recent simulation studies have focused on comparing
the performance of a range of GLMMSs on varying meta-analysis scenarios, however none
have yet focused on the combined case of rare events and the easily interpretable log-risk
ratio outcome measure. As such, we aim to focus on this gap in knowledge, by applying
such models to rare-event scenarios in order to extract estimates for the heterogeneity

variance.

We are proposing the Poisson and conditional logistic mixed regression models, as these
both have beneficial qualities that we believe make them appropriate for the estimation
of 72 with rare-event data. In particular, the CLMRM model conditions on the total
number of events, and incorporates the person times of both the control and treatment
arms. Both models have previously displayed evidence of performing well in recent simu-
lation studies looking at alternate meta-analysis scenarios. However, the CLMRM model
can be very computationally demanding, and as a result can struggle with convergence
and take a long time to fit compared with other approaches, especially when the data is
sparse. For example, Jackson et al. (2018) found that rare events presented difficulties
in model convergence, but noted that events needed to be very rare to be considered a
serious problem, and also found that differences in estimation quality were dependent

on which trial arm the events were more prevalent in.

As well as the models potentially struggling in the case of rare-event data, there are
a number of additional scenarios where the models cannot be applied as a result of
incompatibility between the data structure and model distribution being used. As a
result, there are some meta-analysis scenarios where our models cannot be used, however
these are few in number and so should not heavily impact their potential application to
real-life data. We have chosen to apply both our chosen models using the glmer command
in the R package lme/, as this is suitable for both models and allows application to a high
number of meta-analysis scenarios. In addition, we modified the associated command
options in order to maximise this range of applicable scenarios, in order to make the

approaches usable for the majority of real-life datasets.

We applied our models to the rare-event case studies introduced in Chapter [3] using
both our chosen R command and the statistical software package STATA, in order to
check that our R code was correct and the appropriate parameters were being extracted.
We found that the results produced were very similar between the software packages,
particularly when the integration method used by STATA was of the Gauss-Hermite
quadrature type, providing evidence that our R code and corresponding command-line
options are appropriate. When comparing the results between the two models, it could
be seen that the two models produced very similar estimates for 72 and the log-risk
ratio for all case studies. In addition, when comparing these estimates to those pro-

duced using the existing estimators discussed in Chapter [2, we found that the model
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estimates for 72 were generally similar or slightly larger, indicating that they may be
detecting heterogeneity that the other methods could not. However, the model log-risk
ratio estimates were consistently of greater magnitude, indicating that the models were
potentially capable of detecting stronger effects in rare-event scenarios. As our case
studies only represent a small number of possible meta-analysis scenarios, we shall also
include the models in a simulation study, which will allow us to develop a greater insight
into their performance in general, as well as determine any further scenarios where the

models are unable to converge.






Chapter 5

Conditional approach to estimate

heterogeneity variance

5.1 Introduction

A wealth of methods have been proposed for the estimation of the heterogeneity variance
parameter (72) in random-effect meta-analyses. In the previous chapter, we discussed
the use of generalised linear mixed models (GLMMs) for the estimation of this value via
a one-step meta-analysis approach. In particular, we focused on the use of Poisson mixed
regression models (PMRM) and conditional logistic mixed regression models (CLMRM)
when dealing with zero-count data, our scenario of interest. However, as noted in pre-
vious simulation studies (Bakbergenuly and Kulinskaya (2018); |[Jackson et al.| (2018])),
these model types can face problems with convergence when the data are sparse, whether
that be in terms of low numbers of studies, sample sizes or event counts. In addition
to this, some of these models are computationally complex - the CLMRM in particular
can take an inordinately long time to fit, with convergence potentially being difficult to

achieve without statistical assistance.

Other estimation methods exist that do not share these computational issues, and are
instead used in two-step inverse-variance meta-analysis approaches. We discussed a
number of these 72 estimators in Chapter looking at both iterative and non-iterative
estimators in frequentist and Bayesian frameworks. The majority of these estimators
were based on the Normal approximation, and as such could be conflicted with bias when
many zero event counts are present and the data subsequently does not follow the Normal
distribution. However, not all of the two-step based estimators we discussed made this
inappropriate assumption of normality. For example, the approach proposed by |Bohning
and Sarol| (2000), and presented in Section m estimates the 72 parameter without
making any assumptions regarding its associated distribution, and can be applied to rate

data where the event count conditional upon the study follows a Poisson distribution.

107
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We are interested in investigating a novel method for the estimation of 72 in the meta-
analysis of rare-event data that is based on the estimator from |Bohning and Sarol (2000)),
but which is appropriate for the log-risk ratio outcome measure. Similar to their exist-
ing method, the estimating approach that we are proposing is based on a conditional

approach, which we believe makes it appropriate for use with low event rates.

In this chapter, we shall outline the motivation and theory behind this approach, and
the estimation equations and statistical techniques that are involved in its application.
As with the previous methods that we have discussed earlier, we shall then apply this
approach, including any variations that we feel are appropriate, to the rare-event case
study datasets described in Chapter |3} This will allow us to gain an initial overview of
its performance against existing estimators with empirical clinical trial data containing

zero event counts.

5.2 Theory behind approach

As mentioned briefly in Section 2| Bohning and Sarol (2000) proposed a novel ap-
proach to estimate the variance of the heterogeneity distribution without having to
estimate the associated distribution, for use with both Binomial and Poisson counts.
The motivation behind their approach begins by assuming that a given variable of in-
terest, Y, is modelled through a parametric density p(y, ) with scalar parameter 0. If
f has variance distribution G and associated density g(#), then the marginal, and un-
conditional, density of Y is given as f(y) = ffooo p(y,0)g(0)df. The associated variance

of Y, Var(Y), can be separated into two terms, as follows:

Var(Y / Var(Y10)g(0 )d9+/ (1(0) — py)*g(0)do

a*(6)) + 62

(5.2.1)

where p(0) = E(Y|f) and p, is the mean of the variable of interest Y. In some cases,
the term 6% = [ (1u(0) — p1y)%g(0)d0 instead has the form

K/ (0 — uo)*g(0)do = K1* (5.2.2)

where K is some constant, pg is the mean of 6 and 72 = [ (0 — pg)?g(#)d0 is the
variance of 6, and as such the heterogeneity variance of interest. In scenarios where 62
satisfies the alternative definition given in Equation (5.2.2)), then Equation (5 can be

thought of as separating the total variance into that of the subpopulatlon with parameter
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f and that of the heterogeneity distribution G of 6. This latter term of variance, the

latent factor, contains the parameter 72 via its distribution G.

The aim was to calculate an estimate of the heterogeneity variance 72 with no knowledge
or assumptions regarding its distribution G. They proposed replacing the values of
Var(Y) and E(c?(#)) in Equation (5.2.1)) with the respective study sample estimates,
and rearranging in order to generate this estimate of 72. The value would then be

truncated to zero if it was negative.

5.3 Standardised mortality ratio and proportion outcome

estimators

The approach by Bohning and Sarol (2000) was designed for application to meta-analysis
data, in particular the standardised mortality ratio (SMR) and proportion outcome data.
However, as mentioned previously, it could potentially be applied to any rate-based data
where it is assumed that the observed count conditional upon the study has a Poisson
distribution, where the rate may involve some study-specific parameter. In their paper,
they introduce an iterative and nonparametric estimator for heterogeneity variance,
based on the theory outlined in Section

The SMR is defined as the ratio of the number of observed mortality cases, O, and the
respective expected (non-random) number of such cases, e. Here, e is used to denote the
expected number of cases in order to differentiate from the action of taking expected
values, which is denoted by E. In general, O is assumed to follow a Poisson distribution
with mean E(O,elf) = p(f) = fe. If extra-Poisson variation is allowed for, then the

total variance of O can be separated as follows:

Var(O / Var(0]0)g(0 )d9+/ (Oe — pe)g(0)do

Rearranging gives

% =Var(0)/e* — u/e

where 72 = Var(#) and 6 is the SMR in this case.

As the expected number of mortality cases may differ within a sample subpopulation,

let Oq,...,0; be a random sample of the number of mortality cases, with associated
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expected numbers ey, ..., er, where k can be seen as the number of studies. Then, for
the estimation of heterogeneity variance with SMR, outcome meta-analysis data, they

suggest the following equation:

k k
. 1 1
= | 20— e Y~ (5.3.1)
i=1

=1

where O; is the observed number of mortality cases in study 4, e; is the expected (non-
random) number of mortality cases in study ¢, k is the number of studies in the meta-

analysis, and p is an unknown parameter to be estimated.

Sometimes the outcome of interest is based on a proportion of the events of interest. Let
proportions 1 = Xi/ny,...,rp = Xy /ni be a sample from k studies, where X; is the
count of events and n; is the sample size of study 4. Since X1,..., X can be viewed as

sample of Binomial counts, it follows by definition that the variance of X is defined as:

Var(X) = E(6%()) + n7?
=nu(l —p) +n(n —1)72

If p is small and n is large, then the Poisson approximation for the binomial holds, and
Var(X) ~ nu + n?r%. However, if this approximation is not valid, as would generally

be the case, then they proposed the alternate formula:

k
X 1 X —mi)? 1 . 1
72 = g ( 'l i) —a(1— ) Y] (5.3.2)
i=1

where X; is the number of events and n; is the sample size of study i, and 4 is an

estimate of the unknown parameter p.

5.3.1 Previous findings

Bohning and Sarol (2000]) performed an analysis using both of the estimators described
above on empirical data meeting their requirements, in order to determine what effect
heterogeneity has on the efficiency of the estimation of the mean effect of interest.
They then also investigated how their methods compared to others, including the non-
parametric mixture model approach, in terms of their estimation of the heterogeneity
variance. From this they were able to report that their proposed estimators are beneficial
over parametric models, including Gamma and Beta-distributed models for the data
types considered, as they are more flexible due to not assuming a distribution of the

heterogeneity.
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5.4 Outline of log-risk ratio approach

We shall now outline an alteration of the above described approach, that we are propos-

ing for application to log-risk ratio meta-analyses, our outcome of interest.

5.4.1 Estimation of the event probability

Recall that the Mantel-Haenszel estimate for the risk ratio (RR), as outlined in Section
1.9.5] is defined as:

SF L (Xamnio) /ng
S (Xionin) /i

E}\?MH = (5.4.1)

where X;1 and X,y are the count of events in the treatment and control arms, n;1
and n;g are the number of subjects in the treatment and control arms, respectively, and
n; = ni1+n40 is the total number of subjects in study ¢. For simplicity, in our simulation
study we shall be setting the within-trial arm sample sizes to be equal, i.e. n;1 = n,o,
so we can simplify Equation as follows:

k
R — >iz1 Xi
k
Z’i:l Xz‘O
Now, if we define # as our outcome of interest, the log-risk ratio, i.e. § = log RR, we

can write

The probability of events in the meta-analysis, which we shall denote as p, can then be

estimated using

SE Xa

5.4.2
Zf:l Xi ( )

p=

An approximation for this estimate of p, for use when the values of X;; and X; for

i=1,...,k are not available to us, is given as follows:
. eé
p= p
1+ e?

since
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eé
1+ éf
_ Zf:l Xa/ Z§:1 Xio
LY Xa/ Y X
Y Xa
- Zf:l Xi

Z/j:

Equation (5.4.2)) for p is obviously more accurate than its approximation, and as we shall
have the event counts available to us in our simulation study, we shall use this equation

to estimate the probability of events for use in this approach.

5.4.2 Heterogeneity variance estimating equations

The estimate of the event probability described in the previous section shall be a crucial

2. All of the estimating equations that we shall be

component in our estimators for 7
discussing below are modified versions of those proposed in the paper by [Bohning and
Sarol| (2000). The 72 estimates described in this section are based on an approximation
of the log-risk ratio, due to the estimation of p outlined in Section [5.4.1] and as such

will later need to be converted for the desired log-risk ratio.

The first estimating equation for 72 that we shall consider is based on Equation (5.3.1]),
as taken from the original paper, and is defined by the following:

k k
1 1
~2 ) A2 2 ~
=7 g (X —Xip)?/ X7 —p E 1 X, (5.4.3)
1=

=1

where Xj;; is the number of events in the treatment arm, X,y is the number of events
in the control arm, X; = X;; + X;o is the total number of events in study 4, k is the
number of studies in the meta-analysis, and p is the estimated probability of an event
as defined in Equation ([5.4.2]).

A modified version of the above equation, which is also based partially on Equation
(5.3.2)) from the same paper, is formed by separating the two terms in parentheses in
Equation ([5.4.3)), and adjusting the components by which each term is multiplied. It is

defined as follows:

N

2
p

k k

1 (Xi1 — Xip)?  p(1 —p) 1

= — 4.4
- Zi:l X2 2 Z@:l (544)
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The third estimating equation for 72 that we will consider is again based on Equation
, and as such is a slightly modified version of Equation above. In this
case, we modify the X; elements in the denominators of each term, but only for those
meta-analyses that do not contain any studies with only one event across both arms
(X; = 1). If the meta-analysis doesn’t meet this condition, then Equation is

used. Thus, this equation is given by:

ﬁ Zk (Xil—Xiﬁ)Q . ﬁ(lk—ﬁ) Zf:l 1 ’ XZ > 1foralli = 17 o k

2o {F T2 XD o (5.45)
P 1 E (Xa-Xip)?  pA—p) <~k 1 : o
=T il (X <z ) _ (k ) 2icl X , otherwise
1

The fourth and final equation, which is a variation of Equation ([5.4.5]), involves using
the two alternative terms in the summations when the meta-analysis contains both
studies with X; > 1 and X; < 1, i.e. changing the elements of the summation term-

wise, depending on which condition study 7 meets. As such, it is given by the following

formula:
o Zf:l ())?-1(;()-(:[1332 - ﬁ(lk_ﬁ) Z§:1 X7 , Xi>lforalli=1,....k
1 E o (Xa—Xip)® p(1—p) <k 1 -
L Lk IXfp 721)]617 Y+ 2 , Xy <lforalli=1,....k (5.4.6)
P 1 (Xi1—XiP) (X;1—X;P) 4.
k-1 (Zie’f(n Xil(Xij) +Zj€k<2> JleJp )
NG .
e % 2) (Ziek<1) 7X1‘171 + Zjek:(g) X%) , otherwise

where in the last case, k(1) is the subset of studies ¢ for which X; > 1 is satisfied, and
k(2) is the subset of studies j for which X; <1 are satisfied, with k) + k(2) = k.

For all of the estimating equations outlined in this section, they are undefined in the
case where X; = 0, i.e. for double-zero (DZ) studies. If such a trial exists within the
data then it must be omitted from the respective meta-analysis to allow the application
of this approach, and the number of non-DZ studies (k*) should be used in place of k
in the estimating equations. As a result of this, if the meta-analysis contains k — 1 DZ
studies, then k* = 1 and Equations , and produce infinite estimates
as they divide by k — 1. In these cases, the estimate should be set to undefined and

ignored.

5.4.3 Transformation to variance of log-risk ratio

So far when outlining this approach, we have dealt with the variance of a transformation
o
e
1+6é
itself - our outcome measure of interest. To correct for this, we will now transform the

of the log-risk ratio, p = to be exact, and not with the variance of the log-risk ratio
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estimate that we proposed to the required value. However, it should be noted that this
transformation is based an approximation, the §-method in this case, and thus may not
be as accurate as other 72 estimators as a result of this.

o0
+ef

To conduct this transformation, we note that 8 = log RR and p = : Now from the

d-method, we know that if Y has variance Var(Y'), then

Var(T(Y)) ~ T'(E(Y))*Var(Y)

where T is some differentiable transformation. Now, if we input our value of p as the

eé '
1+eé

Looking at the differentiation term we have:

transformation of é, we have that

2
Var(6) (5.4.7)

Var(p) ~

Finally, inputting this derivative back into Equation ([5.4.7)) gives us

Var(p) ~ p* (e_é)Q Var(9) (5.4.8)

which can be arranged in terms of Var(6):

Var() ~ [62‘5 /pﬂ Var(p)

Another way to present Equation ([5.4.8)) is as follows:
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2 1

(1 . 6@) 5 Var(é)

Var(p) ~ p

which again can be rearranged as

Var(d) ~ [(1 o)’ /zﬂ Var(p)

A — Z?:l Xi1 N _ P
where p = S, and 0 = log -
The equations given in Section estimate Var(p), as this is the value Ag. The

estimate of the heterogeneity variance that we are interested in obtaining, 72, is given
by Var(é) as # = log RR, our outcome of interest. As such, the estimate for 72, using

this approach, is calculated via either of the following two equivalent equations:

72 = [629 /234} 72 (5.4.9)
~92 0 2 2| A2
T4 = <1+e) /7| 7, (5.4.10)
D R
where p = %%IX);;, 0 = log% and %5 has been estimated using one of the four

estimating equations given in Equations (5.4.3)) to (5.4.6)).

In summary, to apply this approach we shall use one of the equations given in Section
to produce an estimate for Var(p), and then use this value in either Equation

~

(5.4.9) or (5.4.10) to approximate the estimate for the heterogeneity variance Var().

As with the existing estimators described in Chapter [2| we shall then obtain our estimate
of the outcome measure, the log-risk ratio, by inputting our estimate of 72 into the

inverse-variance approach.

It should be noted that when all of the studies in the meta-analysis have zero events in

the treatment arm, i.e. Zle X;1 = 0, then the transformation conducted via Equation
koox

(5.4.9) or (5.4.10) is undefined, as the denominator p (z M) is 0.

k
=1 Xi

5.5 Verification of approach via simulation study

When measuring the performance of this approach, we shall look at its accuracy in esti-

mating the parameter Tg in addition to the heterogeneity variance 72. In order to deter-

mine the accuracy of this Tp2 estimate, we will first need to determine the corresponding
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true value, which can be approximated via a simulation study with data generated using
characteristics of the meta-analysis (or scenario) of interest. This approximation of 7'5
will in turn allow us to approximate the true value of 72 via the transformation described
in the previous section. Calculating both of these values will allow us to independently
measure the performance of the various aspects of this method. When conducting a gen-
eral simulation study, the approximation of 72 can be compared to its corresponding true
value, in order to ensure that the estimates 72 are being compared to the correct value
that has accounted for the approximation used in this approach. In order to determine
these approximations of 72 and Tg, we shall conduct a separate simulation alongside our

main simulation study, for each scenario we investigate, and we shall outline this below.

5.5.1 Calculation of true Tg

We begin by assuming that the true log-risk ratio outcome measures for each study

(denoted by 6; for hypothetical study j) follow a Normal distribution:

0; ~ N(0,73) (5.5.1)

where the value of 6 is calculated using the trial-arm event probabilities, which in our
simulation study will be set and used to sample the corresponding count of events. To
observe how this value is calculated, first note that 6;, the log risk-ratio for study 4, is
defined as:

A — X~1/ni1>
0; = log RR; = log | ==
(2 g (4 g <Xi0/ni0

and using the definition for the estimated event probability, we then have

0; = log RR; = log (p“>
Pio

where p;1 is the probability of an event in the treatment arm and p; is the probability

of an event in the control arm of study i.

We shall simulate values of ¢; from the distribution in Equation a large number
of times, denoted by s, where say s = 10,000, and so j = 1,...,s. In order to determine
the true value of Tg, we need to use the simulated values of 6; to determine the associated
values of p; (the probability of an event occurring in study j). This can be done using

the equation:
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From this, we can then determine the mean probability of events in these s simulations,

denoted by p:

3
Il
W | =

S
ij
j=1

Finally, the true value of Tp2 can be calculated as follows:

2= 15— p)? (5.5.2)

Jj=1

Given this true value of 7'5 for each scenario, we can then determine the average value of

Tg resulting from each chosen value of 7'92 that is used for the Normal variance parameter

in Equation (5.5.1)).

We shall conduct this side-simulation for each scenario we investigate in our main sim-
ulation study, as the pairings of § and 792 will remain constant within given scenarios.
In addition, since we are determining the true value of T}? using data that represents
s = 10,000 studies, this value is unlikely to change significantly if it were calculated
separately for meta-analyses from the same scenario, as each of these is calculated using
averages from the s simulated hypothetical studies, and so little variation would exist.
As such, we believe that it is reasonable to determine this value once for each scenario

rather than for each meta-analysis within said scenario.

5.5.2 Approximation of true heterogeneity variance

In order to convert the true value of Tg into the variance of the log-risk ratio, our

heterogeneity variance of interest, we input 7']? into either Equation (5.4.9)) or (5.4.10)),
as we described with the transformation of the estimate in Section .43l It should be

noted again that this is an approximation, based on the J-method, and so we cannot

guarantee it is the correct true value, however we can assume that it has the same level
of uncertainty as the respective estimate of 72, since they were constructed in the same
manner. Thus, we have the approximation of the true value of the heterogeneity variance

as:

2~ [629/]34} Tg

where Tg is calculated using Equation (5.5.2]).

To ensure that the approach works correctly, we shall calculate this approximation of
72 and compare it to the true value of 72, equal to 77 in Equation (5.5.1)). This will tell
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us whether our final estimates for 72 are being compared against the correct true value,

which takes into account the approximation used in this method.

5.6 Summary of variations of estimating equation

In Section [5.4] we outlined the application of this approach to the log-risk ratio, proposing
four alternate estimating equations for T}?. In Table we summarise these variations
of approach in terms of choice of estimating equation, giving each its own notation that

we shall use in the remainder of this thesis.

TABLE 5.1: A summary of the conditional-based heterogeneity variance estimating

equations along with their respective abbreviations used in this thesis.

H Estimator ‘ Abbreviation | Section ‘ Estimating equation H

Conditional approach 5.4.2 -
Variation 1 | CO1 - (15.4.3)
Variation 2 | CO2 - (15.4.4)
Variation 3 | CO3 - (15.4.5))
Variation 4 | CO4 - (15.4.6]

5.7 Application to case studies

In order to gain a first impression regarding how the four variations of this approach
compare with each other, and with those methods already discussed in Chapters[2]and [4]
we applied them to the case studies introduced in Chapter |3} However, when comparing
its output to that of existing estimators, we do so tentatively, with the important note
that it may not perform as well owing to its approximation. It should also be noted that
the estimates for the log-risk ratio were generated using the inverse-variance approach,
similar to those methods discussed in Chapter [2l The results of these analyses can be
seen in Table

Comparing the variations of this conditional approach for each of the case studies, it can
be seen that they all produce identical results for 4 of the 6 datasets. The results only
vary for the C-section and albumin datasets given in Tables and respectively,
which is probably a result of the change in type of data these case studies represent from
the otherwise standard rare-event examples we have used. Even within these two case-
studies, the variations CO2 and CO3 still produce identical results, meaning that these

are identical for all case studies considered, which is unsurprising given the similarity

of their associated estimating equations (Equations (5.4.4)) and (5.4.5))). However, it is

not known whether this equivalence is only the case for rare-event data, or whether they
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would produce very similar results for all data types - something that will need to be

investigated in the simulation study.

From the C-section and albumin case study results, it can be seen that CO1 consistently
produces zero estimates for 72, while the identical estimates from CO2 and CO3 are
slightly higher (72 = 0.04,0.13 for the two case studies respectively), and the estimates

from CO4 are much higher (72 = 0.14,0.27). These increasing estimates of 72 result in

associated log-risk ratio estimates of increasing magnitude.

By looking at the different summary effect confidence interval methods that we used, it
can be seen that ¢-distribution intervals are consistently slightly wider than the Normal-
based Z-type intervals for the CRBSI and both rosiglitazone datasets. These two meth-
ods produce very similar intervals for the C-section and albumin datasets, with the
widest interval depending the conditional estimating equation applied. For the trans-
plant meta-analysis that involves only 3 studies, the t-distribution intervals are consis-
tently much larger than those of the Z-type and HKSJ methods. For the albumin, trans-
plant and two rosiglitazone datasets, the HKSJ method produced the narrowest intervals
of all methods considered. Meanwhile, for the CRBSI and C-section meta-analyses, the

HKSJ method produces intervals similar to those generated by the alternate methods.

When these results are compared to those estimates generated from the pre-existing and
GLMM-based approaches, displayed in Chapter [3] and Tables [£.1] and [4.2] respectively,
it can be seen that their performance over the different datasets is similar to that of the
other estimators. In particular, those datasets that struggled with many zero estimates
using the pre-existing methods in Chapter [2] also produce only zero estimates with this
approach. For the C-section meta-analysis, the results from CO1 are similar to those
produced by the variations of the Der-Simonian Laird estimator, while the results of CO4
mirror those of the maximum likelihood based approaches. For the albumin analysis, the
CO4 approach produces similar estimates to the Sidk-Jonkman estimator, however this
dataset resulted in largely zero estimates for the Normal-based approaches. In contrast,
the results generated by CO1 and CO4 for both datasets vary significantly from those

of the Poisson and conditional logistic mixed regression models.

5.8 Conclusions

In this chapter, we proposed a variation of a 72 estimator originally proposed by Bohning
and Sarol (2000) for use with proportion and SMR data. The benefit of their approach
was that it did not assume any distribution for the heterogeneity variance, which is
beneficial in the case of rare-event data, where the normal approximation that many
other approaches make tends to be inappropriate. Compared to previously discussed
GLMM-based methods, this estimator has the benefit that it is based on a non-iterative
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TABLE 5.2: Summary of results from 4 alterations of the conditional-based approach for case studies.

A

Confidence Interval

Dataset Estimator | 72 I? _omm.m/w Z-type CI 4 i-type CI 4 HKSJ CI
CO1 0.00] 0.00 | 0.23 | (-0.08, 0.54) | (-0.09, 0.54) | (0.03, 0.43)

Rosig (M1) | CO2 0.00| 0.00 | 0.23 | (-0.08, 0.54) | (-0.09, 0.54) | (0.03, 0.43)
Co3 0.00| 0.00 | 0.23 | (-0.08, 0.54) | (-0.09, 0.54) | (0.03, 0.43)

CO4 0.00| 0.00 | 0.23 | (-0.08, 0.54) | (-0.09, 0.54) | (0.03, 0.43)

CO1 0.00] 0.00 | 0.13 | (-0.30, 0.55) | (-0.31, 0.57) | (-0.06, 0.31)

. CO2 0.00| 0.00 | 0.13 | (-0.30, 0.55) | (-0.31, 0.57) | (-0.06, 0.31
Rosig (death) | (g 0.00| 0.00 | 0.13 M-o.wp o.mmw M-o.mr o.ﬂw M.o.omu o.ﬁw
CO4 0.00| 0.00 | 0.13 | (-0.30, 0.55) | (-0.31, 0.57) | (-0.06, 0.31)

CO1 0.00| 0.00 | -0.92 | (-1.36, -0.47) | (-1.40, -0.43) | (-1.37, -0.46)

CRBSI CO2 0.00| 0.00 | -0.92 |(-1.36,-0.47) | (-1.40, -0.43) | (-1.37, -0.46)
Co3 0.00| 0.00 | -0.92 |(-1.36, -0.47) | (-1.40, -0.43) | (-1.37, -0.46)

CO4 0.00| 0.00 | -0.92 |(-1.36,-0.47) | (-1.40, -0.43) | (-1.37, -0.46)

CO1 0.00| 0.00 | -0.81 |(-0.99, -0.63) | (-1.00, -0.63) | (-1.00, -0.62)

Cection Cc02 0.04| 6.79 | -0.84 |(-1.04,-0.65) | (-1.04, -0.64) | (-1.04, -0.65)
CO3 0.04| 6.79 | -0.84 |(-1.04, -0.65) | (-1.04, -0.64) | (-1.04, -0.65)

CO4 0.14[20.21| -0.89 |(-1.11,-0.66) | (-1.12, -0.66) | (-1.09, -0.69)

CO1 0.00] 0.00 | 0.38 | (0.10, 0.66) | (0.09, 0.68) | (0.15, 0.61)

Albumin CO2 0.13]20.17| 0.42 | (0.08,0.76) | (0.06, 0.78) | (0.17, 0.68)
CO3 0.1320.17| 0.42 | (0.08, 0.76) | (0.06, 0.78) | (0.17, 0.68)

CO4 0.27|34.22| 0.44 | (0.05,0.82) | (0.03,0.84) | (0.17, 0.70)

CO1 0.00| 0.00 | 0.27 | (-1.55, 2.10) | (-3.73, 4.28) | (-1.54, 2.09)

Transplant | CO2 0.00| 0.00 | 0.27 | (-1.55, 2.10) | (-3.73, 4.28) | (-1.54, 2.09)
Co3 0.00| 0.00 | 0.27 | (-1.55, 2.10) | (-3.73, 4.28) | (-1.54, 2.09)

CO4 0.00| 0.00 | 0.27 | (-1.55, 2.10) | (-3.73, 4.28) | (-1.54, 2.09)
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estimating equation, that won’t be subject to the computational demands and challeng-
ing application of the former. We proposed four different variations of this approach, to
determine whether altering the estimating equation slightly might improve its perfor-

mance.

One negative aspect of this approach compared with the GLMM-based methods is that
it would be used within two-step meta-analyses, and so the 72 estimates are inserted into
the inverse-variance approach that has been heavily criticised for use with sparse data.
However, while this may impact the accuracy of the log-risk ratio estimates, we can still
determine whether the 72 estimates are better than previous mentioned methods, and
if this is the case, then these estimates can be used with future updated meta-analysis

approaches, acting as a step towards improved analysis.

Another drawback of this approach is that double-zero trials have to be omitted, when
we were aiming to propose and investigate methods that could incorporate and include
zero event-containing studies. Although this is unfortunate, the approach still allows for
the inclusion of single-zero studies without the use of bias-causing continuity corrections,

which in itself is an advantage over a number of the methods discussed in Chapter

When we compared our proposed variations of this approach against each other in the
form of our rare-event case studies, we found that CO1 consistently produced zero
estimates for 72, with all four variations producing identical results for four of the six
datasets, potentially demonstrating their difficulty in working with certain types of rare-
event data. In the two other cases, CO2 and CO3 produced identical estimates, while
CO4 generated estimates of the greatest magnitude. When compared with the existing
and GLMM-based methods, these non-zero conditional estimates were found to be sim-
ilar to some method-of-moment and maximum likelihood approaches, but very different
from the GLMM approaches. In terms of their performance when combined with vary-
ing summary effect confidence intervals, their results were found to be similar to those
from the previous results, with the HKSJ method generally producing narrower intervals
than the Z-type and i-distribution methods. These empirical analysis results give us
an impression of the performance of this approach, however to fully determine which
methods perform well in given rare-event scenarios, and also determine the accuracy of
the approach-specific parameter Tg , these methods will need to be applied to simulated
data.






Chapter 6

Mixture model approach to

estimate heterogeneity variance

6.1 Introduction

So far in this thesis we have looked at a range of heterogeneity variance (72) estimators
that we believe are appropriate for use in log-risk ratio meta-analyses, with the aim of
finding those suitable for rare-event data. In Chapter [2] we began by outlining a se-
lection of pre-existing 72 estimators appropriate for two-step meta-analysis approaches,
most of which were based on the Normal approximation and required the use of con-
tinuity corrections, which has been shown to result in their poor performance with a
high number of zero counts. We then proposed two novel approaches for the estimation
of this parameter that we believed were more appropriate for application to rare-event
scenarios. The first of these was based on the use of generalised linear mixed models
(GLMMs), where we focused primarily on Poisson and conditional logistic mixed regres-
sion models, which benefit from not making the inappropriate assumption of normality
and do not require the use of continuity corrections. Secondly, we proposed a conditional
approach based on estimating equations suggested by |Bohning and Sarol| (2000) for use
in meta-analyses with outcome measures other than the log-risk ratio, which benefited
from not assuming a distribution for 72. Although we believe that our previously pro-
posed approaches should perform better than existing 72 estimators in most rare-event
scenarios, they still have their own drawbacks. For example, the GLMMs suffer from
computational complexity and long fitting times, while the altered conditional approach

is based on a d-method approximation.

We shall now propose a final novel approach for the estimation of 72 that involves the use
of mixture models, and is based on the theory behind the computer-assisted analysis of
mixtures (C.A.MAN) meta-analysis approach proposed by Bohning et al.| (1992]). This

approach models the count of events as a mixture of Binomial models, which we believe

123
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is more appropriate and will provide a better fit than the standard Binomial distribution
that this parameter is assumed to follow in other approaches, particularly for the case of
rare-event data. Using this mixture model, each meta-analysis is assumed to consist of
a chosen number of subpopulations, where this number is decided upon by determining
the model of best fit. As such, the model will be sculpted for each individual meta-
analysis that it is applied to, incorporating the clustering of subgroups of studies. Such
clusters may be grouped in terms of their drug efficiency or respective number of events,
as a result of differences in study factors such as gender, ethnicity and previous medical

history.

In this chapter, we shall outline the theory behind this novel approach, and describe the
methodology required to apply it to meta-analysis data, giving a detailed protocol of its
complex application. We shall then discuss the importance of the choice of initial pa-
rameter values for this approach, and suggest possible values that we shall use ourselves.
We will then outline the process for selecting the model of best fit, and list any types
of meta-analyses for which the approach cannot be applied due to the structure of the
data being unsuitable. Finally, the approach will be applied to the case studies intro-
duced in Chapter [3] and the resulting estimates compared with the previous methods
discussed in this thesis, in order to make conclusions regarding its general performance

with empirical rare-event data.

6.2 Theory behind approach

Here we outline a novel approach involving mixture models that we are proposing for
the estimation of 72 in rare-event meta-analyses. As with the conditional logistic model
approach proposed in Section [£.4] we have that the count of events in the treatment arm

of study 4, denoted X;1, follows a Binomial distribution:

Xi1 ~ Bi(Xi, q;)

where X; is the total number of events in study ¢ (over both the treatment and control

arms) and ¢; is defined as:

L € [0,1] (6.2.1)

e 0 D -
where #'; is the outcome measure (in this case the risk-ratio), and P;; and P are
the person times of the treatment and control groups respectively, of study ¢, where
i = 1,...,k with k being the number of studies in the meta-analysis. The Binomial

distribution of Xj;; is a consequence of our assumption that X; follows the Poisson
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distribution. Previously, we have suggested to model the outcome measure ¢’; with the
Normal random effect, i.e. 8'; ~ N(#,7%), where ¢’ is the overall effect measure for the
meta-analysis and 72’ is the heterogeneity variance. However, in this approach we shall

instead propose modelling #’; with a non-parametric random effect.

It should be noted that we are currently working with the risk ratio (6’;), rather than
the log-risk ratio, our outcome measure of interest. The rational for using the risk ratio
rather than the log-risk ratio for estimating 72 in this method is that it is more direct,
and as such is beneficial in this case. In order to generate estimates of 72 associated with
the desired log-risk ratio, we shall later transform our estimates from this approach, in
a similar fashion to that used in Chapter We believe that the main benefit of this
mixture modelling approach is that we would always obtain a valid estimate for this

. . !/
heterogeneity variance, T2,

6.2.1 Case of homogeneity

If homogeneity holds, i.e. there is no heterogeneity present in the meta-analysis (the
heterogeneity measure 12 = 0%), then the value of ¢; originally given in Equation ([6.2.1)

is instead defined as follows:

o G/Ti
%= Or; +1
where 6’ is the overall outcome effect measure for the meta-analysis and r; = P;1/P.

This follows from the assumption that if homogeneity is present in a meta-analysis, then
the true outcome effect is equal across all studies of the meta-analysis, i.e. 6'; = 0’ for all
i =1,...,k. Therefore, when homogeneity holds, the probability mass function (pmf)

for the Binomial distribution of X;; is defined as follows:

. 0/” X; 0/” X1 1 Xio
5 (%) - ( Xa ) (7r1) (o) o2

where X is the count of events in the control arm of study ¢, and thus X;g = X; — X;1.

Equation (6.2.2)) corresponds to a homogeneous Binomial model for the count of events

in the treatment arm, X;i.

6.2.2 Mixture of Binomials

We believe that assuming a mixture model for the count of events would be more ap-
propriate than the Binomial model given in Equation (6.2.2)), and this is a well-studied

problem that we believe to be the next logical step for our meta-analysis case. As such,
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we shall now look at modelling the count of events as a mixture of Binomial models,
by allowing the population (in this case our meta-analysis) to consist of subpopulations
represented by groups of studies with different values of the outcome measure 6. We
shall take J to be the number of subpopulations or subgroups, so J = 1 represents one

subgroup (equivalent to the original population), J = 2 is two subgroups, and so forth.

To view Equation (|6 as a mixing distribution, we replace the overall outcome mea-
sure 6’ with the subgroup—spec1ﬁc outcome measures Hj for j =1,...,J, and sum the
resulting j equations multiplied by some subgroup-specific weight. The mixture model

that we shall consider is therefore defined as:

lez J 9/?"7, Xi1 1 X0
ZBZ< 7 Z+1> ;( ) (9 n+1> Griv1) (62:3)

where 7; are positive weights with Z}']:1 m; = 1.

6.2.3 Mixing distribution

In order to generate the above mixed model for a meta-analysis, we need to estimate the

parameters 9;- and 7; for j = 1,...,J. In other words, we need to estimate the following

<0'>:<9’1 9{,) (624
™ 1 Uwi

which can be described as the mixing distribution.

matrix of parameters:

In the classical problem of the estimation of 72/, only ¢ was present as the Binomial
parameter and needed to be estimated. In this case however, the Binomial parameter
is more complicated, as all of the elements in the array in Equation need to be
estimated. To estimate this parameter array, we shall use the expectation-maximisation
(EM) algorithm, which we shall describe in the next section. Once this array has been
estimated, the estimates for the heterogeneity variance (72') and overall effect size (67),

both corresponding to the risk ratio, are then calculated as follows:

ij — 92 (6.2.5)
—_— E J ~
RR=0'=) #0, (6.2.6)

<
I
—
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6.3 Outline of approach

6.3.1 EM algorithm

As discussed in the previous section, we shall estimate the array in Equation (6.2.4))
using the EM algorithm. To conduct this algorithm, we first calculate the observed, or

incomplete, likelihood, which for our mixture model is given as:

J /
0"

This likelihood is the product over the observed data, in our case over the k studies

. . . . . . . 0%r;

in the meta-analysis. Here we have simplified the mixture density, Bi (XZ', ﬁ),
J T

and assumed that the person time is equal across treatment arms in each study ¢, i.e.

P;1 = Py, and thus the ratios r; = P;1 /Py simplify to 1 in Equation (6.3.1]).

The observed log-likelihood is therefore given as:

k J /
g’
lo=logLp = ZlogZBi (Xi, 9’j—1> j
i=1  j=1

J

The associated complete likelihood will involve a latent, unobserved variable, Z;, which
is an indicator that takes on the value 1 if X; is from the j'* subpopulation, and 0
otherwise. Let z;; denote the value of Z; for observation X;;. Then the complete

likelihood, also called the complete data likelihood, is given by:

kJ g Zij
. Zij

i=1j=1

Here we operate as though the classification or subgroup that each study belongs to
is known. The benefit of this is that when we take the log-likelihood, i.e. when we
take log(L¢), then the resulting equation separates into summed elements that can be
maximised independently. Thus, when we take the logarithm of Equation , we
produce the following complete log-likelihood:

k J / k J

9’

lc =log Lo = Z Z z;j log Bi (XZ-, 6’—1—1) + Z Z zij log m; (6.3.3)
i=1 j=1 J i=1 j=1

) o’
where the term Zle Z}']ﬂ z;j log Bi (Xi, T

termine the values of 0} from Equation ([6.3.3)). This equation can be separated because

) is independent of 7. The aim is to de-
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when taking the partial derivative with respect to (9’ , it only depends on a single com-
ponent. Since this component is solvable in the homogeneous case, then it follows that

it can also be solved here in the case where heterogeneity is present.

The maximisation of Equation leads to 71; = Zle zij/k for j =1,...,J. It re-
mains to obtain values for z;;, since these have not been observed. It is natural to replace
them with their expected values given the data Xji,...,Xj and 7 : E(z;| X1, 7) =
Pro(Zij = 1Yy = Xu1).

Here we shall prove that Z}-le 71; = 1 when the weight estimates satisfy 7; = Zle i/ k:

XJ: Zizzw/k

where the third equality comes from the fact that each study ¢ belongs in only one
subgroup 7, and since z;; is an indicator variable for whether study 7 belongs to subgroup
j,ie. zj =0,1, then it follows that Y7 z;; =1 for i =1,...,k.

6.3.2 E-step

To conduct the expectation (E)-step of the EM algorithm, we take the expected values

of z;; using a base generic formula. By Bayes Theorem, we have that:

E(zij) = eij
2
Bi (Xi, )
N\Aoera)™

s B (x
Zj’ZI 1 Z’,W s

where J = 1,2,... is the number of subgroups to be decided upon, and j’ refers to
the total J subgroups. Replacing z;; by e;; in Equation (6.3.3)) leads to the expected
complete log-likelihood:
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ko J / kK J
o’
E(lc) = ZZ@U log B1 (Xz’, Gl—jl—l> +ZZ€M log ; (6.3.4)
i=1 j=1 J i=1 j=1
6.3.3 M-step
Since the component parameters €', . .. ,9} are unknown, we must take the expression

Zle ijl eijlogm; in Equation (6.3.4) into account. As the complete log-likelihood
separates into two parts, the first depending on 7 only and the second depending on

0'1,...,0; only, we can incorporate the estimation of 6, ..., ¢’ by finding the maximum
k J
of 7 4 Zj:1 eijlog ;.

Maximising Equation (6.3.4) leads to the maximisation (M)-step and the solution:

From the M-step, we also find that:

"(new) k
0; Y eiXa

9;(new) +1 Y eiX;

Thus, the M-step leads to a form of the weighted mean of the observed counts of events

X;1. Rearranging the above formula gives us:

! (new Zf: e;i X
6, = = e (6.3.5)
Doic €ijXi — D iy i Xil

The approach is based on obtaining the original estimate of 0; and then generating the

)

updated estimate Gj(new in the M-step, so that the the expected values can be calculated

and used to obtain new values, which in turn shall replace the existing estimates. The
value of z;; can also be replaced by e;;, then by eglew), and so forth. By doing this for
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both of these parameters, we shall determine the values for ¢';; that we are interested

in.

Since the M-step is solvable in the homogeneous case, we assume that it is also solvable
in our scenario where heterogeneity is present. If it is solvable in the homogeneous case,
then the first task is to find the solution for this homogeneous case, i.e. the estimate
of #'. The required estimates for 0} will be alternate variations of that value that also

involve a weight.

We shall fix the number of components, J, so that we start with J = 1 (the homogeneous
case), and then look at J = 2, J = 3, and so forth. In order to assess the performance of
these mixture models with varying values of J in estimating our parameters of interest,
we shall look at measures of fit such as the Akaike information criterion (AIC) and
Bayesian information criterion (BIC). In particular, we will look at the cases where
J = 1,2,...,s with some pre-specified value s that reflects the predicted maximum
degree of clustering of studies. While J = 1 corresponds to 2 = 0, increasing the

number of subgroups J will in turn increase the value of 2

!/ / !/
T2(J+1)>7'2(J)>"'>’7'2(1):O , J>2

We shall set the weights, 7;, to be equal, i.e. m; =1/J for j =1,...,J, and will estimate
the k study-specific risk ratios (é’ (1) - ,é’ (k)) after each loop of the algorithm.

6.3.4 Algorithm protocol

In summary, the EM algorithm required for this approach will be applied as follows:

1. Let w be any initial vector of weights and 6’ any initial vector of component

parameters (in this case the risk ratio outcome measure).
2. Compute the E-step according to Section [6.3.2

3. Compute the M-step according to Section leading to () and the appro-

(new) )

priate updated vector of 6’
4. Set m = w(mew) and @’ = ¢’V

5. Repeat steps 1 to 4 until the condition of some pre-specified stopping rule is met,
e.g. the difference in observed log-likelihoods is less than say 1 x 107 or some

maximum number of iterations is achieved.
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6.3.5 Conversion of estimates to log-risk ratio

After applying the mixture model approach described above to estimate the risk ratio
and its associated heterogeneity variance, we want to convert these estimates to corre-
spond with our outcome measure of interest - the log-risk ratio. To convert the risk

ratio to the log-risk ratio, we derive the following relationship between 9;- and 6;:

efi
1+

= qj +qje’ =e

95

0;

= g5 = (1 - g;)e”
4;
=0, =log Y

= Hj = logO;-

By substituting this expression for 6; into the estimate of the overall risk ratio given in
Equation ((6.2.6]), we can determine the associated estimate for the overall log-risk ratio,
denoted 6:

J
logRR=0 =Y m;logt (6.3.6)
j=1

where the hat over the entirety of the log RR term comes from the fact that the sum of
logs is not equal to the log of sums, and so this is an estimate of the function log RR

itself. This estimate is classed as a non-parametric maximume-likelihood estimate (MLE).

2

Similarly, for the conversion of 7 " to 72, we can identify the estimates that 72 depends

on in Equation (6.2.5):

0y ... b,
~2! N X
TS q1 . qj

R Ay

and so can list the transformations that are required for the construction of 72:

A~ A~

01 07
~2 a1 4y
77— | log T log e

1 T
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By substituting those values seen in the above matrices into Equation ((6.2.5)), and using

the relationship between 9;» and 0, described above, we can determine the desired log RR-

associated estimate for the heterogeneity variance 72:

i

# =Y, (6 - )2 (6.3.7)

j=1

It is these converted values of 1@ and 72, from Equations (6.3.6) and (6.3.7]) respec-

tively, that we shall calculate from the extracted model output and represent our final

estimates of interest.

