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The objective of this work is to propose a data-driven Bayesian inference framework to

efficiently identify parameters and select models of nonlinear aeroelastic systems. The framework

consists of the use of Bayesian theory together with advanced Kriging surrogate models to

effectively represent the limit cycle oscillation response of nonlinear aeroelastic systems. Three

types of sampling method, namely Markov Chain Monte-Carlo, Transitional Markov Chain

Monte-Carlo, and the Sequential Monte-Carlo sampler, are implemented into Bayesian model

updating. The framework has been demonstrated using a nonlinear wing flutter test rig. It is

modelled by a two-degree-of-freedom aeroelastic system and solved by the harmonic balance

methods. The experimental data of the flutter wing is obtained using control-based continuation

techniques. The proposed methodology provided up to 20% improvement in accuracy compared

to conventional deterministic methods and significantly increase computational efficiency in the

updating and uncertainty quantification process. Transitional Markov Chain Monte-Carlo was

identified as the optimal choice of the sampling method for stochastic model identification. In

selecting alternative nonlinear models, multi-modal solutions were identified that provided a

closer representation of physical behaviour of the complex aeroelastic system than the single

solution.
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𝑥 = System degrees of freedom

M = Structural mass matrix

D = Structural damping matrix

K = Structural stiffness matrix

A = Aerodynamic inertial matrix

B = Aerodynamic damping matrix

C = Aerodynamic stiffness matrix

𝑉 = Airspeed

𝑡 = time

𝜌 = Air density

𝑐 = chord

𝑚𝑤 = Mass of wing

𝑚𝑇 = Mass of wing and support

𝐼𝛼 = Wing moment of inertia about elastic axis

𝑐ℎ = Heave damping coefficient

𝑐𝛼 = Pitch damping coefficient

𝐾ℎ = Heave linear stiffness

𝐾𝛼 = Pitch linear stiffness

𝐾𝛼2 = Pitch 2𝑛𝑑 order nonlinear stiffness

𝐾𝛼3 = Pitch 3𝑟𝑑 order nonlinear stiffness

𝐾𝛼5 = Pitch 5𝑡ℎ order nonlinear stiffness

𝑎,𝑏,𝑐 = Aerodynamic constants

II. Introduction
A primary goal in the aerospace industry at present is to reduce 𝐶𝑂2 emissions. The use of lightweight materials

and integrated electric propulsion systems is considered crucial in enhancing the efficiency and capabilities of aerospace

systems. Modelling the dynamical response of lightweight aerospace structures is a challenging task because of their

significant geometrical deformation, which introduces distributed nonlinearities into structures resulting in complex

nonlinear dynamical behaviour [1, 2]. Furthermore, with increasing integrated systems, new interfaces can introduce

localised nonlinearities, as has been observed in tiltrotor systems dynamic responses [3, 4]. The effects of these

nonlinearities on dynamics and control can be very significant such as changing futter boundary in tiltrotor systems

[3, 5] and shifting the aerodynamic centre of certain wings affecting control of the aircraft [6].
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Due to nonlinearities in aeroelatic systems, subcritical post-flutter responses may exist [7, 8], leading to a self-

sustaining oscillation occurring at velocities below the linear flutter velocity. These oscillations are referred to as

Limit Cycle Oscillations (LCO) that cannot be estimated from purely linear analysis. These subcritical behaviours

have been observed experimentally from high-aspect-ratio flexible wings [9, 10]. Recently, Drachinsky and Raveh

[11, 12] also discovered subcritical LCO formation in experimental testing of a highly flexible wing in low-speed flutter

experiments. However, the effects of nonlinearities on aeroelasticity are often neglected in computational analysis due

to the added complexity and high computational cost during the design process, which greatly limits the design space of

these aerospace systems. While LCO detected from nonlinear analysis can be stable, in a real system they could cause

structural damage. It is therefore critical to validate mathematical models that accurately capture system nonlinear

response. With reliable mathematical models the need for costly exterminates under different flow conditions would not

required for certification.

This work proposes a probabilistic data-driven methodology to minimise computational burden and maximise

accuracy in identifying nonlinear models to capture LCO behaviour of aeroelastic systems. Kriging models are developed

with databases generated from nonlinear aeroelastic systems using harmonic balance method-based bifurcation analysis.

LCO experimental data is obtained from a uniform wing test rig using control-based continuation testing methods [13].

Bayseian inference is then implemented between a Kriging surrogate model and experimental data to both estimate

probabilistic parameters of the nonlinear model and rank the evidence supporting model selection. In addition, the

performance of three sampling techniques are effectively compared when scholastically updating a nonlinear aeroelastic

system for the first time. The implementation of a Bayesian inference in conjunction with a surrogate model to anticipate

LCO behavior is a distinctive strategy in the area of aeroelasticity.

Model updating has been widely used to calibrate the parameters of mathematical or computation models based on

experimental data in the last few decades. A majority of existing techniques provide deterministic estimates of parameters

such as Least Squares minimisation, Sensitivity-based model updating and Levenberg-Marquardt algorithm [14–17].

Whilst direct deterministic methods are very effective for linear systems, it is subject to high computational expense for

complex and high dimensional dynamical systems, and is very sensitivity to the noise in the experimental data [18]. For

nonlinear aeroelastic systems, Beregi employed a classical model update approach estimate nonlinear parameters in a

subcritical aerofoil test case using normal form theory. It was concluded that the accuracy of the bifurcation diagram

should be improved to account for different uncertainties in the experimental data [19, 20]. Recently, researchers

have acknowledged the importance of quantifying uncertainties in the nonlinear behaviour of systems, shifting the

deterministic model updating approach to probabilistic ones [18, 21].

Bayesian Model Updating (BMU), first put forward in [22], is regarded as one of the most promising probabilistic

nonlinear parameter estimation techniques [23–25]. A significant advantage of BMU when compared to other

probabilistic model updating techniques, such as Maximum Likelihood Estimation, is its capacity to seamlessly integrate
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prior knowledge [26]. With the Bayesian inference, one can assess the posterior probability density functions (PDF)

by utilising the given measurement data. The posterior PDF are instrumental in providing numerical distributions

for parameter estimations, along with their confidence bands [27]. The efficiency of the stochastic model updating is

highly dependent on the quality of the sampling methods. Advanced iterative sampling techniques are preferred due to

their ability to efficiently explore high-dimensional and correlated parameter spaces, handle non-standard posterior

shapes, facilitate iterative improvement, support model comparison, and provide reliable uncertainty quantification.

The most common methods are Metropolis-Hastings Markov Chain Monte Carlo (MCMC), Transitional Chain Monte

Carlo (TMCMC) and the Sequential Monte Carlo sampler (SMC) [28]. Each method provides case dependent benefits,

experiments are often required to select an appropriate sampling method. Comparisons between sampling methods has

been carried out partially in the case of structural health monitoring[29–31]. A direct comparison does not exist for an

aeroelatic test case. An advantage to TMCMC is evidence function can be calculated as a byproduct for model selection.

Song et.al. utilised TMCMC in successfully selecting a nonlinear model for a wing engine structure [32].

Nonlinear System Identification (NSI) is very challenging in aeroelasticity. Firstly, the computational expense of

nonlinear aeroelastic simulations is highly demanding even for low degree-of-freedom systems, especially using time

domain solvers. Secondly, experimental testing of nonlinear autonomous systems is challenging due to the limitations

of most linear experimental methods [13]. Thirdly, the form of nonlinear functions can be uncertain and usually lacks

explicit expressions, which can make it unclear if inaccuracies between the experimental data and numerical data are

down to errors in the mathematical model that is selected or errors from experimental results. When using deterministic

model updating methods, it is common to face issues with parameter non-identifiability, as certain combinations of

nonlinear parameters can lead to comparable results [33, 34]. Recent deterministic approaches [35–37] have shown

promise in determining aeroelastic LCO but issues have been highlighted. In using universal approximates to replicate

aeroelastic bifurcation diagrams, Beregi et al. [19] found cases of overiftting data. This problem is often encountered

when using deterministic approaches with inherently noisy data.

