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Abstract

Safety margins of aerospace structures can be improved through altering the
laminate parameters of composite materials to increase flutter and divergence
velocities. Existing work demonstrates the impact of material uncertainties on
low-fidelity structural models that are not sufficient to represent realistic air-
craft designs. A gap exists in quantifying laminate parameter uncertainties on
aeroelasticity for high-fidelity three-dimensional composite structures in real-
istic tailored designs. This paper puts forward an efficient methodology for un-
certainty quantification on the aeroelastic characteristics of three-dimensional
composite structures using FE-based parametric composite models and ad-
vanced Kriging surrogate models. The methodology is tested on both low and
high fidelity case studies to represent the composite wing structure. Similarities
between the case studies are observed in the coefficient of variance of all hard
flutter modes being within 0.15-1.4% of each other. The difference was found
for divergence and soft flutter velocities where the coefficient of variance could
be over ten times higher in the high fidelity case. Global sensitivity results re-
vealed similar physical behaviour cases can be produced from both studies at
early design stages.
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1. Introduction

Composite materials offer several useful characteristics such as high spe-
cific strength and tailorable stiffness that can be effectively exploited to im-
prove efficiency in the design of aerospace structures. They can therefore sig-
nificantly contribute to the UN goal of net-zero aircraft emissions by 2050 by
reducing aircraft weight [1]. The introduction of aircraft based on composite
architecture has been estimated to contribute 20-25% of industry CO2 reduc-
tions targets [2]. A crucial factor to consider in novel aircraft architectures is the
interaction between aerodynamic and structural forces in a flexible structure,
known as aeroelasticity. This is particularly important in the use of compos-
ite materials, which typically increase the flexibility of structures. Aeroelastic
phenomena are divided into two main categories, static and dynamic. Static
aeroelasticity accounts for the non-oscillatory behavior of aerodynamic inter-
actions with flexible structures. The key static phenomenon is called "diver-
gence" where aerodynamic force can overcome the structural stiffness beyond
a certain velocity leading to a structural failure. The oscillatory aeroelastic be-
havior is referred to as dynamic aeroelasticity. An often disastrous impact of
dynamic aeroelasticity is flutter, where, past a certain velocity, the structural
response to a perturbation of aerodynamical excitation is negatively damped
oscillations [3]. Both of the aeroelastic phenomena can lead to catastrophic
structural failure, as in the case of Braniff International Airways Flight 542 [4].

As a result, stability boundaries related to aeroelastic qualities, namely di-
vergence and flutter velocity, must be carefully considerfed during the early
design stage of a novel aircraft. A recent work [5] has shown that the layup
of composite structures has a significant impact on these aeroelastic behaviors
through the change of structural stiffness that has been exploited extensively
to improve aeroelastic qualities [6, 7, 8, 9]. Discussed by Zheng and Wang [10],
studies on aeroelasticity are mainly focused on deterministic divergence and
flutter analysis without consideration of uncertainties in material properties.

However, being dependant on interactions between structure and aerody-
namics where uncertainties do exist these material parameters are inherently
uncertain. In composite manufacturing specifically, uncertainties can arise
from several different sources such as material variability and tolerance of man-
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ufacturing processes [11, 12]. Composite plates that are employed in the man-
ufacture of aircraft wings are made up of layers of plies where fibers within
an individual ply are orientated in a specific direction. Altering the ply ori-
entation angle in subsequent ply has an impact on the stiffness of a material,
hence the aeroelastic characteristics. It is widely recognized that the process
of stacking plies has a significant degree of uncertainties that have been esti-
mated in recent works to be +/−5o in the form of uniform distributions [13, 14].
These uncertainties can come from both human and machine processing caus-
ing misalignment in layers [15] and plies being dropped or damaged [16, 17].
Uncertainty in ply orientation has been extensively researched, particularly in
the case of buckling analysis, where it has been shown robust designs outper-
form deterministic designs under real-world situations that include uncertain-
ties [18]. Scarth et al.[6] demonstrated the effectiveness of using Polynomial
Chaos Expansion (PCE) with ply angle uncertainty with a flat composite plate
case. Limitations were found in reduced improvement in computation time in
cases where multiple modes entered flutter. It is possible for separate modes
to enter flutter with different intensities. Furthermore, the mode coupling us-
ing the composite plate model is limited due to the relatively simple geometry
considered in the flat plate model. Models with detailed geometry describing
wing thickness are inherently more accurate in describing complex geometry.
However, there are very few studies looking into the impact of ply orientation
uncertainty on aeroelastic phenomena in high-fidelity three-dimensional test
case due to the high computational cost and complexities of the development
of numerical models.

High-fidelity structure models are typically constructed manually through
Finite Element Modelling (FEM) with the aid of Computer Aided Design (CAD)
software. In the early design stages, frequent updates of parameters such as
ply layup are required, which is time-consuming when manually constructing
CAD models. This is even more computationally expensive when in attempt-
ing to quantify the influence of uncertainties where thousands of variations of
a structure would be required for Monte Carlo Simulations (MCS). The com-
plexities however can be mitigated by using a fully parametric FE model in-
cluding material and geometrical parameters. The work carried out at Dapta
Ltd. has already demonstrated how a fully parametric model can be imple-
mented to effectively describe the static and dynamic behavior of a complex
three-dimensional wing-box model [19]. This was achieved by linking parame-
ter inputs with FEM pre-processors in the Python interface, allowing for a series
of random inputs to generate corresponding outputs.
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MCS has been commonly used to investigate the influence of material un-
certainties on aeroelastic characteristics [13]. Although robust, MCS can often
require a large number of samples to truly capture the possible behavior of the
system, and for this reason, it is mainly used to validate alternative approaches.
As mentioned previously, PCE is implemented to reduce the computational
expense of MCS for composite case studies [6]. Previous work has demon-
strated the effectiveness of implementing surrogate models to aid in MCS with
complex models, particularly in some highly complex cases such as aeroelastic
analysis which can be time-consuming even for a single run [20, 21, 22]. With
effectively gathered limited training data from high fidelity simulations, it is
possible to construct these surrogate models through several methods such as
PCE [23, 24] and Gaussian process models [25, 26, 27]. Yan et al. [28] proposed
the use of a Kriging surrogate model to sample probability density functions
of updated parameters integrated with a Bayesian interface. When paired with
Latin-Hypercube sampling to gather training data, it has been shown that ad-
vanced Kriging methods provide accurate surrogate models from relatively low
amount of data. Liu et al. [29] developed a sophisticated surrogate model for
the purpose of of quantifying interval uncertainties in structures. A methodol-
ogy for pairing Latin-Hypercube Sampling with Kriging methods in a sequential
process was demonstrated as opposed to preselected training data, showing
improved accuracy over alternative approaches for nonlinear dynamical sys-
tems.

Latin-Hypercube Sampling (LHS) first described by McKay in 1979 [30] is
commonly used as a sampling technique during the surrogate model devel-
opment. LHS with least-squares linear regression can significantly reduce the
number of samples required compared to Monte Calo Techniques [6]. It has
been recently adopted for the study of Uncertainty Quantification (UQ) and
optimisation in composite laminate properties to investigate the impact of ply
angle uncertainty and ply thickness on both static and dynamic properties [14,
31, 32]. The relative importance of each input on uncertainty through global
sensitivity analysis has not been investigated. Sobol indices, first introduced by
Sobol [33, 34] can be used to indicate the relative sensitivity of parameters [35].
Saltelli details an effective sampling algorithm to determine Sobol indices that
are integrated into OpenTURNS software implemented in this study [36, 37].
Although effective, it has not been applied to aeroelastic systems.