6.4 Case if the within-study person times are unequal

Up until this point, we have assumed that the within-trial person times are equal, i.e.
P;o = P;1, and so r; = 1 in the mixture density given in Equation . However, if we
look at the case where Py # Pj1, and so r; # 1, the corresponding observed likelihood
in Equation can be rewritten as:

Updating the corresponding likelihoods and applying the EM algorithm as before, the j
iterative estimates of 8’ constructed in the M-step of the algorithm, denoted by 9;(new),

now have to be generated using the iterative equation:

k
9"(new) _ E :7;:1 einil
J } :k ein Xir;
> — !
=1~ ej(new)ri+1

with initial estimate 0}. The proof for this is given in Appendix |C| The corresponding
derived estimates for the log-risk ratio in this case are identical to those given previously,
i.e. log RR = Z}-]:l mjlog 0} and 72 = Z}'le ﬁj(éj —0)2, but with an alternate definition

for the input parameter 93:

_ qij

ri(1 — gij)
 Piogij
-~ Pa(l—gqy)

=
|
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0.
_ r;e’d
where g;; = 771’62%_“.
K2

As such, the main difference between this case and the simplified case where r; = 1,

(new) i1 the M-step, which is now much more

ie. P = Py, is the computation of 9;.
complicated due to the need for iteration. Apart from this step, when r; = 1, all other
equations simplify to the estimates given in Section [6.3| and reflect the more general case

where the person times may or may not be equal.

6.5 Additional aspects of approach

6.5.1 Choice of initial values of @ and 6’

At the start of the protocol detailed in Section [6.3.4) we have to input initial values
for the vectors w and 6’. In order to obtain more accurate results from the algorithm,
these initial values should reflect realistic values that could be representative of the
scenario being investigated. In order for the initial values of 7 to be fair and realistic for
each component-based model considered, we set 71 = --- = m; = 1/.J, which gives us
ijl mj = 1 as required. We based the initial values of 8” on the calculated risk ratio for
each of the studies in the meta-analysis to which the method is being applied (including
those calculated from single-zero trials where a continuity correction of 0.5 has been
applied). We outline the process of choosing the initial values of 8’ (and subsequently
q= 9'074;1) below:
1. Apply a continuity correction of 0.5 to any single-zero trials in the meta-analysis
(double-zero trials do not need to be considered as these will be omitted in order
for this method to be applied).

2. Calculate the risk ratio for each of the studies in the meta-analysis (ignoring
double-zero trials), giving us the vector RR = (RRj,..., RRy) where k is the

number of studies in the meta-analysis.
3. Set 8] = min(RR) and ¢, = max(RR).

4. Calculate the associated Binomial probabilities ¢; and ¢; from these values of 6]

and #’; using the equation ¢; = for j=1,J.

IGJ
741
5. If the number of subgroups J > 2, set the remaining non-extreme values of q to

be equally-spaced apart, i.e. ¢; = q1 + (J — 1)('“7;(11) forj=2,...,(J—1).

By choosing the initial values of 8’ (and q) in this manner, we are guaranteeing that
they represent the risk ratios of the studies being used, thus tailoring the algorithm to
the meta-analysis that the approach is being applied to, with the intention that the

algorithm should then provide us with the most accurate estimates.
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6.5.2 Selection of best-fitting model

To find the model of best fit for each meta-analysis, we compare models with varying
numbers of components. We decided to base the selection of this best-fitting model
on the similarity of the Binomial probabilities, ¢ = (¢i1,...,q7), computed for each
component-specific model. If none of the models produce similar probabilities across
their individual components, then a secondary model-selection approach must be spec-
ified and applied - either the Bayesian Information Criterion (BIC) or likelihood ratio
test (LRT). Below is an outline of the steps taken to determine the best-fitting model

in our approach and the code we have written for its application:

1. Fit 5 models, with the number of components (J) ranging from 1 to 5.

2. For each model with J > 2, determine if the absolute difference between any two
of the adjacent components’ Binomial probabilities (¢) is < 0.001, i.e. whether
|gi — gi+1] < 0.001 for any ¢ = 1,...,(J — 1). If this is the case, take the lowest J
that satisfies this requirement, and choose the model of best fit as that with J —1

components.

3. If the condition in Step 2 is not satisfied, and no model of best fit can be determined
via that selection technique, choose a second model selection criteria out of BIC
and LRT.

4. If BIC is selected, the best-fitting model is chosen as that with the lowest BIC

score.

5. If LRT is selected, then a likelihood ratio test is conducted to find the best-fitting

model.

6. Estimates of 72 and log RR are extracted from the resulting model of best fit using

the transformations described in the above section.

Here we shall briefly discuss the choice of model-selection approach, and in particular
the LRT, for which mixture models experience a boundary problem. To demonstrate
this issue, consider a simple two-component mixture, (1 — a)fi(x) + afo(x). We are
interested in the hypothesis test Hy: one component is present vs. Hi: two components
are present. If « =0 or o = 1, then Hj is true, and so the null hypothesis lies entirely
in the boundary of the interval [0, 1], which is the feasible parameter space. Therefore,
if the null hypothesis is true, we would expect a normal distribution for the maximum
likelihood estimate of «, however this cannot be the case as values smaller than 0 or
larger than 1 cannot occur. Hence the likelihood ratio statistic will follow a non-standard
distribution. This distribution can be determined in special cases (Bohning et al.[(1994))),

but is complex to determine in more general settings. A bootstrap approach has been
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suggested as a solution (Richardson and Green (1997))), but this is quite computer-
intensive. A simpler solution is to use the BIC for model selection, as this works well

for mixture models, and so has been set as the default approach in our algorithm here.

Figure displays the selection technique for the model of best fit, as applied with our

written code for the approach.

Fit model with J = 1 component

A4

Fit model with J = 2 components

A4

If J > 2, calculate D; = |¢; — gi+1]
Set J=J+1
forall i =1,...,(J —1) ¢ +

i .

Is D; < 0.001 for any 47

Yes Yes
v y
Choose the best model Choose second model
as that with J — 1 components selection method

BIC LRT

e ~,

Best-fitting model is chosen Likelihood ratio test is conducted
as that with lowest BIC score to find best-fitting model

A4 A 4 A 4

Estimates of 72 and 1@ are extracted from model of best fit ’

FIGURE 6.1: Outline of steps taken to determine the best-fitting model in mixture

model approach.

We decided that a maximum of 5 components was sufficient to be tested, as none of

the case studies we investigated reached this maximum of 5 when applying the above
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algorithm, and the types of meta-analyses that we are simulating are unlikely to exceed
this number of clusters. We set the value for the the cut-off marker for the difference be-
tween Binomial probabilities across components within the same model as 0.001, as this
allowed us to distinguish those components giving similar values and thus representing
excessive components to the model, and agreed with other sources of information. For
the stopping rules of the EM algorithm protocol, we set the absolute difference between
observed log-likelihoods to be 1 x 107 as this was the default value in the comparable
C.A.MAN package in R, and it seemed an cut-off value, and the maximum number of
iterations to be 5000.

6.5.3 Unsuitable meta-analyses

There are a number of scenarios where this approach cannot be applied. As mentioned
previously, all double-zero trials have to be omitted from the meta-analysis in order to
apply this approach. In addition to this, the approach can not be applied to meta-
analyses where all studies have zero events in the control arm, i.e. X;o = 0 for all
i = 1,...,k, as this is equivalent to X; = X;; for all ¢ = 1,...,k, which leads to
9;.(new) being infinite in the M-step, and thus the Binomial probability ¢ is undefined by

construction, and the algorithm breaks down.

During the algorithm, we have also had to identify those cases where the value of e;;
(new)

(from the E-step) is so small (e.g. < 1x 107!5) that the resulting denominator of 9;

(new) itself becomes

is taken to be zero in R due to rounding errors, meaning that (9;.
infinite in the M-step and the algorithm breaks down as described above. In order to
prevent this from happening, when constructing the values of e;;, we checked whether

(new) to be infinite.

any of the values of e;; for a fixed j will cause the resulting value of 9;.
If this is the case, then we set the smallest e;; for the respective value of j to instead
be 1/j until 0;(new) becomes finite, and the algorithm can continue. Unfortunately, this
alteration tends to result in the number of iterations reaching the set maximum number
defined as the cut-off (e.g. 5000), meaning the output estimates are undefined as a
result. Meta-analyses that have been identified as causing this type of error include
those where the number of studies £ < 5 as a result of omitting double-zero trials,
or where the sample size is small, e.g. 10, and the proportion of single-zero studies
is significantly high. We could not find any patterns between the meta-analyses that
lead to this problem, so assumed that it is not a simple trait to identify, and merely
related to the severe rarity of the data identified. However, as we could apply the above
mentioned fix to the method without identifying the specific meta-analyses that would

cause a problem, it was not necessary to identify them here.
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6.6 Comparison with existing mixture model packages

We constructed a function in the statistical software package R to apply this mixture
model approach via the EM algorithm described in the previous sections. To ensure
that this user-written code worked correctly, and that the appropriate parameters were
being extracted after model fitting, we applied it to the case study datasets introduced
in Chapter [3] and compared the results with those produced using pre-existing packages
capable of fitting this type of model. We decided to use the C.A.MAN package in R as
our pre-existing method for comparison, because it was designed to be based on a sim-
ilar mixture model approach, and met the requirements of our own proposed approach
(Schlattmann et al.| (2016]); Bohning et al.| (1998); |Schlattmann| (2009)).

6.6.1 Case studies

We applied both our user-written code and the C.A.MAN package in R to the rare-event
meta-analysis case studies described previously, and the results can be seen below in
Table[6.1] Although we are interested in comparing the estimates for the overall log-risk
ratio and the heterogeneity variance parameters, we have also recorded characteristics
of the models that the two approaches deemed to be best-fitting for each of the datasets,

including the number of components, weights and associated Binomial probabilities.

From Table [6.1] we can see that the user-written code and C.A.MAN. package behaved
very similarly for each of the rare-event case studies investigated, selecting models of
best fit with the same number of components, and producing identical results to several
decimal places in all cases. As our user-written code agrees with that of a pre-existing
mixture model package, we can say with confidence that our code correctly applies the
approach, and extracts the appropriate estimates as required. Focusing on the results
produced using our own code, we can see that the HKSJ confidence intervals for the
summary effect are consistently narrowest of those considered for all datasets, while
the alternate Z-type and t-distribution methods produce very similar intervals. We
only present the confidence intervals for our own code here, as we were only interested
in comparing them against each other, not against that produced via the C.A.MAN.
package, which we have used to confirm the appropriateness of our code using the point

estimates alone.

When comparing these estimates to those produced with the existing estimators, our two
GLMM-based approaches and our conditional approach, that are presented in Chapter 3]
and Tables and [5.2] respectively, we can see that the similarity in results depends
very much on the dataset itself. In terms of the pre-proposed estimators, this approach
produces similar 72 estimates to the Sidik-Jonkman estimator for the rosiglitazone (MI)
and C-section datasets, and zero estimates that mirror the majority of these normal-

based methods for the rosiglitazone (death), albumin and transplant case studies. With
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TABLE 6.1: Summary of results from the best-fitting mixture models according to our written code and the C.A.MAN package for case studies; J
is the number of components for the best-fitting model.

Dataset R Package | J Weights Probabilities 72 I? log RR Confidence Interval
Z-type CI | t-type CI | HKSJ CI
Rosig (MT) Own code |2 0.198, 0.802 0.415, 0.679 0.189 13.31 | 0.535 | (0.13,0.94) | (0.12, 0.95) | (0.26, 0.81)
C.AMAN |2 0.198, 0.802 0.415, 0.679 0.189 13.31 | 0.535
Rosig (death) Own code | 2 0.468, 0.532 0.629, 0.649 0.000178 | 0.0084 | 0.574 | (0.15,1.00) | (0.14, 1.01) | (0.34, 0.81)
C.AMAN |2 0.471, 0.529 0.688, 0.641 5.60x10~°10.0027 | 0.573
CRBSI Own code |2 0.348, 0.654 0.072, 0.339 0.68 40.73 | -1.14 | (-1.98, -0.66) | (-2.03, -0.61) | (-1.84, -0.80)
C.AMAN |2 0.346, 0.654 0.0719, 0.3393 0.68 40.73 | -1.14
Csection Own code | 3| 0.3425, 0.6026, 0.0548 | 0.174, 0.348, 0.666 0.332 38.07 | -0.875 | (-1.14, -0.61) | (-1.14, -0.61) | (-1.08, -0.66)
C.A.MAN | 30.3429, 0.6023, 0.0548 | 0.174, 0.348, 0.666 0.332 38.07 | -0.875
Albumin Own code 1 1 0.628 0 0 0.525 | (0.24, 0.80) | (0.23,0.82) | (0.28,0.77)
C.AMAN |1 1 0.628 0 0 0.525
Transplant Own code 1 1 0.667 0 0 0.69 | (-1.13, 2.52) | (-3.31, 4.70) | (-1.53, 2.91)
C.AMAN |1 1 0.667 0 0 0.69
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the CRBI meta-analysis, however, this approach produces a 72 estimate higher than
any of the existing methods. In terms of the log-risk ratio estimate, this mixture model
approach produces estimates of higher magnitude to that of the pre-existing methods
for almost all of the datasets considered. Compared to the Poisson and conditional
logistic mixed regression models, the estimates produced here were consistently very
similar for all datasets, with the conditional logistic model actually having identical
results for the 3-study transplant meta-analysis, potentially demonstrating their joint
ability to perform well with such small meta-analyses. Finally, comparing these results
to those of our conditional approach, we can see that the results in general are not
very similar. In particular, the non-zero CRBSI estimate from the conditional approach
was not replicated here, and the 72 estimates for albumin were different, although the

associated log-risk ratio estimates were very similar.

6.7 Conclusions

In this chapter, we proposed and outlined a novel approach for the estimation of the
heterogeneity variance in rare-event meta-analyses that is based on the use of a mixture
model. In particular, it assumes that the count of events is modelled by a mixture
of Binomial models, rather than a singular standard Binomial distribution like other
approaches. This use of a mixture model allows for the potential clusters of studies
within a meta-analysis to be taken into account. The estimates of interest are generated
via an EM algorithm, with the associated model of best fit being found via an intense
protocol for model selection. As the model of best fit is determined for each individual
meta-analysis, based on its own individual characteristics, the approach is very specific

in its application, which we believe will result in more accurate estimates for 72.

As with the other methods discussed previously in this thesis, this approach has some
drawbacks. In particular, double-zero trials must be omitted in for the approach to
be applied to the respective meta-analysis, as these are undefined in the application
of the model. Additionally, meta-analyses that met certain requirements could not
be used with the approach as a result of the sparsity of their events. For example,
meta-analyses that contained only studies with zero events in their control arms were
unsuitable, as were those with less than 5 studies and small sample sizes. Although
these restrictions for the applicability of the approach are obviously a disadvantage,
the characteristics defining these unsuitable meta-analyses are unlikely to be seen very

frequently in empirical data.

We have written a function to apply this approach, including options for the user to
adjust model selection criteria to those desired. In order to confirm that this function
applied the approach correctly, and extracted the appropriate final estimates, we com-

pared it to a pre-existing package that can perform the mixture model section of the
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approach. We applied both sets of code to our rare-event case studies, and found that
the results, and accompanying characteristics of models of best fit, were identical in all
cases, thus backing up the validity of our extended version of code. When these results
were compared with those produced via the methods proposed previously in this thesis,
it could be seen that this approach generated very similar results to the GLMM-based
estimators, particularly for the conditional logistic regression model, where the estimates
were identical for one dataset. In terms of the summary effect confidence intervals, this
approach mirrored our previous estimators in terms of the HKSJ method consistently

generating the narrowest intervals.



Chapter 7

Methods for simulation study

7.1 Introduction

So far in this thesis we have outlined a number of methods to estimate the heterogeneity
variance (72) in meta-analyses, some of which we have proposed ourselves, and applied
them to a selection of empirical rare-event case studies. In order to gain a comprehensive
overview of the performance of these estimators in a wide range of real-life rare-event

scenarios, we shall also conduct a simulation study.

The aim of our simulation study is to produce a set of realistic meta-analyses that we
can use to compare the novel approaches we proposed in Chapters[4 to [6] to the existing
72 estimators discussed in Chapter We are interested only in designing meta-analyses
based on binary outcome data, and using the log-risk ratio as our outcome measure
since this represents the preferential choice in medical research analysis. Our focus will
be on examining different scenarios based on characteristics such as event probability
and sample size, in order to determine which 72 estimators perform better in given
situations. As we are concerned with rare-event data, we shall focus primarily on those
situations which would fall under this definition, i.e. meta-analyses containing single-
and double-zero studies. However, we shall also examine less restrictive, more common-

event scenarios in order to provide a complete overview of the estimators of interest.

In order to assess the performance of our chosen methods under the simulated scenarios,
we shall investigate how they perform in terms of estimating 72 and the log-risk ratio
outcome measure, as well as the proportion of zero estimates they generate and their
coverage when applied with certain confidence interval methods. In terms of the two
parameter point estimates, we shall measure the estimation performance using a range
of measures including the bias and mean squared error. Once we have this information,
graphs and tables displaying these results can then be produced, and an analysis of

the results will be conducted. Finally, we shall make recommendations based on these
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results with respect to the application of 72 estimators in the case of a variety of scenarios

relating to sparse-event data.

In this chapter we shall outline the methods required to conduct our simulation study,
giving details of how we chose to design our simulations and subsequently compare our
72 estimators of interest. All simulations and calculations described in this chapter were

conducted using the statistical software package R, unless otherwise stated.

7.2 Simulation study design

As we are interested only in binary outcome measures, we needed to generate a pair of
sample sizes and event counts for each study, corresponding to those of the study-specific
treatment and control arms, along with an individual study effect measure, of each
simulated meta-analysis. There are a number of parameters that we controlled the values
of during our simulation study by selecting a range of values that reflect diverse realistic
situations, with each independent combination of these parameter values forming one
of our distinct simulation scenarios. Such parameters include the sample sizes of each
study, which for simplicity we set as equal across the treatment and control arms, and
the number of studies (k). With these two parameters in particular, we chose to include
values that loosely correspond to scenarios of extreme sparsity in meta-analyses, i.e.
k < 5 and/or sample sizes of < 20. We also needed to define the true heterogeneity
variance, 72, which we chose to correspond with a specified level of heterogeneity, given

by the measure I2.

Given the scenarios governed by our specified range of set parameters, we began simu-
lating values for the probability of events. This is denoted by p;;, which represents the
probability of the event of interest occurring in treatment arm j of study 4 in the meta-
analysis, where j = 1 represents the active treatment arm and j = 0 the control/placebo
arm. From this, we were then able to calculate the effect measure of each study i, de-
noted by #;. Since we are interested in the log-risk ratio, §; = log RR; in our simulation
study. Finally, using all of the previously defined and simulated parameters, we were
able to sample the count of events, X;;, in the treatment and control arms of each study
of the meta-analysis. Once all of the above steps were complete, we had accumulated all
of the essential information to be collected from a meta-analysis, and thus had all of the

parameters necessary for use with our heterogeneity variance estimating approaches.

We have based the design of our simulation study on previous studies that have been con-
ducted to assess the performance of heterogeneity variance estimators in meta-analyses
(Langan (2015); Langan et al. (2016); |Veroniki et al.| (2016)). Throughout the remainder
of this section we shall describe in detail the processes undertaken to simulate our data,
as well as the reasons behind our choice in parameter ranges and sampling techniques.

A step-by-step outline of the protocol for our simulation methods is as follows:
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1. Set values for number of studies

2. Sample or set values for the study sample sizes, as required

3. Calculate true heterogeneity variance based on chosen values of I?
4. Sample the probability of events

5. Sample the study-specific effect measure

6. Sample the count of events.

7.2.1 Summary of simulated scenarios

A full list of parameter values and distributions investigated in our simulation study is
given in Table Each individual combination of these parameter values and distribu-
tions shall constitute as one scenario, giving a total of 6720 scenarios for investigation.
Although this is a large number of scenarios to simulate, and will therefore be computa-
tionally demanding, we believe that it will provide us with the most complete overview
of the estimators available in all possible cases. For each defined scenario, we simu-
lated 1000 meta-analyses, as we believed this to be sufficient based on similar simulation

studies.

We avoided simulating any scenarios that we found our novel approaches could not be
applied to during the course of the simulation study, and will list these with the results.
The values for the mean baseline risk () and mean log-relative risk (5) in Table
are paired to correspond to specific event probability scenarios, as discussed later in the
chapter. As stated above, all stages of the simulation study were conducted using the
statistical software package R, and our corresponding code is given in Appendix [D.1} In

order to make our results reproducible, we used a seed of 24601 within our script.
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TABLE 7.1: Set of parameter values and distributions that shall define simulated meta-

analysis scenarios; * denotes parameters paired to correspond to set event probabilities.

Parameter ‘ Value/distribution
Number of studies in
k . 2, 3, 5, 10, 20, 30, 50, 100
the meta-analysis
(a) Small studies: n;p = 20
(b) Small to medium sized studies:
nio ~ U(20,200)
(¢) Medium sized studies: n;o = 200
(d) Small and large studies: nig,...,nmo = 20
nig, ) and N(p41)05 - - - k0 ~ U(1000,2000) where m
Study sample sizes ) )
ni1 is the integer half way between 1 and k (when k
is odd, one study is to be generated from one of
the two distributions at random)
(e) Large studies: n;o ~ U(1000,2000)
In all scenarios, sample sizes are equal between
groups (nip = n;1)
True value of hetero-
72 geneity 0,0.2,0.4, 06,08, 1
variance
o Mean baseline risk* -6.9, -5.3, -4.6, -3.0, -2.3, -0.7
9 Variance of  study-
o ) . . 0.1, 3
specific baseline risk
B Mean log-relative risk* | -1.6, 0, 1.6
X0, X,;; ~ Binomial(n;;, p;i),
0 Count of events " ) (a5 ij)
X; Xij ~ Poisson(ni; X pij)

7.2.2 Number of studies

As mentioned in Chapter meta-analyses with few numbers of studies (k < 5) represent
a special area of interest with regards to methodology, as most approaches perform very
poorly in such scenarios, regardless of whether the events are rare or not. We have
chosen to include the scenarios k = 2,3,5 in our range of values for k, where k = 2
represents the extreme minimum case of having only 2 studies in the meta-analysis, a
scenario that has been previously covered briefly by [Friede et al.|(2017b)). Although 95%
of meta-analyses in the Cochrane Database of Systematic Reviews contain fewer than
16 studies (Handoll et al. (2008)), we extended our range of values for k from 2 to 100,
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as this upper boundary value aims to account for meta-analyses with a higher number

of studies in fields outside of medicine.

7.2.3 Study sample sizes

As another special area of interest in meta-analysis methodology revolves around small
sample sizes, i.e. < 20 subjects per trial arm in each study, we also included this
scenario in our simulation design, looking at cases where the trial arms contain as little
as 20 individuals. To represent this situation, as well as a wide range of other realistic
scenarios that occur in empirical datasets, study sample sizes (n;;) were generated from

five different distributions (labelled as scenarios (a) to (e)):

(a) Small equally-sized studies

(b) Medium equally-sized studies

(c¢) Small to medium uniformly sampled sized studies
(d) A mixture of small and large sized studies

(e) Large uniformly sampled sized studies

The exact sample sizes that these scenarios correspond to can be seen in Table For
simplicity, and to mimic reality, we set sample sizes to be equal across treatment arms,
i.e. ny = n4, as a difference in sample sizes has previously been shown to have no
significant impact on heterogeneity variance estimation (Langan et al. (2016))). We used
a uniform distribution when sampling n;; from an interval of specified values, however
past simulation studies have also used normal and y? distributions, and evidence has
been given to suggest that the distribution used may impact on the performance of
heterogeneity variance estimators (Langan| (2015])). As a result, we also aim to conduct
simulations using these two alternate distributions for study sample size, if time permits,

and then compare them to the results from the uniform sampling.

7.2.4 Probability of events

As we are interested in rare-event data, we were primarily focused on simulating meta-
analyses where the probability, p;;, of the event of interest occurring is very low. We
used a regression model to simulate these values of p;;, aiming for them to range from
0.5 to 0.001. This allowed us to explore a range of scenarios, from the probability of an
event being equal to that of no event; to those where the probability of an event is 1 in

1000, which could represent a potential rare adverse effect in a large clinical trial.
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For our simulation study, we used the random-effects version of our probability generat-
ing regression model, as this allowed us to set the true heterogeneity variance (together
with a separate method described later). Although we used a random-effects version
of the model, we have also outlined the fixed and mixed-effects models below, in or-
der to demonstrate how these models can be built upon and used to produce the final

random-effects model of interest.

The basic, fixed-effects version of the regression model is as follows:

logpij=a+pBxj , j=0,1 (7.2.1)

where p;; is the probability of an event in the j-th treatment arm of study 4 (with
j = 1 representing the active treatment arm, and j = 0 the control/placebo arm), « is
the baseline risk in the control/placebo arm, and g represents the log-relative risk. To
determine values of p;;, we shall choose a realistic range of values for v and  that will

produce the p;; we desire for our rare-event specification, e.g. p;; = 0.001.

Next, we consider the case where « is treated as a random effect, and given by «; ~

N(a,02). This gives us the mixed-effects model below:

logpij=a; +8x5 .  j=0,1 (7.2.2)

where «; represents the study-specific baseline risk, given by a; ~ N(a,c2). To con-
struct this model, we can set the mean of the study-specific baseline risk, a, to equal
the fixed-effect baseline risk from the model in Equation , as this will simplify
calculations and provide a reasonable estimate for the mean. We will choose o2 so as
to achieve reasonable values of «o; and p;;, and to reflect our chosen variation in the

baseline risk between studies, and we shall discuss the selection of this parameter later.

Finally, we shall consider the case where both o and  are treated as random effects,

giving us the desired random-effects model:

logpij =a;+Bixj . j=01 (7.2.3)

where «; is the study-specific baseline risk, with a; ~ N(a,02), and 3; is the study-
specific log-relative risk, given by §; ~ N (B,O‘%). Here, o and 03 can be chosen to
be those used in the model in Equation above, again for reasons relating to
simplicity. In a similar manner to the formulation of «; in Equation , the mean of
the study-specific log-relative risk, 8, may be chosen to reflect the value of the fixed-effect
log-relative risk given in Equations and . It is the value of ag, the variance

of the study-specific log-relative risk, that is of particular interest to us, however, as this
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represents the true heterogeneity variance (72). This value was chosen to correspond

with pre-specified levels of heterogeneity (I?), as will be described later.

Once we had decided upon the fixed-effect values needed to construct the mean and
variances of the parameters in this final random-effects model, we sampled values for «;
and (; using the normal distributions stated above. Finally, this gave us the required
probabilities p;0 = exp(«;) in the control/placebo group, and p;1 = exp(«a; + 5;) in the

active treatment group.

We were only interested in working with the model in Equation , as this allowed
us to set the true heterogeneity variance, which is essential for our simulation study.
However, as mentioned above, the previous two models provide a good set-up for this
model, and constructing them first allowed us to determine parameter values that were

of assistance to us when designing the more complicated random-effects model.
Choice of model event probabilities

For our research, we wanted to review the performance of a number of heterogeneity
estimating procedures under the scenario of rare-event data in a meta-analysis. As such,
when sampling the count of events for the meta-analyses in our simulation study, we
needed to pay special attention to the probability of events occurring in each arm, as

we wanted to concentrate on those that represented a sparse event in a clinical trial.

To decide upon the event probabilities that we would use to sample the count of events in
each simulated meta-analysis, we studied the rare-event case studies introduced in Chap-
ter These included a meta-analysis investigating the effect of anti-infective-treated
central venous catheters versus standard catheters on catheter-related bloodstream in-
fection (CRBSI) events (Niel-Weise et al.| (2007))), and another looking at the effect of
antibiotic prophylaxis for caesarean section (Hofmeyr and Smaill (2002)). Using the

study-level data, we calculated the average probability of an event

k

occurring in the treatment and control arm in each of these two case studies. The
average event probability in the control arm (pg) of the CRBSI dataset was 0.03, and
the treatment arm probability (p;) was 0.01, while the C-section study gave us pg = 0.09
and p; = 0.04.

Both of the case studies represent the scenario where an event in the control group is
more likely than an event in the treatment group, i.e. pg > p;. In the case of rare
outcomes, such a scenario could be the result of a treatment effectively reducing the
occurrence of some rare event in a clinical trial, which may be the primary function

of the treatment or the result of some beneficial side-effect. The alternative scenario,
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where the probability of an event in the control group is less than that of the treatment
group, i.e. pg < pi1, is the more common case with rare-event data in clinical trials.
This scenario could occur when the event of interest is an adverse reaction in a clinical
trial, and the treatment inadvertently increases the risk of some very rare outcome
occurring in the participant. We shall simulate both of these probability scenarios, as
previous results have suggested that this characteristic may affect the performance of 72

estimators.

Using the parameters extracted from the two case studies above, we decided to focus
on event probabilities in the range of 0.001 to 0.5, representing a 1 in 1000 to a 1
in 2 chance of event occurrence, respectively. This would allow us to compare the 72
estimation results for sparse-event data with those for more common events, which in
turn could be compared to results from similar studies that have focused on higher
probability (and normally distributed) data. In particular, we chose to simulate three

alternate event probability pairings for both scenarios of py > p1 and py < p1:

1. Very rare events: p; = 0.001 and p;, = 0.005
2. Rare events: p; = 0.01 and pj, = 0.05

3. Common events: p; = 0.1 and p;, = 0.5

where j = 0,1 and jx = {0,1} \ {j}. We believed that pairings 1 and 2 adequately
represented the majority of medical rare-event scenarios, both in the form of clinical
trials investigating the side-effects of medications and observational studies looking at
the occurrence of rare diseases. For example, there is a 1 in 2500 chance of Caucasians
developing the chronic, autosomal recessive disorder cystic fibrosis (Scotet et al.| (2012)),
while the risk of developing serious complications (e.g. a blood clot) as a result of taking
the contraceptive pill is 1 in 10,000 (Mohanna and Chambers (2008))). In this simulation
study, we did not investigate risks lower than 1 in 1000, which are defined as minimal
to negligible (Mohanna and Chambers| (2008)), as the performance of 72 estimators is

unlikely to differ considerably below this level of event occurrence.

For completeness, we also chose to simulate the scenario where the event probabilities
are equal across treatment and control arms, which corresponds to the log-risk ratio
being zero. For this case, we looked only at the rare-event scenario, using p; = 0.01 for

both arms. In total we simulated seven probability pairings, and these are listed below
in Table [.21
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TABLE 7.2: Pairings of mean baseline risk and mean log-relative risk to produce model

event probabilities for treatment and control arms.

Mean Mean log-
Model event probabilities | baseline relative
Probability scenario
risk risk
Po p1 a B
0.001 0.005 -6.9 1.6
Po < P1 0.01 0.05 -4.6 1.6
0.1 0.5 -2.3 1.6
Po = p1 0.01 0.01 -4.6 0
0.005 0.001 -5.3 -1.6
Po > p1 0.05 0.01 -3.0 -1.6
0.5 0.1 -0.7 -1.6

Sampling the event probabilities

The arm-specific event probabilities (pg, p1) discussed above are only the model or ideal
probabilities for our simulation study, as we sampled these values to mirror real-life
variation between studies. As mentioned previously, we did this using the random-effects
model in Equation , after sampling values for the model parameters - the study-
specific baseline risk a; ~ N(a,02) and study-specific log-relative risk 8; ~ N (3, 0’%).

The means of these Normal distributions correspond to the mean baseline risk (a) and
mean log-risk ratio (3). These values were chosen to produce our model pairs of prob-
abilities when inserted into Equation (with some minimal degree of error). For
this fixed-effects model, the chosen model probability pg solely dictates the necessary
value of . With this knowledge of «, and the required probability p; from the respec-
tive pairing, the fixed value of 5 can also then be determined. The values of a and (8
required to produce each of our chosen event probability pairings can be seen in Table
(.2

The values of o2 and a% correspond to the variance of the baseline risk and between-
study variance (as cr% = 72), and these also need to be chosen. We shall discuss how
we decided on ranges for these parameters in our simulation study later in the chapter.
Once we had all of the above parameter values («, 3, 02 and ag) for each of our scenarios
of interest, we could then sample the required event probabilities for the treatment and

control groups in the studies within our simulated meta-analyses.
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7.2.5 True heterogeneity variance

As heterogeneity variance (72) estimators have been shown to vary in performance de-
pending on the true value of 72, we chose a range of 72 that represented the full spectrum
of variability present in rare-event meta-analyses, using our case studies from Chapter
as a guideline. Having applied the pre-existing estimators and our proposed methods to
these datasets, we observed that the estimates of 72 ranged from 0 to 4.2. However, this
higher value was generated for the case when k£ = 3 and was not backed up by any other
estimators, so we decided to ignore this value and look at the next highest estimate for
any case study, which was 72 = 1. As a result, we chose to use values of 72 ranging
from 0 to 1, increasing in increments of 0.2, as we believed this to represent a range of
real-life rare-event scenarios. We also looked at previously published simulation studies
and meta-analyses of rare-event data, and found that our chosen range was appropriate,
as it was representative of all possible rare-event scenarios, as well as a wide selection of

higher-probability (more common) event meta-analyses.

Levels of heterogeneity

We conducted a preliminary simulation study to ensure that our chosen range for 72

represented all potential levels of heterogeneity, defined by I? in Section as this
is more interpretable in empirical settings. In particular, I? can vary between 0%,
corresponding to within-study variance accounting for all of the observed variability
(homogeneity), and near 100%, where heterogeneity forms the major contributor of
variability. In this primary investigation, we calculated the average I? for each chosen
value of 72 for defined clusters of simulation scenarios sharing parameters that affect
the computation of I2. We calculated I? for each simulated meta-analysis using the

following formula:

7_2

I2:ﬁ><100%
T g

where the true typical study variance o2 (a form of average of the study-specific vari-

ances, and also a type of harmonic mean) is calculated as follows:

—__ (k=1>E,1/8
(O 1/62)2 = 38 (1/62)2

2 _ L _ 1 L _ L . . S . g .
=X T an T X T no 18 the within-study variance for the log-risk ratio, and

X;j and n;; are the event count and sample size for treatment arm j of study 4, with

where &

j = 1 referring to the active treatment arm and j = 0 otherwise.

Our aim was to determine whether our set values for 72 approximated a wide range

of I? in the simulated scenario clusters, where clusters were defined by the sample size
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and probability of event only. It has previously been shown that I? is not sensitive
to changes in the number of studies k, so we fixed this and set k¥ = 3 when running
this preliminary simulation, in order to shorten computation time and still provide well-
grounded derivations of the corresponding I?. As I? values are likely to vary to some
extent as a result of sampling of the aforementioned parameters and sampling error
within the simulated meta-analyses, we defined the resulting value of I? as the average

produced over 1000 replications.

We found that our chosen selection of 72 produced a range of I? values from 0% to 95%
as required, certifying our choice for the 72 parameter. Threshold values can be defined
for I? to help interpret the results of the simulation study: 15% and 30% represent
low inconsistency; 45% and 60% represent moderate inconsistency; and 75%, 90% and
95% represent considerable inconsistency. These threshold values roughly correspond to
the guidelines in the Cochrane handbook (Higgins and Green| (2011))), but are modified

slightly to represent the simulated I? values produced using our chosen 72.

It should be noted that the value of o2, and subsequently I, cannot be calculated when
Xi1 = X0 = nj1 = nyo, i.e. when the number of events is equal to the sample size of each
arm, and the sample sizes in turn are equal, for at least one study in the meta-analysis.
This is because the calculated log RR and its associated standard error are both zero
in this case, which leads to o2 and thus I? being undefined. However, this should not
affect our simulation study since we are focusing on rare-event data rather than very

common outcomes with high probability of event.

7.2.6 Variance of the baseline risk

Another parameter that is essential in the simulation of event counts in meta-analyses
is the variance of the baseline risk (the risk in the control or placebo group), which is
denoted by o2. For our simulation study, we based the choice of these parameter values
on those characteristic of empirical rare-event meta-analyses, by looking at our case
studies in Chapter 3] For each of these real-life datasets, we determined the baseline risk
by calculating the probability of an event in the control arm (= X;q/n;g) for each study
i. We then sampled from a Normal distribution with mean -4.6 (to reflect our median
event probability of 0.01) and various values of the variance, and took the exponential of
these values as the associated baseline probabilities. Repeating this step 1000 times, with
100 studies (our largest simulated size of meta-analysis), allowed us to determine which
value of the variance would result in an average standard deviation of event probabilities

similar to that observed in the relevant case study.

By conducting the above simulation, we found that the smallest standard deviation of
baseline event probabilities seen in the case studies was 0.003, while the largest was 0.16.

To generate values similar to these, using the process described above, we determined
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that o2 values of 0.1 and 3 were required, respectively. Thus, we decided to use these

2

% in our simulation study, as they reflect both small and considerable

two values for o
variability in baseline risk. Although this larger variability could reduce the desired
frequency of rare events simulated in the study control arms, it is still a plausible scenario
as study populations may differ in terms of baseline characteristics such as gender,

ethnicity and medical history.

7.2.7 Count of events

Having completed the previous steps in this chapter, we then had all the parameters
necessary to generate the count of events in the treatment and control arms for our
simulated meta-analyses. We initially sampled the count of events, Xj;, in the j-th

treatment arm of study ¢, using the Binomial distribution:

Xij ~ Binomial(nij, pij)

where p;; is the event probability generated according to the model in Equation (7.2.3])

in this case.

However, to provide an alternate method for sampling the count of events in our scenar-
ios, we also sampled them using the Poisson distribution. This provides an approxima-
tion to the Binomial distribution when n;; is large and p;; is small, and so complements

the rare-event property of our simulated data:

Xij ~ Poisson(n;j X pi;)

Although we initially used the sample sizes, n;;, for simplicity here, we later replaced
them with the more accurate trial arm-specific person times, F;;. The methods that we
have outlined here to sample the count of events represent only a few of many options.
However, we believe that the majority of realistic scenarios, fitting with our rare-event

focus, will correspond well with the above sampling approaches.

7.2.8 Study-specific effect measure

To determine the effect measure, 6;, for study i (in our case the log-relative risk, log RR;),

we re-write the model equations given in Section [7.2.4] as follows. For the model in

Equation (7.2.1)) we have:

log pi1 —logpio =a+ B —a=p
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giving us the fixed-effect measure:

logRR:log@ =6=46
Pio

Similarly, for the model in Equation ([7.2.2)) we obtain:

log pi1 —logpio =a; + B8 —a; =B

again providing us with the fixed-effect measure:

logRRzlog}ﬂ =5=40
Pio

Finally, for Equation (7.2.3]) (our random-effects model of interest), we have:

logpis1 — logpio = o + B — a; = f;

This provides us with the required study-specific effect measure:

log RR; = log b _ Bi = 6;
bio

It follows from our previous assumptions that 6; ~ N (0, O‘%), with the mean § = § and
variance O'% = 72 (our true heterogeneity variance determined in Section . Since
this full random-effects model is the model that we used to sample probability values
in our simulation study, as described in Section [7.2.4] we were also able to determine
the study-specific log-relative risk in this same manner. At this point in our simulation
study, we had generated all of the meta-analysis parameters necessary to apply the 72

estimators and novel approaches of interest.

7.2.9 Meta-analyses avoided during simulation

There were a number of types of meta-analysis that, if simulated, could not be used with
some of the 72 estimators that we were investigating. The most important, and destruc-
tive, of these meta-analyses were those for which the methods that we are proposing
could not be applied. As it was these novel methods that we are most interested in
assessing the performance of, we avoided generating meta-analyses that met such un-
desirable properties in our simulation study. This ensured that none of our simulated

scenarios contained high proportions of meta-analyses that could not be used with our
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novel approaches. If meta-analyses meeting these conditions were produced, then the
count of events (X;p, X;1) were resampled until the conditions were no longer met, and

the meta-analysis was thus deemed as adequate for inclusion in our study.

This resampling of meta-analyses was deemed a fair and reasonable approach to deal
with the situation of inapplicability with our proposed methods, and allowed us to
maximise the efficiency of our simulations. The conditions that we defined for resampling
corresponded to very few scenarios, and consequently few meta-analyses were resampled
during our simulation study, thereby having little impact on the study itself. This
approach is common practice in other simulation studies in this field (Bakbergenuly and
Kulinskaya/ (2018)), where the authors have chosen to ignore scenarios for which the

method(s) of interest cannot be applied.

For each of our generalised linear mixed model (GLMM) approaches proposed in Chapter
[ there are several types of meta-analysis that cannot be used as a result of model
structure, and these are listed in Section 1.7, We avoided simulating meta-analyses that
could not be used with both of our GLMM approaches - the Poisson mixed regression
model (PMRM) and conditional logistic mixed regression model (CLMRM) - but allowed
the simulation of those that could be used with one of these methods. This is because
we didn’t want to overly restrict the types of meta-analyses being simulated, as only
producing certain data types may introduce selection bias into our results. There are
also a number of scenarios for which our proposed mixture model approach from Chapter
[6] cannot be applied, and these are listed in the method guidelines in Section [6.5.3] As

before, we avoided simulating these incompatible meta-analysis scenarios.

We also chose to avoid the simulation of meta-analyses consisting entirely of double-
zero trials, as these meta-analyses contain very weak information in terms of event
counts, and so are unlikely to be published as a result. As such, they do not represent
realistic data from publications, and so were deemed unnecessary for inclusion in our
simulation study. Such meta-analyses would have been omitted from simulation as a
result of incompatibility with both the GLMM methods and the mixture model approach
regardless of this choice, but if this had not been the case we still would have avoided

this scenario.

If we determined any further scenarios that were incompatible with the 72 estimators
during the course of the simulation study, particularly those that could not be used with
our novel approaches, we also dropped them from our simulation study. Such scenarios

will be listed in the results chapter.
Problematic meta-analyses not omaitted

It is worth mentioning here a meta-analysis scenario that could not be used with the
majority of 72 estimators, but which we decided to keep in our simulation study. This

scenario relates to meta-analyses containing at least one study where the number of
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events in each arm was equal to the sample size, and as a result of our simulation
design, were also equal across treatment arms. This represents the scenario where the
event of interest is extremely common, and has occurred for all subjects in both the
treatment and control arms. If this is the case in a given simulated study, then the log
risk-ratio for that study will be zero, as will the associated standard error. If this is
the case for at least one study in the meta-analysis, then the following pre-existing 72

estimators cannot be calculated and thus are undefined:

e DerSimonian-Laird

e Positive DerSimonian-Laird

e DerSimonian-Laird bootstrap

e Paule-Mandel

e Hartung-Makambi

e Hunter-Schmidt

e Maximum likelihood

e Restricted maximum likelihood

e Approximate restricted maximum likelihood

e Rukhin Bayes with simple prior estimate

e Rukhin Bayes with zero prior estimate (73 = 0)

e Bayes Modal

As a result, the only methods from Chapter [2| that can be applied to this ‘all-events
study’ meta-analysis scenario are the Hedges-Olkin (HO), Sidik-Jonkman and Sidik-
Jonkman with HO initial estimate. In addition to these, both of our GLMM methods
could be applied to this scenario. Despite the majority of pre-existing estimators being
unsuitable for this scenario, we included it in our simulation study because our novel

approaches were appropriate, and these were the methods of primary interest to us.

7.3 Continuity corrections

As discussed in Section [1.9.1] a variety of continuity corrections have been proposed
to counteract the issues associated with single-zero and double-zero trials (Jewell and
Holford| (2005])). We shall apply a selection of these continuity correction approaches
in our simulation study in order to determine which performs best in our area of inter-
est (rare-event log-risk ratio meta-analyses). Specifically, we shall apply the following

continuity corrections:
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e Constant continuity correction using ¢ = 0.5 (standard method)

e Reciprocal of the opposing trial arm’s sample size

Both of these approaches are discussed in detail in Section We also discussed an
empirical continuity correction in this section, however we shall not include this in our
simulation study as is not recommended for use with random-effects models (Jewell and

Holford| (2005))).

7.3.1 Continuity corrections for all-event studies

Continuity corrections are not only required for the case of single-zero and double-zero
studies, but also for studies where every participant in both treatment arms has had
the event of interest (the scenario discussed in Section . In these cases, where
Xi1 = ni = Xio = nip (as we are setting the sample sizes to be equal in our simulation
study, i.e. mn;; = myo) for at least one study ¢ in the meta-analysis, we applied the

following continuity correction:
e Add a constant ¢ to each event count, and add 2c¢ to the sample sizes

To complement our zero-combatting constant continuity correction above, we set ¢ = 0.5
in this case. We chose this correction as it corresponded with those proposed previously
for similar issues. While this particular ‘all-events’ scenario is only likely to occur in
cases with high event probabilities and small sample sizes, and so not related to our
primary focus on rare events, it is still a viable possibility in meta-analyses and as such

we did take it into account and adjusted as necessary.

7.3.2 Calculation of log-risk ratio and associated standard error

Finally, with the appropriate continuity corrections applied, we were then able to calcu-
late the log-risk ratio and its associated standard error for each of our simulated studies.
It should be noted that the choice of continuity correction will only affect the pre-existing
72 estimators in Chapter [2| as the study-specific estimates of log RR; and s.e.(log RR;)
are involved in the calculation of these 72 estimates. In contrast, the continuity correc-
tions will have not effect on our GLMM methods, as these do not use the study-specific
effect size estimates, requiring only the uncorrected original event counts and sample

sizes.
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7.4 Heterogeneity variance estimates

7.4.1 Pre-existing estimators

Once we had simulated our meta-analyses as described in Section and applied any
necessary continuity corrections in order to calculate study-specific log-risk ratio, we had
collected all of the information necessary to apply the pre-existing 72 estimators from
Chapter For each of our simulated meta-analyses, estimates of 72 were calculated

using the following approaches:

e DerSimonian-Laird

e Positive DerSimonian-Laird

e DerSimonian-Laird bootstrap

e Hedges-Olkin (Cochran’s ANOVA)

e Paule-Mandel

e Hartung-Makambi

e Hunter-Schmidt

e Sidik-Jonkman

e Sidik-Jonkman with Hedges-Olkin initial estimate
e Maximum likelihood

e Restricted maximum likelihood

e Approximate restricted maximum likelihood

e Rukhin Bayes with simple prior estimate

e Rukhin Bayes with zero prior estimate (73 = 0)

e Bayes Modal

Details of how to estimate 72 using each of the methods listed above are given in Chapter
As can be seen from the above list, not all of the estimators discussed in Chapter
and appropriate for our area of interest were included in our simulation study. For
example, we decided not to include the two-step DerSimonian-Laird and Hedges-Olkin
estimators discussed in Section as we believed these would have little improvement
in performance over their respective one-step alternatives, particularly in the challenging

case of rare-event data. In addition, we also chose not to include the fully Bayesian
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approach using MCMC methods for 72 estimation in our simulation study. This is
because we wanted to concentrate on methods that currently dominate the practice
of meta-analysis, and so our focus here is not on Bayesian methodology. We believe,
however, that Bayesian methods will gain increasing importance in this area, and so we

will need to consider them in future methodological developments.