Considering the computational burden in LCO simulations, little work in this area related to model updating and

uncertainty quantification has been conducted [38]. The formation of LCO occurs following a hopf bifurcation that

can be detected with eigenvalue analysis of underlying linear systems [39, 40]. It has been shown through both theory

and experimentation that hopf bifurcations occur at the flutter points of aeroelastic systems [8, 41]. Following a hopf

bifurcation, LCO characteristics are tracked through numerical continuation to produce iterative bifurcation diagrams.

Recent work [42–44] has seen a focus on frequency domain techniques namely the Harmonic Balance Methods (HBM).

In approximating periodic motion with Fourier series coefficients, HBM provide computationally efficient estimations

in identifying the maximum response of LCO [45]. The use of HBM with continuation techniques is not essential for

the proposed framework but effectively reduces computational burden of gathering training data than other numerical

continuation alternatives [45].
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Furthermore, the use of fast-running surrogate models can effectively be used to reduce the high computational

cost of potentially thousands of nonlinear aeroelastic simulations required with BMU. Nonlinear prediction can be

achieved effectively through the use of data-driven methods such as Polynomial Chaos Expansion (PCE) and neural

networks [46–49]. PCE methods have been proposed specifically for UQ in aeroelastic cases in [50]. With surrogate

models based on orthogonal polynomials, however the amount of training data required has shown to increase factorially

with the number of design parameters [51]. Kernel-based surrogate models namely, Kriging (Gaussian Process (GP)

regression) has been employed for cases with limited training data [52, 53]. Kriging models have been found to be

remarkably effective in modeling complex nonlinear systems with the added benefit of requiring only minimal training

data [54]. A major benefit of Kriging is the ability to seamlessly integrate new observations into the current model

framework [55, 56]. Kriging surrogate models have been employed to propagate uncertainty in bifurcation diagrams of

landing gear designs by Tartaruga [57] and ring damper designs by Sun et.al.[54]. Lee et.al.[58] developed a physics

informed machine learnt model to improve the prediction of the bifurcation diagrams for an aerofoil test case. It showed

that the deterministic estimation may lead to an overfitting problem when taking noisy data into consideration. The

work also suggested that the use of nonlinear solvers, specifically those suited for periodic solutions, could enhance the

training algorithms.

When identifying a system based on experimental data the two key factors to consider is the quality of the data and

the amount of it. In classical wind tunnel testing, only stable LCO are detected leaving a gap in unstable sections of

bifurcation diagrams. Control based continuation (CBC) first proposed by Sieber et al. [59], was introduced to perform

bifurcation analysis directly in experiments. This is possible through combining Newton iterations and feedback control

embedded into the continuation allowing for the detection of unstable LCO [60]. The capability of CBC has been

demonstrated on several mechanical systems namely by Lee on a two-degree-of-freedom aerofoil [61]. LCO amplitude

and frequency for unstable LCO was gathered presenting high-quality data for nonlinear aeroelastic system identification

that will be used in this work.

This paper will first present the overall probabilistic model updating methodology for a general nonlinear aeroelastic

system. It will include the process of gathering training data from HBM continuation, the development of Kriging based

surrogate models, and the implementation of the Bayesian inference with MCMC, TMCMC and SMC sampling methods.

The specific objectives behind the use of different MCMC-based sampling techniques is to provide a comparative study

on sampling performance and its robustness towards parameter identification and model updating for a highly non-linear

aeroelastic model under limited data. The three goals for the proposed methodology are (1) to provide distributions

that numerically estimate nonlinear parameters; (2) to produce bifurcation plots with confidence bands; (3) to rank

different forms of nonlinear models. In the following section, the mathematical model and experimentation describing a

simplified nonlinear flutter test rig will be described. In the results section, nonlinear parameter estimations using the

proposed methodology will be firstly presented followed by the discussion of the suitability of the nonlinear model and
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the appropriate choice for the sampling method. Then, we will describe the improvement of using alternative nonlinear

models through from the Bayesian model selection.

III. Methodology
In this section, the methodology of the data-driven probabilistic modelling identification framework for a general

nonlinear aeroelastic system will be presented. As shown in Figure 1, the general Methodology is divided into two

parts: the development of a surrogate model describing LCO behaviour of Equation 1, and Baysian model updating

with forward uncertainty quantification (UQ).The surrogate model developed in Figure 1a is created priori and left

unmodified during the model updating process. With inputs gathered using Latin-Hypercube sampling (LHS), HBM

continuation runs are performed following a hopf bifurcation found from the underlying linear model. Data from HBM

continuation runs are used to construct surroagte models through kriging. The second stage of the methodology in

Figure 1b describes the BMU process applied to the surrogate model to stochastically estimate nonlinear parameters.

Each step in both the processes will be discussed as follows.

A. Equation of motion

A general nonlinear aeroelastic system will be formulated by the following:

M¥𝑥 + D ¤𝑥 + K𝑥 + 𝑞𝑛𝑙 𝑓𝑛𝑙 = A(𝜌𝑎𝑖𝑟 ) ¥𝑥 + B(𝜌𝑎𝑖𝑟𝑉) ¤𝑥 + C(𝜌𝑎𝑖𝑟𝑉2)𝑥 (1)

Where 𝑥 denotes the system’s degrees of freedom and M,D and K are the structural mass, damping and stiffness matrices

respectively. Matrices A B and C are aerodynamic matrices which are dependent on air density and freestream velocity.

All matrices are size 𝑁 × 𝑁 where 𝑁 is the number of degrees of freedom of the system. The nonlinear function 𝑓𝑛𝑙 is

used to represent different types of nonlinearities encountered in aeroelastic systems. The 𝑁 × 1 vector 𝑞𝑛𝑙 is utilised to

implement the nonlinear equations in the degrees of freedom they impact.

General nonlinear behaviour of a subcritical aeroelastic system is laid out in Figure 2. In the bifurcation diagram

in Figure 2b a stable solution exists until a hopf bifurcation is detected at 17.8𝑚/𝑠. At velocities above this point,

the response of the underlying linear system to a perturbation is negatively damped. This can be determined without

considering nonlinearities using standard eigenvalue analysis. Taking nonlinear effects into consideration, numerical

continuation is carried out iteratively starting at the bifurcation point. Unstable LCO are identified at velocities below

the bifurcation point and are tracked until a turning point. Following the turning point, stable LCO are tracked. This

describes a system where two possible solutions exist between the turning point and the hopf bifurcation point, a stable

damped solution and a LCO. Physically, unstable LCO represent a non-converging trajectory that exhibits instability

over time. This means following nonlinear areoelastic analysis, the safe operating velocity of the system in Figure 2 is
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(a) Development of Kriging surrogate models

(b) Bayesian model updating with experimental data

Fig. 1 The overall methodology of probabilistic identification framework for nonlinear aeroelastic systems

shifted from 17.8𝑚/𝑠 to 13.7𝑚/𝑠 at the turning point of the bifurcation diagram.