The objective of this work is to quantify the influence of ply angle uncer-
tainties in the static and dynamic aeroelastic behaviour of a composite wing.
The main contribution of this paper is to apply a UQ methodology in cou-
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ple with Kriging-based surrogate models to a high-fidelity three-dimensional
aeroelastic system. An advanced Kriging method paired with Latin-hypercube
sampling is utilised in the development of surrogate models to improve com-
putational efficiency. A global sensitivity analysis is performed using Sobol in-
dices to identify the most influential parameters. The methodology of UQ is
first validated by using a flat composite plate test case before being applied to
an aerofoil-shaped parametric wing box model for aeroelastic analysis. Results
from the flat plate wing box case study will be also used to compare that from
the aerofoil shaped wing box case study to indicate the limitation of the flat
plate model.

2. Methodology

The section will present the general methodology used in both low and
high-fidelity case studies. A brief overview of aeroelastic analysis techniques
and general laminate theory will be first presented. Then, the methodology of
uncertainty quantification applied to both case studies will be described, in-
cluding surrogate model development and global sensitivity analysis.

2.1. Aeroelastic Analysis

The aeroelastic analysis laid out here is based on mathematical models that
can be arranged into the second-order differential equation shown in Equation
1. Once in this form, both divergence and flutter velocities can be determined.
Aeroelastic systems can be arranged in this form assuming structural forces act-
ing to balance aerodynamic forces.

M̂q̈ + K̂q = ρai r V B̂q̇ +ρai r V 2Ĉq (1)

Where q denotes the system’s degrees of freedom (displacement vector) and
M̂ and K̂ are the structural mass and stiffness matrices respectively. Matri-
ces B̂ and Ĉ account for aerodynamic forces (lift and drag) and the resulting
moments, which are dependent on airspeed. Terms related to air-speed and
-density are commonly divided from constant structural matrices in aeroelas-
tic analysis to simplify analysis. Each matrix is of the size N ×N where N is the
number of degrees of freedom of the system. The standard differential equation
can be rearranged into first-order state Equation 2 as:

q̇ = Qq (2)
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Where:

q =
[

q̇
q

]
Q =

[
ρai r V M̂

−1
B̂ M̂

−1
(ρai r V 2Ĉ− K̂)

IN×N 0N×N

]
Matrix Q will be referred to as the linear matrix as it fully captures the linear

behavior of the system.
Divergence is defined as the point where static aerodynamic forces are equal

to structural restoring forces, defined in Equation 3. Matrix Ĉ being dependent
on velocity, divergence velocity Vd can be determined through computing the
determinant of Equation 3 and solving for Vd [38].

K̂ = ρai r Vd Ĉ (3)

Flutter velocity is the point where the system becomes undamped. The
damping ratio for each mode can be found through the classical eigenvalue
problem writing Equation 2 as q̇ − Qq = 0. Assuming a oscillatory response
q = qoeψi t the eigenvalue problem is written:[

Q− Iψi
]
φ= 0 (4)

Where ψi are eigenvalues in the conjugate pair

ψi =−ζiωi ± iωi

√
1−ζi (5)

where ωi are the aeroelastic frequencies and ζi are the damping ratios [39].
These frequencies are related to the aeroelastic modes of the system and are not
to be confused with the structural modes. Matrixφ contains the corresponding
eigenvectors. Flutter is characterized by unstable negatively damped oscilla-
tions. From this definition, it can be determined that if any of the real parts
of Equation 5 are positive, the system is dynamically unstable [3]. A mode can
enter flutter in two forms, "soft flutter" and "hard flutter". Soft flutter behavior
occurs when damping ratio of a mode gradually becomes negative with a shal-
low gradient as velocity increases. This can lead to a behavior known as "hump
mode". As stated by Wright and Cooper.[3] a hump mode can often become
stable again at higher velocities and may be possible to counteract with small
structural damping modifications. In contrast, when a mode enters a hard flut-
ter a steep gradient of damping ratio with velocity is observed.
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Figure 1: [45/0/]s laminate

2.2. Laminate theory

A laminate as discussed in this work is an organized stack of composite
plies with uni-directional fiber direction angles. Two constraints were placed
on the laminate stacking sequence based on common industrial practices. The
laminate must be symmetrical in the z-midplane and ply angle can only be in
four directions 0o , +45o , −45o and 90o . Figure 1 shows a laminate of lay-up
[45/0/0/45], which is denoted simply as [45/0/]s, where the index s refers to
symmetry.

Elastic properties of the entire laminate are defined by the 6×6 ABD matrix,
which is obtained with knowledge of applied loads and material properties [40].
The transformed reduced stiffness matrix Q∗

i j for each ply (defined in Appendix
A) which is dependent on θ is implemented to determined ABD in Equations 6.

Ai j =
n∑

k=1

[
Q∗

i j

]
k

(zk − zk−1)

Bi j = 1

2

n∑
k=1

[
Q∗

i j

]
k

(
z2

k − z2
k−1

)
Di j = 1

3

n∑
k=1

[
Q∗

i j

]
k

(
z3

k − z3
k−1

)
(6)

Where zk represents the distance from the midplane to bottom of kth ply. Not-
ing Q∗

i j is different for each ply whilst direct strains ϵ and curvatures κ will be
the same, following integration across the total thickness, a structural restoring
moment can be calculated in Equation 7. Through this relationship impact of
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the laminate layup is linked to structural response.

 Mxx

My y

Mx y

=
 B11 B12 B16

B12 B22 B26

B16 B26 B66


 ϵo

xx
ϵo

y y

γo
x y


+

 D11 D12 D16

D12 D22 D26

D16 D26 D66


 κo

xx
κo

y y

κo
x y

 (7)

Due to symmetry, it can be observed from Equation 6 that all values of B will be
zero. In a symmetric matrix, it can therefore be deduced that structural stiffness
is largely dependent on D which is derived from both laminate properties and
layup. Restoring moments in both case studies are used to generate the K̂ in
Equation 1, linking laminate properties to aeroelastic characteristics.

2.3. Uncertainty Quantification

A six-ply laminate will be considered in both test cases in this paper. Each
ply is treated as an independent variable so in quantifying uncertainty in ply
orientation angle there are six uncertain parameters to consider. Following
methodology from Dodwell et al.[13] uniform distributions that extend +/−5o

past nominal θ will be selected for each ply orientation angle describing uncer-
tainties observed in manufacturing. From these distributions, samples were
gathered through MCS to achieve an efficient spread of data shown in Figure
2 as an example. For each input, an output sample for either divergence or
flutter velocity is generated through the aeroelastic analysis. 95% confidence
bands can be plotted with the resulting Probability Density Function (PDF) of
full statistical MCS output [35]. The Coefficient of variance (COV = σ

µ ) is then
used to determine the normalized statistical variation of a prediction.

2.3.1. Global sensitivity analysis
The sampling method laid out by Saltelli is implemented for global sensitiv-

ity analysis[36], refereed to as Sobol analysis. This method analyses the influ-
ence random inputs have on outputs in a system with multiple inputs [33]. First
order Sobol indices quantify the influence each individual input has on the out-
put when considering uncertainty. Two sets of input samples are required X (1)

and X (2) where x = [θ1,θ2, ...,θ6], X = {
x(1), x(2), ..., x(n)

}
and n is sample size.

The estimation of first order indices considering the impact of a random vector
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Figure 2: Scatter graph and histograms of ply orientation angle with 100 samples for the layup
[-45,-45,0]s

on random variable Y k consists in estimating the quantity

Vi = Var
[
E
[

Y k |Xi ]
]]

=Ui −E
[

Y k
]2

(8)

Where Sobol proposes to estimate quantity Ui = E
[
E
[
Y k |Xi

]2
]

by swapping

every variable in the two samples apart from Xi through a call function

Ûi = 1

N

N∑
k=1

Y k
(
θ(1)

k1 , ...,θ(1)
k(i−1),θ

(1)
ki ,θ(1)

k(i+1), ...,θ(1)
k6

)
×

Y k
(
θ(2)

k1 , ...,θ(2)
k(i−1),θ

(2)
ki ,θ(2)

k(i+1), ...,θ(2)
k6

)
(9)

The first order Sobol indices are then estimated by

Ŝi = Ûi −µ2

σ̂2
(10)

Taking µ and σ̂ as the mean and standard deviation of Yk . Total order indices
ŜT i , consider interactions between the different inputs and their influence on
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the output[41].