As mentioned previously, these estimators were applied to our simulated meta-analyses
using code that we designed in R, which can be seen in Appendix For these pre-
existing estimators, we based our code on that given by |[Langan| (2015)). To check the
validity of our code, we applied it to empirical datasets that had previously been used
with some of the estimators listed above in published meta-analyses. We then compared
the 72 and effect size estimates that our code produced to those given in the associated

publications, in order to confirm that our code was working correctly.

7.4.2 Proposed methods

The main aim of our simulation study was to determine how our generalised linear mixed
model (GLMM) approaches (proposed in Chapter E[) performed in terms of estimating
72, compared to pre-existing normal-based approaches. The GLMMs that we will apply
to our simulated meta-analyses, in order to extract the model parameters corresponding

to 72 and overall effect size estimates, are:

e Poisson mixed regression model

e Conditional logistic mixed regression model

We applied these listed models using the glmer command of the Imej package in R
(Bates et al| (2015)). We chose to fit the models using command-based options that
would maximise the application of these methods, as described in Section [£.6] However,
if any further adjustments to these options were found to be beneficial during the course

of the simulation study, then these changes were made and will listed with the results.

We also applied our novel conditional-based and mixture modelling approaches, pro-
posed in Chapters [5] and [6] respectively, extracting the relevant estimates as described in
the corresponding chapters. As our proposed conditional-based approach estimates the

2

probability-associated variance 72 rather than 72, we cannot compare this directly with

the other estimators being consigered in the simulation study. However, we shall com-
pare its performance within the four variations of estimating equation that we proposed,
in order to determine which scenarios these perform well in. For the mixture modelling
approach, there are arguments in our corresponding R code that allow the user to select
the number of iterations and cut-off value for the expectation-maximisation algorithm,

however we used those options discussed in Chapter [6]
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7.5 Summary effect-size estimates

We also generated estimates of the overall effect size (), the log-risk ratio, for every
estimate of 72 in each of our simulated meta-analysis. For the normal-based 72 estima-
tors from Chapter [2| we estimated 6 for each meta-analysis using the inverse-variance
approach described in Section We also used this approach with our T}? estimates
from the novel conditional-based method. For our novel GLMM-based methods, the es-
timates of 8 were extracted from the relevant parameters of the associated model output,
as described in Chapter @ Finally, for our mixture model approach, these 6 estimates

were generated according to the protocol given in Chapter [6}

7.5.1 Confidence intervals

We next calculated the confidence intervals for the overall effect size estimates discussed

above. We used the following methods to generate these confidence intervals:

e Wald-type method
e {-distribution method

e Hartung-Knapp-Sidik-Jonkman method

Each of these methods is described in detail in Section

7.6 Performance measures

In order to determine the performance of the methods listed in Section|7.4] we used a va-
riety of universally comparable and meaningful performance measures. These measures
were chosen to allow us to compare the accuracy of our 72 estimators easily and with re-
liability. In particular, estimators were compared in terms of the following performance

measures:

Median and mean absolute bias in estimate of 72

Median and mean squared error of estimate of 72

Proportion of zero estimates of 72

Mean absolute bias in estimate of the mean treatment effect

e Mean squared error of estimate of the mean treatment effect



160 Chapter 7 Methods for simulation study

e Coverage of confidence interval for treatment effect

e Power, which we defined by the percentage of meta-analyses meeting the require-

CIuppe'r,G _CIlower,G
2

appeared appropriate for our needs and was the constant used in similar simula-
tion studies (Langan! (2015)))

ment < ¢, where we have chosen the constant ¢ = 2 as this

e Mean and variance of the error.

Definitions for each of these measures are given in Appendix A good estimator
should have small bias (if not unbiased) and a low mean squared error. If the estimator
can produce zero estimates of 72, and so is not strictly positive by construction, then it
should produce a high proportion of zero estimates when the true value of 72 = 0, and

a low proportion of zero estimates in all other scenarios.

7.7 Analysis

In summary, analysis of the results was undertaken after the following steps had been

performed:

1. A meta-analysis dataset is generated for a sampled set of specified parameter values

2. Step 1 is repeated 1000 times, to produce 1000 meta-analyses for a given scenario

of interest

3. Heterogeneity variance estimators are applied to the 1000 meta-analyses, and the

72 estimates are saved

4. Summary effect measures (the log-risk ratio) are generated for each 72 estimate in

each of the 1000 meta-analyses

5. Performance measures are calculated for the 1000 72 and  estimates produced

from each of the investigated methods

6. Steps 1-5 are repeated for all combinations of parameter values and distributions

defining meta-analysis scenarios.

A flow-chart detailing this simulation study protocol is displayed in Figure All of
the steps outlined in the above protocol were carried out in R, and the estimates and
performance measures produced were stored for analysis. All 72 estimation methods
were applied, and thus also compared, using the same simulated meta-analysis datasets

in order to reduce sampling error.
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Of the pre-existing estimators listed in Section[7.4] the three maximum likelihood-based
methods are iterative in design, and so may fail to converge to a solution when applied
to some meta-analyses. Such failure to converge would likely be a result of the chosen
iteration algorithm, rather than reflect poor performance of the estimator itself. When
applying these iterative estimators in our simulation study, we used the default iteration
algorithm of the metafor package in R (Fisher’s scoring method with Hedges-Olkin
estimate as the initial value), as this seemed an appropriate choice (Viechtbauer| (2010])).
Any simulated meta-analyses that caused such failures in convergence were not replaced,
however the instances were recorded so that the characteristics of the associated datasets

could be examined for patterns and similarities.



162 Chapter 7 Methods for simulation study

Set values for a, 3, 72 and o2
and levels for sample size,
event count distribution

and sample size distribution

A4

Set or sample values for the sample size (= n;o = n;1) ‘

A4

=} Sample values for o and ‘4.

A4

‘ Calculate pg and p; ‘
l No

Are po, p1 € [0,1]?

Yes
4

Sample X;0 and X;;
(if event count distribution is Poisson,

resample until X;o < nio and X; < n;p)

l

Does simulated meta-analysis

meet any of the conditions

listed in Section [[.2.9F

No
v

‘ Apply continuity correction and calculate log RR; and se(log RR;)

v
‘ Apply heterogeneity variance estimators and ‘

novel estimating methods and extract 72

A4

‘ Calculate 0 (or extract from models)

A4

‘ Calculate confidence intervals for § ‘

A4

‘ Calculate performance measures

FIGURE 7.1: Outline of simulation study protocol.
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Similarly, our proposed GLMMs may fail to converge to a solution in certain scenarios,
particularly those with very few or no events in the study arms of the meta-analysis. As
a result of this, the models may fail to produce estimates of 72 and 6 in these cases. As
with the iterative maximum likelihood estimators mentioned above, we did not replace
the meta-analyses for which the GLMM-based methods could not produce estimates, but
instead recorded their instances in order to inspect these meta-analyses for similarities
in parameters and other defining features. By recording instances of failures, this also

allowed us to compare the efficiency of these estimators.

7.7.1 Primary analysis

The 72 estimation methods under investigation were compared in terms of the perfor-
mance measures listed in Section [7.6] and then were presented graphically to provide a
visual representation of the results. For each performance measure and meta-analysis
scenario of interest, graphs were produced displaying the value of the given performance
measure against the number of studies in the meta-analysis, allowing easy comparisons
to be made between the estimators. For each scenario, the average 12 values (that the
true 72 had approximated, as described in Section were presented along with the
graphs to convey the level of heterogeneity associated with the given scenario. In cases
where 72 # 0, 90% confidence intervals for 12 were also presented, allowing us to show
how accurate 72 was in approximating IA2, which may be of interest when all estimators

perform poorly for a given level of heterogeneity.

As mentioned previously, the maximum likelihood and GLMM-based approaches may
fail to converge in some cases. To account for this in the presentation of results, the
number and percentage of failures were tabulated, and these results were then taken into
account when making recommendations regarding the best methods to use in specific
sparse-event scenarios. If any of the other 72 estimators failed to produce an estimate,

then such failures were also recorded.

7.7.2 Secondary analysis

If all of our 72 estimators performed poorly in a given scenario of interest, then this
setting was investigated further, in order to determine what characteristics of this situ-
ation may have been associated with the inability to accurately estimate 72. By further
investigating the given scenario, it could also be determined which of these poorly per-
forming methods had the most potential, as an alternate estimator of the same type
(e.g. method of moments, GLMMs) could be sought for use with this context in the

future.
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7.8 Recommendations

Once the analysis of results had been conducted, recommendations were made regarding
the best choice of 72 estimator in a rare-event meta-analysis for each specific scenario
under investigation. These recommendations were made based on a compromise be-
tween the outcomes of all performance measures of interest and the ease of applying the
associated estimating procedure, e.g. whether it is iterative or not. If the difference in
performance measures was negligible, then simple estimators were recommended over

more complex iterative procedures.

7.9 Overview

Our simulation study was conducted using the protocol detailed in this chapter. Alter-
ations from this protocol may have been made if they were deemed necessary during
the course of the study, and if so shall be recorded with the results. We simulated 1000
meta-analyses for each scenario under investigation as this was deemed adequate and
corresponded with previous simulation studies in similar fields. We also believed that
the number and range of our investigated scenarios was adequate and covered all major
classes of potential real-life meta-analyses. As a result, we believe that additional simu-
lations or scenarios would have increased computation time and not significantly added

to or altered the overall results.



Chapter 8

Main simulation study results

8.1 Introduction

The principal aim of our simulation study was to determine the performance of our novel
methods to estimate the heterogeneity variance (72) compared to existing approaches,
in the case of rare-event meta-analyses. We did this by simulating meta-analyses for a
wide range of possible real-life meta-analysis scenarios, and then computing performance
measures such as bias and mean squared error for the corresponding estimates. All stages
of our simulation study were conducted using the statistical software package R, and the
code for this was validated before conducting the study to ensure correctness. This
ensured that we produced a set of reliable and trustworthy results from which valid

recommendations could then be made.

In our simulation study, we looked at over a thousand meta-analysis scenarios governed
by characteristics such as the number of studies, sample size and true heterogeneity vari-
ance, and looked at both rare and common events. Additional scenarios were generated
to investigate the effect of altering aspects such as the type of continuity correction used,
and the sampling of sample size and event counts in the meta-analysis simulation. As
we generated such a large number of scenarios, we shall group them according to certain
characteristics when presenting their results, and report only the most informative of

these results.

In this chapter, we shall summarise how the simulation study was conducted - paying
special attention to any changes that were made to the original simulation protocol
outlined in Chapter [7]] We shall detail each of these changes along with explanations as
to why they were deemed necessary. We will then summarise the characteristics of the
simulated meta-analyses themselves in terms of the proportion of single-zero and double-
zero trials present, which are of particular importance in the case of rare-event data.

In Chapters [4] to [6] we listed scenarios that, by definition, our novel approaches could

165
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not be applied to. Here we shall list any further scenarios that we found our proposed
methods, particularly the generalised liner mixed models (GLMMSs), could not be used
with during the course of the simulation study, or which failed convergence in a high
percentage of cases. Similarly, we shall present the proportion of meta-analyses that did
not result in convergence for those estimators that were iterative or model-based, and

characterise these failures in terms of scenario-defining parameters.

We will then focus on outlining the main results from our simulation study in terms
of the performance of methods in estimating 72 and the summary effect size in terms
of measures such as bias and mean squared error (MSE). We shall also look at the
proportion of zero 72 estimates generated for varying 72, and the coverage of confidence
intervals for the effect size when the estimators were paired with various interval types.
We shall summarise these results for each of the major event probability scenarios we
are looking at, paying particular attention to rare and very rare events - our area of
interest. We shall present the outcomes of these performance measures graphically,
plotting only those methods and scenarios that we deem are of interest, in order to
prevent over-information. We will also score the estimators in terms of their MSE for
grouped scenarios, and provide a general summary of their performance in estimating
72. Finally, to ensure credibility of our results, we shall compare our results regarding

the pre-existing estimators to those achieved in previous simulation studies.

8.2 Amendments made to simulation study protocol

In Chapter [7} we gave a detailed protocol for our simulation study. Although we tried
to follow this protocol as closely as possible, there were a number of aspects that we
found needed altering during the course of the study. Such modifications included im-
proving the simulation study itself and omitting certain scenarios that were found to be

challenging to apply in terms of convergence, particularly with our novel methods.

8.2.1 Rounding of zero estimates

Some of the estimators included in our simulation study produced very exact 72 estimates
that never reached zero, but did generate very small values that were close. An example
of this is our proposed Poisson mixed regression model (PMRM) approach, which despite
not producing zero estimates, resulted in many estimates less than 1 x 107°. To account
for this and ensure that any methods producing values of 72 very close to zero had
these estimates classed as zero, we added code that rounded any 72 estimate < 1 x 107>
to zero. This ensured that such estimates were correctly classed as being zero, which
could have a profound impact on the associated estimator’s performance in estimating

72, particularly in cases of homogeneity.



Chapter 8 Main simulation study results 167

8.2.2 Scenarios excluded from simulation study

During the course of the simulation study, it became evident that a number of the
iterative and model-based estimators had difficulty converging in certain scenarios. As
a result of this, we decided to drop certain parameters from our simulations, especially
those that were not compatible with our novel approaches, in order to focus only on cases
where the majority of methods could be applied. In particular, from those scenarios

originally defined in Table [7.1 we excluded the following parameters:

e Number of studies (k) = 2,3: These scenarios were dropped completely from the
simulation study (for all settings) because they were generally inapplicable to our

novel GLMM-based approaches, even when sample sizes were large.

We also added to the parameters given in Table as we decided to sample any non-
constant study sample sizes from uniform, normal and chi-squared distributions rather
than only uniform. After making the above described amendments, we simulated a total

of 2520 scenarios.

8.2.3 Application of generalised linear mixed models

Two of our novel approaches involved the use of GLMMs - the Poisson mixed regression
model (PMRM) and conditional logistic mixed regression model (CLMRM) methods
introduced in Chapter [ To apply these models to our simulated meta-analyses we
used the glmer command in the R package Imej (version 1.1-19). We discussed our
decision to use this command in Section however the specific package version is
also very important here. This is because while there were a number of scenarios for
which these models could not be applied (which we shall list later in this chapter),
modifications may be made to later versions that make the package appropriate for
these cases. Such an increase in applicable scenarios was observed when this particular
version became available while conducting our simulation study, as the prior version of

the package could be applied to fewer scenarios.

We chose to make some changes to the model application outlined in Section [4.6] as a
result of observations made during the simulation study. In particular, when applying
the PMRM model we used the following control parameters in the glmer command

options:

e Nelder-Mead optimising function

e The maximum number of function evaluations the optimising function could make
was set to 100,000
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e For the residual sum-of-squares step, the tolerance level for convergence was set
as 1 x 1073

e When determining the adaptive Gauss-Hermite approximation of the log-likelihood,
zero points per axis were used - this involves a quicker but less precise version of
parameter estimation by optimising the fixed and random effect coefficients in the

iteratively re-weighted penalised least-squares step.

When applying the CLMRM method, we used all of the default options given with the

glmer command, which can be seen in Bates et al. (2015) and includes:

e When determining the adaptive Gauss-Hermite approximation of the log-likelihood,

one point per axis was used - this corresponds to the Laplace approximation.

The final R code used to apply these models is given in Appendix[D.1] For both models,
the command settings were chosen as those resulting in the greatest applicability in terms

of range of potential scenarios, after comparison among varying option combinations.

8.3 Summary of simulation study

8.3.1 Characteristics of simulated meta-analyses

In order to gain an overview of our simulated data, we recorded certain characteristics
of the meta-analyses generated during our simulation study. In particular, we focused
on the number and proportion of single-zero and double-zero studies present in each of
the simulated meta-analyses. This allowed us to then summarise this information for
each of the study scenarios, so that they can be compared to the observed properties of
empirical rare-event studies, in order to measure how well our simulated data mirrors
that from real-life cases. Tables and display the total percentage of single and
double-zero trials present in all simulated meta-analyses for scenarios grouped by study

sample size and event probability.

TABLE 8.1: Summary of total percentage of single-zero studies produced by scenario

groupings.
Study sample sizes
Probability scenario | Small l Small-to-medium l Medium l Small and large l Large
Very rare 11.82 37.97 46.72 17.89 25.21
po < p1 | Rare 39.41 33.68 19.48 21.20 2.97
Common 39.88 6.91 3.06 20.07 0.25
po =p1 | Rare 20.71 33.65 24.45 12.21 4.05
Very rare 10.49 36.83 46.21 18.15 26.64
po > p1 | Rare 38.24 34.09 21.63 20.95 3.76
Common 40.03 8.33 3.85 20.22 0.39
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Table [8:1] shows that for meta-analyses with large study sample sizes, as the rarity of
events increases, the percentage of studies containing a single zero event also increases,
as expected. However, for small sample sizes, the reverse is true, with the proportion
of single-zero studies dropping dramatically as events become rarer. This is because
small studies (which in our case have only 20 participants) are more likely to consist of
double-zero trials when events are very rare, thereby reducing the proportion of single-
zero trials present. The overall results appear to be very similar regardless of whether
the event probability is higher in the treatment arm (py < p1) or control arm (pg > p1),
which is to be expected as this feature would only affect the arm that the zero count

occurs in, not the occurrence of the zero count itself.

TABLE 8.2: Summary of total percentage of double-zero studies produced by scenario

groupings.
Study sample sizes
Probability scenario | Small ‘ Small-to-medium ‘ Medium ‘ Small and large ‘ Large
Very rare 86.91 50.87 33.76 47.00 5.57
po < p1 | Rare 51.49 9.60 4.10 26.13 0.44
Common 11.49 1.28 0.39 5.75 0.02
po =p1 | Rare 73.51 22.84 10.41 37.68 1.42
Very rare 88.40 51.38 32.82 47.08 4.87
po > p1 | Rare 51.86 8.42 3.57 26.13 0.35
Common 9.79 1.05 0.29 4.90 0.01

In contrast, Table shows that the proportion of studies containing zero events in
both arms increases with event rarity in all sample size scenarios. This result is to
be expected, and confirms our above theory that for small sample sizes and very rare
scenarios, double-zero trials would be far more prominent than single-zero alternatives.
In fact, by referring back to the previous table, it can be seen that for small sample sizes
and very rare events, 98% of studies in the simulated meta-analyses contained at least
one zero count. As before, we can see that the results do not differ significantly between

cases where pg < p; and py > pi1, backing up the consistency of our simulated data.

8.3.2 Running time of simulation study

We ran our simulation study on the IRIDIS super computer at the University of Southamp-
ton in order to reduce running time and increase efficiency. Scenarios were run in parallel
in batches, with each scenario taking between 1 and 4 hours to complete, depending on
the complexity of the scenario itself and the sampling required in the parameter-based
simulations. As such, the average running time was 2.5 hours per scenario, giving a total

running time of approximately 6300 hours (262.5 days) for all of our 2520 scenarios.
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8.4 Efficiency of heterogeneity variance estimators

Not all of the heterogeneity variance estimating techniques listed in Section [7.4] could
be applied to some of our simulated meta-analysis scenarios. The main example of this
is our proposed GLMM-based approaches, which failed to converge to a solution for a
number of scenarios not originally listed in Section If an estimator fails to converge
for several scenarios then their efficiency will be lower than that of other approaches
that can be applied. Only those estimators that involve iteration in their application or
are based on the use of models would be affected by convergence-based efficiency issues,
as these methods involve converging to a solution in order to generate an estimate. As
such, estimators from our simulation study that meet this description include the Paule-
Mandel (PM) method, maximum likelihood-based approaches and our novel GLMM
and mixture model-based approaches. The percentage of simulated meta-analyses for
which these estimators were unable to converge in our simulation study, grouped by
distinct event probabilities and sample sizes, can be seen below in Table[8.3] The results
in this table are based on the simulation setting py < p; with 02 = 0.1, binomial
event count sampling, uniform sample size sampling and constant continuity corrections

(where appropriate).

TABLE 8.3: Summary of percentage of non-convergences of iterative estimators by

scenario groupings for event probability scenario py < p1.

. . Iterative or model-based estimator

Probability | Sample size

PM [ ML | REML | AREML | PMRM | CLMRM | MM

Small 0 0 0 0 16.67 24.63 23.60

Small-to-medium 0 1.81 1.97 1.89 16.67 2.27 5.03

Very rare Medium 0 2.43 2.36 2.45 16.67 0.55 3.91

Small and large 0 0.83 0.72 0.79 33.33 0.71 4.42

Large 0 0.13 0.16 0.12 16.67 0 3.43

Small 0 0.10 0.13 0.11 0 2.23 5.21

Small-to-medium 0 0.31 0.23 0.29 0 0.02 3.54

Rare Medium 0 0.06 0.10 0.06 0 0.01 3.68

Small and large 0 0.01 0.20 0.01 0 0.01 2.74

Large 0 0.01 0.03 0.01 0 0 1.53

Small 0 1.77 1.65 1.77 0 0.07 3.76

Small-to-medium 0 0.02 0.04 0.02 0 0 2.15

Common Medium 0 0.01 0.02 0.01 0 0 1.36

Small and large 0 0.01 0.09 0.01 0 0 2.64

Large 0 0 0 0 0 0 5.54

Table shows that the PM approach is the most efficient of the iterative estimators
included in our simulation study, as it was always able to converge for all scenarios
portrayed here. The maximum likelihood approaches (ML, REML and AREML) per-
form very similarly to one another, only failing to converge for a very small percentage
of meta-analyses in general (< 2.4%), and even managing to successfully converge for

all simulations when very rare events were coupled with small sample sizes. Our novel
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methods do not perform as consistently across scenarios. The PMRM approach always
converges for rare and common events, however when events are very rare, it fails at
least 16.7% of the time, struggling most when sample sizes are unbalanced. In contrast,
our CLMRM method only performs very poorly with very rare events and small sample
sizes, and is comparable to the maximum likelihood-based results in all other cases, even
managing to successfully converge 100% of the time when sample sizes were large and
in almost all common-event scenarios. Finally, our mixture model (MM) approach can
be seen to always suffer from non-converges, but only to a small extent in general, with

the only major problem being with very rare events and small sample sizes again.

8.4.1 Cases where the PMRM method could not be applied

As mentioned previously, in Section .7 we outlined scenarios for which the PMRM
approach could not be applied as a result of its model structure. During the course
of our simulation study, we discovered further scenarios for which the method could
not converge in most simulations, as well as one-off meta-analyses that shared no com-
mon pattern but which suffered from difficulties with convergence. These meta-analysis

scenarios for which our PMRM R code could not be applied are as follows:

e The number of studies ¥ = 5 with & — 1 zero events in the control arm and
some double-zeros studies: We found that the Poisson model sometimes failed to
converge when applied to meta-analyses of this structure, however we could not
find any obvious pattern linking these problematic meta-analyses. Therefore it
is likely to merely be a result of the severe rarity of the data involved. In order
to avoid any such non-convergences, we decided not to apply the method to any
meta-analyses that were simulated with both k = 5 and a very rare events scenario
(¢ =—6.9 or @ = —5.3).

e The sample size is unbalanced (small and large), k = 10 and « = —6.9 or « = —5.3.
e Three unrelated simulated meta-analyses that have the following characteristics:

1. Unbalanced small and large studies, k¥ = 5, 72 = 0.8, « = —4.6, § = 0,
02 = 3, Poisson event count sampling and Chi-squared sample size sampling
- 2 studies were double-zero, the remainder were single-zero (but not in the

same arm).
2. Unbalanced small and large studies, k = 5,72 =0, a = =3, 0 = —1.6, 02 = 3,
binomial event count sampling and uniform sample size sampling - 3 studies

were double-zero.

3. Unbalanced small and large studies, k = 20, 72 = 0.8, a = —5.3, § = —1.6,
02 = 3, Poisson event count sampling and Chi-squared sample size sampling

- 13 studies were double-zero, 6 were single-zero.
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Although the individual problematic meta-analyses shared some characteristics (e.g.
unbalanced sample sizes, o2 = 3), there were no other discernible links in terms of their
structure and/or simulation, and so we prevented the approach from being applied to

these specific meta-analyses rather than a class of scenarios.

8.4.2 Cases where the CLMRM method could not be applied

As with the PMRM method above, our CLMRM approach also encountered a number
of unforeseen difficulties in terms of convergence with our simulated meta-analyses. In

particular, the meta-analyses for which we found the CLMRM to be incompatible were:

e Three unrelated simulated meta-analyses:

1. Meta-analyses 1 and 2 from the unrelated list above for PMRM
2. Unbalanced small and large studies, k = 5, 72 = 0, a = —5.3, § = —1.6,

02 = 3, Poisson event count sampling and Chi-squared sample size sampling

- 3 studies were double-zero.

As with the PMRM method, we were unable to find any obvious similarities in terms of
data structure between these 3 particular meta-analyses, and so simply prevented the

CLMRM approach from being applied to them in our study.

8.5 Performance in estimating 72

As we have investigated so many scenarios in our simulation study, we shall primarily
focus on presenting the results of the main scenarios of interest - rare and very rare
event probabilities. Therefore, in this section and the remainder of this chapter, unless
stated otherwise, we shall present only the results for these scenarios, combined with

2:

: 0.1, constant continuity corrections,

the following simulation options: py < p1, o
and event count and sample size sampling from binomial and uniform distributions
respectively. However, we shall mention the results associated with our alternative

simulation parameters where appropriate and present some of these in Appendix

If any of the estimators consistently produce outlying results over a set scenario grouping
(e.g. a particular sample size), to the extent that their inclusion in our figures would
significantly distort the plot scale, then these will be omitted from the respective figures.
However, we shall mention their absence and the direction that the outlying effect was
present in. We shall also crop the number of studies (k) if outlying values are consistently
present for specific k, e.g. k = 5. Finally, for each of the plots we shall display the
mean heterogeneity I? for that scenario given the chosen value of 72, as this can vary

considerably over different sample sizes.
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8.5.1 Bias of 72

Figure displays the mean bias of 72 estimates in the case of very rare events, for small,
unbalanced and large studies, and varying degrees of heterogeneity. For small sample
sizes (plots A1-A3), we did not include our CLMRM method as this produced extremely
large bias (> 1000). Similarly we excluded the semi-Bayesian RB and RB0 approaches,
which consistently produced very unusual results, as can be seen in Appendix [E] As a
result, the RB and RBO will not be included for small studies in the majority of plots
presented in this chapter. In addition, three versions of our conditional-based approach
(CO2, CO3, CO4) and MM method are not included in this figure, as they produced
outlying high bias (as is demonstrated in Figure , and k = 5 is not displayed for

similar reasons.

By looking at Figure [8.1} it can be seen that PMRM appears to consistently perform
best in terms of bias in this scenario when heterogeneity is present (i.e. 72 > 0), but
only when k > 20 if sample sizes are unbalanced. It is not displayed for k& < 20 in
B1-B3 as it could not be applied in this scenario. Our CLMRM method performs very
similarly, for unbalanced and large studies. However, both of these GLMM approaches
perform poorly in the case of homogeneity, indicating their prevalence to produce non-
zero estimates, with the majority of pre-existing estimators performing better. The
pre-existing methods all appear to perform similarly except for the semi-Bayesian BM
approach, which consistently has a dramatic crop in bias over increasing k, leading it
to at least pass through the zero line with small studies. In that particular scenario,
the only other estimator to near the desired zero bias was PMRM, which appeared to
oscillate around the optimum bias when 72 > 0. Whereas the pre-existing estimators

always underestimate 72, our GLMM approaches tend to overestimate in general.

Figure [8.2] displays the mean bias in the rare events scenario, again with py < p;. The
results differ slightly from those of the previous scenario, as PMRM can be computed for
k < 20 in unbalanced cases, and all included estimators produce reasonable estimates
when & = 5 (and thus are included here). For small studies, the methods perform as
above, with PMRM and BM being closest to zero when 72 > 0, with PMRM unusually
having maximum bias around k& = 20. For the remaining sample sizes, when 72 = 0,
the SJ estimator performs very poorly compared to the alternate estimators. When
72 > 0 in large studies our modified conditional methods (CO2-CO4) have very high
bias, but when 72 = 0 the original CO1 performs best, having consistent near-zero bias.
Our two GLMM approaches generally perform similarly to the pre-existing methods for
unbalanced and large studies, however they can again be seen to perform best for high
k (> 20) when 72 > 0.



174

Chapter 8 Main simulation study results

20

aZ

Mean bias of ¥
1.5

1.0

05

0.0

05

0.4

a2

Mean bias of T

0.2

0.3

01

020 025

a2

Mean bias of T
0.15

0.10

000 0.05
L

— oL — Ho Hs -— REML -~ RB co1
-- DLp - PM sJ ---- AREML RBO  —— PMRM
--- DLb HM — ML —— AB BM ~~ CLMRM
“=0 “-04 N
Al Mean 1220 % M Mean 2= 10 % A Mean 2= 22 %
S
o |
i - 2
@
w
. o | o
=
o
| wy L=
@ |
0
i e Eh
=
2 |
r - : - - r - : - . AL - : - -
10 20 30 50 100 10 0 30 50 100 10 20 30 50 100
“=0 2204 N
B1 Mean 120 % B2 Mean 2= 23 % 83 Mean 12 =42 %
b uw
< | S
o
=~ |
(=] o
] 3
o
i =
e
: <
e
‘?

“=0 204 2o
o Mean 12 =0 % cz Mean 2= 33 % Ca Mean |2 = 54 %
4 g_
o
- o
e
< N
| T
N = |
=)
i o | .
4 S
= | 0
% S
= | 2 |
T T T T T q,I T T T T 'I-I T T T T
10 20 30 50 100 10 0 30 50 100 10 20 30 50 100

MNumber of studies in meta-analysis (log scale)

Number of studies in meta-analysis (log scale)

Number of studies in meta-analysis (log scale)
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C3). RB, RB0 and CLMRM have been omitted from A1-A3; CO2, CO3, CO4 and MM

have been omitted from all.
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It is difficult to identify a general pattern in the plots given in the previous figures, as
the varying estimator types behave differently (and in some cases converge to different
values). As a result, we shall also look at other simulation scenarios, to determine
whether these changes in behaviour are consistent across different settings and whether

any general patterns can be identified.

The results for the alternate and common probability scenarios can be seen in Section
Above we presented the results for pg < p1, which we found to be similar to the
results for pg = p1. In the alternate scenario with pg > pi, we find that the results
in general are very comparable to these previous cases for the majority of estimators
presented, however the conditional-based methods (CO1-CO4) notably change direction
of bias. For common events, CLMRM has a much more reasonable level of bias for small
samples compared to above. Additionally, when pg < p1, the alternative conditional-
based methods (CO2-CO4), which consistently performed poorly in the previous cases,

2 > 0 and k& > 10, demonstrating that they are

appear to perform the best when 7
applicable for this scenario. However, when pg > p1, they do not perform as well, with
ML-based methods generally performing best. Additionally, for common events, MM

has bias comparable to the other methods when studies are large.

In our simulation study, we also looked at the effect of sampling our parameters from
various distributions. The results produced from these alternate sampling techniques
are also displayed in Section We found these results to be very similar to those
presented so far in this chapter. The degree of bias differs in some cases when k is small,
however the differences between estimators is identical, confirming the results we have
presented here. In addition to this, the pre-proposed estimators were also calculated
using the reciprocal continuity correction outlined in Section however very few
differences in results were found between this and the original constant correction. We
also calculated the median bias of 72 for all of these scenarios, and a subset of these
results are presented in Section [E-4 In summary, the results for median bias do not
differ substantially from those presented here for the mean bias, so again back up our

findings.

8.5.2 Mean squared error of 72

We also looked at the mean squared error (MSE) of the 72 estimates, and Figures
and display these results for very rare and rare events, again grouped by sample
size and heterogeneity. By looking at Figure [8.3] we can see that in the case of small
studies, all included estimators perform very similarly for very rare events, apart from
CO1 which displays unusual behaviour when 72 = 0. Our CO2-CO4 and MM methods
had extremely high MSE in all cases, and so are not included in this figure. Similarly, as
before, RB and RB0 were not included for small studies due to their outlying results, and

our two GLMM approaches were also omitted in this case. However, when sample sizes
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increased, the performance of PMRM and CLMRM improved notably, with their MSE
being some of the lowest when 72 > 0 and k > 30. In this plot, we only presented k > 20
as the majority of estimators performed very poorly otherwise. Our CO1 approach
appears to perform well for larger studies and homogeneity, with close to zero MSE,

however as 72

increases above zero so does their MSE. In terms of the pre-existing
estimators, they tend to perform rather similarly to each other, apart from HM and SJ,
which perform poorly for 72 = 0, but significantly outperform the other approaches in

heterogeneous cases.

Figure [8.4 shows us that, in the case of rare events, HM and SJ appear to perform best
for small studies when 72 > 0, but have the largest MSE of the pre-existing estimators
with homogeneity (regardless of sample size). As before, our GLMM approaches had too
high MSE to include in the small sample size plots, and our MM method, as well as all of
the conditional-based methods, was omitted in general from the figure. For unbalanced
and large studies, the GLMM-based approaches both performed very similarly to the
existing estimators, which all demonstrated a smooth decline in MSE towards zero as k
increased. The exceptions to this are HO and HM, which both maintained a constant
high MSE in the case of unbalanced sample sizes. It should also be noted that, in
comparison to the previous figure, the results for £ = 10 are displayed in this case, as
the MSEs for this scenario were much more reasonable when events are still rare but

slightly more common.

As before, we also looked at the probability scenarios where pg > p; and pg = p1, and at
the case of common events, and these results can be seen in Section For very rare
events with pg > p1, the results are very similar to the reverse case, with the exception
that the magnitude of MSE is reduced for CLMRM in small k£ (< 30). In addition, the
MSE of HO appears to be consistently slightly elevated when pg > p1, while the MSE of
CO1 can be seen to do the opposite. When events are rare, MSE results are again very
similar regardless of the relationship between py and p;. However, when pg > pi, CO1
can be seen to have a MSE similar to the other estimators, whereas in the alternate case
it was omitted for outlying. In addition, when py = p1, CO2-CO4 perform similarly
to the other methods when k and studies are large and heterogeneity is at an extreme,

compared to the other scenarios where their MSE was very high.
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scenario with py < pi; sample sizes are small (A1-A3), small and large (B1-B3) and
large (C1-C3). RB, RB0O, BM, PMRM and CLMRM have been omitted from A1-A3;
C0O2, CO3, CO4 and MM have been omitted from all.
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In terms of common events, when pg < p;, CLMRM has a very low MSE when k£ > 20,
particularly in the case of small studies with 72 > 0, although HM and SJ are the
best performers in this specific scenario. All the conditional-based approaches have
similar and the lowest MSE of all methods considered when k£ > 20 and studies are
large, however produce very poor results when k < 10 (as does CLMRM). In the case
of pg > p1, the MSE of CLMRM in the case of small studies is again very low, being
the optimum estimator when 72 = 1 and k > 20. CO1-CO4 appear to have very high
MSE when homogeneity is present, while our GLMM-based estimators produce results
similar to the existing methods when at least some studies are large. In both probability
scenarios, MM has a MSE similar to other methods when sample sizes are large, while
DLp has the highest MSE of those presented when 72 = 0 here.

The results for MSE of 72 in alternate sampling scenarios in our simulation study can
also be seen in Section [E.2] As expected, the results for MSE are very similar in general
regardless of the distributions used to sample the event count and non-constant sample
sizes. As with the bias, we also calculated the median squared error of 72 for all of the
scenarios discussed here, and some of these results can be seen in Section These
results do not differ substantially from those presented here for the MSE, and as such

provide confirmation to their findings.

In order to provide a summary of the estimators’ performance in comparison to each
other for the main probability scenarios (very rare, rare and common), we choose to
rank the estimators in terms of MSE for their estimation of 72. We then tabulated the
average ranking of the estimators in terms of MSE for 72 for the various sample sizes,
in the case of pg < p; only (as event probability relationship did not appear to have
a significant effect on the majority of estimators considered in our study). The top 10

ranked estimators in terms of MSE for very rare, rare and common events can be seen

in Tables and respectively.

From looking at Table we can see that for very rare events, the non-truncated
method of moments-based approaches (SJ and HM) appear to consistently perform best
regardless of sample size. DLb and the ML-based methods perform next best, with DLp,
PM, DL and AB occurring towards the bottom of the table (the latter two performing at
the same level consistently). Only one of our proposed methods (PMRM) occurs in the
top 10, although it is very low down, and this is for large studies. For rare events, Table
shows that while the non-truncated moments-based methods perform best while
studies are medium-sized or less, ML-based methods outperform them when at least
some studies are large. In this case, PMRM is third and CLMRM sixth when studies
are large, and are respectively ranked seventh and eighth for unbalanced sample sizes.
Finally, PMRM is ranked at the very bottom of the table for medium-sized studies, and

none of our proposed methods are in the top 10 for smaller studies.
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TABLE 8.4: Average rankings of top 10 estimators for MSE by scenario groupings for
very rare event probability scenario py < pj.

Ranking of Sample size
estimators Small Small-to-medium Medium Small and large Large
1 SJ SJ SJ HM HM
2 DLp HM HM SJ DLb
3 HM DLb DLb REML REML
4 DLb REML REML ML SJ
5 AREML AREML AREML DLb AREML
6 ML ML ML AREML ML
7 REML DLp DLp HS DLp
8 PM PM PMRM

DL AB DL AB
9 DLp

DL AB DL AB
10 PM PM DL
TABLE 8.5: Average rankings of top 10 estimators for MSE by scenario groupings for
rare event probability scenario py < pj.

Ranking of Sample size
estimators Small Small-to-medium | Medium Small and large Large
1 SJ HM HM ML ML
2 HM DLb DLb REML REML
3 DLp SJ DLp AREML PMRM
4 REML REML REML SJ AREML
5 DLb ML DL DLb DLb
6 AREML AREML AB HS CLMRM
7 ML DLp SJ PMRM HS
8 ML CLMRM

DL AB DL AB DL AB
9 AREML

DL AB

10 PM BM PMRM DLp
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TABLE 8.6: Average rankings of top 10 estimators for MSE by scenario groupings for

common event probability scenario py < p;.

Ranking of Sample size

estimators Small Small-to-medium Medium Small and large Large

1 HM SJ SJ REML REML

2 SJ REML REML AREML AREML

3 DLb PM PM CLMRM PM

4 REML AREML AREML ML SJ

5 DLp ML ML SJ CLMRM

6 BM PMRM CLMRM BM ML

7 AREML CLMRM BM PMRM PMRM

8 ML PMRM BM

DL AB DL AB

9 HO HO
DL AB

10 DLp DL AB DLb MM

In terms of common events, Table shows that as before the non-truncated moments-
based methods and ML-based methods consume the top of the table in terms of ranking.
However, our CLMRM method is ranked third for unbalanced studies and fifth for large
studies, and PMRM (and CLMRM where not already mentioned) consistently appear
in the table, albeit in the bottom half, in all scenarios other than small studies. In
addition, our MM method appears at the very bottom of the table for large sample
sizes. It should be noted that these tables give a very crude summary of the estimators’

performance in terms of only MSE, and as such do not describe overall performance.

8.5.3 Proportion of zero 72 estimates

We also looked at the proportion of zero 72 estimates produced by all methods, for

both cases when 72 = 0 and 72 > 0. We chose to look at the case when 72

> 0, in
addition to the obvious homogeneous case, in order to identify those estimators that
have a tendency to produce zero estimates when this is not the case, demonstrating
their inability to detect heterogeneity. Ideally an estimator would produce more zero
estimates when homogeneity is present, but should not produce any such estimates in
heterogeneous cases, and so the best estimator would have a step-function behaviour

dropping from 100% to 0% as 72 becomes positive.

Figure displays the percentage of zero 72 estimates in the case of very rare events
with pg < p1. We can see that the semi-Bayesian RB and RB0 behave erratically for
small studies, agreeing with their behaviour with bias and MSE. It is very clear in these
plots for which scenarios PMRM cannot be applied (generally k& < 10 or k < 20). When
homogeneity is present (plots Al, Bl and C1) and we would expect the percentage of
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zero estimates to near 100, the existing estimators all perform very similarly and well in
general. However, our CO1 method consistently performs poorly with all sample sizes
(with a maximum of 60%), while our PMRM approach generates an undesirable non-zero
results for unbalanced and large studies. Our PMRM and MM methods also perform
fairly poorly in homogeneous cases. When heterogeneity is present, however, PMRM
performs best (when it can be applied) when studies are not small, along with the DLp
and HM methods. CO2-CO4 consistently produce near-zero percentages when studies
are small, and together with CLMRM and MM produce results better than existing

methods in all other scenarios.

In terms of rare events, Figure shows a similar pattern, however PMRM can be
applied in all cases and is consistently the best estimator (along with DLp and HM)
when 72 > 0 and at least some studies are large. In the homogeneous case, CO1 is the
best performer with a constant percentage of near 100, however it performs very poorly
when 72 > 0 as it retains that high number of zero estimates. While the majority of
estimators tend towards the optimal result as k increases, there are some cases where
this is not the case (particularly for unbalanced sample sizes where the opposite trend
is observed with some methods). It can also be observed that for large studies, all
estimators (with the exception of CO1) have desired near-zero percentages when k > 10,

displaying the general ability to detect no heterogeneity in these cases.

As before, the results for the alternate scenarios not displayed here are given in Section
[E.3] For very rare events with pyp > pi, the results are very similar, however CO1 does
appear to perform much better when 72 > 0, producing a percentage that tends towards
zero at a similar rate to the other estimators. This is also seen for rare events with
po > p1, as CO1 again produces a percentage of zero estimates that is comparable to the
other methods. However, this percentage has also dropped in the homogeneous case,
resulting in the estimator losing its consistent near-100 success rate. When py = p; with
rare events, the drop for CO1 is not as extreme as that for py > p1, but it still appears
to perform much better than the case displayed here. For common events, the majority
of pre-existing, MM and GLMM methods perform very well when 72 > 0 and studies
are not small, producing near-zero percentages for £ > 10. When sample sizes are small
and 72 > 0, PMRM again performs well alongside DLp and HM for k > 20, while
CO1 consistently performs best in all cases where 72 = 0. The main difference between
po < p1 and py > p; when events are common is that CO1 significantly improves in

performance when pg > p1, as seen above.

Very similar results can be seen between those presented here and those generated from
alternate sampling distributions (as shown in Section [E.3)), again providing confirmation

of the results obtained in our simulation study.
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8.5.4 Summary of performance

Table provides a summary of the performance of 72 estimators in terms of the
performance measures we have presented thus far, with respect to their estimation of 72
itself. We have focused on our novel approaches and their performance with respect to
mean bias and MSE.

TABLE 8.7: Summary of performance of estimators in estimating 72 by scenario group-
ings.
Probability scenario

Sample size ‘

Very rare Rare ‘ Common

PMRM and CO1 both have
Small 2 low bias and MSE

ow bias an
Small-to ;Nhelll).T T) 0, iM:m;\I/[;ES GLMM methods have low
medium 881 hlasl utMS}lEg > | GLMM methods have low | bias and MSE when k > 30

" as fow bias and MSE when 72 > 0

Medium

CO2-CO4 have small bias
but high MSE, PMRM has
low MSE

CO2-CO4 have small bias
and MSE for k£ > 10

Small and
large GLMM methods have low bias and MSE when 72 > 0
and k > 30 :

Large

8.5.5 Performance of conditional-based approaches in estimating 7‘5

As the conditional-based methods we introduced in Chapter generate their 72 estimates
using an estimate of probability-based 7'5 (discussed in detail in the chapter), and we
were able to determine the true value of Tg , we decided to also look at the performance
of this group of methods in terms of estimating this parameter. This will allow us
to determine whether they can estimate this parameter well, as if it transpires that
they cannot estimate 72 then it is possible that an alternate conversion between the two
parameters should be sought. A selection of results produced relating to the performance
of these methods in estimating this method-specific value is given in Section We
presented the results for all probabilities (i.e. our cases with py < pi, pop > p1 and
po = p1) because we observed such dramatic differences in these for the conditional-

based approaches above.

In terms of the mean bias of Tg, COL1 can be seen to consistently outperform the alternate
methods (CO2-CO4) in homogeneous scenarios, regardless of event probability or study
sample size. In general, CO1 can be seen to have negative bias, while the alternate
methods overestimate 7’5. The alternative approaches (based on variations of the original
estimating equation), perform very similarly to each other, and appear to only have less
bias than CO1 when heterogeneity is present and samples sizes are either unbalanced
or large. The only scenario where this is generally not the case is with large studies

and considerable heterogeneity (72 = 0). The bias of CO2-CO4 also drops dramatically
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when the probability scenario is based on the relationship pg > p;, compared to cases

with pg < p1 or pg = p1, agreeing with the results for 72 discussed above.

When looking at the MSE of Tg7 COL1 is observed to have lower MSE in the majority
of scenarios investigated, however all methods have similar results (particularly for high
k). As with the bias, MSE can be seen to be lower in CO2-CO4 in certain scenarios with

heterogeneity and at least some large studies, particularly for the cases where pg > p;.