B. The development of surrogate models

As is observed in Fig.2b, there is a unique velocity 𝑉 solution for each LCO amplitude point ℎ. It is possible that the

Kriging surrogate model 𝑓 (ℎ, 𝜃) can be set up as 𝑉 = 𝑓 (ℎ, 𝜃) where 𝜃 represents the vector of nonlinear parameters. In

this subsection, the development of the Kriging surrogate model will be detailed. The training data for the surrogate

model is first generated from deterministic simulations of nonlinear aeroelastic systems using HBM with continuation

techniques. The methodology of HBM-based deterministic simulation will be briefly introduced; then the construction

of Kriging surrogate models will be described.
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(a) Three-dimensional subcritical bifurcation diagram

(b) Two-dimensional subcritical bifurcation diagram (– sta-
ble solution) (- - unstable solution) (★ hopf bifurcation) (⃝
turning point) (c) LCO time histories (14.5𝑚/𝑠 •) (20𝑚/𝑠 •)

Fig. 2 Subcritical bifurcation diagram with hopf bifurcation at 17.8𝑚/𝑠 (– stable LCO),(- - unstable LCO)

1. HBM based numerical continuation

The computation of LCO behaviour is carried out through HBM coupled with continuation techniques as formulated

in [45]. It is first required that the standard differential equation from Equation 1 is rearranged into first-order state

Equation 2 as:

¤x = Qx + q𝑛 𝑓𝑛𝑙 (2)

Where:

x =


¤𝑥

𝑥

 Q =


(M − 𝜌A)−1 (𝜌𝑉B − D) (M − 𝜌A)−1 (𝜌𝑉2C − K)

0𝑁×𝑁 𝐼𝑁×𝑁

 qn =


−(M − 𝜌A)−1𝑞𝑛𝑙

0𝑁×1


Where Q will be referred to as the linear matrix as it fully captures the linear behaviour of the system. Flutter velocity

can be found at the hopf bifurcation point considering only the linear part of the system. Equation 2 is written as the

eigenvalue problem ¤x − Qx = 0. Assuming a oscillatory response 𝑥 = 𝑥𝑜𝑒𝜓𝑡 the eigenvalue problem can be written:

[Q − I𝜓𝑖] 𝜙 = 0, (3)
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where 𝜓𝑖 are eigenvalues in the conjugate pair

𝜓𝑖 = −𝜁𝑖𝜔𝑖 ± 𝑖𝜔𝑖

√︁
1 − 𝜁𝑖 (4)

where 𝑖 = 1...2𝑁 and 𝜔𝑖 represents damped natural frequencies and 𝜁𝑖 the damping ratios. Matrix 𝜙 contains the

corresponding eigenvectors. Flutter is characterised by unstable negatively damped oscillations. From this definition it

can be determined that if any of the real parts of Equation 4 is positive, the system is dynamically unstable [62]. If it is

assumed following a hopf bifurcation the dynamic response of the system is an LCO, the time response of 𝑥 and ¤𝑥 can

be represented using the Fourier series. The unknowns can be expressed by multi-harmonic response and solved in the

frequency domain:

𝑥(𝑡) = 𝑋0 +
𝑙∑︁

𝑘=1
𝑋𝑘,𝑠 sin 𝑘𝜔𝑡 + 𝑋𝑘,𝑐 cos 𝑘𝜔𝑡 (5)

Where 𝑙 represents the number of Fourier modes and 𝑋0, 𝑋𝑘,𝑠 and 𝑋𝑘,𝑐 are Fourier coefficients. This assumed response

is central to HBM, converting the system from the time domain to the frequency domain. The number of unknowns will

become (2 × 𝑙 + 1) × 𝑁 . In addition to a set of Fourier coefficients, there is also the natural frequency of the system

𝜔 and the continuation parameter that can be any structural or aerodynamic parameters. In this case, velocity is the

continuation parameter. As is common in continuation, orthogonality between a response and its differential is assumed

to place an additional on the scheme [63].

Nonlinear force functions are usually modelled in time domain. Since they are not linear functions of states or

explicit functions of time, it is not possible to transform directly to the frequency domain [64]. The nonlinear force

response is converted to the frequency domain through the Alternating-time-frequency procedure, which is able to

calculate different types of nonlinear functions even with nonsmooth nonlinearties [65]. For each iteration, the predicted

values of 𝑋0, 𝑋𝑘,𝑠, 𝑋𝑘,𝑐 and 𝜔 are used in Equations 5 to obtain the time domain response over a period. The time

domain nonlinear force response 𝑓𝑛𝑙 (𝑡) is then found. A fast Fourier transform algorithm is used to estimate Fourier

coefficients based on the time domain nonlinear force response. With the relationships described, the equation of motion

shown in Equation 2 can be expressed into a set of algebraic residual equations, which are solved numerically using a

Newton-Raphson solver [1]. The full continuation scheme is laid out in [45].

2. Kriging algorithm

Based on the above HBM with continuation techniques, sets of training input data Θ =
[
𝜃 (1) , 𝜃 (2) , ..., 𝜃 (𝑛)

]
and

corresponding outputs V =
[
𝑉 (1) , 𝑉 (2) , ..., 𝑉 (𝑛) ] can be gathered. In this study, LHS is used to gather the samples for

the training data [66]. This choice of sampling method is standard in surrogate development for exploring diverse ranges

of scenarios with minimal data. For each 𝜃 a set of ℎ and corresponding 𝑉 values are generated with HBM continuation

scheme. Nonlinear parameters can be drawn from a distribution set by the user. Assuming no knowledge of the system,
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wide uniform distributions can be typically set. This method ensures a diverse set of points along each variable. The

Kriging predictor is formulated as follows:

𝑓 (𝜃) = 𝜇(𝜃) + w𝑇 (𝜃)K−1 (V − 𝜇(Θ)) (6)

where 𝜇(𝑥) is the mean function that represents the expected value or trend of the response variable. It is typically

assumed to be constant or can be defined based on prior knowledge or domain expertise. Covariance matrix K is an

𝑛 × 𝑛 matrix where 𝐾𝑖 𝑗 = 𝐶𝑜𝑟𝑟 [𝑥𝑖 , 𝑥 𝑗 ] represents the covariance or correlation between 𝑖𝑡ℎ and 𝑗 𝑡ℎ input points. The

weight factor w(𝑥) is defined as

w(𝑥) = K−1𝐶𝑜𝑟𝑟 [𝑥, 𝑋] (7)

where𝐶𝑜𝑟𝑟 [𝑥, 𝑋] is a vector representing the correlation or covariance between input 𝑥 and training point 𝑋 . In Kriging,

correlation is determined based on functions in the spatial domain. Here the Matérn covariance function is used

𝐶𝑜𝑟𝑟 [𝑥, 𝑋] = 𝜎2 21−𝜐

Γ(𝜐)

(√
2𝜐ℎ
𝑎

) 𝜐
𝐾𝜐

(√
2𝜐ℎ
𝑎

)
(8)

where ℎ is a vector representing the separation in multiple dimensions between 𝑥 and 𝑋 . Variance 𝜎, smoothness

parameter 𝜐 and range 𝑎 are determined through the optimisation process described in [67]. A Bessel function is

represented by 𝐾𝜐 and Γ(𝜐) is a generalisation of the factorial function to non integer values[68].

To begin construction of the surrogate model, we firstly extract LHS samples from the uniform distributions for 𝜃

based on the initial approximations of the nonlinear parameters. Every combination undergoes a HBM continuation

run. The data obtained is then segregated into individual data points that comprise velocity, amplitude, and nonlinear

parameters. These points are preserved as training data and utilised to fuel the Kriging algorithm. The accuracy of the

surrogate model is then validated using a set of separate data. This process is repeated until accuracy converges.