ŜT i = Ŝi +
n∑

j=1, j ̸=i
Ŝi j (11)

where

Ŝi j =
Var

[
E
[
Y k |Xi , X j ]

]]
σ̂2

(12)

2.4. Surrogate Model Development

A Kriging algorithm is used for the development of surrogate models to im-
prove the computational efficiency of the UQ process. Separate models are
required for individual modes in each laminate layup due to varying behav-
ior. In Kriging, the best linear unbiased estimator estimates an unknown ran-
dom process mean[42]. In the case of divergence velocity Vd , the aim is to
generate a predictor P that estimates Vd based on inputs for each ply lay up
x = [θ1,θ2, ...,θ6] so Vd = P (x). Sets of training input data X = [

x(1), x(2), ..., x(n)
]

and corresponding outputs Y = [
y (1), y (2), ..., y (n)

]
are gathered first [43]. As is

common Kriging is frequently paired with LHS also used for UQ in Section 2.3
to gather training data. This method ensures a diverse set of points along all
variables. The Kriging predictor is formulated as follows

P (x) =µ(x)+wT (x)K−1(Y −µ(X )) (13)

where µ(x) is the mean function that represents the expected value or trend
of the response variable. It is typically assumed to be constant or can be de-
fined based on prior knowledge or domain expertise. Covariance matrix K is an
n ×n matrix where Ki j = Cor r [xi , x j ] represents the covariance or correlation
between i th and j th input points. The weight factor w(x) is defined as

w(x) = K−1Cor r [x, X ] (14)

where Cor r [x, X ] is a vector representing the correlation or covariance between
input x and training point X . Accuracy of P is computed with comparison to a
separate set of test data.

Figure 3 demonstrates the development of a surrogate model for both cases.
Statistical distributions are defined for input parameters [θ1,θ2, ...,θ6] where
LHS samples are drawn. These distributions are defined to capture all possi-
ble inputs the surrogate model is expected to experience. Aeroelastic analysis
with a low and high-fidelity model is then performed for each generated sample
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Figure 3: Surrogate model development

input. The corresponding outputs are then used in the construction of Kriging
surrogate model. The accuracy of the model is checked against separate test
data to ensure its convergence. Training data is gathered until accuracy of the
model is converges with additional training data.

3. Flat Plate Wing Box Case

In this section, a flat plate wing box case is presented which is used to val-
idate the methodology of the aeroelastic analysis and UQ including surrogate
modeling techniques. First, flat plate aeroelastic model based on a compos-
ite plate is presented; then both deterministic and probabilistic results are de-
scribed and discussed.

3.1. Model setup

Figure 4 shows a simple cantilever beam considered as the flat plate model
in this work. A six-ply symmetric layup was used with parameters in Table 1
describing the dimensions of the wing. Examination of ply orientation angle
θ in reference to Figure 4 shows 90o plies counteract wing twist and 0o plies
counteract bending. As is commonly practiced in simplified models, chordwise
rigidity was assumed. This means there is only one out of plane twist mode.
The chordwise shape remains straight but has the freedom to move at η = −1
and η = 1. It is possible to derive mass and stiffness matrix (M̂ and K̂) through
the energy method with assumed mode shapes[44]. Mode shapes are based on
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Figure 4: A cantilever flat plate wing box model

Legendre polynomials as it is similar to [45]. The general form of kinetic energy
is taken:

Ek = 1

2

Ñ
ρ

[
u̇2 + v̇2 + ẇ 2]d xd yd z (15)

Assuming energy associated with in-plane velocities is negligible, u̇ and v̇ can
be excluded from Equation 15 [46]. With a symmetric laminate, chordwise
rigidity and neglecting energy due to in-plane deformations, strain energy can
be found

Es = 1

2

Ï
D11

(
∂2w

∂y2

)2

+4D16
∂2w

∂y2

∂2w

∂x∂y
+4D66

(
∂2w

∂x∂y

)2

d xd y (16)

With relationships for Ek and Es , the free vibration is derived based on the La-
grange equation for a conservative system Es +Ek = const ant

∂ (Es +Ek )

∂t
= 0 (17)

It has been shown in literature a solution can be found through a Rayleigh-Ritz
approach [47]. Out-of-plane deflection w can be taken as the sum of assumed
shape functions from Legendre Polynomials (defined in Appendix B) in the
form

w(ξ,η) =
mmax∑
m=0

nmax∑
n=0

qmn (1+ξ)2 Lm(ξ)Ln(η) (18)

Where qmn represents modal coordinates with index m representing spanwise
mode and n chordwise. Implementing Equation 18 in Equations 15 and 16,
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structural mass and stiffness matrices can be derived through energy balance:

d

d t

(
∂Ek

∂q̇i j

)
= M̂q̈

∂Es

∂qi j
= K̂q

(19)

The Lagrange equation is used to derive the aerodynamic matrices also, where
incremental work along the wing is given by:

δW =
∫

wi ng

[
dL (−δw)+d M

(
δχ

)]
(20)

Where δw is incremental heave and δχ is incremental pitch. Quasi-steady strip
theory aerodynamics are implemented due to the relatively low velocities and
simple unswept geometry of the plate. Aerodynamic lift (dL) and moment
(d M) for each strip is then given by

dL = 1

2
ρV 2caw

(
ẇ

V
+χ

)
d y

d M = 1

2
ρV 2c2

[
eaw

(
ẇ

V
+χ

)
+Mχ̇

(
χ̇c

4V

)]
d y

(21)

where aw is the effective lift curve slope which is assumed to be a function of
span location y and 2D lift slope[48].

aw = 2π

(
1− y3

b

)
(22)

Unsteady pitch velocity term
(
Mχ̇ =−1.2

)
is introduced to account for reduced

frequency effects. This term acts as an approximation to Theodorsen’s function
derivative based on an average over a range of reduced frequencies and flexural
axis positions[49]. Implementing Lagrange polynomials aerodynamic matrices
B̂ and Ĉ are derived in Appendix B.

When determining flutter and divergence velocities, results converge with
eight order Legendre polynomials, so in Equation 18 when n = 1 and m = 8. The
first four mode shapes for a [-45,-45,45]s laminate as an example are shown in
Figure 5. Mode 1 and 2 are the first and second spanwise bending. Mode 3 is
the first twisting mode while mode 4 is a coupled third spanwise bending and
twisting mode.
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Table 1: Parameters and material properties for flat plate case study

Parameter Value
Number of plies (n) 6

Span (b) 2m
Chord (c) 0.5m

Ply thickness (t ) 1.7mm
Longitudinal Young’s modulus (E11) 128GPa

Transverse Young’s modulus (E22) 11GPa
Shear modulus (G12) 11GPa
Poisson’s ratio (ν12) 0.28

3.2. Results

Deterministic results for divergence, lowest flutter velocity and structural
frequency (ω) without material uncertainly are displayed in Table 2. Flutter ve-
locity is initially taken as the lowest velocity where the damping ratio of any
mode becomes negative, to obtain a general idea of stability before examining
specific modes. It shows that both divergent and flutter speed varies signifi-
cantly with the layout of fiber angle orientation. This can be explained through
the impact of laminate layup on the structural stiffness matrix which in turn
affects aeroelastic characteristics. Typically, higher structural stiffness results
higher natural frequency for a structure. Table 2 shows some correlation be-
tween ω and divergence and flutter speed, with higher ω resulting in higher Vd

and V f . However, this does not hold true in all cases as observed in [45,45,0]s
layup with a relatively high natural frequency but low divergence and flutter
velocity. As a result, assumptions of aeroelastic characteristic cannot be made
purely on structural stiffness. Laminates with outer ply angles of −45o were
shown to give divergence speed over double the closest alternative and flutter
speed an increase of over 70%.