8.6 Performance in estimating ¢

In addition to determining the performance of methods in estimating 72, we also looked
at their performance in estimating the summary effect size measure, 6, in this case the
log-risk ratio. This will allow us to determine their ability to produce an accurate result

2 via either the inverse-variance approach

for the meta-analysis using their respective 7
or otherwise (as with our novel methods). In addition to the 72 estimators, we have
also included the fixed-effect Mantel-Haenszel (MH) approach, as well as a variation
including the addition of a constant continuity correction of 0.5 (which will shall denote
by MHc), as discussed in Section m The plots given here are based on the scenarios

portrayed above, with results for further scenarios again being available in Appendix [E]

8.6.1 Bias of 0

The mean bias of the overall log-risk ratio estimates for very rare events can be seen in
Figure 87 From looking at this we can see that for small studies, while the majority
of estimators have a bias near zero that closes in as k increases, CLMRM actually has
a near-zero bias for lower k but increases away from this as k increases. MM shows
a similar pattern but to a lower extent. In the case of small sample size, all methods
have negative bias (for small k at least), and the fixed-effect MH and MHc actually
perform best in general here. When studies are unbalanced or large, the pre-existing
and conditional methods all have negative bias in general, while our GLMM and MM
methods, and the MH-based approaches, consistently overestimate . When PMRM can
be applied (for either k > 10 or k > 20), it has the bias closest to zero in all cases where
studies are not small except when studies are large and 72 = 1. In this latter case, all
pre-existing methods and CO1-CO4 (which perform similarly here) also have positive

bias, but this is closer to zero than with our approaches.

Figure [8.8] shows the mean bias of 6 when events are rare. These results differ quite
prominently from those discussed above, as our CLMRM and MM methods have very
high bias for small studies, with the bias forming an n-shape over increasing k. For
this sample size, PMRM and the MH-approaches perform very similarly and have the
best results in terms of bias, while all pre-existing methods (and CO1-CO4) consistently
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underestimate . When 72 = 0 and studies are unbalanced or large, our GLMM methods
and the MH approaches consistently have the minimal amount of bias, and MM is also
in this group when studies are large in size. However, when 72 > 0 the picture varies
significantly for cases with at least some large studies, where fixed-effect MH methods
always have the highest bias. PMRM appears to consistently have the least bias in these

cases, with CO1 and MM also performing well when sample sizes are highly unbalanced.

The results for the alternative probability scenarios relating to this performance mea-
sure are in Section [E.7] When py > p; and events are very rare, the methods are always
positively biased, with the exception of the GLMM and MH-based approaches. In par-
ticular, PMRM significantly underestimates § when studies are small, as does CLMRM
for high k. However, these two methods do appear to perform best in terms of bias for
all other scenarios, along with the MH methods when 72 is low. In all cases, CO1-CO4
perform very similarly to the existing estimators, while MM consistently produces very
high bias when studies are not small. This is the major difference between the case
with py < p1, where MM also performed fairly poorly but not to such an extent. When
events are rare with py > pi, the results are very different to those described above.
In particular, for small studies, both GLMM methods are now very negatively biased,
with CLMRM instead producing a U-shaped pattern. In all other scenarios, these two
approaches perform best, while MM again has consistently high bias. Finally, when
po = p1, CLMRM needs to be slightly positively biased on average with small studies,
while PMRM is heavily negatively biased again. In alternate sample size scenarios, MM
performs similarly to the other methods when 72 > 0, and PMRM consistently performs

best regardless of 72.

When events are more common and py < p;, CLMRM actually has one of the best
results in terms of bias for small sample sizes, along with PMRM and the MH-based
approaches. When at least some large studies are present, then all of the estimators are
negatively biased, with the exception of the case where 72 = 0, where the GLMM and
MH methods are the best performing with little positive bias (accompanied by MM for
all large studies). When 72 > 0, the MH-based approaches consistently have the least
bias. When pg > p1, the results are similar to those observed above for this probability
relation, in that MM is consistently very highly biased in all scenarios, while the bias
of the fixed-effect MH approaches can be seen to increase as the degree of heterogeneity
increases. Our GLMM-based methods, however, consistently perform best in terms of

bias for all scenarios displayed.

As before, we also plotted this performance measure for various sampling distributions
in our simulation study, and these can be observed in Section [E.7] These results mirror

those already discussed here.
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8.6.2 Mean squared error of 6

To measure the performance of the methods in terms of estimating the summary effect
0, we also calculated the mean squared error of these estimates. The results relating
to very rare events with pg < p; can be seen in Figure By looking at these plots,
we can see that all 72 estimator-based approaches performed poorly when sample sizes
are small, with the fixed-effect MH-based methods outperforming them considerably for
moderate-to-high k. When sample sizes are unbalanced or large, however, and 72 = 0,
CLMRM performs equally well with the MH-methods when k& > 20, with them having
the least MSE of all methods included. It should be noted that the GLMM methods
both perform very poorly with small studies, as did MM in all scenarios, and as such
are omitted from the respective plots. When sample sizes are unbalanced and 72 is
moderate, all estimators perform equally well when k& > 5, with CLMRM performing
poorly for k < 5 in all cases considered and PMRM only being applicable for £ > 10 or
k > 20. Finally, when 72 > 0 with large studies, CO1-CO4, PMRM and the pre-existing

all perform similarly and generate the least MSE.

Figure displays the MSE of the log-risk ratio estimates for rare events. Here we
can see that for small studies, despite performing very poorly for k£ < 10, our PMRM
approach otherwise has the lowest MSE, along with the fixed-effect MH methods. When
sample sizes are unbalanced, all estimators perform very similarly apart from MM and
C0O2-CO4, which consistently have higher MSEs, and the MH methods whose MSE

increases considerably as 72

increases. Finally, when studies are large in size, all methods
behave in the same manner, with their MSE decreasing as k increases. While all methods
have very similar MSEs in this case, the MSE of the fixed-effect MH-based methods again

appears to increase with 72.

The results for the alternate and common probability scenarios can be seen in Section
For very rare events with pg > p1, MM can be seen to perform reasonably for small
studies and, although it still has greater MSE than the others, it is not outlying. The
other methods perform very similarly to the case described above, although the original
MH approach has a lower MSE for small k. When sample sizes are unbalanced or large
and 72 is high, our GLMM-based methods appear to perform better in respect to the
other estimators for this probability relation. When py > p; but events are classed as
rare, MM appears to perform more reasonably in the case of small studies again, while
PMRM does the opposite. Meanwhile, when at least some studies are large, the MM
method performs more poorly and has an outlying MSE in this case. It can also be
seen here that our GLMM-based methods again perform better compared to the other
methods when studies are imbalanced and 72 > 0. Finally, when py = p;, the MH-based
approaches produce an unusual peak-style pattern in terms of their MSE as k increases
for small studies. However, MM shows good promise for unbalanced and large studies

in this scenario, where it consistently has the lowest bias of those considered.
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FIGURE 8.9: Mean squared error of log-risk ratio estimates in very rare events scenario

with pg < p1; sample sizes are small (A1-A3), small and large (B1-B3) and large (C1-
C3). PMRM and CLMRM have been omitted from A1-A3; MM has been omitted from

all.
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In the case of common events, when py < p; our CLMRM method performs more
reasonably when sample sizes are small, and is actually one the best for k > 20, along
with PMRM and the MH-based methods. For unbalanced sample sizes, MM performs
much worse and is not included for this reason. However, the fixed-effect MH-based
methods consistently have the smallest MSE for all 72 with unbalanced and large studies,
a very different result to that seen with rare data. When py > p;, the GLMM and
MH-based approaches have the lowest MSE for small studies and k£ > 10 (k > 20 for
CLMRM). MM appears to perform very poorly in all scenarios and is omitted from the
plots. The results displayed here for unbalanced and large studies mirror those generated
using rare data, however, as the fixed-effect MH-based approaches consistently have a

much higher MSE when heterogeneity is present.

The results generated via alternate sampling in the simulation study are also given in

Section [E.8] and these mirror the MSE-based results discussed here.

8.7 Performance when paired with confidence intervals for

0

As an additional aspect of our simulation study, we investigated how various confi-
dence interval methods for the summary effect § performed when combined with our 72
estimators of interest. The confidence intervals that we considered were Wald-type,
t-distribution, Hartung-Knapp-Sidik-Jonkman (HKSJ) and modified Knapp-Hartung
(mKH). These are described in detail in Section As with the 0 estimation in the
previous section above, we have included the fixed-effect MH (and continuity corrected
MHc) approaches when looking at the performance of the confidence intervals, as these

are based on the value of 6 itself.

8.7.1 Coverage

We generated 95% confidence intervals for the summary effect 6 using the above listed
methods, and so an optimum interval would have a corresponding coverage of 95%. Here
we shall investigate the coverage of each of our combinations of 72 estimator and confi-
dence interval method. Figure shows the coverage of our log-risk ratio confidence
intervals for very rare events (with pg < p1) and medium sample sizes. Each row of plots
corresponds to a unique confidence interval method. We can see that for each of the
interval methods, the majority of estimators perform fairly well when homogeneity is
present, with their coverage remaining fairly constant around 95. The exceptions to this
are the semi-Bayesian and conditional-based methods, whose coverage rapidly decreases
with increasing k for 72 = 0. However, in heterogenous cases, all estimators demonstrate

this pattern of decreasing coverage away from the optimal 95 as k increases. In all cases,
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however, the best estimators appear to be the PMRM and MH-based approaches, which
work well with all interval methods. All estimators be seen to perform more poorly with

the HKSJ method though, as coverages never reach 95, not even for small k.

The coverage in the case of medium-sized studies and rare events can be seen in Figure
8.12] Here, we can see that the events having increased in number has resulted in the
coverage being far more optimal, near the 95 level, for at least some estimators in all
scenarios considered. As before, there are some estimators where the coverage drops
as k increases, and these poor performers are the pre-existing methods when 72 = 0,
and the CLMRM, MM and MH-based methods for 72 > 0. As a result, the estimators
with the best coverage appear to change depending on whether heterogeneity is present
or not. In this case, all confidence interval methods appear to perform very similarly
again, with the HKSJ method actually performing best with the appropriate estimators
for 72 > 0.

We also looked at the coverage for meta-analyses with unbalanced study sample sizes,
and these results can be seen for very rare and rare events in Figures [B13] and
respectively. For rare events, Figure [8.13| shows that the pre-existing estimators appear
to perform poorly in all scenarios, with their respective coverage moving away from the
optimal 95 level as k increases. When 72 = 0, the GLMM and MH-based approaches
consistently have a coverage close to 95, with the MM method also having a coverage
just below this level. Meanwhile, in heterogeneous cases, PMRM produces a coverage
close to 95 when it can be applied (k > 20 here), which is far greater than the coverage of
any other estimator for high k. As with the previous very rare event scenario discussed
above, all interval methods perform similarly, however the HKSJ appears to perform

slightly worse, particularly with the optimum estimators.

Figure [8.14] shows that the coverage of our estimators with rare events and unbalanced
samples sizes differs significantly from that for very rare events above. The majority
of pre-existing estimators have a constant near-95 coverage when 72 > 0, with the
exceptions being RB, RB0O and HO, which move away from 95 as k increases for the
Wald-type and t-distribution methods. CO2-CO4 and the MH-based approaches also
perform very poorly in these cases, and for the HKSJ and mKH methods (although
the conditional-based methods perform well with mKH). In the case where 72 = 0, all
pre-existing estimators appear to perform poorly, again moving away from 95 coverage
as k increases. The GLMM and MH-based approaches appear to perform best in this
scenario, with MM also performing rather well with near-95 coverage. All estimators
tend to have coverage greater than 95 in this particular scenario with small k, for all
interval methods except HKSJ. In terms of the interval methods themselves, they all
perform very similar again in terms of coverage, although mKH may appear to slightly

outperform the others.
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We also generated results in terms of the coverage for the alternate sample sizes (small,
small-to-medium and large) for very are and rare events, and for medium and unbalanced
sample sizes with common events. These can be seen in Section [E.9] These results fit
with the ones that we have discussed here, showing no unexpected outcomes given those

already presented.

8.7.2 Power and error

Finally, we assessed the confidence interval methods in terms of their power and error,
and the results corresponding to these are given in Sections[E.10]and [E.IT]respectively. In
terms of the power, when events are very rare and studies are medium-sized, the majority
of estimators have an optimum power of 100 when k > 10. However, the CLMRM and
MM approaches appear to have much lower power with all confidence interval methods
included. CO1-CO4 and BM also have lower power for certain interval methods, with
the HKSJ appearing to work best with the majority of estimators. Although if events
are very rare, MM consistently has low power for all k in all cases, with CO2-CO4 also
having low power for smaller k for all methods other than HKSJ. This result also holds
for the scenarios with unbalanced sample sizes, as MM is found to be poorly powered in
all scenarios, the majority of estimators have near optimal power for £ > 10, and HKSJ

appears to have the most power in general.

To measure the error of the confidence interval methods, we looked at the mean and
variance of the error. The mean error was found to be very high for the CLMRM and
MM methods for the case of very rare events and medium-sized studies. Meanwhile,
all other estimators had a low mean error (< 2), with the best results again generated
from the HKSJ method. When events are rare, the CLMRM method has mean error
comparable to the other methods, while MM still has very high error and HKSJ still
results in the lowest error of the four interval methods. This pattern is also observed
when events are very rare with unbalanced studies. However, when unbalanced studies
are coupled with rare events, the MM method is found to produce a low error similar to
the other estimators when using the HKSJ method, although it remains an outlier for
the alternate interval methods, along with CO1-CO4 in this case.

In terms of the variance of the error of these confidence intervals, it can be seen to be
very high for the MM method (and in some cases the CLMRM and conditional-based
approaches) for both rare and very rare scenarios, regardless of sample size. Additionally,
the HKSJ was found to consistently produce the lowest variance in all these scenarios,

agreeing with the results discussed above.
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8.8 Conclusions

By following the protocol detailed in Chapter [7], we were able to successfully conduct
our simulation study and extract the results. However, during the course of the study,
we made some amendments from this protocol that were deemed either beneficial or
essential to its completion. For example, we decided to round very small 72 estimates in
order to account for those methods that have a tendency to produce very exact estimates.
We also found it necessary to exclude several scenarios from our simulation study, as
some estimators (particularly our novel approaches) were found to be incompatible with
certain scenarios, e.g. when k < 5, despite modifying the code to apply our GLMM-
based methods to make them maximally applicable. While conducting our simulation
study, we also noted some of its characteristics in order to generate an overall picture
of the meta-analyses simulated so that they could later be compared to empirical cases.
We found that the percentage of single and double-zero trials increased as the rarity of

event probability also increased, regardless of whether pg < p; or pg > p1.

In addition to looking at the performance measures in Section we also investigated
the efficiency of the estimators, by counting the number of cases where the iterative
or model-based methods did not generate a result due to lack of convergence. The
pre-existing PM estimator was found to most efficient in this subgroup, successfully
converging for all simulated meta-analyses in all scenarios. In terms of our proposed
methods, PMRM also successfully converged 100% of the time when events were rare
or common, with CLMRM having similar success for most scenarios when events were
common. However, our CLMRM approach could be seen to outperform PMRM in
terms of convergence when events were very rare as long as study sample sizes were not
consistently small. Meanwhile, our MM method had minimal cases of non-convergence
in all cases other than when very rare events were coupled with small sample sizes. We
also noted a number of specific cases where our GLMM-based methods could not be

applied, that had not already been listed elsewhere.

Finally, we looked at the performance of all methods in estimating the parameters of
interest for very rare and rare events, focusing on the case with py < p;. In terms of
estimating 72, our PMRM method was found to have the least bias when k& > 20 and
72 > 0, with CLMRM generating very similar results when sample sizes were not small.
While these methods, along with the majority of pre-existing estimators, performed
poorly in terms of bias when homogeneity was present, our CO1 approach consistently
had near-zero bias here. In terms of MSE, PMRM again performs very well when
k > 30, with CLMRM also producing one of the lowest MSEs when k£ > 50, however
both perform extremely poorly when studies are small (or 72 = 0 with very rare events).
However, CLMRM was ranked third in terms of MSE for unbalanced sample sizes when
events were common. Finally, when looking at the proportion of zero 72 estimates

produced, we found that CO1 generated nearly 100% zero estimates in homogeneous
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cases, while PMRM had constant near-zero percentages when heterogeneity was present

and studies were not small (with CLMRM also performing well in these cases for high

In terms of estimating the summary log-risk ratio (#), we found the PMRM to have the
least bias in all cases where it could be applied (apart from the combined scenario of
small sample sizes and very rare events). CLMRM also performed rather well in these
cases, along MM and CO1 when events were rare and 72 > 0. The fixed-effect MH-
based methods had some of the lowest biases when homogeneity was present. For MSE,
PMRM again performed very well in all cases where it could be applied and k£ > 10 with
small studies (although not paired with very rare events again). CLMRM and CO1
also produced very low MSEs in the majority of these scenarios, with the fixed-effect

approaches again generating some of the best results for homogeneous cases.

Finally, we also looked at how the estimators performed when paired with various con-
fidence interval methods for the summary log-risk ratio. In terms of coverage, PMRM
always produced near-optimal results in all cases when it could be applied, regardless
of event rarity or sample size balance. Our CLMRM and MM methods performed sim-
ilarly well when homogeneity was present, and in the case of unbalanced sample sizes.
The conditional-based methods, however, only performed well when events were com-

2 > 0. We compared four methods to calculate

mon, sample sizes were fixed and 7
the confidence intervals themselves, and found that they all behaved very similarly in
terms of coverage, although HKSJ may have produced slightly poorer coverage with all
estimators. We also discussed the power and error of these methods, and found that
the HKSJ method had the greatest power and least error in general. For each of the
performance measures investigated, we found no identifiable general patterns in the re-
sults obtained. This is because the varying estimator types appeared to perform very

differently regardless of the scenario setting that was simulated.

Using the results presented in this chapter and Appendix we shall now be able to
discuss what these results mean in terms of the estimators themselves and their asso-
ciated methodology. This will allow us to generate summaries of our novel approaches,
determining in what scenarios they outperform existing estimators and should thus be
preferred, as well as when they may need to be avoided. We will also be able to compare
our results to those generated in previous simulation studies, allowing us to confirm
whether they are in agreement and so our results can be deemed as reliable. Finally,
these results will be used to generate guidelines as to which estimator to use in spe-
cific scenarios, so that the appropriate methods could be determined given a particular
meta-analysis dataset. All of the above can also be applied to the pairings of 72 estima-
tors with confidence intervals for the summary effect size (an important element of the

output for any meta-analysis).
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Discussion and conclusions

9.1 Introduction

In this thesis, we explored the methodology used to estimate the heterogeneity variance
(72) in the case of rare-event meta-analyses. This parameter is a key component in
the estimation of the summary effect measure in random-effects meta-analyses - the
preferred choice when studies are heterogeneous, which is more likely in the case of
few events and/or studies. Several methods have previously been proposed to estimate
72, including the DerSimonian-Laird estimator (the default choice in many statistical
software packages). However, they have been shown to perform very poorly in the case
of sparse events, producing inaccurate meta-analysis conclusions, thus calling for more

appropriate methodology to take their place.

We have proposed a number of novel approaches to estimate 72, and also the summary
effect size (in our case the log-risk ratio), which we believe are appropriate for the case
of rare-event data. These methods are based on the use of generalised linear mixed
models (GLMMs), mixture models (MM) and another approach suggested elsewhere
previously (Bohning and Sarol (2000)). In terms of the GLMM-based approaches, we
looked at Poisson mixed regression models (PMRM) and conditional logistic mixed re-
gression models (CLMRM), and applied them using an R package with options chosen

to maximise convergence success and overall accuracy for our scenarios of interest.

In order to compare our proposed methods to existing 72 estimators, we conducted a
simulation study, where we varied a range of parameters when simulating our meta-
analyses in order to create a diverse range of scenarios. These parameters included the
number of studies, number of participants and true heterogeneity variance. We also
used differing distributions to sample non-constant parameter values (e.g. unbalanced

study sample sizes), in order to determine whether this has any effect on our results as
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well as generating the greatest range of realistic simulations. With our simulated meta-
analyses, we were then able to apply both our novel and the pre-existing 72 estimators,

and calculate performance measures such as the bias and mean squared error (MSE).

In Chapter we summarised the results of our simulation study in terms of these
performance measures, focusing on the ability of our novel approaches to estimate 72 as
well as the summary log-risk ratio (6). We found that our two GLMM-based approaches
performed well in terms of bias and MSE when study sample sizes were not small,
heterogeneity was present and for moderately high numbers of studies (k > 30), for
both 72 and 6 estimates. They also generated appropriately low numbers of zero 72
estimates when heterogeneity was present. Our MM approach appeared to perform
reasonably well in terms of these measures when studies were large but events were not
extremely rare, while our conditional-based methods varied in performance depending
on the specific estimating equations used in their application, with them generally having

optimum results for large studies with high event frequency.

We also compared four different methods for calculating confidence intervals for the
summary effect measure, looking at how these performed in terms of coverage and power
when paired with the 72 estimators of interest. From looking at the results relating to
these confidence intervals, we found that the Hartung-Knapp-Sidik-Jonkman (HKSJ)
method had the lowest coverage of the four approaches considered, but performed best
in terms of power and error. In terms of 72 estimators, our PMRM approach resulted

in the best coverage in the majority of scenarios investigated.

In this chapter, we shall discuss our simulation study results presented in Chapter |8 and
Appendix [E] summarising what these mean in terms of overall performance of each of
our novel approaches. As well as identifying scenarios where our novel methods out-
perform the pre-existing estimators, we shall also note those cases where the existing
estimators remain optimal, comparing these cases back to the results from previously
published simulation studies. We will then propose how estimator performance may re-
late to the corresponding methodology, allowing us to identify cases where amendments
in methodology (or corresponding code application) may improve performance in other
areas. This information will allow us to provide recommendations on which 72 estima-
tors (and paired confidence intervals) to use in particular scenarios, and thus generate

guidelines for others to follow when conducting rare-event meta-analyses.

In addition to this, we shall identify the advantages and disadvantages of our proposed
methods and simulation study design, noting where improvements could have been made
to improve the accuracy or range of the results. Finally, we shall discuss what our next
stages would be in order to further explore this research topic, as well as discuss further

methods that could have the potential to be reliable solutions for our problem of interest.
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9.2 Checking of methods and code for correctness

Prior to conducting our simulation study, we conducted a series of investigations to
ensure the correctness of our proposed 72 estimation methods and the R code we designed
to apply both them and the pre-existing estimators of interest. This allowed us to develop
trust in our R code and confirm that it performed reliably, so as to ensure the reliability

and validity of the associated results produced.

Firstly, we first simulated meta-analyses for more common-event benchmark cases, and
applied our estimator code to these simulated datasets. We then calculated performance
measures for the pre-existing estimators and compared these to the results found in
similar simulation studies, e.g. those by |[Friede et al. (2017a)) and [Langan (2015), as
the results in these studies represent the asymptotics that should be produced in such
scenarios. We also applied our code to empirical data with very large study sample sizes,
as there would be little concern of random error in these cases, and so the results of the
pre-existing approaches should represent those reported elsewhere for similar scenarios.
In both cases, when using our code, we produced appropriate results that were similar

to those expected.

As empirical datasets were used in the proposal papers for many of the pre-existing es-
timators, we also chose to apply our code for the corresponding methods to the example
datasets provided in these studies. In all of these cases, we successfully generated identi-
cal results to those of the proposed estimator as well as any other methods investigated
in the respective study, providing further evidence for the correctness of our application

of these methods in the form of our code.

Finally, in order to check the validity of our proposed GLMM and MM approaches, we
applied the R code that we developed to utilise these models in the rare-event case studies
described in Chapter[3] We then applied the same methods to this data using alternative
software or packages - for the GLMMs we applied them in the statistical software package
STATA, while with the MM approach we used the C.A.MAN R package developed for
the original proposed approach. In both cases, estimates of 72 were extracted from
the model output and compared with those produced from our written R code. By
doing this, we found that our written code produced almost identical results to those
from alternate software or packages, confirming the correctness of the application of our

proposed methods.

After we had clarified and investigated our code and the associated results, we then
formed a collaboration with other researchers to work on and assist with the program-

ming element of this simulation study.
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9.3 Discussion of results

In Chapter 8] we presented the main results obtained from our simulation study, with
additional results from alternate scenarios given in Appendix We found that no
general patterns were present for any of the various performance measures, as estimator
types behaved so differently regardless of simulated scenario. Here we shall discuss what
the individual results mean in terms of overall performance, paying particular attention

to our novel approaches.

It is worth noting here that, as mentioned in Chapter [§] ‘all-zero events’ and ‘all events’
scenarios were not removed during our simulation study. These scenarios represent
meta-analyses where all studies were double-zero trials, and the number of events was
equal to the sample size for each study, respectively. Both of these scenarios represent
trivial cases, and real-life datasets of this kind are unlikely to be studied and form
the entirety of a meta-analysis. Despite this fact, we retained these scenarios in our
simulation study as they could be used with some of the estimators considered, and
represent a potential (although unlikely) scenario for which recommendations can be
made (for methodological knowledge, if not real-life applications). As a result, in our
simulated scenarios with very rare events, ‘all-zero events’ meta-analyses may be present
and so incorporated into the results, however ‘all events’ meta-analyses were unlikely to

be produced as we did not simulate any extremely common event scenarios.

9.3.1 Performance of GLMM-based approaches

During our simulation study, we found that both of our novel GLMM-based methods
performed extremely poorly in terms of bias and MSE when the number of studies (k)
in the meta-analysis was less than 5, and thus we chose not to present these scenarios
in our results. However, in alternative scenarios, we found them to have great potential

when heterogeneity was present in the meta-analysis and k£ > 10.

In particular, PMRM had one of the lowest biases and MSEs for both 72 and 6 estimates
when these conditions were met and studies were balanced and small-to-medium to large,
or extremely unbalanced in size. This performance was irrespective of event probability
(it performed well for vary rare, rare and common events with either py < p; or pg > p1),
variability of baseline risk (02) and degree of heterogeneity present (as long as 72 > 0).
In addition, it produced the most appropriate numbers of zero 72 in these scenarios
when heterogeneity was present, consistently generating almost no zero estimates, far
better than any other estimator considered. These results were also consistent over the
varying sampling distributions for event count and sample size used in our simulation
study, confirming the results seen here. The inability of this approach to perform well

in homogeneous cases is likely the result of its tendency to generate non-zero parameter
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estimates, a result confirmed via the percentage of zero estimates reported in Section
3.0.9)

The major drawback of our PMRM approach, however, is that there exist certain sce-
narios where this method cannot be applied, either naturally due to model construction
or as a result of poor convergence. These cases are listed in Sections[4.7 and [R:4.T|respec-
tively. In particular, PMRM should not be applied when k£ < 10, and this is increased
to k < 20 when sample sizes are severely unbalanced. As we discovered later, both the
GLMMs considered perform poorly when k£ = 5 in general, and we recommend against
using them in such situations, and so our decision not to apply the PMRM method in
the described scenarios is of little importance or significance to our findings. Despite
these drawbacks, our PMRM was consistently found to be the optimal approach for the

cases outlined above, in terms of estimating both 72 and é parameters.

The CLMRM approach, our proposed GLMM method, appeared to perform very sim-
ilarly to the PMRM for the cases described above (non-small studies and 72 > 0),
producing almost identical values of bias in all given scenarios but resulting in slightly
higher MSE when the events were extremely rare. It also generated relatively low num-
bers of zero 72 estimates when heterogeneity was present, as desired, but these were not
as small as those from the PMRM approach. However, this method can be applied to a
larger range of scenarios than the PMRM, since the number of scenarios for which the
model cannot be applied to (as a result of model construction or convergence failure) is
fewer, as detailed in Sections [.7] and respectively. In addition, we found CLMRM
to have higher convergence rates than PMRM for data with very rare events (providing

the study sample sizes were not all small).

Our CLMRM model is also able to be applied when k = 5, although it has extreme
bias and MSE in this case when events are very rare. As a result, this method is still
affected by some of the same issues described with PMRM above, in that it is likely to
fail to converge when the data is too sparse, in particular when events are very rare and
either the sample size is small (e.g. less than 50) or few studies are present. When both
of these conditions are met together, the model may to fail to converge or will generate

extreme unreliable estimates.

A benefit of both of the GLMM methods discussed here is that they can be applied to
the ‘all-events’ scenario, where the number of events is equal to the sample size across
all studies in the meta-analysis. Although this represents a trivial case, similar to the
‘all-zero events’ scenario mentioned previously, which is unlikely to be seen in practice,
the majority of pre-existing normal-based estimators included in our simulation study
are not able to work with such meta-analyses, demonstrating the methodological (if not

practical) advantage of the GLMMs in this case.

The model constrictions that we described above represent obvious limitations associ-

ated with applying a regression model to rare-event data, and can become even more
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troublesome when the number of studies in the meta-analysis is low (k < 5) or the sam-
ple sizes are small (e.g. generally less than 50) and the data is rare-event (so contains a
number of zero counts). When either of these conditions are met, then the model will
fail to converge as a result of over-parameterisation, as there are more parameters in
the models than there are outcomes from the datasets being input. As a result, using
another type of model family would not fix this problem, as the data for such examples
has so many zero counts in comparison to the number of studies that any estimates

produced using such a dataset would not be reliable.

When we ranked all the estimators by MSE and presented the top 10 for each probability
scenario, our GLMM methods made very few appearances and were largely towards the
bottom of the ranking, even for non-small studies, as shown in Section The reason
behind this is because these rankings were based on all combinations of parameters other
than sample size, so this would have incorporated all values of k and 72 included in our
simulation study. As these methods were found to perform poorly for small k& and

homogeneous scenarios, this would have dramatically reduced their average ranking.

9.3.2 Performance of conditional-based approaches

We looked at four different variations of our conditional-based approach proposed in
Chapter [5] each with their own version of the method-required estimating equation for
the parameter 7’3. We included all of these variations in our simulation study in order
to determine if one outperformed the others, and denoted them by CO1-CO4. From
our results, we found that CO2-CO4 behaved very similarly to each other in general,
while the original method CO1 behaved differently in the majority of cases. All versions
were found to perform poorly in general in terms of bias and MSE when events were
rare or very rare and heterogeneity was present, with CO2-CO4 generating extreme
outlying estimates. In the case of homogeneity however, CO1 had the lowest bias when
estimating 72, likely the result of the near-100% of zero 72 estimates generated in all
levels of heterogeneity considered. This inaccuracy of estimating 72 in general lead
these methods to have poor performance when estimating 6, or a performance similar
to that of the pre-existing estimators. As these conditional-based methods, like the
pre-existing estimators, make use of the previously criticised inverse-variance approach

when estimating the summary log-risk ratio, this result is not that surprising.

However, the CO2-CO4 methods were found to perform far better in terms of both
bias and MSE when events were common or the probability scenario was defined by
po < p1. This is likely the result of their structure of 7‘5 estimating equation, which
is very dependant on the relationship between the event probability in the control arm
(po) and treatment arm (p;), and are likely to perform better in all cases when the
event probability is high. In particular, CO2-CO4 had the lowest bias when events were

common with pg > p; and heterogeneity was present, regardless of study sample size.
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However, this was only the case when k& > 10 with highly unbalanced sample sizes.
As before, the alternative sampling of non-constant parameters in the simulation study

agreed with these results, backing up their reliability.

We also investigated the performance of these methods in estimating the study-specific
Tg, to determine if they had performed well in terms of this in a broader range of cases
than above, and thus an amended transformation to 72 could be of interest. From our
results, we found that in the case of very rare events, CO1 outperformed CO2-CO4
in terms of both bias and MSE when homogeneity was present or studies were small,
but the inverse was true otherwise. However, as the event probability increased, CO2-
CO4 outperformed CO1 in all cases when heterogeneity was present, regardless of study
sample size. In all cases, the bias and MSE of these methods in estimating T}? can
be seen to be very small, indicating that they perform very well when estimating this
parameter, and that their inconsistent performance in estimating 72 may be the result
of an inappropriate transformation. As a result, it is possible that an alternate form
of amendment may increase the overall performance of the estimators and so should be

sought.

9.3.3 Performance of mixture model approach

Finally, in terms of our novel MM approach proposed in Chapter [6], the results from our
simulation study showed that this estimator performed very poorly in the majority of
scenarios investigated. In particular, it had extreme bias in all very rare scenarios, only
produced results comparable to the other approaches when studies were large in size
and events were rare (with py < p1) or common. Although its results were comparable
in these cases, they were not remarkable and as such would not be recommended above
the others based on bias and MSE. The proportion of zero 72 estimates remained high

2 increased above zero and

for small sample sizes or homogenous cases, but dropped as 7
the studies increased in size and diversity. However, it only performed well with respect
to the other approaches for this measure when heterogeneity was present, outperforming

even the previously mentioned CLMRM approach in this case.

When estimating the summary log-risk ratio, our MM approach was found to be one
of the better performers in terms of bias and MSE when events were common with
po < p1, however in all other scenarios it produced some of the worst results in general.
This indicates that while it performed moderately well with estimating 72, it was not
as successful in generating an estimate for 6 (the main purpose of a meta-analysis).
As a result, this method appeared to perform fairly poorly overall in this simulation
study, particularly in the case of rare-event data, our area of interest. As before, results
generated from using alternate sampling distributions in this study agreed with those

discussed here.
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2 estimators

9.3.4 Performance of pre-existing 7
In addition to looking at the performance of our novel approaches, we shall also briefly
discuss the results corresponding to the pre-proposed 72 estimators, focusing on cases
where they remain the optimal methods, as well as comparing our results with those
presented in previously published studies. From the results for performance measures
presented in Chapter [8] in general the performance of all estimators tends to improve
as the number of studies in the meta-analysis (k) increases, a result that we expected to
observe. Our results relating to the mean bias and proportion of zero estimates for 72 are
comparable with those produced by [Friede et al.|(2017a)), and which are summarised in
Figures and 2.2l We also observed that the estimators performed better in scenarios
with balanced and small-to-medium study sample sizes than those with small and large
studies. This result agrees with previous knowledge that the majority of pre-proposed
72 estimators perform poorly when the size of treatment arms are highly imbalanced
within a meta-analysis, a negative association that is only exaggerated by increasing

rarity in events.

We found that many of our proposed estimators performed poorly in the case of small
sample sizes as a result of convergence difficulties. In terms of the pre-proposed es-
timators, the semi-Bayesian Bayes Modal (BM) approach appeared to have the least
bias in this case, as long as 72 > 0 and k was high, i.e. & > 30. When events were
rare, the non-truncated method-of-moments approaches Hartung-Makambi (HK) and
Sidik-Jonkman (SJ) had the least MSE for this sample size scenario, however SJ had
both significant bias and MSE when homogeneity was present. This agrees with a result
found by [Langan (2015), who showed that this estimator produced a consistently high

bias in the case of odds-ratio meta-analyses with event probability 0.1 to 0.5.

The method-of-moments Hedges-Olkin (HO) approach performed poorly in terms of
both bias and MSE when events were rare and sample sizes unbalanced, as did both
versions of the semi-Bayesian Rukhin-Bayes estimators (RB and RB0). These semi-
Bayesian approaches also performed very poorly in the case of small sample sizes, con-
sistently producing extreme estimates of 72. For all other estimators, we found the MSE
decreased as k increased when sample sizes were not balanced and small, dropping to
near-zero for most estimators when k = 100, as to be expected. When sample sizes were
small, however, all estimators appeared to maintain a consistent level of MSE regardless

of k, and as such did not approach zero.

In terms of the proportion of zero 72 estimates, RB and RBO again appeared to produce
unusual results when sample sizes were small, jumping from all to no zero estimates
depending on the value of k. Some estimators appeared to produce consistent results
regardless of whether heterogeneity was present or not, which is not preferable. Examples
of these include the method-of-moments HM and positive DerSimonian-Laird estimators,

which consistently generated almost no zero 72 estimates, regardless of the true value of
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72. The reason for this with the latter approach is the correction of 0.01 that is added

when a zero estimate is produced, making this an impossible outcome.

All of the pre-proposed estimators appeared to perform very similarly when estimating
the summary log-risk ratio, in terms of both bias and MSE, and regardless of changes
in sample size or k. However the HO, RB and RBO0 did appear to have the least bias
of all methods considered when events were rare and sample sizes were unbalanced,
contradicting the 72 estimation results discussed above. We also included the fixed-effect
Mantel-Haenszel (MH) approach when estimating the summary effect size, to determine
how this performs compared to methods that incorporate 72 (i.e. our random-effects
methods). We applied both the original version of this method, as well as one that
included a continuity correction in the case of double-zero trials (to prevent them being
omitted from the approach). In terms of both bias and MSE, both variations of the
MH approach outperformed all other estimators in homogeneous cases. This is to be
expected, as there is no heterogeneity present that needs to be accounted for, and this
approach is designed to work well with rare-event data. However, as the true value
of 72 increased, the performance of these approaches dropped rapidly, displaying the
importance of accounting for heterogeneity when it is present, and the effect it has on

the summary effect measure calculated.

In Chapter we also briefly looked at the efficiency of the iterative estimators by
measuring the number of cases where they failed to converge in our simulation study.
These iterative pre-existing estimators consisted of the Paule-Mandel (PM), maximum
likelihood (ML), restricted maximum likelihood (REML) and approximate restricted
maximum likelihood (AREML) methods. The PM appeared to be the most efficient of
these, converging to a solution in all cases, regardless of sample size or event probability.
Meanwhile, while the maximum likelihood-based approaches did have some convergence
issues, these were very few in number (with a maximum of 2.45% of non-applicable
meta-analyses in the case of very rare events), and the converge rates were very similar

across this group of methods.

In this section we have confirmed that the results discussed here appear to closely follow
those seen in previous studies, allowing us to develop further trust in the results we

obtained in our simulation study in respect to both pre-existing and novel approaches.

9.3.5 Performance of summary-effect confidence intervals

As an additional aspect of out simulation study, we also looked at the performance
of various methods in calculating 95% confidence intervals for the summary log-risk
ratio, as this would allow us to determine not only the preferred confidence interval,

but also the preferred combination of 72 estimator and confidence interval. As such,
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this would allow us to make recommendations on preferential 72 estimators that in-
corporated all aspects of a meta-analysis. The methods that we chose to investigate
were the Wald-type, t-distribution, Hartung-Knapp-Sidik-Jonkman (HKSJ) and modi-
fied Hartung-Knapp (mKH) approaches. Each of these methods is discussed in detail
in Section In our simulation study, we measured these methods according to their

coverage, power, mean error and error variance.

Our results show that the coverage of these four methods is better when the sample
sizes are balanced and when the events are less rare, as would be expected. The four
methods performed very similarly in terms of coverage over all scenarios considered,
however the HKSJ had slightly poorer coverage than the others in general. In terms
of the 72 estimators, our novel PMRM was found to result in the best coverage in
all scenarios where it could be applied, as some of the other 72 estimators resulted
in coverages that moved away from the optimal 95% level as k increased, an unusual
observation, but likely a result of the rare-event nature of the data included. Similar
to the results discussed above, the coverage generated from the fixed-effect MH-based

2 increased. In terms of the power and

approaches appeared to reduce dramatically as 7
error, the HKSJ was actually found to perform the best of all those considered, with high
power and minimal mean error (and associated variance) for all scenarios investigated.
As a result, when deciding on the confidence interval method of choice, a trade-off needs

to be made between coverage and power/error.

9.4 Limitations of simulation study

We were successful in conducting our simulation study and meeting all aims of our
project, producing reliable results after checking all methods and code for correctness.
However, there were obviously some limitations of our study design and elements that

would be changed if we were to conduct it again.

The principal limitation that we faced was the constraint on time to conduct further
simulations or scenarios, as well as limited memory to store all of the simulation output
and results. These issues were of particular significance since our simulations and esti-
mation techniques were both intensive and time-consuming. We used a super-computer
in the form of the University of Southampton’s IRIDIS High Performance Computing
Facility to combat both of these issues, however we still would have liked to investigate
further scenarios in order to provide a broader picture of estimator performance. For
example, it would have been preferable to increase the range for parameters such as the
true log-risk ratio (@), for which we only investigated three cases (§ = —1.6,0,1.6), as
well the variation in baseline risk (02). We only conducted 1000 simulations for each in-
vestigated scenario as well, which could be increased to 5000 or 10,000 to ensure further

reliability of the results generated.
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The limitation on time and computing resources also restricted the number of estima-
tors that we could investigate. In particular, it may have been of interest to explore
the fully Bayesian approach to estimating 72 and conducting meta-analyses, which we
discussed briefly in Section but did not include in our simulation study. This is
because we had limited knowledge with regards to prior distributions and parameters
that may be suitable for our scenario of interest, and so could be used as starting points,
and application of such an approach would involve significant additional computational

burden for the simulation study.

Some of our proposed approaches were also limited in their application by the com-
plexity and advancement of statistical software that is currently available. After much
investigation into the current methods available to apply GLMMs in statistical software
packages, we chose to use the R package lme4 when applying our GLMM-based ap-
proaches (PMRM and CLMRM). We were recommended to use this particular package
by others in the field because it currently has the largest scope in terms of applicable
scenarios, and can be used with the more complicated CLMRM model. However, there
were still certain scenarios where the models failed to converge, likely due to the sparse-
ness of the associated data. At the time of conducting our simulation study, we used
the most up-to-date version of this package (version 1.1-19), which was released in 2018.
We noted a number of differences in terms of scenarios that could be applied between
this and the previous version of the package, leading us to believe that future versions
may be able to accommodate some of the currently incompatible scenarios. As a result,
it would be suggested that the approach is always applied using the most-up-to-date
package.

Finally, a trade-off had to be made between including as many estimators as possible
and the ease in presenting an overall message. We chose to include a large number
of 72 estimators as this would provide the most complete picture, and would allow us
to compare our novel approaches to a range of pre-existing estimators with differing
methodologies. However, we then found it challenging to extract the overall message
from the results of the simulation study without generalising in some manner. We
tried to overcome this complexity by presenting summaries of particular performance
measures (e.g. MSE ranking tables), however we are aware that these only provide a
brief idea of the results and in no way summarise the overall performance. As it was
difficult to define clear winners, in this chapter we have also listed those estimators that
should certainly be avoided in given scenarios according to the results from our study,

in order to provide an alternative take on the recommendations.
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9.5 Potential future work

9.5.1 Modifications to simulation study design

As mentioned above, we were restricted by time constraints when conducting our simu-
lation study. If we had additional time and resources available to us, there are a number
of potential extensions and additional projects that could be conducted to expand on
our current work. For example, an additional aspect that would have been of interest to
investigate is the time taken for methods to be applied, which would have been of partic-
ularly importance for our novel model-based approaches. This could have considerable
impact on the overall performance of these methods, as they make take a very long time

to converge to a solution in some cases, particularly those involving very rare-event data.

During the course of our study, we found that our novel approaches performed very
poorly when few studies were included in the meta-analysis, particularly when k < 5. As
a result, we chose to omit these scenarios entirely from our simulation study, and thus not
present their results. If we had additional time, we could add to our additional study plan
by also focusing on these particular scenarios, paying particular attention to methods
that may be more suitable (such as Bayesian approaches). In the previous section, we
mentioned briefly how we had not had the opportunity to investigate fully Bayesian
approaches due to lack of information on potentially appropriate priors. Incorporating
such methodology into our study could allow us to retain cases with £ < 5, where others
have found Bayesian methods to perform well (Giinhan et al.| (2018))), and investigate

the performance of varying prior distributions and prior values.

With additional time and resources, we would re-conduct our simulation study, increas-
ing the number of simulations from 1000 to 5000 or 10,000 replications per scenario,
in order to improve the reliability of our current results. We would also present fur-
ther results, as we only presented the most relevant and impactful results obtained in
Chapter It would also be of interest to look at further performance measures, such
as the power of the 72 estimator itself. In the case of the ML and REML estimators,
this would be in the form of the likelihood ratio test (LRT), however the Wald test can
also be used to generate the estimate and corresponding standard error. For such tests,
our null hypothesis would be that 72 = 0, with the alternative hypothesis that 72 > 0.
We could also inspect the correlation between our log-relative risk estimates and their
variance estimates, in order to determine if this has any role in the performance of the
corresponding 72 estimator. Following this, methods with the intention to control for

this correlation could be sought for the estimators of interest.

Finally, it would also be of interest to look at alternative effect size measures, as we
focused solely on the log-risk ratio due to its simple interpretation and common use

in practice with binary data. We could expand our research by also investigating the
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performance of modified 72 estimators for the log-odds ratio or risk difference outcome
measures, to determine whether outcome measure has any impact in the overall per-
formance of the 72 estimate in estimating the overall summary effect. We could also
expand on this by also looking at continuous meta-analysis data and corresponding

outcome measures.

9.5.2 Modifications to novel 72 estimators

In terms of our novel GLMM-based approaches, we only investigated using the PMRM
and CLMRM models. However, it would be of interest to look at applying additional
GLMMs, such as Binomial mixed regression models, to the problem of estimating 72
with sparse data, as discussed briefly in Section Such models have potential in
our scenario of interest, and could be applied using the packages that are regularly
being released and updated. We could also look at making further modifications to our
two existing GLMM-based approaches, potentially using alternative packages that will

undoubtedly be released in the future.

In Chapter[5] we proposed our conditional-based approach with four alternate estimating
equations for the method-specific parameter Tg. Based on the results we have generated
for these various approaches, it could be of interest to investigate further variations of the
estimating equation, as these may be found to perform better overall. In our results we
also found our MM-based method to perform poorly in general, so modified approaches
to applying this method could be investigated. In particular, the application of the EM
algorithm could be altered and alternative methods for the selection of the model of best
fit could be used, e.g. LRT, as we only used the Bayesian information criterion (BIC)

in our simulation study.

9.5.3 Future publications

Using the R code presented in Appendix we will shortly produce a user-friendly
R package that can be used to apply all of the 72 estimators considered here to a
meta-analysis dataset. This will allow researchers to apply the appropriate estimator of
their choice to their own datasets. We shall make this package available on GitHub and
promote it in future research papers that we will produce and put forward for publication.
Such papers include a literature review of all of the pre-proposed 72 estimators currently
available, along with the results relating to these from our simulation study, outlining
their performance in a wide range of rare-event scenarios. A further potential paper
involves a description of our proposed novel methods, with particular attention on the
GLMMs, and the results from this simulation study demonstrating their performance
compared to a selection of the pre-proposed estimators in the case of rare-event data.