C. The theory of Bayesian inference and sampling techniques

The Bayesian interface is implemented to estimate posterior distributions of nonlinear parameters from a prior

distribution using input data and a likelihood function including experimental data. Posterior distributions of the

nonlinear paramters 𝜃 are estimated with:

𝑃 (𝜃 |V, 𝑓 ) = 𝑃 (V|𝜃, 𝑓 ) .𝑃 (𝜃 | 𝑓 )
𝑃 (V| 𝑓 ) (9)

where 𝑓 is the surrogate model and V is the vector of experimental points. The prior distribution is represented by

𝑃(𝜃 | 𝑓 ), 𝑃(V|𝜃, 𝑓 ) is the likelihood function, 𝑃(V| 𝑓 ) is the evidence and 𝑃 (𝜃 |V, 𝑓 ) is the posterior distribution. The
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evidence function acts as a normalising constant to ensure the posterior integrates to one. Prior distributions reflect

prior knowledge of the model parameters from observations. In this work, distributions used to gather training data are

selected. For a multidimensional problem such as the one discussed in this paper, distributions are combined as follows

𝑃 (𝜃 | 𝑓 ) =
𝑛∏
𝑖=1

𝑃(𝜃 (𝑖) ) (10)

The likelihood function reflects the degree of agreement between obtained measurements V and the output of the

surrogate model 𝑓 (𝜃 | 𝑓 ). Assuming the error between observations and the model follows a zero mean normal

distribution, the likelihood function can be written as

𝑃 (V|𝜃, 𝑓 ) =
(

𝑛∏
𝑖=1

1
𝜎𝑖
√

2𝜋

)
exp

[
−

𝑛∑︁
𝑖=1

(
𝑉𝑖 − 𝑓

(
𝜃 (𝑖)

) )2

2𝜎2
𝑖

]
(11)

Where 𝜎𝑖 is the variance of error 𝜖𝑖 which controls the centralisation degree of the posterior distribution. Also referred

to as the width parameter, 𝜖𝑖 is predetermined and case-dependent. Width parameter is selected based on the resulting

acceptance rate of the samples. Acceptance rate shows the trade-off between accepting too many small steps and rejecting

too many large proposal steps. Typically an acceptance rate between 0.15-0.5 ensures the algorithm’s efficiency is above

80% so is aimed for [69]. Approximate Bayesian from Equation 9 (where 𝑃(V| 𝑓 ) is assumed as a constant) is evaluated

by drawing samples from prior distributions until converged mean posteriors are reached. As the goal of the sampling is

to converge to an unknown stationary distribution, standard methods (such as LHS used for surrogate development)

are not suited. Advanced sampling techniques are therefore employed commonly for optimal efficiency[28], the three

most common being MCMC, TMCMC and SMC. Each method provides unique benefits in terms of computation time,

number of samples required and accuracy. The choice of sampling method is case-dependent and should be considered

carefully.

The MCMC (Metropolis-Hastings method) sampler is comprised of two main features, Monte Carlo simulation and

Markov chains. Introduced by Markov, a chain is initiated from 𝜃1 and a transition to 𝜃2 that is carried out based on a

transition probability distribution function [70]. The assumption is that by allowing the chain to extend infinitely, the

chain converges to a stationary distribution which corresponds to the posterior. Computation time per sample is the

lowest with this method but, often a higher number of samples are required to reach a converged solution. It is common

to discard a number of initial samples in what is known as the ’burn-in’ to improve the quality of the results. A tuning

parameter is also required with MCMC, both tuning parameter and burn-in are predefined with educated trial and error.

The TMCMC sampler is an adaptive variation of MCMC [71] and is also a specific variant of the SMC samplers (see

Betz et. al [72]). A series of intermediate transitional distributions are used to gradually converge the samples towards

the final posterior distribution. In addition, unlike the MCMC, it does not generate samples in a serial manner. Instead, it
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generates N distinct Markov chains, each initiating from the N samples generated from the previous transition distribution

and updates each chain according to its associated statistical weight. Through such approach, the TMCMC sampler is

applicable towards sampling from multi-modal posteriors and have also been utilised to sample from high-dimensional

posteriors (i.e., 18-dimensions) [28]. Whilst having a higher computational cost, TMCMC is automatically tuned and

converges with fewer samples than MCMC commonly. Parallel computing can also be taken advantage of to improve

computational efficiency.

The SMC sampler is a subset of the SMC methods that is based the Particle Filter methods typically employed for

system identification purposes [73, 74]. The sampler utilises the importance sampling-resampling approach to generate

samples sequentially from a dynamical posterior. Like the TMCMC sampler, the sampling procedure involves generating

N distinct Markov chains, each initiating from the N samples obtained from the previous transitional distribution. The

difference from the TMCMC sampler is that each Markov chain generates a new sample independently from one another

(i.e. each Markov chain generates one updated sample from the starting seed sample) which allows the sampling

procedure to be easily parallelised. As such, the SMC sampling approach is applicable for on-line Bayesian inference to

infer either time-invariant or time-varying parameters, while the MCMC and the TMCMC samplers are only applicable

for off-line Bayesian inference to infer time-invariant parameters. In addition, like the TMCMC sampler, it is also able

to generate samples from multi-modal and high-dimensional posteriors. Computation time per sample is on average less

than TMCMC but more than MCMC with convergence usually reached in fewer samples than MCMC. Each method

will be tested in this study to evaluate which sampling method is suited to the methodology. Further detail into the

Bayesian interface and each sampling method are laid out by Lye et al.[28].

Three factors are used to determine the overall quality of results: coefficient of variance, bias and 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 [72].

Coefficient of variance (𝐶𝑂𝑉 = 𝑠𝑡𝑑
𝜇
) is used to determine the confidence of a prediction where 𝑠𝑡𝑑 is the standard

deviation and 𝜇 is the mean of the prediction from BMU. Bias is calculated with

𝑏𝑖𝑎𝑠 =
|𝜇 − 𝑒 |
𝑒

(12)

Where 𝑒 is the corresponding true experimental point to 𝜇. This gives a measure of accuracy only considering the mean

prediction and not confidence bands. A completely accurate prediction would give a 𝑏𝑖𝑎𝑠 of zero. Taking confidence of

prediction into account, 𝑏𝑖𝑎𝑠 and 𝐶𝑂𝑉 are used to calculate 𝑞𝑢𝑎𝑙𝑖𝑡𝑦.

𝑞𝑢𝑎𝑖𝑙𝑖𝑡𝑦 =
√︁
𝑏𝑖𝑎𝑠2 + 𝐶𝑂𝑉2 (13)

Combining both confidence and accuracy, 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 is the main factor used to determine overall accuracy. An ideal

prediction would have a 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 of zero. These factors will be calculated by comparing bifurcation plots using BMU
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predictions of nonlinear parameters to experimental data for both configurations.

Forward uncertainty quantification is performed by running the output distributions through 𝑓 (𝜃). This produces a

bifurcation plot with 95% confidence bands. In theory, the mean solution should give a close approximation of the true

bifurcation plot. It could also be argued, if all input experimental data fall within the confidence bands a reasonable

approximation of true uncertainty in the predicted parameters has been captured. If data points lie outside of the

confidence bands, it may suggest the mathematical model does not truly represent dynamic behaviour or there has been

errors obtaining the experimental data.

D. TMCMC based class selection

One of the key advantages of the Bayesian interface is in model selection. With the evidence term, the validity of

models can be ranked. The evidence term is not required in the cases of MCMC but can be numerically estimated[75].

With regards to TMCMC sampling method, the evidence for specific model 𝑓 , 𝑃 (V| 𝑓 )) is a byproduct required for

estimation of the statistical weight function 𝑤 used to describe the importance of each sample[76]. The model selection

with TMCMC sampling is formulated in [76]. The TMCMC algorithm draws samples from a series of intermediate

distributions, generated iteratively with the capability of converging to complex multi-modal posterior distributions.