In every case mode 1 diverges at the lowest velocity, shown at Vd in Table
2. This is the first bending mode shown in Figure 5. Typically in wings diver-
gence is dominated by torsion[3]. In this case an untapered wing is considered,
and the strip theory aerodynamic model assumes uniform lift throughout the
span but resistance to bending is lower at the tip. Generally, untapered wings
also have higher torsional stiffness and weaker coupling between bending and
torsion [50]. Both modes 3 and 4 typically enter flutter, dependent on a layup
in which the modal damping ratio becomes negative first. Damping ratio plots
in Figure 6 are obtained through eigenvalue analysis of the system’s Q matrix.
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Table 2: Deterministic results for flat plate case study. Featuring the divergence velocity and
the lowest flutter velocity.

Layup Vd [m/s] V f [m/s] ω[H z]
[45,45,0]s 57.48 59.94 17.30
[90,90,0]s 79.60 12.26 9.40
[-45,-45,0]s 259.76 124.32 17.30
[0,0,45]s 101.62 67.12 15.71
[90,90,45]s 65.85 35.40 9.76
[-45,-45,45]s 262.08 126.80 17.44
[0,0,-45]s 110.53 66.61 15.71
[45,45,-45]s 58.47 58.34 17.43
[90,90,-45]s 97.54 41.34 9.76
[0,0,90]s 96.88 59.77 15.62
[45,45,90]s 51.65 51.63 17.26
[-45,-45,90]s 261.31 118.04 17.25

Examination of the damping ratio plot of mode 4 show a gradual decrease in
damping ratio as the mode becomes dynamically unstable. This reveals soft
flutter behaviour often referred to as a "hump mode". Inversely, mode 3 enters
flutter with a steep gradient, describing hard flutter behaviour. A hard flutter
mode becomes unstable suddenly and is challenging to counteract, modifica-
tions would act to shift the behaviour to a higher velocity [51].

Figure 6 shows the difference in damping ratio plots between soft and hard
flutter for a [-45,-45,45]s layup. The type of flutter mode is identified through
the sensitivity/gradient of the damping to the airspeed. A sharp decrease in
damping ratio defines hard flutter and a gradual shows decrease soft flutter. In
this scenario it is observed that hard and soft flutter velocity is reached within
5m/s of each other. This suggests uncertainties in the fiber angles may signifi-
cantly affect which flutter mode will appear at first.

As shown in Figure 2, fiber angle uncertainty in a form of uniform distribu-
tion spanning +/−5o from the nominal value is applied to each of six layers of
the composite plate. MCS is performed for the uncertainty propagation until
the mean value of the output distribution is converged. Figure 7 provides an
example of convergence plot for flutter speed, converging by 1000 samples. Di-
vergence point is treated as a single output as the velocity when determinant of
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Figure 5: Mode shapes for flat plate case study

Figure 6: Flutter modes
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Figure 7: Example convergence of samples for hard flutter in [-45,-45,45]s

Equation 3 is zero. Damping ratio plots are required to determine flutter mech-
anism for each mode. To distinguish between soft and hard flutter behaviour
surrogate models for damping behaviour of both modes are produced. As a re-
sult, three times the amount of training data compared to divergence velocity is
required. This is consistent with all other laminates investigated. Considering
the fast computation of this model, MCS was done without the aid of surrogate
models initially.

Table 3 shows results for divergence and lowest flutter velocity including
Coefficient of Variance (COV) with material uncertainty. A pattern can be iden-
tified in the robustness of the divergence speed. Laminates containing 0o outer
plies are up to four times less robust (in terms of COV) than the least robust
layup without zero outer plies. It is more difficult to obtain a conclusion from
the flutter results, likely due to different modes entering flutter depending on
the layup. Closer examination is therefore required into the specific mecha-
nism of flutter for certain laminates. The best-performing laminate consid-
ering both flutter velocity, divergence velocity and robustness is [-45,-45,45]s.
The least robust layup with respect to divergence [0,0,-45]s and the least ro-
bust with respect to flutter [90,90,45]s. These three layups were selected to be
investigated further with the aim of determining the reason for their respective
robustness.

With the three laminates selected, Kriging surrogate models were built fol-
lowing the process in Figure 3. A separate model is built for each behavior
with data that is obtained from running eigenvalue analysis over a range of ve-
locities. Divergence speed models only require inputs for each ply angle and
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Table 3: Probabilistic results for flat plate wing box case study

Vd V f

Layup mean
[m/s]

COV
[%]

mean
[m/s]

COV
[%]

[45,45,0]s 57.78 0.97 57.78 1.70
[90,90,0]s 83.03 4.54 17.92 2.66
[-45,-45,0]s 258.76 1.92 124.31 1.06
[0,0,45]s 101.08 4.24 68.80 1.59
[90,90,45]s 67.57 1.23 37.43 3.63
[-45,-45,45]s 260.89 1.88 126.76 1.02
[0,0,-45]s 111.13 7.97 68.22 1.81
[45,45,-45]s 58.74 0.83 58.73 1.14
[90,90,-45]s 99.77 1.19 42.37 1.26
[0,0,90]s 99.98 7.86 61.67 2.34
[45,45,90]s 52.03 1.25 51.97 0.77
[-45,-45,90]s 260.14 0.78 118.13 0.82

corresponding outputs for divergence velocity. For both flutter modes, an ar-
ray of damping ratio results with corresponding velocities are taken as inputs
and outputs. The surrogate model can be then used to produce damping ratio
plots determining flutter speed when the damping ratio crosses the x-axis. This
is done specifically for the case of the "hump mode" to account for scenarios
where a combination of inputs causes the mode to become stable again or not
become unstable at all. An accurate surrogate model in this study was defined
as less than 1% difference when compared to a separate set of comparison data.
The compassion data set consisted of 100 samples taken independently though
LHS. Using the sample inputs used to gather the comparison data set with the
surrogate model, accuracy of the results for divergence and flutter velocity was
evaluated. In the flat plate wing box case study, it was found that an acceptable
model can be obtained with training data from between 80-150 samples using
LHS techniques.

The following results are obtained using surrogate models. Figure 8 shows
histograms of flutter velocity for both soft and hard flutter modes with damping
ratio plots for 1000 MCS. Probability density functions (PDF) are displayed in
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Figure 8: [-45,-45,45]s flate plate damping ratio

Figure 9. One can find out that there is a crossover area between the two modes.
Physically, this means if a flutter occurs between 128−130m/s it could either
be a soft or hard flutter.