We are also collaborating with others on a number of related projects.
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9.6 Conclusions

The aim of our simulation study was to compare existing 72 estimators with our pro-
posed approaches that we believe should be appropriate for the case of rare-event data.
These novel approaches include two based on the use of GLMMs - one based on Pois-
son regression models, with a random effect on the treatment parameter, the other on
conditional logistic regression models. The others consisted of several variations of a
previously proposed conditional-based approach and an approach based on the use of
mixture models. In order to assess these approaches under sparsity, we designed re-
alistic simulations that satisfied our sparsity requirements, varying parameters such as
the sample size and number of studies, while also looking at more common events. We
focused on binary endpoints only, and were interested in 2 x 2 contingency tables with
many zero events, and single-zero and double-zero trials. The log-risk ratio outcome
measure was our summary effect measure of choice as it is easy to interpret and popular

in published studies.

In order to develop trust in the results of our simulation study, we investigated the
correctness of our novel approaches and the R code used to apply both these and the
pre-existing estimators. To do this, we applied our code to empirical datasets that had
been used with some of the pre-existing estimators in previously published studies, and
compared our results with those presented there. We also applied these pre-existing
methods to simulated common-event cases and empirical data with large study sample
sizes, as these cases should have little random error and thus represent those results
reported elsewhere. In all of the above checks, we found our code to produce results that
mirrored those to be expected. In order to ensure the correctness of our novel GLMM
and MM methods, we applied them using alternative statistical software packages or
packages previously constructed to apply the modifications of the methods, and in both
cases found our written R code to generate identical results to those from alternate
packages. As such, we were able to fully ensure the correctness of both our R code and

novel approaches, thus developing trust in the results we have presented here.

From the results of our simulation study, we found our novel PMRM approach to gener-
ally outperform all other estimators in terms of estimating 72 and # when heterogeneity
was present and k£ > 10 in all scenarios where study sample sizes were not small, regard-
less of event probability. However, there are a number of particular scenarios where this
method cannot be applied due to either model design or convergence issues, and so the
approach has efficiency issues, particularly when events are very rare. Our other GLMM
approach, the CLMRM method, performed very similarly to PMRM in the scenarios de-
scribed above, however it did have much better convergence rates in the case of very rare
events (although this was coupled with slightly higher MSE). While this method was
applicable in the case of k = 5, it was found to have extreme bias and MSE here. Mean-

while, the variations of our conditional-based approach were found to perform poorly
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for rare events, but succeeded in outperforming the other estimators when events were
common. These methods appeared to be very sensitive to the relationship between pg
and pi, as they performed far better in general when py < p;. Finally, our novel MM
approach was found to perform very poorly in the majority of scenarios considered here,
and only managed to generate comparable results when events were common and studies

large.

In terms of the pre-existing 72 estimators, we generated results in our simulation study
that mirrored those seen in previous studies. For example, we found the SJ estimator
to consistently suffer from high bias, particularly when 72 = 0, a result previously re-
ported elsewhere. In terms of estimating 72, the semi-Bayesian RB and RB0 approaches
performed very poorly in all cases when sample sizes were small, as they did with rare
events and unbalanced sample sizes, together with the method-of-moments HO estima-
tor. We included the fixed-effect MH approach when investigating the performance in
estimating the summary log-risk ratio, and found that while this approach performed

2 increased - a result to be

best when 72 = 0, the performance rapidly decreased as 7
expected from a fixed-effect approach. We also looked at the efficiency of the iterative
estimators included in our study, and found that the PM estimator did not suffer from
any convergence issues at all, while the ML-based methods did, but only to a very small

degree.

We also looked at how the 72 estimators performed in terms of generating confidence
intervals for the summary log-risk ratio, when combined with four alternative methods
for calculating these intervals. The PMRM method was consistently found to result
in the best coverage when it could be applied, regardless of the method applied. The
methods themselves did not differ dramatically in terms of coverage, however the HKSJ
method was observed to have a slightly lower coverage in general. In terms of power and
error, however, the HKSJ method outperformed the other approaches, resulting in any
decisions regarding method choice to be made via a trade-off between the performance

measures discussed here.

Although we successfully conducted our simulation study as planned, and confirmed
the correctness of the results produced, there are still some limitations to our study.
For example, we were restricted on the time and memory available to us, meaning we
could only generate 1000 simulations and were restricted to limited parameter ranges
in the 2520 scenarios we investigated here. These limitations also prevented us from
including some pre-existing approaches, in particular the fully Bayesian approach, where
we were further restricted by lack of published knowledge on appropriate prior values
and distributions for our scenario of interest. Our proposed GLMM-based methods were
also limited in their applicability, and resulting efficiency, by the performance of the R

packages used to apply them.



218 Chapter 9 Discussion and conclusions

If we had more time and memory available, we would make some modifications to our
simulation study in the form of including the number of simulations and scenarios, and
investigating methods specific to the problematic scenario of k = 5 (such as Bayesian
approaches). We could also look at additional performance measures such as the power
of the 72 estimators and the correlation between the log-risk ratio estimates and their
corresponding variance estimates. It could also be of interest to include additional
outcome measures in our simulation study, or focus on the case of continuous data. In
terms of our novel methods, we could also look at investigating further GLMMs or make
modifications to the application of the ones proposed here. For our conditional-based
methods, we could investigate the effect of modifying the associated estimating equation
further, as well as look at alternative methods for model selection. We plan to make an
R package of our code available to enable easy application of all of the methods included

in our study, as well as publish guidelines on which estimators to use.

In summary, in our simulation study we found our proposed GLMM-based methods to
perform well in the case of rare-event data as well as more common event scenarios,
when heterogeneity was present, sample sizes were not small and k£ > 20. However, they
are restricted in terms of efficiency, particularly when events are very rare, although
CLMRM can be used in more cases than PMRM. Our novel conditional-based methods
only performed well in the case of common events, and were found to be sensitive to
the relationship between pg and pi1, while our MM approach appeared to perform poorly
in the majority of scenarios investigated. In terms of the summary effect confidence
interval, PMRM consistently resulted in the best coverage, and while the HKSJ method
appeared to perform well in terms of calculating the interval itself, trade-offs may need
to be made between power and coverage. As a result, we have proposed some novel
approaches, in the form of the GLMM-based methods, that have been shown to outper-
form existing estimators in the case of rare-event data, and so should act as preferential

alternatives.

9.7 Recommendations

Based on the results presented in Chapter [§] and Appendix [E] we can now make rec-
ommendations on which methods to apply in real-life meta-analyses meeting given sce-
narios. When deciding on the appropriate method, the first step should be to identify
the particular characteristics of the meta-analysis dataset of interest. In particular, it is

important to obtain an idea of the following:

e Number of studies - easy to determine

e Sample size of the included studies - again easy to determine. Sample sizes should

be grouped according to whether they are relatively well balanced or not, and
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whether they can be classed as small (n &~ 20), medium-sized (n =~ 200) or large
(n > 1000).

e Event probability - easy to determine by comparing the number of events to sample
size. It is likely that all studies will have relatively similar event probability as
they all relate to the same or very similar outcome, and the event probability
should also be in one direction in general, i.e. pg < p1 or pg > p1. This should be
classified according whether they are very rare (with an event rate of around 1 in
1000), rare (1 in 100) or common (1 in 10 or higher). They should also be classed

as to whether the event probabilities in general follow py < p1 or py > p1.

e Level of heterogeneity - this has to be determined based on initial impressions of
the data, and thus is more complicated to predict. However, it should be easy to
detect when absolutely no heterogeneity is present, as these studies will all have
been conducted using extremely similar groups of participants and conducted in
identical manners. If this is not the case, then heterogeneity can be assumed to
be present. In addition, as the differences in these aspects increase, then the level

of heterogeneity can also be assumed to increase.

Once these aspects of the meta-analysis have been determined, an appropriate 72 esti-
mator can be chosen using the following criteria. If events are rare or very rare, sample
sizes are not small, £ > 20 and heterogeneity is suspected to be present, then the PMRM
method should be used. However, this depends on the meta-analysis not meeting one
of the patterns incompatible with this approach (defining features of these scenarios are
listed in Sections and . If the meta-analysis does meet the conditions of one of
the incompatible scenarios, or if the events are very rare, then the CLMRM approach
should instead be used. However, this approach also has its own set of inapplicable
scenarios, and if the meta-analyses meets the conditions of these (listed in Sections
and , then the SJ estimator is recommended as a final choice.

In the above described scenario, but with 5 < k£ < 20, the CLMRM approach is the
recommended choice, with the SJ estimator again being the alternative option when the
former cannot be applied. In cases where sample sizes are small and heterogeneity is
suspected, the SJ estimator is again the preferred choice and would be recommended.
If heterogeneity is not believed to be present, and so homogeneity is assumed, then the
HO estimator should be used when sample sizes are small, while our CO1 approach is

the preferred choice for all other sample size scenarios.

When events are classified as being common, CO1 is recommended when pg < pi, sample
sizes are not small and heterogeneity is suspected. When pg > p; is the case, however,
REML should be the method of choice. In both probability scenarios, when sample sizes
are small, SJ is the recommended approach. Finally, when homogeneity is assumed for

common-event data, the REML approach is again recommended.
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2 estimators to be avoided

9.7.1 Poorly performing 7
As well as producing recommendations on the 72 estimators to be used in given scenarios,
we can also use our simulation study results to list those estimators that should definitely
be avoided in future meta-analyses of rare-event data. For example, the pre-existing
HO, RB and RBO methods should be avoided when sample sizes are rare and sample
sizes unbalanced. Meanwhile, if there exists strong evidence that heterogeneity is not
present, then the SJ, HM and positive-DL estimators are not recommended and should
be avoided, with the latter struggling to produce zero 72 estimates. As expected, we
found the fixed-effect Mantel-Haenszel approach to perform poorly in terms of estimating
the summary log-risk ratio when heterogeneity was present, and so (as is standard

protocol) this approach should be avoided if this is suspected to be the case.

9.7.2 Guidelines

We shall now present guidelines for the choice of 72 estimators in given rare-event sce-
narios, which researchers can follow to select the most appropriate method given a
particular meta-analysis dataset. These guidelines are presented below in Table
The definitions of the varying study sample sizes and probability scenarios are listed in
Section for reference.

TABLE 9.1: Recommended 72 estimators to use in various meta-analysis scenarios.
Estimators that depend on the applicability of the given meta-analysis are ranked as
first /second /third choice, etc.

S le si Probability scenario
ample size
P Very rare ‘ Rare Common
Small 72> 0: SJ, 72> 0: SJ,
ma.
7> =0: HO 7% = 0: REML
Small-to-
medium 7 > 0 and py < p1:
Modinm 72 > 0 and k > 20: PMRM/CLMRM/SJ, Co1,
72 >0and 5 < k < 20: CLMRM/SJ 72 > 0 and po > pi:
Small and ’ )
large 72 =0: CO1 REML,
Large 72 = 0: REML
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Proof of heterogeneity variance

estimating approaches

A.1 Derivation of method of moments estimator for the

heterogeneity variance

Recall that Var(é ) = U +72. We begin by taking the expected value of the unweighted
squared error for a given study i (Kacker (2004)):

= (02 +7%)+

>
%>

The expected value of the generalised Q-statistic, Qarar = ZZ L wi(6; —0)?, is therefore:
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Equating the expected value to its observed value gives us:
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Logic behind generalised linear

mixed model approaches

B.1 Proof of conditional logistic mixed regression model

approach

Here we shall discuss the idea beyond our choice of the conditional logistic mixed re-
gression model in the estimation of heterogeneity variance for rare-event meta-analysis
data. First, we will look at the idea behind the use of this model, using results taken
from [Ross (2014), and then we shall apply these results to the case of a meta-analysis,

in order to show how the heterogeneity variance can be estimated.

B.1.1 Idea for conditional logistic mixed regression model

From Ross (2014), if we let X and Y be independent Poisson random variables with
respective means A\; and Mg, i.e. X ~ Pois(A1) and Y ~ Pois(A2), then the conditional

probability mass function of X given that X +Y = n can be calculated as follows:

P{X=kX+Y =n}
P{X+Y =n}

_ P{X=kY =n—k}

 P{X+Y=n}

_ P{X=Fk}P{Y =n—k}

N P{X+Y =n}

P{X =KX +Y =n}=

(B.1.1)

where the last equality follows from the assumed independence of X and Y. Given the

properties of the Poisson distribution, the sum of the random variables X + Y also has
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a Poisson distribution, with mean A\ + Ao, i.e. X +Y ~ Pois(A; + A2). Using this

information, Equation (B.1.1]) can be rewritten as:

-1

A1 \k =2 n—k 7()\1%»)\2) n
P{X=klX+Y =n} =S AL e A [e (A1 + )

k' (n—k)!

n!

_ AR F (B.1.2)
(n — k)& (A + o)

-()5) ()
- \k AL+ Ag A1+ A2

From looking at the last line in Equation , it is clear that the conditional dis-
tribution of X given that X + Y = n follows a Binomial distribution with parameters
nand A1 /(A1 + A2), i.e. X|(X +Y =n)~ Bin(n,\1/(A1 + A2)). It follows from this,
and the properties of the Binomial distribution, that the conditional expected value of
X given that X +Y = n is given by:

A1
A1+ A

E{X|X+Y =n}=n (B.1.3)

B.1.2 Application of conditional logistic mixed regression model to a

meta-analysis scenario

Next we shall apply the results from Section to our meta-analysis situation. If we
let X be X;1 and Y be X,g, where X;; represents the count of events in the treatment
arm of study 7 and X,y is the count of events in the control arm of study ¢, then

X; = X;1 + Xjg is the total count of events in study 1.

The relative risk, RR (the outcome measure of interest in our meta-analysis scenario),
can be defined in terms of the incidence rate in the treatment arm (u;) and the incidence

rate in the control arm (o) as follows:

RR = /o

For the treatment arm of study i, the expected count of events is defined as:

E(Xin) = mPi

where P;; is the person time for the treatment arm in study ¢. Similarly, the expected

count of events in the control arm is given by:
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E(Xi0) = poPio

where Py is the person time for the control arm in study <.

It follows from the properties of expected values that E(X;1 + X0) = 1P + poPio-
Inputting the above meta-analysis parameters into Equation , we achieve the
following conditional expected value of X;; given X; = X;1 + Xj0, i.e. the conditional
expected value of the event count in the treatment arm given the total event count in

study ¢:

1 P

(XinXi) ZM1H1+H0Pio

(B.1.4)

ZPO
1+RRRI

where RR; represents the relative risk in study i. We can see that Equation (B.1.4]) de-

pends only on this value of RR;, the parameter of interest in our meta-analysis scenario.

From the general results obtained in Section we know that the conditional distri-
bution of X;; given that X; = X;1 + X0 has a Binomial distribution with parameters
gi and X;, i.e. X;1|X; ~ Bin(q;, X;), where ¢; is defined as:

1Py

qi =
" P + toPio

(B.1.5)

7,P0

Now, if we let RR; = exp(«), where « is the common log-relative risk, then Equation

(B.1.5) can be rewritten as:

)]

exp [a + log (
q4; =
g

1+ exp [a+lo

)]

which can then be rearranged to give:
q;

= = exp [a—i—log <Rl>]
1_% -PZO

Taking logarithms, we obtain the conditional logistic model:
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qi Py
lo =« + lo () B.1.6
g<1—qz‘> s P; ( )

The estimate of the relative risk, EE, can then be obtained through logistic regression

using Model which is composed of only an intercept term and an offset term of
log(P;1/Py). The above fixed conditional logistic model can easily be extended to a

random-effects model:

%\ _q, Fa
log (1 _qi> = o, + log <Pio> (B.1.7)

with a; ~ N(a,02), where a is the common relative risk across studies and the value

2

Oq

represents the heterogeneity variance estimate. Thus, by applying the conditional
logistic mixed regression model given in Equation (B.1.7)) to a meta-analysis dataset, an
estimate of the heterogeneity variance for that dataset can be determined and extracted

from the associated model output.
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Proof for mixture model approach

C.1 Proof for case when within-study person times are

unequal

In Chapter 6 we proposed a novel method for the estimation of the heterogeneity variance
(72) in rare-event meta-analyses, that is based on the use of mixture models. In our
initial outline of the method, we assumed that the within-study person times were equal,
i.e. Pp=Pygforalli=1,...,k, where P;; and P,y are the person times in the treatment
and control groups of study ¢ respectively and k is the number of studies in the meta-
analysis. We made this assumption for simplicity, and because we would be setting this
restriction when designing and running our own simulation study. Here we shall outline
the proof for the case when the within-study person times are unequal, i.e. P;; # P

for at least one i = 1,..., k.

C.1.1 EM algorithm

As in Section we shall begin by outlining the input for the EM algorithm to be
applied, in particular the associated likelihoods. Recall that the mixture model we are

considering is defined as:

Z Bi 9/ - i 0/ rs Xi1 # Xio _
“9/ ~ e'n+1 Oiri +1 !

where X;; and X;p are the count of events in the treatment and control arms of study ¢
respectively, X; = X;1 + X0, 19; is the risk ratio for subgroup j, m; are positive weights
that satisfy 23-121 mj = 1, and r; is the ratio of person times for study i, i.e. 7, = P;1/Pjo,

fori=1,...,kand j=1,...,J where J is the number of subgroups.
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The observed likelihood for our mixture model when the within-study person times are

not assumed to be equal is given by:

k J Bi (9;7"1
H o o X (9}7“1' +1 7

=1

with the observed log-likelihood therefore being

9’ i
lo—logLo—ZlogZBz( Z:_1>

The corresponding complete likelihood is then

kK J 9/0,_' Zij
_ ; ) J* Zij
Lc—HHBZ (X“G;»ri+1> 7

where z;; denotes the value of Z; (an indicator variable that takes on the value 1 if
X is from the j** subpopulation, and 0 otherwise) for observation X;;. The complete

log-likelihood is then given as

0 i
lc—logLC—ZZzwlong< 9 ) ZZzwlogﬂj
=1 j=1 =1 j=1
As in the previous case, maximisation dictates the weight estimates to be 7; = Zle zij [k

for subgroups j =1,...,J.

C.1.2 E-step

In the E-step of the EM algorithm, we have by Bayes Theorem that

E(zi5) = eij

. 0r;
Bi <X1, T +1) T

= il x 0',ri
Zj’:l t RRoEs! !

which leads to the updated expected complete log-likelihood:
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ko J
= ZZ €ij long< ) —1—22% log 7; (C.1.1)

=1 j=1

C.1.3 M-step

For the M-step, maximising Equation (C.1.1)) leads to the solution

. 9;7"-
& Bi XZ,Q, =) 5
Zi:l J . 9]~/ i
Zj':l BZ XI?W 7le
N k

0'r;

i .
Bi (XZ, Q,TH) 7

0 )T
=L kY5, Bi <X“ 7 +1)

Now, the #'-relevant component of the expected complete log-likelihood given in Equa-

tion (C.1.1)) can be rewritten as:

J
Z eij[Xi1log 0 — X1 log(6r; + 1) — Xiolog(r; + 1))
1j=1

W

.
Il

kK J
Z Z €ij [Xil log 0; - X; log(ﬁgri + 1)]

i=1 j=1

In order to generate the updated estimate 9;("6w), we set 0; — 0.™%) and solve for this
by differentiating the expected complete log-likelihood with respect to 9;-(new), which is

equivalent to differentiating the above formula (written in terms of 9;-(new)) with respect
to G/Q(new).
g :



230 Appendix C

k

(new) E(lc) - Z €ij ’(nzelw) o ’(new)lrl =0
k
Xir;
= Zel] ’new Zem ( new :
i=1 9] ri+1
o g new) _ Zle %‘Xﬂ
J o Ek Iy Xirg
=1~ 9;(new)ri+1

"(new)

which is an implicit solution that needs to be iterated for 9]- in order to generate a
solution. This is the major difference between the case where r; = 1, as the computation
of Qj(new) (where 7 = 1,...,J) is more complicated and requires an initial estimate in

the form of the original estimate of 9;-. Once the value of 9;(new) had been determined,
the EM algorithm would then be applied in the same manner as described in Section

but with these updated estimates.

C.1.4 Conversion of estimates to log-risk ratio

After applying the EM algorithm for the mixture model approach described above, the
estimates need to be converted to those corresponding with the log-risk ratio, our out-
come measure of interest. We derived the following relationship between the subgroup-

specific risk ratios 0} and log-risk ratios 6;:

el T

dij = 1+ ebirg

= qij + qije’iri = e¥ry

= qij = (1 — qij)"mi
dij

ri(1 = gij)

= 0; = log¥),

:>0j = log

as expected.

Inputting this estimate into Equations (6.2.6)) and (6.2.5]) results in the respective overall

estimates for the log-risk ratio and associated heterogeneity variance:

J
log RR =0 = Z jlogd),
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It should be noted that these estimates are identical to those for the case of equal person
times given in Equations and respectively, with the only difference being
the definition of the input parameter 9;. In addition, all of the results for this alternate
case can be simplified to those in Section[6.3]| by setting r; equal to 1 - no further difference
is present. As a result, the estimates and results given for this case where the person
times are unequal reflect those of the more general case, where the within-study person

times may or may not be equal.
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Simulation study design

D.1 R code for simulation study

i
# R code for producing combinations of study parameters #
i

library(plyr)

## Set values for pre-spectified parameters and generate dataframe ##

## of all possible combinations of these parameters ##

## Less rare events and smaller sample sizes

# Set sample size classes (number of participants in each study arm)
Study.sizes <- c("small", "small-to-medium", "medium", "small and large"

— , "large")

# Set range of values for true heterogeneity variance tau~2
tau2 <- seq(0, 1, by = 0.2)

## Set pairs of probabilities of events for treatment and control groups
# List of variables used and their meanings:
# p0 - probability of event im conirol arm

# pl - probability of event in treatment arm

# Pairings are given in the order (first entry = p0, second entry = p1)
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# For the scenario when p0O > pl (such as that seen in empirical data):
# (0.03, 0.01) - reflecting probabilities seen in the CRBSI dataset

# For the scenario when p0 < pl (e.g. for adverse reaction in clinical
— trial):
# (0.04, 0.08) - twice as likely in the treatment group

# Enter paired values of alpha and beta to correspond to above

— probabilities

# Set fized effect value for alpha (baseline risk in control group)
alpha <- c(-6.9, -4.6, -2.3, -4.6, -5.3, -3.0, -0.7)

# Set fized effect wvalue for beta (the mean log-risk ratio)

beta <- c(1.6, 1.6, 1.6, 0, -1.6, -1.6, -1.6)

# Construct the overall patired probability dataset

prob <- cbind(alpha, beta)

# Give each probability scenario an identifying variable
probscenario <- seq(l, nrow(prob), 1)

probc <- data.frame(prob, probscenario) # combine probabilities and

— 4dentifying variable

# Choose distributions to sample the counts of events from

eventdist <- c("binomial", "poisson")

# Choose distributions to sample the study sample sizes from

sampdist <- c("uniform", "normal", "chisq")

# Set values for the variance of alpha (sigma_alpha”2)
varalpha <- c(0.1, 3)

# Create dataset of all possible combinations of the above parameters

para <- expand.grid(probscenario = probscenario, tau2 = tau2, Study.
— sizes =

Study.sizes, eventdist = eventdist, sampdist = sampdist, varalpha =
< varalpha)

combs <- join(probc, para, by = "probscenario")

combs$theta <- combs$beta
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# Save all combinations

write.table(combs, file = "rarecombs")

i
# R code for simulating meta-analyses #

# Read in dataframe of scenartios

allcombs <- read.table("rarecombs")

# Choose number of scenarios to rTun per array (maz. for time is ~10)

n<-1

# Extract the necessary rows of scemnarios
iscen <- as.numeric(Sys.getenv("PBS_ARRAYID"))
imin <- ((iscen-1)*n)+1

imax <- iscen*n

combs <- allcombs[imin:imax, ]

## Set parameters specific to the simulation ##

kvalues <- c(5, 10, 20, 30, 50, 100) # range of k-values (number of
— studies in meta-analysis)

sims <- 1000 # number of simulations of each scenario to be run e.g.
— 1000

set.seed(24601) # set seed to save the random numbers generated
# Make variable of the continuity corrections to be applied

# (will be applied in Section 2)

#contc <- c("constant"”, "reciprocal”)

# At least one continuity correction must be given - if contcorr is not

— defined

# then a constant continuity correction is given as the only correction

— by default
if (lexists("contc")) {

contc <- "constant"

# Set scenario counter to adjust for number of studies (k) and

— continuity corrections
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scenmin <- ((iscen-1)*length(kvalues)*length(contc)*n)+1
scenmax <- iscen*length(kvalues)*length(contc)*n

scen <- c(scenmin:scenmax)

# Determine scemarios without cont. corr.’s - for DZ/SZ counter
slength <- length(scen)/length(contc)

scen2 <- c(scemnmin:scen[slength])
## List of arguments and their meanings ##

# combs - data frame where each row %s a different combination of
# the variables alpha, beta, alpha, tau2, Study.sizes and

# varalpha, and which also contains the simulated values of alphat,
#

betai, Event.probl, Event.prob0O and Thetai
# kvalues — vector of number of studies in meta-analyses
# sims - number of simulations to be conducted for each scenario

# sims2 - number of simulations to be conducted to determine the true
— wvalue

# of taup2 (for untransformed conditional-based estimators)
## Simulation algorithm code ##

simmeta <- function(combs = combs, kvalues = c(5, 10, 20, 30, 50, 100),

< sims = 1000, sims2 = 10000) {

results <- data.frame() # create empty dataframe for results to be
— stored in

scenario <- scenmin - 1 # start counter for scenario ID label

meta <- 0 # start counter for meta-analysis ID label

for (m in 1:nrow(combs)) {
varalpha <- combs$varalphalm] # wvariance of alpha = sigma_alpha~2
tau2 <- combs$tau2[m] # true heterogeneity wvariance (tau~2) value
alpha <- combs$alpha [m]
beta <- combs$beta[m]
theta <- combs$theta[m]
SampleSizel <- as.character(combs$Study.sizes[m]) # number of
— individuals in each study’s trial arms (assumed to be equal across
— treatment and control groups)

eventdist <- as.character(combs$eventdist [m])
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sampdist <- as.character(combs$sampdist [m])
## Stde step - Find true tau"2_p ##
# Simulate theta_i values
thetai <- rnorm(n = sims2, mean = theta, sd = sqrt(tau2))
# Approxzimate p_i for each simulation
Pi <- exp(thetai)/(l+exp(thetai))
# Mean p
pbar <- (1/sims2)*sum(Pi)
# True tau_p~2
taup2 <- (1/sims2)*sum((Pi-pbar)"2)
for (k in kvalues) {
scenario <- scenario + 1 # scenario ID label
for (i in 1:sims) {
meta <- meta + 1 # meta-analysis ID label
SampleSize <- numeric(k) # empty wvector for sample size of each
— of the k studies
# Loop for sample size generation (sample sizes assumed to be

— equal across treatment and control arms of the same study)

if (SampleSizel == "small") {
SampleSize <- rep(10, times = k)

}

if (SampleSizel == "small-to-medium") {
if (sampdist == "uniform") {

SampleSize <- sample(10:200, k, replace = TRUE) # sample
— stize integers sampled from Uniform (10,200) with replacement
}
if (sampdist == "normal") {
SampleSize <- rnorm(n = k, mean = 105, sd = 105/3)
while (any(SampleSize < 10)) {
SampleSize <- rnorm(n = k, mean = 105, sd = 105/3)

}
if (sampdist == "chisq") {
SampleSize <- rchisq(n = k, df = 105)
while (any(SampleSize < 10)) {
SampleSize <- rchisq(n = k, df = 105)

}
if (SampleSizel == "medium") {

SampleSize <- rep(200, times = k)
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}
if (SampleSizel == "small and large") {
if (k %k 2 ==0) {
SampleSize[1:(k/2)] <- 10 # half of studies given sample
— stze of 10
if (sampdist == "uniform") {
SampleSize [((k/2)+1):k] <- sample(1000:2000, k/2, replace
— = TRUE) # half of studies given sample size from Uniform
— (1000,2000)
}
if (sampdist == "normal") {
SampleSize[((k/2)+1):k] <- rnorm(n = k/2, mean = 1500, sd
<~ = 1500/3)
while (any(SampleSize[((k/2)+1):k] < 10)) {
SampleSize[((k/2)+1) :k] <- rnorm(n = k/2, mean = 1500,
— sd = 1500/3)
}
}
if (sampdist == "chisq") {
SampleSize[((k/2)+1) :k] <- rchisq(n = k/2, df = 1500)
while (any(SampleSize[((k/2)+1):k] < 10)) {
SampleSize[((k/2)+1):k] <- rchisq(n = k/2, df = 1500)

}
}
} else {
SampleSize[1: ((k-1)/2)] <- 10
if (sampdist == "uniform") {

SampleSize [(((k-1)/2)+1):(k-1)] <- sample(1000:2000, (k-1)
— /2, replace = TRUE)
}
if (sampdist == "normal") {
SampleSize[(((k-1)/2)+1):(k-1)] <- rnorm(n = (k-1)/2, mean
— = 1500, sd = 1500/3)
while (any(SampleSize[(((k-1)/2)+1):(k-1)] < 10)) {
SampleSize [(((k-1)/2)+1):(k-1)] <- rnorm(n = (k-1)/2,
<% mean = 1500, sd = 1500/3)
}
}
if (sampdist == "chisq") {
SampleSize [(((k-1)/2)+1):(k-1)] <- rchisq(n = (k-1)/2, df
— = 1500)
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while (any(SampleSize[(((k-1)/2)+1):(k-1)] < 10)) {
SampleSize [(((k-1)/2)+1):(k-1)] <- rchisq(n = (k-1)/2,
— df = 1500)
}
}
# If k is odd, one study s given 20 or Uniform (1000,2000)
~— at random
if (sample(1:2, 1) == 1) {
SampleSize[k] <- 10
} else {
if (sampdist == "uniform") {
SampleSize[k] <- sample(1000:2000, 1, replace = TRUE)
}
if (sampdist == "normal") {
SampleSize[k] <- rnorm(n = 1, mean = 1500, sd
while (SampleSizel[k] < 10) {

1500/3)

SampleSize[k] <- rnorm(n = 1, mean = 1500, sd = 1500/
— 3)

}
if (sampdist == "chisq") {
SampleSize[k] <- rchisq(n = 1, df = 1500)
while (SampleSizel[k] < 10) {
SampleSize[k] <- rchisq(n = 1, df = 1500)

+
if (SampleSizel == "large") {
if (sampdist == "uniform") {
SampleSize <- sample(1000:2000, k, replace = TRUE) # sample
— stize integers sampled from Uniform (1000,2000) with replacement

}
if (sampdist == "normal") {
SampleSize <- rnorm(n = k, mean = 1500, sd = 1500/3)
while (any(SampleSize < 10)) {
SampleSize <- rnorm(n = k, mean = 1500, sd = 1500/3)
}
}

if (sampdist == "chisq") {
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SampleSize <- rchisq(n = k, df = 1500)
while (any(SampleSize < 10)) {

SampleSize <- rchisq(n = k, df = 1500)

}

nc <- nt <- round(SampleSize, digits

0) # save sample size of
— treatment/control group
pO <- pl <- rep(2, times = k)
g <-h<-y<-1
while ((g == 1 & h==1) | y ==1) {
for (j in 1:k) {
while (pO[j] < 0 | pO[j] > 1 | p1[j] <O | p1[j] > 1) { # in
— case the event probability simulated is > I (not allowed)
alphai <- rnorm(n = 1, mean = alpha, sd = sqrt(varalpha))
— # re-sample alpha
betai <- rnorm(n = 1, mean = beta, sd = sqrt(tau2)) # re-
> sample beta
pO[j] <- exp(alphai) # final probability of events in the
— control arm
p1[j] <- exp(alphai + betai) # probability of events in
— treatment group
}
X
et <- ec <- nt +1
if (eventdist == "binomial") {
for (j in 1:k) {
ec[j] <- rbinom(n = 1, size = nc[j], prob = pO[jl) #
— produce random vector of number of events in control group
et[j] <- rbinom(n = 1, size = nt[j], prob = pl[jl) #
— produce random vector of number of events in treatment group
X
b
if (eventdist == "poisson") {
for (j in 1:k) {
while (ec[j] > nc[j] | et[j] > nt[j1) {
ec[j] <- rpois(n = 1, lambda = nc[jl*p0[jl) # produce
— random vector of number of events in control group
et[j] <- rpois(n = 1, lambda = nt[jl*pl[jl) # produce
— random vector of number of events in treatment group

}
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}

g<-h<-y<-0

if (((all(et/nt == et[1]1/nt[1])) & (all(ec/nc == ec[1]/nc[1]))
— ) & (all(ec == 0) | (all(ec == ec[1]) & all(nc == nc[1])))) {

g <-1

}

if ((sum((ectet) == 0) >= (k-1)) | all(ec == 0) | all(et == 0)
— | (all(et[which(!(ec+et) %in} 0)]/eclwhich(!(ec+et) %inj 0)] ==
— et[which(!(ec+et) %in’% 0)1[1]/ecl[which(!(ec+et) %in% 0)1[11))) {

h <-1

+

if (all(ec == 0)) {
y <- 1

}

}
study <- 1:k # vector used to indentify/label the individual
— studies
simulation <- i # wariable to identify the simulation number in
— data
resultsi <- cbind(scenario, meta, tau2, taup2, pO, pl, alpha,
SampleSize, SampleSizel, k, simulation, study, theta, et, ec, nt,

nc, varalpha, eventdist, sampdist) # combine results for

AN

stmulation study <
results <- rbind(results, resultsi) # combine all results from

— previous stmulations into one dataframe

}

}
return(results) # returns the results of the simulation
write.table(results, file = "simulation_results") # save the results

— when the simulation ts complete
## To conduct simulation ##
# Apply simulation code:
simresults <- simmeta(combs = combs, kvalues = kvalues, sims = sims,

< sims2 = 10000)

# Change the format of certain variables to be numeric or integers
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simresults[, c("scenario", "meta", "SampleSize", "k", "simulation", "
% Studyll llet" lleC" ||nt n "IlC" "poll "p1|| llalphall "thetall n
< varalpha", "tau2", "taup2")] <- sapply(simresults[, c("scenario",
— "meta", "SampleSize", "k", "simulation", "study", "et", "ec", "nt"
(% , "nC“ , llpoll s llplll s ||a1pha|| s lltheta“ , "Varalpha" s ||tau2|| s lltaup2||)

<~ ], as.character)

simresults[, c("scenario", "meta", "SampleSize", "k", "simulation", "
— study", "et", "ec", "nt", "nc")] <- sapply(simresults[, c("
<> scenario", "meta", "SampleSize", "k", "simulation", "study", "et",
— "ec", "nt", "nc")], as.integer)

simresults[, c("pO", "pl", "alpha", "theta", "varalpha", "tau2", "taup2"
< )] <- sapply(simresults[, c("pO", "pi", "alpha", "theta", "

< varalpha", "tau2", "taup2")], as.numeric)

# Save all stmulation results

write.table(simresults, file = paste("simresults_", iscen, sep = ""))

# Code to count the number of single-zero (SZ) and double-zero trials

# simulated in our meta-analyses by SCENARIO

# Read in dataframe of simulated meta-analyses

allsims <- matrix(NA, nrow = length(scen2), ncol = 6)

allsims <- data.frame(allsims)

colnames(allsims) <- c("scenario", "SZcount", "DZcount", "total", "

— SZprop", "DZprop")

# Count the number of SZ and DZ trials by scenario

z <=0

for (i in scen2) {
z <-z + 1
simdata <- simresults[simresults$scenario == i, ]
allsims$scenario[z] <- i
allsims$DZcount [z] <- sum((simdata$ec+simdata$et) == 0)
allsims$SZcount [z] <- sum(simdata$ec == | simdata$et == 0) - allsims

— $DZcount [z]

allsims$total[z] <- nrow(simdata)
allsims$SZproplz] <- allsims$SZcount[z]/allsims$total [z]
allsims$DZpropl[z] <- allsims$DZcount[z]/allsims$total [z]

# Combine results and save to output file
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myvars <- names(simresults) %in% c("scenario", "tau2", "alpha", "

— SampleSizel", "k", "theta", "varalpha", "eventdist", "sampdist")
myvars <- simresults[myvars]
allsims <- merge(unique(myvars), allsims)

write.table(allsims, file = paste("SZDZ_results_", iscen, sep = ""))

i
# R code for applying continuity corrections #
e

## List of arguments and their meanings ##

# simresults — results from the simulation study containing event counts

# and all wvalues representative of meta-analysis scenario

# contc - nmames of contunity corrections to be applied

## PARAMETERS SPECIFIC TO constant
# c - constant to be added for continuity correction and all-event meta-

> analyses

## PARAMETERS SPECIFIC TO reciprocal

# k - value to be used as the numerator of the continuity corrections

## PARAMETERS SPECIFIC TO empirical
# s - value to be used as an estimate of theta (logRR) in the case of
— all-

# single-zero studies

## Function for applying different types of continuity corrections ##

ccorr <- function(simresults = simresults, contc = c("constant", "

< reciprocal", "empirical"), ¢ = 0.5, k=1, s = 1) {

if (is.null(contc)) contc <- c("constant", "reciprocal", "empirical")

# Ensure there 1s a separate dataset for each correction used

mydatacorr <- simresults[rep(seq_len(nrow(simresults)), times = length
< (contc)), ]

contcorr <- rep(contc, each = nrow(simresults))

mydatacorr <- cbind(mydatacorr, contcorr)

# METHOD 1 - Constant continuity correction

if ("constant" %in% contc) {
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}

mydata <- mydatacorr[mydatacorr$contcorr == "constant", ]

mydata$eccor <- mydata$ec

mydata$etcor <- mydata$et

mydata$nccor <- mydata$nc

mydata$ntcor <- mydata$nt

for (i in 1:nrow(simresults)) {

if (mydata$eccor[i] == 0 | mydata$etcor[i] == 0) {

mydata$eccor[i] <- mydata$eccor[i] + c
mydata$etcor[i] <- mydata$etcor[i] + c
mydata$nccor[i] <- mydata$nccor[i] + ¢

mydata$ntcor[i] <- mydata$ntcor[i] + c

¥

mydatacon <- mydata

# METHOD 2 - Reciprocal continuity correction

if ("reciprocal" %in% contc) {

}

mydata <- mydatacorr[mydatacorr$contcorr == "reciprocal", ]
mydata$eccor <- mydata$ec
mydata$etcor <- mydata$et
mydata$nccor <- mydata$nc
mydata$ntcor <- mydata$nt

for (i in 1:nrow(simresults)) {

if (mydata$eccor[i] == 0 | mydata$etcor[i] == 0) {
mydata$eccor[i] <- mydata$eccor[i] + (k/mydata$nt[i])
mydata$etcor[i] <- mydata$etcor[i] + (k/mydata$nc[i])
mydata$nccor[i] <- mydata$nccor[i] + (k/mydata$nt[i])
mydata$ntcor[i] <- mydata$ntcor[i] + (k/mydata$nc[i])

}

mydatarec <- mydata

# METHOD 3 - Empirical continuity correction

if ("empirical" %in% contc) {

thetaest <- rep(NA, times = nrow(simresults))
# Set estimates for all studies

for (i in 1:nrow(simresults)) {

if (simresults$ec[i] == | simresults$et[i] == 0) {
metadata <- simresults[simresults$meta == simresults$metali], ]
if (all(metadata$ec == O | metadata$et == 0)) {

thetaest[i] <- s
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} else {
for (j in 1l:nrow(metadata)) {
if (metadata$ec[j] !'= O & metadata$et[j] !'= 0) {

break

}
thetaest[i] <- log((metadata$et[j]/metadata$nt[j]l)/(metadata$
— ec[j]/metadata$nc[j]))
}

}

# Calculate values needed for continuity correction

R <- simresults$nc/simresults$nt # the group ratio imbalance

kc <- R/(R+thetaest)

kt <- thetaest/(R+thetaest)

# Apply continuity corrections

mydata <- mydatacorr[mydatacorr$contcorr == "empirical", ]

mydata$eccor <- mydatal$ec

mydata$etcor <- mydata$et

mydata$nccor <- mydata$nc

mydata$ntcor <- mydata$nt

for (i in 1l:nrow(simresults)) {

if (mydata$eccor[i] == 0 | mydata$etcor[i] == 0) {

mydata$eccor[i] <- mydata$eccor[i] + kc[i]
mydata$etcor[i] <- mydata$etcor[i] + kt[il]
mydata$nccor[i] <- mydata$nccor[i] + kc[i]
mydata$ntcor[i] <- mydata$ntcor[i] + kt[i]

}
mydataemp <- mydata

}

# Combine all continuity correction datasets at end

# Need to only combine those DFs that have been created

if ("constant" %in’, contc & "reciprocal" %in’, contc & !"empirical" %in
< % contc) {
mydata <- rbind(mydatacon, mydatarec)

} else if ("constant" %in% contc & "empirical" %in% contc & !"
— reciprocal" %inj} contc) {
mydata <- rbind(mydatacon, mydataemp)

} else if ("reciprocal" %in’% contc & "empirical" %in)% contc & !"

< constant" %in’% contc) {
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mydata <- rbind(mydatarec, mydataemp)
} else if ("constant" %in% contc & "reciprocal" %in) contc & "
< empirical" %in% contc) {
mydata <- rbind(mydatacon, mydatarec)
mydata <- rbind(mydata, mydataemp)
}
# Amend the ’meta’ and ’scenario’ labels to change over different
— continuity corrections
if (length(contc) > 1) {
for (i in (nrow(simresults)+1) :nrow(mydata)) {
mydata$metali] <- mydata$metal[i]+simresults$metalnrow(simresults)]
mydata$scenario[i] <- mydata$scenario[i]+(max(simresults$scenario)
< -min(simresults$scenario)+1)
}
}
if (length(contc) == 3) {
for (i in (2*(nrow(simresults))+1):nrow(mydata)) {
mydata$metali] <- mydata$metal[i]+simresults$meta[nrow(simresults)]
mydata$scenario[i] <- mydata$scenario[i]+(max(simresults$scenario)
— -min(simresults$scenario)+1)
}
}
# Apply (compulsory) continuity correction for all-event meta-analyses
for (i in 1:nrow(simresults)) {
if (mydata$eccor[i] == mydata$nccor[i] & mydata$etcor[i] == mydata$
— ntcor[i]) {

mydata$eccor[i] <- mydata$eccor[i]

(2%c)
(2%c)

+
mydata$etcor[i] <- mydata$etcor[i] + c
mydata$nccor[i] <- mydata$nccor([i] +

<+

mydata$ntcor[i] <- mydata$ntcor[i]

}

# Calculate log-risk ratio (lLogRR) and its standard error for all
— studies (using corrected counts)

mydata$logRR <- log((mydata$etcor/mydata$ntcor)/(mydata$eccor/mydata$
< nccor))

mydata$selogRR <- sqrt((1/mydata$etcor)-(1/mydata$ntcor)+(1/mydata$
< eccor)-(1/mydata$nccor))

return(mydata)
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# Apply continuity correction function
mydata <- ccorr(simresults = simresults, contc = c("constant"), c = 0.5,
— k=1, s =1)

# Save the up-to-date data frame of ’mydata’

write.table(mydata, file = paste("ccresults_", iscen, sep = ""))

HARHA AR AR R AR BB R AR RRRRRARAAAAARAA A A AR
# R code for heterogeneity wvariance estimators #
HARAHA AR A AR AR R RRRRRRRRRRRARAAAAAAAAA A A AR

# Read in meta-analysis data produced in simulation study

study <- 1l:nrow(mydata) # wvartable to identify each study

## List of arguments and their meanings ##

Tt — vector of effect estimates for each study. If the outcome tis
risk ratto (for example), we assume that zi is already converted to
log-risk ratios. log arqument can be used to convert output back onto

the original scale after all heterogeneity estimates have been

H R R R R

calculated.