These PDFs are defined as:

𝑃 𝑗 ∝ 𝑃 (𝜃 | 𝑓 ) · 𝑃 (V| 𝑓 , 𝜃)𝛽 𝑗 𝑗 = 0, ..., 𝑚 (14)

Where 𝑗 is the stage number. Tempering parameter 𝛽 evolves from 𝛽0 = 0 to 𝛽𝑚 = 1 to ensure a smooth transition

between the prior and posterior distribution so 𝑃0 = 𝑃 (𝜃 | 𝑓 ) to 𝑃𝑚 = 𝑃 (𝜃 | 𝑓 ,V). The weight of each sample is

determined as:

𝑤
(
𝜃 𝑗 ,𝑘

)
=
𝑃 (𝜃 | 𝑓 ) · 𝑃 (V| 𝑓 , 𝜃)𝛽 𝑗+1

𝑃 (𝜃 | 𝑓 ) · 𝑃 (V| 𝑓 , 𝜃)𝛽 𝑗
= 𝑃 (V| 𝑓 , 𝜃)𝛽 𝑗+1−𝛽 𝑗 𝑘 = 1, ..., 𝑁 𝑗 (15)

Where 𝑁 is the number of samples. Next, compute

𝑆 𝑗 =

∑𝑁 𝑗

𝑘=1 𝑤(𝜃 𝑗 ,𝑘)
𝑁 𝑗

(16)

This process is repeated for each stage. At the end of the algorithm, the evidence of the model can be computed as

𝑃 (V| 𝑓 ) =
𝑚−1∏
𝑗=0

𝑆 𝑗 (17)

It is common to evaluate log (𝑃 (V| 𝑓 )) for ease of computation, mainly to avoid numerical problems (e.g. arithmetic

underflow) associated with the calculation of the full likelihood function [28]. The less negative log (𝑃 (V| 𝑓 )) the more

evidence there is to suggest the specific model fits the provided data.
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(a) Experimental configuration [61] (b) 2 DOF Freebody diagram

Fig. 3 Nonlinear flutter test rig

IV. Model description
In this section the experimental flutter rig and the mathematical model that will be used to study the proposed

probabilistic identification framework are described.

A. Experimental configuration and data collection

Figure 3a shows the experimental flutter rig comprised of a NACA-0015 wing profile rigidly attached to a stainless

steel shaft. The aerofoil is supported by rotational bearings on each end allowing for rotation and a bearing system

allowing vertical displacement. The spring in the heavy degree of freedom behaves in a linear manner. In the bearings,

leaf springs are introduced to create a nonlinear hardening effect in pitch motion. This mimics nonlinear effects

at interfaces that are encountered in a real aircraft. Detailed description of the set-up is found in [37]. An Omron

ZX1-LD300 laser displacement sensor is used to measure heave displacement and a RLS AksIM 18 bit absolute

magnetic encoder captures pitch motion. Wind speed was recorded directly from the wind tunnel control system. Both

stable and unstable LCO are captured through control-based-continuation. The raw data was fed into a fast Fourier

transform algorithm to minimise noise. This process was carried out for two experimental configuration with different

spring constants. LCO amplitude and corresponding velocity for each configuration is displayed in Figure 4 with design

rig parameters for both in 1. Data was collected using control-based continuation, providing access to both stable and

unstable responses of the system (see [61] for more explanations about CBC and its exploitation in this context). Based

on two sets of experimental data, 𝐾𝛼2 and 𝐾𝛼3 were determined by implementing the deterministic approach normal

form theory in [61]. The estimated values are shown in Table 1 and will be used as the initial input points.

B. Mathematical model

The flutter rig is modelled as the two-degree-of-freedom system shown in Figure 3b coupled with an unsteady

aerodynamic model described by Abdelkef et al. [77]. For the nonlinear flutter rig considered 𝑥 = [ℎ, 𝛼, 𝑤] where ℎ is

heave, pitch is 𝛼 and 𝑤 is the aerodynamic state. The structural matrices as shown in Equation1 are configuration as:
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(a) configuration 1 (b) configuration 2

Fig. 4 Labelled experimental data (• stable LCO) (• unstable LCO)

M =



𝑚𝑇 𝑚𝑤𝑥𝛼𝑏 0

𝑚𝑤𝑥𝛼𝑏 𝐼𝛼 0

0 0 1


; D =



𝑐ℎ 0 0

0 𝑐𝛼 0

−1/𝑏 𝑎 − 1/2 0


; K =



𝐾ℎ 0 0

0 𝐾𝛼 0

0 0 0


(18)

The unsteady aerodynamic matrices are described as follows:

A =



−𝜋𝑏2 𝑎𝜋𝑏3 0

𝑎𝜋𝑏3 −𝜋
(
1/8 + 𝑎2) 𝑏4

0 0 1


B =



−𝜋𝑏 − (1 + (1/2 − 𝑎)) 𝜋𝑏2/𝜌 −2𝜋𝑉𝑏 (𝑐1𝑐2 + 𝑐3𝑐4) /𝜌

𝜋 (𝑎 + 1/2) 𝑏2/𝑉 −
(
1/4 − 𝑎2) 𝜋𝑏3 2𝜋𝑏2𝑉 (𝑎 + 1/2) (𝑐1𝑐2 + 𝑐3𝑐4)

0 0 − (𝑐2 + 𝑐4) /𝜌𝑏


C =



0 −𝜋𝑏 −2𝜋𝑉𝑐2𝑐4 (𝑐1 + 𝑐3) /𝜌

0 𝜋𝑏2 (1/2 + 𝑎) 2𝜋𝑏 (𝑎 + 1/2) 𝑐2𝑐4 (𝑐1 + 𝑐3)

0 1/𝜌𝑉𝑏 𝑐2𝑐4/𝜌𝑏2



(19)

Where A,B,C are the corresponding martix in Equation 1. To model the nonlinear part of the system it is initially

assumed spring stiffness is approximated by quadratic and cubic terms in pitch degree of freedom (which is typically
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Table 1 Measured parameters and estimated parameters including initial estimates for nonlinear parameters

Measured Parameters Value Estimated Parameters Initial estimated value
𝑐(𝑚) 0.15 𝐾ℎ (𝑁/𝑚) 3529.4 (configuration 1), 3318.3 (configuration 2)
𝑎 −0.5 𝐾𝛼 (𝑁/𝑟𝑎𝑑) 54.11 (configuration 1), 65.6 (configuration 2)
𝜌(𝑘𝑔/𝑚3) 1.204 𝐾𝛼2 (𝑁/𝑟𝑎𝑑2) 751.6 (configuration 1), 774.7 (configuration 2)
𝑚𝑤 (𝑘𝑔) 5.3 𝐾𝛼3 (𝑁/𝑟𝑎𝑑3) 5006.7 (configuration 1), 3490.7 (configuration 2)
𝑚𝑇 16.9 𝑐𝛼 (𝑘𝑔𝑚2/𝑠2) 0.5628 (configuration 1), 1.0338 (configuration 2)
𝑥𝛼 0.24
𝐼𝛼 0.1724
𝑐ℎ (𝑘𝑔/𝑠) 14.5756

used to represent geometrical nonlinearities [78]):

𝑓𝑛𝑙 = 𝐾𝛼2𝛼
2 + 𝐾𝛼3𝛼

3; 𝑞𝑛𝑙 =



0

1

0


(20)

Nonlinear parameters 𝐾𝛼2 and 𝐾𝛼3 are treated as unknowns. The methodology described in this paper will work to

estimate the nonlinear parameters. Other known parameter values are listed in Table 1.

V. Results: comparison of sampling methods
In this section, the described probabilistic identification methodology proposed in the section 2 is applied to the two

configurations of the above nonlinear flutter test rig. It is assumed that original nonlinear function is in a form shown in

Equation 20 as in previous work [19, 37, 58, 61]. Considering the reference data in [58], we assume that 𝐾𝛼2 is in the

range of 0 − 1500𝑁/𝑟𝑎𝑑2 while 𝐾𝛼3 is in the range of 0 − 10000𝑁/𝑟𝑎𝑑3. For each setup, three sampling methods,

namely MCMC, TMCMC and SMC sampling methods, are applied and compared in terms of the quality factors of the

model identification. These results are also compared to the initial estimates obtained form normal from theory [58] and

listed in Table 1.