Figure 9 shows damping ratio plots and corresponding PDFs for [0,0,-45]s
and [90,90,45]s laminates. In both cases, hard flutter occurs first and there is no
overlap between the modes. In an ideal scenario, soft flutter occur before the
hard flutter, where damping ratio becomes negative gradually. The soft flutter
can lead to low amplitude oscillations before the behaviour becomes danger-
ous, which can be counteracted unlike the hard flutter [52]. However, in this
study, it was found in Figure 9 as well as in Figure 15 that the hard flutter can
take place at first for some layouts before the soft flutter, which make the de-
sign potentially more catastrophic. Global sensitivity analysis discussed in Sec-
tion 2.3.1 is carried out with respect to divergence and flutter velocities for each
layup to determine each orientations angle’s impact on aeroelastic characteris-
tics. Figures 10 and 11 display the Sobol indices obtained for three fiber angle
layouts namely [-45,-45,45]s, [0,0,-45]s and [90,90,45]s. In these layouts, "1"
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(a) Layup [-45,-45,45]s

(b) Layup [0,0,-45]s

(c) Layup [90,90,45]s

Figure 9: Damping ratio plots and PDF for flat plate wing box case study

(soft flutter –),(hard flutter –)
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(a) Layup [-45,-45,45]s

(b) Layup [0,0,-45]s

(c) Layup [90,90,45]s

Figure 10: Sobol indices for divergence in flat plate wing box case study

is the top ply while "6" is the bottom ply. Since divergence occurs in the first
bending mode, the results in Figure 10 can be explained. As mentioned in Sec-
tion 3.1, ply angles of 0o primarily act to resist bending. So with divergence
occurring in the first bending mode it follows for layup [0,0,-45]s, outer plies
of 0o have a larger influence over divergence than -45o plies. The same con-
clusion is also drawn from [90,90,45]s layup, as 90o plies primarily counteract
twist meaning the majority of bending resistance depends on 45o plies. In the
case of [-45,-45,45]s where all plies provide resistance from both bending and
twist, it is observed the outer plies have the largest impact on divergence. Fig-
ure 11 provides similar conclusions. Soft flutter, being dominated by bending
behavior follows the same pattern as the divergence Sobol results. Hard flut-
ter is reached with a twisting mechanism, so the inverse of bending results is
observed for Sobol indices.
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(a) Layup [-45,-45,45]s

(b) Layup [0,0,-45]s

(c) Layup [90,90,45]s

Figure 11: Sobol indices for flutter in flat plate wing box case study
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From the results of the flat plate wing box case study three main conclusions
are reached:

1. Attention should be paid to the mechanism by which the mode becomes
unstable, building separate surrogate models for each mode

2. Accurate surrogate models can be constructed with the use of Kriging in
the flat plate case with under 200 training runs

3. Global sensitivity analysis shows the surrogate models have physical sig-
nificance

With the methodology validated on a low-fidelity flat plate test case, the ben-
efits can be exploited on a high fidelity aerofoil shaped wing box case study
case.

4. Aerofoil Shaped Wing Box Case

In this section, aerofoil shaped wing box case study is discussed. First, the
model setup is presented and then the results are described and discussed.

4.1. Model setup

For the aerofoil shaped wing box case study, a cantilevered wing model
shown in Figure 12 is generated for the study. The cross-section geometry is
based on NACA0012 aerofoil shape and its parameters are shown in Table 4.
The structure made of shell elements which CalculiX internally expands to twenty-
node brick elements (C3D20). In a composite layup the number of through-
thickness bricks corresponds to the number of composite plies. Using the pa-
rameters presented in Table 4, this results in 288000 degrees-of-freedom. Simi-
lar to the flat plate case, a symmetrical 6-ply laminate is used for the skin of the
wing box. Figure 14 shows mode shapes that dominate aeroelastic behavior as
will be discussed in the following. As opposed to manual construction, the
aerofoil shaped wing box model is developed through an automated FEM pro-
cess through an Open source Python script [53]. This automated process takes
place in four steps as follows:

1. Python inputs including the geometry and meshing properties are de-
fined to generate high-fidelity modeling instructions through CalculiX
GraphiX.

2. The package is then executed to generate the parametric FE model and
output a corresponding regular FEM shell mesh.
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Table 4: Parameters for aerofoil shaped wing box case study

Parameter Value
Number of plies (n) 6

Wingspan (b) 2m
Wing chord (c) 0.2m

Ply thickness (t ) 0.2mm
Spanwise elements 40

Chordwise elements 10
Material density 1520kg /m3

E11 128GPa
E22 11GPa
ν12 0.28

3. Composite material input properties are associated with the developed
FEM mesh and a normal modal analysis is performed using CalculiX CrunchiX.

4. The undamped modal structural stiffness and mass matrices are derived
from the analysis outputs.

With a mesh of the structure, local element mass and stiffness matrices are in-
tegrated into global matrices accounting for connections and interactions be-
tween elements. To simplify interpretation and analysis of mode shapes a nor-
malisation step is carried out. All outputs of the eigenmodes are normalised by
means of the generalised mass matrix, where the generalised mass is the same
as the modal mass. This means the eigenvectors are scaled such that pre- and
post-multiplying the mass matrix by the eigenvectors for each mode results in
an identity matrix. Since there is no damping in the model, the eigenvalues
of the generalised eigenvalue problem are the squares of the eigenfrequencies.
So, the modal stiffness matrix is simply a diagonal matrix of the squared nat-
ural frequencies. With structural matrices assembled, aeroelastic analysis can
be conducted following the same methodology as the flat plate case. This pro-
cess still has a high computational cost, meaning directly running thousands
of samples for the purpose of uncertainty quantification is still unfeasible with
run times ranging from 90-180 seconds. However, since the process has been
automated, it is convenient and feasible to generate certain training data for
the development of a surrogate model for the uncertainty quantification. This
part will be discussed in the following section. As spanwise geometry of the
wing remains unswept and the airspeed is relatively low, a strip theory aerody-
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Figure 12: A cantilever Wing box model

namic model is again implemented with the same formulation as in Equation
21. Aerodynamic matrices are yet again determined implementing incremen-
tal work done by the aerodynamic forces over the wing surface with respect to
generalised coordinates. Chordwise rigidity is not assumed as in Appendix B,
so the formulation is as follows

ρai r V B̂q̇ +ρai r V 2Ĉq =− ∂

∂qi
W (23)

where W is defined in Equation 20 and incremental twist and deflections are
sums over all k modes

w =
k∑

i=0
qi wi

χ=
k∑

i=0
qiχi

(24)

4.2. Results

Both soft and hard flutter are observed in two separate modes. Figure 13
displays damping ratio plots for both modes in the case of a [-45,-45,45]s lam-
inate. The model enters flutter in two modes, one with a sharp gradient three
orders of magnitude greater than the other. This indicates a hard flutter mode
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Figure 13: Soft and hard flutter damping ratio plots for [90,90,45]s layup in aerofoil shaped
wing box model

with a sharp decrease in damping mode and a soft flutter mode with a grad-
ual decrease [52]. Soft flutter occurs before hard flutter as in the flat plate case
study, but the modes become unstable further apart by more than 100 m/s.

Table 5 shows the deterministic results from aeroelastic analysis of the aero-
foil shaped wing box test case. As was the case in the flat plate study, [-45,-45,45]s
laminate has the highest divergence and hard flutter speed. Laminate [0,0,-45]s
has the highest soft flutter speed and it reaches hard flutter before the soft flut-
ter. Figure 14 shows the undamped normal mode shapes of the wing FEM for
laminate [-45,-45,45]s. It is obvious that divergence in both cases is charac-
terized by the first bending mode; Soft flutter is in the second bending mode
and Hard flutter is dominated by the first torsion mode. The wing is an unta-
pered uniform lifting surface again, so divergence occurs in the first bending
mode as opposed to a torsional mode as is typical in tapered wings. Compared
to Figure 5, it is shown similar mode shapes enter divergence and both flutter
modes for both test cases. However, the deformation in the aerofoil shape can
be observed in Figure 14 that will not be accounted for in the flat plate case.

Kriging surrogate models are built for each aeroelastic behavior following
the methodology described in Section 2.4. The difference between the flat plate
wing box study is that the structural model in this aerofoil shaped case is the au-
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Layup Structural frequency
[H z]

Soft flutter
[m/s]

Hard flutter
[m/s]

Divergence
[m/s]

[-45,-45,45]s 5.02 77.84
(30 Hz)

193.37
(118 Hz)

181.95

[0,0,-45]s 10.15 107.73
(62 Hz)

96.43
(80 Hz)

178.33

[90,90,45]s 7.83 53.96
(25 Hz)

169.89
(97 Hz)

58.49

Table 5: Deterministic results for aerofoil shaped wing box case study including flutter frequen-
cies

tomated parametric framework is implemented to generate high fidelity struc-
tural matrices then CalculiX is used for finite element analysis. The same method-
ology is applied to construct surrogate models for divergence speed and both
flutter modes using the same criteria for convergence. It is found that 200-350
training samples can provide sufficiently accurate surrogate models.