# set - wector of standard errors for each study

# hetest — wvector of heterogeneity estimators that you would like to be
# calculated. The default is NULL, which means all estimates are

# calculated.

# signiftau2 - number of significant figures to round taul estimates

# maztt - mazimum number of tterations allowed where the process of

# estimating tauZl involves iteration

# trunc - TRUE ©f estimators should be truncated to zero, FALSE

— otherwise

# output - TRUE <f output <s displayed, FALSE otherwise (stops too much

# output when we are running the program iteratively)

# taulprior - starting value of iterative estimators
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## PARAMETERS SPECIFIC TO AB - mote that 2 out of 3 are required to
# calculate the estimate:

# eta - shape parameter of the prior distribution

# lambda - spread parameter of the prior distridbution

# taulprior - prior estimate of heterogeneity

## PARAMETERS SPECIFIC TO IPM
# nc - sample size of the control group
# nt - sample stize of the treatment group

# ec - number of events in the control group
## PARAMETERS SPECIFIC TO DLp
# DLpos - truncation value as an alternative to zero with the original

# DL estimator

## PARAMETERS SPECIFIC TO DLb

# bsamp - number of bootstrap samples

## List of estimators and their acronyms ##

## Method of moment approach

# HO - Hedges-Olkin

# DL - DerSimonian-Laird

# PM - Paule-Mandel

# HO2 - Two step PM with HO initial estimate

# DL2 - Two step PM with DL initial estimate

# IPM - Improved Paule-Mandel - uses arguments ec, nc and nt
# DLp - Postitive DerSimonian-Laird estimate, with truncation at 0.01
# DLb - Bootstrap version of DerSimontan-Laird

# Other approaches

# HM - Hartung-Makamb<

# HS - Hunter-Schmidt (original estimator using FE weightings)
# SJ - Sidik-Jonkman

# SJ2 - Alternate Sidik-Jonkman

## Maximum Likelihood approach

# ML - Mazimum Likelihood

# REML - Restricted Mazimum Likelihood

# AREML - Approxzimate Restricted Maximum Likelihood
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## Bayesian approaches

# AB - Approzimate Bayesian

# RB - Rukhin Bayes with simple prior

# RBO - Rukhin Bayes with zero prior (with correction for sum(n))
# BM - Bayes Modal

## The heterogeneity wvariance estimation function ##

hetest <- function(xi = logRR, sei = selogRR, Ntot = NULL, nc = NULL, nt

<~ = NULL, ec = NULL, eta = NULL, lambda = NULL, tau2prior = NULL,
< DLpos = 0.01, bsamp = 5000, hetests = NULL, signiftau2 = 6, maxit
< = 100, trunc = TRUE, output = TRUE) {

# 1f no specific set of estimates is required , calculate them all ...

if (is.null(hetests)) hetests <- c("HO", "DL", "PM", "IPM", "HO2", "
~— brL2", "DLp", "DLb", "HM", "HS", "SJ", "SJj2", "ML", "REML", "AREML"
— , "AB", "RB", "RBO", "BM")

# clear the wvartables that may have been defined previously when this

# function was run so that we can start again fresh

HO_est <- DL_est <- PM_est <- IPM_est <- HO2_est <- DL2_est <- DLp_est
<> <- DLb_est <- HM_est <- HS_est <- SJ_est <- SJ2_est <- ML_est <-
> REML_est <- AREML_est <- AB_est <- RB_est <- RBO_est <- BM_est <-
— as.numeric(NA)

# assume equal sample sizes im arms

if (!is.null(Ntot) & is.null(nc) & is.null(nt)) {
Ntot <- nc + nt

X

if (lis.null(Ntot) & is.null(nc) & is.null(at)) {
nc <- nt <- round(Ntot/2, digits = 0)

b

Kest <- length (hetests) # number of estimates to be calculated

esti <- 1 # a counter so that we can create a dataset with a separate
> estimate on each row - the first specified estimate will be in row
— 1, ..., etc

## Specifying all output vectors before replacing the values with
— actual estimates

name <- tau2 <- theta <- rep(NA, times = Kest)

# theta not needed for output, just for the process of calculating
> some of the tau2 estimates

K <- length(xi) # K = number of studies in the meta-analysis

vi <- sei”2 # wvariance of each study

wFEiL <- 1/vi # fized-effects weights
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FEtheta <- sum(xi*wFEi)/sum(wFEi)
# DerSimonian—-Laird
if ("DL" %in% hetests | "AB" %inJ hetests) {
name[esti] <- "DL"
DLw <- 1/vi
thetalesti] <- sum(xi*DLw)/sum(DLw)
DLtausql <- sum(DLw*((xi-thetalesti])~2)) - (sum(DLw*vi)) + (sum((
— DLw"2)*vi)/sum(DLw))
DLtausq2 <- sum(DLw)-(sum(DLw"2)/sum(DLw))
if (trunc) {
DL_est <- tau2[esti] <- max(0, DLtausql/DLtausq2)
} else {
DL_est <- tau2[esti] <- DLtausql/DLtausq?2
}
esti <- esti + 1
}
# postitive DerSimonian-Laird
if ("DLp" %inJ, hetests) {
name [esti] <- "DLp"
DLw <- 1/vi
thetalesti] <- sum(xi*DLw)/sum(DLw)
DLtausql <- sum(DLw* ((xi-thetalesti])"2)) - (sum(DLw*vi)) + (sum((
< DLw"2)*vi)/sum(DLw))
DLtausq2 <- sum(DLw) - (sum(DLw"2)/sum(DLw))
if (trunc) {
DLp_est <- tau2[esti] <- max(DLpos, DLtausql/DLtausq2)
} else {
DLp_est <- tau2[esti] <- DLtausql/DLtausq2
}
esti <- esti + 1
}
# DerSimonian—-Laird bootstirap
if ("DLb" %in% hetests) {
name [esti] <- "DLb"
DLw <- 1/vi
thetalesti] <- sum(xi*DLw)/sum(DLw)
comb_DLb <- t(replicate(bsamp, sample(1:K, K, replace = TRUE)))
no_samples <- bsamp
DLb_est2 <- rep(NA, times = no_samples)
for (i in 1:no_samples) {

studycomb <- comb_DLbl[i,]
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theta_b <- sum(xi[studycomb] * (DLw[studycomb])) / sum((DLw[
< studycomb]))

DLtausql_b <- sum(DLw[studycomb] * ((xi[studycomb]-theta_b)"2)) -
— (sum(DLw[studycomb] *vi[studycomb])) + (sum((DLw[studycomb]~2)x*vil[
— studycomb] ) /sum(DLw [studycomb]))

DLtausq2_b <- sum(DLw[studycomb]) - (sum(DLw[studycomb]~2) / sum(
< DLw[studycomb]))

if (trunc) {

DLb_est2[i] <- max(0, DLtausql_b/DLtausq2_b)

} else {

DLb_est2[i] <- DLtausql_b/DLtausq2_b

}
DLb_est <- tau2[esti] <- mean(DLb_est2)
esti <- esti + 1
}
# Hedges-Olkin
if ("HO" %in%, hetests | "ML" %in) hetests | "REML" %in), hetests | "BM"
—  %in% hetests) {
# To calculate REML, we need a starting value of tau2_ML, or else
> there may be more than 1 solution.
HOw <- rep(1/K, times = K)
thetalesti] <- sum(xi*HOw) / sum(HOw)
HOtausql <- sum(HOwx*((xi-thetalesti])~2)) - (sum(HOw*vi)) + (sum((
— HOw"2)*vi)/sum(HOw))
HOtausq2 <- sum(HOw) - (sum(HOw"2)/sum(HOw))
HO_est <- max(0, HOtausql/HOtausq2)
if ("HO" %in% hetests) {
if (trunc) {
tau2[esti] <- max(0, HOtausql/HOtausq2)
} else {
tau2[esti] <- HOtausql/HOtausq?2
}
name [esti] <- "HO"

esti <- esti + 1

b
# Paule Mandel
if ("PM" %in% hetests) {
quant <- df <- K - 1 # degrees of freedom and expected mean under

— the fized effects assumption
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PMtau2out <- 1 # just set an initial value for PM estimate for
— output
if (is.null(tau2prior)) {
PMtausq <- 0 # inttial estimate of taul
} else {
PMtausq <- tau2prior
X
PMit <- 1 # iteration number
PM_F <- 1 # just to get the iteration started, PM_F=0 implies
— convergence
# If the number of events = number of people in trial arm,
# then the estimator cannot be calculated and NA s produced.
# So one must avoid looping through any NA estimates
while (!is.na(PM_F) & PM_F != 0) {
# First calculate the pooled effect based on present estimate of
— tausq
PMw <- 1/(sei”2+PMtausq)
PMyW <- sum(xi*PMw)/sum(PMw)
# Equation comes from DerSimonian and Kacker 2007
Q1 <- sum(PMw*(xi-PMyW)"2) # generalised @-statistic
Q2 <- sum((PMw~2)*(xi-PMyW)~2) # denominator from delta
# quant = statistic coming from the chi-squared distribution
— regardless of data
if (trunc) {
PM_F <- max(Ql - quant, 0)
} else {
PM_F <- Q1 - quant
3
delta <- PM_F/Q2 # what to add onto the next tausq estimate
if (is.na(PM_F)) {
PMtau2out <- PMtausq <- NA
} else {
if (PM_F != 0) {
PMtausq <- PMtausq + delta
b
PMit <- PMit + 1
if (PM_F == 0) {
PMtau2out <- PMtausq
X
if (PMit == maxit) {
PM_F <- 0
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}

if (output == TRUE)
cat ("PM estimator: Maximum number of iterations reached

< without convergence \n")

}

}

name [esti] <- "PM"

if (PMit == maxit) {
PM_est <- tau2[esti] <- NA

} else {
PM_est <- tau2[esti] <- PMtau2out
PMw <- 1/(vi+tau2[esti])

}

thetalesti] <- sum(xi*PMw)/sum(PMw)

esti <- esti + 1

# Improved Paule Mandel (with improved standard errors)
if ("IPM" %in% hetests) {

quant <- df <- K-1 # degrees of freedom and expected mean under the

# Fized-effects assumption
if (is.null(tau2prior)) {
IPMtausq <- 0 # initial estimate of taul
} else {
IPMtausq <- tau2prior
}
IPMdiff <- 1
IPMit <- 1 # iteration number
negcount <- 0 # counter for number of negative estimates
# Calculations needed to calculate standard errors, but that don’t
<> change for each iteration
oddsc <- log(eccor/(nccor-eccor)) # odds in control group
thetaHO <- sum(xi)/K # un-wetighted average
# If the number of events = number of people in trial arm,
# then the estimator cannot be calculated and NA <s produced.
# So one must avoid looping through any NA estimates
while (!is.na(IPMdiff) & IPMdiff != 0) {
IPMtausq_prev <- IPMtausq
# First calculate the standard errors according to the alternats
— formula proposed by Bhaumik
# (depends on tau2 estimate so needs to be calculated for each

— 4teration)

ve
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sei_IPM <- ((exp(-oddsc-thetaHO+(IPMtausq/2)) + 2 + exp(oddsc+
— thetaH0+(IPMtausq/2)))/(nt+1)) + ((exp(-oddsc) + 2 + exp(oddsc))/(
— nc+1))
# Calculate the pooled effect based on present estimate of tausq
IPMw <- 1/(sei_IPM~2+ IPMtausq)
IPMyw <- sum(xi*IPMw)/sum(IPMw)
# Equation comes from DerSimonian and Kacker (2007)
Q1 <- sum(IPMw*(xi-IPMyw)~2) # generalised {-statistic
Q2 <- sum(IPMw*(sei_IPM~2)) - (sum((IPMw~2)*(sei_IPM~2)) / sum(
— IPMw))
Q3 <- sum(IPMw)-(sum(IPMw~2) / sum(IPMw))
IPMtausq <- (Q1-Q2)/Q3
if (!is.na(IPMtausq)) {
if (trunc) {
if (IPMtausq >= 0) {
IPMdiff <- round (abs(IPMtausq-IPMtausq_prev), digits =
< signiftau?2)
} else {
negcount <- negcount + 1
# If 2teration ts negative more than once then final
— estimate IPM = 0
if (negcount >= 2) {
IPMdiff <-0
}
IPMtausq <-0
}
} else {
IPMdiff <- round (abs(IPMtausq-IPMtausq_prev), digits =

— signiftau2)

}

}

IPMit <- IPMit + 1

if (IPMit == maxit) {
IPMdiff <- 0

if (output == TRUE) {
cat ("IPM estimator: Maximum number of iterations reached

< without convergence \n")

¥

}

name[esti] <- "IPM"
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if (IPMit == maxit) {
IPM_est <- tau2[esti] <- NA
} else {
IPM_est <- tau2[esti] <- IPMtausq
IPMw <- 1/(vi + tau2[esti])
}
thetalesti] <- sum(xi*IPMw) / sum(IPMw)
esti <- esti + 1
}
# Hedges-Olkin initial estimate with PM weightings
if ("HO2" %in’ hetests) {
name [esti] <- "HO2"
if (trunc) {
HOtau2 <- max(0, (1/(K-1)) * sum((xi-(sum(xi)/K))~2) - (1/K)x*sum(
— vi))
} else {
HOtau2 <- (1/(K-1))*sum((xi-(sum(xi)/K))"2)-(1/K)*sum(vi)
}
HO2w <- 1/(HOtau2+vi)
thetalesti] <- sum(xi*HO2w)/sum(HO2w)
HO2wtausql <- sum(HO2w*((xi-thetalesti])~2)) - (sum(HO2w+*vi)) + (sum
— ((HO2w"2)*vi)/sum(HO2w))
HO2wtausq2 <- sum(HO2w) - (sum(HO2w"2)/sum(HO2w))
if (trunc) {
HO2_est <- tau2[esti] <- max (0, HO2wtausql/HO2wtausq2)
} else {
HO2_est <- tau2[esti] <- HO2wtausql/HO2wtausq?2
}
esti <- esti + 1
}
# DerStimonian—Laird initial estimate with PM weightings
if ("DL2" %in’ hetests) {
name [esti] <- "DL2"
DLw <- 1/(vi)
DLtheta <- sum(xi*DLw)/sum(DLw)
if (trunc) {
DLtau2 <- max(0, (sum(DLw *((xi-DLtheta)~2)) - K+1) / (sum(DLw) -
< (sum(DLw"2)/sum(DLw))))
} else {
DLtau2 <- (sum(DLw*((xi-DLtheta)~2)) - K+1) / (sum(DLw) - (sum(DLw
< ~2)/sum(DLw)))
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}
DL2w <- 1 / (DLtau2+vi)
thetalesti] <- sum(xi*DL2w) / sum(DL2w)
DL2tausql <- sum(DL2w*((xi-thetalesti])"2)) - (sum(DL2w*vi)) + (sum
— ((DL2w"2) *vi)/sum(DL2w))
DL2tausq2 <- sum(DL2w) - (sum(DL2w"2)/sum(DL2w))
if (trunc) {
DL2_est <- tau2[esti] <- max(0, DL2tausql/DL2tausq2)
} else {
DL2_est <- tau2[esti] <- DL2tausql/DL2tausq2
}
esti <- esti + 1
}
# Hartung-Makambi
if ("HM" %in% hetests) {
name [esti] <- "HM"
HMQ <- sum((1/vi)*((xi-FEtheta)~2))
HM_est <- tau2[esti] <- (HMQ"2) / ((2%(K-1)+HMQ) * (sum(1/vi) - (sum
— ((1/vi)~2)/sum(1/vi))))
esti <- esti + 1
}
# Hunter-Schmidt (original estimator using FE weightings)
if ("HS" %in’ hetests) {
name [esti] <- "HS"
if (trunc) {
HS_est <- tau2[esti] <- max(0, (sum(wFEi*(xi-FEtheta)~2)-K) / (sum
< (wFEi)))
} else {
HS_est <- tau2[esti] <- (sum(wFEi*(xi-FEtheta) 2)-K) / (sum(wFEi))
}
esti <- esti + 1
}
# Sidik-Jonkman
if ("SJ" %in% hetests) {
name [esti] <- "SJ"
## Estimate of tau2
# Calculate the pooled estimate
SJtheta_0 <- sum(xi)/K
# Cochran’s equally weighted estimate of the pooled result
SJtau2_0 <- (1/K) * sum((xi-SJtheta_0)"2)
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# If all estimates are tdentical then we cannot go any further in
> the calculation and our estimate is zero
if (8Jtau2_0 > 0) {
# SJ weightings based on initial estimate of tau2 (SJtau2_0)
SJw <- 1/((vi/SJtau2_0)+1)
# Random-effects pooled estimate based on the above weightings
SJtheta_1 <- sum(xi*SJw) / sum(SJw)
SJ_est <- tau2[esti] <- (1/(K-1)) * sum(SJw*(xi-SJtheta_1)"2)
} else {
SJ_est <- tau2[esti] <- 0
b
## Pooled effect estimate
SJw2 <- 1/((vi/tau2[estil)+1)
thetalesti] <- sum(SJw2+*xi) / sum(SJw2)
esti <- esti + 1
}
# Alternate Sidik-Jonkman
if ("8J2" %inj, hetests) {
name [esti] <- "8J2"
## Esttmate of tau2
# Calculate the pooled estimate
SJ2theta_0 <- sum(xi)/K
# If all estimates are identical then tau2 s zero
if (sum((xi-SJ2theta_0)"2) > 0) {
# Variance components method (general form of Hedges-Olkin)
SJ2tau2_0 <- max(0.01, ((1/(K-1))*(sum((xi-SJ2theta_0)"2)))-((1/K)
— *(sum(vi))))
# SJ2 weightings based on initial estimate of tau2 (SJ2tau2_0)
SJ2w <- 1/((vi/SJ2tau2_0)+1)
# Random—-effects pooled estimate based on the above weightings
SJtheta_1 <- sum(xi*SJ2w)/sum(SJ2w)
SJ2_est <- tau2lesti] <- (1/(K-1))*sum(SJ2w*(xi-SJtheta_1)"2)
} else {
SJ2_est <- tau2[esti] <- 0
+
## Pooled effect estimate
SJ2w2 <- 1/((vi/tau2[esti])+1)
thetalesti] <- sum(SJ2w2*xi)/sum(SJ2w2)
esti <- esti + 1
}

# Maxzimum Likelihood



258 Appendix D

if ("ML" %in% hetests | "BM" %in’ hetests) {
name[esti] <- "ML"
# Difference between this iteration and previous to assess when we
— have convergence
# set MLdiff '= O initially to get the process of iteration going
MLdiff <- 1
MLit <- O # counter for number of iterations
negcount <- 0 # counter for number of negative estimates
# First set initial estimate of tau2 and theta (fized-effect
— estimates)
if (is.null(tau2prior)) {
MLtau2 <- HO_est
} else {
MLtau2 <- tau2prior
}
MLtheta <- FEtheta
# If the number of events = number of people in trial arm,
# then the estimator cannot be calculated and NA is produced.
# So one must avoid looping through any NA estimates
while (MLdiff != 0 & !is.na(MLtau2)) {
# Estimate of between-study heterogeneity
MLtau2_prev <- MLtau2 # record of previous step
if (-min(vi) >= MLtau2) {
MLtau2 <- -min(vi) + (10" -signiftau?2)
b
MLtau2 <- sum(((xi-MLtheta) 2-vi) / (vi+MLtau2)"2) / sum(1l/(vi+
< MLtau2) ~2)
# Estimate for pooled effect
MLtheta_prev <- MLtheta # record of previous step
MLtheta <- sum(xi/(vi+MLtau2)) / sum(1/(vi+MLtau2))
if (!is.na(MLtau2)) {
if (trunc) {
if (MLtau2 >= 0) {
MLdiff <- round(abs(MLtau2 - MLtau2_prev), digits =
— signiftau2)
} else {
negcount <- negcount + 1
# If 2teration s negative more than once then final
— estimate ML = 0
if (negcount >= 2) {
MLdiff <- O
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}
MLtau2 <- 0O
MLtheta <- sum(xi*wFEi)/sum(wFEi)
}
} else {
MLdiff <- round(abs(MLtau2-MLtau2_prev), digits = signiftau2)

}
MLit <- MLit + 1
if (MLit == maxit) {
MLdiff <- O
if (output == TRUE)
cat ("ML estimator: Maximum number of iterations reached
— without convergence \n")
}
+
if (MLit == maxit) {
ML_est <- tau2[esti] <- NA
} else {
ML_est <- tau2[esti] <- MLtau2
}
# Pooled effect estimate
thetalesti] <- sum(xi/(vi+MLtau2)) / sum(1/(vi+MLtau2))
esti <- esti + 1
+
# Restricted Mazimum Likelihood
if ("REML" %in% hetests) {
name [esti] <- "REML"
# First set initial estimate of tau2 and theta (fized-effect
— estimates)
if (is.null(tau2prior)) {
REMLtau2 <- HO_est
} else {
REMLtau2 <- tau2prior
+
REMLtheta <- FEtheta
# Difference between this tteration and previous to assess when we
— have convergence
# set diff '= 0 initially to get the process of iteration going
REMLdiff <- 1

REMLit <- O # counter for number of iterations
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negcount <- 0 # counter for number of negative estimates
# Process of iteration, stop when there is no difference between the
— last two steps.
# If the number of events = number of people in trial arm,
# then the estimator cannot be calculated and NA is produced.
# So one must avoid looping through any NA estimates
while (REMLdiff != 0 & !is.na(REMLtau2)) {
# Estimate of between study heterogeneity
REMLtau2_prev <- REMLtau2 # record of previous step
tau2_pl <- sum((1/((vi+REMLtau2_prev)~2)) * (((xi-REMLtheta)"2) -
< vi))
tau2_p2 <- sum(1/((vi+REMLtau2_prev) "2))
tau2_p3 <- sum(1/(vi+REMLtau2_prev))
REMLtau2 <- (tau2_pl/tau2_p2) + (1/tau2_p3)
if (!is.na(REMLtau2)) {
if (trunc) {
if (REMLtau2 >= 0) {
REMLdiff <- round (abs(REMLtau2 - REMLtau2_prev), digits =
< signiftau?2)
} else {
negcount <- negcount + 1
# If 2teration ts negative more than once then final
— estimate REML = 0
if (negcount >= 2) {
REMLAdiff <- 0
X
REMLtau2 <- 0
REMLtheta <- FEtheta
b
} else {
REMLdiff <- round(abs(REMLtau2 - REMLtau2_prev), digits =
< signiftau?2)
b
X
REMLit <- REMLit + 1
if (REMLit == maxit) {
REMLAiff <- 0
if (output == TRUE)
cat ("REML estimator: Maximum number of iterations reached
< without convergence \n")

}
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# This 1s just to update theta, rather than because this has
# anything to do with convergence of this outcome.
# Estimate for pooled effect
REMLtheta_prev <- REMLtheta # record of previous step
REMLtheta <- sum(xi/(vi+REMLtau2)) / sum(1/(vi+REMLtau2))
}
if (REMLit == maxit) {
REML_est <- tau2[esti] <- NA
} else {
REML_est <- tau2[esti] <- REMLtau2
b
# Pooled effect estimate
thetalesti] <- REMLtheta
esti <- esti + 1
}
# Approxzimate Restricted Maxzimum Likelihood
if ("AREML" %inJ, hetests) {
name [esti] <- "AREML"
# First set initial estimate of taul2 and theta (fized-effect
— estimates)
AREMLtau2 <- 0
AREMLtheta <- FEtheta
# Difference between this tteration and previous to assess when we
> have convergence
# set diff '= 0 <nitially to get the process of iteration going
AREMLAiff <- 1
AREMLit <- O # counter for number of iterations
# Process of iteration, stop when there is no difference between the
— last two steps.
# If the number of events = number of people in trial arm,
# then the estimator cannot be calculated and NA s produced.
# So one must avoid looping through any NA estimates
while (AREMLdiff != 0 & !is.na(AREMLtau2)) {
# Estimate of between study heterogeneity
AREMLtau2_prev <- AREMLtau2 # record of previous step
tau2_pl <- sum((1/((vi+AREMLtau2_prev)~2)) * (((K/(K-1)) * (xi-
> AREMLtheta)~2) - vi))
tau2_p2 <- sum(1/((vi+AREMLtau2_prev) ~2))
AREMLtau2 <- tau2_pl/tau2_p2
if (!is.na(AREMLtau2)) {
if (trunc) {
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if (AREMLtau2 >= 0) {
AREMLdiff <- round(abs(AREMLtau2 - AREMLtau2_prev), digits =
< signiftau2)
} else {
AREMLdiff <- 0O
AREMLtau2 <- 0
AREMLtheta <- FEtheta
b
} else {
AREMLdiff <- round (abs(AREMLtau2 - AREMLtau2_prev), digits =
< signiftau?2)
b
X
AREMLit <- AREMLit + 1
if (AREMLit == maxit) {
AREMLAiff <- 0O
cat ("AREML estimator: Maximum number of iterations reached
< without convergence \n")
}
# This 1s just to update theta, rather than because this has
# anything to do with convergence of this outcome.
# Estimate for pooled effect
AREMLtheta_prev <- AREMLtheta # record of previous step
AREMLtheta <- sum(xi/(vi+AREMLtau2)) / sum(1/(vi+AREMLtau2))
}
if (AREMLit == maxit) {
AREML_est <- tau2[esti] <- NA
} else {
AREML_est <- tau2[esti] <- AREMLtau2
X
# Pooled effect estimate
thetal[esti] <- AREMLtheta
esti <- esti + 1
b
# Approzimate Bayesian
if ("AB" %in% hetests) {
# Check that exactly 2 of the prior parameters are specified,
— otherwise return an error
countarg <- 0O
if (!is.numeric(lambda)) {

countarg <- countarg + 1
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X
if (!is.numeric(eta)) {
countarg <- countarg + 1
b
if (!is.numeric(tau2prior)) {
countarg <- countarg + 1
X
if (countarg == 1) {
name [esti] <- "AB"
# Calculate both eta and lambda parameters if they are not both
— specified
if (is.null(lambda)) {
lambda <- tau2prior*(eta-1)
} else if (is.null(eta)) {
eta <- (lambda/tau2prior) + 1
b
# Compute approxrimate Bayes estimate of heterogeneity wvariance
# from DerSimontian-Laird estimate and prior distribution
AB_est <- tau2[esti] <- max(0, (2*lambda+K+*DL_est) / (2%eta+K-2))
esti <- esti + 1
}
else {cat ("ERROR: AB estimate cannot be calculated as prior
— parameters have been specified incorrectly \n")}
3
# Rukhin Bayes (simple prior)
if ("RB" %in% hetests) {
name [esti] <- "RB"
# Just assume fixzed-effects mean for now, paper does not specify
RBtheta <- thetal[esti] <- FEtheta
if (trunc) {
RB_est <- tau2[esti] <- max(0, (sum((xi-RBtheta)~2)/(K+1)) + ((sum
— (nc+nt) -K) * ((2*K*tau2prior)-(K-1) *sum(vi)) / (K*(K+1)*sum(nc+nt-K
= +2))))
} else {
RB_est <- tau2[esti] <- (sum((xi-RBtheta)~2)/(K+1)) + ((sum(nc+nt)
— -K)*((2*#K*tau2prior)-(K-1)*sum(vi)) / (K*(K+1)*sum(nc+nt-K+2)))
b
esti <- esti + 1
b
# Rukhin Bayes (zero prior)
if ("RBO" %in}% hetests) {
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name [esti] <- "RBO"
# Just assume fixzed-effects mean, this is what Kontopantelis used.
# Also they do not spectify what n_i s — the estimator is not
— proposed
# in the context where there are 2 treatment groups per study,
# so we assume N = nc + nt as used by Kontopantelis.
# Not ezactly the same formula as in Rukhin (2012), because there is
— a mistake,
# this is the corrected formula similar to that used by Konto (2012)
RBOtheta <- thetalesti] <- FEtheta
if (trunc) {
RBO_est <- tau2[esti] <- max(0, (sum((xi-RBOtheta) ~2)/(K+1)) - (((
< sum(nc+nt)-K) *(K-1)*sum(vi)) / (K*(K+1)*sum(nc+nt-K+2))))
} else {
RBO_est <- tau2[esti] <- (sum((xi-RBOtheta)~2)/(K+1)) - (((sum(nc+
— nt)-K)*(K-1)*xsum(vi)) / (K*(K+1)*sum(nc+nt-K+2)))
}
if (is.infinite(RBO_est)) {
RBO_est <- tau2[esti] <- NA # this is possible of the denominator
— 1s zero (rare)
}
esti <- esti + 1
}
# Bayes Modal
if ("BM" %in% hetests) {
name [esti] <- "BM"
# Similar to the equation from Chung and Verontiki papers, but
— replacing var(tauML) with var(tauML"2)
# as the original equation does not work when tauML=0.
# Still unsure whether the tauML should also then be replaced with
— tauML"2 to match (not done here).
varML2 <- 2/(sum(1/(vi+MLtau2)"~2))
# If the number of events = number of people in trial arm,
# then the estimator cannot be calculated and NA <s produced.
# So one must avoid looping through any NA estimates
if (!'is.na(MLtau2) & MLtau2 == 0) {
BM_est <- tau2[esti] <- varML2
} else {
BM_est <- tau2[esti] <- ((sqrt(MLtau2)/2) + (sqrt(MLtau2)/2)*sqrt
— (1+(4xvarML2/MLtau2))) "2
b
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X

## Data frame for reporting all output

# First round off the estimate to specified number of decimal places
— by signiftaul argument

tau2 <- signif(tau2, digits = signiftau2)

out <- data.frame(name, tau2)

if (output == TRUE) print(out)

## Output that can be used after function has been run

# Create an output frame that can be used when iterating through this
— function multiple times.

# The above dataframe is better when only calculating estimates for
— one meta-analysis

res <- as.list(paste(hetests, "_est", sep = ""))

names (res) <- hetests

for (j in 1:length(hetests)) {
res[[jl] <- get(res[[jl1])

}

return (res)

# We can refer to the estimates outside of this function by <funct

< mame>$<est mame>

## Run the heterogeneity wvariance estimators function ##
# (in loop for each simulated meta-analysis)
estresults <- data.frame()
for (x in 1:mydata$meta[nrow(mydata)]) {
newdata <- mydatal[which(mydata$meta == x), ]
logRR <- newdata$logRR
selogRR <- newdata$selogRR
nt <- newdata$nt
nc <- newdata$nc
ec <- newdata$ec
metaests <- hetest(xi = logRR, sei = selogRR, Ntot = sum(nc) + sum(nt)
<~ , nc = nc, nt = nt, ec = ec, eta = 1, lambda = NULL, tau2prior =
< 0, DLpos = 0.01, bsamp = 5000, hetests = c("DL", "DLp", "DLb", "HO
< ", "PM", "HM", "HS", "SJ", "ML", "REML", "AREML", "AB", "RB", "RBO
<~ ", "BM"), signiftau2 = 6, maxit = 100, trunc = TRUE, output =
— FALSE)
myvars <- names(mydata) %in¥% c("pO", "pl", "et", "ec", "nt", "nc", "
— etcor", "eccor", "ntcor", "nccor", "logRR", "selogRR", "SampleSize

C% n , "Study")
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keydata <- newdatal[!myvars]
keydata <- keydatal[1l, ]
keydata <- cbind(keydata, metaests)

estresults <- rbind(estresults, keydata)

# Create dataframe of counts of meta-analyses for which iterative
— estimators

# did not converge for each scenario

noncon <- matrix(NA, nrow = (estresults$scenariol[nrow(estresults)]-
< estresults$scenario[1]+1), ncol = 12)

noncon <- data.frame(noncon)

colnames(noncon) <- c("scenario", "PMcount", "PMprop", "IPMcount", "
— IPMprop", "MLcount", "MLprop", "REMLcount", "REMLprop", "
< AREMLcount", "AREMLprop", "total")

z <=0
for (i in estresults$scenariol[l]:estresults$scenario[nrow(estresults)])

— {

z <-z + 1

smallests <- estresults[which(estresults$scenario == i), ]

noncon$scenario[z] <- i

noncon$total[z] <- nrow(smallests)

if ("PM" %in’% colnames(estresults)) {
noncon$PMcount [z] <- sum(is.na(smallests$PM))
noncon$PMprop[z] <- noncon$PMcount [z] /noncon$total [z]

}

if ("IPM" %in’% colnames(estresults)) {
noncon$IPMcount [z] <- sum(is.na(smallests$IPM))
noncon$IPMprop[z] <- noncon$IPMcount[z]/noncon$total [z]

}

if ("ML" %in’% colnames(estresults)) {
noncon$MLcount [z] <- sum(is.na(smallests$ML))
noncon$MLprop[z] <- noncon$MLcount [z] /noncon$total [z]

}

if ("REML" %in% colnames(estresults)) {
noncon$REMLcount [z] <- sum(is.na(smallests$REML))
noncon$REMLprop[z] <- noncon$REMLcount [z]/noncon$total [z]

}

if ("AREML" %in% colnames(estresults)) {
noncon$AREMLcount [z] <- sum(is.na(smallests$AREML))
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noncon$AREMLprop[z] <- noncon$AREMLcount [z] /noncon$total [z]

# Save this dataframe of mon-converging counts per scenario

myvars <- names(estresults) %in¥% c("scenario", "tau2", "alpha", "
<~ SampleSizel", "k", "theta", "varalpha", "eventdist", "sampdist", "
— contcorr")

myvars <- estresults[myvars]

noncon <- merge(unique(myvars), noncon)

write.table(noncon, file = paste("noncon_results_", iscen, sep = ""))

# Set those estimates < 1z10°-5 to zero (set a class for zero)
for (i in 1l:nrow(estresults)) {
for (j in 14:ncol(estresults)) {
if (!is.na(estresults([i,j]) & estresults[i,j] < 0.00001) {
estresults[i,j] <- 0

# Save heterogeneity wvariance estimates data frame to a file

write.table(estresults, file = paste("estresults_", iscen, sep = ""))

HARHH AR AR AR B R B RRRRRRRAHAAAA
# R code for applying GLMMs #
HARHHHA AR AR B R R RRRRRAHAAAAA

# Re-designing datafile to make it the correct format for Potisson model
— enput
meta <- rep(mydata$meta, times = 2)
scenario <- rep(iscen, times = length(meta))
trial <- rep(study, times = 2)
treat <- c(rep(0, times = length(study)), rep(l, times = length(study)))
event <- c(mydata$ec, mydata$et)
number <- ptime <- c(mydata$nc, mydata$nt)
PMRMdata <- data.frame(scenario, meta, trial, treat, event, number,
> ptime, mydata$ec, mydata$et, mydata$k, mydata$alpha, mydata$
— SampleSizel)
colnames (PMRMdata) [8:12] <- c("ec", "et", "k", "alpha", "SampleSize")
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# Re-designing datafile to make it the correct format for conditional
— logistic model input

meta <- mydata$meta

scenario <- rep(iscen, times = length(meta))

pratio <- mydata$nt/mydata$nc

CLMRMdata <- data.frame(scenario, meta, study, pratio, mydata$ec, mydata
— $et, mydata$k)

colnames (CLMRMdata) [5:7] <- c("ec", "et", "k")

## List of arguments and their meanings ##

23

PMRMdata - data frame in format needed to apply the Poisson
# model, and containing the variables meta, trial, treat, event,

# number, ptime, ec, et and k for each study

# CLMEMdata - data frame in the format needed to apply the
# conditional logistic model, and containing the variables meta,

# study, pratio, ec, et, k, event and number for each study

# modests — wvector of GLMMs that you would like to be applied to
# estimate the heterogeneity wvariance. The default is NULL, which
# means all GLMMs are applied.

# signiftau2 - number of significant figures to round taul estimates

# signiflogRR - number of significant figures to round logRR estimates

# output - TRUE if output is displayed, FALSE otherwise (stops too much
# output from the GLMMs)

## Function for applying Potisson and conditional logistic models ##

## and extracting the tau"2 estimates ##

modest <- function(PMRMdata = PMRMdata, CLMRMdata = CLMRMdata, modests =
< NULL, signiftau2 = 6, signiflogRR = 6, output = TRUE) {
if (is.null(modests)) modests <- c("PMRM", "CLMRM")
PMRM_est <- CLMRM_est <- PMRM_logRR <- CLMRM_logRR <- as.numeric(NA)
Kest <- length(modests) # number of heterogeneity variance estimates
— to be calculated
esti <- 1 # start counter for number of estimators

name <- rep(NA, times = Kest)
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tau2 <- rep(NA, times = Kest)

logRR <- rep(NA, times = Kest)

# Poisson regression model
if ("PMRM" %in% modests) {

}

name [esti] <- "PMRM"
k <- PMRMdata$k[1]
et <- PMRMdata$event [PMRMdata$treat == 1]
ec <- PMRMdata$event [PMRMdata$treat == 0]
nt <- PMRMdata$number [PMRMdata$treat == 1]
nc <- PMRMdata$number [PMRMdata$treat == 0]
alpha <- PMRMdata$alphal[1]
# Do not attempt to apply the Poisson model to any meta-analyses
<~ that contain problematic studies for which
# the Poisson model cannot be applied, and instead give their
— estimates as NA
if ((((all(et/nt == et[1]/nt[1])) & (all(ec/nc == ec[1]/nc[1]))) & (
— all(ec == 0) | (all(ec == ec[1]) & all(nc == nc[11)))) | (k == 5 &
< (alpha == -6.9 | alpha == -5.3)) | (PMRMdata$SampleSize[1l] == "
10 & (alpha == -6.9 | alpha == -5.3)) | (
1433 & PMRMdata$metal[l] == 829) | (
> PMRMdata$scenario[1] == 1999 & PMRMdata$meta[1] == 944) | (
< PMRMdata$scenario[1] == 1793 & PMRMdata$meta[l] == 2654)) {
PMRM_est <- tau2[esti] <- NA
PMRM_logRR <- logRR[esti] <- NA
} else {
# Apply the Poisson model to the meta-analyses that will work,

> small and large" & k =

<+ PMRMdata$scenario[1] =

# and extract the heterogeneity variance and log-risk ratio

# estimates from the model output parameters

pois.glmer <- glmer(event ~ l+treat+(l+treat|trial), offset = log(
< ptime), data = PMRMdata, family = poisson, control = glmerControl(
< optimizer = "Nelder_Mead", tolPwrss = le-3, optCtrl = list(maxfun
< = 100000)), nAGQ = 0)

temp <- VarCorr(pois.glmer)

PMRM_est <- tau2[esti] <- temp$triall2, 2]

PMRM_logRR <- logRR[esti] <- coef (summary(pois.glmer))[2 , "
— Estimate"]
b

esti <- esti + 1

# Conditional logistic regression model
if ("CLMRM" %in% modests) {
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name [esti] <- "CLMRM"
ec <- CLMRMdata$ec
et <- CLMRMdata$et
k <- CLMRMdata$k[1]
# Do not attempt to apply the conditional logistic model to any meta
— -analyses that contain problematic studies for which
# the conditional logistic model cannot be applied, and instead give
— their estimates as NA
if (((sum((ectet) == 0) >= (k-1)) | all(ec == 0) | all(et == 0) | (
— all(et[which(!(ec+et) %in} 0)]1/eclwhich(!(ect+et) %in’% 0)] == etl[
< which(!(ec+et) %in% 0)][1]/ec[which(! (ec+et) %in% 0)1[11))) | (
< CLMRMdata$scenario[1] == 1433 & CLMRMdata$metal[1l] == 829) | (
— CLMRMdata$scenario[1] == 1999 & CLMRMdata$metal[1l] == 944) | (
< CLMRMdata$scenario[1] == 1789 & CLMRMdata$metal[l] == 540)) {
CLMRM_est <- tau2[esti] <- NA
CLMRM_logRR <- logRR[esti] <- NA
} else {
# Apply the conditional logistic model to the meta-analyses
# that will work, and extract the heterogeneity wvariance and
# log-risk ratio estimates from the model output parameters
cond.glmer <- glmer(cbind(et,ec) ~ 1+(1|study), offset = log(
— pratio), data = CLMRMdata, family = binomial)
temp <- VarCorr(cond.glmer)
CLMRM_est <- tau2[esti] <- temp$studyl[1]
CLMRM_logRR <- logRR[esti] <- coef (summary(cond.glmer))[ , "
— Estimate"]
b
X
# Round off the tau2 estimates to spectified number of decimal places
— by signiftaul argument
tau2 <- signif(tau2, digits = signiftau2)
# Round off the logRR estimates to specified number of decimal places
— by signiflogRR argument
logRR <- signif(logRR, digits = signiflogRR)
out <- data.frame(name, tau2, logRR)
if (output == TRUE) print(out)
## Output that can be used after function has been run
# Create an output frame that can be used when iterating through this
— function multiple times.
# The above dataframe is better when only calculating estimates for

— one meta-analysis
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res <- c(as.list(paste(modests, "_est", sep = "")), as.list(paste(
— modests, "_logRR", sep = "")))
names (res) <- c(modests, paste(modests, "_logRR", sep = ""))

for (j in 1:length(res)) {
res[[jl1] <- get(res[[j1])
}
return (res)
# We can refer to the estimates outside of this function by <funct

< name>$<est mame>

## Apply Poisson and conditional logistic models and save estimates ##
# (in loop for each simulated meta-analysis)
modresults <- data.frame()
for (x in 1:mydata$metal[nrow(mydata)]l) {
newdata <- PMRMdata[which(PMRMdata$meta == x), ]
newdata2 <- CLMRMdata[which(CLMRMdata$meta == x), ]
modelests <- modest(PMRMdata = newdata, CLMRMdata = newdata2, modests
< = c("PMRM", "CLMRM"), signiftau2 = 6, signiflogRR = 6, output =
— FALSE)
keydata <- newdata["meta"]
keydata <- as.data.frame(keydatall, ])
keydata <- cbind(keydata, modelests)
colnames (keydata) [1] <- "meta"

modresults <- rbind(modresults, keydata)

}

myvars <- c("scenario", "meta", "tau2", "alpha", "SampleSizei", "k", "
~ simulation", "theta", "varalpha", "eventdist", "sampdist", "
< contcorr")

modresults <- merge(unique(mydatal[myvars]), modresults, by = "meta")

# Create dataframe of counts of meta-analyses which had to be excluded
— from

# the models for each scenario

excl <- matrix(NA, nrow = (modresults$scenario[nrow(modresults)] -
< modresults$scenario[1]+1), ncol = 6)

excl <- data.frame(excl)

colnames(excl) <- c("scenario", "PMRMcount", "PMRMprop", "CLMRMcount", "
<> CLMRMprop", "total")



272 Appendix D

z <=0
for (i in modresults$scenario[1]:modresults$scenario[nrow(modresults)])
— {
z <-z+1
smallests <- modresults[which(modresults$scenario == i), ]
excl$scenariolz] <- i
excl$total[z] <- nrow(smallests)
if ("PMRM" %inJ, colnames(modresults)) {
excl$PMRMcount [z] <- sum(is.na(smallests$PMRM))
excl$PMRMprop[z] <- excl$PMRMcount[z]/excl$total [z]
}
if ("CLMRM" %in% colnames(modresults)) {
excl$CLMRMcount [z] <- sum(is.na(smallests$CLMRM))
excl$CLMRMprop [z] <- excl$CLMRMcount [z]/excl$total [z]

# Save thise data frame of exclusions

myvars <- names(modresults) %in% c("scenario", "tau2", "alpha", "
<~ SampleSizel", "k", "theta", "varalpha", "eventdist", "sampdist", "
< contcorr")

myvars <- modresults[myvars]

excl2 <- merge(unique(myvars), excl)

write.table(excl2, file = paste("modexclude_results_", iscen, sep = ""))

# Set those estimates < 1z10°-5 to zero (set a class for zero)
for (i in 1:nrow(modresults)) {
for (j in 13:14) {
if (!is.na(modresults[i,j]) & modresults[i,j] < 0.00001) {

modresults[i,j] <- 0

# Save GLMM estimates data frame to a file

write.table(modresults, file = paste("modresults_", iscen, sep = ""))

e
# R code for conditional heterogeneity wariance estimators #
e
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## List of arguments and their meanings ##

# ec - number of events in the control group

# et - number of events in the treatment group

# condests — wvector of conditional heterogeneity estimators that you
— would

# like to be calculated. The default ts NULL, which means all
— conditional

# estimates are calculated.

# logRR - TRUE <f the estimates are to be transformed (via an
< approzimation)

# to the wariance of the logRR, FALSE <f the estimates are to be left as
— the

# variance of the RR.

# signiftau2 - number of significant figures to round taul estimates

# trunc - TRUE 1f estimators should be truncated to zero, FALSE

— otherwise

# output - TRUE if output <s displayed, FALSE otherwise (stops too much

# output when we are running the program iteratively)

## List of estimators and their acronyms ##

# CO1 - conditional estimating equation (1)
# CO2 - conditional estimating equation (2)
# CO3 - conditional estimating equation (3)
# CO4 - conditional estimating equation (4)

## Function to apply conditional taul estimating equations ##

condest <- function(ec = ec, et = et, condests = NULL, logRR = TRUE,
< signiftau2 = 6, trunc = TRUE, output = TRUE) {
if (is.null(condests)) condests <- c("CO1", "CO2", "CO3", "C04")
CO01_est <- CO2_est <- C03_est <- C04_est <- as.numeric(NA)
yi <- ec + et

Kest <- length(condests) # number of estimates to be calculated
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esti <- 1 # a counter so that we can create a dataset with a separate
— estimate on each row - the first specified estimate will be in Tow
— 1, ..., etc
## Specifying all output vectors before replacing the values with
— actual estimates
name <- rep(NA, times = Kest)
taup2 <- rep(NA, times = Kest)
# Omit DZ treals
ec <- ec[!yi == 0]
et <- et[!yi == 0]
yi <= yil'yi == 0]
k <- length(yi)
yia <= yilyi > 1]
eca <- eclyi > 1]
eta <- et[yi > 1]
yib <- yilyi == 1]
ecb <- eclyi == 1]
etb <- etl[yi == 1]
# Find estimate of probability of event (hat(p))
phat <- sum(et)/sum(yi)
# Transform estimates to wvariance of log-risk ratio (optional)
if (logRR == TRUE) {
theta <- log(phat/(1-phat))
dpneg2 <- ((exp(theta))~2)/(phat~4)
tau2 <- rep(NA, times = Kest)
X
# Find estimate of hat(tau_p) 2 - heterogeneity variance estimate
if ("CO1" %in’ condests) {
name[esti] <- "CO1"
if (trunc) {
CO1l_est <- taup2[esti] <- max(0, (1/k)*(sum(((et-(yi*phat))~2)/(yi
< ~2))-(phat*sum(1/yi))))
} else {
CO01_est <- taup2[esti] <- (1/k)*(sum(((et-(yi*phat))~2)/(yi~2))-(
< phat*sum(1/yi)))
X
if (logRR == TRUE) {
CO0l_est <- tau2[esti] <- dpneg2*C01_est
b

esti <- esti + 1



Appendix D 275

if ("C02" %in% condests) {
name[esti] <- "C02"
if (k== 1) {
C02_est <- taup2[esti] <- NA
} else {
if (trunc) {
C02_est <- taup2lesti] <- max(0, ((1/(k-1))*sum(((et-(yi*phat))
— ~2)/(yi~2)))-((1/k)*phat*(1-phat)*sum(1/yi)))
} else {
C02_est <- taup2lesti] <- ((1/(k-1))*sum(((et-(yi*phat))~2)/(yi
< 72)))-((1/k)*phat*(1-phat)*sum(1/yi))
}
if (logRR == TRUE) {
CO2_est <- tau2[esti] <- dpneg2*C02_est
}
}
esti <- esti + 1
}
if ("C03" %in% condests) {
name [esti] <- "CO3"
if (k == 1) {
CO03_est <- taup2[esti] <- NA
} else {
if (all(yi > 1)) {
if (trunc) {
C03_est <- taup2[esti] <- max(0, ((1/(k-1))*sum(((et-(yi*phat)
— )72)/(yi*x(yi-1))))-((1/k)*phat*(1-phat)*sum(1/(yi-1))))
} else {
C03_est <- taup2lesti] <- ((1/(k-1))*sum(((et-(yi*phat))~2)/(
< yi*(yi-1))))-((1/k)*phat*(1-phat)*sum(1/(yi-1)))
}
} else {
if (trunc) {
C03_est <- taup2[esti] <- max(0, ((1/(k-1))*sum(((et-(yi*phat)
— )72)/(yi~2)))-((1/k)*phat*(1-phat)*sum(1/yi)))
} else {
C03_est <- taup2[esti] <- ((1/(k-1))*sum(((et-(yi*phat))~2)/(
< yi~2)))-((1/k)*phat* (1-phat)*sum(1/yi))
}
}
if (logRR == TRUE) {
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CO03_est <- tau2[esti] <- dpneg2*C03_est
}
}
esti <- esti + 1
}
if ("C04" %inJ, condests) {
name [esti] <- "C04"
if (k == 1) {
CO04_est <- taup2[esti] <- NA
} else {
if (all(yi > 1)) {
if (trunc) {

C04_est <- taup2[esti] <- max(0, ((1/(k-1))*sum(((et-(yi*phat)

— )72)/(yi*x(yi-1))))-((1/k)*phat*(1-phat)*sum(1/(yi-1))))
} else {
C04_est <- taup2[esti] <- ((1/(k-1))*sum(((et-(yi*phat))~2)/(
< yi*(yi-1))))-((1/k)*phat*(1-phat)*sum(1/(yi-1)))
+
} else if (all(yi <= 1)) {
if (trunc) {

C04_est <- taup2[esti] <- max(0, ((1/(k-1))*sum(((et-(yi*phat)

< )72)/(yi~2)))-((1/k)*phat*(1-phat)*sum(1/yi)))
} else {
C04_est <- taup2[esti] <- ((1/(k-1))*sum(((et-(yi*phat))~2)/(
< yi~2)))-((1/k)*phat* (1-phat)*sum(1/yi))
}
} else {
if (trunc) {

CO4_est <- taup2[esti] <- max(0, ((1/(k-1))*(sum(((eta-(yiax
< phat))~2)/(yia*x(yia-1)))+sum(((etb-(yib*phat))~2)/(yib~2))))-((1/k
< )*phat*(1-phat)*(sum(1/(yia-1))+sum(1/yib))))

} else {

CO4_est <- taup2[esti] <- ((1/(k-1))*(sum(((eta-(yia*phat))"2)
— /(yiax(yia-1)))+sum(((etb-(yib*phat))~2)/(yib~2))))-((1/k)*phat*
— (1-phat)*(sum(1/(yia-1))+sum(1/yib)))

}
}
if (logRR == TRUE) {

CO4_est <- tau2lesti] <- dpneg2*C04_est
}
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X
if (logRR == TRUE) {
tau2 <- signif(tau2, digits = signiftau2)
out <- data.frame(name, tau2)
} else {
taup2 <- signif(taup2, digits = signiftau?2)
out <- data.frame(name, taup2)
b
if (output == TRUE) print(out)
## Output that can be used after function has been run
# Create an output frame that can be used when iterating through this
— function multiple times.
# The above dataframe is better when only calculating estimates for
— one meta—analysis
res <- as.list(paste(condests, "_est", sep = ""))
names (res) <- condests
for (j in 1:length(condests)) {
res[[jl] <- get(res[[jll)
}

return (res)

condresults <- data.frame()
for (x in 1:mydata$meta[nrow(mydata)]) {
newdata <- mydata[which(mydata$meta == x), ]
ec <- newdata$ec
et <- newdata$et
metaests <- condest(ec = ec, et = et, condests = c("CO1", "C02", "CO3"
< , "C04"), logRR = TRUE, signiftau2 = 6, trunc = TRUE, output =
< FALSE)
myvars <- names(mydata) %in}% c("p0", "pi", "ec", "et", "nc", "nt", "
<~ eccor", "etcor", "nccor", "ntcor", "logRR", "selogRR", "SampleSize
< ", "study")
keydata <- newdatal!myvars]
keydata <- keydatal1l, ]
keydata <- cbind(keydata, metaests)

condresults <- rbind(condresults, keydata)

# Set those estimates < 1z10°-5 to zero (set a class for zero)

for (i in 1:nrow(condresults)) {
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for (j in 14:ncol(condresults)) {
if (!is.na(condresults[i,j]) & condresults[i,j] < 0.00001) {

condresults[i,j] <- 0

write.table(condresults, file = paste("condresults_", iscen, sep = ""))

i
# R code for mizture model heterogeneity variance estimator #
i

## List of arguments and their meanings ##

z1 - vector of effect estimates for each study. If the outcome is
risk ratio (for example), we assume that zt is already converted to
log-risk ratios. log argument can be used to convert output back onto

the original scale after all heterogeneity estimates have been

HOWH " OW" W

calculated.