Figure 5 shows mean accuracy of Kriging surrogate models with respect to the amount of training continuation runs

carried out. Here, mean accuracy is estimated based on the difference between predictions from the Kriging model

and a separate set of comparison data from continuation runs. Accuracy converges with 400 bifurcation diagrams in

training data at 99.8%. The same amount of training data is again required for the second configuration. Figure 6

compares the amplitude of LCO obtained from HBM simulation and the Kriging surrogate model. The highlighted

area reflects the degree of uncertainty from the predictions using the Kriging model within 95% confidence bands.

Small discrepancies are observed at turning points as sharpness of the curve is increased which was not improved
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Fig. 5 Accuracy of surrogate model with respect to sample size for configuration 1

(a) configuration 1 (b) configuration 2

Fig. 6 Surrogate comparison

with increased sampling. The largest overshoot of the turning point observed was 2% (shown in Figure 6b which was

considered within a reasonable margin of error for this study. Uncertainty in model predictions close to estimated values

for nonlinear parameters proved to be less an 1% on average. It was therefore assumed that the mean predictions of the

surrogate model were accurate in the subsequent Bayesian parameter estimation process, and the uncertainty associated

with the surrogate model was not incorporated into the parameter estimation. With mean predictions, it is observed that

the Kriging model is capable of accurately capturing the response of LCO.

A. Configuration 1

Bayesian inference framework is firstly applied to the first configuration with the experimental data shown in Figure

4a. Tuning parameters presented in Table 2 are used to ensure an acceptance rate between 0.15-0.5 for each sampling
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Table 2 Tuning parameters

Prior distribution bounds Width parameter Burn-in Covariance matrix
𝐾𝛼2 : 0 - 1500 MCMC: 0.6 200 [ 1000 0 ]
𝐾𝛼3 : 0 - 1𝑒4 TMCMC: 1 0 [ 0 7000 ]

SMC: 0.1 0

(a) MCMC (acceptance rate = 0.267) (b) TMCMC (acceptance rate = 0.44) (c) SMC (acceptance rate = 0.32)

Fig. 7 configuration 1 trace plots (– mean),(– mean ± 𝑠𝑡𝑑)

method. Prior distributions are uniform between the stated bounds as low prior knowledge of the parameters is assumed.

Figure 7 shows the convergence of nonlinear parameters with three sampling methods. The convergence is defined as

when the mean and standard deviation of the posterior distribution becomes constant with further sampling. It shows

that TMCMC and SMC can converge within 300 samples while MCMC required 2736 samples with additional 200

burn-in samples before the convergence. It is worth noting that SMC converges in the fewest samples with only 153

mainly due to the benefit of using importance sampling. With TMCMC and SMC less samples are required for model

updating than in construction of the surrogate model. This seems to suggest there is no need to construct a surrogate

model. However, with the goal of using the estimated parameter distributions to quantity the impact of uncertainty on

bifurcation diagrams, the surrogate models are again implemented, significantly reducing computation time.

Figure 8 shows the Probability Density Functions (PDFs) and scatter plots using three different sampling methods.

It can be observed that each sampling method produces a PDF that resembles a normal distribution. The mean and

𝐶𝑂𝑉 of estimated nonlinear parameters are presented in Table 3. The estimated mean of the nonlinear parameter

between these three sampling methods is within 15%. It is worth noting that the estimation of the mean is around 45%

different from the initial estimates shown in Table 1. For both parameters, TMCMC provides the smallest confidence

interval in parameter prediction. It is also found that the two nonlinear parameters are linearly correlated from MCMC

and TMCMC, which however is not observed with the SMC sampling method as no samples are rejected during the

sampling process.

Figure 9 shows the distributed bifurcation diagrams using the estimated nonlinear parameters from the Bayesian

model updating. It is observed both TMCMC and SMC results capture all experimental data points within their 95%
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(a) MCMC (b) TMCMC (c) SMC

Fig. 8 configuration 1 PDF and scatter plots

Table 3 set up 1 parameter estimation

MCMC TMCMC SMC
𝐾𝛼2 𝐾𝛼3 𝐾𝛼2 𝐾𝛼3 𝐾𝛼2 𝐾𝛼3

mean 517.20 2555.8 524.50 2595.9 505.08 2420.6
COV [%] 5.52 9.44 9.72 16.20 6.29 3.47

Convergence (samples) 2736 215 153

uncertainty bands. In the case of MCMC, the confidence interval is much narrower than that using TMCMC and SMC.

There are two data points in the upper portion of the diagram falling outside uncertainty bands. It can be also found that

the lowest band of the turning point in MCMC and TMCMC spans to 14𝑚/𝑠 while this point is at 12.20𝑚/𝑠 for SMC.

If we are to assume the mathematical model is correct it indicates that SMC appears to overestimate the uncertainty of

LCO.

Figure 10 shows a comparison of mean lines from three sampling methods, the initial estimate and experimental data.

A clear improvement can be observed with each of the sampling methods compared to the one using the initial estimates.

The estimation of the LCO amplitude in each method closely follows the experimental data at the low amplitude points

but diverges after the turning point. The mean lines from each method closely follows each other, only overshooting

(a) MCMC (b) TMCMC (c) SMC

Fig. 9 configuration 1 bifurcation plots (* experimental points)(− mean plot), (− 95% confidence bounds)
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(a) Mean comparison
(b) Bias comparison (data labeled in Fig-
ure 4a) (c) Quality comparison

Fig. 10 configuration 1 comparison (* experimental points),(− initial estimate),(− MCMC),(− TMCMC),(−
SMC)

Table 4 set up 2 parameter estimation

MCMC TMCMC SMC

𝐾𝛼2 𝐾𝛼3 𝐾𝛼2 𝐾𝛼3 𝐾𝛼2 𝐾𝛼3

mean 700.03 3122.4 678.32 2982.6 697.20 3040.8
COV [%] 4.00 7.66 5.26 9.41 3.76 3.32

Convergence (samples) 2531 207 160

the turning point by 0.3𝑚/𝑠. Figure 10b shows the bias of these four methods in relation to experimental data. Each

sampling method is more accurate than the initial estimate for all data points apart from the point 7. The accuracy for

all sampling methods remains above 94% without a sharp drop off in accuracy. Figure 10c shows the quality of the

prediction between these three sampling method. It shows MCMC and TMCMC provide the best overall estimation of

physical behaviour in terms of confidence and accuracy. The bias of all methods are within 3%. However, the relatively

large 𝐶𝑂𝑉 in SMC predictions leads to a higher 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 than the other two sampling methods.

B. Configuration 2

Using the same method for configuration 1, a surrogate model for configuration 2 is constructed with 386 continuation

runs required for training data. The tuning parameters presented in Table 2 were implemented for model updating in set

up 2. Figure 11 shows the convergence of each sampling method where the similar pattern is observed as the first set up.

The SMC sampling method remains as the fastest converging one with only 200 samples. Figure 12 shows scatter plots

and PDFs produced. In this case, each of the sampling methods provide a shape similar to a normal distribution for both

parameters. A strong correlation between the parameters is again observed with results from MCMC and TMCMC but

not SMC. The mean and 𝐶𝑂𝑉 from the estimations are shown in Table 4. It can be seen that the mean results from the

Bayesian model updating are closer to the initial estimates shown in Table 1. The most confident predictions are again

achieved with SMC achieving the lowest average COV.
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(a) MCMC (acceptance rate = 0.30) (b) TMCMC (acceptance rate = 0.43) (c) SMC (acceptance rate = 0.36)

Fig. 11 Set up 2 trace plots (– mean),(– mean ± 𝑠𝑡𝑑)

(a) MCMC (b) TMCMC (c) SMC

Fig. 12 Set up 2 PDF and scatter plots

Figure 13 shows the bifurcation plot with confidence interval using the estimated posterior distribution of estimations.