Material uncertainty in the ply orientation angle was then introduced with
the same distributions and methodology as in the flat plate case study. Results
for mean flutter velocity have converged by 1000 samples using the same crite-
ria as in the flat plate study.

Figure 15 shows the damping ratio plots for the laminates investigated with
the corresponding distributions for flutter speeds subject to material uncer-
tainty. In all three cases, there is no overlap between the behaviors. Upper
and lower confidence bands for hard flutter behavior cross the x-axis in rela-
tively close proximity to each other, with a maximum range of 6m/s in layup
[0,0,-45]s. This results in sharp PDFs for hard flutter when compared to diver-
gence and soft flutter. It is observed that soft flutter modes have wider PDFs
when compared to hard flutter. This is potentially due to the shallow gradient
approaching zero damping. PDFs related to divergence velocity are shown in
Figure 16, where similar shapes are observed for each laminate following a nor-
mal distribution. Laminate [-45,-45,45]s has the largest COV of the layups at
26.25%. This is not the case in the flat plate study. The reason why is unclear at
this stage, potentially another mode enters divergence at a similar velocity.

Figure 17 and 18 show that the global sensitivity analysis comes to the same
conclusion as the low-fidelity case. It is observed in behaviour dominated by
bending, plies of 0o have the highest influence on uncertainty and in the case
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(a) Fist bending mode

(b) Second bending mode

(c) First torsion mode

Figure 14: Mode shapes of aerofoil shaped wing box model

28



(a) Layup [-45,-45,45]s

(b) Layup [0,0,-45]s

(c) Layup [90,90,45]s

Figure 15: PDF of divergence velocity in aerofoil shaped wing box case study(soft flutter –),(hard
flutter –)
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(a) Layup [-45,-45,45]s (b) Layup [0,0,-45]s (c) Layup [90,90,45]s

Figure 16: PDF of divergence velocity in aerofoil shaped wing box case study

of twisting behaviour, 90o plies have the largest. Where only combinations of
45o and -45o are present, outer plies impact uncertainty on aeroelastic charac-
teristics is higher. Global sensitivity analysis is displayed in Figures 17 and 18.
Comparisons with Figures 10 and 11 show the same patterns are followed.

5. Comparison

Table 6 shows a comparison of the mean and COV of different flutter and
divergence speeds between low- and high-fidelity test cases. Similarities are
observed in the robustness of all hard flutter modes being within 0.15-1.4% of
each other. Divergence of laminates [0,0,-45]s and [90,90,45]s have the COV in
the same range, falling within 0.4-1.6% of each other. In the case of soft flutter,
the flat plate test case is more robust in each laminate. Comparing damping
ratio plots of the two case studies shows a shallower gradient approaching zero
damping in the aerofoil shaped wing box case, potentially giving rise to higher
degrees of uncertainty. The main area of agreement between the two test cases
is in the global sensitivity analysis. In each case study, for divergence and soft
flutter, plies that counteract bending have a greater impact than plies with fiber
angles of 90o . The inverse is true for hard flutter where the twist mode domi-
nates. With an increased training sample data set from a parametric model, it
is found the same physical results from a aerofoil shaped wing box case study
can be produced at early design stages. While direct comparisons between the
case studies cannot be made due to differences in geometry it is worth men-
tioning the high-fidelity case study has significantly higher COV for soft flutter
behaviour than the low-fidelity study.
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(a) Layup [-45,-45,45]s

(b) Layup [0,0,-45]s

(c) Layup [90,90,45]s

Figure 17: Sobol indices for divergence in aerofoil shaped wing box case study
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(a) Layup [-45,-45,45]s

(b) Layup [0,0,-45]s

(c) Layup [90,90,45]s

Figure 18: Sobol indices for flutter aerofoil shaped wing box case study
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Soft flutter Hard Flutter Divergence
Layup mean [m/s] COV [%] mean [m/s] COV [%] mean [m/s] COV [%]

[-45,-45,45]s
flat plate 132.84 1.07 126.70 0.91 260.89 1.88

aerofoil shaped 74.80 21.93 193.96 1.14 186.26 26.25

[0,0,-45]s
flat plate 176.43 1.55 68.21 1.68 111.13 7.97

aerofoil shaped 111.04 3.29 95.58 1.83 176.56 6.36

[90,90,45]s
flat plate 78.55 3.05 37.5 2.75 67.57 1.23

aerofoil shaped 60.04 33.49 168.86 1.39 58.49 1.62

Table 6: Comparison of low- and high-fidelity

case studies

6. Conclusion

The paper proposed an efficient methodology for quantifying manufactur-
ing uncertainties on the aeroelastic characteristics of low- and high-fidelity com-
posite wings. An advanced Kriging method-based surrogate model paired with
Latin hypercube sampling was developed to improve the computational effi-
ciency of the UQ. A low-fidelity case study based on a flat composite plate
was carried out first to validate the proposed methodology before applying it
to a high-fidelity FE-based parameteric composite model. Aeroelastic analysis
was then performed to obtain the flutter and divergence velocities. The Sobol-
based global sensitivity analysis was also carried out to identify the impact of
uncertainty parameters. The deterministic and stochastic results of both test
cases are later compared to identify the limitations of simplified modeling.

The UQ methodology has proved effective and efficient for both low- and
high-fidelity cases to successfully obtain stochastic flutter and divergence speeds
considering the uncertainty associated with each ply of the laminate. From the
flat plate wing box test case, it was observed that a soft and hard flutter mode
exists in all layups that can overlap leading to situations where either mode be-
comes unstable first. The aerofoil shaped wing box case study follows the same
behavior having two flutter modes of different intensities. When considering
divergence, robustness was consistent in two out of the three laminates con-
sidered. Robustness in hard flutter behavior was consistent in both case stud-
ies. The largest disagreement in results was found in the soft flutter robustness.
In all cases of layouts, it was found that high-fidelity results have significantly
larger COV than low-fidelity results.

Global sensitivity analysis has shown with behaviour dominated by bend-
ing, plies of 0o have the highest influence on uncertainty, in both cases here
divergence and soft flutter. In both cases hard flutter is in the first torsion mode
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where 90o plies have the largest impact on uncertainty. Where only combina-
tions of 45o and -45o are present, outer plies impact uncertainty on aeroelastic
characteristics is higher.

In two areas consistency between low- and high-fidelity case studies is found

1. Mechanism by which divergence and flutter exists

2. Global sensitivity analysis

In both cases, divergence occurs in the first bending mode, soft flutter in the
second bending mode and hard flutter in the first torsion mode. Inconsistency
in results is found in the deterministic results and the degree of uncertainty in
the aeroelastic characteristics. Differences in deterministic results can be at-
tributed to changes in dimensions between models. Considering robustness,
COV results are in agreement for hard flutter behavior between both cases but
flat plate cases are up to ten times more robust for soft flutter. While observing
the differences between the test cases, conclusions should not be made based
on a comparison due to the significant differences in geometry. Further work
should consider a direct comparison between a high-fidelity parametric model
and a simplified model. It is unclear if this is due to differences in geometry or
increased complexity from the high-fidelity study. The similarities in robust-
ness with divergence and hard flutter behaviour may suggest it is due to the
increased complexity, but this conclusion cannot be definitively stated based
on this study.