H*

ec - number of events in the control group

# et - number of events in the treatment group

# maxJ - the maxrimum number of model compomnents to comnsider

# select — the second model selection method (either "BIC" or "LRT",
— where
# LRT is the likelihood-ratio test) to be used if none of the models

# produced very similar values of q.

# mazit - maxzimum number of iterations for EM algorithm

# itdiff - stopping value for EM algorithm (the algorithm will stop if
— the

# absolute difference between observed log-likelihoods ts less than
— 1tdiff).

# probdiff - walue used to find the best-fitting model via the initial
# selection method looking at differences in q (the walues of q are

— deemed
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# to be tdentical if the difference between them is less than probdiff).

# signiftaul - number of significant figures to round taul estimates

# signiflogRR - number of significant figures to round logRR estimates

# output - TRUE if output <s displayed, FALSE otherwise (stops too much

# output when we are running the program iteratively)
## Function to apply EM algorithm and produce tau2l estimates ##

mixest <- function(xi = logRR, ec = ec, et = et, maxJ = 5, select = "BIC

— ", maxit = 5000, itdiff = 0.0000001, probdiff = 0.001, signiftau2
< = 6, signiflogRR = 6, output = TRUE) {

# Method cannot be applied to MAs where all ec = 0, so produce NA
— estimates for this case

if (all(ec == 0)) {
logthetabar <- NA
logtau2est <- NA

} else {
# Calculate total number of events per study over both trial arms
yi <- ec + et
# Identify any double-zero (DZ) trials - they cannot be included in
— this approach
ec <- ec[!yi == 0]
et <- et[!lyi == 0]
xi <= xi[lyi == 0]
yi <- yil'yi == 0]
# Number of studies in meta-analystis (excluding any DZ trials
— omitted)
k <- length(yi)
# Apply mizture model for range of components (J)
bic <- loglL <- rep(NA, times = maxJ) # make empty vectors for model
— comparison measures (BIC and LR test)
bestcount <- 0 # count to apply method for all J considered, then
<> the best J chosen, and then stop
while (bestcount < 2) { # to stop applying the method after it has
— been applied to all J considered and the best J (to obtain results
— )

# apply method to each J considered
J <=0
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w <- NULL # count for number of prob’s from Binomial dist. that
— are essentially identical (diff. is less than probdiff)
while (is.null(w) & J < maxJ) {

if (bestcount == 1) { # if the best J/model has been chosen by

< model comparison/choice method
J <- best]J # set J to be this best J
} else {
J<-J + 1 # set a counter for J

3

# Weights Pi are equal and sum to 1, t.e. Pi = 1/J

Pi <- rep(1/J, times = J)

# Vector of the probabilities (q) for the Binomial distribtuion
— (must be of length J)

# (derived from the initial theta’s, where theta’ is the RR in
<~ this case)

gprob <- theta <- rep(NA, times = J) # create empty vectors for
< q (the Binomial prob) and theta’

gprob[1] <- exp(min(xi[is.finite(xi)]))/(exp(min(xi[is.finite(xi
< )1))+1) # first element in q vector is based on the minimum (log)
— RR wvalue from the data

gprob[J] <- exp(max(xil[is.finite(xi)]))/(exp(max(xilis.finite(xi
— )1))+1) # last element in q vector is based on the mazimum (log)RR
— wvalue from the data

#1f J > 2, fill in the remainder of elements in q by equally

— spacing between the first and the last elements

if (J>2) 1
y <=0
for (i in 2:(J-1)) {
y<-y+1
gprob[i] <- gprob[1] + (y*((gprob[J] - gprob[1])/J))
}
}

MMit <- 1 # iteration number
MMdiff <- 1 # to get <teration started, MMdiff < 0.0001 implies
— convergence
while (!is.na(MMdiff) & MMdiff >= itdiff) {
# Calculate observed log-likelihood for MMit = 1, set as wvalue
— from previous tteration otherwise
if (MMit == 1) {
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bi <- e <- matrix(0, nrow = k, ncol = J) # create matrices
— of zeros (see while below) for Binomial density function and
— expected value

biPi <- rep(NA, times = k) # create empty vector for
<~ Binomial density function * weight P1

for (i in 1:k) {

for (j in 1:J) {
bili,j] <- dbinom(x = et[i], size = yil[i], prob = gprobl

< j1) # Binomial density function

b
biPi[i] <- sum(bil[i, ]*Pi)
b
obll <- log(prod(biPi)) # observed log-likelihood for MMit =
— 1
} else {
obll <- obllnew # observed log-likelihood for MMit > 1
}
# E-step

# Calculate expected value for z_ij
for (j in 1:J) {
for (i in 1:k) {
eli,jl <= (bili,jI*Pi[j1)/(biPi[i]) # ezpected value
if (is.na(eli,j1)) { # 4if e 4is NA, set it equal to 1/J in
<~ order for algorithm to move forward
eli,jl <= 1/J

}
while (!is.finite((sum(e[ ,jl*et))/(sum(el ,jl*yi) - sum(el
— ,jl*et)))) {
elwhich.min(el[,j1),j] <= 1/J

X
# M-step
# Updated estimates resulting from maxrimisation of complete
— log-likelzhood
for (j in 1:J) {
Pi[j] <- sum(el ,jl)/k # updated estimate of Pi
theta[j] <- (sum(e[ ,jl*et))/(sum(el ,jl*yi) - sum(el ,jlxet
— )) # updated estimate of theta
gprob[j] <- thetaljl/(1+thetaljl) # updated value of g using
— wupdated estimates of theta
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X
# Use updated estimates of Pt and theta to re-calculate
> observed log-likelihood
bi <- matrix(0, nrow = k, ncol = J) # create matrices of zeros
— (see while below) for Binomial density function and expected
— wvalue
biPi <- rep(NA, times = k) # create empty vector for Binomial
— density function * weight P
for (i in 1:k) {
for (j in 1:J) {
bi[i,j] <- dbinom(x = et[i], size = yil[i], prob = gprobl[j
< 1) # Binomial denstity function
}
biPi[i] <- sum(bil[i, ]*Pi)
}
obllnew <- log(prod(biPi)) # updated observed log-likelihood
# Calculate difference between updated and previous observed
— log-likelzhood
MMdiff <- abs(obllnew - obll)
if (is.na(MMdiff)) {
Piout <- thetaout <- NA
} else {
if (MMdiff >= itdiff) # repeat algorithm
MMit <- MMit + 1
if (MMdiff < itdiff) { # condition is met - stop algorithm
— and extract estimates
Piout <- Pi
thetaout <- theta
}
if (MMit == maxit) { # mazimum number of iterations has been
— reached without convergence
MMdiff <- O
if (output == TRUE)
cat ("MM estimator: Maximum number of iterations reached

<> without convergence \n")

¥

¥
if (MMit == maxit) { # if convergence has not been achieved, set
— output estimates to NA
Piout <- thetaout <- NA
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¥
if (bestcount == 1) { # if the best J/model has been chosen
> already, stop here
break
} else { # calculate the model comparison measures
bic[J] <- (2xJ*log(k)) - (2%obllnew) # BIC
logL[J] <- obllnew # observed log-likelihood for use in
— likelihood-ratio (LR) test
# compile a vector (w) of those J that result in q’s with an
— absolute difference less than probdiff (i.e. very similar q’s)
if (J>=2){
m <- 0
while(is.null(w) & m < (J-1)) {
m<-m+1
if (abs(gprob[m] - gprob[m+1]) < probdiff) {
w <= J # vector of J’s where some of the gq’s are

— practically identical/very similar

}

3
bestcount <- bestcount + 1
if (bestcount == 1) { # <f best J/model has yet to be chosen,
— choose %t via model comparison methods
# if a number of the q’s were deemed to be identical (i.e.
— length(w) > 0), then choose best model as min(w)-1 if min(w) > 1,
— else min(w)

if ('is.null(w)) {

if (w> 1) {
best] <-w - 1
} else {
bestJ <- w
}

} else { # if none of the models gave q’s with differences less
<~ than probdiff, then use the second model selection method of
— choice
if (select == "BIC") { # if second selection method was BIC,
— choose the model with lowest value of BIC
bestJ <- which(bic == min(bic)) [[1]]
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} else if (select == "LRT") { # if second selection method was
— LRT, apply the likelihood ratio test to find best model
chisq <- qchisq(0.95, df = 2) # Chi-square value with df = 2
— (difference in number of parameters between each J-based model)
LR <- chisq + 1 # set likelihood ratio to be an arbitrary
— wvalue to begin loop
i <- 0 # set a counter for J
# look for J(=i) where LR <= chisq (as the model with less
> parameters between this comparison of 2 models is the best)
while (LR > chisq & i < (maxJ-1)) {
i<-1+ 1 # counter for J
LR <- -2 * (logL[i]l - logL[i+1]) # likelihood-ratio
— statistic
b
# 1f counter 1 has reached maxzJ-1, then best fitting model
— must be the model with most parameters (mazJ)
if (LR > chisq & i == (maxJ-1)) {
bestJ <- maxJ
} else { # if counter ¢ did not reach maxJ-1, then the above
— while loop was satisfied and best J = 1
bestJ <- i
X
} else { # if no second selection method was specified, but is
<> necessary, then give warning
stop("Second-choice model selection technique (select) is

< necessary and must be either BIC or LRT")

}

X
Pi <- Piout # final estimate of Pt
theta <- thetaout # final estimate of theta
logtheta <- log(theta) # estimate of the converted logRR
thetabar <- sum(Pi * theta) # estimate of the overall risk ratio
tau2est <- sum(Pi * ((theta - thetabar)~2)) # estimate of tau_p~2
# Conversions to estimates of interest
logthetabar <- sum(Pi * logtheta) # estimate of overall logRR
logtau2est <- sum(Pi * ((logtheta - logthetabar)~2)) # estimate of
— tau"2

}

# Output estimates
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tau2 <- signif(logtaulest, digits = signiftau?2)

logRRest <- signif(logthetabar, digits = signiflogRR)

out <- data.frame("MM", tau2, logRRest)

if (output == TRUE) print(out)

## Output that can be used after function has been run

# Create an output frame that can be used when iterating through this
<~ function multiple times.

# The above dataframe is better when only calculating estimates for
— one meta-analysis

res <- list(tau2, logRRest)

names(res) <- c("MM", "MM_logRR")

return(res)

# Apply mizture model approach

## Run the heterogeneity wvariance estimators function ##

# (in loop for each simulated meta-analysis)

mixresults <- data.frame()

for (x in l:mydata$metal[nrow(mydata)]) {
newdata <- mydatal[which(mydata$meta == x), ]
logRR <- newdata$logRR
ec <- newdata$ec
et <- newdata$et
metaests <- mixest(xi = logRR, ec = ec, et = et, maxJ = 5, select = "
— BIC", maxit = 5000, itdiff = 0.0000001, probdiff = 0.001,
< signiftau2 = 6, signiflogRR = 6, output = FALSE)

myvars <- names(mydata) %in} c("p0", "p1", "et", "ec", "nt", "nc", "
<~ etcor", "eccor", "ntcor", "nccor", "logRR", "selogRR", "SampleSize
< ", "study")

keydata <- newdatal[!myvars]

keydata <- keydatal[1l, ]

keydata <- cbind(keydata, metaests)

mixresults <- rbind(mixresults, keydata)

# Create dataframe of counts of meta-analyses for which iterative
— estimators

# did not converge for each scenario

mixnoncon <- matrix(NA, nrow = (mixresults$scenario[nrow(mixresults)]-
< mixresults$scenario[1]+1), ncol = 4)

mixnoncon <- data.frame(mixnoncon)
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colnames (mixnoncon) <- c("scenario", "MMcount", "MMprop", "total")

z <=0
for (i in mixresults$scenario[l]:mixresults$scenario[nrow(mixresults)])
— {
z <-z +1
smallests <- mixresults[which(mixresults$scenario == i), ]
mixnoncon$scenariol[z] <- i
mixnoncon$total[z] <- nrow(smallests)
mixnoncon$MMcount [z] <- sum(is.na(smallests$MM))

mixnoncon$MMprop[z] <- mixnoncon$MMcount [z] /mixnoncon$total [z]

# Save this dataframe of nmon—converging counts per scenario

myvars <- names(mixresults) %in% c("scenario", "tau2", "alpha", "
< SampleSizel", "k", "theta", "varalpha", "eventdist", "sampdist", "
— contcorr")

myvars <- mixresults[myvars]

mixnoncon <- merge(unique(myvars), mixnoncon)

write.table(mixnoncon, file = paste("mixnoncon_results_", iscen, sep = "

= "))

# Set those estimates < 1z107-5 to zero (set a class for zero)
for (i in 1:nrow(mixresults)) {
for (j in 14:ncol(mixresults)) {
if (!is.na(mixresults([i,j]) & mixresults[i,j] < 0.00001) {

mixresults[i,j] <- 0O

# Save heterogeneity wvariance estimates data frame to a file

write.table(mixresults, file = paste("mixresults_", iscen, sep = ""))

e
# R code for calculating confidence interval estimates #
i

## Incorporate theta estimates into simulation results dataframe ##

# (needed for theta performance measures and construction of CIs)
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# Remove the duplicate columns (ezcept for meta to merge)

condnames <- names(condresults) %in% c("scenario", "tau2", "taup2", "
— alpha", "SampleSizel", "k", "simulation", "theta", "varalpha", "
— eventdist", "sampdist", "contcorr")

condresults <- condresults[!condnames]
# Combine these 2 data frames together by the meta-analystis ID wvariable

results <- merge(estresults, condresults, by = "meta")

# Remove the duplicate columns (exzcept for meta to merge)

modnames <- names(modresults) %in% c("scenario", "tau2", "alpha", "
<> SampleSizel", "k", "simulation", "theta", "varalpha", "eventdist",
< '"sampdist", "contcorr")

modresults <- modresults[!modnames]
# Combine these 2 data frames together by the meta-analysis ID wvariable

results <- merge(results, modresults, by = "meta")

# Remove the duplicate columns (except for meta to merge)

mixnames <- names(mixresults) %in% c("scenario", "tau2", "taup2", "alpha
— ", "SampleSizel", "k", "simulation", "theta", "varalpha", "
— eventdist", "sampdist", "contcorr")

mixresults <- mixresults[!mixnames]

# Combine these 2 data frames together by the meta-analysis ID wvarziable

results <- merge(results, mixresults, by = "meta")

# Trim doun estresults variables to avoid duplicates when merging

myvars <- names(results) %in%, c("scenario", "tau2", "taup2", "alpha", "
— SampleSizel", "k", "simulation", "theta", "varalpha", "eventdist",
< ‘"sampdist", "contcorr")

cutresults <- results[!myvars]
myvars <- names(mydata) %in% c("etcor", "eccor", "ntcor", "nccor"

cutdata <- mydatal[!myvars]

# Combine theta values with heterogeneity variance estimates

results <- merge(cutdata, cutresults, by.x = "meta", by.y = "meta")

# Save this complete dataframe

write.table(results, file = paste("theta_results_", iscen, sep = ""))

## Construction of confidence intervals (CIs) ##

# Create vector/list of heterogeneity variance estimating methods
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myvars <- names(results) %in), c("SampleSize", "study", "et", "ec", "nt",
— '"nc", "logRR", "selogRR", "meta", "I2", "tau2", "taup2", "pO", "
— pl", "alpha", "SampleSizel", "k", "simulation", "theta", "varalpha
— ", "scenario", "eventdist", "sampdist", "contcorr", "PMRM_logRR",
< "CLMRM_logRR", "MM_logRR")

hetdata <- results[!myvars]

hetnames <- names(hetdata)

# Extract the logRR estimates produced via the poisson and condlog
— models

models <- c("PMRM_logRR", "CLMRM_logRR", "MM_logRR")

modelthetas <- results[models]

## List of arguments and their meanings ##

# x1 - effect estimates of the studies in the meta-analysis

# sei - standard errors of the effect estimates

# ec - number of events in control arm for each study

# et - number of events in treatment arm for each study

# nc - sample size of control arm for each study

# nt - sample stze of treatment arm for each study

# hetests - wector of heterogeneity estimates

# modelthetas - theta (logRR) estimates produced by GLMM and mizture
— model (MM) methods

# Clests — nmames of the confidence intervals to be calculated

# hetnames - names of the heterogeneity estimators (corresponding to the
— heterogeneity estimates in hetests argument)

# signif - significance level set for the confidence intervals, the
< default is 0.05 (i.e. 95/ CI)

# signifCI - number of significant figues to round off the CI bounds

# MH - 4f TRUE then Mantel-Haenszel estimate for logRR is calculated (
— with NAs for those that cannot be calculated without a cont. corr
— .)

# MHc - 1if TRUE then Mantel-Haenszel estimate for logRR is calculated

— using a continuity correction when required

## PARAMETERS SPECIFIC TO MHc
# c - constant continuity correction to be used in the case of all-zero

— trial arms

# output - TRUE 2f output to be displayed, FALSE otherwise
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## List of confidence intervals and their acronyms ##

# Z - Z-type confidence interval

# T - t-distribution confidence interval

# HKSJ - Hartung-Knapp-Sidik-Jonkman confidence interval
# mKH - modified Hartung-Knapp confidence interval

## Confidence interval (CI) estimators code ##

CIest <- function(xi = logRR, sei = selogRR, ec = ec, et = et, nc = nc,
< nt = nt, hetests = hetests, modelthetas = modelthetas, Clests =
< NULL, hetnames = NULL, signif = 0.05, signifCI = 4, MH = TRUE, MHc
— = TRUE, ¢ = 0.5, output = TRUE) {

if (is.null(CIests)) CIests <- c("Z", "T", "HKSJ", "mKH")

if (is.null(hetnames)) hetnames <- c("HQ", "DL", "PM", "IPM", "HO2", "
< DL2", "DLp", "DLb", "HM", "HS", "SJ", "SJ2", "ML", "REML", "AREML"
— , "AB", "RB", "RBO", "BM", "CO1", "CO2", "CO3", "CO4", "PMRM", "
< CLMRM", "MM")

if (length(hetests) != length(hetnames)) {
stop("Number of tau2 estimator names doesn’t match the number of
— estimates given")

}

thetahetests <- hetests[!names(hetests) %in% c("PMRM", "CLMRM", "MM")]

thetahetnames <- names(thetahetests)

hetests <- as.numeric(hetests[1, 1)

thetahetests <- as.numeric((thetahetests[1, 1))

if (MH == TRUE & MHc == TRUE) {

CImat <- matrix(NA, nrow = (2%length(CIests))+1, ncol = length(
— hetnames)+2)
colnames(CImat) <- c(hetnames, "MH", "MHc")
} else if (MH == TRUE) {
CImat <- matrix(NA, nrow = (2%length(CIests))+1, ncol = length(
— hetnames)+1)
colnames(CImat) <- c(hetnames, "MH")
} else if (MHc == TRUE) {
CImat <- matrix(NA, nrow = (2%length(CIests))+1, ncol = length(

< hetnames)+1)
colnames(CImat) <- c(hetnames, "MHc")
} else {



290 Appendix D

CImat <- matrix(NA, nrow = (2*length(CIests))+1, ncol = length(
< hetnames))
colnames(CImat) <- hetnames
}
rowmat <- rep(NA, times = nrow(CImat))
for (i in 2:nrow(CImat)) {
if (A %h2==0 A

rowmat[i] <- paste(CIlests[i/2], "_1b", sep = "")
} else {
rowmat[i] <- paste(CIests[(i/2)-0.5], "_ub", sep = "")

}
rowmat[1] <- "theta"
rownames (CImat) <- rowmat
k <- length(xi) # number of studies
# Calculate mean effects
thetaests <- rep(NA, times = length(thetahetests))
for (i in 1:length(thetahetnames)) {
CImat["theta", thetahetnames[i]] <- thetaests[i] <- sum(xi*(1/((sei
< "2)+thetahetests[i])))/sum(1/((sei~2)+thetahetests[i]))
}
modelthetas <- as.numeric(modelthetas([1, 1)
modnames <- hetnames[hetnames %inj, c("PMRM", "CLMRM", "MM")]
for (i in 1:length(modelthetas)) {
CImat["theta", modnames[i]] <- thetaests[i+length(thetahetnames)] <-
< modelthetas[i]
}
# Mantel-Haenszel estimate of log risk-ratio
if (MH == TRUE) {
if (all(ec == 0) | all(et == 0)) {
CImat["theta", "MH"] <- thetaMH <- NA
} else {
CImat["theta", "MH"] <- thetaMH <- log((sum((et*nc)/(nc+nt)))/(sum
< ((ec*nt)/(nc+nt))))
}
}
if (MHc == TRUE) {
if (all(ec == 0) | all(et == 0)) {
ec <- ec + ¢
et <- et + ¢

nc <- nc + ¢
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nt <- nt + ¢
}
CImat["theta", "MHc"] <- thetaMHc <- log((sum((et*nc)/(nc+nt)))/(sum
— ((ec*nt)/(nc+nt))))
}
# Z-type CI
if ("Z" Y%in), CIests) {
for (i in 1:length(hetnames)) {
CImat["Z_1b", hetnames[i]] <- thetaests[i]-qnorm(1-(signif/2))=*
— sqrt(1/sum(1/(hetests[i]l+(sei”2))))
CImat["Z_ub", hetnames[i]] <- thetaests[i]+qnorm(1-(signif/2))=*
— sqrt(1/sum(1/(hetests[i]l+(sei”2))))
}
if (MH == TRUE) {
CImat["Z_1b", "MH"] <- thetaMH-gnorm(1-(signif/2))*sqrt(1/sum(1/(
— sei”2)))
CImat["Z_ub", "MH"] <- thetaMH+qnorm(1-(signif/2))*sqrt(1/sum(1/(
— sei”2)))
}
if (MHc == TRUE) {
CImat["Z_1b", "MHc"] <- thetaMHc-qnorm(1-(signif/2))*sqrt(1/sum(1/
— (sei”2)))
CImat["Z_ub", "MHc"] <- thetaMHc+qnorm(1-(signif/2))*sqrt(1/sum(1/
— (sei”2)))
}
}
# t-type CI
if ("T" %in), CIests) {
for (i in 1:length(hetnames)) {

CImat["T_1b", hetnames[i]] <- thetaests[i]l-qt(1-(signif/2), df = k
— -1)*sqrt(1/sum(1/(hetests[i]l+(sei"2))))
CImat["T_ub", hetnames[i]] <- thetaests[i]l+qt(1-(signif/2), df = k

— -1)*sqrt(1/sum(1/(hetests[i]l+(sei"2))))
}
if (MH == TRUE) {
CImat["T_1b", "MH"] <- thetaMH-qt(1-(signif/2), df
— sum(1/(sei~2)))
CImat["T_ub", "MH"] <- thetaMH+qt(l-(signif/2), df
— sum(1/(sei"2)))
}
if (MHc == TRUE) {

k-1)*sqrt(1/

k-1)*sqrt(1/
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CImat["T_1b", "MHc"] <- thetaMHc-qt(1-(signif/2), df
— /sum(1/(sei"2)))
CImat["T_ub", "MHc"] <- thetaMHc+qt(1-(signif/2), df
— /sum(1/(sei"2)))
}
}
# Hartung-Knapp-Sidik-Jonkman CI
if ("HKSJ" %inJ CIests) {
for (i in 1:length(hetnames)) {
varHK <- sum((1/(hetests[i]+(sei"2)))*((xi-thetaests[i])~2))/((k
— -1)*sum(1/(hetests[i]+(sei”2))))
CImat ["HKSJ_1b", hetnames[i]] <- thetaests[i]-qt(1-(signif/2), df
— = k-1)*sqrt (varHK)
CImat ["HKSJ_ub", hetnames[i]] <- thetaests[i]l+qt(1-(signif/2), df
— = k-1)*sqrt (varHK)
}
if (MH == TRUE) {
varHK <- sum((1/(sei”2))*((xi-thetaMH)~2))/((k-1)*sum(1/(sei"2)))
CImat["HKSJ_1b", "MH"] <- thetaMH-qt(1-(signif/2), df = k-1)*sqrt(
— varHK)
CImat["HKSJ_ub", "MH"] <- thetaMH+qt(1-(signif/2), df = k-1)*sqrt(
— varHK)
}
if (MHc == TRUE) {
varHK <- sum((1/(sei~2))*((xi-thetaMHc) "2))/((k-1)*sum(1/(sei"2)))
CImat["HKSJ_1b", "MHc"] <- thetaMHc-qt(1-(signif/2), df = k-1)*
— sqrt (varHK)
CImat["HKSJ_ub", "MHc"] <- thetaMHc+qt(1-(signif/2), df = k-1)*
— sqrt (varHK)
}
}
# Modified Knapp-Hartung CI
if ("mKH" %in% CIests) {
for (i in 1:length(hetnames)) {
q <- sum((1/(hetests[i]+(sei~2)))*((xi-thetaests[i])"2))/(k-1)
maxq <- max(1l, g, na.rm = TRUE)
varHK <- maxq/(sum(1/(hetests[il+(sei”2))))
CImat["mKH_1b", hetnames[i]] <- thetaests[i]-qt(1-(signif/2), df
—  k-1)*sqrt (varHK)
CImat["mKH_ub", hetnames[i]] <- thetaests[i]+qt(1-(signif/2), df
— k-1)*sqrt (varHK)

k-1)*sqrt (1

k-1)*sqrt (1
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}

if (MH == TRUE) {
q <- sum((1/(sei~2))*((xi-thetaMH) "2))/(k-1)
maxq <- max(l, q, na.rm = TRUE)
varHK <- maxq/(sum(1/(sei”2)))

CImat["mKH_1b", "MH"] <- thetaMH-qt(1-(signif/2), df = k-1)*sqrt(
— varHK)

CImat["mKH_ub", "MH"] <- thetaMH+qt(1-(signif/2), df = k-1)*sqrt(
— varHK)
}
if (MHc == TRUE) {

q <- sum((1/(sei~2))*((xi-thetaMHc)"~2))/(k-1)

maxq <- max(1l, g, na.rm = TRUE)

varHK <- maxq/(sum(1/(sei”2)))

CImat["mKH_1b", "MHc"] <- thetaMHc-qt(1-(signif/2), df = k-1)*sqrt
— (varHK)

CImat ["mKH_ub", "MHc"] <- thetaMHc+qt(1-(signif/2), df = k-1)*sqrt
— (varHK)
}

}

# Round off the CI estimates to spectified number of decimal places by
— signifCI argument

CImat <- round(CImat, digits = signifCI)

if (output == TRUE) print(CImat)

## Output that can be used after function has been run

# Create an output frame that can be used when iterating through this
— function multiple times.

# The above dataframe is better when only calculating estimates for
— one meta-analysis

return(CImat)

## Run the confidence interval estimators function ##
# (in loop for each simulated meta-analysis)
ciresults <- data.frame()
for (x in 1l:results$metalnrow(results)]) {
newresults <- results[which(results$meta == x), ]
hetests <- hetdata[which(results$meta == x), ]
logRR <- newresults$logRR
selogRR <- newresults$selogRR

ec <- newresults$ec
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et <- newresults$et

nc <- newresults$nc

nt <- newresults$nt

newmodelthetas <- modelthetas[which(results$meta == x), ]

CIresults <- CIest(xi = logRR, sei = selogRR, ec = ec, et = et, nc =
— nc, nt = nt, hetests = hetests, modelthetas = newmodelthetas,
< Clests = c("Z", "T", "HKSJ", "mKH"), hetnames = hetnames, signif =
— 0.05, signifCI = 4, MH = TRUE, MHc = TRUE, c = 0.5, output =
< FALSE)

CIresults <- data.frame(CIresults)

CIresults$estimate <- row.names(CIresults)

row.names (CIresults) <- l:nrow(CIresults)

keydata <- newresults["meta"]

keydata <- keydatall, ]

keydata <- cbind(keydata, CIresults)

colnames (keydata) [1] <- "meta"

ciresults <- rbind(ciresults, keydata)

}

scenario <- names(mydata) %in% c("scenario", "meta", "tau2", "taup2", "
> alpha", "SampleSizel", "k", "simulation", "theta", "varalpha", "
— eventdist", "sampdist", "contcorr")

scenario <- mydatal[scenario]

ciresults <- merge(unique(scenario), ciresults, by = "meta")

# Save CI estimates data frame to a file

write.table(ciresults, file = paste("CIresults_", iscen, sep = ""))
HARHH AR AR AR AR BB R RRRRRRRRARAAAARAA A AR
# R code for calculating performance measures #

HHARRHBRH AR RARRA RN R R R R AR AR AR AR R AR R AR AR AR

# Combine these 3 data frames together by the meta-analysts ID wvariable

results <- merge(estresults, condresults, by = "meta")

results <- merge(results, modresults, by = "meta")

results <- merge(results, mixresults, by = "meta")

resnames <- names(results) %in}% c("PMRM_logRR", "CLMRM_logRR", "MM_logRR
— ")

results <- results[!resnames]
results$MH <- results$MHc <- NA

results$estimate <- "tau2"
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results <- rbind(results, ciresults)

# Create vector/list of heterogeneity variance estimating methods

hetnames <- colnames(results) [colnames(results) %in% c("HO", "DL", "PM",
< "IPM", "HO2", "DL2", "DLp", "DLb", "HM", "HS", "SJ", "SJ2", "ML",
< "REML", "AREML", "AB", "RB", "RBO", "BM", "PMRM", "CLMRM", "CO1",
< "CD2", "CO3", "C04", "MM")]

thetanames <- colnames(results) [colnames(results) %in% c(hetnames, "MH",
< "MHc")]

## List of arguments and their meanings ##

H*

hetdata - data frame containing the results of the tau2

# estimators for each meta-analysis (including GLMMs)

# thetadata - data frame containing the values of theta (logRR)

# calculated using each of the tau2 estimates for each meta-analysis

# cidata - data frame containing the values of the CIs for each

# meta—-analysis (split into lower and upper bounds)

# sedata - data frame containing the standard error of the logRR

# for each study

# hetnames — vector of the names of the tau2 estimators applied
# (including GLMMs)

# thetanames - vector of the names of the theta estimators applied
# (hetnames plus MH, if MH was included)

# cinames - vector of the names of the CIs applied (split into

# lower and upper bounds)

# measure - wvector of performance measures that you would like to be
# calculated for each of the tau2 and CI estimates. The default is

# NULL, which means all performance measures are calculated.

# logRR - TRUE <f the conditional-based estimates were transformed (via
— an

# approzimation) to the wariance of the logRR, FALSE if the conditional-
— based
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# estimates were left as the wvariance of the RR.

# signifmes - number of significant figures to round performance

# measure results

# output - TRUE 2f output 2s to be displayed, FALSE otherwise

## Function for calculating performance measures for the tau2 estimators
—  ##

perform <- function(hetdata = hetdata, thetadata = thetadata, cidata =
<~ cidata, sedata = sedata, hetnames = hetnames, thetanames =
<> thetanames, measure = NULL, logRR = TRUE, signifmes = 6, output =
— TRUE) {

if (is.null(measure)) measure <- c("bias", "medbias", "mse", "medmse",
— '"propzero", "biastheta", "msetheta", "coverage", "power", "
<% meanerror", "varerror")

ciests <- NULL
fOI' (1 in C("Z", "T", "HKSJ", anHu)) {

if (paste(i, "_1b", sep = "") %in), cidata$estimate) {
ciests <- c(ciests, i)
}
}
for (i in c("coverage", "power", "meanerror", "varerror")) {

if (i %in% measure) {
measure <- measurel[!measure %in’ i]

for (j in ciests) {

measure <- c(measure, paste(i, "_", j, sep = ""))
}
}
}
if ("MH" %in’% thetanames & "MHc" %in% thetanames) {
permat <- matrix(NA, nrow = length(measure), ncol = length(hetnames)
— +2)
colnames(permat) <- c(hetnames, "MH", "MHc")
} else if ("MH" %in’% thetanames) {
permat <- matrix(NA, nrow = length(measure), ncol = length(hetnames)

— +1)
colnames(permat) <- c(hetnames, "MH")

} else if ("MHc" %inJ, thetanames) {
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permat <- matrix(NA, nrow = length(measure), ncol = length(hetnames)
— +1)
colnames (permat) <- c(hetnames, "MHc")
} else {
permat <- matrix(NA, nrow = length(measure), ncol = length(hetnames)
— )
colnames(permat) <- c(hetnames)
}
rownames (permat) <- measure
tau2 <- sedata$tau2[1]
taup2 <- sedata$taup2[1]
theta <- sedata$thetal[1]
sei <- sedata$selogRR
k <- sedata$k[1]
# Bias
if ("bias" %in), measure) {
for (i in 1:length(hetnames)) {
if (logRR == FALSE & (hetnames[i] == "CO1" | hetnames[i] == "CO2"
< | hetnames[i] == "C03" | hetnames[i] == "C04")) {
permat["bias", hetnames[i]] <- mean(hetdatal ,i], na.rm = TRUE)
— - taup2
} else {
permat ["bias", hetnames[i]] <- mean(hetdatal ,i], na.rm = TRUE)
— - tau2
}
}
}
# Median bias
if ("medbias" %in% measure) {
for (i in 1:length(hetnames)) {
if (logRR == FALSE & (hetnames[i] == "CO1" | hetnames[i] == "CO2"

< | hetnames[i] == "C03" | hetnames[i] == "C04")) {
permat ["medbias", hetnames[i]] <- median(hetdatal ,i], na.rm
— TRUE) - taup2
} else {
permat ["medbias", hetnames[i]] <- median(hetdatal ,i], na.rm
— TRUE) - tau2
}

}

# Mean squared error
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if ("mse" %in’, measure) {
for (i in 1:length(hetnames)) {
if (logRR == FALSE & (hetnames[i] == "CO01" | hetnames[i] == "CO2"
< | hetnames[i] == "C03" | hetnames[i] == "C04")) {
permat ["mse", hetnames[i]] <- mean((hetdatal[ ,i]-taup2)”2, na.rm
— = TRUE)
} else {
permat ["mse", hetnames[i]] <- mean((hetdatal ,i]-tau2)”2, na.rm
< = TRUE)
}

}
# Median mean squared error
if ("medmse" %in% measure) {
for (i in 1:length(hetnames)) {
if (logRR == FALSE & (hetnames[i] == "CO1" | hetnames[i] == "CO2"
<+ | hetnames[i] == "C03" | hetnames[i] == "C04")) {
permat ["medmse", hetnames[i]] <- median((hetdatal ,i]-taup2)"2,
<+ na.rm = TRUE)
} else {
permat ["medmse", hetnames[i]] <- median((hetdatal ,i]-tau2)"2,
< na.rm = TRUE)
}

}
# Proportion of zero estimates
if ("propzero" %inj, measure) {
for (i in 1:length(hetnames)) {
if (all(is.na(hetdatal ,i]))) {

permat ["propzero", hetnames[i]] <- NA

} else {
permat ["propzero", hetnames[i]] <- sum(hetdatal ,i] == 0 & !is.
— na(Chetdatal ,i]))/(nrow(hetdata) - sum(is.na(hetdatal ,i])))
}

}
# Bias of theta
if ("biastheta" %in}% measure) {
for (i in 1:length(thetanames)) {
permat["biastheta", thetanames[i]] <- mean(thetadatal ,il], na.rm =
— TRUE) - theta
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}
# Mean squared error of theta
if ("msetheta" %in’, measure) {
for (i in 1:length(thetanames)) {
permat ["msetheta", thetanames[i]] <- mean((thetadatal ,i] - theta)
<% "2, na.rm = TRUE)
}
}
# Coverage
if (any(grepl("coverage", measure))) {
for (z in ciests) {
1b <- cidatalcidata$estimate == paste(z, "_1b", sep = ""), 1]
ub <- cidatalcidata$estimate == paste(z, "_ub", sep = ""), ]
for (i in 1:length(thetanames)) {
if (all(is.na(1b[ ,i])) | all(is.naubl[ ,i]1))) {

permat [paste("coverage_", z, sep = ""), thetanames[i]] <- NA
} else {
permat [paste("coverage_", z, sep = ""), thetanames[i]] <- (sum

— ('is.na(1b[ ,i]) & !'is.na(ub[ ,i]) & 1b[ ,i] <= theta & ub[ ,i] >=
< theta)/nrow(1b))*100
}

}

# Power

if (any(grepl("power", measure))) {

for (z in ciests) {
1b <- cidatal[cidata$estimate == paste(z, "_1b", sep = ""), ]
ub <- cidatal[cidata$estimate == paste(z, "_ub", sep = ""), ]
for (i in 1:length(thetanames)) {
if (all(is.na(lb[ ,i])) | all(is.na(ub[ ,i]))) {
""), thetanames[i]] <- NA

permat [paste("power_", z, sep
} else {
permat [paste("power_", z, sep = ""), thetanames[i]] <- (sum(!
< is.na(1b[ ,i]) & !is.na(ub[ ,i]) & ((ub[ ,il-1b[ ,i]1)/2) < 2)/nrow
— (1b))*100
}
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# Mean error
if (any(grepl("meanerror", measure))) {
for (z in ciests) {
1b <- cidatal[cidata$estimate == paste(z, "_1b", sep = ""), ]
ub <- cidatal[cidata$estimate == paste(z, "_ub", sep = ""), ]
error <- matrix(NA, nrow = nrow(lb), ncol = length(thetanames))
for (i in 1:length(thetanames)) {
if (all(is.na(1b[ ,i]1)) | all(is.na(ubl[ ,i1))) {
permat [paste("meanerror_", z, sep = ""), thetanames[i]] <- NA
} else {
for (j in 1:nrow(lb)) {
seii <- seil[(((j-1)*k)+1):(j*k)]
error[j,i] <- (ub[j,i] - 1b[j,1i])/(3.92*sqrt(1/sum(1/(tau2+
— seii))))
}
permat [paste("meanerror_", z, sep = ""), thetanames[i]] <-

< mean(error[ ,i], na.rm = TRUE)

}

}
# Variance error
if (any(grepl("varerror", measure))) {
for (z in ciests) {
1b <- cidata[cidata$estimate == paste(z, "_1b", sep = ""), 1]
ub <- cidatal[cidata$estimate == paste(z, "_ub", sep = ""), ]
error <- matrix(NA, nrow = nrow(lb), ncol = length(thetanames))
for (i in 1:length(thetanames)) {
if (all(is.na(1b[l ,i1)) | all(is.naCubl[ ,i1))) {
permat [paste("varerror_", z, sep = ""), thetanames[i]] <- NA
} else {
for (j in 1l:nrow(1lb)) {
seii <- seil[(((j-1)*k)+1):(j*k)]
error[j,i] <= (ubl[j,i] - 1b[j,1i])/(3.92*sqrt(1/sum(1/(tau2+
— seii))))
}
permat [paste("varerror_", z, sep = ""), thetanames[i]] <- wvar(
< error[ ,i], na.rm = TRUE)

}
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X

# Round off the performance measures to specified number of decimal
<~ places by signifmes argqument

permat <- round(permat, digits = signifmes)

if (output == TRUE) print(permat)

## Output that can be used after function has been run

# Create an output frame that can be used when iterating through this
— function multipe times.

# The above dataframe is better when only calculating estimates for
— one meta-analysis

return(permat)

# We can refer to the estimates outside of this function by <funct

— name>$<est mname>

## Apply the performance measures function ##
# (in loop for each scemario)
permes <- data.frame()
for (x in results$scenario[1]:results$scenario[nrow(results)]) {
newresults <- results[which(results$scenario == x), ]
hetdata <- newresults[newresults$estimate == "tau2", ]
hetdata <- hetdatal[hetnames]
thetadata <- newresults[newresults$estimate == "theta", ]
thetadata <- thetadatal[c(hetnames, "MH", "MHc")]
cidata <- newresults[!newresults$estimate %in% c("tau2","theta"), 1]
cidata <- cidatal[c(hetnames, "MH", "MHc", "estimate")]
sedata <- mydatal[which(mydata$scenario == x), ]
perms <- perform(hetdata = hetdata, thetadata = thetadata, cidata =

— cidata, sedata = sedata, hetnames = hetnames, thetanames =

<+ thetanames, measure = c("bias", "medbias", "mse", "medmse", "
— propzero", "biastheta", "msetheta", "coverage", "power", "

<~ meanerror", "varerror"), logRR = TRUE, signifmes = 6, output =
— FALSE)

perms <- data.frame(perms)
perms$measure <- row.names (perms)
row.names (perms) <- 1:nrow(perms)
keydata <- newresults["scenario"]
keydata <- keydatal[l, ]

keydata <- cbind(keydata, perms)
colnames(keydata) [1] <- "scenario"

if (x >= results$scenario[1] + 1) {
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names (keydata) <- names(permes) # to ensure the names of the
— dataframes are the same
}

permes <- rbind(permes, keydata)

# Save performance measures data frame to a file

write.table(permes, file = paste("permes_results_", iscen, sep = ""))

# Graphs will be divided by a number of characteristic parameters
# including the level of heterogeneity (I°2) given the true tau~2.
# Calculate I"2 for each simulated meta-analysis
I2 <- I2p <- NULL
for (i in 1:mydata$meta[nrow(mydata)]) {
newdata <- mydatal[which(mydata$meta == i), ]
k <- newdata$k[1]
sei <- newdata$selogRR
vari <- sei”2
tau2 <- newdata$tau2[1]
taup2 <- newdata$taup2[1]
sigma2 <- ((k-1)*sum(1/vari))/(((sum(1/vari)) ~2)-(sum((1/vari)~2)))
I2[i] <- (tau2/(tau2+sigma2))*100
I2p[i] <- (taup2/(taup2+sigma2))*100

# Calculate the mean I°2 wvalue for each scenario
scenario <- seq(1l, length(I2), by = max(mydata$simulation))
j <=0
I2mean <- I2pmean <- NULL
for (i in scenario) {
newI2 <- I2[i:(i+(max(mydata$simulation)-1))]
newI2p <- I2pli:(i+(max(mydata$simulation)-1))]
j<—j+1
I2mean[j] <- mean(newI2, na.rm = TRUE)
I2pmean[j] <- mean(newI2p, na.rm = TRUE)
}
# Round the mean I°2 to a whole number to make classification easier
I2mean <- round(I2mean, digits = 0)

I2pmean <- round(I2pmean, digits = 0)

# Remove unnecessary variables that wary within scenarios
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myvars <- names(mydata) %in% c("meta", "SampleSize", "simulation", "
H Studyll llpO" llpln ||et n "eC" "ntll "IlC" lletcorll "eCCOI‘" n
< ntcor", "nccor", "logRR", "selogRR")

cutdata <- mydatal[!myvars]

# Produce new data frame with one row for each scenario

results <- data.frame()

for (i in cutdata$scenario[1]:cutdata$scenario[nrow(cutdata)]) {
newdata <- cutdata[which(cutdata$scenario == i), ]
newdata <- newdatal[l, ]

results <- rbind(results, newdata)

# Combine this data frame of scemario parameter characteristics
# with the performance measures data frame

results <- merge(results, permes, by = "scenario")

# Add mean I"2 to results data frame
results$I2 <- I2mean

results$I2p <- I2pmean

# Save results

write.table(results, file = paste("results_", iscen, sep = ""))
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D.2 Definition of performance measures

TABLE D.1: Equations for performance measures used in simulation study; 72 =
(72,...,7%), 0 = (él,...,éN), N is the number of simulations, and Clpperg and
Cliower,0 are the upper and lower bounds of the confidence interval for 6 respectively.
‘ Performance measure ‘ Equation/Definition

Mean absolute bias of 72 mean(#2) — 12

Median absolute bias of 72 median(#2) — 12

Mean squared error of 72 mean [(72 — 72)?]