Similar results are observed to the first set up, with SMC capturing all data points with a wide confidence bands while

MCMC and TMCMC only captures LCO behaviour at low amplitude before the turning point. Again, the MCMC

does not capture two data points after the turning point and TMCMC misses only one point. The lower band of SMC

significantly overshoots the turning point. As shown in Figure 14a, the mean line from each sampling method is

compared to the response generated with the initial estimate. In this case, it is less obvious which prediction is more

accurate. At lower amplitudes, the initial estimate matches the behaviour but after the turning point, the accuracy is

(a) MCMC (b) TMCMC (c) SMC

Fig. 13 Set up 2 bifurcation plots (* experimental points)(− mean plot), (− 95% confidence bounds)
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(a) Mean comparison
(b) Bias comparison (data labeled in Fig-
ure 4b) (c) Quality comparison

Fig. 14 Set up 2 comparison (* experimental points),(− initial estimate),(− MCMC),(− TMCMC),(− SMC)

lost. The mean lines from BMU predictions offer a slight improvement over the initial estimate. The initial estimate

overshoots the turning point the most. Figure 14b shows a comparison of bias of all the predictions compared to the

experimental points. It is observed, the initial estimate is most accurate until the turning point. For the stable LCO,

predictions from MCMC and TMCMC provide the most accurate predictions. Figure 14c confirms similar conclusions

to the Figure 10c where MCMC and TMCMC show best overall quality.

C. Conclusions of sampling method comparison

Considering both configurations several conclusions are reached. The experimental data is captured well using BMU

leading to better estimations than deterministic results. In the second configuration, the predicted results for both BMU

and the initial estimate appear in better agreement than in the first configuration. This could mean the mathematical

model holds better for the second set-up or there were fewer errors in gathering the experimental results. Another reason

could be the increased number of experimental data points used in the estimation. Considering overall mean accuracy,

each sampling method outperformed the initial estimate, particularly at higher amplitudes. Each sampling method

can be argued for depending on whether the user prioritises the accuracy of the mean prediction or a combination

of accuracy and confidence. If confidence and mean prediction is valued MCMC provides the best estimation. In

contrast, if capturing all physical behaviour is preferred, TMCMC and SMC may be chosen despite being the overshoot

of the turning point especially in the case of SMC. Parameter estimations have the lowest 𝐶𝑂𝑉 with SMC sampling but

provide the widest confidence bands in their bifurcation plots. This is likely due to SMC not rejecting samples and not

observing correlations between parameters. Both TMCMC and SMC converge with less samples than training input

runs are required, however taking forward UQ into consideration up to 60% less HBM continuation runs are required.

Taking all factors into account, TMCMC provides the best overall compromise in terms of convergence and accuracy

for both configurations. In configuration 1 the bifurcation plot produced captures all data points without significantly

overshooting the turning point and over 90% of data for configuration 2. The estimations from TMCMC and SMC in

configuration 1 capture all physical behaviour within their confidence bands, which suggests the parameter distributions
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accurately estimate the true uncertainty of the parameters and the mathematical model hold, particularly in the case

of TMCMC. For these reasons, it may be argued the estimated distributions of nonlinear parameters can effectively

represent physical behaviour. Alternatively, there is less agreement between all predicted values and experimental data

after the turning point. There are two possible reasons: the model only holds for low amplitude results or there was a

measurement error in gathering higher amplitude points. For the first case, the form of the model needs to be modified

to capture higher amplitude behaviour. Since the errors become larger as amplitude increases, it is more likely the

aerodynamic model does not hold for higher amplitude in this scenario, but further investigation is required.

Based on the results from both setups a clear pattern has emerged in that lower amplitude data points are well

captured but accuracy is lost in upper sections in both BMU and initial estimates. There may be two reasons the

experimental data may not match the results: (1) there was a significant amount of noise or errors in gathering the data;

(2) the mathematical model particularly the nonlinear function may not fully capture the true physical behaviour of the

system. In an effort to further improve the accuracy of mathematical models to capture the experimental data, alternative

nonlinear models are suggested and ranked in the next section.

VI. Results: Nonlinear model selection
Previously it was assumed both 𝐾𝛼2 and 𝐾𝛼3 were positive. Prior distributions and LHS for surrogate models

for nonlinear parameters could not draw samples from negative design space. In this section, prior distributions that

include negative design space are considered. The aim is to improve agreement with results from model updating and

experimental data by altering the characteristic of the nonlinear function. Figure 15 shows examination of the whole

design space. The turning point of all bifurcation plots involving cubic hardening are below 12𝑚/𝑠 for configuration 1,

overshooting what would be expected from the experimental results by over 25%. The same behaviour was observed

in configuration 2. For this reason cubic hardening design space is not considered. As seen in [38], the third and

fifth-order non-linearity is also considered in sub-critical aerofoil systems. With the same criteria as in Figure 15, this

nonlinearity’s only feasible design space is with third-order softening and fifth-order hardening spring.

𝑓𝑛𝑙 = ±𝐾𝛼3𝛼
3 ± 𝐾𝛼5𝛼

5 (21)

Table 5 shows the three possible nonlinear models to approximate the experimental LCO data. The suitability of the

models will be ranked by both the average 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 of the bifurcation results and the evidence function log(𝑃(𝐷 |𝑀))

from BMU with TMCMC sampling.

The Kriging surrogate models for each nonlinear function are first developed through the same methodology

presented in the Section 2. The TMCMC sampling method is selected for BMU since it has proved the most effective

method using the original nonlinearity in the previous section. It can also produce the evidence function as a by-product
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Fig. 15 Full model selection design space. Each point on the scatter plot represents a full bifurcation diagram

Table 5 Parameter estimations for model selection

Model Parameters[Units] Mean 𝐶𝑂𝑉 [%]
1 𝐾𝛼2 + 𝐾𝛼3 𝐾𝛼2,𝐾𝛼3 524.50,2595.9 (configuration 1) 9.72,16.20 (configuration 1)

[𝑁/𝑟𝑎𝑑2],[𝑁/𝑟𝑎𝑑3] 678.32,2982.6 (configuration 2) 5.26,9.41 (configuration 2)
2 −𝐾𝛼2 + 𝐾𝛼3 𝐾𝛼2,𝐾𝛼3 −383.78,1442.1 (configuration 1) 12.20, 22.17 (configuration 1)

[𝑁/𝑟𝑎𝑑2],[𝑁/𝑟𝑎𝑑3] −530.99,1754.2 (configuration 2) 4.20,7.84 (configuration 2)
3 −𝐾𝛼3 + 𝐾𝛼5 𝐾𝛼3,𝐾𝛼5 −1822.5,1.136𝑒5 (configuration 1) 22.01,31.14 (configuration 1)

[𝑁/𝑟𝑎𝑑3],[𝑁/𝑟𝑎𝑑5] −2343.5,1.061𝑒5 (configuration 2) 19.27,21.55 (configuration 2)

for the model selection. It was found the evaluation of log (𝑃 (𝐷 |𝑀)) required additional samples to converge over

mean and standard deviation values. Table 6 shows that log (𝑃 (𝐷 |𝑀)) converges at 10000 samples. For each model

with both configurations, 10000 samples are taken to ensure evidence function converged. Tables 5 and 7 display the

estimated parameters for each model and the evidence function compared to the average 𝑞𝑢𝑎𝑖𝑙𝑖𝑡𝑦 of predictions.