With aid of a parametric CACULIX model, it is demonstrated that it is pos-
sible to consider material uncertainties in a high-fidelity aerofoil shaped wing
box test case at early design stages. Although efficient, the collection of train-
ing data for surrogate model development is still computationally expensive. It
is recommended that future work should focus more on reducing the training
sample size required to speed up this process such as on the use of physics-
informed techniques and implementing a more complex aerodynamic model.
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Appendix A. Laminate Derivatives

E11 and v12 are longitudinal modulus. E22 and G12 are transverse modulus.

Q11 =
E11

1−ν12ν21
; Q12 =

ν12E22

1−ν12ν21

Q21 =
ν21E11

1−ν12ν21
; Q22 =

E22

1−ν12ν21
; Q66 =G12

(A.1)

Q∗
11 = Q11 cos2θ+2

(
Q12 +2Q66

)
sin2θcos2θ+Q22 sin4θ

Q∗
22 = Q11 cos2θ+2

(
Q12 +2Q66

)
sin2θcos2θ+Q22 cos4θ

Q∗
12 =

(
Q11 +Q22 −4Q66

)
sin2θcos2θ+Q12

(
sin4θ+cos4θ

)
Q∗

66 =
(
Q11 +Q22 −2Q12 −2Q66

)
sin2θcos2θ+Q66

(
sin4θ+cos4θ

)
Q∗

16 =
(
Q11 −Q22 −2Q66

)
cos3θ sinθ− (

Q22 −Q12 −2Q66

)
cosθ sin3θ

Q∗
26 =

(
Q11 −Q22 −2Q66

)
cosθ sin3θ− (

Q22 −Q12 −2Q66

)
cos3θ sinθ

(A.2)

Appendix B. Legendre polynomials and Energy derivatives

Legendre polynomials are defined as

Li (ξ) =
J∑

j=0
(−1) j

(
2i −2 j

)
2i j

(
i − j

)(
i −2 j

)ξi−2 j (B.1)

where J = i
2 (i = 0,2,4, ...)

Energy derivatives are defined as follows (only applies for chordwise rigid-
ity)

∂ (δW )

∂
(
δqi 0

) =−π
4
ρai r V 2cb

mmax∑
m=0

∫ 1

−1
(1+ξ)4Lm(ξ)Li (ξ)(

1−
(
ξ+1

2

)3)(
q̇m0

V
+ 2qm1

c

)
dξ

=−[
ρai r V B̂11 0

][
q̇i 0
q̇i 1

]
− [

0 ρai r V 2Ĉ12
][

qi 0
qi 1

]
(B.2)
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∂ (δW )

∂
(
δqi 1

) = 1

4
ρai r V 2cb

mmax∑
m=0

∫ 1

−1
(1+ξ)4Lm(ξ)Li (ξ)[

π

2

(
1−

(
ξ+1

2

)3)(
q̇m0

V
+ 2qm1

c

)
+Mẋ

(
q̇m1

2V

)]
dξ

=−[
ρai r V B̂21 ρai r V B̂22

][
q̇i 0
q̇i 1

]
− [

0 ρai r V 2Ĉ22
][

qi 0
qi 1

]
(B.3)

B̂11, B̂21, B̂22, Ĉ12 and Ĉ22 are extrected as the square sub-matrices of aero-
dynamic damping and stiffness matrices B̂ and Ĉ [54].

B̂ =
[

B̂11 0N×N

B̂21 B̂22

]
Ĉ =

[
0N×N Ĉ12

0N×N Ĉ22

]

References

[1] L. Dray, A. W. Schäfer, C. Grobler, C. Falter, F. Allroggen, M. E. Stettler, S. R.
Barrett, Cost and emissions pathways towards net-zero climate impacts in
aviation, Nature Climate Change 12 (10) (2022) 956–962.

[2] A. J. Timmis, A. Hodzic, L. Koh, M. Bonner, C. Soutis, A. W. Schäfer, L. Dray,
Environmental impact assessment of aviation emission reduction through
the implementation of composite materials, The International Journal of
Life Cycle Assessment 20 (2015) 233–243.

[3] J. R. Wright, J. E. Cooper, Introduction to aircraft aeroelasticity and loads,
Vol. 20, John Wiley & Sons, 2008.

[4] C. A. Board, Investigation of aircraft accident: Braniff airways: Buffalo,
texas: 1959-09-29 (1959).

[5] O. Stodieck, J. Cooper, P. Weaver, P. Kealy, Aeroelastic tailoring of a rep-
resentative wing box using tow-steered composites, AIAA journal 55 (4)
(2017) 1425–1439.

[6] C. Scarth, J. E. Cooper, P. M. Weaver, G. H. Silva, Uncertainty quantification
of aeroelastic stability of composite plate wings using lamination param-
eters, Composite Structures 116 (2014) 84–93.

36



[7] O. Stodieck, J. E. Cooper, P. M. Weaver, P. Kealy, Improved aeroelastic tailor-
ing using tow-steered composites, Composite Structures 106 (2013) 703–
715.

[8] A. D. Marano, M. Belardo, J. Beretta, F. Starace, S. Orlando, C. Punzi, R. Fra-
jese, N. Paletta, L. Di Palma, Aeroelastic tailoring of the next generation
civil tiltrotor technological demonstrator composite wing, Aerospace 9 (7)
(2022) 335.

[9] D. Rajpal, F. Mitrotta, C. Socci, J. Sodja, C. Kassapoglou, R. De Breuker, De-
sign and testing of aeroelastically tailored composite wing under fatigue
and gust loading including effect of fatigue on aeroelastic performance,
Composite Structures 275 (2021) 114373.

[10] Y. Zheng, Y. Wang, Flutter stability analysis of aeroelastic systems with
consideration of hybrid uncertain parameters, Mechanical Systems and
Signal Processing 185 (2023) 109782.

[11] T. Mesogitis, A. A. Skordos, A. Long, Uncertainty in the manufacturing of
fibrous thermosetting composites: A review, Composites Part A: Applied
Science and Manufacturing 57 (2014) 67–75.

[12] L. Li, Structural design of composite rotor blades with consideration
of manufacturability, durability, and manufacturing uncertainties, Ph.D.
thesis, Georgia Institute of Technology (2008).

[13] T. J. Dodwell, S. Kynaston, R. Butler, R. T. Haftka, N. H. Kim, R. Sche-
ichl, Multilevel monte carlo simulations of composite structures with un-
certain manufacturing defects, Probabilistic Engineering Mechanics 63
(2021) 103116.

[14] M. Esposito, M. Gherlone, Material and strain sensing uncertainties quan-
tification for the shape sensing of a composite wing box, Mechanical Sys-
tems and Signal Processing 160 (2021) 107875.

[15] D. Oh, L. Librescu, Free vibration and reliability of composite cantilevers
featuring uncertain properties, Reliability Engineering & System Safety
56 (3) (1997) 265–272.

37



[16] B. Khan, K. Potter, M. Wisnom, Suppression of delamination at ply drops
in tapered composites by ply chamfering, Journal of composite materials
40 (2) (2006) 157–174.

[17] G. Georgiou, A. Manan, J. E. Cooper, Modeling composite wing aeroelas-
tic behavior with uncertain damage severity and material properties, Me-
chanical Systems and Signal Processing 32 (2012) 32–43.

[18] X.-Y. Zhou, X. Ruan, P. Gosling, Robust design optimization of variable an-
gle tow composite plates for maximum buckling load in the presence of
uncertainties, Composite Structures 223 (2019) 110985.

[19] O. Stodieck, Parametric fem model creation with python and calculix
graphix (cgx) (2021).
URL https://www.dapta.com/dynamic-aeroelastic-flutter-and-
divergence-analysis-with-python-and-calculix-crunchix/

[20] S. Kilimtzidis, V. Kostopoulos, Static aeroelastic optimization of high-
aspect-ratio composite aircraft wings via surrogate modeling, Aerospace
10 (3) (2023) 251.