Median squared error of 72 median [(#2 — 72)?]

Proportion of zero estimates of 7 Proportion of meta-analyses meeting

#2=0
Mean absolute bias of 6 mean(6) — 0
Median absolute bias of 6 median(0) — 0
Mean squared error of 0 mean {(GA — G)QJ
Median squared error of 6 median {(é — G)ﬂ

Percentage of meta-analyses meeting

Coverage
CIlowcr,G < 6 and CIupper,O >0
Percentage of meta-analyses meeting
Power CI _CI
upper,0 5 lower,0 < cwith ¢ =2
CIupper,G — CIlower,e
Error

3.92\/1/ S 1/ (2 + 02))
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Further simulation study results
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E.1 Bias of 7
E.1.1 Examples without omitting outlying estimators
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FIGURE E.1: Mean bias of heterogeneity variance estimates in very rare events scenario

with po < p1; sample sizes are small (A1-A3), small and large (B1-B3) and large (C1-

C3).
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E.1.2 Alternate values of heterogeneity variance
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FIGURE E.2: Mean bias of heterogeneity variance estimates in very rare events scenario

with pg < p1; sample sizes are small (A1-A3), small and large (B1-B3) and large (C1-
C3). RB, RB0 and CLMRM have been omitted from A1-A3; CO2, CO3, CO4 and MM

have been omitted from all.
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FIGURE E.3: Mean bias of heterogeneity variance estimates in rare events scenario with
po < p1; sample sizes are small (A1-A3), small and large (B1-B3) and large (C1-C3).
RB, RB0O and CLMRM have been omitted from A1-A3; CO2, CO3, CO4 and MM have
been omitted from A1-B3.
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E.1.3 Alternate study sample sizes
— oL — HO HS -- REML -- RB cot cos
-— blp -- PM sl - AREML RBO coz PMRM
---- Dlb HM o — ML — AB BM cos
-0 =04 2o
Al Mean I =0 % A2 Mean I =12 % A3 Mean I* = 25 %
(=} < |
o | o3
® ©
2
v
Lo <
5 o <
2 0 |
5 24 -
s o |
- @ |
o' | (=]
=1 o
o
St e
T T T T T g T T T T T T T T T
10 0 30 80 100 10 0 30 80 100 10 20 30 S0 100
-0 =04 £
B1 Mean - 0 % B2 Mean I - 13 % B3 Mean I* - 28 %
= 2 i
=
o e o
R
5 ¢ o
2 o
2
c @ | = -
L
@
= -
P .
2 |
o o
cd ! | —_—
< T T T T T T T T T T T T T T T
10 0 30 80 100 10 0 30 80 100 10 20 30 S0 100

MNumber of studies in meta-analysis (log scale)

Number of studies in meta-analysis (log scale)

Number of studies in meta-analysis (log scale)

FIGURE E.4: Mean bias of heterogeneity variance estimates in very rare events sce-
nario with py < p1; sample sizes are small-to-medium (A1-A3) and medium (B1-B3).
CLMRM and MM have been omitted from all.
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FicURE E.5: Mean bias of heterogeneity variance estimates in rare events scenario
with po < p1; sample sizes are small-to-medium (A1-A3) and medium (B1-B3). MM is
omitted from all.
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FIGURE E.6: Mean bias of heterogeneity variance estimates in very rare events scenario

with pyp < p1 and o2 = 3; sample sizes are small (A1-A3), small and large (B1-B3) and
large (C1-C3). RB, RB0 and CLMRM are omitted from A1-A3; MM is omitted from

all.
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FIGURE E.7: Mean bias of heterogeneity variance estimates in rare events scenario

with pop < p1 and o2 = 3; sample sizes are small (A1-A3), small and large (B1-B3) and
large (C1-C3). RB, RB0 and CLMRM are omitted from A1-A3; MM is omitted from

all.



Appendix E 313
E.1.5 Alternate probability scenarios
Alternate rare events scenarios
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FIGURE E.8: Mean bias of heterogeneity variance estimates in very rare events scenario
with pg > p1; sample sizes are small (A1-A3), small and large (B1-B3) and large (C1-
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C3). RB, RBO and CLMRM are omitted from A1-A3; MM is omitted from all.
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FIGURE E.9: Mean bias of heterogeneity variance estimates in rare events scenario with
Po > pi1; sample sizes are small (A1-A3), small and large (B1-B3) and large (C1-C3).
RB, RB0 and CLMRM are omitted from A1-A3; MM is omitted from all.
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FiGURE E.10: Mean bias of heterogeneity variance estimates in rare events scenario
with pg = p1; sample sizes are small (A1-A3), small and large (B1-B3) and large (C1-
C3). RB, RB0 and CLMRM are omitted from A1-A3; MM is omitted from all.
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FIGURE E.11: Mean bias of heterogeneity variance estimates in common probability

scenario with py < pi; sample sizes are small (A1-A3), small and large (B1-B3) and
large (C1-C3). RB and RBO are omitted from A1-A3; MM is omitted from A1-B3.
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FIGURE E.12: Mean bias of heterogeneity variance estimates in common probability

scenario with py > p;; sample sizes are small (A1-A3), small and large (B1-B3) and
large (C1-C3). RB and RBO are omitted from A1-A3; MM is omitted from A1-B3.
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E.1.6 Alternate sampling in simulation study

Alternate event count sampling

a2

Mean bias of ©
00 05 10 15 20 25 30 35

aZ

Meanbias of T
00 05 10 15 20 25 3.0 35

Mean bias of +*

0.10

0.30

0.20

0.00

— oL — HO HS -~ REML RB co1 co4
-—bp -- Y ---- AREML RBO coz  —— PMRM
- DLb — ML —— AB BM CO3 - CLMRM
“=0 204 N
Al Mean I2-0 % A2 Mean 2= 10 % A3 Mean 2= 22 %
1 = | w
o3 o
7 w | =
o~ o~
B = W
N B -
b w | =
| = 2
- (=}
© | g
i - |
[=]
@ | 24
T T T T T o T T T T [ T T T T
10 20 30 50 100 10 0 30 50 100 10 20 30 50 100
“=0 2204 e
B1 Mean 120 % B2 Mean 2= 23 % 83 Mean 12 =42 %
[=1
| o |
i
i o
w |
©
1 = |
i -
w
s
i .
=]
7 =1
_ ~ o o
O — S o ————— ] 88 5-0E
10 20 30 50 100 T 1o 0 30 50 100 10 20 30 50 100
<=0 2-04 21
e Mean 120 % c2 Mean 2= 33 % ca Mean I = 54 %
] @
2 .
< |
4 - -
] - |
[=1
o
=
- o
o o
e o mnmmmszsasiiiiiaan. - S
T T T T T T T T T T T T T T T
10 2o 30 50 100 10 0 30 50 100 10 20 30 50 100

Mumber of studies in meta-analysis (log scale)

Number of studies in meta-analysis (log scale)

Number of studies in meta-analysis (log scale)

Ficure E.13: Mean bias of heterogeneity variance estimates in very rare events sce-

nario with py < p; and poisson event sampling; sample sizes are small (A1-A3), small
and large (B1-B3) and large (C1-C3). RB, RB0 and CLMRM are omitted from A1-A3;
MM is omitted from all.
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FicUrRE E.14: Mean bias of heterogeneity variance estimates in rare events scenario

with py < p; and poisson event sampling; sample sizes are small (A1-A3), small and
large (B1-B3) and large (C1-C3). RB, RBO and CLMRM are omitted from A1-A3;
MM is omitted from A1-B3; CO2, CO3 and CO4 are omitted from all.
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Alternate sample size sampling
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Ficure E.15: Mean bias of heterogeneity variance estimates in very rare events sce-
nario with pg < p; and normal sample size sampling; sample sizes are small (A1-A3),
small and large (B1-B3) and large (C1-C3). RB, RB0O and CLMRM are omitted from
Al1-A3; MM, CO2, CO3 and CO4 are omitted from all.
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MM, CO2, CO3 and CO4 are omitted from all.

FiGUurRE E.16: Mean bias of heterogeneity variance estimates in rare events scenario
with pg < p; and normal sample size sampling; sample sizes are small (A1-A3), small
and large (B1-B3) and large (C1-C3). RB, RB0 and CLMRM are omitted from A1-A3;
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FiGUrE E.17: Mean bias of heterogeneity variance estimates in very rare events sce-

nario with py < p; and Chi-squared sample size sampling; sample sizes are small (Al-
A3), small and large (B1-B3) and large (C1-C3). RB, RBO and CLMRM are omitted
from A1-A3; MM, CO2, CO3 and CO4 are omitted from all.
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FiGure E.18: Mean bias of heterogeneity variance estimates in rare events scenario

with py < p; and Chi-squared sample size sampling; sample sizes are small (A1-A3),
small and large (B1-B3) and large (C1-C3). RB, RBO and CLMRM are omitted from
A1-A3; MM is omitted from A1-B3; CO2, CO3 and CO4 are omitted from all.
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FiGURE E.19: Mean bias of heterogeneity variance estimates in very rare events sce-

nario with py < p1; sample sizes are small (A1-A3), small and large (B1-B3) and large

(C1-C3).
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FiGURE E.20: Mean bias of heterogeneity variance estimates in rare events scenario

with pg < p1; sample sizes are small (A1-A3), small and large (B1-B3) and large (C1-

03).
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FIGURE E.21: Mean squared error of heterogeneity variance estimates in very rare

events scenario with py < pi; sample sizes are small (A1-A3), small and large (B1-B3)

and large (C1-C3).
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FiGURE E.22: Mean squared error of heterogeneity variance estimates in very rare

events scenario with py < p1; sample sizes are small (A1-A3), small and large (B1-B3)
and large (C1-C3). RB, RB0, PMRM and CLMRM were omitted from A1-A3; CO2,
CO3, CO4 and MM were omitted from all.
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Ficure E.23: Mean squared error of heterogeneity variance estimates in rare events

scenario with py < pi; sample sizes are small (A1-A3), small and large (B1-B3) and

large (C1-C3). RB, RB0O, PMRM and CLMRM were omitted from A1-A3; CO1 was
omitted for C1-C3; CO2, CO3, CO4 and MM were omitted from all.
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E.2.3 Alternate study sample sizes
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FIGURE E.24: Mean squared error of heterogeneity variance estimates in very rare
events scenario with py < p1; sample sizes are small-to-medium (A1-A3) and medium
(B1-B3). CO2, CO3, CO4, PMRM, CLMRM and MM were omitted from all.
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FiGURE E.25: Mean squared error of heterogeneity variance estimates in rare events
scenario with py < p1; sample sizes are small-to-medium (A1-A3) and medium (B1-B3).
CO2, CO3, CO4 and MM are omitted from all.
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E.2.4 Alternate values of o
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FIGURE E.26: Mean squared error of heterogeneity variance estimates in very rare

events scenario with py < p1; sample sizes are small (A1-A3), small and large (B1-B3)
and large (C1-C3). RB, RB0O, PMRM and CLMRM are omitted from Al-A3; COZ2,
CO3, CO4 and MM are omitted from all.
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FiGUure E.27: Mean squared error of heterogeneity variance estimates in rare events
scenario with py < pi; sample sizes are small (A1-A3), small and large (B1-B3) and
large (C1-C3). RB, RB0, PMRM and CLMRM are omitted from A1-A3; CO2, CO3,

CO4 and MM are omitted from all.
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E.2.5 Alternate probability scenarios
Alternate rare events scenarios
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FIGURE E.28: Mean squared error of heterogeneity variance estimates in very rare
events scenario with py > pi; sample sizes are small (A1-A3), small and large (B1-B3)
and large (C1-C3). RB, RB0, PMRM, CLMRM, CO2, CO3 and CO4 are omitted from

A1-A3; MM is omitted from all.
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FiGure E.29: Mean squared error of heterogeneity variance estimates in rare events

scenario with py > pi; sample sizes are small (A1-A3), small and large (B1-B3) and

large (C1-C3). RB, RB0O, PMRM and CLMRM are omitted from A1l-A3; CO2, CO3
and CO4 are omitted from A1-B3; MM is omitted from all.
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Ficure E.30: Mean squared error of heterogeneity variance estimates in rare events

scenario with py = pi; sample sizes are small (A1-A3), small and large (B1-B3) and

large (C1-C3). RB, RB0O, PMRM and CLMRM are omitted from A1l-A3; CO2, CO3
and CO4 are omitted from A1-B3; MM is omitted from all.
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FicUre E.31: Mean squared error of heterogeneity variance estimates in common

probability scenario with py < p;; sample sizes are small (A1-A3), small and large (B1-
B3) and large (C1-C3). RB, RB0 and CLMRM are omitted from A1-A3; CO2, CO3,
CO4 and MM are omitted from A1-B3.



Appendix E

337

a2

Mean squared error of T

aZ

Mean squared error of T

aZ

Mean squared error of T

MNumber of studies in meta-analysis (log scale)

MNumber of studies in meta-analysis (log scale)

— oL — HO Hs -— REML -- RB co1 cos MM
-~ Db -- PM sJ ---- AREML REO co2  —— PMRM
- DLb M — ML —— AB EM €Oz - CLMRM
“-0 “-04 ?a1
g M Mean =0 % A2 Mean I - 36 % A3 Mean I* - 62 %
s g |
o o
C\!_
(=]
.
&4 =
k=]
uw
- (=]
b =4
=
2]
S o |
g = o 4
(=]
g g 2
o L T T T o L T T T < L T T T
20 30 50 100 20 30 50 100 20 30 50 100
“-0 “-04 “a1
» B Mean I2=0 % 82 Mean I = 96 % 2 Mean I = 98 %
s =
& 4 w |
P S
= 7 = |
s - °
2
o = |
S
| I
o _
N e | <1
[=1
- 4
- o
= =
=1 =] =1
- : : : s : : : s : : :
20 30 50 100 20 30 50 100 20 30 50 100
2-0 P04 .
+ © Mean 2= 0 % c2 Mean I2 - 99 % c3 Mean I2 = 100 %
R © @« |
& 8 | s
b=
w uw
T s
& s | .
$_ o (j_
‘g g = |
o > | o
?— =1
2 o
o ° —Lnnanon
D__ —
. = - T ——
0-7 -‘.\\
8 e ~ - =] 2
& T T T = T T T T e L T T T
20 30 50 100 20 30 50 100 20 30 50 100

Number of studies in meta-analysis (log scale)

FiGUureE E.32: Mean squared error of heterogeneity variance estimates in common

probability scenario with pg > p;; sample sizes are small (A1-A3), small and large
(B1-B3) and large (C1-C3). RB, RB0 and CLMRM are omitted from A1-A3; MM is

omitted from A1-B3.
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E.2.6 Alternate sampling in simulation study
Alternate event count sampling
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FicUure E.33: Mean squared error of heterogeneity variance estimates in very rare

events scenario with py < p1; sample sizes are small (A1-A3), small and large (B1-B3)
and large (C1-C3). RB, RBO, PMRM and CLMRM are omitted from A1-A3; MM,

CO2, CO3 and CO4 are omitted from all.
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FiGure E.34: Mean squared error of heterogeneity variance estimates in rare events

scenario with py < pi; sample sizes are small (A1-A3), small and large (B1-B3) and
large (C1-C3). RB, RB0, PMRM and CLMRM are omitted from A1-A3; MM is omitted
from A1-B3; CO1 is omitted form C1-C3; CO2, CO3 and CO4 are omitted from all.
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Alternate sample size sampling
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FicUrReE E.35: Mean squared error of heterogeneity variance estimates in very rare

events scenario with py < pi; sample sizes are small (A1-A3), small and large (B1-B3)

and large (C1-C3). RB, RB0 and PMRM are omitted from A1-A3; CLMRM is omitted
from A1-B3; MM, CO2, CO3 and CO4 are omitted from all.
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FiGure E.36: Mean squared error of heterogeneity variance estimates in rare events

scenario with pg < py; sample sizes are small (A1-A3), small and large (B1-B3) and large
(C1-C3). RB, RB0O, PMRM and CLMRM are omitted from A1-A3; CO1 is omitted
from C1-C3; MM, CO2, CO3 and CO4 are omitted from all.
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FiGure E.37: Mean squared error of heterogeneity variance estimates in very rare
events scenario with py < p1; sample sizes are small (A1-A3), small and large (B1-B3)
and large (C1-C3). RB, RB0, PMRM and CLMRM are omitted from A1-A3; MM,

CO2, CO3 and CO4 are omitted from all.
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Ficure E.38: Mean squared error of heterogeneity variance estimates in rare events
scenario with py < pi; sample sizes are small (A1-A3), small and large (B1-B3) and
large (C1-C3). RB, RB0, PMRM and CLMRM are omitted from A1-A3; MM is omitted
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E.2.7 Alternate continuity corrections
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FIGURE E.39: Mean squared error of heterogeneity variance estimates in very rare

events scenario with py < p1; sample sizes are small (A1-A3), small and large (B1-B3)
and large (C1-C3).
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FiGURE E.40: Mean squared error of heterogeneity variance estimates in rare events
scenario with py < p;; sample sizes are small (A1-A3), small and large (B1-B3) and

large (C1-C3).
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E.3

Proportion of zero 72 estimates

E.3.1 Alternate values of heterogeneity variance
— DL — HO HS == REML -~ RB ool co4 (IR
== DLp == PM sS4 ---- AREML RBO coz —— PMRM
---- DLb HM — ML — AB BM cOo3 ——  CLMRM
=02 =06 ¥ =08
Al Mean -5 % Az Mean I - 14 % A3 Mean I - 18 %
b= (=1 b=
(= L= L=T
g g g
g 8- 8- 2
£
<+
2
8 8 8
5
g e 2 2
g
g
€ 8- & &
L= T ittt L — T —
5 10 20 30 50 100 5 10 20 30 50 100 5 10 20 30 50 100
=02 =06 ¥ =08

a2

Percentage of zero T~ (%)

Percentage of zero §° (%)

L= =1 L=
5 10 20 30 50 100 5 10 20 30 S0 100 5 10 20 30 50 100
2-02 2208 2-08
¢z Mean [2 = 42 % cs Mean |2 =49 %
g 8
[= (=T
= =
(=0
-
(=T
2
o

5

T
10

T T T T
20 30 50 100

MNumber of studies in meta-analysis (log scale)

5

T T T
10 20 30 50

T
100

MNumber of studies in meta-analysis (log scale)

T
5 10

Number of studies in meta-analysis (log scale)

T T T
20 30 50 100

FIGURE E.41: Proportion of zero heterogeneity variance estimates in very rare events

scenario with py < pi; sample sizes are small (A1-A3), small and large (B1-B3) and

large (C1-C3).
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FIGURE E.42: Proportion of zero heterogeneity variance estimates in rare events sce-

nario with py < p1; sample sizes are small (A1-A3), small and large (B1-B3) and large

(C1-C3).
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E.3.2 Alternate study sample sizes
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FIGURE E.43: Proportion of zero heterogeneity variance estimates in very rare events

scenario with pg < pi; sample sizes are small (A1-A3), small and large (B1-B3) and

large (C1-C3).
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FIGURE E.44: Proportion of zero heterogeneity variance estimates in rare events sce-
nario with py < pi; sample sizes are small (A1-A3), small and large (B1-B3) and large
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E.3.3 Alternate values of o2
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F1GURE E.45: Proportion of zero heterogeneity variance estimates in very rare events
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FIGURE E.46: Proportion of zero heterogeneity variance estimates in rare events sce-

nario with py < p1; sample sizes are small (A1-A3), small and large (B1-B3) and large

(C1-C3).
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E.3.4 Alternate probability scenarios

Alternate rare events scenarios
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FIGURE E.47: Proportion of zero heterogeneity variance estimates in very rare events
scenario with pg > pi; sample sizes are small (A1-A3), small and large (B1-B3) and
large (C1-C3).
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FIGURE E.48: Proportion of zero heterogeneity variance estimates in rare events sce-

nario with py > p1; sample sizes are small (A1-A3), small and large (B1-B3) and large

(C1-C3).
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FIGURE E.49: Proportion of zero heterogeneity variance estimates in rare events sce-
nario with py = p1; sample sizes are small (A1-A3), small and large (B1-B3) and large
(C1-C3).
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Common probability scenarios
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FicUure E.50: Proportion of zero heterogeneity variance estimates in common proba-
bility scenario with pg < p1; sample sizes are small (A1-A3), small and large (B1-B3)

and large (C1-C3).
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FiGURE E.51: Proportion of zero heterogeneity variance estimates in common proba-

bility scenario with pg > p;; sample sizes are small (A1-A3), small and large (B1-B3)

and large (C1-C3).
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E.3.5 Alternate sampling in simulation study

Alternate event count sampling
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Ficure E.52: Proportion of zero heterogeneity variance estimates in very rare events
scenario with py < pi; sample sizes are small (A1-A3), small and large (B1-B3) and
large (C1-C3).
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FIGURE E.53: Proportion of zero heterogeneity variance estimates in rare events sce-

nario with py < p1; sample sizes are small (A1-A3), small and large (B1-B3) and large

(C1-C3).
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Alternate sample size sampling
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F1cURE E.54: Proportion of zero heterogeneity variance estimates in very rare events

scenario with py < pi; sample sizes are small (A1-A3), small and large (B1-B3) and

large (C1-C3).
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FIGURE E.55: Proportion of zero heterogeneity variance estimates in rare events sce-

nario with py < p1; sample sizes are small (A1-A3), small and large (B1-B3) and large

(C1-C3).
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large (C1-C3).



362 Appendix E
— oL — HO HS -— REML -- RB coa MM
-~ Dbp -- PM sJ ---- AREML REO —— PMRM
- DLb M — ML —— AB EM ~— CLMRM
“-0 “-04 ?a1
Al Mean I =0 % A2 Mean I* = 12 % A3 Mean I* = 26 %
= = L=
B = S == S o ===~
z 8 2 2
k-
e
g 8 8 | 2 |
i
(=3
239 2 2 -
[=4
g
& 8- & A & A
od TTEE———— - °
5 10 20 30 50 100 5 10 2 30 50 100 5 10 20 30 50 100
“-0 “-04 “a1
81 Mean I2=0 % 82 Mean 2= 70 % 83 Mean I = 85 %
g — g 1
£ 81 g
%
e
§ 8 8-
o
(=3
@
oo | (=0
&g -
[=4
g
8 2
o
5 10 20 30 S0 100 5 10 20 30 S0 100 5 10 20 30 S0 100
2-0 P04 .
. Mean 2 =0 % . Mean I = 84 % . Mean I2 =93 %
8 - -
= 2
- | &
e T S
= e L i &
§ 8 e
5 \ w |
s | ©
s’ = 4
£ ¥ o
8 1 2
i R o |
od — - | B
T T T T T T T T T T T T T T T T T T
5 10 20 30 S0 100 5 10 20 30 S0 100 5 10 20 30 50 100

MNumber of studies in meta-analysis (log scale)

MNumber of studies in meta-analysis (log scale)

Number of studies in meta-analysis (log scale)

FIGURE E.57: Proportion of zero heterogeneity variance estimates in rare events sce-

nario with py < p1; sample sizes are small (A1-A3), small and large (B1-B3) and large

(C1-C3).
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FiGURE E.58: Proportion of zero heterogeneity variance estimates in very rare events
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FIGURE E.59: Proportion of zero heterogeneity variance estimates in rare events sce-
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FIGURE E.62: Median bias of heterogeneity variance estimates in common probability
scenario with py < p;; sample sizes are small (A1-A3), small and large (B1-B3) and
large (C1-C3). RB and RBO are omitted from A1-A3.
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FiGUure E.63: Median squared error of heterogeneity variance estimates in very rare

events scenario with py < p1; sample sizes are small (A1-A3), small and large (B1-B3)

and large (C1-C3). RB, RB0, BM and CLMRM are omitted from A1-A3; CO2, CO3
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FiGURE E.64: Median squared error of heterogeneity variance estimates in rare events

scenario with py < pi; sample sizes are small (A1-A3), small and large (B1-B3) and

large (C1-C3). RB, RB0O, BM and CLMRM are omitted from A1-A3; MM is omitted
from A3; CO2, CO3 and CO4 are omitted from all.



370 Appendix E

— DL —— HO HS == REML -~ RB col co4 (RIE]
== DLp == PM sJ ---- AREML RBO coz2 —— PMRM
---- DLb HM — ML — AB BM co3 - = CLMRM
“-0 =04 -1
A Mean I° =0 % A2 Mean 12 = 30 % A3 Mean |* =49 %
k=1
2 | R - e =
< =3
ke - =
IE o
8 Z | =]
T o P <
i
g ] <
2
g a4 8
5 © o
g o
= i (=]
g L - - g o
o Ly T T T T T o by T T T T T < b T T T T T
10 20 30 50 100 5 10 20 30 50 100 5 10 20 30 50 100
“-0 =04 -1
B1 Mean I2- 0% 82 Mean 2= 96 % 83 Mean 12 - 98 %
o 3
= -
=B s
o (=]
<+
i
]
g 81 e
5 o =
z o
= o™
3
=
§ S
i3] °
= <
2 =]
ool oo — =] 2
S Y/ S/
5 10 20 30 50 100 5 10 20 30 50 100 5 10 20 30 50 100
“=0 “=04 “=1
+ C1 Mean 2= 0 % c2 Mean I2 - 98 % c3 Mean I2= 89 %
L
M 2
27 =
% 2 ° <
5 &8 1% o —
g \ =
s < 2 Y s \
T n 4 o~ —
§ E i . \\ ........ ) B -
5 =
'g [=] e ——— -
s | S
gL 1 s =
g T T T T T T = T T T T T T < T T T T T T
5 10 20 30 50 100 5 10 20 30 50 100 5 10 20 30 50 100
MNumber of studies in meta-analysis (log scale) MNumber of studies in meta-analysis (log scale) Number of studies in meta-analysis (log scale)

FiGURE E.65: Median squared error of heterogeneity variance estimates in common
probability scenario with pg < p;; sample sizes are small (A1-A3), small and large
(B1-B3) and large (C1-C3). RB and RBO are omitted from A1-A3.
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E.6 Performance of conditional-based methods in estimat-
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FiGURE E.66: Mean bias of Tg estimates in very rare events scenario with pg < p1;
sample sizes are small (A1-A3), small and large (B1-B3) and large (C1-C3).
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FIGURE E.68: Mean bias of Tp2 estimates in rare events scenario with py < pi; sample

Number of studies in meta-analysis (log scale)

MNumber of studies in meta-analysis (log scale)

sizes are small (A1-A3), small and large (B1-B3) and large (C1-C3).



374 Appendix E
coz cos cos
?=0 .04 e
2 Al Mean I* =0 % A2 Mean I = 12 % A3 Mean I° = 26 %
[=1 g i 3
3 ° °
S | 3 |
.::a 8 o o
e © =l S
g P
c o |
= = o
= = S
=Y
=N g
o
o
8 - S
= = =]
. . — . 25 . — . , . . — . .
5 10 20 30 S0 5 10 20 30 S0 100 5 10 20 30 50 100
“-0 #-04 21
. B1 Mean I =0 % B2 Mean 2= 71 % B3 Mean I? = 86 %
8 | (] (]
3 8 =
(=] L=
| 3
w8 g S
T o = -
' 5
- -
g =N 8
S 3
(=]
E g b=
. b= S
8- T T T T T T T T T T T T T T T T T
(=]
5 10 20 30 S0 5 10 20 30 S0 100 5 10 20 30 S0 100
“=0 #=04 .
¢ Mean I2 - 0 % c2 Mean I -84 % c3 Mean I - 94 %
- B 2
7 A =]
- =3 <
E
B $ - s o
5 & ] 8
[.3 o
2z -
& Z |
g = =1 =
= i S g
o
i i
3 g o~
7 N 8
- - — - 5 L - — - - 5 L - — - -
5 10 20 30 S0 5 10 0 30 S0 100 5 10 20 320 50 100

MNumber of studies in meta-analysis (log scale)
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FiGure E.70: Mean bias of Tp2 estimates in rare events scenario with py = py; sample
sizes are small (A1-A3), small and large (B1-B3) and large (C1-C3).
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Common probability scenarios
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Ficure E.71: Mean bias of Tg estimates in common probability scenario with py < p1;
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F1GURE E.72: Mean bias of Tg estimates in common probability scenario with pg > p1;
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E.6.2 Mean squared error of Tj

Very rare events scenarios
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FiGure E.73: Mean squared error of Tg estimates in very rare events scenario with

po < p1; sample sizes are small (A1-A3), small and large (B1-B3) and large (C1-C3).
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FIGURE E.74: Mean squared error of Tg estimates in very rare events scenario with
po > pi1; sample sizes are small (A1-A3), small and large (B1-B3) and large (C1-C3).
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FIGURE E.75: Mean squared error of 7'5 estimates in rare events scenario with pg < p1;

sample sizes are small (A1-A3), small and large (B1-B3) and large (C1-C3).
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F1cURrE E.78: Mean squared error of Tg estimates in common probability scenario with
po < p1; sample sizes are small (A1-A3), small and large (B1-B3) and large (C1-C3).
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FIGURE E.79: Mean squared error of Tp2 estimates in common probability scenario with
po > p1; sample sizes are small (A1-A3), small and large (B1-B3) and large (C1-C3).
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FIGURE E.80: Mean bias of log-risk ratio estimates in very rare events scenario with
po < p1; sample sizes are small (A1-A3), small and large (B1-B3) and large (C1-C3).
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F1GURE E.81: Mean bias of log-risk ratio estimates in rare events scenario with py < p1;
sample sizes are small (A1-A3), small and large (B1-B3) and large (C1-C3).
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FIGURE E.83: Mean bias of log-risk ratio estimates in rare events scenario with py < p1;
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FicURE E.84: Mean bias of log-risk ratio estimates in very rare events scenario with
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F1GURE E.85: Mean bias of log-risk ratio estimates in rare events scenario with py < p1
and o2 = 3; sample sizes are small (A1-A3), small and large (B1-B3) and large (C1-C3).
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E.7.4 Alternate probability scenarios

Alternate rare events scenarios
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FicUre E.86: Mean bias of log-risk ratio estimates in very rare events scenario with
po > p1; sample sizes are small (A1-A3), small and large (B1-B3) and large (C1-C3).
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F1GURE E.87: Mean bias of log-risk ratio estimates in rare events scenario with py > p1;
sample sizes are small (A1-A3), small and large (B1-B3) and large (C1-C3).
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F1GURE E.88: Mean bias of log-risk ratio estimates in rare events scenario with py = p1;
sample sizes are small (A1-A3), small and large (B1-B3) and large (C1-C3).
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Common probability scenarios
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FicURE E.89: Mean bias of log-risk ratio estimates in common probability scenario

with pg < p1; sample sizes are small (A1-A3), small and large (B1-B3) and large (C1-

03).
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FiGURE E.90: Mean bias of log-risk ratio estimates in common probability scenario
with pg > p1; sample sizes are small (A1-A3), small and large (B1-B3) and large (C1-
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E.7.5 Alternate sampling in simulation study
Alternate event count sampling
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FIGURE E.91: Mean bias of log-risk ratio estimates in very rare events scenario with

po < p1 and poisson event sampling; sample sizes are small (A1-A3), small and large

(B1-B3) and large (C1-C3).
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F1GURE E.92: Mean bias of log-risk ratio estimates in rare events scenario with py < py

and poisson event sampling; sample sizes are small (A1-A3), small and large (B1-B3)

and large (C1-C3).
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Alternate sample size sampling
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FicUure E.93: Mean bias of log-risk ratio estimates in very rare events scenario with

po < p1 and normal sample size sampling; sample sizes are small (A1-A3), small and

large (B1-B3) and large (C1-C3).
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FI1GURE E.94: Mean bias of log-risk ratio estimates in rare events scenario with py < py

and normal sample size sampling; sample sizes are small (A1-A3), small and large (B1-

B3) and large (C1-C3).
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FicUre E.95: Mean bias of log-risk ratio estimates in very rare events scenario with

po < p1 and Chi-squared sample size sampling; sample sizes are small (A1-A3), small
and large (B1-B3) and large (C1-C3).
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F1GURE E.96: Mean bias of log-risk ratio estimates in rare events scenario with py < py

and Chi-squared sample size sampling; sample sizes are small (A1-A3), small and large
(B1-B3) and large (C1-C3).
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E.7.6 Alternate continuity corrections
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FIGURE E.97: Mean bias of log-risk ratio estimates in very rare events scenario with
po < p1; sample sizes are small (A1-A3), small and large (B1-B3) and large (C1-C3).
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F1GURE E.98: Mean bias of log-risk ratio estimates in rare events scenario with py < p1;
sample sizes are small (A1-A3), small and large (B1-B3) and large (C1-C3).
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E.8 Mean squared error of 6
E.8.1 Examples without omitting outlying estimators
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FIGURE E.99: Mean squared error of log-risk ratio estimates in very rare events scenario

with pg < p1; sample sizes are small (A1-A3), small and large (B1-B3) and large (C1-

C3).
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E.8.2 Alternate
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FiGure E.100: Mean squared error of log-risk ratio estimates in very rare events

scenario with py < p;; sample sizes are small (A1-A3), small and large (B1-B3) and
large (C1-C3). PMRM and CLMRM are omitted from A1-A3; MM is omitted from all.
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FiGURE E.101: Mean squared error of log-risk ratio estimates in rare events scenario

with pg < p1; sample sizes are small (A1-A3), small and large (B1-B3) and large (C1-
C3). CLMRM and MM are omitted from A1-A3.
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E.8.3 Alternate study sample sizes
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FiGURE E.102: Mean squared error of log-risk ratio estimates in very rare events

scenario with py < p1; sample sizes are small-to-medium (A1-A3) and medium (B1-
B3). CLMRM and MM are omitted from all.



408 Appendix E
— Db — HO HS  -- REML -- RB cot cos  — MH
-- Dlp -- PM s) - AREML RBO coz PMRM - - MHc
.-+ DLb HM  — ML —— AB BM €03 - - CLMRM
-0 “£-04 £
A Mean =0 % A2 Mean 2= 27 % A3 Mean 12 - 48 %
(=]
(=] al
o =]
(& -
g 2 °
] =
= o~
2«
s o = | o
B - <
g = -
g° - °
§ o =3 ~ - "‘m,_“_“
= “° o e - - ~— S ‘H_h"'-—-—-..___
- Tee—— = T o e = _
< T T T T T T < T T T T T T < T T T T T
5 10 20 30 50 100 10 20 30 50 100 10 20 30 50 100
“=0 04 N
B Mean 2 -0 % - B2 Mean 2= 39 % 83 Mean 12 = 61 %
S 7 S o
(& ‘\
g \ 21 3
=3
RN .
5 ° - \\\
s o | e ~
B < R
= o~
% 2 | . =
= -
§ e = \"“--‘_._ -
= S e = -
8_ \\—'—-—-.___ o o . ° ———
o T T T T T e T T T T T e T T T T
5 10 20 30 50 100 5 10 20 30 50 100 5 10 20 30 50 100

FicUrRE E.103: Mean squared error of log-risk ratio estimates in rare events scenario

with pg < p1; sample sizes are small-to-medium (A1-A3) and medium (B1-B3). MM is

omitted from all.
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FiGUrRE E.104: Mean squared error of log-risk ratio estimates in very rare events

scenario with pg < p; and 02 = 3; sample sizes are small (A1-A3), small and large
(B1-B3) and large (C1-C3).
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FiGURE E.105: Mean squared error of log-risk ratio estimates in rare events scenario

with pyp < p1 and 02 = 3; sample sizes are small (A1-A3), small and large (B1-B3) and
large (C1-C3). CLMRM and MM are omitted from A1-A3.
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E.8.5 Alternate probability scenarios

Alternate rare events scenarios
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FiGURE E.106: Mean squared error of log-risk ratio estimates in very rare events

scenario with pg > pi; sample sizes are small (A1-A3), small and large (B1-B3) and
large (C1-C3). PMRM and CLMRM are omitted from Al-A3; MM is omitted from

B1-C3.
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FIGURE E.107: Mean squared error of log-risk ratio estimates in rare events scenario
with pg > p1; sample sizes are small (A1-A3), small and large (B1-B3) and large (C1-
C3). PMRM and CLMRM are omitted from A1-A3; MM is omitted from B1-C3.
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FiGURE E.108: Mean squared error of log-risk ratio estimates in rare events scenario
with pg = p1; sample sizes are small (A1-A3), small and large (B1-B3) and large (C1-
C3). PMRM, CLMRM and MM are omitted from A1-A3.



414 Appendix E
Common probability scenarios
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F1cURE E.109: Mean squared error of log-risk ratio estimates in common probability

scenario with py < pi; sample sizes are small (A1-A3), small and large (B1-B3) and
large (C1-C3). MM is omitted from A1-B3.
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F1GURE E.110: Mean squared error of log-risk ratio estimates in common probability

scenario with py > p;; sample sizes are small (A1-A3), small and large (B1-B3) and
large (C1-C3). MM is omitted from all.
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E.8.6 Alternate sampling in simulation study
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FicUure E.111: Mean squared error of log-risk ratio estimates in very rare events

scenario with py < p; and poisson event sampling; sample sizes are small (A1-A3),
small and large (B1-B3) and large (C1-C3). PMRM and CLMRM are omitted from

A1-A3; MM is omitted from all.
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FIGURE E.112: Mean squared error of log-risk ratio estimates in rare events scenario

with py < p; and poisson event sampling; sample sizes are small (A1-A3), small and
large (B1-B3) and large (C1-C3). CLMRM and MM are omitted from A1-A3.
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FicUrReE E.113: Mean squared error of log-risk ratio estimates in very rare events

scenario with pg < p; and normal sample size sampling; sample sizes are small (Al-
A3), small and large (B1-B3) and large (C1-C3). PMRM and CLMRM are omitted
from A1-A3; MM is omitted from all.
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FIGURE E.114: Mean squared error of log-risk ratio estimates in rare events scenario

with pg < p; and normal sample size sampling; sample sizes are small (A1-A3), small
and large (B1-B3) and large (C1-C3). CLMRM and MM are omitted from A1-A3.
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FiGure E.115: Mean squared error of log-risk ratio estimates in very rare events

scenario with py < p; and Chi-squared sample size sampling; sample sizes are small
(A1-A3), small and large (B1-B3) and large (C1-C3). PMRM and CLMRM are omitted
from A1-A3; MM is omitted from all.
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FiGURE E.116: Mean squared error of log-risk ratio estimates in rare events scenario

with py < p; and Chi-squared sample size sampling; sample sizes are small (A1-A3),
small and large (B1-B3) and large (C1-C3). PMRM and CLMRM are omitted from

A1-A3; MM is omitted from all.
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FiGURE E.117: Mean squared error of log-risk ratio estimates in very rare events

scenario with py < p;; sample sizes are small (A1-A3), small and large (B1-B3) and

large (C1-C3).
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FIGURE E.118: Mean squared error of log-risk ratio estimates in rare events scenario

with pg < p1; sample sizes are small (A1-A3), small and large (B1-B3) and large (C1-

03).
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E.9 Coverage

E.9.1 Rare events scenario
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Ficure E.119: Coverage of log-risk ratio confidence intervals in rare events scenario

with pp < p; and small sample sizes; confidence intervals are Wald-type (A1-A3), t¢-
distribution (B1-B3), HKSJ (C1-C3) and mKH (D1-D3).
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Ficure E.120: Coverage of log-risk ratio confidence intervals in rare events scenario

with pg < p; and small-to-medium sample sizes; confidence intervals are Wald-type
(A1-A3), t-distribution (B1-B3), HKSJ (C1-C3) and mKH (D1-D3).
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Ficure E.121: Coverage of log-risk ratio confidence intervals in rare events scenario

with pp < p; and large sample sizes; confidence intervals are Wald-type (A1-A3), t¢-
distribution (B1-B3), HKSJ (C1-C3) and mKH (D1-D3).
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E.9.2 Very rare events scenario
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Ficure E.122: Coverage of log-risk ratio confidence intervals in very rare events sce-

nario with py < p; and small sample sizes; confidence intervals are Wald-type (A1-A3),
t-distribution (B1-B3), HKSJ (C1-C3) and mKH (D1-D3).
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Ficure E.123: Coverage of log-risk ratio confidence intervals in very rare events sce-

nario with pg < p; and small-to-medium sample sizes; confidence intervals are Wald-
type (A1-A3), t-distribution (B1-B3), HKSJ (C1-C3) and mKH (D1-D3).
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FicUre E.124: Coverage of log-risk ratio confidence intervals in very rare events sce-

nario with pg < p; and large sample sizes; confidence intervals are Wald-type (A1-A3),
t-distribution (B1-B3), HKSJ (C1-C3) and mKH (D1-D3).
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E.9.3 Common probability scenario
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Ficure E.125: Coverage of log-risk ratio confidence intervals in common probability

scenario with pp < p; and medium sample sizes; confidence intervals are Wald-type
(A1-A3), t-distribution (B1-B3), HKSJ (C1-C3) and mKH (D1-D3).
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Ficure E.126: Coverage of log-risk ratio confidence intervals in common probability
scenario with pp < p; and small and large sample sizes; confidence intervals are Wald-
type (A1-A3), t-distribution (B1-B3), HKSJ (C1-C3) and mKH (D1-D3).
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FiGURE E.127: Power of log-risk ratio confidence intervals in very rare events scenario

with pg < p; and medium sample sizes; confidence intervals are Wald-type (A1-A3),
t-distribution (B1-B3), HKSJ (C1-C3) and mKH (D1-D3).
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FicUure E.128: Power of log-risk ratio confidence intervals in rare events scenario

with pg < p; and medium sample sizes; confidence intervals are Wald-type (A1-A3),
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t-distribution (B1-B3), HKSJ (C1-C3) and mKH (D1-D3).
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F1cUure E.129: Power of log-risk ratio confidence intervals in very rare events scenario

with pg < p; and small and large sample sizes; confidence intervals are Wald-type
(A1-A3), t-distribution (B1-B3), HKSJ (C1-C3) and mKH (D1-D3).
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F1cUure E.130: Power of log-risk ratio confidence intervals in rare events scenario with

po < p1 and small and large sample sizes; confidence intervals are Wald-type (A1-A3),
t-distribution (B1-B3), HKSJ (C1-C3) and mKH (D1-D3).
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FicUre E.131: Mean error of log-risk ratio confidence intervals in very rare events

scenario with pp < p; and medium sample sizes; confidence intervals are Wald-type
(A1-A3), t-distribution (B1-B3), HKSJ (C1-C3) and mKH (D1-D3).
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F1cURrE E.132: Mean error of log-risk ratio confidence intervals in rare events scenario

with pg < p; and medium sample sizes; confidence intervals are Wald-type (A1-A3),
t-distribution (B1-B3), HKSJ (C1-C3) and mKH (D1-D3).
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FicUre E.133: Mean error of log-risk ratio confidence intervals in very rare events

scenario with pp < p; and small and large sample sizes; confidence intervals are Wald-
type (A1-A3), t-distribution (B1-B3), HKSJ (C1-C3) and mKH (D1-D3).
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F1cURE E.134: Mean error of log-risk ratio confidence intervals in rare events scenario
with pg < p; and small and large sample sizes; confidence intervals are Wald-type
(A1-A3), t-distribution (B1-B3), HKSJ (C1-C3) and mKH (D1-D3).
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Ficure E.135: Error variance of log-risk ratio confidence intervals in very rare events

scenario with pp < p; and medium sample sizes; confidence intervals are Wald-type
(A1-A3), t-distribution (B1-B3), HKSJ (C1-C3) and mKH (D1-D3).
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FicUure E.136: Error variance of log-risk ratio confidence intervals in rare events

scenario with pp < p; and medium sample sizes; confidence intervals are Wald-type
(A1-A3), t-distribution (B1-B3), HKSJ (C1-C3) and mKH (D1-D3).
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Ficure E.137: Error variance of log-risk ratio confidence intervals in very rare events

scenario with pp < p; and small and large sample sizes; confidence intervals are Wald-
type (A1-A3), t-distribution (B1-B3), HKSJ (C1-C3) and mKH (D1-D3).
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FicUure E.138: Error variance of log-risk ratio confidence intervals in rare events
scenario with pp < p; and small and large sample sizes; confidence intervals are Wald-
type (A1-A3), t-distribution (B1-B3), HKSJ (C1-C3) and mKH (D1-D3).
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