As shown in the Table 6, model 3 provided the highest variation in predicted parameters for both configurations.

For configuration 1, model 1 has the highest confidence in estimations and model 2 has the highest for configuration 2

having the lowest average 𝐶𝑂𝑉 respectively.

Table 7 shows the computed evidence of each model for the two configurations. It can be observed that, for

configuration 1, the evidence function indicates model 2 is the best choice whereas model 1 has the lowest 𝑞𝑢𝑎𝑖𝑙𝑖𝑡𝑦

factor. Figure 16 shows that nonlinear model 1 and 2 capture all data within confidence bands. The bifurcation plots

produced from all models show plots that closely resemble each other. The model 3 fails to capture one data point from

the confidence bands after the turning point. Figure 16 shows a closer examination of the PDFs of nonlinear parameters.

Table 6 Convergence of evidence function for configuration 1, model 1 with TMCMC sampling

Samples 100 500 1000 2500 5000 7500 10000 125000
log (𝑃 (𝐷 |𝑀)) -7.83 -7.94 -7.72 -7.35 -7.44 -7.46 -7.45 -7.45
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Table 7 Evidence function for configuration 1 and 2 from 10000 TMCMC samples

configuration 1 configuration 2
𝑓𝑛𝑙 log (𝑃 (𝐷 |𝑀)) 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 [%] log (𝑃 (𝐷 |𝑀)) 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 [%]

1 𝐾𝛼2 + 𝐾𝛼3 −7.45 5.24 −8.86 5.21
2 −𝐾𝛼2 + 𝐾𝛼3 −5.30 5.61 −9.74 5.01
3 −𝐾𝛼3 + 𝐾𝛼5 −5.68 8.74 −8.77 4.78

It is very clear that multi-modal distributions are produced for the model 2 and 3, suggesting the existence of two

possible solutions. The mode with the highest probability density is referred to as peak 1 while peak 2 refers to the lower

probability density peak. The model 3 has a single modal solution for 𝐾𝛼3 but a multi-modal solution for 𝐾𝛼5. Figures

18a and 18b show the response of LCO using the nonlinear parameters estimated from each peak. For model 2, it can be

observed peak 1 fails to capture the highest amplitude point but has a closer overall fit to the experimental data. The

response using the nonlinear parameters from the Peak 2 reaches the highest amplitude point but stays away from the

remaining data at amplitudes above the turning point. In model 3, peak 1 captures lower amplitude data and the highest

amplitude point. Peak 2 captures data close to the turning point while failing to reach the highest amplitude points.

Considering just average quality, results suggest the model 1 is the optimal choice for configuration 1. This is in line

with the bifurcation diagram capturing all experimental points within confidence bands. Based on the TMCMC class

selection, both models 2 and 3 are recommended above model 1. However, the solutions to these models are multi-modal

as discussed. Since there are two suggested solutions, it is not valid to just consider the mean and 𝐶𝑂𝑉 of the posterior

distribution estimations. This suggests considering a combination of the two different nonlinear functions at different

LCO amplitudes might provide a better model than the single solution provided by model 1. Quality measurement

assumes there is a single estimated solution whereas evidence function can account for multimodal results. This is why

quality and evidence functions recommend alternative solutions in both configurations.

In configuration 2 both evidence function and 𝑞𝑢𝑎𝑖𝑙𝑖𝑡𝑦 suggest model 3 is the optimal choice. The examination of

posterior distributions in Figure 14 shows that models 1 and 2 converge to a unique solution while model 3 produces

a multi-modal PDF with two possible solutions. Figure 18c show the amplitude of LCO with these two possible

solutions. It shows peak 1 captures lower amplitude data while peak 2 the higher amplitude points. As was the case

with configuration 1, TMCMC model selection favours a combination between these two possible solutions which

outperforms a single solution from the original model. Overall this could mean that none of the models are perfect,

particularly with higher amplitude points an updated model is required.

VII. Conclusion
In this paper, a probabilistic identification methodology for estimating parameters in a nonlinear aeroelastic system is

presented. An advanced kriging algorithm is used to develop accurate data-driven surrogate models for LCO behaviour.
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(a) Model 1 (b) Model 2 (c) Model 3

Fig. 16 Bifurcation diagrams and PDF for configuration 1 [for multi-modal PDF (− peak 1),(− peak 2)]

(a) Model 1 (b) Model 2 (c) Model 3

Fig. 17 Bifurcation diagrams and PDF for configuration 1 [for multi-modal PDF (− peak 1),(− peak 2)]

(a) configuration 1, model 2 (b) configuration 1, model 3 (c) configuration 2, model 3

Fig. 18 Multi-modal mean bifurcation diagrams (− peak 1),(− peak 2)
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The surrogate models are employed with BMU to identify the nonlinear parameters and functions. The performance of

three advanced sampling methods are compared. Experimental data from the nonlinear flutter rig with two separate

configurations was employed with the goal of estimating a nonlinear model to fit the data.

Probabilistic bifurcation diagrams produced with BMU successfully captured the experimental data was within

the computed confidence bands at low amplitude points. This proved a significant improvement from the initial

deterministic approach for each configuration. With higher amplitude points portions of the data were not captured

within confidence bands but made an improvement over the initial estimate. Results from BMU for each sampling

method had variations due to the different sampling philosophies associated with each respective approach. In the first

configuration, TMCMC and SMC could capture all data points within confidence bands while SMC overshoots the

estimation of the turning point by a large margin. The correlation between nonlinear parameters was also observed in

MCMC and TMCMC results. Only SMC could capture all physical behaviour while overshooting the turning point in

the second configuration. The estimations from the TMCMC is able to capture over 90% of the physical behaviour

leading to an average mean accuracy of 98%. Considering the accuracy and convergence, it was determined TMCMC

produced the highest quality estimations, capturing all experimental points with much higher convergence than MCMC.

All predictions with estimations from BMU were up to 20% more accurate than that from the initial estimate. Accuracy

in prediction of physical behaviour following the turning point dropped. From 5% to 22% of data points are omitted from

confidence bands following the turning point. This suggests the mathematical model does not hold for higher amplitudes

of LCO, and a more sophisticated aerodynamic model might be needed. Considering computational efficiency, for

purely estimating mean nonlinear parameters more HBM continuation runs are required with TMCMC and SMC with

the data-driven approach. In carrying out forward UQ however, the proposed methodology can cut the amount of costly

continuation runs by up to 60%.

Two categories of nonlinear models were implemented and evaluated through TMCMC class selection. For the

first configuration, the TMCMC process suggested selecting model 2, which includes quadratic softening and cubic

hardening. As for the second configuration, model 3 equipped with third-order softening and fifth-order hardening was

deemed the most suitable option. After analyzing the quality factor of results obtained from the bifurcation diagrams

along with the confidence bands for both scenarios, it can be concluded that model 1 is the most suitable option.

An examination of posterior PDFs of nonlinear parameters showed the presence of multi-modal solutions in both

configurations. Taking a single mean and standard deviation estimation from either of two estimated solutions did not

capture the complete set of data. Upon examining both solutions, it was noted that each solution is capable of capturing

a portion of the bifurcation diagram either for lower or upper amplitude data. TMCMC class selection suggests there

is no unique solution to represent the nonlinear functions to capture all the physic across a wide range of amplitude,

particularly for higher amplitude points. A further improvement of the mathematical model for the nonlinear aeroelastic

model is required. This could either be achieved with an alternative nonlinear function or implementing nonlinearities in
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different degrees of freedom. Another area of improvement could be in optimising the amount of training data required

for constructing the surrogate models, potentially with a multi-level approach. This would integrate the Kriging model

with the model updating process.
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