[21] M. P. Rumpfkeil, P. Beran, Multi-fidelity surrogate models for flutter
database generation, Computers & Fluids 197 (2020) 104372.

[22] C. Santhanam, R. Riva, T. Knudsen, Surrogate models for predicting stall-
induced vibrations on wind turbine blades, in: Journal of Physics: Confer-
ence Series, Vol. 2265, IOP Publishing, 2022, p. 032005.

[23] P. Ni, J. Li, H. Hao, Y. Xia, X. Du, Stochastic dynamic analysis of marine ris-
ers considering fluid-structure interaction and system uncertainties, En-
gineering Structures 198 (2019) 109507.

[24] B. Sudret, Global sensitivity analysis using polynomial chaos expansions,
Reliability engineering & system safety 93 (7) (2008) 964–979.

[25] L. D. Avendano-Valencia, E. N. Chatzi, D. Tcherniak, Gaussian process
models for mitigation of operational variability in the structural health
monitoring of wind turbines, Mechanical Systems and Signal Processing
142 (2020) 106686.

38

https://www.dapta.com/dynamic-aeroelastic-flutter-and-divergence-analysis-with-python-and-calculix-crunchix/
https://www.dapta.com/dynamic-aeroelastic-flutter-and-divergence-analysis-with-python-and-calculix-crunchix/
https://www.dapta.com/dynamic-aeroelastic-flutter-and-divergence-analysis-with-python-and-calculix-crunchix/
https://www.dapta.com/dynamic-aeroelastic-flutter-and-divergence-analysis-with-python-and-calculix-crunchix/


[26] D. G. Giovanis, M. D. Shields, Data-driven surrogates for high dimensional
models using gaussian process regression on the grassmann manifold,
Computer Methods in Applied Mechanics and Engineering 370 (2020)
113269.

[27] P. Ni, J. Li, H. Hao, Q. Han, X. Du, Probabilistic model updating via varia-
tional bayesian inference and adaptive gaussian process modeling, Com-
puter Methods in Applied Mechanics and Engineering 383 (2021) 113915.

[28] W.-J. Yan, D. Chronopoulos, C. Papadimitriou, S. Cantero-Chinchilla, G.-
S. Zhu, Bayesian inference for damage identification based on analytical
probabilistic model of scattering coefficient estimators and ultrafast wave
scattering simulation scheme, Journal of Sound and Vibration 468 (2020)
115083.

[29] Y. Liu, X. Wang, L. Wang, A dynamic evolution scheme for structures with
interval uncertainties by using bidirectional sequential kriging method,
Computer Methods in Applied Mechanics and Engineering 348 (2019)
712–729. doi:https://doi.org/10.1016/j.cma.2019.01.041.

[30] M. McKay, R. Beckman, W. Conover, Acomparison of three methods for se-
lecting values of inputvariables in the analysis of output from a computer
code, Technometrics 21 (2) (1979) 239–245.

[31] M. Sharifi, A. Vincenti, J.-C. Chassaing, Aeroelastic optimisation of com-
posite structures in aeronautics, in: 15ème colloque national en calcul des
structures, 2022.

[32] B. Zhang, Q. Wang, X. Liu, L. Zu, H. Yuan, Aeroelastic optimization design
of composite materials blade based on rbf/rom and cca reliability analysis,
Composite Structures 300 (2022) 116162.

[33] I. M. Sobol, Global sensitivity indices for nonlinear mathematical models
and their monte carlo estimates, Mathematics and computers in simula-
tion 55 (1-3) (2001) 271–280.

[34] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli,
M. Saisana, S. Tarantola, Global sensitivity analysis: the primer john wi-
ley & sons; 2008.

39

https://doi.org/https://doi.org/10.1016/j.cma.2019.01.041


[35] J. Yuan, A. Fantetti, E. Denimal, S. Bhatnagar, L. Pesaresi, C. Schwing-
shackl, L. Salles, Propagation of friction parameter uncertainties in
the nonlinear dynamic response of turbine blades with underplatform
dampers, Mechanical Systems and Signal Processing 156 (2021) 107673.

[36] A. Saltelli, Making best use of model evaluations to compute sensitivity
indices, Computer physics communications 145 (2) (2002) 280–297.

[37] An open source initiative for the treatment of uncertainties, risks’n statis-
tics, OpenTURNS (2022).
URL https://openturns.github.io/www/index.html

[38] A. Collar, A. Simpson, Matrices and engineering dynamics., Aeronautical
Journal (1988).

[39] C. G. J. Jacobi, De determinantibus functionalibus., Journal für die reine
und angewandte Mathematik (Crelles Journal) 1841 (22) (1841) 319–359.

[40] C. W. Bert, Classical lamination theory, in: Manual on Experimental Meth-
ods for Mechanical Testing of Composites, Springer, 1989, pp. 11–16.

[41] P. Wei, Z. Lu, J. Song, Regional and parametric sensitivity analysis of sobol
indices, Reliability Engineering & System Safety 137 (2015) 87–100.

[42] N. Cressie, The origins of kriging, Mathematical geology 22 (1990) 239–252.

[43] W. C. Van Beers, J. P. Kleijnen, Kriging for interpolation in random simula-
tion, Journal of the Operational Research Society 54 (2003) 255–262.

[44] H. L. Langhaar, Energy methods in applied mechanics, Courier Dover
Publications, 2016.

[45] Z. Wu, G. Raju, P. M. Weaver, Comparison of variational, differential
quadrature, and approximate closed-form solution methods for buckling
of highly flexurally anisotropic laminates, Journal of engineering mechan-
ics 139 (8) (2013) 1073–1083.

[46] J. M. Whitney, Structural analysis of laminated anisotropic plates, CRC
Press, 1987.

40

https://openturns.github.io/www/index.html
https://openturns.github.io/www/index.html
https://openturns.github.io/www/index.html


[47] A. Al-Obeid, J. Cooper, A rayleigh-ritz approach for the estimation of the
dynamic properties of symmetric composite plates with general boundary
conditions, Composites Science and Technology 53 (3) (1995) 289–299.

[48] E. C. Yates Jr, Modified-strip-analysis method for predicting wing flutter at
subsonic to hypersonic speeds., Journal of Aircraft 3 (1) (1966) 25–29.

[49] G. J. Hancock, An introduction to the flight dynamics of rigid aeroplanes
(1995).

[50] D. H. Hodges, G. A. Pierce, Introduction to structural dynamics and aeroe-
lasticity, Vol. 15, cambridge university press, 2011.

[51] Z. Shixiong, G. Junfeng, Z. Yu, Characteristics and suppression measures
for soft flutter of main girder with -shaped cross section, Journal of South-
west Jiaotong University 52 (3) (2017).

[52] C. L. Kelley, J. Paquette, Investigation of flutter for large, highly flexible
wind turbine blades, in: Journal of Physics: Conference Series, Vol. 1618,
IOP Publishing, 2020, p. 052078.

[53] O. Stodieck, Dynamic aeroelastic flutter and divergence analysis with
python and calculix, Dapta LTD (2022).
URL https://github.com/daptablade/parametric_cgx_model

[54] O. Stodieck, Aeroelastic tailoring of tow-steered composite wings, Ph.D.
thesis, University of Bristol (2016).

41

https://github.com/daptablade/parametric_cgx_model
https://github.com/daptablade/parametric_cgx_model
https://github.com/daptablade/parametric_cgx_model

	Introduction
	Methodology
	Aeroelastic Analysis
	Laminate theory
	Uncertainty Quantification
	Global sensitivity analysis

	Surrogate Model Development

	Flat Plate Wing Box Case
	Model setup
	Results

	Aerofoil Shaped Wing Box Case 
	Model setup
	Results

	Comparison
	Conclusion
	Acknowledgement
	Laminate Derivatives
	Legendre polynomials and Energy derivatives

